ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

На правах рукописи

НАУМЕНКО МИХАИЛ АЛЕКСЕЕВИЧ

ИССЛЕДОВАНИЕ ОСОБЕННОСТЕЙ ЯДЕРНЫХ РЕАКЦИЙ С УЧАСТИЕМ ЛЕГКИХ ЯДЕР В НЕСТАЦИОНАРНОМ ПОДХОДЕ

Специальность 01.04.16 – физика атомного ядра и элементарных частиц

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата физико-математических наук

Дубна 2018

Работа выполнена в Лаборатории ядерных реакций им. Г. Н. Флерова (ЛЯР) Объединенного института ядерных исследований (ОИЯИ), г. Дубна

Научный руководитель:	Самарин Вячеслав Владимирович
	доктор физико-математических наук, доцент, ведущий
	научный сотрудник ЛЯР ОИЯИ
Официальные оппоненты:	Карпешин Федор Федорович
	доктор физико-математических наук, ведущий научный
	сотрудник ФГУП «Всероссийский научно-
	исследовательский институт метрологии
	им. Д. И. Менделеева», г. Санкт-Петербург
	Лютостанский Юрий Степанович
	доктор физико-математических наук, профессор,
	начальник отдела НИЦ «Курчатовский институт»,
	г. Москва
Ведущая организация:	ФГБОУ «Московский государственный университет

я: ФГБОУ «московский государственный университе им. М. В. Ломоносова», г. Москва

Защита диссертации состоится «_____» ____ 2018 г. в ______ часов на заседании диссертационного совета Д720.001.01 при Лаборатории теоретической физики им. Н. Н. Боголюбова ОИЯИ, г. Дубна Московской области.

С диссертацией можно ознакомиться в библиотеке ОИЯИ и на странице http://wwwinfo.jinr.ru/announce_disser.htm.

Автореферат разослан «_____» ____ 2018 г.

Ученый секретарь

диссертационного совета 720.001.01

кандидат физико-математических наук

Ю. М. Быстрицкий

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность

Актуальность настоящей работы определяется двумя составляющими.

С экспериментальной точки зрения интерес к изучению свойств изотопов гелия, лития и других легких ядер, а также реакций с их участием растет в связи с возможностью получения высокоинтенсивных пучков радиоактивных ядер и развитием ускорительной техники. Исследование передачи нейтронов в ядерных реакциях, например, ⁶He + ¹⁹⁷Au, позволяет изучать как структуру легких ядер-снарядов, так и свойства тяжелых ядермишеней. Недавние эксперименты выявили необычные особенности реакций с рядом легких слабосвязанных ядер. В частности, сечения слияния в подбарьерной области для реакций 6 He + 197 Au, 6 He + 209 Bi и 8 He + 197 Au значительно превышают сечения слияния для реакций с ядром ⁴He. Сечение образования изотопа 198 Au в реакции ⁶He + 197 Au при околобарьерных энергиях довольно велико (порядка 1 б), что заметно превышает сечение слияния, поэтому, основным каналом образования этого изотопа является передача нейтрона. Выход изотопа ¹⁹⁶Аи при околобарьерных энергиях существенно превышает результаты расчетов слиянияиспарения, а при энергиях много выше барьера превышает и выход изотопа ¹⁹⁸Au. Измерения полных сечений реакций 4,6 He + 28 Si и 6,7,9 Li + 28 Si показали, что полное сечение реакции с ядром ⁶Не заметно превышает полное сечение реакции с ядром ⁴Не во всем исследованном диапазоне энергий 5-60 А МэВ, что может быть объяснено большими размерами ядра ⁶Не. Однако пока не получил полного объяснения тот факт, что в относительно узком диапазоне энергий 10-30 А МэВ полное сечение реакции с ядром ⁹Li значительно превышает полные сечения реакций с ядрами ^{6,7}Li, имеющими бо́льшие значения экспериментального среднеквадратичного зарядового радиуса.

С теоретической точки зрения в низкоэнергетических ядро-ядерных столкновениях передача нуклонов (и/или их перераспределение) может играть важную роль и проявляться как непосредственно в каналах нуклонных передач, так и в изменении потенциальной энергии системы, что в свою очередь приводит к изменению сечений отдельных каналов (например, слияния) и полного сечения реакции по сравнению с моделью с неизменной в ходе столкновения нуклонной плотностью. Такое изменение потенциальной энергии также может служить обоснованием введения зависимости от энергии и орбитального момента в феноменологические потенциалы, используемые в некоторых теоретических моделях.

В настоящее время для описания передачи нуклонов используется ряд теоретических моделей и подходов, в частности, борновское приближение метода искаженных волн

3

(Distorted Wave Born Approximation, DWBA), нестационарный метод Хартри-Фока, уравнения Ланжевена, нестационарное уравнение Шредингера. Приближение DWBA не дает возможности анализа динамики происходящих процессов. Расчеты с применением нестационарного метода Хартри-Фока требуют большого времени вычислений и пока выполняются на достаточно крупной сетке с шагом порядка 0.8 фм и только для ядер тяжелых и средних масс. Уравнения Ланжевена со случайными силами, включающие степени свободы, отвечающие за массовую асимметрию и перераспределение нуклонов также применимы только для ядер тяжелых и средних масс. Передачи отдельных нуклонов при столкновениях с участием легких ядер требуют более точного квантового описания, которое возможно на основе численного решения нестационарного уравнения Шредингера для волновых функций нуклонов (кластеров) в среднем поле ядер, движущихся по классическим траекториям. Данный метод обеспечивает квантовое описание нескольких независимых частиц, наглядную визуализацию динамики происходящих процессов и быстроту вычислений на мелкой сетке с шагом 0.1-0.2 фм, меньшим, чем расстояние осцилляций плотности вероятности для одночастичных состояний. Это позволяет достаточно точно вычислять пространственную структуру волновых функций нуклонов и кластеров. Несмотря на указанные преимущества, данный метод пока применялся для описания небольшого числа реакций. Исследование возможности более широкого применения этого метода для описания реакций с рядом легких ядер и интерпретации экспериментальных данных определяет теоретическую актуальность темы исследования.

