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I. Introduction 

I would like to invite you to go beyond the Standard Model of the three 
fundamental interactions of matter. How far we go depends on your patience 
and intellectual curiosity. We do not know what is waiting us there in terra 
incognita. We hope to find it out with the help of future experiments. How­
ever modern theories give us several guiding ideas, some of which are very 
exciting. In the present lectures we will discuss some of these ideas looking 
more attractive today. 

1. The Standard Model: Achievements and Draw-
backs 

The Standard Model (SM) describes the strong, weak and electromagnetic 
interactions and is based on a gauge principle. According to this principle 
all the forces of nature are mediated by an exchange of the gauge fields of 
the corresponding gauge group. The group of the SM is · · 

SUcolou,(3) ® su,.,,(2) ® Uh11percharge(l) (1.1) 

whereas the field content is the following: 
Gauge sector 

The gauge bosons are spin 1 vector particles belonging to the adjoint 
representation of the group (1.1). Their quantum numbers under SU(3) ® 

SU(2) ® U(l) are respectively: 

gluons aa. µ. (fi, 1, 0) SUcolou,(3) .g, 
intermediate At : ' (1, a, O) su,.,,(2) 
weak bosons 

g 

abelian boson B,,: (1, 1, 0) Uy(l) g'. 

The coupling constants are usually denoted by g., g and g' respectively. 
Fermion sector 

The matter fields are fermions belonging to the fundamental representa­
tion of the gauge group. These are believed to be quarks and leptons of at 
least of three generations. The SM is left-right asymmetric. Left-handed and 
right-handed fermions have different quantum numbers: 

quarks 

Qi -
o,,L - ( ~i ) L = ( :: ) L 1 (::)L, ( :: ) LI 

U!n = .urn, c;n, trn, I 

D~n = drn, s;n, brn,' 

leptons LaL = (;)/ (~)L, (~)/ 
lan = en, JLR, 

i = l, 2, ~ - colour, a: = l, 2, 3, ... - generatjon. 
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Higgs sector 
In the minimal version of the SM there is only one doublet of Higgs scalar 

fields · 

H = ( !: ) (1,2, -1), 

which is introduced in order to give masses to quarks, leptons and interme-
diate weak bosons via spontaneous symmetry breaking. · 

The Lagrangian of the SM is 

where 

C = Cgauge + Cyu.lcawa + CHig911 

· Cgauge 
1G" G" 1

Ai Ai 
1

B B = -4 ,,., ,,., - 4 ""· ,,., - 4 ,,., "" 

a:., 
A~., 
B,,., 

D,.La 

D,,la 

D,,Qa 

D,,Ua 

D,,Da 

+iLa'Y" D,,La + iQa 'Y" D,,Qa + ila'Y" D,,la 
+iUa"'("D,,Ua + iDa'Y"DµDa + ('DµH) 1(D,,H), 

= 8,.a: - 8.,G: + 9,f"l,cG!G~, · 

= 8 Ai - 8 Ai + gt.';.1cA; A,. ,, " " µ ,, .,, 
= 8,,B., - 8.,B,., 

= .9 i i .g' 
(8,, - i 2r A,.+ i 2B,.)La, 

= ( 8,. + i9' B,.)la, 
I 

= (8 ~ .[!_ iAi - .!!._B - ·9• )."G")Q 
,. i 2 r µ '6 "' ' 2 ,. a, 

= (8 - -~ 'B - •9• >."G")U µ i 39 I' I 2 /A at 

= (8 .l 'B ·9• )."G")D 
µ + '39 µ - '2 /A a• 

I - .1- - • 
CYu.lcawa = /0 pLalpH + fafJQaD/JH + J:pQ0 UpH + h.c., 

where fI = ir2H 1• 

C.Hi99 , = -V = m 2H 1H - >.(H1H)2
• 

(1.2) 

Here {/} are the Yukawa and ). is the Higgs coupling constants respectively, 
both dimensionless and mis the only dimensional mass parameter. 

The Lagrangian of the SM contains the following set of free parameters: 

• 3 gauge couplings, 

4· 

• Yukawa couplings, 

• Higgs coupling, 

• mass parameter, 

• quark mixing matrix, 

• number of matter fields (generations). 

All the particles obtain their masses due to spontaneous symmetry break­
ing of su,.,,(2) group via a non-zero vacuum expectation value of the Higgs 
field 

< H >=.1/v'2 ( ~), v = m/V>.. 

As a result the gauge group of the SM is spontaneously broken down to 

SU0 (3) ® SUL(2) ® Uy(l) ~ SU0 (3) ® UEM(l). 

The weak bosons now are 

Al 'A2 ± ,,±i ,, 
w = V2 ,, 2 Z,.. = sinOwB,.. - cosOwA! 

with masses 

mw = 1/2gv, mz = mw/ cos Ow, tan Ow= 91/g, 

while the photon field 

remains massless. 

"'(µ=cos OwB,, + sin OwA3 ,, 

The matter fields acquire masses proportional to the corresponding Yukawa 
couplings: 

M:/J = f':pv/v'2, M:/J = J:pv/v'2, M!/J = J!pv/V2, mH = V2m. 

Explicit mass terms in the Lagrangian are forbidden because they are not 
SU1.1,(2) symmetrical and would destroy the renormalizability of the Stan­
dard model. 

The SM has been constructed as a result of numerous efforts both theoret­
ical and experimental. Achievements of the SM are obvious. At present the 
SM is extraordinary successful, there is no any experiment that contradicts 
the SM. Moreover there is nothing observed beyond the SM. 

However the SM has its natural drawbacks. Among them are: 

5 



t large number of free parameters, 

• formal unification of strong and electroweak interactions, 

• the Higgs particles have not yet been observed and it is not clear 
whether they are fundamental or composite, 

• the problem of OP-violation is not well understood ir{cluding GP-violation 
in strong interaction, 

• One of the main problems of the SM is the origin of the mass spect_rum. 

There are also some problems of more fundamental nature: 

• why the gauge group is SU(3) _0 SU(2) ® U(l) ? 

• what is the number of generations? . 

• how to incorporate gravity in unified theory? etc. 

The answer to these problems definitely lies beyond the SM. 

II. Just beyond the Standard Model 

2. _Compositeness and Technicolour 

One of the main problems of the SM still not truly understood is the symme­
try breaking mechanism. Unbroken symmetry means that all fundamental 
particles are massless. This is because both the fermion mass term /L · f n 
and that of the gauge bosons W; and z; are not SU1e1,(2) invariant. 

If the symmetry is broken on som~ scale, these particles can acquire 
mass!!s ~ the breaking scale. Its typical value is ~ 250 GeV (v.e.v. of the 

Higgs field). 

2.1. Symmetry Breaking without Higgs Fields (A Simple ~odel) 

If the Higgs particles will not be found, we will be faced with the prob­
lem of replacing 'the Higgs mechanism of spontaneous symmetry breaking by 
some alternative. Such an alternative already exists. This is the so-called 
dynamical symmetry breaking like the chiral symmetry breaking in QCD. 

To understand how this mechanism works, we consider QCD with u and 
d quarks. If t~ey are massless, then the QCD Lagrangian is invariant un­
der chiral group SUL(2) ® SUn(2) . However quarks can create a vacuum 
condensate 

< uu+dd >-:/- 0, 

6 

+ wt. 'lT- wt. 
~ tot~ 11q2 ½ gf'TC 

Figure 1: Pion intermediate state contribution to the W polarization opera­
tor 

which breaks the chiral group down to that of the Isospin SU1(2). The 
symmetry breaking is spontaneo_us as far as Lagrangian is still invariant but 
this is no longer true for the vacuum state. Hence due to the Goldstone 
theorem one should get massless spin O goldstone bosons. Indeed they exist. 
These are pions 11'. (Later they obtain small masses becoming the pseudo­
goldstone bosons. However the smallness of pion mass is protected by chiral 
invariance.) 

Due to a non-zero matrix element of the axial isospin current 

< 0IJtal11'b(q) >= f1t<f6ab1 (2.1) 

where qi-I is the momentum of the pion and /.,, :::.: 93M ev is the pion decay 
constant, the pions appear to be the longitudinal components of massive 
vector bosons W and Z. To see this, consider the propagator of W. Because 
of radiative corrections the total expression has the form 

ii&. 
9iw =-._r_ 9µv - ii&. tf_ 

q2 
-t 

q2(1 + II(q2))' 

where II( q2) is the polarization opera-tor. 
To obtain a non-zero mass of W we need a pole term in II( q2) at q2 = 

0. The contribution to II(q2) due to the interaction with the axial current 
f W; J¼5 is given by · 

92 I (91-1., - qµq.,)II(q2
) = 4 dxe;9"' < 0IT J;'s(:i:)J.75(0)10 > . (2.2) 

The pole term we are interested in comes from the pion intermediate state 
(see Fig.I) According to eqs.(2.1,2.2) we get 

II( 2)=-92/,,, 
q 4q2 I 

7 



whic\l leads to a shift of the pole thus giving tµe qesired mass 

1 
mw = 2gf,,,. 

The same mechanism works for the neutral bosons. · However one should 
take into account the mixing between B,. and A!. The mass matrix here has 
the form · 

m2 - ( 92 g'g ) J,,, 
- g'g g'2 4. 

After diagonalization this leads to 

with a standard ratio 

m 2 = 0 ., 
2 mz 

1 . 
:::: -(g2 + /2)/2 2 g ,,, 

mw . g 
-- = cos Ow = v 2 2 . 
mz g +g' 

Thus we get what we wanted but ... the masses of W and Z are of the order 
ofl00 MeV rather than 100 GeV, i.e. 103 times smaller than they actually 
are. 

Hence, the conclusion is the following : the mechanism works, however the 
scales are wrong. In order to obtain appropriate masses, one needs some new . 
kind of interaction with a different scale. This is just the idea of technicolour. 

2.2. Technicolour 

The technicolour idea is the following: one introduces new strong interactions 
calle_d Quantum Technicolour Dynamics ( QTD) and a new set of fields called 
technifermions. In a simplest case one has a doublet of technifermions T = 
( ~ ) . QTD is constructed in full analogy with QCD. The only difference 

is the scale of interaction 

f,,,-+ 

ATc ~ 
Aqcv 

F,,,~ 
F,,, ~ 
·f,,, 

250Gev 

2600 

Hence if Aqcv ~ 200M ev, ATc ~ 500Gev. This gives mw,z ~ lO0GeV as it 
~o~db~ · 

Therefore we come to the following picture: 
The Higgs fields are replaced by the strong interacting technifermions. In­
stead of a scalar field with a contact self-interaction we introduce a set of 

8 

fermion fields interacting th~ough a JleW gauge force. lnsteaq of a condensate 
of scalar fields we have a con~ensate of technifermion pairs which sponta­
neously breaks the symmetry thus giving masses to the gauge bosons. The 
appeared goldstone bosons (the technipions) are absorbed by W and Z be­
coming their longitudinal components exactly like it happens with funda­
mental scalars in the Higgs mechanism. 

The described picture is slightly modified because of the presence of both 
QCD and QTD, i.e. of ordinary pions as well as technipions. As a result we 
have two orthogonal combinations 

. b b d F,,,ltechnipion > + f,.lpion > 
!pion a sor e >= J 

F; + J; 

and 
. h . ·

1 
F,,,lpion > - f,.ltechnipion > 

!pion p ysica >= . J , . F; + J; 
with the matrix elements of the full axial current being 

< 0IJ~lpion ~"'.' f,.q,. } < OIJ!IP~On abso~bed >= JF; + n q,. 
< 0IJ,.ltechnipion >= F,.q,. < 0ll!lpion physical>= o. 

Due to a relative smallness of f,. the physical pion is mostly the ordinary 
one. However its decay modes now are described in a more complicated 
non-contact way. 

2.3. Technispectroscopy 

In analogy with QCD one can expect that QTD will predict a spectrum of 
bound states of techniquarks. It should be very much like the QCD spectrum 
but rescaled by a factor of ATc / Aqcv ~ 2600. There should exist techni-p, 
techni-w, etc,mesons with masses of the order of 1 TeV and with spacings 
and widths also ~ 103 larger than in QCD. 

