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Abstract

Analytical explanation of the nuclear glory effect, which is similar to the
known optical (atmospheric) glory phenomenon, is presented. Employing the
small phase space method we arrived at a characteristic angular dependence of
the production cross section dσ ∼ 1/

√
π − θ near the strictly backward direction.

This effect takes place for any number n ≥ 3 of interactions of rescattered parti-
cle, either elastic or inelastic (with resonance excitations in intermediate states),
when the final particle is produced near corresponding kinematical boundary.
Rigorous proof of the effect is given for the case of the optimal kinematics,
as well as for arbitrary polar scattering angles in the case of the light parti-
cle rescattering, but the arguments in favor of the backward azimuthal (axial)
focusing are quite general and hold for any kind of the multiple interaction pro-
cesses. In the small final angles interval including the value θ = π the angular
dependence of the cumulative production cross section can have the crater-like
(or funnel-like) form. Further studies including, probably, certain numerical
calculations, are necessary to clear up this point. Such a behaviour of the cross
section near the backward direction is in qualitative agreement with some of
available data. Some mathematical aspects of the nuclear glory phenomenon
in the cumulative particles production, which are of methodical interest, are
discussed as well. Explanation of this effect and the angular dependence of the
cross section near θ ∼ π are presented for the first time.
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To the memory of Lyonya Kondratyuk, outstanding scientist and person

1 Introduction

Intensive studies of the particles production processes in high energy interac-
tions of different projectiles with nuclei, in regions forbidden by kinematics
for the interaction with a single free nucleon, began back in the 70th mostly
at JINR (Dubna), headed by A.M.Baldin and V.S.Stavinsky, and at ITEP
(Moscow), where during many years the leader and great enthusiast of these
studies was professor G.A.Leksin. Relatively simple experiments could pro-
vide information about such objects as fluctuations of the nucleus density
[1] or, discussed much later, few nucleon (or multiquark) clusters probably
existing in nuclei. At JINR such processes have been called ”cumulative pro-
duction” [2, 3] 1, at ITEP the variety of properties of such reactions has been
called ”nuclear scaling” [4]- [6] because certain universality of these properties
has been noted, confirmed somewhat later at much higher energy, 400GeV

incident protons [7, 8] and 40GeV/c incident pions, kaons and antiprotons
[9, 10]. A new wave of interest to this exciting topic appeared lately. New
experiment has been performed in ITEP [11] aimed to define the weight of
multiquark configurations in the carbon nucleus 2.

The interpretation of these phenomena as being manifestation of in-
ternal structure of nuclei assumes that the secondary interactions, or, more
generally, multiple interactions processes (MIP) do not play a crucial role in
such production [12] - [18]. Generally, the role of secondary interactions in the
particles production off nuclei is at least two-fold: they decrease the amount
of produced particles in the regions, where it was large (it is, in particular, the
screening phenomenon), and increase the production probability in regions
where it was small; so, they smash out the whole production picture.

The development of the Glauber approach [19, 20] to the description
of particles scattering off nuclei has been considered many years ago as re-
markable progress in understanding the particles-nuclei interactions. Within
the Glauber model the amplitude of the particle-nucleus scattering is pre-

1According to the Oxford dictionary (Oxford Adv. Learn. Dictionary of Current En-
glish, A.S.Hornby, Oxford Univ. Press, 1982) ”cumulative — increasing in amount by one
addition after another”.

2We do not pretend here to give a comprehensive review of numerous experiments on
cumulative particles production.
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sented in terms of elementary particle-nucleons amplitudes and the nucleus
wave function describing the nucleons distribution inside the nucleus. The
Glauber screening correction for the total cross section of particle scatter-
ing off deuteron allows widely accepted, remarkably simple and transparent
interpretation.

Gribov [21] investigated nontrivial peculiarities of the space-time pic-
ture of such scattering processes and concluded that the inelastic shadowing
corrections play an important role at high enough energy and should be in-
cluded into consideration. 3

In the case of the large angle particle production the background pro-
cesses which mask the possible manifestations of nontrivial details of nuclear
structure, are subsequent multiple interactions with nucleons inside the nu-
cleus leading to the particles emission in the ”kinematically forbidden” re-
gion. Leonid Kondratyuk was the first who the has noted that rescattering
of intermediate particles could lead to the final particles emission in ”kine-
matically forbidden” regions (KFR). The rigorous investigation of the double
interaction process in the case of pion production off deuteron (see Fig. 1.1)
has been made first by L.Kondratyuk and V.Kopeliovich in [24]. Later the
multiple interaction processes leading to nucleons production in KFR were
investigated in [25] and in more details in [26] where the magnitude of the
cumulative protons production cross sections was estimated as well.

M.A.Braun and V.V.Vechernin with coauthors made many interesting
and important observations and investigated processes leading to the par-
ticles emission in KFR [27]-[35], including the processes with resonances in
intermediate state [27]-[28]. They found also that processes with pions in
intermediate state lead to the nucleons emission in KFR due to subsequent
processes, like π N → N π [31, 32]. Basic theoretical aspects of MIP leading
to the cumulative particles emission and some review of the situation in this
field up to 1985 have been presented in [36].

Several authors attempted the cascade calculations of the cumulative
particles production cross sections relying upon the available computing codes
created previously [39] - [44]. The particles production cross section was found
to be in reasonable agreement with data. Different kinds of subprocesses

3The pion double charge exchange scattering is an interesting example of the reaction
where the inelastic intermadiate states give the dominant contribution at high enough
energy [22, 23].
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Fig. 1.1. The simplest pion rescattering diagram which leads to the partial fill-up of the
”kinematically forbidden” region for the case of the cumulative pion production by protons
on the deuteron [24].

play a role in these calculations, and certain work should be performed for
detailed comparison. In calculations by NOMAD Collaboration the particles
formation time has been considered as a parameter, and results near to the
experimental observations have been obtained for this time equal to ∼ 2Fm
[43, 44], see discussion below.

While many authors have admitted the important role of the final state
interactions (FSI), most of them did not discuss the active role of such inter-
actions, i.e. their contribution to particles production in KFR, see e.g. [45].
It has been stated in a number of papers that multiple interactions cannot
describe the spectra of backwards emitted particles. Such statement in fact
has no firm grounds because there were so far no reliable calculations of the
MIP contributions to the cross sections and other observables in the cumu-
lative particles production reactions. Moreover, such calculations are hardly
possible because, as we argue in the present paper, necessary information
about elementary interactions amplitudes is still lacking.

Several specific features of the MIP mechanism have been noted previ-
ously experimentally and discussed theoretically [26, 37, 36], among them the
presence of the recoil nucleons, which amount grows with increasing energy of
the cumulative particle, possible large value of the cumulative baryons polar-
ization, and some other, see [36]. The enhancement of the production cross
section near the strictly backward direction has been detected in a number
of experiments, first at JINR (Dubna) [46, 47] and somewhat later at ITEP
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(Moscow) [48, 49] 4. This glory-like effect which can be called also the ”Bud-
dha’s light” of cumulative particles, has been shortly discussed previously in
[26, 36] 5. More experimental evidence of this effect appeared since that time
[51, 52]. Here we show analytically that presence of the backward focusing
effect is an intrinsic property of the multiple interaction mechanism leading to
the cumulative particles production. The detailed treatment of this effect is
presented, including the angular dependence of the particles production cross
section near the strictly backward direction. To our knowledge, the proof of
the existence of the nuclear glory phenomenon in the cumulative production
reactions was absent so far in the literature.

In the next section the peculiarities of kinematics of the processes in
KFR will be recalled, in section 3 the small phase space method of the MIP
contributions calculation to the particles production cross section in KFR is
described. In section 4 the focusing effect, similar to the known in optics
glory phenomenon, is described in details. Section 5 contains discussion of
some characteristic properties of cumulative particles production which find
a natural explanation within the multiple interaction mechanism. Final sec-
tion contains discussion of problems and conclusions. Some mathematical
aspects of the nuclear glory phenomenon are presented in section 6; solving
the physics problem has certain mathematical consequences of interest.

4It should be noted here that the glory-like enhancement of the scattering cross section
near the backward direction has been observed in [50] in the deuterons scattering off the
40Ca nuclei at the energy 52MeV .

5For the case of the scattering semiclassical explanation of the glory-like effect was given
long ago by Ford and Wheeler [53], see also discussion in section 4.
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2 Details of kinematics of the processes in ”Kinemat-

ically Forbidden Regions”

When the particle with 4-momentum p0 = (E0, �p0) interacts with the nu-
cleus with the mass mt � AmN , and the final particle of interest has the
4-momentum kf = (ωf , �kf) the basic kinematical relation is

(p0 + pt − kf)
2 ≥ M 2

f , (2.1)

where Mf is the sum of the final particles masses, except the detected particle
of interest. At large enough incident energy, E0 � Mf , we obtain easily

ωf − zkf ≤ mt, (2.2)

which is the basic restriction for such processes. z = cos θ < 0 for particle
produced in backward hemisphere. The quantity (ωf −zkf)/mN is called the
cumulative number (more precize, the integer part of this ratio plus one).

