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1. INTRODUCTION

Although QCD, quantum chromodynamics, has now been around for
more than 14 years, it is a sad fact that no reliable non-perturb-
ative; analytical methods of doing calculations have been developed.
There is no guestion that QCD is a very successful short distance,
perturbative theory. However, although it has the potential of de-
scribing the "long distance" hadronic properties of matter, we do not
yet know whether it does or not. The lack of reliable schemes for
calcuiating,for instance, the hadron masses have prevented us from
testing this aspect of the theory.

This regretable situation led to the bri{ite force approach, known
as Monte Carlo lattice methods. One simély puts the whole world on a
lattice, defines a discretized version of the continuum acﬁion and on
a large, but finite, lattice lets the computer do the high dimension-
al functional integral by means of Monte Carlo techniques for impor-
tance sampling over field confiqurations. This approach has again
brought into focus the deep connection between the theory of critical
phenomena in statistical mechanics and the renormalization of field
theories.

In the following we will briefly outline this connection, de-
scribe how we can use it to obtain information about non;perturbation
qguantities in QCD, and also mention the quest for more intelligent

ways of doing the Monte Carlo simulations.

2. FIELD THEORIES ARE NOTHING BUT CLASSICAL SPIN SYSTEMS NEAR THEIR

CRITICAL POINTS

In the following we will always assume that we have performed a
rotation where time t goes to -i? . We are working in Euclidean
space, not Minkowski space. 'Appealing to general theorems by Oster-

walder and Schrader this is always possible.



The Lagrangian for a scalar field will be
L($) = % @‘h‘f) DRV (2.1)-

and partition functions (the generating functional for Greeh'func—

tions (or correlation functions)) can be written:

(99 e~ S
196 e faix (L)« ¢ T).

Z(7J)

It

(2.2)

The measure "ﬁ¢’" is the Feynman path integral measure and is ill

defined. as it stands in eq. (2.2):

3¢ = T

xe R

db ). " 2.3

A natural way to make sense of it is to discretize Euclidean space-~

time RY, for instance, by imposing a hyper—cubic lattice structure:
X => Xp = an. &,
> Pn=z= d(Xa)
9 — TrT dbn | |
20— & (0(xr&0-0w))= & (6,a-00) (ERN)
§6,7) = [d'% L (@) + V@) +TO) >
St { &2 0ot < VO +Tbn .

In these formula éF denotes d orthonormal unit vectors and "a"-

the Iattice spacing. If one takes a finite volume V of spacetime

%@ is then converted into a finite dimensional integral Tﬁ; dq)n
and one can study the limit V. —» oo,

One ugly aspect of such a regularization of the path integral is
that Poincaré invariance (Euclidean invariance) is broken. On the -
other hand, we have obtained a strict control over the short distance
singularities of the theory, since we have a UV-cut off A= f/a.
Furthermore it turns out that internal symmetries, even local ones,
can usually be preserved in a naturdl way. This is of course espe-
cially important if we want to address gauge theories.

. 4 . . .
As an example we  consider a b theory in d=4 dimensions:

8 |
Lo) = 7 (0) « Fm 0«4 g* 0¥ (2.5)
By scaling the fields and .sources:

q)/

(2.6)

il
&)
Ce
)‘l
=

the partition function (2.2) may be written:
Z(v;g) = T ™ [Ty
exp (-4 SCo) 7)) o
SCO7T) = 242000 pmaelt ¢ & T

The free energy (the generating functional of connected Green func-

‘tions) of the system, F(J), is defined by:
- F(TJ
2(7) = ¢~ ")

and the constant in front of the integral in (2.7) only contributes

arm-additive constant proportional to the volume of F{J), but with no

(2.8)

reference to the dynamics. It can be dropped.
We can view (2.7) as the partition function of classical spin
system. Indeed an effective, classical theory of spin-spin coupling

in a ferromagnet would have the following Hamiltonian:



n

H(s, h) = -nZM Vim SpSe, T h-2 S, @9

‘and partition function

2(h, @) = | Tds, els) & AHOM,

(2.10)

In (2.9} Vn,m is the coupling of spins at sites n and m in the

lattice. If we assume the lattice is hyper-cubic and we only have

the nearest neighbour interactions,we can write

= Z Vo SaSi = K2 (Z (a0
2d So ) (2.11)

In (2.10}) /3= 1/kT and g(sn) is a weight factor describing the

local properties of the spin. A choice like

9(5"\') ZQXP<—(KS\: +)\S:‘)) (2.12)

gives ‘a convenient effective description. The partition function mav
new be written as:

20K,k ,a0) = (s, e” RS s a0)

HEs; ko a k) = 2 (K2 (a5l + RS, + ) S,
" o + hSa ) (2.13)

The Ginzburg-Landau theory of ferromagnetic transitions assumes

that 'K(/B), F(/}) and A(/S) are smooth functions of the tempe- -

rature since they depend only on local properties. The ferromagnetic
transition occurs when MN( IBC) = 0. The value of . T, where
[ /3c).= 0y is called the critical temperature T,- Minimalizing
the effective Hamiltonian in (2.13) we get a ground state where all

5, =0 if rl-> 0 (see fig. 1l1a):

L8> = 2. Sn = 0 Por m@y > o (2.14)

L
A%
while the ground state for r\(,s)< 0 corresponds to all S, aligned
with §_ =,]”24‘—,\ {see fig. 1b):

(S>> = (l/— Z.—‘ Sp = \[—:_it:\ bor U8 2O0 (g5

As we assume 'k(/}\ is a smooth function near /3c we might write:

}&(/3) x COC/S—/S‘) for B 2, (2.16)

and we vget:
<S> ~ \{/;/3: for A >4 (2.17)

This shows the typical non-analytic behaviour at points of phase
transitions. ) S

If we compare our partition function for the scalar field (eq.
(2.7)) with the one for our spin system (eqg. (2.13)} we see that the
continuum limit of our regularized field theory (a »0) corresponds
to approaching the critical point of the ferromagnetic transition
(r.(ﬂ) ->0) because of the identification

mtat ~ rk(/;) , (2.18)

It is therefore not surprising that all the machinery and intui-
tion available from the theory of critical phenomena can be taken
over to field theory. Let us briefly summarize the notations used:
near the critical point the following observables are of interest

tamong others):

M(h/ﬁ.) = %Zh <Sn5 (magnetization)
2N
'X (h/ﬂ) = h (susceptibility)
= 172 dE-mGa-mD
7



LG Grmy ~ @ =3

§(h/ﬁ ) << | Xa- ¥our | {correlation length)

Lm0 VSN D [Kymx, | 972F0)

a << lxn—xw‘l < ?(”7,/;) (anomalous dimension) -
N : ’ (2.19)

The behaviour of these quantities is obviously governed by the spin-
fluctuations and the correlation length 5 is of crucial importance.