These techni-resonances will manifest themselves in e+e- annihilation 
process as the new resonance peaks in the cross-section ratio (see Fig.2) The 
main difference from the SM here is that the longitudinal parts of W and 
Z bosons become strongly interacting particles. In e+ e- annihilation into a 
pair of w+ w- this means that the transverse parts of W s will behave like 
in the SM while the longitudinal ones will produce resonances, which is a 
specific prediction of technicolour. 

Another manifestation of technicolour is high PT jets in e+ e- or pp colli­
sions. The PT will be also rescaled by a factor of 103 with respect to QCD. 

The spectrum of technistates appears to be strongly model-dependent. It 
depends on the group of technicolour, representation , etc. For the simplest 

9 
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Figure 2: e+ e- annihilation cross-section ratio with techni- resonances 

one-doublet model 

T = ( ~) / AR, BR 

the spectrum is trivial and contains no (pseudo)goldstone bosons. However 
already in the one-family model, which was constructed in analogy with the 
family content of the SM in order to suppress FCNC by GIM mechanism, the 
situation is more complicated. In this case the techniquarks _and technileptons 
are organised like quarks and leptons in the SM 

(~~ )L 
u:R 
D:R ( ~=) L 

Nf,, 
Ef,, 

a= 1, 2, 3, ... - technicolour 
c = 1,2,3- colour 

The symmetry breaking now is ach~eved by the condensate of all technipar­
ticles (for simplicity we take them to be equal) 

<VU>=< DD>=< NN >=<EE>=/:- o. 

In this case 

ATc ~ 1300~Gev for SU(N) TC group• 

This model predicts a rich spectrum of technihadrons with masses ~ 1 TeV 
having an integer (technimesons) or a half-integer (technibaryons) spin. The 
latter is possible for N = 2k + 1. 

10 ,. 

The lightest states of spin 0 may have masses :::; 1 TeV or even ~ 100 
GeV. These are the pseudo-goldstone bosons with unusual production and 
decay properties. To find them out, let us first remind QCD. There the 
SUL(2)@SUR(2) chiral symmetry is broken down to SUr,a,pin(2) by the quark 
condensate < iiu + dd >=/:- 0 thus producing a triplet of goldstone bosons -
pions 7t. They become the pseudo-goldstones acquiring small masses m; ~ 
m! due to quark mass terms in the QCD Lagrangian. 

For the TC one-family model the initial chiral group is SUL(B) © SUR(B) 
which is broken down to SU.,eeta,,(S). Hence the number of goldstone bosons 
equals : 2 x 63 - 63 = 63 , i.e. the number of broken generators.These 
goldstone bosons become pseudo-goldstones due to SU(3) ® SU(2) ® U(l) 
corrections. They can be constructed out of techniquark and technilepton 
doublets 

Qe = (.~ r I L = ( 1 ) 
and can be colour as well as technicolour singlets or multiplets: 

0~ ~ Q-y6Aar'Q, 
ea ~ Q-y6AaQ, 
T: ~ Qc-y&ri L, 
Tc ~ CJc16 L, 
II' ~ Q-y6r;Q + L-y5r' L, 
p± ~ Q-y6r±Q -. 3L-y6r± L, 
p3 ~ Q-y&r3Q - 3L-y6r3 L, 
po ~ Q-ysQ - 3L-y& L, 

·t: ~ L-y6riQc, 
Tc~ £-y6Qe, 

where a =. 1,2, ... 8; i = 1,2,3. 
The 0 -mesons have typical masses m0 ~ n 200 GeV and the decay 

modes are: 
ea -+ qq, gg, g-y, etc, 
0! -+ qq, g-y, gZ, etc, 
0; -+ qq, gW±, etc. 

For the T-mesons one has mT ~ 2/3me and the decay modes are: 

r+ e -+ be+ v, 
T3 

e -+ fc + V 1 be+ r, 
Tc -+ fc + V, be+ r, 
r- -+ T: +µ_ +v. C 

The Iii mesons are "eaten" by W s and Z and become their longitudinal 
components. 

p± are the so-called axions. Their masses are of electromagnetic origin 

( 
e~ )2 3a 2 l Mfc ( )2 mp:t ~ -

4 
mz n - 2- ~ 5 - lOGev • 

71' mz 

11 



The decay fllOqes are 

(ft) -+ 

p+ -+ C + b, 
p+ + f + b , if mp+ < mt - mi,, 
<-+ p- +b 

P 3 and P0 have masses O $ m~l,o $ (100Gev)2. They can be produced in 
e+ e- annihilation 

e+e--+ ft+P°, P3 +1, 

other modes being suppressed. 

2.4. Fermion Masses 

We.have shown how TC can provide us with gauge boson masses. The gauge 
group of the TC-extended SM now is 

SUc(3) ® SUL(2) ® Uy(l) ® TO. 

However this is not enough to give masses to fermions. They are still massless. 
The way out of this puzzle is found along the same lines. One introduces a 
new type of interactions with a new scale AE > ATC· These new interactions 
will produce on AE some new effective (nonrenormalizable) op~rators (four­
fermion, etc.) that will give us finally the mass terms. · 

To find out what type of operators plays the main role, let us consider the 
coupling constant corresponding to an n-fermion operator. On dimensional 
grounds it behaves like 

1 . 
g(n) ~ ---

M
a_4, 
2 . 

where M is some scale of dimension of the mass. Therefore the larger M is 
and the larger n is the less is the coupling. Hence the main role is played by 
the operator with minimal n. Because of Lorentz invariance n is even,so we · 
have 

n = 2: ~VJ. This is a mass term. It is forbidden due to SUL(2) symmetry. 
n = 4 : To construct the four-fermion operator in a one-doublet model 

T = ( ; ) , we choose the 2 x 2 matrix 

MT = 1. 'l'T + i71'157T. 

Then the effective four-fermion SUL(2)-invariant interaction is 

·a b 
-A2 ii£MTqR + A2 ii£MTr3qn + h.c. 

E ' E 

If techniquark condensate exists 

<TT>=< AA+ BB >t: o, 
12 

(2.3) 

.QA 
UL . UR 

ft 
UL UR 

.Figure 3: The diagrams contributing to quark masses due to TC condensate 

then eq.(2.3) will lead to quark masses 

mu 

11ld 

< AA+·BB >(a+ b) 
A1 

<AA+ BB> (a - b) 
A2 . E . 

(2.4) 

The diagrams contributing to eq.(2.4) are shown in Fig.3. . 
Estimating the value of techniquark condensate for the SU(N) TC group. 

to be · · 

·<TT> . /3 _ (F,.)3 (600Gev)3 

-2- ~ VN < qq > J.,, ~ (300Gev)3 

we get an estimate for the new scale AE respectively 

20Tev 
AE ~ 7Tev 

1 ·doublet model 
1 famjly model 

' 
The same is true for the one family model, however here we have more 

possibilJties. With quark and lepton doublets · · 

we ha~e 

q ~ ( ~ ) , I = ( : ) , Q = ( ~ ) , L = ( .; ) 

Mq = 1-QQ + i7Q·.,.5rQ 

ML = 1 . LL+ i7 L15 7 L • 

And SULeJt(2) singlets now are 

i}LMqqn, ii£Mqr3 qn, ii£MLqR, ii£MLr3qn 
-. - 3 - - 3 

· hMqln, hMqr In, hMLhi, hMLr In 

13 



i 

I 

X
T 

q q 

_..,_ M . q q 

Ae~ Ma 
g 

. 
Figure 4: Effective four-fermion interaction due to gauge boson exchange 

g2 -
mq ~-<TT> MJ 

Figure 5: The diagram contributing to the.quark mass due to a gauge boson 
exchange in TC theories 

Introducing a generation mixing matrix we also get the mixing angles. 
Thus,to obtain fermion masses one needs an effective four-fermion inter­

action. The latter can be also obtained from the gauge boson exchange, just 
like effective four-fermion operators in weak int~ractions appear due to W 
and Z exchange (see Fig.4). Then the mass terms arise from the diagrams 
shown in Fig.5. This is an extended Technicolour idea. 

2.5. Extended Technicolour 

The guiding idea: Techniparticles and ordinary particles belong to the same 
representation of a. large gauge group that is dynamically broken pn some 
scale 

GETC:) GTC• 
For example 

SU(N + 1):) SU(N} 

and. the fundamental representation 

K.±1.=N+l ETC {(;) J 
14 

TC 

singlet 

The other possibilities are 

SU(N + m):) SU(N), SU(N + 3):) SUTc(N) © SUc(3) 
N+m=.N+m•l, N...±l.=N+a-l 

On the scale AE the ETC group should be dynamically broken 

GETC A~c Uy(l) © SUL(2) © SUc(3) © GTC, 

The broken generators of the ETC group will lead to massive gauge bosons 
which will mediate the fermion-technifermion transformations. On AE the 
ordinary fermions will m.ix with technifermions and with themselves thus 
producing rare decays like 

K-> µe, · 1r+ -. e+ e+ e-, etc. 

This is an indication of Extended Technicolour. 

2.6. GlJTs and Technicolour 

As you probably noticed,ETC idea is closely related to that of Grand Unified 
Theories. In the latter case the group of the SM is embedded into a larger 
group of GUT. 

GUT: SU(3} © SU(2) © U(l) c GGuT = SU(5). 

The same can be done with TC. 

G,UT +TC: GTc © SU(3) © SU(2) 0 U(l) c GGUT· 

For instance, if GTC is SU(N), the natural embedding is to SU(N + 5) : 

SUTc(NJ 

SUc(3) 

SUL(2) 

15 



f1 f2 
"'92 (0.2)C(f1 ,f2 ,r) 

f1 f2 

Figure 6: Creation of new fermions in the most attractive channel 

The pattern of symmetry breaking will then have two stages 

GGuT = SU(N + 5) ~ GTc 0 SU(3) ® SU(2) ® U(l) "::.,a SU(3) ® U(l) 

To conclude, we mention the successes and problems of Technicolour. 
Successes: 
i) Low energy Higgs bosons are replaced by fermions. These fermions are 

unified with ordinary fermions; 
ii) More than one family of light fermions can be naturally incorporated 

in a large representation of a unifying group. 
Problems: 
i) It is difficult to implement the required symmetry breaking in many 

stages; 
ii) Many technifermions may change the ,8-functions and ruin successful 

predictions for the proton decay and low-energy value of Bw; 
iii )Spectra of light fermions is unrealistic. 

2.7. Tumbling Theory (Groups Breaking Themselves) 

An intere_sting possibility of dynamical breaking of gauge symmetry, which 
can be useful to obtain several stages of breaking, is the so--called tumbling 
phenomenon. 

Let the gauge group G be asymptotically free. Consider the scattering 
process shown in Fig.6. 

The amplitude of this process is proportional to the square of the running 
coupling g2( Q2

) which increases as we come down with energy due to the 
asymptotical freedom. The coefficient C(/1 , '2, r) depends on the group and 
representation of fermion fields. 

The final fermions may condense in a singlet channel. The condensation 
will take place if the force between final fermions is attractive and the. am­
plitude is large enough (in AF theory it becomes large as we go down with 
energy). It will take place first in the most attractive channel. If a condensate 
is not a singlet under some group, the latter will be dynamically broken. 
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Figure 7: Weak radiative correction to the quark mass 

Thus the chain looks as follows: One starts at a high energy with an 
unbroken group G. All of the particles are massless. As the energy goes 
down, some fermions condense. This leads to a symmetry breaking. Some 
particles acquire masses of the order of the symmetry breaking scale, while 
the others remain massless. ·Then the procedure is repeated' several times. 

G Conden,ate -- G1 Conden,ole -- --G2 
massless E1 some E2 some E

3 
particles m ~ E1 m ~ E2 

-+ GN 
EN 

We get a chain of symmetry breakings due to condensation. The described 
picture is called a tumbling gauge theory. This phenomenon may naturally 
produce a sequence of scales thus solving the problem equally important in 
TC as well in any other theories. 