Цели и задачи работы

Первой целью настоящей работы является проведение теоретического описания процессов передачи нейтронов в низкоэнергетических ядерных реакциях с участием легких ядер-снарядов ^{3,6}Не и представительным набором тяжелых ядер-мишеней на основе численного решения нестационарного уравнения Шредингера. Вторая цель работы заключается в объяснении различий в энергетических зависимостях полных сечений реакций 6 Не + 28 Si и 4 Не + 28 Si, а также 9 Li + 28 Si и 6,7 Li + 28 Si на основе нестационарного описания перераспределения внешних нейтронов ядер 6 Не и 9 Li. В связи с этим в работе поставлены следующие задачи:

1. Выполнить расчеты сечений образования изотопов ^{44,46}Sc в реакции ³He + ⁴⁵Sc, ⁴⁶Sc в реакции ⁶He + ⁴⁵Sc, ⁶⁵Zn в реакции ⁶He + ⁶⁴Zn, ^{196,198}Au в реакциях ^{3,6}He + ¹⁹⁷Au с учетом процессов передачи нейтронов и слияния ядер с последующим испарением

частиц из составного ядра; выполнить на этой основе сравнение и анализ экспериментальных данных.

- Исследовать зависимость сечений передачи от энергии и свойств сталкивающихся ядер.
- 3. Исследовать роль перераспределения внешних слабосвязанных нейтронов в процессе столкновения ⁶He + ²⁸Si и ⁹Li + ²⁸Si с целью объяснения особенностей экспериментальных данных по полным сечениям указанных реакций и их отличий от данных для реакций ⁴He + ²⁸Si и ^{6.7}Li + ²⁸Si.
- 4. Исследовать свойства основных состояний ядер ³H, ^{3,4,6}He, ⁶Li, ⁹Be в рамках квантовой задачи трех и четырех тел на основе фейимановских континуальных интегралов в евклидовом (мнимом) времени, а также в оболочечной модели. Решение этой задачи позволит обосновать начальные условия для волновых функций нейтронов ядер-снарядов ^{3,6}He, участвующих в исследуемых реакциях.

Основные положения, выносимые на защиту

- 1. На основе численного решения нестационарного уравнения Шредингера проведены расчеты сечений для процессов передачи (срыва и подхвата) нейтрона в реакциях с участием ядер ³He (³He + ⁴⁵Sc и ³He + ¹⁹⁷Au) и ⁶He (⁶He + ⁴⁵Sc, ⁶He + ⁶⁵Zn и ⁶He + ¹⁹⁷Au). Исследованы зависимости сечений образования изотопов ^{44,46}Sc, ⁶⁵Zn, ^{196,198}Au от энергии столкновения и свойств ядер-мишеней. Получено хорошее согласие с экспериментальными данными по сечениям образования указанных изотопов при совместном учете процессов передачи нейтрона и процессов слияния-испарения в рамках статистической модели.
- 2. Предложен физический механизм, качественно объясняющий наблюдаемые особенности полных сечений реакций ^{4,6}He + ²⁸Si и ^{6,7,9}Li + ²⁸Si. На основе решения нестационарного уравнения Шредингера рассчитана поправка к оптическому потенциалу, зависящая от энергии, что впервые позволило получить хорошее согласие расчетов с экспериментальными данными по полным сечениям указанных реакций.
- 3. Разработан и реализован новый алгоритм расчета энергии и плотности вероятности основных состояний легких ядер на основе фейнмановских континуальных интегралов в евклидовом времени с использованием параллельных вычислений на графических процессорах (технологии NVIDIA CUDA). Алгоритм значительно сокращает время расчета (более чем в 100 раз) по сравнению с обычными

вычислениями и существенно расширяет возможности метода для исследования систем с большим числом степеней свободы.

 Проведены расчеты основных состояний ядер ³H, ^{3,4,6}He, ⁶Li, ⁹Be и получено согласие с экспериментальными данными. Результаты вычислений использованы для уточнения описания реакций с ядрами ^{3,6}He.

Научная новизна

- Впервые проведены расчеты сечений передачи нейтронов для значительного числа реакций с участием легких ядер-снарядов ^{3,6}Не и представительным набором тяжелых ядер-мишеней на основе численного метода решения нестационарного уравнения Шредингера с учетом спин-орбитального взаимодействия нуклонов.
- 2. Показано, что в образование изотопа ¹⁹⁸Au основной вклад вносит срыв нейтрона с ядер ^{3,6}He, процесс слияния с последующим испарением частиц из составного ядра дает пренебрежимо малый вклад; получено хорошее согласие результатов расчетов с экспериментальными данными. Показано, что образование изотопа ¹⁹⁶Au в реакции с ядром ³He обусловлено подхватом нейтрона ядром ³He.
- 3. Показано, что в случае образования изотопов ^{44,46}Sc, ⁶⁴Zn процессы передачи нейтронов и слияния ядер с последующим испарением частиц из составного ядра дают соизмеримые вклады; получено хорошее согласие с экспериментальными данными.
- 4. Впервые дано объяснение наблюдаемым особенностям полных сечений реакций ^{4,6}He + ²⁸Si и ^{6,7,9}Li + ²⁸Si на основе решения нестационарного уравнения Шредингера и наглядных физических представлений об изменяемой в ходе столкновения внешней нейтронной оболочке слабосвязанных ядер-снарядов ⁶He и ⁹Li; получено хорошее согласие расчетов с экспериментальными данными.
- 5. Впервые проведены расчеты основных состояний легких ядер ³H, ^{3,4,6}He, ⁶Li, ⁹Be в рамках метода фейнмановских континуальных интегралов с использованием параллельных вычислений на графических процессорах (технологии NVIDIA CUDA); результаты расчетов согласуются с экспериментальными данными.

Теоретическая и практическая значимость работы

Определение механизмов и ключевых параметров, влияющих на передачи нуклонов в низкоэнергетических ядерных реакциях с участием легких ядер, имеет большую научнопрактическую значимость. Проведенные расчеты дают возможность более полно

6

исследовать физические процессы, сопровождающие касательные столкновения атомных ядер, и выявить влияние структуры легких ядер-снарядов и свойств тяжелых ядер-мишеней на процессы передачи нуклонов (и/или их перераспределения). Впервые удалось объяснить экспериментальные данные для реакций ³He + ⁴⁵Sc, ³He + ¹⁹⁷Au, ⁶He + ⁴⁵Sc, ⁶He + ⁶⁴Zn, ⁶He + ¹⁹⁷Au, ⁶He + ²⁸Si и ⁹Li + ²⁸Si. Основная часть указанных экспериментальных данных получена в Лаборатории ядерных реакций им. Г. Н. Флерова (ЛЯР) Объединенного института ядерных исследований (ОИЯИ), г. Дубна.