Fig. 2.1. Schematical picture of the multiple interaction process within the nucleus A
leading to the emission of the final particle with the momentum k at the angle θ relative
to the projectile proton momentum. The binary reactions are assumed to take place in
secondary interactions.

Let us recall some peculiarities of the multistep processes kinematics
established first in [25, 26] and described in details in [36]. It is very selective
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kinematics, essentially different from the kinematics of the forward scattering
off nuclei when random walking of the particle is allowed in the plane per-
pendicular to the projectile momentum. Schematically the multistep process
is shown on Fig. 2.1.

2.1 Rescatterings of light particles

For light particles (photon, also π-meson) iteration of the Compton formula

1

ωn
− 1

ωn−1
� 1

m
[1− cos(θn)] (2.3)

allows to get the final energy in the form

1

ωN
− 1

ω0
=

1

m

N∑
n=1

[1− cos(θn)] (2.4)

The maximal energy of final particle is reached for the coplanar process when
all scattering processes take place in the same plane and each angle equals
to θk = θ/N . As a result we obtain

1

ωmax
N

− 1

ω0
=

1

m
N [1− cos(θ/N)] (2.5)

Corresponding kinematical boundaries for N = 1, 2, 3, and 4 are shown in
Fig. 2.2. Already at N > 2 and for θ ≤ π the 1/N expansion can be made
(it is in fact the 1/N 2 expansion):

1− cos(θ/N) � θ2/2N 2
(
1− θ2/12N 2

)
(2.6)

and for large enough incident energy ω0 we obtain

ωmax
N � 2N m

θ2

⎡
⎣1 + θ2

12N 2
+

θ4

240N 4

⎤
⎦ . (2.7)

This expression works quite well beginning with N = 2. This means that the
region, kinematically forbidden for interaction with single nucleon, is partly
filled up due to elastic rescatterings, see Fig. 2.2. Remarkably, that this
rather simple property of rescattering processes has not been even mentioned
in the pioneer papers [2] - [6] 6.

6This property was well known, however, to V.M.Lobashev, who observed experimen-
tally that the energy of the photon after 2-fold interaction can be substantially greater
than the energy of the photon emitted at the same angle in 1-fold interaction.
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Fig. 2.2. Kinematical boundaries for the light particle rescatterings on the nucleons which
are supposed to be at rest in the nucleus. The number of interactions (n in the figure) are
N = 1, 2, 3 and 4.

2.2 Rescatterings of nucleons on the nucleons inside of nucleus

In the case of the nucleon-nucleon scattering (scattering of particles with
equal nonzero masses in general case) it is convenient to introduce the factor

ζ =
p

E +m
, 1− ζ2 =

2m

E +m
, (2.8)

where p and E are spatial momentum and total energy of the particle with
the mass m. When scattering takes place on the particle which is at rest
in the laboratory frame, the ζ factor of scattered particle is multiplied by
cos θ, where θ is the scattering angle in the laboratory frame. So, after N

rescatterings we obtain the ζ factor

ζN = ζ0cos θ1cos θ2...cos θN . (2.9)
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As in the case of the small mass of rescattered particle, the maximal value of
final ζN is obtained when all scattering angles are equal

θ1 = θ2 = ... = θN = θ/N, (2.10)

and the coplanar process takes plase. So, we have

ζmax
N = ζ0 [cos(θ/N)]N . (2.11)

Corresponding kinematical boundaries are presented in Fig. 2.3 for N =
1, 2, 3, and 4.

The final momentum is from (2.11)

kmax = 2m
ζmax

1− (ζmax)2
(2.12)

Again, at large enough N and large incident energy (ζ0 → 1) the 1/N expan-
sion can be made at k � m, and we obtain the first terms of this expansion

kmax
N � N

2m

θ2

⎡
⎣1− θ2

6N 2

⎛
⎝1 + θ2

4

⎞
⎠
⎤
⎦ , (2.13)

which coincides at large N with previous result for the rescattering of light
particles, but preasymptotic corrections are negative in this case, and con-
vergence of this expansion in the case of nucleons rescatterings is worse than
in previous case.

The normal Fermi motion of nucleons inside the nucleus makes these
boundaries wider [36]:

kmax
N � N

2m

θ2

[
1 +

pmax
F

2m

(
θ +

1

θ

)]
, (2.14)

where it is supposed that the final angle θ is large, θ ∼ π. For numerical
estimates we took the step function for the distribution in the Fermi momenta
of nucleons inside of nuclei, with pmax

F /m � 0.27, see [36] and references there.
At large enough N normal Fermi motion makes the kinematical boundaries
for MIP wider by about 40 %.

There is characteristic decrease (down-fall) of the cumulative particle
production cross section due to simple rescatterings near the strictly back-
ward direction. However, inelastic processes with excitations of intermediate
particles, i.e. with intermediate resonances, are able to fill up the region at
θ ∼ π.
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Fig. 2.3. Kinematical boundaries for the nucleon rescatterings on the nucleons which are
supposed to be at rest in the nucleus. The number of interactions (n in the figure) are
N = 1, 2, 3 and 4.

2.3 Resonances excitations in intermediate states

The elastic rescatterings themselves are only the ”top of the iceberg”. Ex-
citations of the rescattered particles, i.e. production of resonances in in-
termediate states which go over again into detected particles in subsequent
interactions, provide the dominant contribution to the production cross sec-
tion. Simplest examples of such processes may be NN → NN ∗ → NN ,
πN → ρN → πN , etc. The important role of resonances excitations in in-
termediate states for cumulative particles production has been noted first by
M.Braun and V.Vechernin [27] and somewhat later in [26], see Figs. (2.4)
and (2.5). At incident energy about few GeV the dominant contribution into
cumulative protons emission provide the processes with Δ(1232) excitation
and reabsorption, see [36] and [41]. Experimentally the role of dynamical
excitations in cumulative nucleons production at intermediate energies has
been established in [54] and, at higher energy, in [55].
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When the particles in intermediate states are slightly excited above
their ground states, approximate estimates can be made. Such resonances
could be Δ(1232) isobar, or N ∗(1470), N ∗(1520) etc. for nucleons, two-pion
state or ρ(770), etc for incident pions, K∗(880) for kaons. This case has been
investigated previously with the result for the relative change (increase) of
the final momentum kf (Eq. (8) of [26])

Δkf
kf

� 1

N

N−1∑
l=1

ΔM 2
l

k2l
, (2.15)

or

Δk2f � 2

N 3

N−1∑
l=1

l2ΔM 2
l , (2.16)

with ΔM 2
l = M 2

l −μ2, kl is the value of 3-momentum in the l-th intermediate
state. This effect can be explained easily: the additional energy stored in the
mass of intermediate particle is transfered to the kinetic energy of the final
(cumulative) particle.

The number of different processes for the N -fold MIP is (NR + 1)N−1,
where NR is the number of resonances making important contribution to
the process of interest. The greatest kinematical advantage has the process
with resonance production at the (N − 1)-th step of the whole process with
subsequent its deexcitation at the last step 7 . To calculate contributions
of all these processe one needs not only to know cross sections and the spin
structure of the amplitudes NN ∗

1 → NN ∗
2 at the energies up to several Gev,

but also consider correctly possible interference betwee amplitudes of different
processes. Such information is absent and hardly will be available in nearest
future.

To produce the final particle at the absolute boundary available for the
nucleus as a whole one needs to have the masses of intermediate resonances
(or some particles system) of the order of incident energy, s ∼ E0mA.

In this extreme case

M 2
l (max) � sA

l

A

(
1− l

A

)
(2.17)

7In some of cascade calculations the important contribution to the cumulative nucleons
production gives the process with production of pions of not high energy with its subsequent
absorption by two-nucleon pair. This process can be, at least partly, to the processes with
resonance formation and reabsorption, because pions of moderate energies are produced
mostly via resonance formation and decay to nucleon and pion.
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Fig. 2.4. The diagram of the two-fold interaction process on the deuteron with the nucleon
resonances (or Δ isobars) excitations in intermediate states.

where sA � 2AE0m (see Appendix of [26]). Interaction with all A nucleons
should take place, and the intermediate mass is maximal at l ∼ A/2. For the
deuteron the intermediate mass at the absolute boundary should be

MD
1 (max) ∼ sD/4 � E0m/2. (2.18)

This case is of academic interest, only. Our aim is to show that the
whole region of final particles momenta allowed for interaction with the nu-
cleus as a compact object can be covered due to MIP, but the price for this
are the extremely large masses of intermediate states.