The hypothesis that all singular behaviour near the phase transition

is due to the divergence of the correlation length g is called a
scaling hypothesis. In the Gaussian approximation,where we only in-

clude quadratic fluctuation around the minimum (2.14) or (2.15) in

our functional integral. it is easily seen that )
! — (2.20)
5(hA) ~ YV iphe))

and indeed diverge near the critical point.
The singular behaviour leads to the definition of critical expo-
nents, characterizing it: '

. Y
1) ~ -4 |
-v
5CAY ~ | p-Al .
ard byusing the assumption that the behaviour of the correlation func-

tion ‘is -governed by only one divergent parameter near the critical,
point it is straightforward to prove

(2.21)

X = UC:{—‘Z) [Fischer's scaling relation] . 12.22)

it éhould be stressed that these exponents are not just mathe-
" matical definitions. One can measure ¥, Y and % in materials
like Fe, Ni, YFeOJ, Gd, etc., using neutron diffraction and other ex-
perimental techniques.

e L st

o]

{a)

Fig: 1.
Potential P(B)S2+ A(B)S? for
(a) ,u.(,g) >0 and (b): f”ﬁ) <0

————— —————
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: xd)l(n:): : x : x
| 1 -
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Fig. 2‘.

A Kadanoff blocking for S=2 on a cubic lattice

Fig. 3.

RG-flow in the neighbourhood of a fixed point

The critical surface is usually multi-dimensional

9



The remarkable fact is that they come out universal even if the

materials mentioned of course have different 9(S_) and v .
. n n,m n,m

'S8, and vastly different Te- Since they are connected with diver-

gent correlation length § we see that long range phenomena near the

critical points show universality.

For field theory it translates into. the statement that the
details of how we regularize the theory at lattice distances are to a
great extent irrelevant for the continuum limit. Only few parameters
are relevant and these determine the continuum limit. Different pos-

- sibilities of continuum limits are labelled by different critical ex-

ponents and are said to belong to different universality classes.

In field theory it becomes of major importance to understand
which universality classes can exist and the basic tool for under-

standing the whole concept of universality is the renormalization

group equations (RGE). Today it has been combined with Monte Carlo
techniques for simulating these theories (MCRG). It is fair to say
that MC-techniques are the only general methods available if we want
to explore non-perturbative aspects of field theory for dimensions
a-> 2.

3. 'THE RENORMALIZATION GROUP AND CRITICAL PHENOMENA

The renormalization group approach to critical phenomena is the

simplest way to understand universality. From now we will drop the

distinction between spins and fields and our toy model Hamiltonian

will be

H = 2 Zr. (q)mr'd)h-)l +f"‘¢hl+ >\¢)R (3.1)

By a Kadanoff transformation we divide our original lattice in blocks
of size Sd, where S is an integer, and define an average field in

the block labelled n' (see fig. 2):

(1)/, = 5 Z d)n' (3.2)>

" ne Bgln’)

’ .
The distribution of dﬁv can be determined from the one of 4¥ﬁ

10

- }11j®ii] — - H /
@ = |'TTdo, & [mﬂ’ 3(4’""5'6238”@.,)‘
nl ne ,n’
(3.3)

We end by scaling the blocks back to the original size:
Xs = X/s
¢ = 770
Ho (0s06)) = H (b)) o

mn

W

; *=41(3d-2¢%)

If we measure the correlation length 5 irm lattice units it has been
decreased by S:
5, = 3/5-

The factor S-'« might not be very intuitive, but: recall that near
the critical point the correlation length § diverges, the theory has
"almost" massless excitations, and the correlation function will have
a power fall off (2.19): '

<([)n (1)6> ~ 1/nd—z+'2

1 << n <&« §f, (3.6)

(3.5}

€onsider now the block transformation (3.2):

o 00> = s b, - 547,

he Botn’) ner,l.‘@')(bw‘\>
x < ¢3h’ q)Q > » (3.7)

. . 24 . N
since all the § correlation functions are at essentially the same

distance if n' 1is very large.

From (3.6) we therefore see that the short distance (still large
compared to lattice) properties of correlation functions are left
unchanged by blocking only if we scale ¢' by S_“, x® =1 (d-2+%)

The form of HS(©S) is not identical to the one of H(®) in
eq. (3.1) which was the starting point. Other terms 1ike

Il
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will be generated.. As we want to repeat the Kadanoff blocking it is

therefore natural to start with a completely general action:

Hw]‘ = Z& K. S.(&). _ (3.9)

where S‘,( (= 1,2,...) are different actions which should cor.lform
with the original symmetrlr:s of the action and lattice. It is impor-
tant, as will be discussed later, especially for gauge symmetries .
The couplings K o now take values in a multidimensional (in princi-
ple infinite- -dimensional) coupling constant space, and successlve
blockings can be viewed as a mapping of this space onto itself,

called the renormalization group (RG) transformation
RG : {'K,(} —> ;_ RG(K‘)}- (3.10)

*
The function RG might have certain fixed points K.‘.

For such

a flxed point we have . v »
RG (K )= Ka Ve (3.11)

and it follows from eq. {3.5) that the correlation length must be in-
finite {or zero) for this choice of coupling constants. The fluctua-
tions extend over all scales of the lattice and the system has becomg
critical.
To each fixed point K we can associate. a critical surface,
namely the points K“ which are attracted by the fixed point k“
*
n {3.12)
RO (K) 2, Ka
ns ew
The important point of the blocking is that we perform a coarse
graining of the system. By tak1ng the average over blocks we ignore
short distance.‘ details, but keep long range phenomena intact, pro-
vided the correlation length § is much larger than the block size.
Every point on the critical surface corresponding to Kg has

of course infinite § (since blocking reduces correlation length and

the fixed point to which the point converge also has § ==) and the
long distance physics for any point on the critical surface is there-
fore expected to be identical to the long distance physics determined

by K;.

12

The fundamental hypothesis connecting RGE to critical phenomena

is that the couplings of the material in question (Fe, Ni.etc.):

Ko (B = (kws) 1), AR), -+ ) (3.13)

belong to a critical surface when /3=_/3c : {T = Tc).

If we now assume (it will be justified in the next section) that
{1): critical surfaces are expected to be large subspaces of the
total space {K,,(} and that (2): the critical exponents are determined
by the RGE near the critical point we can understand universality:

- urt
many different materials "1 " ‘at their critical po1nfs pct can be
. " "

represented by vastly different points K,: (/3' ~in coupling

constant space, but thez will belong to the same critical surface {>:

Wy LK

same fized point KH) when Q -»{5c

Suppose that a point kx is near a fixed point K

»

Ka( = Ko( * SK“ (3.14)
Re(ka) = Ko * Z, s SK. OLEK)™).

If we expand §Kd in eigenvectors of the linear operator Toor?

SKa = 7. hm Ui = {3.15)
;Td«' Vawr = Aa Vax

the action {(3.9) can be written:

Hip) = H'lp) + Z CaU™lo])
H* (4 Z.‘\ K. S.ley (3.16)
Ual®?) = 2, Ua e S [0

Repeated application of the RG will give:

4oy — H[p) + Z AUl e

The interactions which have /\a < 1 are suppressed after a few RG
.steps. They are called irrelevant. The interactions with A2 >
are called relevant and they will eventually take one away from the
critical point provided the decomposition of Sk.‘ contains these

components. Finally the interactions with A% =1 are called mar-—

ginal. Whether they will contribute or not can only be decided by

considering higher order corrections to the linearized RG transforma-
tion given by T
A

13



It is now seen that the critical surface in the neighbourhood of

K* . : a
« 1s spanned by the irrelevant operators U (¢)).