Личный вклад соискателя

Основные результаты, изложенные в диссертации, получены лично автором. Автор принимал непосредственное участие во всех этапах научно-исследовательской работы по теме диссертации – в проведении расчетов, написании компьютерных программ, обработке, анализе и обсуждении полученных результатов, подготовке статей к публикации.

Апробация работы

Результаты диссертации докладывались на следующих конференциях:

- LXV Международная конференция по ядерной физике «Ядро 2015. Новые горизонты в области ядерной физики, атомной, фемто- и нанотехнологий», Санкт-Петербург, Россия, 29 июня – 3 июля 2015 г.
- XXI International School on Nuclear Physics and Applications & International Symposium on Exotic Nuclei (ISEN-2015), Varna, Bulgaria, 6 – 12 September 2015.
- Международная научная конференция «Параллельные вычислительные технологии (ПаВТ) 2016», Архангельск, Россия, 28 марта – 1 апреля 2016 г.
- Международная Летняя Суперкомпьютерная Академия, Москва, Россия, 23 июня 2 июля 2016 г.
- International Workshop on Few-Body Systems (FBS-Dubna-2016), Dubna, Russia, 4 7 July 2016.
- 7th International Conference «Distributed Computing and Grid-technologies in Science and Education» (GRID 2016), Dubna, Russia, 4 – 9 July 2016.
- VIII International Symposium on EXOtic Nuclei (EXON-2016), Kazan, Russia, 4 10 September 2016.
- 66 Международная научная конференция «Ядро-2016. Использование ядернофизических методов в науке и технике», Саров, Россия, 11 – 14 октября 2016 г.

- 25-th International Seminar on Interaction of Neutrons with Nuclei: «Fundamental Interactions & Neutrons, Nuclear Structure, Ultracold Neutrons, Related Topics», Dubna, Russia, 22 – 26 May 2017.
- 36th International Workshop on Nuclear Theory, Rila Mountains, Bulgaria, 25 June 1 July 2017.
- International Conference «Mathematical Modeling and Computational Physics, 2017» (MMCP2017), Dubna, Russia, 3 – 7 July 2017.
- XXII International School on Nuclear Physics, Neutron Physics and Applications, Varna, Bulgaria, 10 – 16 September 2017.
- 26th Symposium on Nuclear Electronics and Computing (NEC'2017), Budva, Montenegro,
 25 29 September 2017.
- The 3rd International Conference on Particle Physics and Astrophysics (ICPPA-2017), Moscow, Russia, 2 – 5 October 2017.

Результаты диссертации также докладывались и обсуждались на научных семинарах Лаборатории ядерных реакций им. Г. Н. Флерова (ЛЯР) и Лаборатории теоретической физики им. Н. Н. Боголюбова (ЛТФ) Объединенного института ядерных исследований (ОИЯИ), а также группы теоретической и вычислительной физики ЛЯР ОИЯИ.

Результаты диссертации вошли в работу «Особенности механизма реакций со слабосвязанными легкими ядрами» (авторы: С. М. Лукьянов, Ю. Г. Соболев, А. С. Деникин, В. А. Маслов, М. А. Науменко, Ю. Э. Пенионжкевич, В. В. Самарин, Н. К. Скобелев, А. Куглер, Я. Мразек), которая была удостоена поощрительной премии ОИЯИ за 2016 год.

Публикации

По материалам диссертации опубликовано 19 работ, 5 из которых – статьи в рецензируемых научных изданиях из списка ВАК.

Структура и объем диссертации

Диссертация состоит из введения, трех глав, заключения и списка литературы. Объем диссертации – 148 страниц, включая 55 рисунков и 7 таблиц, список литературы содержит 198 наименований.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обсуждается актуальность работы и мотивация проводимых исследований, дается краткий обзор по теме диссертации.

В первой главе предложен и реализован алгоритм параллельных вычислений энергий и плотностей вероятности для основных состояний малонуклонных систем методом континуальных интегралов Фейнмана. Использование параллельных вычислений позволило достичь ускорения времени расчетов более чем в 100 раз по сравнению с последовательными вычислениями. Были выполнены расчеты для ядер ³H, ^{3,4,6}He, ⁶Li, ⁹Be и получено хорошее согласие с экспериментальными данными по энергиям связи этих ядер и по зарядовому распределению для ядра ³He.

Фейнмановский континуальный интеграл (интеграл по траекториям или пропагатор) для частицы с массой m и координатой q в евклидовом времени $\tau = it$ представляют в виде предела многократного интеграла

$$K_{\rm E}(q,\tau;q_0,0) = \lim_{\substack{N\to\infty\\N\Delta\tau=\tau}} \int \cdots \int \exp\left\{-\frac{1}{\hbar} \sum_{k=1}^{N} \left[\frac{m(q_k-q_{k-1})^2}{2\Delta\tau} + V(q_k)\Delta\tau\right]\right\} C^N dq_1 dq_2 \dots dq_{N-1},\tag{1}$$

где $V(q_k)$ – потенциальная энергия, $q_k = q(\tau_k)$, $\tau_k = k\Delta \tau$, $k = \overline{0, N}$, $q_N = q$, $C = \left[m/(2\pi\hbar\Delta \tau) \right]^{1/2}$.

Параллельные вычисления $K_E(q,\tau;q,0)$ для фиксированного τ выполнялись методом Монте-Карло по формуле

$$K_{\rm E}(q,\tau;q,0) \approx \left(\frac{m}{2\pi\hbar\tau}\right)^{1/2} \left\langle \exp\left[-\frac{\Delta\tau}{\hbar}\sum_{k=1}^{N}V(q_k)\right] \right\rangle_{0,N},\tag{2}$$

где угловыми скобками $\langle \rangle$ обозначено усреднение по случайным траекториям $Q = \{q_0, q_1, \dots, q_{N-1}, q_N\}, \quad q_0 = q_N = q, \quad q_k = f(q, k\Delta \tau), \quad N = \tau / \Delta \tau \quad \text{с} \quad \text{точками} \quad \{q_1, \dots, q_{N-1}\},$ имеющими многомерное гауссово распределение в соответствии с формулой (1). Поведение пропагатора в пределе при $\tau \to \infty$

$$K_{E}(q,\tau;q,0) \rightarrow \left|\Psi_{0}(q)\right|^{2} \exp\left(-\frac{E_{0}\tau}{\hbar}\right), \ \ln K_{E}(q,\tau;q,0) \rightarrow \ln\left|\Psi_{0}(q)\right|^{2} - \frac{E_{0}\tau}{\hbar}, \ \tau \rightarrow \infty$$
(3)

с обобщением расчетной схемы на трехмерный случай и системы нескольких частиц было использовано для нахождения энергии E_0 и квадрата модуля волновой функции $|\Psi_0|^2$ основного состояния легких малонуклонных ядер. При расчетах применялись безразмерные

переменные $\tilde{q} = q/x_0$, $\tilde{K}_E = K_E x_0$, $\tilde{V} = V(q)/\varepsilon_0$, $\tilde{E}_0 = E_0/\varepsilon_0$, $\tilde{m} = m/m_0$, $\tilde{\tau} = \tau/t_0$, $\Delta \tilde{\tau} = \Delta \tau/t_0$, где постоянные $x_0 = 1 \text{ фм}$, $\varepsilon_0 = 1 \text{ MэB}$, m_0 – масса нейтрона, $t_0 = m_0 x_0^2/\hbar \approx 1.57 \cdot 10^{-23} \text{ c}$, $b_0 = t_0 \varepsilon_0/\hbar \approx 0.02412$.