2.4 Features of the space-time picture of the MIP leading to cu-
mulative particles production

What is the most important: at arbitrary high incident energy the kinematics
of all subsequent processes is defined by the momentum and the angle of
the outgoing particle. In other words, for the nucleus fragmentation with
particles emitted backwards with probably large but limited by few GeV

energies, the fragmentation of nucleon takes place in the first interaction act
of the MIP, according to kinematics analysed above. The slight dependence
of the whole MIP on the incident projectile, hadron or lepton, follows from
this observation, as it was noted long ago by Leksin et al [4]-[6].

The theory of elementary particles based on the S-matrix approach
operates with so called |in > and < out| states as initial and final states
of the process under consideration. It is assumed that there is time enough
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Fig. 2.5. Schematical picture of the multiple interaction process with the resonances
excitations in intermediate states. The resonances may be either different or the same in
different intermediate states.

for the formation of the outgoing particles and the fields surrounding it.
Usually it is in complete correspondence with experimental conditions, when
the elementary interaction amplitude is studied by means of cross sections,
polarization observables, etc. measurements.

Situation may be, however, quite different when the interaction of the
projectile with nucleons inside the nucleus takes place. The role of the for-
mation time in the interaction of the particle within some medium has been
discussed long ago, one of the pioneer paper is the paper by Landau and
Pomeranchuk [56] where the electromagnetic processes of the photon emis-
sion and pair production by electrons has been considered. Similar to the case
of electromagnetic interactions, the hadron formation time is of the order of

τ form ∼ 1/(ω − kz) (2.20)

if the incident energy is large enough, where ω and kz are the energy and
the longitudinal momentum of the produced particle, the axis z is defined
by the momentum of the incident particle. When the particle is produced in
the forward direction with large enough energy (momentum), the formation

16



time becomes

τ form ∼ 2ω

μ2
, (2.21)

where μ is the mass of the produced particle. So, formation time, or coher-
ence length in forward direction, become very large for the energetic particle
produced in the direction of the projectile momentum (see, e.g. [57] for re-
view of the history of this problem and references. The nuclei fragmentation
region has not been discussed in [57]).

As noted above, for the production of a particle on a target with the
mass mt at high enough incident energy the inequality takes place:

ω − kz ≤ mt, (2.22)

at the kinematical boundary the equality takes place. As we have shown in
this section, to produce a final particle beyond the kinematical boundary due
to multiple interaction process, in the first interaction act the particle should
be produced near the kinematical boundary, i.e.

ω1 − cosθ1k1 ∼ mN , (2.23)

therefore, the formation time of the first produced particle

τ form1 ∼ 1/(ω1 − cosθ1k1) ∼ 1/m (2.24)

is necessarily small, and the whole production picture is of quasiclassical
character. The interesting phenomena observed in the high energy particles
- nuclei interaction reactions and widely discussed in the literature [57], con-
nected with the large formation time of the particles produced in forward
direction, do not take place in the cumulative production processes.
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3 The small phase space method for the MIP proba-

bility calculations

This method, most adequate for analytical and semi-analytical calculations of
the MIP probabilities, has been proposed in [26] and developed later in [36].
It is based on the fact that, according to established in [25, 26] and presented
in previous section kinematical relations, there is a preferable plane of the
whole MIP leading to the production of energetic particle at large angle θ, but
not strictly backwards. Also, the angles of subsequent rescatterings are close
to θ/N . Such kinematics has been called optimal, or basic kinematics. The
deviations of real angles from the optimal values are small, they are defined
mostly by the difference kmax

N − k, where kmax
N (θ) is the maximal possible

momentum reachable for definite MIP, and k is the final momentum of the
detected particle. kmax

N (θ) should be calculated taking into account normal
Fermi motion of nucleons inside the nucleus, and also resonances excitation
— deexcitation in the intermediate state. Some high power of the difference
(kmax

N − k)/kmax
N enters the resulting probability.

3.1 The probability product approximation

Within the quasiclassical treatment adequate for our case, the probability
product approximation is valid, and the starting expression for the inclusive
cross section of the particle production at large angles contains the product
of the elementary subprocesses matrix elements squared, see, e.g., Eq. (4.11)
of [36].

After some evaluation, introducing differential cross sections of binary
reactions dσl/dtl(sl, tl) instead of the matrix elements of binary reactions
M 2

l (sl, tl), we came to the formula for the production cross section due to the
N -fold MIP [26, 36]

fN(�p0, �k) = πR2
AGN(RA, θ)

∫ f1(�p0, �k1)(k
0
1)

3x21dx1dΩ1

σleav
1 ω1

×

×
N∏
l=2

⎛
⎝dσl(sl, tl)

dtl

⎞
⎠ (sl −m2 − μ2

l )
2 − 4m2μ2

l

4πmσleav
l kl−1

×
N−1∏
l=2

k2l dΩl

kl(m+ ωl−1 − zlωlkl−1)

1

ω′
N

δ(m+ ωN−1 − ωN − ω′
N). (3.1)
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Here zl = cos θl, σ
leav
l is the cross section defining the removal (or leaving)

of the rescattered object at the corresponding section of the trajectory, it is
smaller than corresponding total cross section. GN(RA, θ) is the geometrical
factor which enters the probability of the N -fold multiple interaction with
definite trajectory of the interacting particles (resonances) inside the nucleus.
This trajectory is defined mostly by the final values of �k (k, θ), according
to the kinematical relations of previous section. Inclusive cross section of
the rescattered particle production in the first interaction is ω1d

3σ1/d
3k1 =

f1(�p0, �k1) and d3k1 = (k01)
3x21dx1, ωN = ω — the energy of the observed

particle.
To estimate the value of the cross section (3.1) one can extract the

product of the cross sections out of the integral (3.1) near the optimal kine-
matics and multiply by the small phase space avilable for the whole MIP
under consideration [25, 36]. Further details depend on the particular pro-
cess. For the case of the light particle rescattering, π-meson for example,
μ2
l /m

2 � 1, we have

1

ω′
N

δ(m+ ωN−1 − ωN − ω′
N) =

1

kkN−1
δ

⎡
⎣m
k

−
N∑
l=2

(1− zl)− 1

x1

(
m

p0
+ 1− z1

)⎤⎦
(3.2)

To get this relation one should use the equality
ω′
N =

√
m2 + k2 + k2N−1 − 2kkN−1zN for the recoil nucleon energy and the

well known rules for manipulations with the δ-function. When the final angle
θ is considerably different from π, there is a preferable plane near which the
whole multiple interaction process takes place, and only processes near this
plane contribute to the final output. At the angle θ = π, strictly backwards,
there is azimuthal symmtry, and the processes from the whole interval of az-
imuthal angle 0 < φ < 2π provide contribution to the final output (azimuthal
focusing, see next section).

3.2 Expansion in angular variables near the optimal kinematics

A necessary step is to introduce azimuthal deviations from this optimal kine-
matics, ϕk, k = 1, ..., N − 1; ϕN = 0 by definition of the plane of the pro-
cess, (�p0, �k). Polar deviations from the basic values, θ/N , are denoted as
ϑk, obviously,

∑N
k=1 ϑk = 0. The direction of the momentum �kl after l-th

interaction, �nl, is defined by the azimuthal angle ϕl and the polar angle
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θl = (lθ/N) + ϑ1 + ...+ ϑl, θN = θ.
Then we obtain making the expansion in ϕl, ϑl up to quadratic terms

in these variables:

zk = (�nk�nk−1) � cos(θ/N)(1− ϑ2
k/2)− sin(θ/N)ϑk+

+sin(kθ/N)sin[(k − 1)θ/N ](ϕk − ϕk−1)
2/2. (3.3)

In the case of the rescattering of light particles the sum enters the phase
space of the process

N∑
k=1

(1− cosϑk) = N [1− cos(θ/N)] + cos(θ/N)
N∑
k=1

[
− ϕ2

k sin
2(kθ/N)+

+
ϕkϕk−1

cos(θ/N)
sin(kθ/N)sin((k − 1)θ/N)

]
− cos(θ/N)

2

N∑
k=1

ϑ2
k (3.4)

To derive this equality we used that ϕN = ϕ0 = 0 — by definition of the
plane of the MIP, and the mentioned relation

∑N
k=1 ϑk = 0. We used also the

identity, valid for ϕN = ϕ0 = 0:

1

2

N∑
k=1

(
ϕ2
k + ϕ2

k−1

)
sin(kθ/N)sin[(k − 1)θ/N ] = cos(θ/N)

N∑
k=1

ϕ2
ksin

2(kθ/N).