If we are close to the critical surface, but not exactly on the.

surface, the coefficients. ha for the relevant operators must be
small. If we block we will first move towards the fixed point P(:<
since the irrelevant operators dominate, but eventually when n, the
number of blockings, is large enough A: > ha for the relevant oper-
ators and we will be taken away along the direction of the largest
relevant operator. This relevant direction is called a renormaliza-
tion trajectory (RT). The flow near K: is illustrated at fig. 3.
If there are n relevant operators at a given fixed point we
will denote it by FP(n)

meters to reach the critical surface. If there is only one relevant

and it will require the tuning of n para-

operator we can reach the critical point by changing any of the cou=-
pling constants. In the laboratory the tuning is performed by chang-~
ing for -instance the temperature. This will create a flow of
Ko a_(Kye),,k(ﬁ), A(A3),...) which eventually will cross the critical
surface if the system has a ferromagnetic transition.

It is worth emphasizing tﬁat in relation to actual materials
like Fe, Ni, Gd,etc. the coarse graining implemented by the RG is of
course a purely mental process which allows us to understand univer-
sality. However, in the context of model calculations on a computer
the situation is completely different. Since we have a detailed
knowledge to the configurations which we generate by MC-simulations,
we can perform the blocking described above and actually follow the
flow in the coupling constant space {K*f. Also it should be empha-
sized that the position of the fixed point K: on the critical sur-~
face depends on the specific RG-procedure we use. The critical sur-
face itself in the.infinite dimensional coupling constant space is
independent of the specific procedure, as is the long distance
physics, of course, but roughly speaking any point on the critical
surface can serve as a fixed point if the RG~procedure is chosen
appropriately. For instance, it is often convenient for analytical
calculations to do the coarse graining of variables in momentum

space. The lattice introduce a momentum cut off

A = Wa . {3.18)

Reducing A corresponds to larger 1aptice spacing and therefore (in

a not very precise way) to a blocking.

14
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4. THE APPROACH TO A CRITICAL POINT / THE CONTINUUM LIMIT

4.1. The Gaussian Fixed Point-

In this section we will discuss in more detail the approach to a
critical point belonging to a critical surface and how this approach
relates to the usual renormalization known from field theory.

It is instructive to start by discussing the purely Gaussian
case. If we perform the blocking, thg action will after a few steps
contain next to nearest neighbour interactions, higher derivative
terms, etc. Rather than carrying out the analysis on the lattice in
this concrete way (which cap be done { 11]),we will for the purpose of
illustration work in the continuum with a cut off A~ %r in momentum
and appeal to the remarks at the end of last section- concerning the
freedom to choose a blocking procedure.

We consider the generalized Gaussian actian:

A -~
HIBT = 5§ a% B Dy GGpD

Iy

[}

DY = K+ 28"+ i (ZH Y Z RN

(4.1)
By changing to dimensionless variables
=07
- 43 o~ . :
()= a = OE) (4.2
.
K, = o k,
Kl = 'kl
. -‘L - . . .
124 LT Qa e 'y P
we get

i

™
Hiod = + [ 'y da) DO ) 0¢3)
D) = ket ngfi vl (TR )+ - (4.3)

As is mentioned a convenient RG procedure in momentum space is to in-
tegrate the high frequency part: M/4< g < . In the Gaussian case
this is a triviality since different momenta do not couple and we get

{in the notation of last section)

15



)7
R ) = L5 4% 0(%) D& (%)
Q)s ¥ = S-(a—zw)/z ¢(’* )
) = 54T da 0g) D) O(-%)
D;&) = K, $*77 +K.S”’c:;‘¥: +K15‘1‘Z(Zq:)"+....
r

From (4.4) we read off the RG transformation:

(4.4)

n

RG SLK“} —> { 51-7K°./ S-"k./ S_l"’kz/'-- (4.5)

and we have a fixed point at:
x
kL% = { o 14 b(|/ 0/() T }

This point is called the. Gaussian_ fixed point. It

(3.6)

provided % =0.
will clearly be a fixed point even if we enlarged the coupling con-
stant space to include (potentially) non-trivial interactions like
If we fix it to

¢ﬂ interactions. The value of K, is arbitrary.

1 the actions (34.1)-(4.3) define just the massless free field in the
continuum in the limit where a=>0.
Already this trivial generalized Gaussian action allows us to

emphasize a number of points:
(1): at the fixed point the theory 'is scale invariant (massless).

(2): In this case we have one relevant coupling constant . (Ko). By
choosing some values of we get to the critical sur-

K, = {0,1,K2,K3,...? by fine tuning of the relevant

KZ,K3,...
face

coupling {in this case to zero). The physical correlation

length I/mphys is related to the correlation length § meésf
ured.in "lattice"™ or cut off units "a" by i )
. 4.7
1/vnm” g a 4.7
By the requirement that mphys is unchanged during a blocking

we relate the renormalization group transformation to a change

"a" and fix the fine- tuning of .the relevant para-
_ 2 2
meter: K_=m a
s phys
massive theory in the continuum is not defined at the critical

in cut off
. The important point is that the free

point but by the fine-tuned approach of the relevant (massz)

coupling constant to the critical surface.

16

The same would be

(3):

737859

[—

(4):

e o

e n——

true if we had n relevant couplings. By fixing the physical

value of these as in (4.7) the requirement that (long distance)

physics is invariant under RG transformation,when we are near a
critical surface,would fix the fine-tuning of the relevant para-
meter in terms of the cut off "a"
Ko = mé;ysaz.
bare coupling constant under a change of cut off,while keeping

just as we did four the rela-
tion Such relations describing the change in the
physics constant, are precisely the ordinary renormalization

group equations of field theory!

At this point it might be confusing why we in general moved out
in the infinite dimensional coupling constant space when we did
the blocking in the last section. When we renormalize field
The RG

transformations in the continuum do not lead us to an infinite

theory we usually adjust only a few coupling constants.

dimensional coupling constant space. The reason is,the blocking

procedure is much more precise than is needed for describing the
long distance behaviour. However a blocking exactly reproduces
all predictions for the variables which arc not integrated over
by the blocking. The expense is that one has to enter into an

infinite dimensional coupling constant space. We could, and

that is often done in MC-simulations, approach the <continuuam
limit by just changing the few relevant couplings in the sim-
We would

length when

plest discretized wversion of the continuum action.

have nu control over the change in correlation
changing the couplings, but one could of course measure the cor-

relation length.