Another possibility to reach the same goal is the radiative corrections. 
Suppose that as a result of some symmetry breaking (like in TC theory) 
some quarks become massive while the others remain massless. Then they 
will get mass corrections due to the weak interactions(see Fig.7). Hence 
ordinary fermions will have masses of the order of a and/or a 2 x ATC• This 
mechanism will give masses to the light fermions without introducing a new 
scale. 

However in any case the origin of the fermion spectrum remains unclear. 
Note that there is no solution of this problem in the Higgs model as wdl. 
Understanding of the origin of fermion masses is one of the greatest challenges 
facing particle physicists today. 

3. Supersymmetry 

3.1. Motivations of SUSY 

Supersymmetry or fermion-boson symmetry have not yet been observed in 
Nature. This is a purely theoretical invention. Its validity in particle physics 
follows· from the common belief .in µnification. The general idea is a unifi­
cation of all forces of Nature. It defines the strategy : increasing unification -----·-------•~"·-· .. 

j G.b u. i',Ei"l'.-'\fohiil 7,m:n:.~li' 't 
ll ~il~\l!iklK [l(.~ JlCRiOBl:iOO~ ' 
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towards smaller distances up to lp1 ~ 10-33 cm including quantum gravity. 
However the graviton has spin 2, while the other gauge bosons (photon, glu­
ons, W and Z weak bosons) have spin 1. Unification of spin 2 and spin 1 
gauge forces within unique algebra is forbidden due to the no-go theorems 
for any symmetry but SUSY. 

If Q is a generator of SUSY algebra, then 

QI boson >= If ermion > and QI/ ermion >= I boson > . 

Hence starting with the graviton spin 2 state and acting by SUSY generators 
we get the following chain of states 

spin 2 -+ spin 3/2 -, spin 1 -+ spin 1/2 -, spin 0 

Thus a partial unification of matter (fermions) with forces (bosons) naturally 
arises out of an attempt to unify gravity with other interactions. 

This very promising unification pattern gives us a justification of research 
in spite of the absence of even a shred of1experimental evidence of SUSY. 

The uniqueness of SUSY is due to a strict mathematical statement that 
algebra of SUSY is the only graded (i.e. containing anticommutators as well 
as commutators) Lie algebra possible within relativistic field theory. 

Theoretical attractiveness of SUSY field theories is explained by remark­
able properties of SUSY models. This is first of all a cancellation of ultraviolet 
divergences in rigid SUSY theories which is the origin of 

• possible solution of the hierarchy problem in GUTs; 

• construction of a finite field theory; 

• possible construction of quantum (super)gravity; 

• solution of the problem of vanishing cosmological constant, etc. 

What is essential, the standard concepts of QFT allow SUSY without any 
further assumptions. 

3,2. Global SUSY. Algebra and Representations 

As can be easily seen, supersymmetry transformations differ from ordinary 
global transformations as far as they convert bosons into fermions and vice 
versa. Indeed if we symbolically write SUSY transformation as 

5B =t:·/, 
where B and / are boson and fermion fields respectively and t: is an infinites­
imal transformation parameter, then from the usual (anti)commutation re­
lations for (fermions) bosons 

[B,B]=O, {/,/}=0 

18 

j 

l 
i· 

we immediately find 

{t:,t:}=O. 

This means that all the generators of SUSY must be fe,rmionic , i.e. they 
must change the spin by a half-odd a.mount and change the statistics. 

Combined with the usual Poincare and internal symmetry algebra the 
superPoincare Lie algebra is 

[P,., P.,J = 0, 
[P,., M"" J = i(g,.PPtl - gl'tlPP), 
[M,. .. , Mpc,J = i(g .. PMl'tl - 911t1Mµp - 9µpMa,(¥ + gµtlMa,p), 
[Br, B.J = ic:.Bti 
[Br,PµJ = [Br,Mµt1J = o, 
[Q~, P,.J = [Qi, P,.J = O, 
[ . 1 /J . - • 1 - . - /J (3 1) Q~ 1 M,..,J = 2(u,..,)QQh, [Ql,M,..,J = - 2Q~(u,..,) .. , · 
[Q~,Br] = (br)}Q!, [Ql,BrJ = -Qi(br)}, 
{Qi Q-~} = ?oii(uµ) . P. 

QI fJ ~ Q/3 µ1 

{ Qi Q;} - 2,, zi; Z · - ar b zi; - z+ 
QI /J - '-Q/j , iJ - ij r, - ij, 

{Ql, Q~} = -2ea13zii, [Z;;, anything]= o, 
·O,a:=1,2 i,j=l,2, ... ,N. 

Here P,. and M,.., are four-momentum and angular-momentum. operators 
respectively, Br are internal symmetry generators, Qi and (Ji are spinorial 
SUSY generators and Zi; are the so-called central charges. 

A natural question arises: how many SUSY generators are possible, i.e. 
what is the value of N? To answer this question, let us consider the massless 
states in SUSY theory. The ground state defined by Q;IE, ,\ >= 0 is labelled 
by two quantum numbers: energy E and helicity ,\. Then a one-particle state 
is produced by acting of a creation operator 

I particle state Q;IE, ,\ >= IE,,\+ I >; 

It has the same energy E since a SUSY generator commutes with four­
momentum (see eq.(3.1)) and helicity ,\ + 1/2. The number of one-particle 

states equals that of SUSY generators, i.e. (f) = N. · 

Two-particle state is constructed by acting of two creation operators 

2 particle state Q;Q;IE, ,\ >= IE,,\+ l >i;, 

The number of such states is (~) = N{~+l). Continuing the procedure we 
end up with an N-particle state 

N particl_e .state - - N 
Q1 ' .. QNIE, ,\ + - > . 

2 
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The number of these states is ( ~) = 1. Thus the total number of states is 

f ( f ) = 2N = 2N- 1bosons + 2N-l fermions. 
/,:0 

We see that the number of bosonic states equals that of fermionic. This is a 
general feature of SUSY. If SUSY is realized linearly, bosonic and fermionic 
states are always equal in number. 

Remind now the so-called PCT-theorem valid for any local Lorentz- in­
variant QFT. 

PCT-Theorem: In any Lorentz-i~variant local field theory for every state 
with helicity ,\ there should be a parity reflected state with helicity --\. 

Consider N = 1 case with ,\ =, 0. According to the previous discussion 
we have 

N = 1 

,\ = 0 

helicity 0 1/2 helicity 
PCT No of states 1 1 => No of states 

-1/2 0 

1 1 

Thus a complete N = 1 multiplet consists of the following set of states: 

N = 1 
multiplet 

helicity 
. No of states 

-1/2 0 1/2 
1 2 1 

This is an example of a self-conjugated multiplet. Some other self-conjugated 
multiplets are also important 

N= 4 helicity -1 -1/2 0 1/2 1 
SUSY YM No of states 1 4 6 4 1 

N = 8 helicity -2 -3/2 -1 -1/2 0 1/2 1 3/2 2 
SUGRA No of states 1 8 28 56 70 56 28 8 1 

As can be seen, the maximal helicity {or spin) is related to the number of 
SUSY generators N by equation 

4s ~ N. 

This constraint becomes very essential since any theory containing particles 
with spin > 1 is non-renormalizable, and any theory containing a finite num­
ber of particles with spin 2: 5/2 has no consistent coupling to gravity. Since 
we are not able to proceed with non-renormalizable interactions, we get the 
following constraint on the number of SUSY generators 

N ~ 4 
N ~ 8 

for renormalizable theories (YM), 
for (super)gravity, 
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3.3. Component FieJds and Super~elds 

Return now to an N = 1 supermultiplet. We denote it by (A, ,p, F), where A 
and F are bosonic and ,pis a fermionic field. Supersymmetry transformations 
are (we use the two-component spinor notation): 

SCA = V2!,p, 

Sct/J = iV2u"l8,.A + V2!F, 

ScF = iV2lu"8,.,p, 

(3.2) 

where a" = (1, c1) are Pauli matrices. Transformations (3.2) form a closed 
algebra. However not all of the fields are the usual ones. To clear it up, let 
us look at their dimensions. If for A' and ,p we have, as usual, 

'[Al= m1, [,/J] = m312, 

then from eq.(3.2) it follows that 

[!] = [l] = m-1l2 , [F] = m 2• 

One can see that the field F has a "wrong" dimension. This field is called an 
auxiliary field, it has no physical meaning and is needed to close the algebra 
(3.2). As we will see, one can get rid of the auxiliary fields with the help of 
equations of motion. 

The Lagrangian which is invariant under transformations (3.2) (up to a 
total derivative) is 

C = Co+ mCm, 

Co = i'ifla"8,.,p + A•oA + F" F, 

C;,, 1 1 - V" = AF+ A. F" - -,p,p - -,p . 
2 2 

Equations of motion that follows from eq.(3.3) are 

iu"8,.,p + mi/, = O, 

□A+mF• = 0, 

F+mA*=0. 

(3.3) 

One can see that the last equation contains no derivatives, i.e. this is a 
constraint rather than a dynamical equation. Solving this constraint ~ith 
respect to an auxiliary field F we get the so-called mass-shell formulation of 
SUSY. Lagrangian (3.3) becomes 

C = iv,<r"8,.,p - !m(,p,p + v,v,) + A*oA - m2 A• A, 
2 
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which is a usual free field Lagrangian for spinor and scalar fields. 

Superspace 

More elegant formulation of supersymmetry transformations and invari­
ants can be achieved in the framework of superspace. Superspace differs 
from the ordinary Euclidean (Minkowski) space by addition of two new co­
ordinates, which are grassmanian, i.e. anticommuting, variables {Ba, 813} = 
o, 82 = 0. 

Space 
x,, 

Super space 
Xµ,Ba, Oa, 

A SUSY group element can be constructed. in superspace in the same way as 
an ordinary translation in the usual space 

G(x, 8, 0) = i(-z"P,.+IIQ+HQ)_ 

It leads to the supertranslation in superspace 

Xµ -- Xµ + iBu,l - ieu,,0, 
e -+ e+e, 
o -- 0 + {, 

where e and { are grassmanian transformation parameters. 
Now we are in a position to introduce a superfield as a function on a 

superspace which is a representation of a superPoincare group (3.1). The 
simplest one is a scalar superfield F( x, 8, 0) which is SUSY invariant. Its 
Taylor expansion in 8 and 0 has only several terms due to the nilpotent 
character of grassmanian parameters. 

F(x,8,0) = f(x)+B<p(x)+Ox(x) 
+88m(x) + OOn(x) + Bu,,Ov,,(x) 

+880A(x) + 0081/J(x) + 8800d(x). (3.4) 

The coefficients are ordinary functions of x , being the usual fields. Superfield 
(3.4) is a reducible representation of SUSY. To get an irreducible one, we 
consider a function which depends only on 8 but not on 0, i.e. obeys the 
equation · 

a 
80F(x, 8) = 0. 

Unfortunately this equation is not SUSY invariant. To improve it, one has 
to use the covariant derivative instead of the ordinary one 

DF == o, - a 
where D = 

80 
- i8u"nw (3.5). 
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The superfield obeying eq.(3.5) is called a chiral superfield 

D~ = 0 ~ ~ = ~(y, 8), y = z + i8u0. 

Its Taylor expansion looks like 

~(y, 8) = A(y) + V28t/J(y) + 88F(y) 

= A(x) + iBu,,08,,A(z) + !eeoo□ A(x) 
' 4 

+ V28tp(z)- ~888,,tp(z)uµO + 88F(z) 

and manifests the N = 1 supermultiplet considered above. 
The product of chiral superfields ~ 2 , ~ 3 , etc. is also a chiral superfield, 

while the product of chiral and antichiral ones ~+~ is a general superfield. 
We are now ready to construct SUSY invariant Lagrangia~s. 