(3.5)
It is possible to present the quadratic form in angular variables which enters
(3.4) in the canonical form and to perform integration easily, see Appendix
B and Eq. (4.23) of [36], and also section 6 of present paper. As a result, we
have the integral over angular variables of the following form:

IN(Δ
ext
N ) =

∫
δ
[
Δext

N − zθN

( N∑
k=1

ϕ2
k − ϕkϕk−1/z

θ
N + ϑ2

k/2
)]N−1∏

l=1

dϕldϑl =

=
(Δext

N )
N−2

(
√
2π)N−1

JN(zθN)
√
N(N − 2)!

(
zθN
)N−1 , (3.6)

zθN = cos(θ/N). Since the element of a solid angle dΩl = sin(θ l/N)dϑldϕl,
we made here substitution sin(θ l/N) dϕl → dϕl and dΩl → dϑldϕl, z

θ
N =

cos(θ/N). The whole phase space is defined by the quantity

Δext
N � m

k
− m

p0
−N(1− zθN)− (1− x1)

m

p0
(3.7)
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which depends on the effective distance of the final momentum (energy) from
the kinematical boundary for the N -fold process. The Jacobian of the az-
imuthal variables transformation squared is

J2
N(z) = Det ||aN ||, (3.8)

where the matrix ||aN || defines the quadratic form QN(z, ϕk) which enters
the argument of the δ-function in Eq. (3.6):

QN(z, ϕk) = aklϕkϕl =
N−1∑
k=1

ϕ2
k −

ϕkϕk−1

z
. (3.9)

For example,

Q3(z, ϕk) = ϕ2
1+ϕ2

2−ϕ1ϕ2/z; Q4(z, ϕk) = ϕ2
1+ϕ2

2+ϕ2
3− (ϕ1ϕ2+ϕ2ϕ3)/z,

Q5(z, ϕk) = ϕ2
1 + ϕ2

2 + ϕ2
3 + ϕ2

4 − (ϕ1ϕ2 + ϕ2ϕ3 + ϕ3ϕ4)/z, (3.9a)

etc, see next section and section 6.

3.3 The phase space of the MIP near the optimal kinematics

The phase space of the process in (3.1) which depends strongly on Δext
N , after

integration over angular variables can be presented in the form

Φpions
N =

∫ 1

ω′
N

δ(m+ ωN−1 − ωN − ω′
N)

N∏
l=1

dΩl =
IN(Δ

ext
N )

kkN−1
=

=
(
√
2π)N−1(Δext

N )N−2

kkN−1(N − 2)!
√
NJN(zθN)

(
zθN
)N−1 (3.10)

The normal Fermi motion of target nucleons inside of the nucleus in-
creases the phase space considerably [26, 36]:

Δext
N = Δext

N |pF=0 + �pFl �rl/2m, (3.11)

where �rl = 2m(�kl − �kl−1)/klkl−1. A reasonable approximation is to take
vectors �rl according to the optimal kinematics for the whole process, and the
Fermi momenta distribution of nucleons inside of the nucleus in the form of
the step function. Integration over the Fermi motion leads to increase of the
power of Δext

N and change of numerical coefficients in the expression for the
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phase space. Details can be found in [26, 36], but they are not importanr for
our mostly qualitative treatment here.

For the case of the nucleons rescattering there are some important
differences from the light particle case, but the quadratic form which enters
the angular phase space of the process is essentially the same, with additional
coefficient:

Φnucleons
N =

1

k(m+ ωN−1)

∫
δ

⎡
⎢⎣Δext

N,nucl −
(
zθN
)N

QN(ϕk)−
(
zθN
)N−2

2

N∑
l=1

ϑ2
l

⎤
⎥⎦ N∏
l=1

dΩl =

=

⎛
⎝

√
2π

ζ0zN−1

⎞
⎠
N−1

(Δext
N,nucl)

N−2

(N − 2)!
√
NJN(zθN)

(1− ζ2N)(1− ζ2N−1)

4m2ζN
(3.12)

where

Δext
N,nucl = ζN − (1− x1)ζN

1− ζ21
1 + ζ21

− k

m+ ω
, (3.13)

with ζN = ζ0
(
zθN
)N

, ζ1 = ζ0z
θ
N . As in the case of the light particle rescat-

tering, the normal Fermi motion of nucleons inside the nucleus can be taken
into account.
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4 The backward focusing effect (Buddha’s light of cu-

mulative particles)

This is the sharp enhancement of the production cross section near the strictly
backward direction, θ = π. This effect has been noted first experimentally
in Dubna (incident protons, final particles pions, protons and deuterons)
[46, 47] and somewhat later by Leksin’s group at ITEP (incident protons of
7.5 GeV/c, emitted protons of 0.5 GeV/c) [48]. This striking effect was not
well studied previously, both experimentally and theoretically. In the papers
[26, 36] where the small phase space method has been developed, it was noted
that this effect can appear due to multiple interaction processes (see p.122
of [36]). However, the consideration of this effect was not detailed enough,
the explicit angular dependence of the cross section near backward direction,
θ = π, has not been established, estimates and comparison with data have
not been made.

One of the authors (VBK) discussed the cumulative (backward) parti-
cles production off nuclei with Yakov Abramovich Smorodinsky who noted its
analogy with known optical phenomenon - glory, or ”Buddha’s light”. The
glory effect has been mentioned by Leksin and collaborators in paper [51],
however, it was not clear to authors of [51], can it be related to cumula-
tive production, or not. In the case of the optical (atmospheric) glory phe-
nomenon the light scatterings take place within droplets of water, or another
liquid. A variant of the atmospheric glory theory can be found in [58]. How-
ever, the optical glory is still not fully understood, the existing explanation
is still incomplete, see, e.g. http://www.atoptics.co.uk/droplets/glofeat.htm.
In nuclear physics the glory-like phenomenon has been observed for elastic
deuterons scattering off 40Ca nuclei at the energy 52MeV in [50] and has
been studied in [59] for the case of low energy antiprotons (energy up to few
KeV) interacting with heavy nuclei (due to Coulomb interaction).

The backward focusing effect in the cumulative particles production
has been observed and confirmed later in a number of papers for different
projectiles and incident energies [49, 51, 52]. It seems to be difficult to ex-
plain the backward focusing effect as coming from interaction with dense few
nucleon clusters existing inside the nucleus. Similar effect has been explained
semiclassically in quantum mechanics in [53], but the angular dependence
of the elastic differential cross section obtained in [53] is different from that
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obtained in our papers, see below.
Mathematically the focusing effect comes from the consideration of the

small phase space of the whole multiple interaction process by the method
described in previous section and in [26, 36]. It takes place for any MIP,
regardless the particular kind of particles or resonances in the intermediate
states. As it was explained in section 2, when the angle of cumulative particle
emission is large, but different from θ = π, there is a prefered plane for the
whole process. When the final angle θ = π, then integration over one of
azimuthal angles takes place for the whole interval [0, 2π], which leads to the
rapid increase of the resulting cross section when the final angle θ approaches
the value θ = π.

4.1 The proof of the backward focusing for arbitrary polar scat-
tering angles in the case of the light particles rescattering

We show first that the azimuthal focusing takes place for any values of the
polar scattering angles θk, not only for the optimal values deduced above for
some particular processes. For arbitrary angles θk the cosine of the angle
between directions �nk and �nk−1 is

zk = (�nk�nk−1) � cos(θk − θk−1)(1− ϑ2
k/2)−

−sin(θk − θk−1)ϑk + sin(θk)sinθk−1(ϕk − ϕk−1)
2/2. (4.1)

After substitution sinθkϕk → ϕk we obtain

zk = (�nk�nk−1) � cos(θk − θk−1)(1− ϑ2
k/2)− sin (θk − θk−1)ϑk+

+
sk−1

2sk
ϕ2
k +

sk
2sk−1

ϕ2
k−1 − ϕk−1ϕk, (4.2)

where we introduced shorter notations sk = sinθk.
It follows from Eq. (4.2) that tin general case of arbitrary polar angles

θk the quadratic form depending on the small azimuthal deviations ϕk which
enters the sum

∑
k(1− zk) for the N -fold process is

Qgen
N (ϕk, ϕl) =

s2
s1
ϕ2
1 +

s1 + s3
s2

ϕ2
2 +

s2 + s4
s3

ϕ2
3 + ....+

sN−2 + sN
sN−1

ϕ2
N−1−

−2ϕ1ϕ2 − 2ϕ2ϕ3 − ...− 2ϕN−2ϕN−1 = ||a||gen(θ1, ..., θN−1)klϕkϕl, (4.3)
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with sN = sinθ. E.g., for N = 5 we have the matrix

||a||genN=5(θ1, θ2, θ3, θ4) =

⎡
⎢⎢⎢⎢⎢⎢⎣

s2/s1 −1 0 0
−1 (s1 + s3)/s2 −1 0
0 −1 (s2 + s4)/s3 −1
0 0 −1 (s3 + sθ)/s4

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

(4.4)
sθ = s5, and generalization to arbitrary N is straightforward.

