ENERGY DEPENDENCE OF TOTAL REACTION CROSS SECTIONS FOR ^{6,8}He, ^{8,9}Li BEAM PARTICLES ON ²⁸Si, ⁵⁹Co, ¹⁸¹Ta TARGETS

Sobolev Yu.G.^{1,2}, Penionzhkevich Yu.E.^{1,3}, Samarin V.V.^{1,4}, Kugler A.⁵, Louko J.⁶, Naumenko M.A.¹, Siváček I.^{1,5}, Stukalov S.S.¹

¹ JINR, Joint Institute for Nuclear Research, 141980, Dubna, Russia; ² National Research Center "Kurchatov Institute" Moscow, 123182, Russia; ³ MEPhI, National Research NuclearUniversity, 115409, Moscow, Russia; ⁴ Dubna State University, Dubna, Russia; ⁵ NPI ASCR, Nuclear Physics Institute, CZ 250 68, Řež, Czech Republic; ⁶ Department of Physics, P.O. Box 35 (YFL) FI-40014 University of Jyvaskyla, Finland E-mail: sobolev@jinr.ru

New experimental data of direct measurement of total reaction cross section values for interaction ^{6,8}He, ^{8,9}Li cocktail beam particles with ²⁸Si, ⁵⁹Co, ¹⁸¹Ta target nuclei in the energy range 15–40 A MeV are presented. Modified transmission method based on prompt *n*, γ radiation detection by multi-module γ -spectrometer [1] was used. In this work 12 module CsI(Tl) high efficiency γ -spectrometer has been applied. Presented data for ^{6,8}He + ²⁸Si and ⁹Li + ²⁸Si reactions, in the frame of the experimental uncertainties, are overlapping with previously published results obtained by other transmission methods [2]. It confirms the observation of the peculiarity of cross section "bump" in $\sigma_R(E)$ for ^{6,8}He + ²⁸Si and ⁹Li + ²⁸Si reactions at $E \sim 10-30$ A MeV [3,4]. Theoretical analysis of presented experimental data was carried out in the microscopic model based on a numerical solving of the time-dependent Schrödinger equation for the outer weakly bound neutrons of the projectile nucleus [5].

- Yu.E.Penionzhkevich, Yu.G.Sobolev, V.V.Samarin, M.A.Naumenko // Phys. Rev. C. 2019. V.99. 014609.
- Yu.E.Penionzhkevich, Yu.G.Sobolev, V.V.Samarin, M.A.Naumenko // Phys. At. Nucl. 2017. V.80. P.928.
- Yu.G.Sobolev, E.V.Zemlyanaya, R.Kalpakchieva, et al. // Bull. Russ. Acad. Sci. Phys. 2005. V.69. № 11. P.1790.
- 4. Yu.G.Sobolev, Yu.E.Penionzhkevich, et al. // Phys. Part. Nucl. 2017. V.48. N.6. P.922.
- 5. V.V.Samarin // Phys. At. Nucl. 2015. V.78. P.128.