Для ядер ^{2,3}H, ^{3,4}He были использованы эффективные парные центральные нуклоннуклонные потенциалы с отталкивательным кором в форме суммы трех гауссовых экспонент, подобные известному потенциалу M3Y (рисунок 1*a*).

Рисунок 1. (*a*) Потенциалы взаимодействия нейтрона и протона с параллельными спинами $V_{n-p}^{\uparrow\uparrow}(r)$ (сплошная линия), с антипараллельными спинами $V_{n-p}^{\uparrow\downarrow}(r)$ (точечная линия), не зависящий от спинов $V_{n-p}(r)$ (штрих-пунктирная линия) и взаимодействия двух одинаковых нуклонов $V_{n-n}(r) \equiv V_{p-p}^{(N)}(r)$ (штриховая линия). (*б*) Зависимость логарифма пропагатора $b_0^{-1} \ln \tilde{K}_{\rm E}$ от евклидова времени $\tilde{\tau}$ для ядер ²Н (пустые треугольники), ³Н (пустые кружки), ³Не (заполненные кружки) и ⁴Не (заполненные треугольники): линии – результаты линейной регрессии; расчет методом Монте-Карло для $n = 7 \cdot 10^7$ траекторий с шагом сетки $\Delta \tilde{\tau} = 0.01$.

Выбранные значения параметров потенциалов обеспечили близость вычисленных с помощью формул (2), (3) значений энергий связи ядер ^{2,3}H, ^{3,4}He к экспериментальным значениям (рисунок 16 и таблица 1).

Результаты расчетов плотности вероятности $|\Psi_0(x, y, \cos\theta)|^2$ для ядра ³Не в координатах Якоби \vec{x}, \vec{y} показаны на рисунке 2.

Расчеты для ядер ⁶Не, ⁶Li, ⁹Ве проводились похожим образом.

легких ядер. Теоретическое значение, МэВ Атомное Экспериментальное Конфигурация c $V_{n-p}^{\uparrow\uparrow}(r), V_{n-p}^{\uparrow\downarrow}(r)$ $c V_{n-p}(r)$ значение, МэВ ядро ^{2}H 2.22 ± 0.15 2.225 n + p³H 8.482 8.21 ± 0.3 8.23 ± 0.3 n + n + p

7.718

28.296

 7.37 ± 0.3

 30.60 ± 1.0

 7.46 ± 0.3

 30.68 ± 1.0

³He

⁴He

n + p + p

n+n+p+p

Таблица 1. Сравнение теоретических и экспериментальных значений энергий связи для ряда

Рисунок 2. Топография плотности вероятности $|\Psi_0(x, y, \cos \theta)|^2$ основного состояния ядра ³He (n + p + p) для $\tilde{\tau} = 10$ (смотрите рисунок 1*б*). Указаны векторы \vec{x}, \vec{y} в координатах Якоби и примеры положения нейтронов (пустые кружки) и протонов (закрашенные кружки).

Во второй главе сформулирована модель для расчетов перераспределения и сечений передачи нейтронов при столкновениях с участием легких ядер на основе решения нестационарного уравнения Шредингера для двухкомпонентной спинорной волновой функции нейтрона $\Psi = \begin{pmatrix} \Psi_1 \\ \Psi_2 \end{pmatrix}$ $i\hbar \frac{\partial}{\partial t} \Psi(\vec{r},t) = \left\{ -\frac{\hbar^2}{2m} \Delta + V_1(\vec{r} - \vec{r_1}(t)) + V_2(\vec{r} - \vec{r_2}(t)) + \hat{V}_{LS}^{(1)}(\vec{r} - \vec{r_1}(t)) + \hat{V}_{LS}^{(2)}(\vec{r} - \vec{r_2}(t)) \right\} \Psi(\vec{r},t), (4)$ где V_1 , V_2 – потенциалы среднего поля, действующего на нейтрон в ядре-снаряде и ядремишени, $\hat{V}_{LS}^{(1)}$, $\hat{V}_{LS}^{(2)}$ – соответствующие операторы спин-орбитального взаимодействия, в комбинации с классическими уравнениями движения центров атомных ядер $\vec{r}_1(t)$, $\vec{r}_2(t)$.

Начальные волновые функции Ψ нейтронов были вычислены в рамках оболочечной модели с параметрами, обеспечивающими близость энергий отделения нейтрона к экспериментальным значениям. Для изотопов гелия предложена новая форма среднего поля с максимумом в центре ядра, учитывающая отталкивательный кор нуклон-нуклонного взаимодействия и свойства точных волновых функций основных состояний малонуклонных систем, найденных в главе 1. Для ядра ³Не это приводит к лучшему (по сравнению с полем с минимумом в центре ядра) согласию между теоретическим и экспериментальным зарядовыми распределениями.

Характерная картина изменения плотности вероятности $\rho = |\Psi_1|^2 + |\Psi_2|^2$ нейтрона при его срыве в ходе столкновения ядер ³He + ⁴⁵Sc показана на рисунке 3.

Рисунок 3. Пример эволюции плотности вероятности нейтрона ядра ³Не (слева) в процессе столкновения с ядром ⁴⁵Sc (справа) при энергии $E_{cm} = 6.5$ МэВ и прицельном параметре столкновения b = 1.5 фм; радиусы окружностей равны эффективным радиусам ядер $R_1 = 2.2$ фм, $R_2 = 4.5$ фм. Ходу времени соответствует расположение рисунков *a*-*б*-*в*.