Determinant of this matrix can be easily calculated. It can be shown
by induction that at arbitrary N

Det (||a||genN ) =
sθ
s1
, sθ = sN . (4.5)

It follows from the generalized expression (4.4) for the matrix ||a|| that
Det||a||genN+1(θ) =

sN−1 + sθ
sN

Det (||a||genN ) (θN)−Det (||a||genN−1) (θN−1), (4.6)

where θN+1 = θ. Since Det (||a||genN ) (θN) = sN/s1 and Det (||a||genN ) (θN−1) =
sN−1/s1, we obtain easily

Det||a||genN+1(θ) =

(
sN−1 + sθ

sN

)
sN
s1

− sN−1

s1
=

sθ
s1
. (4.7)

After integration the delta-function containing the quadratic form over
the small azimuthal deviations we obtain∫

δ (Δ− ||a||genN (θ1, ..., θN−1)klϕkϕl) dϕ1...dϕN−1 =

=
Δ(N−3)/2

Det||a||genN (N − 3)!!
(2π)(N−3)/2cN−3 =

√√√√s1
sθ

Δ(N−3)/2

(N − 3)!!
(2π)(N−3)/2cN−3,

(4.8)
cn = π for odd n, and cn =

√
2π for even n, and N − 3 ≥ 0, see section 6.

We obtain from above expressions the characteristic angular depen-
dence of the cumulative particles production cross section near θ = π:

dσ ∼
√√√√s1
sθ

�
√

s1
π − θ

, (4.9)

since sinθ � π − θ for π − θ � 1.
This formula does not work at θ = π, because integration over the

azimuthal angle which defines the plane of the whole MIP takes place in the
interval (0, 2π). The result for the cross section is final, of course, as we show
in details for the case of the optimal kinematics.
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4.2 The case of the optimal kinematics (equal scattering angles)

For the optimal kinematics with equal polar scattering angles θk = kθ/N

(see section 2), and the general quadratic form goes over into quadratic form
obtained in [36] with some coefficiens:

Qgen → 2zθNQ(zθN , ϕk, ϕl), zθN = cos(θ/N), (4.10)

and
Det(||a||genN ) =

(
2zθN

)N−1
Det(||a||N). (4.10a)

It is convenient to present the quadratic form which enters the δ - function
in (3.6) as

QN(z
θ
N , ϕk, ϕl) = J2

2

(
ϕ1 − ϕ2

2zJ2
2

)2
+

J2
3

J2
2

⎛
⎝ϕ2 − J2

2ϕ3

2zJ2
3

⎞
⎠2

+ ...

...+
J2
N−1

J2
N−2

⎛
⎝ϕN−2 − J2

N−2ϕN−1

2zJ2
N−1

⎞
⎠2

+
J2
N

J2
N−1

ϕ2
N−1. (4.11)

For the sake of brevity we omitted here the dependence of all J2
k on their

common argument zθN . The recurrent relation

J2
N(z) = J2

N−1(z)−
1

4z2
J2
N−2(z) (4.12)

can be obtained from (4.11), since, as it follows from(3.6) and (3.9)

QN+1(z, ϕk, ϕl) = QN(z, ϕk, ϕl) + ϕ2
N − ϕN ϕN−l/z (4.13)

(recall that for the N + 1-fold process ϕN+1 = 0 by definition of the whole
plane of the process), The proof of relation (4.12) is given in final section.

The following formula for J2
N(z

θ
N) has been obtained in [36]:

Det||akl|| = J2
N(z

θ
N) = 1 +

m<N/2∑
m=1

⎛
⎜⎝− 1

4
(
zθN
)2
⎞
⎟⎠
m ∏m

k=1(N −m− k)

m!
=

= 1 +
m<N/2∑
m=1

⎛
⎜⎝− 1

4
(
zθN
)2
⎞
⎟⎠
m

Cm
N−m−1. (4.14)

Recurrent relations for Jacobians with subsequent values of N and with
same argument z:

J2
N+1(z) = J2

N(z)−
1

4z2
J2
N−1(z) = J2

N−1(z)

(
1− 1

4z2

)
− 1

4z2
J2
N−2(z) (4.15)
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can be continued easily to lower values of N and also used for calculations
of J2

N at any N starting from two known values, J2
2 (z) = 1 and J2

3 (z) =
1− 1/(4z2) (see section 6). The Eq. (4.14) can be verified in this way.

The condition JN(π/N) = 0 leads to the equation for zπN which solution
(one of all possible roots) provides the value of cos(π/N) in terms of radicals.
In other words, we found a way to get polynomials in 1/z2 with rational
coefficients one of roots of which is just cos(π/N). The following expressions
for these polynomials (Jacobians) take place [26, 36]

J2
2 (z) = 1; J2

3 (z) = 1− 1

4z2
; J2

4 (z) = 1− 1

2z2
, (4.16)

J3(π/3) = J3(z = 1/2) = 0, J4(π/4) = J4(z = 1/
√
2) = 0. Let us give here

less trivial examples. For N = 5

J2
5 = 1− 3

4z2
+

1

16z4
, (J2

5 )
′
z =

3

2z3
− 1

4z5
(4.17)

and one obtains cos2(π/5) = (3 +
√
5)/8, J5(π/5) = 0.

At N = 6

J2
6 = 1− 1

z2
+

3

16z4
= J2

3

(
1− 3

4z2

)
, (J2

6 )
′
z =

2

z3
− 3

4z5
. (4.18)

see also Eq. (6.9). For N = 7

J2
7 = 1− 5

4z2
+

3

8z4
− 1

64z6
, (J2

7 )
′
z =

5

2z3
− 3

2z5
+

3

32z7
. (4.19)

J7(π/7) = 0.

J2
8 = 1− 3

2z2
+

5

8z4
− 1

16z6
= J2

4

(
1− 1

z2
+

1

8z4

)
, (J2

8 )
′
z =

3

z3
− 5

2z5
+

3

8z7
,

(4.20)
see Eq. (6.9); J8(π/8) = 0.

J2
9 = 1− 7

4z2
+

15

16z4
− 5

32z6
+

1

256z8
= J2

3

(
1− 3

2z2
+

9

16z4
− 1

64z6

)
, (4.21)

J9(π/9) = 0.

J2
10 = J2

5

(
J2
6 −

1

4z2
J2
4

)
, (4.22)
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see section 6 where the proof of Eq. (4.12) is given. It can be obtained easily
from (4.22) that cos2(π/10) = (5+

√
5)/8. For arbitrary N , J2

N is a polinomial
in 1/4z2 of the power |(N − 1)/2| (integer part of (N − 1)/2), see Eq. (4.14).
These equations can be obtained using the elementary mathematics methods
as well, see section 6, Eqs (6.14) − (6.16). The case N = 2 is a special one,
because J2(z) = 1 - is a constant. In this case the 2-fold process at θ = π
(strictly backwards) has no advantage in comparison with the direct one, see
Eq. (2.5), if we consider the elastic rescatterings.

For particles emitted strictly backwards the phase space has different
form, instead of JN(θ/N) enters JN−1(θ/N) which is different from zero at
θ = π, and we have instead of Eq. (3.6)

IN(ϕ, ϑ) =
∫
δ
[
Δext

N −zπN

( N∑
k=1

ϕ2
k−ϕkϕk−1/z

π
N+ϑ2

k/2
)] ⎡⎣N−2∏

l=1

dϕldϑl

⎤
⎦ 2πdϑN−1 =

=
(Δext

N )
N−5/2

(2
√
2π)N−1

JN−1(zπN)
√
N(2N − 5)!! (zπN)

N−3/2
, (4.23)

This follows from Eq. (4.11) where at θ = π the last term disappears, since
JN(π/N) = 0 and integration over dϕN−1 takes place over the whole 2π
interval.

To illustrate the azimuthal focusing which takes place near θ = π the
ratio is useful of the phase spaces near the backward direction and strictly at
θ = π. The ratio of the observed cross sections in the interval of several de-
grees slightly depends on the elementary cross sections and is defined mainly
by this ratio of phase spaces. It is

RN(θ) =
Φ(z)

Φ(θ = π)
=

√√√√√Δext
N

zπN

(2n− 5)!!

2N−1(N − 2)!