· 3.4. SUSY Lagrangians 

In the superfield notation SUSY invariant Lagrangians are simply polynomi­
als of superfields. Having in mind that for co~ponent fields we should have 
the ordinary terms, the general SUSY invariant Lagrangian has the form 

+ [ 1 C. = ~i ~il1111ss + {Ai«I>i + 2mi;4>i4>; 

1 
+39ijk~i4>;4>A:)11111 + h.c.J. (3.6) 

Hereafter the vertical line means the corresponding term of a Taylor expan­
sion. Performing this expansion we get in components 

C. = i'if;;ul'8,,t/Ji + A;□ Ai + Ft F; 
1 

+ [A;F; + m;;(AiF; - 21/J;t/J;) + g;;1,(A;A;F1, - tp;t/J;AA:) + h.c.J 

The last two terms which are additional to that of eq.(3.3) are the interaction 
ones. To obtain a familiar form of the Lagrangian, we have to solve the 
constraints: 

ac. 
8F; 
ac. 
8F1, 

= F1, + Ai; + m;1,A; + 9i;kAi Ai ~ 0, 

= F; + Ai, + m;1cA; + g;;1,AiA; = 0. 

After that we finally get 

C. = - 1 1 - -
i·'··u,,8 ·'·· + A~□ A· - -m .. •1···'·· - -m~•·'···'·· 'f'• µy,, ' ' 2 •J'f'•'f'J 2 ,,'f'•'f'J 

-g;;1ct/J;t/J;A1c - 9i;1c'ifJ;'if;;Ai. - V(A;, A;), 
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where V = F; F,.. Note that because of the renormalizability' constraint 
V :S A4 the superpotential should be limited by W :S <I> 3 as in eq.(3.6). 

To construct the gauge invariant interactions, we will need a real vector 
superfield V = v+. It is not chiral but rather a general superfield 

V(x,B, 0) = C(x) + iBx(x)- iOx(x) 
i i --+ -BB[M(:z:) + iN(:c)] - -BB[M(x)- iN(x)] 
2 . 2 

Ba"Ov,,(x) + iBBO[A(x) + ~o-"8,,x(:c)] 
2 

- - i 1 -- 1 
iBBB[A + 2a"8,,x(x)] + 2BBBB[D(x) + 2□ C(:c)]. (3.8) 

The physical degrees of freedom corresponding to a real vector superfield are 
the vector gauge field v,. and majorana spinor field A. All other components 
are unphysical and can be eliminated. 

Under the abelian ( super )gauge transformation the superfield V is trans-

formed as 
V --- V + <I> + <J>+ I 

where <I> and <J>+ are some chiral superfields. In components it looks like 

C --+ C+A+A•, 

X -+ X - iV2t/J, 
M+iN --- M +iN- 2iF, 

Vµ --- v,, - i8,,(A - A*), (3.9) 

A --- A, 
D --- D 

and corresponds to ordinary gauge transformations for physical components. 
According to eq.(3.9) one can choose a gauge (Wess-Zumino gauge) where 
C = x = M = N = 0, leaving us with the physical degrees of freedom except 
for the auxiliary field D. In this gauge 

- -- -- 1 --v = -Ba"Bv,,(x) + iOOBA(x) - iOOBA(x) + tOBBD(x), 

v2 1 --- 2000Bv,,( x )v"( :c ), 

V3 = o, etc. 

One can define also a field strength tensor ( as analog of F,,., in gauge theories) 

Wa _!1)2ev D e-v 4 a , 

w .. = _!D2ev [) e-v 4 a , 
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which is a polynoµiial in the Wess-Zu~ipo gauge. (Here Ds a.re the covariant 
derivatives.) The strength tensor is a chiral superfield · 

D13 Wa = o, . DpW .. = o. 

The gauge invariant Lagrangian now is 

1 - . -
C = 4(W0 Wal68 + w0 w .. 111) 

= !n2 
- !p_ F"" '- i"Xa"D A 2 4 ./JV /J 0 

To obtain a gauge-invariant interaction with matter chiral superfields, con­
sider their gauge transformation ( nbelian) 

<I> -, e-igA<I>, <J>+ -, <J>+eigA+, V -, V+i(A-A+), 

where A is a gauge parameter {chiral superfield). 
It -is clear now how to construct both the SUSY and g!l-uge invariant 

interaction 

1 - . - . 
Cinv = 4(W0 Wal89 + W 0 W .. !11) . 

+ <I>t e9v <l>;lsm 
1 1 

+ ( 2m;;<l>;<l>; + 39;;1c<I>;<I>;<I>1c)lss + h.c. 

In particular th_e SUSY generalization of QED looks as follows 

Csusy QED 
1 - . -= -(W0 Walss + W 0 W .. l11) 
4 

+ (<I>!e9 v <I>++ <I>!e-gV <l>_)lssll 

+ m<I>+<l>-lss + m<I>!<I>!l11, 

The non-abelian generalization is straightforward 

1/ 2 1- V I, 2 2-Csusy YM = 4 Tr(W 0 Wa) d O + <I>ia{e9 )b<I>i d Bd 0 

+ j V(<I>;) d20 + h.c., 

where instead of taking the proper components we use an integration over 
the superspace ac·cording to the rules of grassmanian integration 

I dB,= o, I B dO = 1. 

This trick allows one to write down the action as an integral over the whole 
superspace in exact analogy with an ordinary QFT. 
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Note that the form of the Lag~angian is practically fixed by sy~metry 
requirements. The only freedom is the field content, the value of the gauge 
coupling g , Yukawa couplin·gs g;;1c and the masses. All members of a super­
multiplet have the same masses, i.e. bosons and fermions are degenerate in 
masses. This property of SUSY theories contradicts the phenomenology and 
requires supersymmetry breaking. 

3.5. Spontaneous Symmetry Breaking 

Apart from non-supersymmetric theories in SUSY models the energy is al­
ways no1_megative definite. Indeed, according to quantum mechanics 

E =< 01 H 10 > 

and due to SUSY algebra eq.(3.1) 

{Qa, Q13} = 2(0-µ)a13Pµ, 

taking into account that tr(o-µPµ) = 2P0 , we get 

1 '°' - 1" 2 E = - L, < 0l{Qa,QaJI0 >= - L, IQal0 > I ~ 0. 
· 4 a=l,2 4 a 

Hence 
E =< 01 H 10 >-:/- 0 if and only if Q0 -:/- 0. 

Therefore a supersymmetry is spontaneously broken, i.e.· vacuum is not 
invariant (Q0 IO >-:/- 0), if and only if the minimum of the potential is positive 
(i.e.E > 0) . 
The situation is illustrated in Fig.8 . 

Mechanisms for SSB 

1) Fayet-Illiopoulos (D-term) mechanism 

Let the Lagrangian be SUSY and U(l) gauge invariant and contain two_ 
matter superfields 4'1 and 4'2 • We add to the Lagrangian a linear term 

ll,C, = e Vlessl, {3.10) 

which is a D-term of a vector superfield ( cf. eq.(3.8)). Eq.(3.10) ·is SUSY 
and gauge invariant (up to a total derivative). 

Solving now equations of motion for the auxiliary fields we obtain the 
potential 

½,01 = {m2 + ge)AiA1 + (~2 
- ge)AiA2 

1 
+ 8g2{AiA1 - A2A2 )

2 + 1/2e2. 
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Figure 8: Spontaneou~ symmetry breaking in SUSY theories 

There are two possibilities: 

i) ge < m
2 

• In this case SUSY is spontaneously broke~ while the gauge 
invariance is preserved. The masses are 

mt,3 = m2 ± 1/2ge, m,p,,3 = m mA,.,~ = 0. 

ii) ge > m 2 
• In this case both SUSY and gauge invariance are spontaneously 

broken. Th~ minimum of the potential is at a finite value for the matter fields. 
One choice is 

<Ai>= 0, < A2 >= µJg with µ,2 = 2(eg - m2 ). 

A Higgs mechanism will eliminate the goldstone boson, give mass to the 
vector Aµ and mix spinors into mass eigenstates {fi and X. The masses become 

mJ1.3 

mA,. 

= m 2 + JL-
2

, m;. = 0, 

mA1 = µ, m..43 = hm. 
The potential is shown in Fig.9. The spectrum of particles is illustrated in 
Fig.10.Note that in both cases the following sum rule is always valid 

I: m2= 
bo,on 1tate, 

I: 
fermion ,late, 

m2. 

The drawback of this mechanism is the necessity of U(l) gauge invariance .. 
It can be used in SUSY generalizations of the SM but not in GUTs. 
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Figure 9: The potential for Fayet-Illiopoulos model 
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Figure 10: l\fass spectrum of Fayet-illiopoulos model 
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2) O'Raifeartaigh (F-term) mechanism 
This mechanism works when we have several chiral fields. Let the super­

potential be 
W(cl>) = A4>3 + m4>14>2 + 94>34>:. 

Equations of motion for the auxiliary fields in this case are 

Ft = mA2 + 2gA1A3, 

F; = mA1, 

F; = A+ gAr 

Looking for a vacuum solution < Ft >= 0 we find that it is absent. This 
means that SUSY is spontaneously broken since V = Ft F; =I- 0. The poten­
tial takes the form 

V(A) 1 2 m2 2 
= -jmA2 + 2gA1A3j + -IA1I 

2. 2 
1 + -IA+gA~l2. 
2 

The minimum is achieved by the choice 

< Ai > = < A2 > = 0, < A3 > = !!:..., µ is arbitrary 
2g 

Again there are two possibilities 
i) j2gAI < m2, then 

mv,,,, = Jµ 2 /4 + m2 ± µ/2, m,J,3 = 0, 
--------

m 2, = µ 2/2 + m2 + gA ± J(µ 2 + 2gA)2/4 + µ 2m2, m..t3 = 0, "•·· 
m2

/J = µ 2 /2 + m2 - gA ± J(µ 2 - 2gA)2 /4 + µ 2m2, A= A+ iiJ. 
1,2 

ii) j2gAI > m 2, then 

m!1,, = 4gA - m2
, 

m!
1 

= 4gA - m2
, 

mv,3 = 0, m..t3 = 0, 

mt= 4gA - 2m2, mt= 4gA. 

In both cases SUSY is spontaneously broken but E mt,on = E m~•rmion 
as before. The potential and the spectrum are shown in Figs.11,12. The 
drawback of this mechanism is a lot of arbitrariness in the choice of potential. 
The mass spectrum also causes some troubles for a phenomenology. 

3) A supergravity induced mechanism 

This mechanism is based on effective non-renormalizable interactions aris­
ing as the low energy limit of supergravity theories. In spite of attractiveness 
of this mechanism,in general, it is not truly substantiated due to the lack of 
a consistent theory of quantum (super)gravity. 
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3,6, PhenomeJ}ology of Global SUSY Theories 

As was already mentioned, in SUSY theories the number of bosonic degrees 
of freedom equals that offermionic. Let us count these numbers in the SM. In 
the minimal version the number of bosonic degrees of freedom equals 28, while 
that of fermionic equals 90. So the SM is in great deal non-supersymmetric. 
Trying to add some new particles to supersymmetrize the SM, one should 
take into account the following observations: 

i) There is no fermions with quantum numbers of the gauge bosons; 
ii) Higgs fields have a non-zero v.e.v., hence they cannot be superpartners 

of quarks and leptons since this would induce a spontaneous violation of 
baryon and lepton numbers; 

iii) One needs at least two complex chiral multiplets to give masses to Up 
and Down quarks. This is due to the form of superpotential and chirality of 
matter superfields. Therefore_ the Higgs sector is inevitably enlarged. 

SM: 4 5_!! l SUSY: 8 5_!! 5 

Conclusion: In SUSY models supersymmetry associates known bosons 
with new fermions and known fermions with .new bosons. 