The Gaussian fixed point is particular simple since we can do
ordinary perturbation theory around it. Also it is easily seen

in the linearized approximation around it that every operator

B (like ddx( ak ™)™ Ywhich has an engineering dimension d
4

(like dg= m(n{d/2- 1) + k} - 4d)

S-(do).
of relevant operators with respect to the Gaussian fixed point.
It is believed to be true also for other fixed points and justi-

fy the statement made in the last section that the critical sur-

Tka -

corresponds to an eigenvalue

Therefore, in .d>2 there is only a finite number

faces are large in




4.2. Marginal Operators at the Gaussian Fixed Point: Triviality

Versus Asymptotic Freedom

In 4 dimensions the operator quxlb4has as engineering dimen-
sions zero, similar with all other actions corresponding to dimen-
sionless coupling constants. For instance will the operator .
qux Tr F2 in non-abelian gauge theories also have engineering di-
mension zero. In Sect. 5 we will discuss the lattice reqularization
of the gauge theories in more detail. Here we will only assume that
the action can be taken over to the lattice in a sensible way.

An operator of dimension zero will be a marginal operator with
respect to the Gaussian fixed point, corresponding to eigenvalue S
= 1. One has to go beyond the Gaussian approximation in order to

discover whether it will become relevant or irrelevant.  The corre-—

sponding couplings are called asymptotically free and non-asymptotic-
"ally free, respectively. The canonical examples are a non-abelian
SU(N)} gauge theory and a one-component ¢4 theory.

For non-asymptotically free couplings one cannot have a renor-
malized coupling defined at the Gaussian fixed point.* If we for the
purpose of illustration define the renormalized coupling as the value

of the bare coupling after applying n blockings such that:
’
Sna = fixed physical distance when cut off 1/a 2 °°, (4.7)
it is clear by definition that the renormalized coupling is smaller

than the bare coupling, since the corresponding action was irrelevant

with respect to the  Gaussian fixed point. At the Gaussian fixed

point the bare coupling is taken to be zero. and the renormalized cou-"

pling will be even closer to zero. Therefore theories with only non-
asymptotically couplings cannot define non-trivial continuum field
theory at the Gaussian fixed point. They‘could however have other

fixed points where a non-trivial theory could be defined. A search

for such possible points 1s therefore of utmost importance in these’

theories (like 4)4, ordinary QED, etc.). At the moment there are
indications that no such point can be found.
For asymptotically free theories the Gaussian fixed point is

much more -interesting since the renormalized coupling is larger than

the bare coupling. One therefore has a chance that even if the bare -

coupling (by definition) is taken to zero when approaching the fixed
point, the renormalized coupling might remain finite and in this way
define a non-trivial interaction theory at the Gaussian field point.
The important function which controls the approach to the continuum

limit is the /5—function.

18
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4.3. The /B—Function

Let us for simplicity start with a theory with only one coupling
constant 92 (like pure non-abelian gauge theory). For the regular-
ized version on the lattice the change of this coupling constant will
move us along a one-parameter line in the 'multi—parameter space
created by blocking. 92 >0 will bring us to the critical surface
associated with the Gaussian fixed point.

When we are close to the critical surface the correlation length
is large and we can find a change Agz in 92 such that

%/ 2 - <é2 _ Z¥51
R (4.8)

§(92) = 2 5(9*).

This means that the long:distance physics will be the same for g'2

and g2 provided we identify
r2 _ ( z ) .
(o9 ) = lq a* ) (4.9)

Eq. (4.9) tells us how to take the continuum limit a=> 0 in such a
way that it is independent of the cut off.

It is worth emphasizing that repeated RG-transformations (s=2)
will result in a picture shown in fig. 4. When the number of block-
ings n is sufficiently large the coupling constant flow starting from
92 will move along the RG-trajectory and will coincide with the
(n+1)th RG-step starting from g'2: it is only the long distance
physics which 1s identical for the choices gz, a(gz) and g'2,
ta(g'?). ’ .

The equations (4.8-4.9) define the relation between g and a
which leaves continuum physics invariant when a > 0. This relation
is named the [-function:

4
B(3) = —agq Jla) v (4.10)
The nice thing about the Gaussian fixed point is that we can
calculate /3(9) for small 92 by ordinary perturbation theory:

BB) = - b, g3 - b.%g e (4.11)

For an asymptotically free theory bo > 0, since this implies that
g(a) 1is decreasing when a is decreasing.

The. scaling region is the region where 92 is so small (a is
so small) that within a given, required precision there will be no

cut off dependence for physical observables. In the scaling limit
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Fig. 4.
Successive blockings starting from »gz {dots and
g-2 = 92 - 4392 (x's) such that OL(g'z) =3 Oigz)

AB

06 | - - - ““:1,‘

041

0.2

B

G0 70
Fig. 5-
Plot of Aﬁ(ﬁ)' /@ = 6/9 for sU(3).
The dashed line represents the perturbative two loop prediction
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any dimensionful physical quantity behaves in a definite way as a

function of gz. Since m is independent of a we have:

phys
d = ‘ :
Q3o Mpy, = O (412
_ 1 . .

mfl“ﬂ’ = « ‘F ( % ) (by dimensional reasons) (4.13)

Therefore: % ,
1 - §7 49/ By ,

Mos = ¢ = C (4.14)

Using only the two first terms in the expansion (4.11); which can be

shown to be the only terms in the expansion which‘are independent of
the reqularization used, eg. (4.14) reads
53 - 3 (1r 00y
| =~ 2k,92 L) .( + )
n, C. o c -9 (bo(ﬁ R
hys i (4.15)

which are called asymptotic scaling. The non-perturbative aspect in

this formula. is the constant ¢ which cannot be calculated within the
perturbation theory.

For a given choice of 92 on the lattice it is clearly of great
importance to know how far we are from the universal first two terms
in (4.1%). A convenient measure for that can be taken from (4.8)-
(4.9), namely the change in coupling constant necessary in order to
change the correlation length (or lattice spacing "a") by a factor
2: introducing 2? by:

2 = 1/3% (4.16)

we have from {(4.10-4.11)

“~

ad.f = b, +o( /5 ). 4.7

AR = 2b, logd +O0(Yyz ),

(4.18)

A/? can be measured in a convenient way by RGMC methods, as de-
scribed below.  Fig. 5 shows the result of measurements of dj? for

the SU(J) gauge theory.

4.4. Critical Exponents Near a Fixed Point

An essential argument in the outline of universality was based
on the assumption that the critical exponents are determined by the

fixed points. We will now show that this is true.
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Let us for simplicity assume that there is only one relevant
(1)

direction: the fixed point is FP . We will denote the correla-
tion function (the Green function) G(x) (assuming translational in-
variance on the lattice).

If we are close to the critical surface we can repeat the dis-

cussion in sect. 3 and write the linearized RG equations:

K, = Ky + 2o Usa ha (8D

o

"Aqt hAQ.
(RO) )= Wa F VUi by (8) S 5r 07)

=

(4.19}

h, @) = h,(g-8:) -V

Tne notation is as follous: (va } is the eigenvector for the rele-

1

vant direction; ajs i>1 are indices for irrelevant directions.

