THE HOYLE STATE IN ¹²C AND ¹⁶O DISSOCIATION

Zaitsev A.A.

Joint Institute for Nuclear Research (JINR), Dubna, Russia E-mail: zaicev@lhe.jinr.ru

Events of dissociation of relativistic light nuclei observable in detail in the nuclear track emulsion (NTE) contain holistic information on ensembles of lightest nuclei which is of interest to the nuclear cluster physics [1]. The best spatial resolution provided by the NTE technique turns out to be a decisive factor for recognition relativistic ⁸Be and ⁹B decays among the projectile fragments [2]. The decays are identified by the invariant mass M^* defined by the sum of all products of 4-momenta P_i of relativistic fragments He and H. Subtracting the sum of the residual masses M is a matter of convenience $Q = M^* - M$. The components P_i are determined by the fragment emission angles under the assumption of conservation a projectile momentum per nucleon.

Production of α -particle triples in the Hoyle state (HS) in dissociation of ¹²C nuclei at 3.65 and 0.42 *A* GeV in nuclear track emulsion is revealed by the invariant mass approach [3]. Contribution of the HS to the dissociation ¹²C \rightarrow 3 α is (11 ± 3) %. Reanalysis of data on coherent dissociation ¹⁶O \rightarrow 4 α at 3.65 *A* GeV is revealed the HS contribution of (22 ± 2) %. These observations indicate that it is not reduced to the unusual ¹²C excitation and, like ⁸Be, is a more universal object of nuclear molecular nature. The analysis of the NTE layers exposed to relativistic ¹⁴N nuclei is resumed in the HS context. Video records of events of dissociation of relativistic nuclei in NTE obtained using a microscope and a digital camera can be found [4].

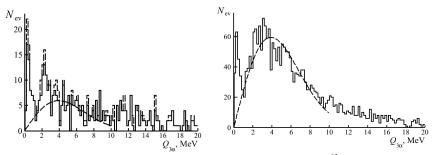


Fig. Distribution over invariant mass $Q_{3\alpha}$ of α -triples in dissociation of ${}^{12}C \rightarrow 3\alpha$ GeV (left) and 3α combinations in "white" stars ${}^{16}O \rightarrow 4\alpha$ at 3.65 A GeV (right).

- P.I.Zarubin // Lect. Notes in Physics, Clusters in Nuclei, 2014. V.875(3) P.51; arXiv: 1309.4881.
- D.A.Artemenkov, A.A.Zaitsev, P.I. Zarubin // Phys. Part. Nucl. 2017. V.48 P.147; arXiv:1607.08020.
- 3. D.A.Artemenkov et al. // Rad. Meas. 2018. V.119. P.119; arXiv:1812.09096.
- 4. The BECQUEREL Project. http://becquerel.jinr.ru/movies/movies.html.