SPLINE APPROXIMATION METHOD FOR SOLVING HYPERRADIAL EQUATIONS FOR 3- AND 4-BODY SYSTEMS

Samarin V.V.
Joint Institute for Nuclear Research, Dubna, Russia;
Dubna State University, Dubna, Russia
E-mail: samarin@jinr.ru

New effective method for solving of the system of hyperradial equations [1] is proposed. The idea of this method is simultaneous calculation of the mesh function and its second derivative using the cubic spline interpolation expression [2]. As a result, the solving of the system of hyperradial equations is reduced to the eigenvalue problem of some matrix B [3]. The main advantage of this method is the smooth interpolation between the mesh points. For the equidistant mesh, the matrix B is symmetric, but size of the matrix B may be large. For a special choice of the non-uniform mesh, the size of the asymmetric matrix B may be small and calculations (only for the ground state) may be fast. The proposed method was tested for 3- and 4-body oscillatory systems as well as ${ }^{3} \mathrm{H}$, ${ }^{3,4,6} \mathrm{He},{ }^{6,7} \mathrm{Li},{ }^{12} \mathrm{C}$, and ${ }^{16} \mathrm{O}$ nuclei. The nuclei ${ }^{3} \mathrm{H}$ and ${ }^{3,4} \mathrm{He}$ were considered as consisting of protons and neutrons, whereas the nuclei ${ }^{6} \mathrm{He},{ }^{6} \mathrm{Li},{ }^{12} \mathrm{C}$, and ${ }^{16} \mathrm{O}$ were considered as α-cluster nuclei. The agreement with the experimental data on the binding energies was obtained using the effective nucleon-nucleon interaction potentials similar to the M3Y potential. The convergence of the proposed algorithm is shown in Fig. 1.

Fig. 1. Convergence of the proposed algorithm for the exactly solvable 3-body model with M3Y nuclear interaction and the exact value of the ground state energy $E_{0}=-8 \mathrm{MeV}$.

1. R.I.Dzhibuti, K.V.Shitikova. Method of Hyperspherical Functions in Atomic and Nuclear Physics. M.: Energoatomizdat, 1993.
2. G.I.Marchuk. Methods of Computational Mathematics. M.: Nauka,1980.
3. V.V.Samarin // Nuclear Theory. 2017. V.36. P.233.