По волновой функции $\Psi(\vec{r},t)$ нейтрона в разлетающихся после столкновения ядрах определялись заселенности одноцентровых состояний $|a_k(t)|^2$ и вероятности $W_i(b, E, t)$ нахождения нейтрона в окрестности *i*-го ядра (здесь *b* – прицельный параметр столкновения, *E* – энергия в системе центра масс). Для нейтрона, первоначально принадлежащего ядру 1 (или 2), величина $p(b, E) = \lim_{t \to \infty} W_2(b, E, t)$ (или $p(b, E) = \lim_{t \to \infty} W_1(b, E, t)$)

представляет собой вероятность потери нейтрона ядром 1 (или 2). Эту величину можно принять за вероятность захвата нейтрона другим ядром без учета принципа Паули. При учете принципа Паули вероятность захвата равна сумме заселенностей состояний, не занятых до столкновения

$$\overline{p}(b,E) = \lim_{t \to \infty} \sum_{k} |a_{k}(t)|^{2}.$$
(5)

Сечение передачи вычислялось путем интегрирования вероятности передачи нейтрона p(b, E) по прицельным параметрам b

$$\sigma(E) = 2\pi \int_{b_{\min}}^{\infty} p(b, E) b db, \qquad (6)$$

где прицельный параметр b_{\min} соответствует траектории с расстоянием наименьшего сближения ядер $R_{\min} = R_1 + R_2$. В случае реакций ³He + ⁴⁵Sc, ³He + ¹⁹⁷Au, ⁶He + ⁴⁵Sc, ⁶He + ⁶⁴Zn для траекторий с прицельным параметром столкновения $b \ge b_B$ и расстоянием наименьшего сближения ядер $R_{\min}(b, E) \ge R_B$ (где $b = b_B$ соответствует $R_{\min} = R_B$, R_B – положение вершины кулоновского барьера) вероятность передачи нейтрона с хорошей точностью сглаживалась зависимостью

$$p(b,E) \approx \exp\left[A(E) - B(E)R_{\min}(b,E)\right],\tag{7}$$

а при расстоянии наименьшего сближения ядер $R_1 + R_2 \le R_{\min}(b, E) \le R_B$ принималась равной $p(b_B, E)$.

Для реакции ⁶He + ¹⁹⁷Au величина b_{\min} и функция p(b, E) определялись по-другому, с учетом возможности сохранения целостности α -частичного остова ядра ⁶He при движении через поверхностную область ядра ¹⁹⁷Au. При срыве нейтрона в реакции ⁶He + ¹⁹⁷Au на вид функции p(b, E) дополнительно влиял резонансный характер туннелирования между высоколежащими уровнями ядер.

При анализе экспериментальных сечений образования изотопов также учитывалась возможность их образования путем слияния сталкивающихся ядер с последующим испарением нуклонов и α -частиц. С этой целью использовались вычислительные коды для расчетов сечения слияния и образования испарительных остатков в статистической модели, доступные в базе знаний NRV (http://nrv.jinr.ru/). Результаты расчетов сечения образования изотопа ⁴⁶Sc в реакции ³He + ⁴⁵Sc с учетом слияния-испарения показаны на рисунке 4*a*. Сечение образования изотопа ⁴⁶Sc после испарения из компаунд-ядра двух протонов, вычисленное с помощью кода статистической модели базы знаний NRV, дает хорошее

согласие с экспериментальными данными, а найденное с помощью кода РАСЕ4 оказывается заметно меньшим. Сумма сечений передачи и слияния-испарения в обоих случаях оказывается близкой к экспериментальным данным при энергиях выше кулоновского барьера. Излом в сечении передачи в области кулоновского барьера связан с тем, что при этих энергиях вступает в действие процесс слияния, который резко ограничивает дальнейший рост сечения передачи, а возникающий затем небольшой спад обусловлен тем, что при больших энергиях столкновения нейтрон не успевает передаться.

Сравнение экспериментальных данных по выходу изотопа ⁴⁴Sc в реакции ³He + ⁴⁵Sc c теоретическими расчетами показано на рисунке 4 δ . Подхват нейтрона ядром ³He из ядра ⁴⁵Sc дает основной вклад в образование ядра ⁴⁴Sc. В интервале энергий от 10 до 15 МэВ α-частицы из компаунд-ядра становится сопоставимой вероятность испарения с экспериментальными данными. В целом, расчет хорошее согласие дает с экспериментальными данными.

Рисунок 4. (*a*) Сечение образования изотопа ⁴⁶Sc: экспериментальные данные (квадраты), расчет для процесса передачи (сплошная линия) и с помощью кода статистической модели базы знаний NRV для процесса слияния-испарения двух протонов (2*p*, штриховая линия), их сумма (штрих-пунктирная линия), точечная линия – расчет сечения слияния-испарения с помощью кода РАСЕ4 и соответствующая сумма с сечением передачи (штрих-пунктирная линия). (*б*) Сечение образования изотопа ⁴⁴Sc: экспериментальные данные (квадраты), расчет для процесса передачи (сплошная линия), расчет с помощью кода статистической модели базы знаний NRV для процесса слияния изотопа ⁴⁴Sc: экспериментальные данные (квадраты), расчет для процесса передачи (сплошная линия), расчет с помощью кода статистической модели базы знаний NRV для процесса слияния-испарения *α*-частицы (штриховая линия), штрих-пунктирная линия – сумма сечений для процессов передачи и слияния-испарения, точечная линия – сечение слияния. Здесь и далее стрелка – кулоновский барьер *V*_в.

Сравнение экспериментальных данных по выходу изотопа ¹⁹⁸Au в реакции ³He + ¹⁹⁷Au с теоретическими расчетами показано на рисунке 5*a*. Сечение образования этого изотопа после испарения из компаунд-ядра двух протонов, вычисленное с помощью кода статистической модели базы знаний NRV, оказалось менее 10⁻² мб, и не показано на графике. Малость данного сечения связана с большой величиной кулоновского барьера, препятствующего вылету протонов. Рассчитанное сечение процесса передачи хорошо согласуется с экспериментальными данными.

При энергиях ниже кулоновского барьера результаты расчета сечения передачи нейтрона для изотопа ¹⁹⁸Au оказываются больше экспериментальных данных, а для изотопа ⁴⁶Sc – существенно больше. Это можно объяснить преобладанием передачи нейтрона в возбужденные состояния ядра-мишени, что должно сопровождаться уменьшением кинетической энергии сближения ядер, увеличением значения R_{min} и тем самым снижением вероятности перехода.

