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ON THE"’COMPOSITION LAW OF GROUP VECTOR *
PARAMETERS CONSEQUENCES AND APPLICATIONS
A.A.Bogush '
: B.I.Stfpanov Institute of Physics.” o
o National Academy of Sciencés of Bel.(‘l-vl"us.'x’l[inék‘ o
- The-efficiency ‘of the Fedorov's three-dimensional vector p:'uametriz:«ition*
(1958-1962) is demonstrated by listing of several applications of the simple cdm-’
position law for the group parameters in the theory of the Lorentz group as well
as in relativistic kinematics, in gauge and other nonlinear field theories. It is also
shown that the introduction of the four-dimensional quantum vector parame-
ters reveals new possibilities to use the composition law and related linearity
relations by solving specific problems in theory of the simplest quantum group
GL (2.6’); including a realization of the ¢-deformation procedure in itself.

‘Introduction.

The crucial constructive role and gleatest meaning of the Wmmetlv
ideas and invariance (covariance) conditions in the foundation and succes-
sive development of the modern theory of elementary particles and their
interactions are now very well known and generally accepted. 'In begin-
ning, to solve the physical problems the simplest infinitely small continuous
symmetry transformations were. ‘as a rule, used. In the Lie group theory
namely the infinitesimal approach has heen worked out very. well. The
possibility and- efficiency of the finite transformation use, in contrast to in-
finitesimal ones, depend essentially on the convenient choice of the group
parameters and on the simplicity of the composition rules connectmg these
parameters. : These aspects of the Lie group theory did not find, in fact,
an adequate presentation in the existing scientific literature addressed to
physmsts during a long time. In order to avoid such difficulties and to
fill the related gaps in the group theory, I.1.Tedorov (1911- 1994) 40 years
ago has developed systematically the vector- parametrization (VP) of the
rotation group SO(3.R) [1] and ﬁmtly worked out (1957-1959) the VP of
the Lorentz gronp SO(3.1) ) (see [

In this review report the main attent]on will be given to the results
which were obtained. by (levelopmg and applying of the VP during last
two decades and not. mc‘lu(le(l in the fundamental monograph (1979) of
F.L.Fedorov ™Loreit troup” [4].

In the Preface to the monograph [4] it was written: "In this book. the
comple\ vector pamnletumtmn _proposcd 20 years ago -by: the author.is
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firstly used-as the basis of the Lorentz group theory. In the framework of
such parametrization all the six parameters of an arbitrary Lorentz trans-
formation are joined into one three-dimensional complex vector obeying
the simplest composition law... . The complex vector parameters in con-
junction with the composition formula being the group multiplication ope-
ration, form a group which is isomorphic to the Lorentz group. Therefore
most properties of the Lorentz transformations may by obtained without
handling the matrices of these transformations, directly on the level of the
related vector parameters themselves... . Thus. the composition law of the
parameters plays the most fundamental role in the presented investigations
In the followmg some ploblems connected namely with the composi-
tion law and its consequences as well as with several therr applications will
be mainly considered.

1. Composition law and basic propertles of the vector para-
metrlzatlon

In.the framework of the VP the finite Lorentz transformation ma-:
trlx L € SO(3.1) of general type is presented as a product of two com-:

muting 4 x 4-matrices a(4) and () [2,3]:

L=Lq,q")= (@)oo (q”

1+ + ' - ~
aw(@ = (11T A (14 g) 7 ().

deﬁned correspondmgly by the three—drmenslonal complex vector parame-

ter ¢ = a + b and its complex conjugated vector parameter q* = a — ib.
Asa consequence, the vector parameters q and g* of the Lorentz trans-
formation matrices £ = £(q,q") (1. 1) are composed independently [2,3]: -

/ )
chzc"q{<q.’"">‘q’_ )

<q.q" >=q"
L,L,L"e SO3.1); q,q',¢9" € Q;
w1th ‘help of the simplest c0mp051t10n law [2,3]
< q,q >=

which has the same form as in the case of the three-dimensional real vector
parameters 1 of the rotation group SO(3.R) [1].

-

g

) €S50(3.1), (L.1)

= Eabep. (a, b c=1,2,3);

(@+4q"+[q.4N)(1 - qq")7", (1.3)

- 0'omr—u+q)‘u

This main property.: .of Lorentz group VP. made it possible to.con-
struct all the possrble finite drmensmnal representatlon operators of

_the b0(3 1), gloup by mal\lng dlrect use of the results obtained prevrously
in the framework of the SO(3. R)-VP [5].