Content of SUSY Particle Theory 

Superfield Spin 1 Spin 1/2 Spin 0 
Photon Photino 

Gauge Gluons Gluinos 
w±,z "Gauginos" 

Higgs Spin 1/2 partners Higgs 
of Higgs bosons bosons 

Lepton Leptons Spin O partners 
and and of leptons 

Quark Quarks and quarks 

Content of Spontaneously Broken SUSY 

Superfield Spin 1 Spin 1/2 Spin 0 
Massless Photon Photino 

Gauge Gluons Gluinos 
Massive w± Heavy fermions Higgs bosons 
Gauge Wino±,Zino w±,z 
Lepton Leptons Spin 0 

and and sleptons 
Quark Quarks and squarks 
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Figure 13: Typical vertices involving superpartners 

Characteristic feature of any supersymmetric generalization of the SM is 
the presence of superpartners of ordinary particles. The absence of them at 
modern energies is believed to be explained by their masses b·eing very heavy. 
This means that if the energy will be high enough, the superpartners will be 
created. · 

The interactions of superpartners are essentially the same as in the SM 
but two of three particles involved into an interaction at any vertex are 
replaced by superpartners. The reason for this is the so-called R-parity, 
defined by 

R - parity: (-It= (-)2•(-)3(B-L)_ 

For all known particles R = 0, whence for all superpartners R = ± I. A 
conservation of R-parity has two consequences: superpartners are created in . 
pairs and the lightest one is stable. Usually it is supposed that it is a photino 
-y, the superpartner of a photon. A typical ,vertex is shown in Fig.13. The 
tilde above a letter denotes a corresponding superpartner. Note that the 
coupling is the same at all the vertices. The above-mentioned rule together 
with the Feynman rules for the SM enables us to draw diagrams describing 
creation of superpartners. One of the most promising processes is e+e- an­
nihilation (see Fig.14). Creation of superpartners can be accompanied by 
creation of the ordinary particles as well. 

The decay properties of superpartners depend on their masses. For the 
quark and lepton superpartners the main processes are shown in Fig.15 

Since R-parity is conserved, new particles will eventually end up giving 
photinos (lightest superparticle) whose interactions are comparable to those 
of neutrinos and they leave undetected. Therefore the way to notice them is 
to look for the missing transverse momentum. This is a signature of SUSY 
in the nearest future experiments. 
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Examples. We e~d '!IP with some explicit examples of superpartners de­
cays. 

squarks: ij -+ q+i' (quark+ photino) 
ij -+ q+ 9 (quark+ gluino) 

sleptons : i -+ 1 + i' (lepton + photino) 
gluino: 9 -+ q+iJ+i' (quark+ antiquark + photino) 

9 -+ g+i' (gluon + photino) 
wino: ti, -+ e +Ve+ i' ( electron + neutrino + photino) 

If Mw > M,;, + M .. ;ithen the following processes are also possible 

w -+ ti, +i', w -+ e + ve 
<-+ -y + Ve + e <-+ l + 7 <-+ Ve + 7 · 

Thus if supersymmetry exists in Nature and if it is broken somewhere below 
1 TeV, then it will be possible to detect it in the nearest future. 

III. Far beyond the Standard Model 

4. Grand Unified Theories 

4.1. The Idea of GUTs 

The p,hilosophy of Grand Unification is based on a hypothesis: Gauge sym­
metry increases with energy. Having in mind unification of all forces of 
Nature on a common basis and neglecting gravity for the time being due to· 
its weakness the idea of GUTs is the following: 

All known interactions are different branches of unique interaction asso­
ciated with a simple gauge group. The unification (or splitting) occurs at 
high energy 

Low energy ⇒ High energy 
SUc(3)o SUL(2)0 Uy(l) ⇒ GauT ( or an + discrete symmetry) 
gluons w,z photon ⇒ gauge bosons 
quarks leptons ⇒ fermions 

93 92 91 ⇒ 9GUT 

At first sight this is impossible due to a big difference in the values of the 
couplings of strong, weak and electromagnetic interactions. The crucial point 
here is the running coupling constants. According to the renormalization 
group equations all the couplings depend on the energy scale ( o; = g; /4rr) 

RG: 
Q2 . 

a;= a;( A2 ) = a;(d1stance). 
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Figure 16: The running coupling constants in GUT scenario 

In the SM the strong and weak couplings associated with non-abelian 
gauge groups decrease with energy, while the electromagnetic one associated 
with the abelian group on the contrary increases. Thus it becomes possi­
ble that on some energy scale they become equal (see Fig.16). According 
to the GUT idea this equality is not occasional but is a manifestation of 
unique origin of these three interactions. As a result of spontaneous symme­
try breaking, the unifying group is broken and unique interaction is splitted 
into three branches which we call strong, weak and electromagnetic inter­
actions. This happens at a very high energy of the order of 1016 GeV. Of 
course, this energy is out of the range of accelerators, however, some crucial 
predictions follow from the very fact of unification. 

4.2. General Features of GUTs 

While most of the GUT predictions are model dependent, some general fea­
tures reflect the very idea of a simple gauge group. 
i)Prediction for sin2 Ow. As far as sin2 Ow in the SM is expressed through 
the ratio of SU(2) and U(l) couplings and at the unification point they are 
equal, the value of sin2 Ow can be calculated. Indeed, consider a part of the 
SM Lagrangian • 

In GUT it looks like 

gi/ry"r31/JA! + g',fa··,"~ 1/JB,.. 

9GuT(tfa,"T3'1pA! + t,b·'f"To'lpB,..) 
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Comparing these equations we find 

g = 9GUT, ~g'Y = 9GuTTo. 

Evaluating now the electric charge operator Q = T3 + Y/2 and having in 
mind the normalization condition Tr T;T; = 1/25;; we finally get 

Tr T; g'2 . 2 

T Q2 = 2 2 = sm Ow. 
r g +g' 

Hence calculating the traces of operators for any representation one can cal­
culate the value of sin2 Ow .We will do it for some particular models below. 
ii)Quantization of electric charge. If Q belongs to the generators of GGuT 
which is a compact group, then Tr Q = 0 for any representation. This means 
that all the charges are comparable, i.e. are the multiplets of electron charge. 
iii)Baryon No non-conservation. If quarks and leptons belong to the same ir­
reducible representation of a GUT group, then it would be possible to achieve 
quark-lepton transitions due to ·the gauge interactions. They will cause a 
proton decay, neutron-antineutron oscillations and the other processes with 
baryon No violation. Fortunately, the rate of proton decay happens to be 
very small so that the life-time does not contradict the reality. 
iv)Grond desert. The renormalization group plot shown in Fig.16 is based on 
an extrapolation of the SM from 100 GcV up to 1015 GcV. It is assumed that 
there is nothing new in this huge energy region, which is usually called the 
Grand desert. However, it could be that the Grand desert is not empty but 
inhabited by some animals like superpartners of ordinary particles, additional 
heavy Higgses, etc. This would influence the rate of the running couplings, 
changing some low energy predictions of GUTs. One should take care of this 
in model building. 

To construct some GUT we have to fulfil the following.requirements: 

l. Grand unifying group should include the group of the SM , i.e. 

GGUT ::> SU(3) 0 SU{2) 0 U{l) 

This means that rank GGUT 2: 4 (recall that rank SU(N) = N - l ). 

2. Multiplets of GGuT should include known quarks and leptons. 

3. The theory should be renormalizable and contain no anomalies. Recall 
that this requirement is fulfilled in the SM by cancellation of anomalies 
between quarks and leptons of each generation. 

4. The scalar multiplets (Higgs fields) should provide spontaneous sym­
metry breaking in several stages 

GGuT ⇒ ⇒ SU(3) 0 SU{2) 0 U{l) ⇒ SU(3) 0 U{l) 
MGuT Mw 
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Alternatively GGuT shoµld include GTc or else. 

4.3. SU(5) GUT - Minimal GUT 

SU(5) is a minimal group (rank 4) into which SU(3) 0 SU(2) 0 U(l) can be 
embedded and which has complex representations needed for chiral fermions. 
This group satisfies all the requirements mentioned above. The natural em­
bedding of SU(3) 0 SU(2) to SU(5) is· 

SUc(3) 

SUL(2) 

The only generator of SU(5) commuting with SU(3) and SU(2) is the hy-
percharge · · 

[

-2/3 

y = /3 -2/3 O 
Vw -2/3 

0 1 J 
which coincides with that of Uy( l) of the SM. 

Particle content of the SU{5) GUT is the following: 
Gauge sector. Wµ = iVATA, A= 1, 2, ... 24, TA are the generators of 

' µ ' 
SU(5 ). It is a 24 - plet which can be represented as a traceless 5 x 5 matrix 

xi 
µ 

yt 
µ 

ca~ - }i5 B1,l3 x2 y2 
µ 2 µ µ 

Wµ = I x3 
µ 

y3 
µ 

x•l 
µ 

)(•2 
µ 

x•3 
µ ½A!+ #oBµ w+ 

µ 

y•t 
µ 

y•2 
µ 

y•3 
µ w; -½A!+ ~Bµ 

Among 24 gauge bosons there are 8 gluons G:, 3 weak bosons W; and A! and 
1 U{l) boson Bw There are also 12 new fields Xµ and Yw They are usually 
called lepto-quarks because they mediate lepto-quark transition leading to 
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.~a~yop No violation. The ga~ge mult~p1et has the following SU(3) ® SU(2) 
decomposition 

2.4 = (8, l) +(l, a) 
gluons W and Z 

+{a, 2) + ca, 2) 
leptoquarks 

Fermion sector. All fermions are taken to be left-handed. Right-handed 
particles are replaced by tlie corresponding left-handed conjugated. The min­
imal fundamental representation of SU{5) is§. However it is more convenient 
to use the conjugated one which has appropriate SU(3)@SU(2)@U(l) quan­
tum numbers 

.fi* = (;i,l, -2/3) + (1,2, 1) 

It is naturally identified with d-quark and electron-neutrino doublet 

§* = (d~,d~,d;,e-,ve)Left 

To find place for the other members of the same family, we have to go 
beyond the fundamental representation. Surprisingly, the next (after li) rep­
resentation, 10 = {5 x 5)a,11m has precisely correct qua1!tum numbers 

1Q = {;i,2, 1/3) + (;r,1,-4/3) + (l,l, -2) 

It is a 5 x 5 antisymmetric matrix and its fermion assignment is 

[ 

0 u~ . -u2 u1 d1 l 
0 u~ u 2 d2. 

10 = 0 U3 d3 , 

0 e+ 

U1, -, Un 
et -. en 

O Left. 

Thus; all known fermions exactly fit to (i1•+10) representations of SU(5). 
Now new fermions appear. Note that there is no room for the right-handed 
neutrino vn, Hence either neutrino is massless in the SU(5) model or it could 
be a singlet that does not take part in gauge inter~ction. In spite of the left­
right asymmetry of the model there is no anomalies in the gauge currents. 
They automatically cancel between contributions of li* and 10. 

We can now follow all the general features of GUTs with an example of 
the minimal SU{5) model. Looking at the electromagnetic current 

- I 9GUT 3 {£ } eL"fµ ---A - 9GUT -B eL 2 µ 20 µ 

and comparing it with the _SM , we find 

I /3 
9 = 9GUT, 9 = V 59GUT, tan8w = 9

1 

= {¥.. 
9 Vs 
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Note, however, that this is true only at E = EauT ~ 1016 Gev. Charge 
quantization is also straightforward. From the requirement Tr Q = 0 under 
the assumption that SUcolour(3) is exact we obtain 

1 2 
Qd = 3Qe, Q., = - 3Qe, 

It is interesting to estimate the value of the meeting point EauT- For this 
purpose consider the RG equations for the running couplings in the SM 
assuming that no new particles exist. To the one-loop order we have 

d 93 2 
µ-93 = --3 (11- -/), 

dµ 16~2 3 

d 9? 22 2 
µ-93 = --(- - -/), (4.1) 

dµ 16~ 2 3 3 

d 9f 2 
Jt dµ 91 = 16~2 3 J' 

where tht: couplings 931 92 and 91 belong to the gauge groups SU(3), SU(2) 
and U(l ),respectively, and f is the number of flavours. Solving these equa­
tions and imposing the boundary conditions 91 = 92 = 93 = 9GUT at 
µ = MauT, we get the values of MauT,9GUT and sin2 Ow. Taking q1e values 
·of a, and O'.EM as input we find (note that e~M = 1B+'

1 
,1 ) 

g g 

ln MauT _ ~(-I- _ ~ 1 ) 
Mw - 11 OEM 3a,(Mw) ' 

• 2 1 5 O'.EM 
sm Ow = - + - (M ) . · 6 9 a, w 

This gives 
• 

MauT:::: 1016 Gev, sin2 Ow(Mw):::: 0,214, 
1 

OQUT:::: 40. 