Рисунок 5. (*a*) Сечение образования изотопа ¹⁹⁸Au: экспериментальные данные (квадраты) и расчет для процесса передачи с учетом (сплошная линия) и (для сравнения) без учета принципа Паули (штриховая линия). (*б*) Сечение образования изотопа ¹⁹⁶Au: экспериментальные данные (квадраты), расчет для процесса передачи (сплошная линия), с помощью кода статистической модели базы знаний NRV для процессов слияния с испарением α -частицы (штриховая линия), двух протонов и двух нейтронов (2*p*2*n*, штрих-пунктирная линия); точечная линия – сечение слияния.

Сравнение экспериментальных данных по выходу изотопа ¹⁹⁶Au в реакции ³He + ¹⁹⁷Au с теоретическими расчетами показано на рисунке 5*б*. Сечение образования изотопа ¹⁹⁶Au после испарения α -частицы из компаунд-ядра при энергиях выше кулоновского барьера

существенно (на два порядка) ниже экспериментальных данных. Это объясняется высоким кулоновским барьером, препятствующим вылету α-частицы из компаунд-ядра с большим зарядом. Как видно из рисунка 5*6*, расчет сечения подхвата нейтрона ядром ³He из ядра ¹⁹⁷Au дает хорошее согласие с экспериментальными данными.

Сравнение экспериментальных данных по выходам изотопов ¹⁹⁸Au и ¹⁹⁶Au в реакции ⁶He + ¹⁹⁷Au показано на рисунках б*a* и б*b*, соответственно. Очевидно, что в данном случае вкладом слияния и последующего испарения в экспериментальные данные можно пренебречь, что связано с большой величиной кулоновского барьера, препятствующего вылету α -частицы. Выход изотопа ¹⁹⁸Au в реакции ⁶He + ¹⁹⁷Au уже исследовался ранее, но без оценки возможного вклада процесса слияния-испарения.

Рисунок 6. Сечения образования изотопов ¹⁹⁸Au (*a*) и ¹⁹⁶Au (*б*) в реакции ⁶He + ¹⁹⁷Au. Символы – экспериментальные данные, точечные кривые – результаты расчета слиянияиспарения αn (*a*) и $\alpha 3n$ (*б*) с помощью кода статистической модели базы знаний NRV, сплошная линия (*a*) и пунктирная линия (*б*) – расчет для процесса передачи, сплошная линия (*б*) – сумма сечений процессов передачи и слияния-испарения.

Таким образом, получено хорошее согласие с экспериментальными данными по сечениям образования изотопов ^{44,46}Sc в реакции ³He + ⁴⁵Sc, ^{196,198}Au в реакции ³He + ¹⁹⁷Au, в ⁴⁶Sc в реакции ⁶He + ⁴⁵Sc, ⁶⁵Zn в реакции ⁶He + ⁶⁴Zn и ^{196,198}Au в реакции ⁶He + ¹⁹⁷Au. Основная часть указанных экспериментальных данных была получена с участием ЛЯР ОИЯИ.

В третьей главе проведено теоретическое исследование влияния процессов перераспределения нейтронов на полные сечения реакций с легкими слабосвязанными

ядрами ⁶Не и ⁹Li при энергиях E_{lab} в диапазоне 5–60 *A* МэВ. На основе решения нестационарного уравнения Шредингера, описанного в главе 2, был проведен расчет эволюции волновых функций внешних нейтронов ядер-снарядов в процессе столкновения с ядрами-мишенями при различных энергиях. Примеры эволюции плотности вероятности $\rho = |\Psi_1|^2 + |\Psi_2|^2$ внешних нейтронов ядра ⁹Li при его столкновении с ядром ²⁸Si для энергий $E_{lab} = 2 A \text{ M}$ эB, 15 *A* МэВ и 60 *A* МэВ приведены на рисунке 7. Видно, что поведение плотности вероятности заметно отличается при различных энергиях – при низких энергиях образуются «молекулярные» состояния, охватывающие оба ядра и напоминающие рисунок 3, при промежуточных энергиях плотность вероятности в значительной мере концентрируется в области между двумя ядрами, а при больших энергиях нейтроны не успевают перераспределиться.

Рисунок 7. Примеры эволюции плотности вероятности внешних нейтронов ядра ⁹Li при его столкновении с ядром ²⁸Si для энергий $E_{lab} = 2 A M$ эB (*a*,*б*,*b*), 15 A MэB (*c*,*d*,*e*) и 60 A MэB (*ж*,*3*,*u*). Ходу времени отвечает расположение слева направо.

Качественный характер перераспределения внешних нейтронов при сближении ядер зависит от соотношения между средними величинами скорости $\langle v \rangle$ внешнего нейтрона в ядре-снаряде и относительной скорости v_{rel} ядер в процессе столкновения. Средняя кинетическая энергия $\langle \varepsilon \rangle$ слабосвязанных нейтронов в ядрах ⁶He и ⁹Li была оценена в рамках оболочечной модели, при этом $\langle v \rangle = \sqrt{2\langle \varepsilon \rangle / m_0}$. Из оценки $v_{rel} \sim v_1 = \sqrt{2E_{lab}/m_1}$, где E_{lab} – энергия в лабораторной системе ядра-снаряда с массой $m_1 = A\mu_0$ и массовым числом A, μ_0 – атомная единица массы $\mu_0 \approx m_0$, следует оценка для отношения скоростей

$$\frac{v_1}{\langle v \rangle} \approx \gamma \equiv \left(\frac{E_{\rm lab}}{\langle \varepsilon \rangle A}\right)^{1/2} \,. \tag{8}$$

Значения величины γ могут служить общим критерием степени адиабатичности столкновения. При низких энергиях, в случае $v_1 << \langle v \rangle$, $\gamma << 1$, за время пролета ядра-снаряда рядом с ядром-мишенью быстро движущиеся слабосвязанные нейтроны могут образовать одно или нескольких двуцентровых «молекулярных» состояний. В предельно неадиабатическом случае, когда $v_1 >> \langle v \rangle$, $\gamma >> 1$, нейтрон за время пролета не успевает перераспределиться или передаться на ядро-мишень.