Since we are close to the critical surface ha tR) must be small,

1

but eventually after a sufficient number of blockings only the

relevant operator will dominate ( Aa» < 0, i>1) and we are on the
RG trajectory. ) 1
From the definition of blocking we have (when x and x/s"Aﬂx >>

a):’
Gix; [Kel) = §¥

x = (d-2¢4n)Y/2"

(s ; R

(4.20)

Using (4.19) it is seen that we can finetune the approach to the
critical surface: /g-a /ZE in such a way that /3 drops out of

RG" K, Y :

Mo
h(r.) S o=t
n

$" = W, (Z-8)]

By (4.20) we get by a change in notation

G"(X/ EKQW' } )‘/S-)ﬁ = §2:j3) G(X/W!)/'gktq“‘ U'a‘,,(})

(4.21)
- 1/ I\'dl

(4.22)

$B) = | B-p 1T

K = Ca—zwz)./z.
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This is identical to the result obtained by the scaling hypothesis

mentioned in sect. 3 provided $(,&) is identical as the correlation

length. We see that the critical exponent P is related to the
(largest) relevant eigenvalue by

V.= 1/ A , (4.23)

Also 7 is determined by the fixed point. 1In fact, as already

. -, L :
mentioned, § is the uniqde scale* factor for the field ¢I which

leaves the behaviour of the G(x,Kyx } invariant at the critical sur-

face. Stated differently we can say only one, or very few , choices

of /# will result in a fixed point for our chosen RG-transforma-
tions.

Finally the critical exponent B’ is also determined from (4.22})
by integrating over x:

AUz) = YJ“X G—(KJ- Yk )} ) =

$7 (4% C(X/5m ;i v U ) =

_ ' ’ (4.24)
§2o(+el [ SJJ? ORI a{(})]

or, since the last parentesis has no /S dependence:

(/5'/&)—&: ?(6)1—? = (/3—/3()_1"(2-?) t4.25)

which is Fischer's scaling relation.

Again it should be emphasized that the scaling limit is defined

as a finetuning to the critical surface.

4.5 MCKG Transformation: an Explicit Example

The whole formalism of RG-transformation described above has
been useful in the past in the sense that it gave an intuitive under-
standing of universality, /3—function, renormalization, etc., and it
could be used to derive various scaling relations (of which only

Fischer's have been mentioned here). However, by.the use of modern

" fast computers one can simulate the lattice system mentioned and the

blocking described can be explicitly performed. In this way one can
follow the coupling constant flow in the space EK,} and determine

the critical surfaces and fixed points. The largest eigenvalues of
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blocking give us directly the critical exponent The'eigenvalue

is Si/v (see (4.23)). The exponent # is determined by writing
(@s)){/ = A2, . (4.26}
> x7 € 3,02) (b)(

and determining the value of )s which gives a consistent blocking.
" We then have

- (42002, (4.27)

A = S
The essential problem is to find the values of the coupling con-

) 1 2 ;
stants {K& )}, {K(q)],... from iK(:)} obtained by
swendsen [ 3 ] has suggested a quite efficient method for dealing with

blocking.

this blocking.

" lattice and an appropriate action. If

One starts out with a 2
we consider for instance a ¢’4 theory in 4 dimensions we can start

with an action

CHIO) = 2 (2 d) + T e g0 ) e

and generate a number of eguilibrium ‘configurations. For these con-
figurations one does the blocking with s=2, effectively reducing the
n-1 2n—2 .
v IR

~ On the reduced lattices the actions which give the same expect-

size of the lattice to 2

ation values will have the form (after { blockings)

COH el Z K Sul0)

At fig. 6 we show a typical class of interactions Sx which can be

j Sn(:z;— gu(,h_‘ 14.29)

included in a practical fitting. {(See [ Y, § ] for details about the
implementation, also for gauge theories).
Kil) after the Q,th

blocking can be determined in the-following way: we define modified

The best values of the coupling constants

operators 5

. by the conditional expectation values:
G

. E;Za Sa
. [abn Sun @ 5 =700
Yo S(ﬂbn (2"?2 &Zg Sa,yl

. {4.30)

i

h . . . - .
where the integration is only over the local variable ¢r1 i?d all
neighbour fields are kept fixed. ‘If the arbitrary values K are

close to the correct ones we have:
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S K )= S Ky - Z2=mn k.- {4.31)

N,h( ‘) o&ln( 3 ? E/Z (kﬁ /3)

For the correct values of fﬁ;} we can say the expectation value of

S n
’

since sq n(K) is nothing but the expectation value of S5, o with
’

r
respect to a fixed background, over which we .integrate afterwards:

4 —S.“ln(k)> = <& Se,n (K ) > | (4.32)

and E; n are identical with respect to the partition function
— v

Taking average values of (4.31) now yields

N 3L 8. - N
b</3 - b<73 ;2 b ;Z/a, ]/gc( (:< Su‘> -'<TELLj>~>

+ Q(/(k_Q)L) {4.33)

This provides an iterative scheme for the determination of fKi}
of a given ensemble of configurations. Since the values for <S>
and <S> are obtained from a common set of configurations, fluctua-
tions are likely to cancel in Ehe difference. One should be aware
that the integrals for S,t,,n in general will have to be done numeri-
cally.  Only in the original application of Swendsen to the Ising
model they can be done analytically.

In practice'the method works quite well and the K_’s can be
determined up to two digits (I Y4y,S1).

Finally we can, from the now calculated values of {K&f)}, con-
struct the RG-flow and locate possible fixed points. Moving close to
the fixed point and doing new simulations we can construct the

linearized RG-transformations simply by using
(1)

(Llc; ] X /3 A Eilf;ﬁgis. (4.34)
K,

and as described in sect. {(4.4) the knowledge of (RGL allow us to
determine ) , while the scale factor used gives 7 and therefore

¥ (by Fischer's scaling relation).

. THE CONYINUUM LIMI FOR NON-ABELIAN LATTICE GAUGE THEORIES

5
5.1. The Lattice Action

The non-abelian gauge theories of course deserves special atten-

tion because of their importance in nature. They have the (probably
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unique [ 6 1) feature of being asymptotically free in four dimensions.
Further, it turns out that there is a natural way in which the local
gauge invariance can be implemented on the lattice.

Already in the continuum one éncounters problems with gauge in-
variance of the Creen functions, since these involve for instance
charged scalar fields at different points. Formally one can make
gauge invariant objects by connecting the fields by path ordered ex-

ponentials:

oy PLeS,,. 48] e ) -

This construction can be taken over to the lattice. The ordinary

(5.1)

kinetic term for a SU(N) scalar field ¢) in the fundamental repre-

sentation is changed as follows:

(Q‘)tlfr—(b:\)( nep d) ) mrq) (t) (bm-p hcr® ¢f¢ -2

+

+
“Whep Unrrt,n (t’)n - (Dh Unl nfrﬁ)"rvf

. P §
where Un+p,n(: Un,n+

necting n and n+ .. Un K (= Un+p n) acts as a gauge connector
. , J
i(dx'A

like Pe ¥ in (5.1) and we can formally write in the continuum

. b b
Uy "= @t fn T

s v (5.3)

:g4¢ZW}?+-dj:d7n‘

(5.2}

ﬂ} is an SU(N} matrix living on the link con-

limit:

If we expand (5.2) in terms of the lattice spacing we get the usual
continuum kinetic part (Dp¢’)+(Dp ). The local gauge transforma-

tions on the lattice are SU{N} transformation living on the sites:

¢)n - \‘1 ¢)h
(5.4)
' -1
UV\/ nep - Vn Unl n+p an'.a.

