THE CHARACTERISTICS OF CARBON DETECTION WITH USING OF ¹³C(γ,p)¹²B ACTIVATION

Belyshev S.S.¹, Dzhilavyan L.Z.², Lapik A.M.², Pokotilovski Yu.N.³, Rusakov A.V.²

¹ Physics Faculty of Lomonosov Moscow State University, Moscow, Russia; ² Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia; ³ Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia E-mail: dzhil@cpc.inr.ac.ru

The method for carbon detection was proposed in [1, 2] with registration of produced ¹²B activity (the life time $T_{1/2} \cong 20.2$ ms) in the ¹³C(γ ,p)¹²B reaction [3]. Emission of γ -quanta at decay of ¹²B produced in the several specific targets was calculated in [4]. For the attempt to realize this method [1] there was given in [5] the model description based on MCNPX-5 [6]. Because of complexity of the task in the present work we checked the results from [5] by the independent estimations of the main method characteristics.

Fig. 1. Total (N_{γ}/N_{β}) for emitted γ quanta at ${}^{12}B$ -decay in dependence on target thicknesses ρr .

The calculations in [5] and in this work (according to [7]) of ¹²B-nuclei quantity produced per an incident 50 MeV electron in the graphite target (5 cm× \emptyset 6 cm) both gave about $1.4 \cdot 10^{-6}$. The total flux densities at an End Of Bombardment for y-quanta caused by ¹²B-decay in the target from the model [5] and from this work are respectively $v_{\gamma} \approx (0.8)$ and $0.5) \cdot 10^{-12} \text{ cm}^{-2} \cdot \text{ms}^{-1}$. The estimation of v_{γ} in this work was made using data per a decay β -particle from [4] and from the present work. There were used spectra in energy E_{γ} for emitted γ -quanta

 $(\Delta N_{\gamma}/\Delta E_{\gamma})/N_{\beta}$ and integrated fluxes of emitted γ -quanta (N_{γ}/N_{β}) in dependence on target thicknesses ρr for a set of minimal energies $E_{\gamma \min}$. (see Fig. 1. for $E_{\gamma \min} = 0$). It is interesting to note that the shape of (N_{γ}/N_{β}) -dependence on target thicknesses is similar to that from [8] for incident on targets electrons with energy ≈17 MeV.

The present results confirm the model description [5] and can be useful at optimization of the considered method for carbon detection.

- 1. E.A.Knapp, W.P.Trower et al. // Appl. Rad. Isot. 2000. V.53. P.711.
- 2. A.I.Karev, V.G.Raevsky, L.Z.Dzhilavyan et al. Patent US 8,582,712 B2. 12.11.2013.
- 3. D.Zubanov et al. // Phys. Rev. C. 1983. V.27. P.1957.
- 4. S.S.Belyshev, L.Z.Dzhilavyan, Yu.N.Pokotilovski // Bull. Russ. Acad. Sci. Phys. 2016. V.80. P.566.
- 5. L.Z.Dzhilavyan, Yu.N.Pokotilovski // Phys. Part. Nucl. Lett. 2017. V.14. №5. P.726. http://mcnp.lanl.gov/
- 6. L.Z.Dzhilavyan // Bull. Russ. Acad. Sci. Phys. 2009. V.73. P.846.
- 7. L.H.Lanzl, A.O.Hanson // Phys. Rev. 1951. V.83. P.959.