It should be stressed once more that the value of siu2 Ow strongly depends on 
. energy scale. The variation of sin2 Ow with the energy is shown in Figs.17,18. 

One of the successes of the minimal SU(5) model is the prediction of 
sin2 Ow, which is in a very good agreement with experimental data. 

Spontaneous symmetry breaking in the SU{5) model occurs in two stages. 
Within the Higgs mechanism of SSB one introduces two Higgs multiplets: 21 
and !i. The v.e.v are chosen to be 

< 4>,. >-[ V V V -3/2 V 

-3/2 J · V ~ MauT ~ 1015 Gev, 
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105.0 

which brea~s SU(5) down to SU(3) 0 SU(2) 0 U(l) and 

< H& >= [ ~ l • v ~ 250 GeV, 

v/../2 

which breaks SU(3) 0 SU(2) 0 U(l) down to SU(3) 0 U(l). 

4.4. Hierarchy Problem 

The appearance of two different scales V » v leads to a very serious problem 
for GUTs, which is called the hierarchy problem. There are two aspects of 
this problem. 

The first one is the very existence of hierarchy. To get the desired spon­
taneous symmetry breaking pattern, we need 

ffiH 

m+ 
V ~ 
V 

102 GeV 
1016 GeV 

mH 

m+ 
~ 10-13 « 1. (4.2) 

. The question arises how to get a so small number in a natural way. One needs 
some kind of fine tuning in a theory, and we don't know is there anything 
behind it. 

The ~econd aspect of the hierarchy problem is connected with the preser­
vation of a given hierarchy. Even if we choose the hierarchy like eq.( 4.2) the 
radiative corrections will destroy it! To see how this happens, we consider 
the interaction of Higgs fields. Using the notation 4> 24 = <I>, H6 = H we write 
down the interaction terms. They are 

o:(H1H)2, /3Tr <I> ◄, -y(Tr <I> 2
)

2
• 

There is no direct interaction between heavy (<I>) and light ( H) Higgs par­
ticles. However, because of the ultraviolet divergences in the diagrams like 
that shown in Fig.19 and the necessity of renormalization, the corresponding 
countertcrms appear: 

!::i.C = oH1<I> 2H. 

As a result, the radiative corrections to the light Higgs field mass become 
inevitable. Corresponding diagrams are shown in Fig. 20. Another source 
of mass corrections is the interaction with heavy gauge bosons (see Fig.21). 
We see that the mass corrections happen to be much larger than the masses 
themselves thus violating the chosen hierarchy. The way out of this trouble 
is the cancellation of radiative corrections. This very accurate cancellation 
with a precision ~ 10-13 also needs a fine tuning of the coupling constants. 
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Figure 19: Divergent graph leading to the interaction between light and 
heavy Higgs fields 
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Figure 20: The diagram contributing to the light Higgs field mas~ due to the 
interaction with heavy Higgs particles 
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Figure 21: The diagram contributing to the light Higgs field mass due to the 
interaction with heavy gauge bosons 
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It can be naturally achieved in SUSY models. That is why it is usually said 
that supersymmetry solves the hierarchy problem. However, we see that it 
solves only the second aspect of the problem. The origin of the hierarchy 
remains unclear. 

4.5. Non-Minimal Models 

Before considering the other Grand Unified Theories let us focus our attention 
on the problems of the minimal SU(5) GUT. They are: 

1. Fermions of the same generation belong to different representations 
(Q" + 10); 

2. The mass matrix for quarks and leptons is unsatisfactory (m./m,,. = 
md/m. = • • • )i 

3. B - L conservation depends on a Higgs sector and looks occasional; 

4. Neutrino is massless; 

5. Proton life-time is too small; 

6. There exists a Grand desert for E = 102 --,- 1015 GeV. 

Trying to solve some of these problems, we briefly consider some more com­
plicated· models. 

SO(10) GUT 

For the SO(10) group, which is a next possible group of rank 5 , all the 
fermions of the same generation belong to a single irreducible representation 
16 

16 = (u1 u 2 u3 d1 d2 d3 "• e- u~ u; u; d~ d; d; v; e+)L.11 

Note that contrary to the SU(5) model the right-handed neutrino (left. 
handed antineutrino) is present now. This means that the neutrino in the 
SO(10) model is massive. 

The symmetry breaking in the SO(10) model can be achieved in two 
different ways and needs at least three different scales M1 » M 2 » • ·.· Mw 

/' SU(5) ~ SU(3) 0 SU(2) © U(l) ~ SU(3) 0 U(l) 
. SO(10) M1 

'-,. S0(6) © SO(4) ~ SU(4) © SUL(2) 0 SUR(2) 

If one chooses an SU(5) chain, then SO(10) multiplets find their natural 
decomposition in terms of that of SU(5) · 

16 = 1!"+10+1 fermions, 

1~ 24 + 10 + l!l:_ i· 1 !',rt:!Je bc-:wns. 
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~n SO(IO) GVT we solve t~e problems No 1,3,4,5 and 6 of the above 
mentioned list. However, the price for this is a more complicated m~del with 
a more freedom but a less predictive power. 

E(6) GUT 

This model is based on the exceptional group E(6) of rank 6. It is left­
right symmetric 

E(6) :::> SUc(3) ® SUL(3) ® SUn(3). 

Fermions belong to a single fundamental representation 21 which has the 
following decomposition under SO(IO) 

27 = 16 +l.Q+l, 

while the gauge bosons form an adjoint representation 78. 
The model contains a lot of new particles. Its attractiveness is mainly 

due to appearance of E(6) GUT in superstring inspired models (see below). 

SU SY SU(5) GUT 

Another extension of the minimal SU(5) model is SUSY SU(5). In the 
minimal version the matter content of the theory is the following: 

Matter superfields : Q" tf.,i i,j = 1,2, ... 5 
.ill V'ij 

Higgs superfields : l! H; 
Ji" ifi 
21 <I>·· IJ 

The superpotential contains several terms: 

.J, ..• !. H fijklm } 
'f'•J 'f'kl m 

V'iV'ij if i 

Tr <I> 2 Tr <I> 3 
} 

needed forSU(2) breaking and to give 
masses to quarks and leptons 
needed for SU(5) breaking and to give 
masses to leptoquarks. 

As was already mentioned, the number of fields here is larger than in the 
minimal SU(5) model. However due to supersymm"etry an interaction be­
tween light (H, H) and heavy <I> Higgs fields is absent, and as a result, the 
hierarchy is preserved. 

In conclusion we list some properties of various GUT models. 
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Model I SU(5) 
·-

S9(l0) E(6) 
Automatic absence 

of anomalies I + + 
One irreducible 
representation I + + 

Left-Right 
Symmetry I + + 

Ambiguities in sin2 0w 
due to different I + + 
patterns of SSB 

m., I 0 ~ ~~ Mr ~ ,._, My 

Possibility of 
dynamical SSB I + 

4.6. Phenomenological Consequences of GUTs 

Looking for phenomenological consequences of GUTs at low energies, one 
should take into account the existence of a large variety of models. The 
GUT group is not a priori known. This puts "the severe problem of choice. 
Moreover, even if the group is chosen,in all cases except SU(5) there exist 
several_ patterns of spontaneous symmetry breaking. This also contributes 
to the arbitrariness of GUT predictions. However, some phenomenologi~ 
cal properties like proton decay, the presence of monopoles, the problem of 
fermion mass spectrum are common to all GUT models. 

Proton Decay 

The leptoquarks X,, and Y,, present in any GUT model mediate quark­
lepton transitions thus leading to baryon No non-conservation. In SU(5) we 
have the following interaction vertices 

1 . -· + 
Q• : g V2X~d'n,,,en 

lQ 1 xi -<i ,, ,. 
: 9 V2fijk µUL "Y UL• 

The corresponding diagrams are shown in Fig.22. A combination of these 
two vertices leads to proton decay according to leptoquark exchange process 
shown in Fig.23. As suggested by Fig.23, the dominant mode is 

p+ _, e+1r0 • (4.3) 

The amplitude is proportional to 9buT/ M'Jc, where Mx ~ MouT- Hence the 
proton life-time behaves like MtuTI 9iuT· Then from dimensional consider­
ations one has 

1 1 MouT)4_~• _ --, 
Tp = C( Mp O:buT Mp 
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Figure 22: Leptoquark interaction vedices 
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Figure 23: Proton decay diagrams due to X boson exchange 

where Mp is the proton mass. A rough estimate is 

MauT ~ 1014 Gev, o:auT ~ 10-2
, Tp ~ 1036 sec~ 1029 years. 

A more accurate calculation taking into account the structure of the proton _ 
gives, with some uncertainties 

_ (O . ) 02s( MauT )4 Tp - .2 • 10 • 1 
140 

years. 
10 ev 

With account of some ambiguities in determining of MauT the predicted 
life-time is 

Tp < 2 • 1031 years, 

while the modern experimental limit on the decay mode ( 4.3) is 

Tp > 3 • .1032 years. 

This seems to rule out the minimal SU(5) GUT. Predictions for other models· 
strongly depend on the particle content, mainly, on the number of light Higgs 
bosons. Some results are listed belo'V. 
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Minimal SU(5) 

Modified SU(5) 
SUSY SU(5) 
SUSY SU(5) 

with Higgs mediated 
proton decay 

Monopoles 

Tp ~ 1027 + 1031 years 
(N-+ e+71') : (N-+ ii11'): (N-+ µ+ K) = 1 : 0.2: 0.1 

Tp ~ 1031 + 1034 years 
Tp ~ 1031 + 1032 years 
Tp ~ 1030 + 1034 y~ars 

(N-+ vK,µ+K) :_(N-+ µ+71',e+K): (N-+ e+71',ii7r) 
= 1 : 0.1 : 0.01 

One of the model-independent predictions of GUTs is the presence of 
monopoles. The reason is that for any semisimple gauge group G which is 
broken to a subgroup H C G containing an U(l) factor H = h © U(l), there 
exist topologically non-trivial stable configurations of gauge and/or Higgs 

fields - monopoles. 
In our case the GUT group is broken in exactly the needed way 

GauT MgfT SU(3) © SU(2) 0 U(l). 

At large distances the magnetic field of such c~nfigurations behaves like that 
of the Dirac monopole with magnetic charge g• = 2

e.,, The mass of the 

monopole is 

MM on ~ Mx ~ 1016 + 1017 GeV. 
0: 

Being so heavy the monopoles cannot be produced at accelerators, however, 
they could have been created at the early stage of the Universe. Hence as 
far as they are stable, one may hope to detect them now. One of the char­
acteristic processes to look for monopoles is the monopole-catalysed proton 

decay 

p+ Mon -+ e+ + Mon (+pions), 

p+Mon -+ e++µ+µ-+Mon(+pions). 

The cross-section of the process is of the order of (1GeVt
2 

while the 
probability of proton decay in the presence of a monopole depends on the 
monopole flux. However, magnetic monopoles are not yet found in Nature. 

One of the crucial problems of the SM which is not solved in GUTs is the 
origin of the fermion spectrum. Practically, in all GUTs the situation with 

fermion n\asses is the same 

E ~ MauT 
md = me 

m, =mµ 

mb = m .. 

E~Mw 

me md -- = --, 
mµ m, 
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The iast relation evidently contradicts the experiment 

m, 1 . m:c1 1 -~-
mµ 200' -~-ni. 20. 

Solution of this problem requires a new insight in the symmetry breaking 
mechanism. 

In conclusion, we mention some of the problems which have found their 
solution within GUTs or on the contrary have been put forward by GUTs: 

* Group and representation ? 
* Number of generations ? 
* Unique gauge coupling + 
* Prediction of sin2 Ow + 
* Quantization of charge + 
* Quark and lepton masses ? 
* Mixing matrix ? 
* Hierarchy problem ? 

