NANOROUGHNESS INDUCED ANTI-REFLECTION AND HAZE EFFECTS IN OPAQUE SYSTEMS

VIGEN GAREYAN¹, NAREK MARGARYAN¹, ZHYRAIR GEVORKIAN^{1,2}, AND OKSANA STRELTSOVA³

¹ Alikhanian National Science Laboratory (YerPhI), Yerevan, Armenia

²Institute of Radiophysics and Electronics, Ashtarak, Armenia

³Meshcheryakov Laboratory of Information Technologies, JINR, Dubna, Russia

How to make a material anti-reflective without changing its high refraction index? Achieving anti-reflection in high-refractive-index materials poses challenges due to their high reflectivity (Fresnel equations). Based on theory with new boundary conditions, we propose modifying surface properties on a nanoscale to tackle this. Our study on weakly rough opaque surfaces reveals significant changes in specular and diffuse scattering, predicting anti-reflection where roughness matches light penetration depth for the first time. Experimental validation on nano-roughened Si films (at wavelengths 300-400 nm) supports our findings. We also analyze angular and polarization dependences of nanoroughness-induced haze, showing predominant p-polarization and minimal haze at nanoscale, yet impactful specular reflection reduction.

Acknowledgement. This work was supported by the Higher Education and Science Committee of MESCS RA, in the frames of the research projects No. 21AG-1C062 and No. 23-2DP-1C010.