В рамках оптической модели реальная часть потенциала $\overline{V}(R)$ для ядер с «замороженными» нейтронами была дополнена неадиабатической поправкой, возникающей в результате увеличения плотности вероятности нейтронов между поверхностями ядер при их сближении (рисунок 7 ∂)

$$V_{\rm d}(R, E_{\rm lab}) = V(R) + \eta(E_{\rm lab})\delta V_{\rm d}(R, E_{\rm lab})$$
(9)

с функцией $\delta V_{\rm d}(R(t), E_{\rm lab})$

$$\delta V_{\rm d}\left(R(t), E_{\rm lab}\right) = \int_{\Omega} d^3 r \delta \rho_1(r, t) U_{\rm T}\left(\left|\vec{r} - \vec{r}_2(t)\right|\right),\tag{10}$$

где $U_{\rm T}(r)$ – среднее поле нейтронов в ядре-мишени, $\delta \rho_1(r,t) = \rho_1(r,t) - \rho_1^{(0)}(r)$, $\rho_1(r,t)$ – плотность вероятности внешних нейтронов ядра-снаряда, $\rho_1^{(0)}(r)$ – аналогичная плотность, вычисленная в отсутствие взаимодействия этих нейтронов с ядром-мишенью, Ω – область между поверхностями ядер,

$$\eta(E_{\rm lab}) = \left\{ 1 + \exp\left[\frac{1}{\alpha} \left(\langle \varepsilon \rangle - \left(\frac{E_{\rm lab}}{A}\right)\right)\right] \right\}^{-1}, \qquad (11)$$

 $\langle \epsilon \rangle = 10 \text{ МэВ}$ — средняя кинетическая энергия внешних нейтронов в ядре-снаряде, $\alpha = 1.8 \text{ МэВ}$. Неадиабатическая поправка $\delta V_d(R, E_{\text{lab}})$ уменьшает высоту V_{B} и сдвигает вправо положение $R_{\rm B}(E_{\rm lab})$ кулоновского барьера и радиус R_b , входящий в мнимую часть потенциала

$$R_{\rm B}(E_{\rm lab}) = R_{\rm B,0} + \delta R_{\rm B}(E_{\rm lab}), \ R_{b}(E_{\rm lab}) = R_{a} + k \delta R_{\rm B}(E_{\rm lab}).$$
(12)

Для мнимой части потенциала использовалось выражение с экспоненциальной зависимостью

$$W(r) = \begin{cases} -W_1, \ r < R_b \\ W_1 \exp\left(-\frac{r - R_b}{b}\right), \ r \ge R_b, \end{cases}$$
(13)

где $b = 1 \, \text{фм}$, k = 2, $R_a = 5.8 \, \text{фм}$ для реакции ⁹Li + ²⁸Si. В случае реакций с ядрами ⁴He и ^{6,7}Li для реальной и мнимой частей ядерного потенциала использовалась форма Вудса–Саксона с параметрами, полученными путем фитирования угловых распределений упругого рассеяния.

Результаты расчета полных сечений реакций ⁶He + ²⁸Si и ⁹Li + ²⁸Si хорошо согласуются с экспериментальными данными (рисунок 8). Таким образом, предложенный физический механизм объясняет наблюдаемые особенности полных сечений реакций.

Рисунок 8. Полные сечения реакций 4,6 He + 28 Si (*a*) и 7,9 Li + 28 Si (*б*), символы – экспериментальные данные: 6 He + 28 Si и 9 Li + 28 Si (точки), 4 He + 28 Si и 7 Li + 28 Si (кружки), кривые – результаты расчетов в оптической модели с потенциалами (9), (13): (*a*) для $R_a = 5.0$ фм (сплошная линия) и $R_a = 4.8$ фм (штриховая линия), (*б*) для $R_a = 5.8$ фм (сплошная линия) и $R_a = 5.6$ фм (штриховая линия); штрих-пунктирные линии – результаты расчетов для реакций 4 He + 28 Si (*a*) и 7 Li + 28 Si (*б*).

В заключении сформулированы основные результаты и выводы работы.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ

- Проведен расчет вероятностей и сечений передачи нейтрона для реакций с участием ядер ³Не и ⁶Не в рамках метода, основанного на решении нестационарного уравнения Шредингера, и получено хорошее согласие с экспериментальными данными по сечениям образования изотопов:
 - 44,46 Sc в реакции 3 He + 45 Sc,
 - 196,198 Au в реакции 3 He + 197 Au,
 - 46 Sc в реакции 6 He + 45 Sc,
 - 65 Zn в реакции 6 He + 64 Zn,
 - 196,198 Au в реакции 6 He + 197 Au.
- 2. Исследована зависимость сечений передачи нейтрона от энергии и свойств сталкивающихся ядер. Учтена возможность образования изотопов путем слияния-испарения; выявлена зависимость вклада процесса слияния-испарения в сечения образования изотопов от энергии столкновения и комбинации снаряд-мишень. В случае реакций ³He + ¹⁹⁷Au и ⁶He + ¹⁹⁷Au вкладом слияния и последующего испарения в экспериментальные данные можно пренебречь, тогда как в случае реакций ³He + ⁴⁵Sc, ⁶He + ⁴⁵Sc и ⁶He + ⁶⁴Zn, данный вклад заметен. Это объясняется высоким кулоновским барьером, препятствующим испарению протонов и альфа-частиц из составного ядра для реакций ³He + ¹⁹⁷Au и ⁶He + ¹⁹⁷Au и ⁶He + ¹⁹⁷Au.
- Проведенные расчеты указывают на эффективность метода, основанного на решении нестационарного уравнения Шредингера, для анализа процессов передачи нейтронов в низкоэнергетических ядерных реакциях с участием легких ядер-снарядов и представительного набора тяжелых ядер-мишеней.
- 4. Предложен физический механизм, качественно объясняющий наблюдаемые особенности полных сечений реакций ^{4,6}He + ²⁸Si и ^{6,7,9}Li + ²⁸Si следствием перехода от адиабатического режима к неадибатическому режиму поведения внешней нейтронной оболочки ядер-снарядов ⁶He и ⁹Li в ходе касательного столкновения с ядром-мишенью. Введение поправки к потенциалу, полученной на основе решения нестационарного уравнения Шредингера, в расчеты в рамках оптической модели впервые позволило получить хорошее согласие расчетов с экспериментальными данными по полным сечениям реакций ⁶He + ²⁸Si и ⁹Li + ²⁸Si.

5. Впервые проведены расчеты основных состояний ядер ³H, ^{3,4,6}He, ⁶Li, ⁹Be в рамках метода фейнмановских континуальных интегралов с использованием параллельных вычислений на графических процессорах (технологии NVIDIA CUDA); результаты расчетов согласуются с результатами оболочечной модели и экспериментальными данными; данные расчеты дают новую возможность в рамках единого подхода исследовать основные состояния малонуклонных и кластерных ядер с использованием единого набора потенциалов.