(5.4b) transforms exactly 1like the path ordered exponential and
clearly (5.2} is gauge invariant.
To construct an action for the pure gauge part of the theory we

also use the knowledge we have from the continuum theory of path
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ordered exponentials: for a small loop of area element dAere have:

T P[e 0§ ﬂrcb(r] ~ N. (5.5

By taking the smallest possible loop on the lattice, namely going
around one plaquette [ in the plane rw « We get

Tr (1= k(e ud AN

- i -L
Uu = Unﬂi,n Un,m-u Y a+v, irvrp Unvurft,nfﬂ

and ‘it is easy to prove, expanding in lattice distance a that (5.5)
is recovered in the limit a > 0. Our final action would therefore
look like:

S\CQD/U) =T KZ».“(ZF.' Rl(b:rr Ul'lfr,n(bn) +}’~(th:)
¥ A(d)t(bh )—L —ﬁ% rtuna Tr Uﬂnmu’ (5'7.)

where we have introduced the gauge coupling g by
B = 1/@*a%¢). . (5.8)

Of course one could use many other versions of.for instance,the last

term in (5.7). The particular form invented in (5.6) is called the

Wilson action, but when blocking we will generate all kinds of next to

nearest neighbour terms of the same form. One could include other
representations. of SU(N). Gauge invariance is the only severe re-
striction (of course). '

One could also add fermions to the model (5.7). Fermions are
difficult to add, however, because of the famous doubling problem of
fermions on the lattice [ 7). It can be done, however, either by use
of the so-called Susskind-fermions or - Wilson-fermions. Both ap-
proaches have drawbacks and in addition the computer simulations in-
volving fermions are very difficult because of the anti-commuting
character of férmions. This makes realistic simulations of sectors

of QCD, where dynamical fermions are expected to play an important

‘role, very difficult.

5.2. The String Tension and Other Observables in Lattice QCD

The non-perturbative MC-methods @escribed in the last sections
allow us to address a lot of questions involving non-abelian field

theory and which are of extreme interest in todays theoretical and
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experimental physics. Let us give a (partial) list of topics which

has been under investigation during the last couple of years:

1) Hadron masses: This is the principai test of QCD as the .long
distance theory of hadrons. We should, by our computer simulations,
extract the ratios between the hadronic masses observed in nature.
As already mentioned, the role of the dynamical fermions is the main

obstacle, and although they can be put on the lattice, sometimes the

interpretation of the right symmetries necessary to prospect out the
relevant particle states is not straight forward. The "non-local"
character of the fermions makes the computer simulations very time

consuming and we are taking about thousands of hours of super-com-
puter time before we can hope to obtain a reproduction of the Rosen-

feld table [ 8 1.

2) Confinement and the QCD string: As will be discussed shortly it

is relatively easy to address the question of the central potential
between heavy quarks [ 9 ]. The flux distribution of .the string would

be very interesting to measure, but is presently waiting for new

techniques of important sampling 40,11}, as will also be discussed. .

Attempts have been made to measure the spin\dependencé of the qg
forces [12,13] and the existence of a possible "confinement" poten-
tial between quarks in the adjoint representation [IY -1k ]. The
existence of such a potential {if only out té a certain critical
distance rbr
{"dimensional reduction" [§,1+]). Also the role of instantons in

the QCD vacuum has been addressed [[R].

it) would tell us a lot about the confinement mechanism

3)- High temperature.and high density: Clearly the understanding QCD

of QCD at high temperature and high densities is important. It is
relevant for heavy ion physics and for cosmology (the early uni-
verse). High temperature effects can be studied in' detail by MC-
techniques and the questions of deconfinement and restoration of
broken symmetry can be addressed in a non-perturbative way. 1In fact,
" this 1s an area where the lattice trcatment has added a lot to ou£
understanding of these phenomena [ {9]. ]

The treatment of high density {where "deconfinement”" should also
occur) . is more complicated because the chemical potential for
fermions becomes complex in the Euclidean  formalism. Again an
effective treatment of this problem calls for new techniques of im-

portance sampling in the MC-procedure.

28

S —

4) The Weinberg-Salam model, GUT: It is still an open question
whether the standard model and G{rand) U(nified) T(heories) exist in

a strict non-perturbative field theoretical sense. The fact that the
¢ﬂ theory (presumably) is trivial may have important implications
forAthe Higgs mechanism, and therefore the whole philosophy of GUT.
On the other hand the existence of non-trivial fixed points might
lead to restrictions on coupling; and predictions of the masses of
Higgs particles [ 20,217

5) _Chiral symmetry breaking: -The chiral symmetry breaking in QCD is

believed to be a truly non-perturbative phenomenon. Aithough one has
to face the already mentioned problem of fermions on a lattice, the
question can be addressed and the breaking seems to be confirmed [2]].
Interesting guestions concerning the restoration of chiral symmetry
at high temperature is still under debate [23]. Finally a number of
questions concerning hierachial structures of technicolor theories

can beé addressed by lattice technigues [AH].

As can be seen, lattice MC methods can treat quite a broad
spectrum of topics.

We shall here only discuss in some detail the oidest and still
not completely settled question: confinement and the string tension
in pure non-abelian gauge theories.

Because' of asymptotic freedom the effective coupling constant
for a non-abelian gauge theory is vanishing at small distances and a
consistent perturbation theory can be deveioped, as described in the
last section. What happens for large distances cannot be addressed
by perturbation theory and we do not know. It has been popular to
assume that the effective coupling constant would grow to infinity
thereby giving a heuristic proof of the confinement of quarks in QCD.
The more guantitative formulation of the concept of quark confinement
was first given by Wilson and is based on the observation that the
expectation value of a path ordered line integral around a rectangu-
lar loop of size RxT, T>>R can be related to the static energy of a
heavy quark - antiquark pair, created at T=0, separated by R and
kept at that distance for a time T and subsequently annihilated:

Tr Ple Seer Yeb] > = e~ VRIT 50
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S%p‘ Q—qLﬁ;Sd"xTr Fro

In an abelian gauge theory we expect the potential energy to corre-

<OPE

(5.10)

spond to a Coulomb potential:
VRDY ~ 1/R (5.11)

as can in fact be verified by a perturbative calculation. In the
non-abelian case it is believed (and is a hope) that one has a con-

fining potential ]
VRY) ~ <R (5.12)

Eq. (5.12) means that the expectation value (5.9) goes as
e-c(Area of loop), which has become the famous criterion for confine-
ment.  (5.9) has the advantage that the path ordered integfals, the
so-called Wilson loops, are very convenient observables on the
lattice: they are simply products of . 2(R+T) 1links around the rec-
tangle enclosing RxT plaquettes. ]
In principle the MC-measurement is straightforward: one fixes
/@ sgenerates a number of vacuum configurations' for each of these one-
measure Wilson loops of various sizes R (and T) and can now test
whether the functional form (5.12) is correct. If we denote a Wilson

loop enclosing and RxT rectangle by WR T
r

Wy = -n_[ ™ | Ug]’ (5.13)