5. Supergravity, Superstrings, etc. 

Before going further towards higher energy.let us first have a look at the high 
energy physics panorama from the present point of view (see Fig.24), 

What is shown here is a simplified picture of what we understand today 
about high energy physics and how we imagine the microworld structure at 
very small distances. · ' 

In this section we are going to discuss possible physics beyond the Planck 
scale (10

19 Gev or 10-33 cm). This is· the region where gravity becomes 
essential and comparable in strength with other interactions. So, one can­
not ignore it any more. Because of lack of the quantum theory of gravity 
due to ultraviolet divergences and much softer ultraviolet behaviour of su­
persymmetric theories, the hopes are associated with a supersymmetrical 
generalization of gravity - the supergravity. 

5.1. Supergravity 

Supergravity (SUGRA) is the theory of local supersymmetry. The motivations 
for SUGRA are purely theoretical: 
i) All fundamental symmetries in Nature are local except supersymmetry. It 
is natural to gauge supersymmetry as wdl. 
ii) Superalgebra contains translations 

[lQ,Qe) = 2lu"ePw 

48 

10-14 

10-16 

10-29 

10-33 

R cm IQI 

100 

102 

.... 

1015 

.... 

.... 

.... 
1019 

Gev 

QED U(l) 
<== 
QCD 
QED 

<== 

SU(3) 
U(I) 

Standard Model 
SU(3) ® SU(2) ® U(l) 

Supersymmetry (?) 

Grand Unified Theories (?) 
<== 
SU(5), SO(lO), E(6) 

Compactification (?) 

(Super )gravity 
<== 

Superstring (!?) 
<== 

Electrodynamics 

Hadron Physics 

Weak Interactions 

Grand Desert (?) 

Baryon No Violation 

Higher 
Dimensions 

Figure 24: High energy physics panorama 

49 



lf they are ~ocal, i.e. e = e(z), we get ~ocal translational invariance with a 
parameter 

aµ = tuµePµ, 

But the theory invariant under the general coordinate transformation is Gen­
eral Relativity. Hence, local SUSY is the theory of (super)gravity. 
iii) In SUSY GUTs the unification scale approaches the Planck scale where 
gravity cannot be neglected. 
iv) Ultraviolet behaviour of SUGRA is much better than in ordinary gravity. 

Anyhow much hopes in construction of quantum gravity have been con­
nected with the development of SUGRA. 

As is well known, gauging any symmetry leads to the appearance of ap­
propriate gauge fields. They are proportional to the derivatives of local gauge 
parameters and have the corresponding quantum numbers: 

gauge parameter gauge field 

0 -.. O(:i:) => vµ{:i:) ~ 8µ0(:i:) 
scalar ( spin O) vector ( spin 1) 

a.,--. a.,(z) => gµ.,(z) ~ 8µa.,(:i:) 
vector ( spin 1) tensor (spin 2) 

e~-+ e~(:i:) => ,p;,,. ~ 8µe~(z) 
spinor (spin 1/2) spin-tensor (spin 3/2) 

Thus, gauging supersymmetry leads to appearance of a new particle of spin 
3/2 called the gravitino, which is a superpartner of the graviton. This is a 
crucial prediction of the SUGRA theory. Gravitinos are always present in 
any SUGRA model playing an essential role in anomaly and UV divergences 
cancellation. 

N = 1 Supergravity 

This is the simplest version of SUGRA. It has only one supersymmetry 
generator, and hence, only one gravitino field. The particle content of the 
model is the following: · 
• One spin 2 state gµ., - graviton, 
· N = I spin 3/2 state ,Pµa - gravitino, 
- Matter supermultiplets. 

The Lagrangian of pure N = I SUGRA consists of two parts. The first 
one is the General Relativity Lagrangian . 

1 1 
Ca = - 2K2 ../=gR = 2K2 eR, (5.1) 
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whefe gf'., is the mefric te~sor, g = det- gµ.,, R is a scalar curv'!-ture, K 2 = G 
is the Newton gravitational constant and e;;' is a vierbein defined by 

9µv = e;:'e:11mn, 

T/mn being the Minkowski metric tensor. 
The second part is the Rarita-Shwinger Lagrangian for the spin-tensor 

gravitino field · · 

- ! µvp,r.7. D .,. Cns - -
2

t: 'f'µ"f5"f., p'f'u, 

where the covariant derivative 

· 1 mn 
Dp = 8p + 2wp 'Ymn, 

1 
'Ymn = 2[-rm,'Yn) 

and w;m is the spin connection expressed in terms of the vierbein e;:'. 
The total Lagrangian ° 

CsuanA = Ca + CJ.ls 

is invariaflt under local SUSY transformations 

&;:' = ~t(:i:hmt/>µ, 

(5.2) 

(5.3) 

ow;n = o, (5.4) 

Otpµ = ~Dµe(z) = ~(8µ + 1w;;m'Ymn)e(z). 

SUSY algebra (5.4) is closed only "on-shell". For 'the "off-shell" formulation 
like in global SUSY theories, a set of auxiliary fields is needed. 

To construct a realistic model, one should add to Lagrangian (5.1 - 5.3) 
the terms describing a supersymmetric matter. We will not 'do it here because 
of complexity of formulae. 

As was mentioned above, the quantum theory of gravity is non-renormalizable. 
In pure gravity the divergences are cancelled only in the one-loop order on 
mass shell. If matter fields are added, these cancellations take place only in 
supergravity. ,However, even there cancellation fails in higher loops. Possible 
improvement of the UV behaviour is associated with extended supergravities. 
Maximally extended N = 8 SUGRA is believed to be finite up to eight loops. 
Unfortunately, we have no complete formulation of extended supergravities. 
Presumably they require an infinite number of auxiliary fields. , 

From 'the modern point of view supergravity as well as super-gauge models' 
are only effective theories being the low energy limits of superstrings. 
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5.2. Superstrings 

The superstring theory is the most ambitious theory in particle physics. Two 
years ago it was sometimes called the Theory of Everything. It pretends to 
describe the origin of particle physics being the ultima.te fundamental theory. 

What is it, superstring? The basis of a superstring is the classical rela­
tivistic one-dimensional object - a string. Like an ordinary violin string, a 
superstring has a sequence of vibrational modes. A single string possesses an 
infinite series of such normal modes, i.e. an infin.ite series of massive states 
in local quantum field theory. These normal modes are identified with the 
ordinary particles. The mass spectrum is quantized with 

ilm2 
· ~ T, 

where T is the string tension, the only dimensional parameter o( the string 
theory. In superstring_models it is supposed that T ~ (1019 GeV)2 •. 

The strings could be open or closed as shown in Fig. 25. Examini_ng 
the spectrum of string states, we find that for an open string the massless 
states contain spin 1 bosons_ which are identified with the gauge bosons of a 
corresponding local gauge group. For a closed string such bosons have spin 
2 and, therefore, are identified' with gravitons .. As far as due to the string 
interactions these two types of strings are transformed into one another, the 
gravitational and gauge interactions become intimately connected having the 
same origin. This way,in a string theory a unification of all forces. takes place. 

There exist now several string theory models. Only few of them are 
mathematically self-consistent. One of the problems is the appearance of. 
tachyons.'To avoid unphysical tachyon states, supersymmetry is needed. We 
present her~, for illustration, the spectrum of one of the most popular models, 

· the heterotic string model (see Fig.26). · 
For p « 1019 GeV or :z: « 10-33 cm all the massive states "decou­

ple" leaving us with effective point-like field theory of (super)gravity and 
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Figure 26: Spectrum of the Heterotic string model 

(super)Yang-Mills with fixed parameters and particle content. Observed 
particles (quarks, leptons, gauge bosons,· etc.) should be among massless 
excitations (m « 1019 GeV). 

(Super}String Dynamics 

The dynamics of a string theory is described by the least action principle. 
In analogy with a point-like particle, where the action S is the length of 
a world line, for the string the action is the square of the world sheet (see 
Fig. 27). The action for a string is essentially that of the two-dimensional 

CT-model 

S = - - 1-f dCTdTTJ,,.,Mg013 8a:z:"813:z:" + 8 - terms, 
41ra' 

where.,.,,,., is the metric of D-dimensional "target space", 90 13 is the metric of 
the world sheet, a, {J = CT, T. This is the so-called first quantized approach to 
the string theory. 

To define a viable quantum field theory, some conditions should be im-

posed: 
i) Modular invariance (reparametrization invariance of the world sheet); 
ii) Conformal invariance (the underlying theory is a. 2-D conformally invariant 

field theory )i 
iii) Absence of anomalies. 

The absence of conformal anomalies puts a strong constraint on a target 
space: 

D = 26 for bosonic string, 
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D = 10 for fermionic or superstring. 

Now it is realized that the additional dimensions may correspond to inter­
nal degrees of freedom which eventually give rise to the gauge and other 
symmetries observed in the D = 4 world (remind the Kaluza - Klein idea). 
iv) Supersymmetry (provides t~e absence of tachyons and finiteness(?) of a 
superstring model). 

The Kaluza -Klein Idea 

The necessity of considering higher space-time dimensions in the super­
string approach renewed the interest in the Kaluza-Klein idea of 50 year ago: 
To begin with, we. con;ider the simplest case. 

Imagine the General Relativity but in 5 dimensions. The interval now is 

d 2 • d Md N s = 9MN :z: :z: I 

where :z:M = (:z:",y), µ = 1,2,3,4. The D = 4 interpretation of 5-D metric 
is the following: · 

g,,., = g,,.,( :z:) 

[J,,6 = A,,( :z:) 

965 = q,(:z:) 

tensor spin 2 graviton 

vector spin 1 photon 

scalar spin O dilaton 

(5.5) 

If so, then Einstein equations in D = 5 gi:ve Einstein + Maxwell + Klein­
Gordon equations in D = 4. Thus, 5-D gravity theory describes gravity plus 
the U(l) gauge theory (electrodynamics) plus the scalar field theory in D = 4. 
In the framework of this approach the gauge invariance ( charge conservation) 
is a consequence of general coordinate invariance (energy conservation), i.e. 
one has a remarkable unification of gravity with electromagnetism. 
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Figure 28: A hose-pipe. Example of the object with one compact dimension 

A natural question a·rises: what is the meaning of the fifth dimension? 
Why it is not observed yet? To answer these questions, let us suppose that 
the topology of space is · 

R4 x si' 
where R4 is the Euclidean (Minkowski) 4-D space and S 1 is one-sphere or a 
circle. This means that the fifth dimension is compact 

-oo < :z:" < 00 1 0 $my$ 2,r, 

where m ~ 1/ R and R is the radius of compactification (see Fig.28 ). 
Performing the Fourier expansion in the fifth coordinate we have 

00 • ( ) "°' (n) ( ) inm11 9MN :z:,y = L.,, 9MN :Z: e · 
n=-oo 

According to eq..(5.5), n = 0 states correspond to massless chargeless particles 
(graviton, photon, dilaton), while n =/:- 0 states are massive with mn = n • m 
and charges qn = n•K •m, wher~ K = VG, G being the Newton gravitational 
constant. If the fundamental charge is that of electron 

e=K-m, 

then m ~ 1019 GeV:. 
To incorporate the other interactions in the Kaluza-Klein scenario, i.e. 

to get strong, weak,a:nd electromagnetic interactions of the SM from higher­
dimensional gravity, we have to substitute 

U(l) ~ G ::> SU(3) ® SU(2) ® U(l). 

This needs the dimension D higher than 5, i.e. the circle should be replaced 
by a compact space of R dimensions (R depends on the rank of the group 
G) with G- symmetry 

:z:M=(:z:",ym), m=l,2, ... ,R. 
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a sphere · 

For example: R-sphere SR with SO(R + 1) symmetry. 
Now gravity in D = 4 + R dimensions leads to gravity plus non-abelian 

gauge interactions in D = 4: 

· { g1..., graviton . 
• g,..n Y - M gauge bosons 
gMN = gmn scalar particles 

. (Higgs bosons) 

+ heavy (> Mp1) 
states 

These ideas find their realization in superstring models giving rise to the 
universal description of gravitational (N = 1 supergravity ) and gauge (N = 
1, 2 super Yang-Mills ) interactions. 