Результаты, полученные в диссертации, могут быть полезны при дальнейшем исследовании процессов передачи нуклонов и/или кластеров с использованием волновых функций, найденных методом фейнмановских континуальных интегралов, в качестве начальных условий при реализации решения нестационарного уравнения Шредингера для нескольких частиц с применением современных параллельных вычислительных технологий. Это позволит также более детально анализировать результаты экспериментального изучения реакций с легкими, экзотическими и радиоактивными ядрами, полученные как в Лаборатории ядерных реакций им. Г. Н. Флерова (ЛЯР) Объединенного института ядерных исследований (ОИЯИ), г. Дубна, так и в других научных центрах, а также использовать модель для предсказания результатов и планирования новых экспериментов.

ПУБЛИКАЦИИ ПО ТЕМЕ ДИССЕРТАЦИИ

- Пенионжкевич Ю.Э., Соболев Ю.Г., Самарин В.В., Науменко М.А. Особенности полных сечений реакций со слабосвязанными ядрами ⁶He, ⁹Li // ЯФ. 2017. Т. 80, № 5. С. 525–538.
- Самарин В.В., Науменко М.А. Исследование основных состояний ядер ³H, ^{3,4,6}He, ⁶Li, ⁹Ве методом фейнмановских континуальных интегралов // ЯФ. 2017. Т. 80, № 5. С. 473–485.
- Науменко М.А., Самарин В. В., Пенионжкевич Ю. Э., Скобелев Н. К. Околобарьерные передачи нейтрона в реакциях с ядром ³He // Изв. РАН Сер. физ. 2016. Т. 80, № 3. С. 294–303.
- 4. Науменко М.А., Самарин В.В., Пенионжкевич Ю.Э., Скобелев Н.К. Околобарьерные передачи нейтрона в реакциях ⁶He + ⁴⁵Sc, ⁶⁴Zn, ¹⁹⁷Au // Изв. РАН Сер. физ. 2017. Т. 81, № 6. С. 784–790.

- Самарин В.В., Науменко М.А. Изучение основных состояний нуклидов ^{3,4,6}Не методом фейнмановских континуальных интегралов // Изв. РАН Сер. физ. 2016. Т. 80, № 3. С. 314–321.
- Samarin V.V., Naumenko M.A., Penionzhkevich Yu.E., Skobelev N.K., Kroha V., and Mrazek J. Near-barrier neutron transfer in reactions ^{3,6}He + ⁴⁵Sc and ^{3,6}He + ¹⁹⁷Au // J. Phys. Conf. Ser. 2016. Vol. 724, № 1. P. 012043.
- Penionzhkevich Yu.E., Sobolev Yu.G., Samarin V.V., and Naumenko M.A. Study of enhancement of total cross sections of reactions with ⁶He, ^{6,9}Li nuclei // Eurasian J. Phys. Funct. Mater. 2017. Vol. 1, № 1. P. 12–18.
- Naumenko M.A., Penionzhkevich Yu.E., Samarin V.V., Skobelev N.K. Neutron transfer in reactions with light weakly-bound nuclei // Eurasian J. Phys. Funct. Mater. 2017. Vol. 1, № 1. P. 25–29.
- Naumenko M.A., Samarin V.V. Near-barrier nucleon transfer in reactions ^{3,6}He + ⁴⁵Sc, ¹⁹⁷Au, ⁶⁴Zn // Nucl. Theory / ed. Gaidarov M., Minkov N. 2017. Vol. 36. P. 21–30.
- Naumenko M.A., Samarin V.V. Application of CUDA technology to calculation of ground states of few-body nuclei by Feynman's continual integrals method // Supercomput. Front. Innov. 2016. Vol. 3, № 2. P. 80–95.
- Samarin V.V., Naumenko M.A., Penionzhkevich Yu.E., Skobelev N.K., Kroha V., and Mrazek J. Near-barrier neutron transfer in reactions ^{3,6}He + ¹⁹⁷Au // Exotic Nuclei. World Scientific, 2015. P. 115–125.
- Naumenko M.A., Samarin V.V. Application of CUDA technology for calculation of ground states of few-body nuclei by Feynman's continual integrals method // Параллельные вычислительные технологии (ПаВТ'2016): труды международной научной конференции (28 марта – 1 апреля 2016 г., г. Архангельск). Челябинск: Издательский центр ЮУрГУ, 2016. С. 8–19.
- Naumenko M.A., Samarin V.V. Calculation of ground states of few-body nuclei using NVIDIA CUDA technology // Proceedings of the 7th International Conference "Distributed Computing and Grid-technologies in Science and Education (GRID 2016) (Dubna, Russia, July 4 – 9, 2016). CEUR Workshop Proceedings (CEUR-WS.org), 2017. P. 376–380.
- Samarin V.V., Naumenko M.A. Study of ground states of few-body and cluster nuclei by Feynman's continual integrals method // Exotic Nuclei. World Scientific, 2017. P. 93–99.
- Naumenko M.A., Penionzhkevich Yu.E., Samarin V.V., Skobelev N.K. Neutron rearrangement in reactions with light weakly bound nuclei // Exotic Nuclei. World Scientific, 2017. P. 67–71.

- Penionzhkevich Yu.E., Sobolev Yu.G., Samarin V.V., and Naumenko M.A. Energy dependence of total cross sections for reactions with ⁶He, ^{6,9}Li nuclei // Exotic Nuclei. World Scientific, 2017. P. 78–86.
- Samarin V.V., Naumenko M.A. Application of NVIDIA CUDA technology to calculation of ground states of few-body nuclei // Selected Papers of the 26th International Symposium on Nuclear Electronics and Computing (NEC 2017) (Budva, Montenegro, September 25 – 29, 2017). CEUR Workshop Proceedings (CEUR-WS.org), 2017. P. 259–264.
- Naumenko M.A., Samarin V.V. Parallel implementation of numerical solution of few-body problem using Feynman's continual integrals // Book of abstracts of International Conference "Mathematical Modeling and Computational Physics, 2017" (MMCP2017) (Dubna, Russia, 3 7 July 2017). Dubna, 2017. P. 49–49.
- Samarin V.V., Naumenko M.A. Neutrons in light nuclei and neutron transfer in reactions with light nuclei // Fundamental Interactions & Neutrons, Nuclear Structure, Ultracold Neutrons, Related Topics: Abstracts of the XXV International Seminar on Interaction of Neutrons with Nuclei (Dubna, Russia, May 22 – 26, 2017). Dubna, Russia: JINR, 2017. P. 80–80.