4 Qe Bounda.ra’( RxT) '

one could imagine 3 scenarios: the interaction between the fwo sta-
tionary heavy quarks, separated by a -distance R, could by mediated
by gluons, which are effectively massive, massless (like in perturb-
ation theory at short distances) or the interaction could be of a
more complicated nature, giving rise to a linear, confining potential
like the one in (5.12). 1In addition to these interaction terms there
will be a self-energy part where gluons are emitted and ab~
sorbed by the same heavy quark. This is a short distance singularity
which we have introduced by hand by putting in a infinite heavy
point-like particle. Therefore it can only be removed by hand and
the contribution is not expected to scale like other physical quanti-
ties. It will give a contribution of the proportional to the length

of the perimeter:
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self-energy =

ccp) - (dt R). O ean
x C@B)T (RL T ”

In conclusion we expect the Wilson loop to behave in one of the fol-

lowing ways for =~ T>>R
e~

i U = - (g C8) o=FIR N\ (5.15a)
ce Bounéar;CRxT> e/\’f)( (ug) 1‘. R + 3 )

= exp(- (@) + C_'(r/%/} )T) (5.15b)

= ex? (- (@) +O’Q€)R+-~3T>, (5.15¢
-ﬁ%Re r Yo in powers.of

It can easily be prove.n by expanding e
/3 that in the strong coupling limit RB—>0 (that is: far from the
continuum limit) 0’(/8) is different from zero, even in an abelian
lattice gauge theory. (In the non-abelian case we assume the heavy
quarks are in the fundamental representation, as is implicit in eq.
(5.13)). For quarks in the adjoint representations it is not true.
They can be screened by the gluons, which are in the same representa-
tion of SU(N). For the abelian gauge theory one expects a second
order phase transition for a finite ﬁ) such that O(B8) will be
zero for ﬂ > ﬁo’ where a Coulomb-potential should be observed, cor-
responding to (5.15b). Although it is generally believed that . this
scenaric is true, the numerical analysis of the situation has turned
out to be more involved than first expected. L 5, 25]

The philosophy for the non-abelian SU{(N) theory was to prove
that no such phase transition.took place and that o(AR) did not
vanish for any value of 2 Of course one should be more precise.
If we want o“(/@) to represent a string tension that survives 1in
the continuum limit 2 -»oco it must scale. 0 (/) is dimensionless
and measured in lattice units. The physical string tension O’hys

2 p
has dimension (mass)”:

oB) = Géhﬁg a_lm )+ (5.16)
where the universal behavior of (1,(/3) for ﬁ large was described
in the last section.

In four dimensions a(le) vanish exponentially with ﬁ, which
means that the numbér of lattice spacing required to reach a  fixed

physical distance is growing exponentially, and both for SU(2)- and
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SU(3) there are at most a quite small window,where O’(/s) is still
large enough to be measured with reasonable precision and where we
have confidence that the the scaling behaviour is governed by the
perturbative ﬁ-function. In fig. 7 the latest measurements of .the
string tension for SU(3) using various modifications of the simple
Wilson action (5.7) is shown [26]. For SU{2) the latest high preci-
sion measurements indicate that there might be trouble with the
scaling of g (A) [21]. .

At this point one should be aware of two things. First the ex-
traction of (/) from the raw data (9: the measured values of the
Wilson loops) is not a straightforward process. For small R we are
clearly probing perturbative QCD, not non-perturbative effects like a
string tension. Where is the cross-over, if there is a sharp cross
over? And even in the region where the string dominates, the dyna-
mics of the string might be important (see later). Such problems are
common to most MC-measurement, which in this respect has a lot in
common with real experimental physics. Secondly one should not for-
get that there is nothing magically with a linear potential. Con-
finement does not need a linear potential, - and confinement needs
not be true! In fact we are trying to test whether it is true. The
linear potential got its almost universally accepted status because
of the old Regge theory (linear Regge trajectories) for hadrons, be-
because the strong coupling expansions (far from continuum physics)
led to such a potential and no phase transitions were observed, be-
cause it can be proven that a potential cannot grow faster in any
reasonable, acceptable field theory and because it admits a simple
interpretation in terms of a color electric flux tube connecting the
quark and antiquark, but not being allowed to spread out the vacuum
fluctuations of the color magnetic field (a dual super conductor).
But, of course, none of these observations prove confinement with a

linear potential.-

5.3. The String Tension in Three Dimensions and String Dynamics

The existence of a continuum string tension is much more well
established in three-dimensional non-abelian gauge theories. Maybe
this is not so surprisirng if one recalls that in two dimension con-
finement is a triviality since already the Coulomb potential grows
linearly,while in five and higher dimensions we have no confinement.
The MC-measurements in three dimensions illustrate nicely the remarks

above on the amount of "massage" one has to perform in order to get a
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Fig. 6.

Terms 1 and 3-7 are guadratic in 4),
terms 2 and 8-24 are guartic in (p
All respect c[) >-¢
The numbers at the sites indicate the power of CP

clear signal for the string tension. It also illustrates that with
sufficient insight in the physics it can be done and one can even
address in a quantitative way the question of string dynamics, there-
by showing the abiliity of MC-Simulations to penetrate to non-perturb-
ative regions, which has until now been inaccessible by other
methods. )

The scaling in three dimensions is different, for dimensional
reasons, than in four dimensions. The approach to the expected cri-
tical point g =00 is much faster in the sense that O-(8)~ ‘1//_5
(see (5.8)) instead of having an exponential fall off in ﬁ .
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Measurements of the string tension for the Wilson action and a
so-called improved action. /Z~1/gz ,but the second action is
more complicated and the ﬁ?—range is thererore different. /(1 is - a
physical length as in eq. (4.15) and for
scaling O7/A> should be constant
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In order to extract the area term from the measured Wilson loops

W it is convenient to get rid of the perimeter terms. Creutz de-

R,T
viced a simple trick [28), namely taking the ratio between various

Wilson loops with the same perimeter but different area. If we
assume that we have a reasonable representation of Vo T as
v
VVQ1~ = T UQ
/ le Boundarta(RXT )
(5.17)

Wa, = exp(- (O’(/s)RT"(‘C(bI(P:fT)‘fd@)*'" )

for R and T large enough, we define the so-called Creutz ratios

as (for instance)

XM =- IGB{WR,T'WQ—L T-1

~ L1
W= Woo T ’]—~ Cie 1t Ola, ™)

(5.18)

In fig. 8 these ratios are plotted for various values of /S and al-
though some convergence is seen, no élear picture emerges. Either
there is no string tension or /R, 1/T corrections spoil a clear
extraction of ¢ in (5.18).
are not likely to be of perturbative nature since the correlation
length

mics of the string!

It can be arqued that the corrections

f is small’compared to R. They have to come from the dyna-
Fortunately the- low frequency dynamics of the string can be
addressed in very general terms, as first realized by Liischer [29].

