Особенности плотности состояний в SN-контактах

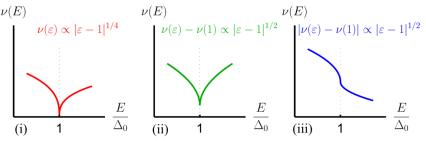
Я. В. Фоминов^{1,2}*, А. А. Мазаник^{3,4}

¹Институт теоретической физики им. Л. Д. Ландау РАН, Черноголовка

³Московский физико-технический институт, Долгопрудный

*fominov@itp.ac.ru

Изучена поверхностная плотность состояний $\nu(E)$ в пленке нормального металла (N), контактирующей с объемным сверхпроводником (S). Система предполагается диффузной, SN-граница — прозрачной. В пределе тонкого N-слоя (по сравнению с длиной когерентности) аналитически найдены три типа особенности плотности состояний на энергии, равной параметру порядка в объеме сверхпроводника Δ_0 . (i) В отсутствие обратного эффекта близости особенность имеет вид галочки с $\nu(\Delta_0)=0$, если толщина N-слоя d_N меньше критического значения. Такой вид особенности был предсказан ранее в работе [1]. (ii) При возникновении обратного эффекта близости галочка немедленно приподнимается, так что $\nu(\Delta_0)>0$. (iii) При дальнейшем усилении обратного эффекта близости $\nu(E)$ постепенно трансформируется в вертикальную особенность (характеризуемую точкой перегиба при $E=\Delta_0$ с бесконечной производной). Такой тип особенности был ранее получен в работе [2].


Характерными пространственными масштабами для двух слоев являются длины когерентности $\xi_N = \sqrt{D_N/2\Delta_0}$ и $\xi_S = \sqrt{D_S/2\Delta_0}$, где $D_{S(N)}$ – коэффициенты диффузии в нормальном состоянии. Сила эффекта близости (как прямого, так и обратного) определяется отношением материальных параметров двух веществ:

$$\varkappa = D_S \sigma_N^2 / D_N \sigma_S^2.$$

Здесь $\sigma_{S(N)}$ – проводимости двух веществ в нормальном состоянии. Роль параметра и, с точки зрения решения уравнений Узаделя на спектральные углы $\theta_{S(N)}$, ясна из граничного условия на SN-границе:

$$\frac{d\theta_S(0)}{d(x/\xi_S)} = \sqrt{\varkappa} \frac{d\theta_N(0)}{d(x/\xi_N)}.$$

Предел $\varkappa \to 0$ соответствует абсолютно жесткому сверхпроводнику (т. е. отсутствию обратного эффекта близости), тогда как предел $\varkappa \to \infty$ соответствует мягкому сверхпроводнику (сильный обратный эффект близости).

Рис. 1. Три различных типа особенности плотности состояний при $E=\Delta_0$: (i) При $\varkappa=0$ (предел абсолютно жесткого S, нет обратного эффекта близости) особенность имеет вид полной «галочки» с проседанием до нуля, $\nu(\Delta_0)=0$; (ii) при $\varkappa>0$ (предел жесткого S, очень слабый обратный эффект близости) галочка приподнимается, так что минимальная плотность состояний оказывается конечна, $\nu(\Delta_0)>0$; (iii) при $\varkappa\gtrsim (d_N/\xi_N)^4$ (кроссовер к режиму мягкого S с заметным обратным эффектом близости) поведение плотности состояний $\nu(E)$ постепенно трансформируется в вертикальную особенность (монотонная зависимость с точкой перегиба, т. е. с бесконечной производной при $E=\Delta_0$). В полученных нами результатах приподнятая галочка оказывается симметричной, тогда как полная галочка и вертикальная особенность – асимметричными

Три характерных типа особенности плотности состояний показаны на рис. 1. В работе найдены аналитические формулы, описывающие все эти особенности. В абсолютно жестком пределе ($\kappa=0$) особенность типа полной галочки имеет место до тех пор, пока d_N меньше критической толщины: $d_N < d_N^{(cr)} \approx 2,86 \; \xi_N$.

Режимы (ii) и (iii) исправляют сделанные ранее в работе [1] предсказания. В целом получается согласованная картина эволюции типа особенности от полной галочки до вертикальной особенности с ростом параметра и. Режим (ii) оказывается «недостающим элементом», показывающим механизм эволюции. Ранее такой тип особенности аналитически не изучался. В режимах (i)—(iii) была также найдена энергетическая щель E_g и вычислено поведение плотности состояний $\nu(E)$ вблизи E_g .

Результаты опубликованы в работе [3]. Работа выполнена в рамках госзадания ИТФ им. Л. Д. Ландау РАН и Программы фундаментальных исследований НИУ ВШЭ.

- 1. A. Levchenko, Crossover in the local density of states of mesoscopic superconductor/normal-metal/superconductor junctions, Phys. Rev. B, 77, 180503(R) (2008).
- 2. Ya.V. Fominov, A.A. Mazanik, M.V. Razumovskiy, Surface density of states in superconductors with inhomogeneous pairing constant: Analytical results, Phys. Rev. B, 100, 224513 (2019).
 - 3. A.A. Mazanik, Ya.V. Fominov, Peculiarities of the density of states in SN junctions, Annals of Physics, 449, 169199 (2023).

102 Секция 1

²Лаборатория физики конденсированного состояния, НИУ «Высшая школа экономики», Москва

⁴Лаборатория теоретической физики им. Н. Н. Боголюбова, ОИЯИ, Дубна