JN−1(z
π
N)

sin(π/N)JN(zθN)
(4.24)

Near θ = π we use that

JN(z
θ
N) �

√√√√π − θ

N
[J2

N ]
′(zπN)sin

π

N
(4.25)

and thus we get

RN(θ) = CN

√√√√ Δext
N

π − θ
(4.26)
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Fig. 4.1. The angular dependence of inclusive cross section of the production of positive
pions by projectile protons with momentum 8.9GeV/c. a) pions with momentum 0.5GeV/c
emitted from Pb nucleus. The error bars at some points have not been clearly indicated
in the original paper; b) pions with momentum 0.3Gev/c emitted from He nucleus. The
data are taken from Fig. 18 of the paper [47].

with

CN =
JN−1(z

π
N)

√
N

[(J2
N)

′(zπN)]1/2[sin(π/N)]3/2
(2N − 5)!!√

zπN(N − 2)!2N−1
(4.27)

We need also values of JN−1[π/N ] to estimate the behaviour of the cross
sction near θ = π, they are given in Table 1 8. Integration over variable
x1 leads to multiplication CN by factor (2N − 3)/(2N − 2), i.e. it makes it
smaller, increasing the effect under consideration. The connection between
the case of the optimal kinematics when the result is presented in Eq. (4.26),
and the general case considered at the beginning of this section, see Eq. (4.9),
can be established with the help of Eq-s (6.17)− (6.20).

4.3 Comparison with some of available data

According to Eq. (4.15), the differential cross section of the cumulative par-
ticle production increases with increasing angle θ. At the critical value

θcrit � π − C2
NΔ

ext
N , εcrit = π − θcrit � C2

NΔ
ext (4.28)

8The angular dependence of the cross section obtained in [53] in semiclassical quantum
mechanical treatment of the elastic scattering is dσ ∼ 1/(π− θ), after averaging over several
oscillations (eq.(34) of [53]), i.e. more singular than we obtained. However, it was not
indicated clearly in [53] which types of potential can lead to the glory-like behaviour of the
cross section.
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Fig. 4.2. Angular distributions of secondary protons with kinetic energy between 0.06 and
0.24GeV emitted from the Pb nucleus, in arbitrary units. The momentum of the projectile
protons is 4.5GeV/c. a) The energy of emitted protons in the interval 0.11 − 0.24GeV ; b)
the energy interval 0.08 − 0.11GeV ; c) the energy interval 0.06 − 0.08GeV . Data obtained
by G.A.Leksin group at ITEP, taken from Fig. 3 of paper [51].

it becomes equal to the cross section at θ = π which is proportional to Eq.
(4.12), and may slightly increase further with increasing θ. But near θ = π

it should derease, to become again dσ/dΩ|θ=π at θ = π. So, the differential
cross section has a crater-like (or funnel-like) form near the backward direc-
tion. We do not provide here the detailed description of the cross section
in the transition region between θcrit and θ = π: this is technically rather
complicated problem, and not so important for us now.

N (J2
N(z

π
N))

′ sin(π/N)
[
(J2

N(z
π
N))

′ sin3(π/N)
]1/2

JN−1[z
π
N ] CN

3 4 0.866 1.612 1 0.38

4 2.83 0.707 0.999 0.707 0.32

5 2.11 0.588 0.655 0.486 0.29

6 1.540 0.5 0.438 0.333 0.27

7 1.087 0.434 0.298 0.229 0.26

Table 1. Numerical values of the quantities which enter the particles production cross

section near backward direction, θ = π. Here zπN = cos(π/N).
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Characteristic values of Δext are defined by kinematical boundaries de-
scribed in section 2, Eq. (2.7), (2.13), and we obtain easily

Δext
typical ∼ θ2/2N(N + 1) < π2/2[N(N + 1)], (4.29)

so it is not greater than ∼ 0.5 for N = 3 and decreases rapidly with increasing
N . Therefore, the values of εcrit may be quite small, about several degrees.

The inclusion into consideration of the Fermi motion of nucleons inside
the nucleus leads to the change of the Δext in (3.7), (3.13) and subsequent
formulas, and the constant CN in (4.26), but the angular dependence of
the cross section given by (4.26) does not change. Inclusion of resonance
excitation in one (or several) intermediate states leads to the increase of the
quantity Δext

N according to formulas of section 2, and to the increase of the
phase space of the whole MIP, but the effect of azimuthal focusing persists.
Quite similar results can be obtained for the case of nucleons, only some
technical detaols are different, see section 3. The behaviour given by Eq.
(4.15) is in good agreement with available data, the value of the constants
CN is not important for our semiquantiatative treatment. The comparison
of the observed behaviour with predicted one according to the simple law
dσ ∼ A+B/

√
π − θ is presented in Fig.4.1, Fig. 4.2 and Fig. 4.3.

We selected several examples where qualitative agreement of data with
predicted behaviour takes place. In Fig. 4.1 the inclusive cross section of the
production of positive pions by projectile protons with momentum 8.9GeV/c

is presented for pions with momentum 0.5GeV/c ( Pb as a target) and for pi-
ons with momentum 0.3Gev/c (He as a target)[47]. In Fig 4.2 angular distri-
butions of secondary protons with kinetic energy between 0.06 and 0.24GeV

emitted from the Pb nucleus are presented, in arbitrary units. The momen-
tum of the projectile protons is 4.5GeV/c [51]. In Fig 4.3 angular distribu-
tions of secondary pions with kinetic energy greater 0.14GeV emitted from
the Pb nucleus, are presented, also in arbitrary units. The momentum of the
projectile protons is 4.5 GeV/c. Data are taken from Fig. 5 of paper [51].

There are other data where the glory-like effect is clearly seen. In
many other cases the flat behaviour of the differential cross section near
θ ∼ π takes place, but it was probably not sufficient resolution to detect
the enhancement of the cross section near θ = π, see e.g. [60]. In some
experiments the deviation of the final angle from 180 deg. is large, therefore,
further measurements near θ = π are desirable, also for kaons, hyperons as
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Fig. 4.3. Angular distributions of secondary pions with kinetic energy greater 0.14GeV
emitted from the Pb nucleus, in arbitrary units. The momentum of the projectile protons
is 4.5 GeV/c. Data obtained by G.A.Leksin group at ITEP, taken from Fig. 5 of paper
[51].

cumulative particles.
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5 A-number dependence of cumulative particles pro-

duction cross sections; mixing effect and polarization

phenomena

For completeness we discuss here several most striking properties of cumu-
lative production reactions which found a natural explanation within the
multiple interaction mechanism: the sharp A-number dependence of the cu-
mulative particles production cross sections, the mixing between the pro-
duced particles which belong to the same isomultiplet, and some polarization
phenomena.

5.1 A-number dependence of the cumulative particles production
cross sections

Let us begin with the sharp A-number dependence of the cumulative pro-
duction cross sections. It is a specific property of such reactions investigated
previously within the multiple interactions picture in [38]. According to [38]
the sharp A-number dependence of the cumulative particles production cross
sections finds a natural explanation within the MIP approach. The A-number
dependence of the cross section is defined by geometrical factor ΦN(R, θ)

ΦN(R, θ) = πR2
AGN(R, θ) =

∫
dxdyd

[
exp

{
−
∫ l1

−∞ σ0ρ(�l)dl

}]
×

×d

[
exp

{
−
∫ l2

l1
σ1ρ(�l)dl

}]
...d

[
exp

{
−
∫ lN

lN−1

σN−1ρ(�l)dl

}]
exp

{
−
∫ ∞
lN

σNρ(�l)dl
}
,

(5.1)
where x, y are the coordinates in the plane perpendicular to the momentum
of the projectile, and the integration takes place along the trajectory of the
object (particle or resonance) propagating within the nucleus. It is important
that this trajectory has a protuberant (convex) form. This expression can be
essentially simplified if, as a zero approximation, one takes all cross sections
equal, performs integration over intermediate parts of the trajectory, and
takes the model of the nucleus with a sharp edge:

ΦN(RA, θ) =
∫ ⎡⎣∫ L(RA,θ,x,y)/l0

0

lN−1exp(−l)

(N − 1)!
dl

⎤
⎦ dx dy, (5.2)
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l0 = 1/(ρ.σ). For the rough estimates we made substitution L(RA, θ, x, y) →
L̄(RA), and we came to [38, 36]

ΦN(RA, θ) � πR2
A

∫ L̄(RA,θ)/l0

0

lN−1exp(−l)

(N − 1)!
dl, (5.3)

with Lmax � θR/sin(θ/2) in the case of the particle propagation along the
circle (evidently, for θ = 0 Lmax = 2RA, for θ = π Lmax = πRA). For
the crude estimate one can substitute, at θ >∼ 3π/4, L(RA, θ) → L̄ �
(0.3− 0.4)RAθ.