If we assume we have an effective action Seff "for the transverse

vibrations of the string XT(t .z
z=R:

with endpeoints fixed at 2z=0 and

S“H’ = & fJ’c Lﬁz ((axr)L tC, (DIXT)2+ >
(5.19)

only the first term is relevant for large distances.
Is the classical ground state <XT(z,t)>,= 0 stable to quantum
fluctuations? The answer is”no" 'since the variance <XT(z,t)> di-

verges: b
K o e lr=o) loey & -
T -~ o (5.20)

XPCzE)D ~ S,/R

Massless fluctuations want to delocalize the string completely and
only finite size effects provide a lower cut off in frequencies and
Prevent this.
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On the lattice we get a roughening transition when the gauge
coupling /5 becomes so weak that entropy will beat the finite energy

gap required to make any fluctuations of the string at all. For
/S> /aough we expect a transverse extension of the size (5.20).A
All the measurements shown in fig. 8 are for /g > he
roug
These massless modes lead to an (almost) universal correction to

the pure confining potential (5.12) of the form
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called the universal Liischer term.

constant
mir effect:
modes XT by the requirement that
and
of the effective action
since the eigenmodes are just ordinary harm

quencies GO = Tn/R we get:

=21
(dlq R[Tr - 0(‘/{2}) (5.21)

The universality (nb coupling
g but the Casi-

V(R) =6 R

s enter) is due to .the fact that it is nothin

1t is a finite size effect 1mposed on the transverse

X (t,z) should vanish at 2z=0
2=R. 1In fact we can easily calcula*e the zero mode fluctuations
(5.19) if only the leading term is kept:

onic oscillators with fre-

AV(R) = 12‘_ %1(&)“ = ( reaulurhc&)
i =g -GUn/?& TT (=) ~ EU
= 3 w - i
1 an nC IR Z; ne” /A
A L2 f e-oml
Y da Ty ‘I/\ (5.22)
= A

- /\larlT_"i 1y,
- A F ok otdR)

The first part is a volume contribution, a quadratic divergence inde-

pendent - of finite size. The next term
(5.21) is just counting the rumber of

The calculation can be refined to include the

is a genuine finite size

effect. The factor d-2 in

transverse dimensions.
is not infinite either.

finite size effect when T
s are taken into account we

When these universal 1/R correction

get a corrected value for the Creutz ratios, also shown in fig. 8,

and a very nice consistent value of ¢ (B) can be extracted.

Further 0’(/3) can be plotted for various values of /3 and com-
pared w1th cont.inuum scaling. As is seen in fig. 9 perfect scaling
is observed. [ 30, 31] } .

It should be emphasized that the dynamics of the QCD string is

important to understand. First it is a long standing conjecture that

s are strictly equivalent with some

pure non-abelian gauge theorie
This was in fact the main motivation

kind of bosonic string theory.

when Polyakov formulated his new guantization of the bosonic string.

ct with QCD it was necessary to have a con-
also in 4 dimensions.

In order to make conta
sistent formulation of the string theory

Secondly, the string dynamics will surely be of importance if we,want

to understand in detail the hadronization processes.
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5.4. Limitations of MC and the Quest for Intelligent Important
sampling

As has been apparent from the discussion above, the use orf MC
methods, especially in 4 dimensional QCD, has been limited byi two
factors: the exponential vanishing of the dimensionless physicalnob—
servables, like 0‘(/3), when we approach the continuum limit and the
exponential vanishing of our favorite observables like the Wilson
loop when we want to probe energies large compared to the vacuum.
While the first limitation is impossible to remove since it is the
very essence of quantum field theory, viewed as systehs of general-
ized spins approaching their critical point, the second limitation is
due to our present lack to generate anything but vacuum fluctuations
by MC-updating algorithms.

The reason that the Wilson loops fall of exponentially with the
potential energy V{(R) and therefore (assuming confinement) with the
distance R is that we are trying to extract a signal of increasing

energy from vacuum. The signals will become exponentially small when

they are most interesting and farest from perturbative physics, and-

we have no change of beating . this exponential fall off by MC, since
statistics only improve by 1//N, where N is the number of up-
datings. »

However, if we look at physics, the situations seems not unad-
voidable. The separation of a quark-antiquark pair does not cause
the  "decay of any observable! If we disfegard string vibrations
nothing is changed locally, say in the midpoint between the qq
pair, when we increase the distance. The Iocal color electric field
strength of the flux tube is unchanged (if we have confinement).

Clearly the only problem is our rather stupid importance sam-
pliﬂg of gauge configurations. Pure vacuum confiqurations have very
little -to do with the dominating field configurations for a qg
system separated at large distances. This problem is generic to all
MC-measurements. €an it be circumvented? No definite answer |is
known yet. but it is worth emphasizing that the potential gains are
enormous , much larger than what any new super-computer can give us.
Far that purpose let us discuss a toy model ‘'where a relevant impor-
tance sampling can be deviced.

Two~dimensional abelian gauge theory is of course a triwvial
theory and can be solved exactly. HNevertheless it is hard to nmeasure
Wilson loops by the reasons just mentioned, especially in the strong
coupling region. If we could only include the Wilson loop. in the
action everything would be changed, we would generate relevant con-
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picture of the QED string in 2 dimensions.

The charges are separated 10 lattice units

figufations. The problem with doing this is ?hat the1 "1 , z;t:::
exponent of the path integral makes the action comp}?x.th§; e
algorithms iike the Metropolis method or the heat.bat Te o

rd method for generating configurations with a

ense. One standa .
i however! The Langevin

prescribed probability distribution works,
equation

d X&)

§ SOx)) + P ) (5.23)
X = 7¢

t), a Gaussian distributed

i icticious time; and
e e, : distributed

will generate configurations X(t)

iable
iy to ' The equation makes for-

according to eS(¥) ih the limit t %>é0.
is complex and it works!
10 we have shown the measured and the calcul-
' The

in the case con-
mally sense even if § {

sidered here). At fig. s
ated string tension on a 20
: i by ch
agreement is perfect. Furthermore, ' .
ance . n other benefits. In this case
i i tring as is
our configurations directly give us & picture of the‘s g 2
shown in fig 11 ({see ref. {10, 11] for details). The expec

parated by the distance shown at fig.’ll_ls
conventional

lattice (or various values of /B).
oosing an appropriate impor-

tance sampling one will usually obtai

value of a Wilson loop se
107190 1t would just be impossible to measure by any

' i i i ious.
methods. The gain by a relevant importance sampling is obvi
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The method of complex Langevin has been applied by two various
systems. The principal chiral model in a (complex) external field
has been simulated by the method and again impressive results were
obtained [31]. However, for reasons not fully understood, it is not
a completely reliable method, and it seems hard to judge in which
applications it can be trusted [11,33]. Therefore we have to discard
it at the moment as a reliable tool. The examples where it works
show on the other hand the extreme significance of inventing new

methods for relevant importance sampling.
6. CONCLUSION

We have tried to convince the reader that MC-methods, having
their roots in the intimate connection between field theory and the
theory of critical phenomena, is a viable method for addressing a
broad class of non-perturbative questions of importance in contempo-
rary high energy physics. It is not a good substitute for an analyt-
ic understanding, but whether we like it or not, we have to face our
inability in making fast enough progress by purely analytical tools.
MC-methods are here to stay, especially since the computer power
available is still increasing fast, and they will be very valuable
both for getting out hard numbers and for testing the correctness of

new ideas.
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