String Interactions 

In the superstring theory, the string is considered as a fundamental object 
at very small distances. The string interactions are then the origin of_ all 
point-Ike particle interactions at low energy. As for the string interactions 
themselves, they have a topological origin, being a result of the complicated 
topology of the world sheet. 

Consider the scattering of two open strings. The world sheet correspond­
ing to this process is shown in Fig.29. Topologically it is equivalent to a 
sphere with four points A,B,C and D associated with emission of strings. A 
sphere has a trivial topology. Any contour on the surface of a sphere can be 
continuously deformed into a point (see Fig.29). It is said that a sphere has 
a genus (it is roughly speaking the number of handles) equal zero. However, 
to describe the scattering of strings, one should also take into account more 
complicated world sheet topologies with higher genus. For example, a torus 
has genus one. A torus is a sphere with one handle. There are two contours 
on the surface of a torus that cannot be continuously deformed into a point 
(see Fig.30). (Of course, what is shown is a three dimensional torus. The 
author is apologizing for not being able to draw a ten-dimensional one.) 

56 

A 

B D 

Figure 30: The world sheet of the scattering process having the topology of 
a torus 

. If one attentively looks at Fig.30, one finds that the world sheet corre­
sponding to the interacting strings can be divided into several parts consisting 
of two elements: the triple vertices (the trousers) and the pipes. There is 
a rigorous mathematical statement t~at any closed oriented surface can be 
constructed of these two elements. This means that the string interactions 
are always cubic. What is essential is that, in spite of the non-local na­
ture of strings, their interactions are local. However, the interaction point is 
not well defined. It depends on the position of an observable (see Fig.31). 
This explains, in particular, why superstring models have no severe ultravi­
olet divergences. This local cubic interaction gives rise to the local particle 
interactions of the corresponding low energy effective theory. Higher order 
contact terms appear there as effective ones, just like in the SM we get an 
effective four-fermion interaction. 

5.3. Superstring Models 

At the beginning of the "string revolution" the number of string models was 
very lim~ted. Mathematical self-consistency happened to be a very restrictive 
requirement that was considered in favour of the string approach. Later on it 
has been realized that there are;: much more possibilities, and investigation is 
still continuing. Our aim now is to mention some of the most popular mod­
els. To begin with, we consider a block-scheme of fundamental interactions 
which is associated mainly with the heterotic 10-dimensional string theory , 
however, its main features remain true in general (see Fig.32). 

The fundamental object of the theory is a s~perstring. It lives in a D­
dimensional space-time (D = 10 for the model at hand): Extra dimensions 
are compactified on some scale giving rise to a tower of states with a quantized 
mass2

• Another result of compactification is the appearance of a local gauge 
group. Going down with energy after decoupling of heavy massive modes, 

57 



!, 

' 

i' 

I 

:1 

•:I 
l':I " 
ii• 

!I 
H 

it' 
1

1 
•I 

interpction _ 
point -

I 

0 

I 
I 

I 

\/ 

Q 
\ 
\ 
\ 

' C) 
Figure 31: String interaction point seen by different observables 

we end up with a point-like quantum field theory which is supergravity and 
super GUT. As a result of symmetry breaking on lower energy scales, they 
lead to Einstein gravity and a supersymmetrical generalization of the SM, 
respectively. Some extra gauge symmetries may also appear. Further on the, 
situation is more or less standard. 

We see that the advocated scheme contains some new particles and forces 
(shown in italic) which are absent in the SM .. This is a usual prediction of 
superstring theories. We consider now some examples of string models in 
more detail. 

10-D Heterotic String 

This is one of the first and still reliable models based on a heterotic con­
struction. Left and right moving states in this approach are considered sep­
arately. The left movers are those of a 26-dimensional bosonic string theory 
and right movers belong to a 10-dimensional fermionic string. Compactifica­
tion occurs in two stages as shown in Fig.33. At first stage the 26 dimensions 
of the left movers are compactified to ten with the remaining 16 dimensions 
being internal ones, thus giving rise to Es © Es gauge group. The result­
ing theory is the anomaly-free 10-dimensional supersymmetric string model. 
At the subsequent stage of compactification to 4 space-time dimensions the 
residual gauge group becomes Es© Es (for the Calabi-Yau compact spaces) 
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Figure 32: Fundamental interactions in Superstring approach 
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Figure 33: Calabi-Yau type compactification 

and N = 1 supersymmetry is preserved. The "predicted" gauge group of 
associated GUT is E6 , while another Es factor is supposed to be confining 
on a very high energy scale and to describe the shadow matter. 

4-D Superstrings 

Recently alternative schemes of compactification have been proposed which 
do not require two steps of compactification. They are kno'fn as 4D strings 
(see Fig.34). 

In this case the left moving states and right moving states are compacti­
fied simultaneously to the required 4 flat dimensions. The gauge symmetry 
which has appeared as a result of this procedure is much larger than in the 
previous case. Groups up to S0(44) with four supersymmetries are possible. 
Thus, the uniqueness of the gauge group prediction which was treated as an 
achievement of the string theory is lost now. It is hoped that some other 
criteria for making a definite choice will be found in future. 

Although the investigations towards the building of realistic models are in 
progress, the modern phenomenology is essentially based on E6 symmetry. 
However, in view of the above discussion, this should be considered as a 
representative rather than an exhaustive example. 

5.4. Superstring Inspired GUTs 

Now at least three viable three-generation models have been developed based 
on different compactification schemes. Remarkably, these schemes give rise 
to very similar phenomenological signals, basically the supersymmetric SM 
with a few additional neutrino or lepton-like states and possibly a richer 
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Figure 34: 4 - D superstring construction 

Higgs structure. The problems of inhibiting nucleon decay and generating 
an acceptable mass pattern have been solved in these models either via new 
discrete symmetries or by additional gauge symmetries which are expected 
to be broken on a high scale. 

. Es Based Models 

In the models, where after the first stage of compactification the gauge 
symmetry is Es ® Es, the low energy group of the visible sector will be a 
subgroup of Es, 

E E Calabi-Yau compacli/icali<>n E E 
a® a . =⇒ s® s 

i 

The subgroup of E6 is [SU(3})3 , so the group of the SM must ·be embedded 
in this group structure 

Ea :> SUc(3) 0 SUL(3) ® SUR(3) 

:> SUc(3) ® SUL(2) ® Uy(l). 

We show below the {SU(3)]3 decomposi.tion of Es supermultiplets Til and 
27. which should contain the known gauge bosons and quarks and leptons, 
respectively. (The underlined states are not in the supersymmetric SM.) 

Gauge boson - Gaugino supermultiplets 

li = (~.1.1) + 
Gluon., 

rn . .a • .a> + 
J = 1 

(1,~,l) + 
w±,z, 1 

( + Gaugino.5) 
(3*, 3*, 3•) 

Leptoquarks 
( + Jno.5) 
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Figure 35: Minimal rank 5 1uperatring inspired modd 

Fermion • Sfermion supermultiplets 

21 
Higg, + Higg,ino, H1,2 

Lepton, + Sleptona e, 11, N 
Quark,+ Squark, u, d, D 

(l,a,a:) 

( 

Hf Ht e+) 
Hj H: P. 
e- lie N.. II 

+ (a:, a:, 1) + (a, 1, a) 

+ OL + 0). 
A specific realization of the compactification procedure will give more details 
about the low energy structure of the model: the number of families, the low 
energy gauge group, the masses and couplings. 

Minimal Rank 5 Model 

This is the model where E6 is broken on the compactification scale by· 
Wilson loops, i.e. by topologically non-trivial configurations of, the gauge 
fields. In this case one finds that only 21 representation survive and the E8 

group breaks , but not fu~ther than ~o the rank 5 group SUc(3) ® SUL(2) ® 
U(l)@U(l)' with one additional Z' boson whose mass should be of the order 
of the electroweak breaking scale. The breaking pattern is shown in Fig.35. 

The light states (m :5 O(Mw) ) are 

3 x [( ~ ) + ( ~ )· + ( :J ~! ~: ) l 
I2 L I2 R e lie If. R 

The new states are underlined. 

Three-Generation Calabi-Yau Model 

Another possibility is to allow Higgs fields to acquire very large inter­
mediate scale vacuum expectation values, thus breaking the gauge group. 
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Figure 36: Three-generation Calabi-Yau superstring model 

It happens to be energetically favourable in the three7generation Calabi-Yau 
'model. Because this model has the known Calabi-Yau manifold, many details 
of its properties are known, including the multiplet structure, the number of 
generations, etc. The pattern of symmetry breaking leads now to the stan­
dard SUSY model without new Z' boson (see Fig.36). 

The light states ( m :5 0( Mw)) here are 

[( ) ( ) 
. ] · ( n+ ) ( Ho ) Three neutral 

3x ~ , uR, dR, . ~ , lR + H1
0 + H!. + One charged 

. L L 1 L 2 L Leptons 

The Yukawa couplings in this case can be calculated as integrals over the 
Calabi-Yau manifold. It is argued that the pattern of symmetry breaking is 
possible leading to quark and lepton masses consistent with experiment. 

We list below some general properties of the superstring inspired models: 

1. N;:: 1 supersymmetry; 

2. The number of generations NF (of E8) is defined 
0

by the topology of 
the compact space · 

NF== ~!Euler characteristics! 

The "realistic" Calabi-Yau spaces have NF~ 3,4; 

3• Symmetry breaking pattern may lead to some additional symmetries 
(new neutral currents); 
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4. All Yukawa couplings of low energy theory are defined by topology and 
c~n be calculated; · · · · · 

5. There should exist stable heavy particles with M ~ Mp1 and rational 
electric charges e/ R and magnetic monopoles with g = 2; R. 

It would be ridiculous, at this stage, to claim that any model is the effec­
tive low energy theory following from the superstring. But its existence does 
show that the low energy structure emerging from the underlying compacti­
fied theory may closely resemble the observed wo~ld. 

It was believed some time ago that with the superstring theory we have 
already found a unique fundamental theory of Nature; Now it is realized 
that this is not a single theory, rather we have opened a window in a new 
wonderful and exciting world of superstrings. You are welcome! 
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f<aS:aKOB ,[(.:a. EZ-89-711 
~HSHKa BHe CTalJAapTHOH Mogemr 

HacTOH~e neKWIH cogep)KaT KpaTKOe OirnCaHHe HAeH H Me­
TOAOB cpHSHKH BHe CTaHgapTHOH MogenH. OHH MoryT 6hlTb pasge­
neHbl Ha gBe ttaCTH: qJHSHKa cpasy sa ~TaHgapTHOH Nog~blO H 
cpIISHKa ganeKO OT CTaHgapTHOH MogenH. B nepBOH ttaCTH o6Cy)K­
garoTCH MOAeJlb TexHH~BeTa, HBnHIO~aHCH a.JibTepHaTHBOH Mexa­
HHSMY XHrrca cnOHTaHHOro HapymeHHH CHMMeTpHH, H CynepcHM­
MeTpHH - HOBM CHMMeTpHH B npHpoge. BTopaH ttaCTb nocBH~e­
Ha TeOpHHM BenHKOro o6~egHHeHHH, CyneprpaBHT~HH H TeOpHH 
CynepcTpyHbl. 

Pa6oTa BblnonHeHa B na6opaTopHH reopeTHttecKoH cpHSHKH 
omrn. 

Kazakov D. I. EZ-89-711 
Beyond the Standard Model 

The present lectures contain a brief guide to the ide­
as and methods of physics beyond the Standard Model. 
It can be divided into two parts: physics just beyond the 
Standard Model and physics far beyond it. The first part 
contains a discussion of Technicolour, an alternative to 
the Higgs mechanism of spontaneous symmetry breaking, and 
of Supersymnetry, the new type of symmetry in Nature. 
The second p'art is devoted to Grand unified theories, 
Supergravity, and Superstring theory. 

The investigation has been performed at the Laboratory 
of Theoretical Physics, JINR. 