If the absorption of the rescattered particles would absent at all, then
we would obtain the dependence ΦN ∼ R2

A(RAθ)
N ∼ A(N+2)/3 which is the

sharpest possible dependence of the cross section due to the N -fold interac-
tion. For N = 1 we would have dσ ∼ A — the well known result for the
weekly interacting particles.

Fig. 5.1. A-number dependence of the proton production cross sections at θ = 137o,
E0 = 400Gev [7]. a) k = 0.95Gev/c, N = 4. Calculations performed with the Woods-
Saxon distribution of the nuclei density, σ0 � 0; σ1 � 30mb; σ2 � 25mb; σ3 � 20mb; b)
k = 0.37Gev/c, N = 3, σ1 � 20mb; σ2 � 15mb, [38].

The data obtained at the incident energy 400GeV [7, 8] are in good
qualitative agreement with theoretical expectations, as shown in Figs. 5.1
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Fig. 5.2. A-number dependence of π± production cross sections at θ = 160o, E0 = 400Gev
[8]. k = 0.67Gev/c, N = 3, σ1 � 28mb; σ2 � 34mb; σ3 � 20mb, or all σk � 27mb. The
error bars indicated do not include the uncertainty of measurements on the 12C nucleus,
same in Fig. 5.1.

and 5.2 [38]. The calculated A−number dependence of the production cross
sections weekly depends on the particular values of interaction cross sections
in intermediate states σk, but the protuberant form of the trajectory dictated
by the kinematics of the MIP is very important.

5.2 Mixing effect in the yields of the components of isomultiplets

The ratio of neutron to proton yields for different target nuclei, including
isotopes of Sn and Ni, was studied in [61, 62]. It was observed that this ratio,
averaged over the sign of incident pions [61], is smaller than the N/Z ratio
for the nucleus which could be expected in the simplest spectator picture.
As it was shown in [37], several kinds of MIP naturally lead to mixing in the
yield of neutrons and protons and to decrease of the ratio n/p, relative to the
N/Z ratio.

It was obtained in [37] for the isobar mechanism NN → NΔ → NN
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that the ratio

R(n/p)2 =
R(n/p)1 + 2NA/(10NZ + A2)

1 +R(n/p)12ZA/(10NZ + A2)
, (5.4)

where R(n/p)1 (R(n/p)2) are the neutron to proton ratios before and after
the isobar interaction mechanism. The limiting value of the neutron to proton
ratio is

R(n/p)lim =

√√√√N

Z

The nucleon-nucleon interaction itself also leads to mixing. Let us
define three independent cross sections

σ1 = σ(pp → pp) = σ(nn → nn); σ2 = σ(pn → pn) = σ(np → np);

σ3 = σ(pn → np).

After one scattering act we obtain

R(n/p)2 =
R(n/p)1 + (N/Z)σ3/(σ1N/Z + σ2)

(σ1 + σ2N/Z)/(σ1N/Z + σ2) +R(n/p)1σ3/(σ1N/Z + σ2)
(5.5)

The inequality should take place

σ3 > |σ1 − σ2|
for mixing to occur. The limiting value of R(n/p) is

R(n/p)lim =
1

2σ3

[
(σ1 − σ2)(N/Z − 1) +

√
(σ1 − σ2)2(N/Z − 1)2 + 4(N/Z)σ2

3

]
.

(5.6)
For σ1 − σ2 = σ3 we obtain R(n/p)lim =

√
N/Z, similar to the isobar mecha-

nism.
For the case of reaction πN → Nπ the mixing proceeds effectively in

the channel with isospin INπ = 1/2.
Experimental value of Rexp

n/p = 1.32 ± 0.07 for Pb and 238U nuclei [61]

in comparison with the
√
N/Z values 1.236 and 1.260 correspondingly. The

mixing in the yields of the particles which belong to other isomultiplets, e.g.
(π−, π+), also can be explained within the MIP [37].
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5.3 Polarization phenomena

Relatively large polarization of cumulative baryons has been observed in a
number of experiments, for Λ hyperons and for protons [63] - [67]. For Λ hy-
perons [63] polarization reached a value of the order 1 in modulo for emission
angle between 80o and 110o, but with large uncertainty ∼ 35%, for protons
polarization reached the values ∼ 0.4 − 0.5 [64]. Polarization of baryons
emitted backwards can appear due to subsequent rescatterings within the
nucleus. It is well known that the scattering off some target is a regular way
to get polarization of fermions - protons, electrons, etc. But, moreover, in the
case of cumulative baryons production the final polarization can be enhanced
if rescatterings proceed in similar kinematical conditions, as it was stressed
in [26]. Let P be the polarization after 1-fold interaction with unpolarized
target, D - parameter which defines the dependence of the final polarization
on the incident, then the polarization after the n-th interaction is given by 9

Pn =
P +DPn−1

1 + P Pn−1
, (5.7)

If the parameters P, D are equal in all N interactions, then the final polar-
ization is

PN =
(D + x1P )N − (D − x2P )N

(D + x1P )N−1(x1 + P ) + (D − x2P )N−1(x2 − P )
(5.8)

where
x1,2 =

[√
(1−D)2 + 4P 2 ± (1−D)

]
,

At D = 1 we have x1 = x2 = 1, and the final polarization will be

PN =
(1 + P )N − (1− P )N

(1 + P )N + (1− P )N
, (5.9)

if the parameters P are equal for all interaction acts [26]. In general case,
when there are differences between interaction acts, instead of (D+x1)

N will
enter product

∏
l=1 (Dl + x1,lPl), etc. According to Eq. (5.8), (5.9) there is a

potential possibility of enhancement of the polarization of emitted cumulative
baryons due to the MIP mechanism. Further measurements of polarization
of different baryons in KFR are of great interest.

9One of the authors (VK) is greatly indebted to Lev Iosifovich Lapidus for enlightning
discussion of the polarization phenomena in nucleon-nucleon interactions.
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There is no striking prediction for the asymmetry of emitted particles
from polarized projectile within the multiple interaction mechanism. It has
been observed that this asymmetry is different from that predicted if the 1-
fold interaction takes place, and it has been found to be small in a number
of experiments [68] - [74]. So, it is a clear indication that the nature of the
cumulative baryons is more complicated than the simple spectator mechanism
with the high momentum components in the nucleons distribution within the
nucleus taken into account.

6 Useful mathematical relations and formulas

Here we present for the readers convenience some formulas and relations
which have been used in present paper (sections 3 and 4). The nuclear glory
phenomenon is an example when solving the physics problem leads to math-
ematical consequences of interest.

6.1 The integrals of the δ-functions

In sections 3 and 4 the following integrals of the δ-functions have been used:

In(Δ) =
∫
δ(Δ− x21 − ...− x2n)dx1...dxn = π

(2π)(n−2)/2

(n− 2)!!
Δ(n−2)/2 (6.1)

for integer even n.

In(Δ)n =
∫
δ(Δ− x21 − ...− x2n)dx1...dxn =

(2π)(n−1)/2

(n− 2)!!
Δ(n−2)/2 (6.2)

for integer odd n. Relations
∫ π

0
sin2mθ dθ = π

(2m− 1)!!

(2m)!!
;

∫ π

0
sin2m−1θ dθ = 2

(2m− 2)!!

(2m− 1)!!
, (6.3)

m — integer, allow to check (6.1) and (6.2) easily.
The equality takes place

∫
δ(Δ−x21− ...−x2n)δ(x1+x2+ ...+xn)dx1...dxn−1dxn =

1√
n
In−1(Δ) (6.4)
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More generally, for any quatratic form in variables xk, k = 1, ...n after diag-
onalization we obtain
∫
δ(Δ−aklxkxl)dx1 ... dxn =

∫
δ(Δ−x′21 −...−x′2n )

dx′1...dx
′
n√

det||a|| =
1√

det||a||In(Δ).

