Исследование возможности параметрического резонанса в ϕ_0 -джозефсоновском переходе

Д. А. Кокаев^{1,2}*, И. Р. Рахмонов¹

¹Объединенный институт ядерных исследований, ул. Жолио-Кюри, 6, Дубна, Московская обл., 141980

Аномальный эффект Джозефсона, заключающийся в возникновении фазового сдвига ϕ_0 в ток-фазовом соотношении гибридных джозефсоновских структур, состоящих из сверхпроводников и магнетиков, приводит к возникновению конечного сверхпроводящего тока при нулевой джозефсоновской разности фаз [1, 2]. Такие структуры известны в литературе как ϕ_0 -переходы, и они являются перспективными объектами сверхпроводниковой электроники и спинтроники [1]. Резонансные свойства ϕ_0 -переходов были рассмотрены в работах [3–5], где были продемонстрированы реализация линейного ферромагнитного резонанса [3], свойства нелинейного осциллятора Даффинга [4] и проявление свойств маятника Капицы [5]. В настоящей работе нами впервые продемонстрирована возможность реализации параметрического резонанса в ϕ_0 -переходах.

В ϕ_0 -переходе динамика намагниченности ферромагнитного слоя **М** описывается уравнением Ландау – Лифшица – Гильберта:

$$\frac{d\mathbf{M}}{dt} = -\gamma [\mathbf{M} \times \mathbf{H}_{\mathbf{eff}}] + \frac{\alpha}{M_0} [\mathbf{M} \times \frac{d\mathbf{M}}{dt}],$$

где γ – гиромагнитное отношение, α – гильбертовское затухание, а M_0 – значение насыщения намагниченности, т. е. модуль вектора **M**. Здесь **H**_{eff} обозначает вектор эффективного магнитного поля, который определяется выражением

$$\mathbf{H} = \frac{K}{M_0} \left[Gr \sin \left(\varphi - r \frac{M_y}{M_0} \right) \mathbf{e_y} + \frac{M_z}{M_0} \mathbf{e_z} \right],$$

где K — постоянная анизотропии, G — отношение джозефсоновской энергии к магнитной, ϕ — джозефсоновская разность фаз, r — параметр спин-орбитального взаимодействия, $\mathbf{e}_{\mathbf{v}}$ и $\mathbf{e}_{\mathbf{z}}$ — единичные векторы.

Рассмотрим динамику ϕ_0 -перехода при больших значениях $G\gg 1$ и при отсутствии диссипации $\alpha=0$. В этом случае легкая ось намагниченности переориентируется к оси y [5]. Отметим, что для удобства будем рассматривать уравнения в нормированных величинах. В связи с этим можно полагать, что $m_y={\rm const}\approx 1$, а $m_x\ll 1$ и $m_z\ll 1$, где m_i – компонента намагниченности нормированная на M_0 (i=x,y,z). Предполагаем, что частота Джозефсона ω_J фиксирована и разность фаз линейно зависит от времени $\phi=\omega_J t$, тогда уравнение Ландау – Лифшица – Гильберта в нормированных величинах можно свести к

$$\frac{d^2m_x}{dt^2} - \omega_F^2 Gr \sin(\omega_J t - r) \left[1 - Gr \sin(\omega_J t - r) \right] m_x + \frac{\omega_J Gr \cos(\omega_J t - r)}{1 - Gr \sin(\omega_J t - r)} \frac{dm_x}{dt} = 0,$$

$$\frac{d^2m_z}{dt^2} - \omega_F^2 Gr \sin(\omega_J t - r) \left[1 - Gr \sin(\omega_J t - r) \right] m_z + \omega_J \cot(\omega_J t - r) \frac{dm_z}{dt} = 0,$$

где ω_F — частота ферромагнитного резонанса в линейном приближении. Видно, что собственная частота этой системы равна $\omega_0 = \omega_F \sqrt{Gr \sin(\omega_J t - r) \left[1 - Gr \sin(\omega_J t - r)\right]}$, что зависит от времени и является периодической функцией. Хорошо известно, что основным условием реализации параметрического резонанса является периодическое поведение параметра системы и в результате собственная частота системы тоже меняется периодически. Следовательно, полученное выражение для собственной частоты показывает, что в ϕ_0 -переходе возможна реализация параметрического резонанса.

Таким образом, нами исследованы фазовая динамика и резонансные свойства ϕ_0 -перехода типа сверхпроводник – ферромагнетик – сверхпроводник. Продемонстрировано, что в определенных пределах значений параметров модели возможна реализация параметрического резонанса.

Работа выполнена при финансовой поддержке РНФ в рамках проекта № 22-71-10022.

- 1. Ю.М. Шукринов. Аномальный эффект Джозефсона // УФН. 2022. Т. 192. С. 345–385.
- 2. F. Konschelle, A. Buzdin // Physical Review Letters, 102, 017001 (2009).
- 3. Yu.M. Shukrinov, I.R. Rahmonov, and K. Sengupta // Physical Review B, 99, 224513 (2019).
- 4. A. Janalizadeh, I.R. Rahmonov, S.A. Abdelmoneim, Yu.M. Shukrinov and M.R. Kolahchi // Beilstein J. Nanotechnology, 13, 1155-1166 (2022).
 - 5. Yu.M. Shukrinov, A. Mazanik, I.R. Rahmonov, A.E. Botha and A. Buzdin // EPL, 122, 370012 (2018).

54 Секция 1

²Университет «Дубна», ул. Университетская, 19, Дубна, Московская обл., 141982

^{*}kokaev@jinr.ru