(6.5)

6.2 Properties of the quadratic forms in angular variables

Let t be the transformation (matrix) which brings our quadratic form to the
canonical form:

t̃ a t = I, (6.6)

where I is the unit matrix n×n, and t̃kl = tlk. Then the equality takes place
for the Jacobian of this transformation

(det ||t||)−2 = J2
a(z) = det ||a||, (det ||t||)−1 = Ja(z) =

√
det ||a||. (6.7)

To obtain the relation (4.12) we write first the recurrent relation for
the quadratic form

QN+1(z, ϕk, ϕl) = QN(z, ϕk, ϕl) + ϕ2
N − ϕN ϕN−l/z, (6.8)

then rewrite it similar to Eq. (4.11), and write down the equality for the last
several terms

J2
N

J2
N−1

ϕ2
N−1 + ϕ2

N − ϕNϕN−1

z
=

J2
N

J2
N−1

⎛
⎝ϕN−1 − J2

N−1

J2
N

ϕN

2z

⎞
⎠2

+
J2
N+1

J2
N

ϕ2
N . (6.9)

From equality of coefficients before ϕ2
N in the left and right sides we obtain

1 =
J2
N−1

4z2J2
N

+
J2
N+1

J2
N

, (6.10),

and equation (4.12) follows immediately.
The relation can be obtained from Eq. (4.12)

J2
N(z) = J2

N−k(z)J
2
k+1(z)−

1

4z2
J2
N−k−1(z)J

2
k(z) (6.11)

which, at N = 2m, k = m (m is the integer), leads to remarkable relation

J2
2m(z) = J2

m(z)

(
J2
m+1(z)−

1

4z2
J2
m−1(z)

)
. (6.12)
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Relation (6.10) can be verified easily for J2
4 , J2

6 and J2
8 , see section 4. It

follows from (6.12) that at N = 2m not only JN(π/N) = 0, but also
JN(2π/N) = 0 which has quite simple explanation (m ≥ 3; the case of
m = 2 is an exception).

For the odd values of N another useful factorization property takes
place:

J2
2m+1(z) =

(
J2
m+1(z)

)2 − 1

4z2
(
J2
m(z)

)2
=

=

(
J2
m+1(z)−

1

2z
J2
m(z)

) (
J2
m+1(z) +

1

2z
J2
m(z)

)
, (6.13)

which can be easily verified for J2
7 and J2

5 given in section 4.
The polinomials J2

N and equations for zπN = cos(π/N) can be obtained
in more conventional way. There is an obvious equality

[exp(iπ/N)]N = exp(iπ) = −1 (6.14)

It can be written in the form

[cos(π/N) + isin(π/N)]N = −1, (6.15)

or separately for the real and imaginary parts

Re
{
[cos(π/N) + isin(π/N)]N

}
= −1,

Im
{
[cos(π/N) + isin(π/N)]N

}
= 0. (6.16)

The polinomials in zπN = cos(π/N) which are obtained in the left side of (6.13)
coincide with polinomials obtained in section 4. However, some further efforts
are necessary to get recurrent relations (6.9), (6.10).

6.3 Cross-checking of basic relations with the help of
trigonometrical identities

The following useful relations can be verified:

(
2zθN

)N−1
J2
N

(
zθN
)
sin

θ

N
= sinθ. (6.17)

Using expressions for J2
N(z) given in (4.16) and (4.17) it is possible to repro-

duce the following equalities known from trigonometry:
(
2 cos

θ

3

)2 ⎛⎝1− 1

4cos2(θ/3)

⎞
⎠ sinθ

3
= sin θ, N = 3; (6.18)
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(
2 cos

θ

4

)3 ⎛⎝1− 1

2cos2(θ/4)

⎞
⎠ sinθ

4
= sin θ, N = 4; (6.19)

(
2 cos

θ

5

)4 ⎛⎝1− 3

4cos2(θ/5)
+

1

16cos4(θ/5)

⎞
⎠ sinθ

5
= sin θ, N = 5; (6.20)

etc. Obviously, the right side of these equalities equals zero at θ = π, but
sin(π/N) is different from zero for any integer N ≥ 2. Therefore, the polino-
mial in cos(π/N) in the left side of (6.17) − (6.20) should be equal to zero.
These relations provide the link between the general case considered at the
beginning of section 4 and the particular case of the optimal kinematics with
all scattering angles equal to θ/N .

Now, using Eq. (6.17), we can cross-check the basic recurrent relation
(4.12): J2

N+1(z) = J2
N(z)− J2

N−1(z)/4z
2. We have from (6.17)

J2
N+1 =

sin[(N + 1)φ]

sinφ (2cosφ)N
; J2

N =
sin(Nφ)

sinφ (2cosφ)N−1
; J2

N−1 =
sin[(N − 1)φ]

sinφ (2cosφ)N−1
.

We are using the notation here z = cos φ. After removal of some common
factors Eq. (4.12) reduces to

sin(N + 1)φ = 2cosφ sin(Nφ)− sin(N − 1)φ, (4.12a)

which can be easily checked with well known trigonometrical identities.
Another relation of interest which can be cheked in similar way is (6.12).

From (6.17)

J2
2m =

sin(2mφ)

sinφ (2cosφ)2m−1
; J2

m+1 =
sin(m+ 1)φ

sinφ (2cosφ)m
; J2

m−1 =
sin((m− 1)φ

sinφ (2cosφ)m−2

and (6.12) takes the form

sin(2mφ)

sinφ (2cosφ)2m−1
=

sin(mφ)

sinφ (2cosφ)m−1
×

×
⎡
⎣ sin(m+ 1)φ

sinφ (2cosφ)m
− sin(m− 1)φ

sinφ (2cosφ)m

⎤
⎦ , (6.12a)

and after cancellation of common factors we come to

sin(2mφ) =
sin(mφ)

sinφ
[sin(m+ 1)φ− sin(m− 1)φ] , (6.12b)
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which can be easily verified using well known trigonometrical relations.
The relation (6.13) can be cross-checked in similar way. From (6.17)

we obtain

J2
2m+1 =

sin(2m+ 1)φ

sinφ (2cosφ)2m
; J2

m =
sin(mφ)

sinφ (2cosφ)m−1
,

and J2
m+1 was presented above as function of sines and cosines. After cancel-

lation of some common factors we come to the following relation

sin(2m+ 1)φ sin φ = sin2(m+ 1)φ− sin2(mφ) =

= cos2(mφ)− cos2(m+ 1)φ. (6.13a)

The left side should be transformed according to the known identity

sinα sinβ = [cos(α− β)− cos(α + β)] /2 = cos2
α− β

2
− cos2

α + β

2
,

with (α−β)/2 = mφ, (α+β)/2 = (m+1)φ, and relation (6.13) is confirmed.
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7 Discussion and conclusions

The nature of the cumulative particles is complicated and not well understood
so far. There are different possible sources of their origin, including the color
forces [75], one of them are the multiple collisions inside the nucleus, i.e.
elastic or inelastic rescatterings. We have shown that the enhancement of
the particles production cross section off nuclei near the backward direction,
the glory-like backward focusing effect, is a natural property of the multiple
interaction mechanism for the cumulative particles production. It takes place
for any multiplicity of the process, N ≥ 3, when the momentum of the emitted
particle is close to the corresponding kinematical boundary. The universal
dependence of the cross section, dσ ∼ 1/

√
π − θ near the final angle θ ∼ π,

takes place regardless the multiplicity of the process. This statement by itself
is quite rigorous and presented for the first time in [76] and in present paper.
The competition of the processes of different multiplicities can make this
effect difficult for observation in some cases. Presently we can speak only
about qualitative, in some cases semiquantitative agreement with data. It is
not clear yet how the transition to strictly backward direction proceeds. The
angular distribution of emitted particles near θ = π can have a narrow dip,
i.e. it may be of a crater- (funnel)-like form. Further studies are necessary
for better understanding of this point.

The glory-like backward focusing effect, observed in a number of exper-
iments at JINR and ITEP, is a clear manifestions of the fact that multiple
interactions make important contribution to the cumulative particles produc-
tion probability, although it does not exclude the contribution of interaction
of the projectile with few-nucleon, or multiquark clusters possibly existing
in nuclei. Few characteristic features of the cumulative production reactions
discussed in section 5 also confirm the importance of the MIP mechanism:
the sharp A-number dependence of the cumulativeproduction cross sections,
the mixing between produced cumulative neutrons and protons, and the rela-
tively large polarization of cumulative baryons. We have proved the existence
of the azimuthal focusing for arbitrary polar angles (rescattering of the light
particles) and for the case of the optimal (basic) configuration of the MIP,
also for nucleons rescattering. Investigation of other possible variants of the
optimal kinematical configurations, besides those considered in present paper
may be of interest, but obviously, the azimuthal focusing, discussed e.g. in
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[58] for the optical glory phenomenon, takes place for any kind of MIP; only
some technical details are different.

It would be important to detect the focusing effect for different types of
produced particles, baryons and mesons. This effect can be considered as a
”smoking gun” of the MIP mechanism. If this nuclear glory-like phenomenon
is observed for all kinds of cumulative particles, its universality would be a
strong argument in favor of importance of MIP. Reactions where such effect is
not observed would provide more chances for revealing nontrivial peculiarities
of nuclear structure. The role of the multiple interaction processes leading
to the large angle particles production off nuclei is certainly underestimated,
still, by many authors, theoreticians and experimentalists. Further efforts
are necessary to settle this extremely difficult and important challenge of
disentangling between the nontrivial effects of the nuclear structure and the
MIP contributions.
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