The geometrlcal (physical) meanmg of the mtroduced Lorentz

\group vector parameters:is-also investigated with help.of composition law

(1.3). The comple\ vector parameter ¢ (g ") € Q of the Lorentz group is

“considered here as a composrtron of the real vector parameter of the space
hotatlon h. and of the nnagmaly vect01 palameter of the relat;ve motlon

w23

g = a~+“ ib=<niiudl gt =a=ib=<n,Zu>. 1 (14)

¢+ F.I:Fedorov has firstly unveiled the aim, meaning and concrete contents

of the procedure called " group ‘parametrization”: it is-necessaryto estab-
lish:and: to formulate:explicitly the.one-to-oneicorrespondence between a
LLie group and-its parameters.: As a result, it was proved that the multitude
Q of-vector parameters q of the group SO(3.1)-forms.a noncommutative
group: Q;:for.which the nonlinear:composition law’ (1.2), (1.3) plays the
role of the group: operation [4]..So, with help of this composition law the
basic correspondence relations for the group axioms are formulated [2,3].

As a consequence, partrcular ly, the followmg naturalness COl’ldlthl’lS are
introduced:[2-4]:¢ a0 B R

I IR v
BRSNS B O

Lo= Lo (o)) = (0,0, (15)

" The’ composition law (1.2), (1.3) has allowed ‘to treat the VP not only‘
as natural one, but also as a linear parametrization [4]. The’ nonhnear
srmrlauty tr ansformatlon realized, for example, for'the 2'x 2 matrlx L(O) =

(0)) €'SL(2. (2.C), by means' of matrices L' = L( )and L71'= CL(- q) :
leads to'the hnea1 transformatlon of the vector parameter q(o) w1th help

of the matrix O(q) € SO(3.C) [2,3]:

‘i.;,CH(q,q‘), L e (~q,-q"),

LL‘°’L"—L(Q)L(<J‘°’) ( ~q) = L(Q"”’) L'°

S 6 g,q®, g 5= O(Q)q‘°’=q’(°’ (L)
L=L(g) = (1+¢) (1 —iga), . 1. (LT)

04+ 2g7q + )07 =0 = 0(~q q)! (18)
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From the llnearlty relations (1 .6), when considering the similarity trans-
'formatlons as actlng on the group generators but not on the vector pa-
rameters, there follow the SL(2.C)- invariance conditions (smnlal to
ones estabhshed in the frarne“ml\ of SU(2) VP in [6])

L(fI)t"L( q) = Os(q)t* = O(—q)ast® = t"‘

- thlch define snmultaneously the transformation plopertles of the genera-
tors t* = cr“/2 of the group SL(2.C) expressed here in terms of the Pauli
' ,matrlces o = (0,). It is easy to see that the linearity relations (1 6) (see

(1.9)

[4]) as well as the invariance conditions (1.9) remain to be valid also for

aarbitrary finite-dimensional representation operators. for the group under
A consrderatlon
. The finite Lorentz transformation matrices and corresponding group
‘ representatlon operators as well as the related vector parameters may be
~expressed -in terms of physical quantities used for description of ‘the
elementary particle free states, i.e., in terms of energy momentum and
spin:vectors [7] In order to realize suclr possibility the vector parameters
- :which-.define in most general case the Lorentz transformation matrices
L= ,C(q, ) connectmg two arbitrary fixed four-vectors p = (p, ipp) and
P =P ip) (PP = p? -
compos1t10n rules (1.4) [7] On this basis the Lorentz group representation
operators T = T(q.q ) are constructed which realize a transition [7]. (see
also [4] and [8] '
T(q,q" )¢ = 92 (1.10)
where 2/)1 = 9*?(py) are the freeelernentary particle state
functlons ,
The change from the vector pararneters q and q of the 50(3 1 to
'the two mdependent three-dlmenswnal complex vector parameters q. =
a + tband g =c+id leads to the VP of the complex Lorentz group
,750(4 C). Naturally, these vector parameters. obey the same composition
law (1.2),(1.3) [9]. :
~ The simple operations with vector parameters allow one to separate,
classify and describe all the possible subgroups of the groups SO(4.C),
f%@ 1) and SO(3.C) by making direct use of the cornposmon law (see
4 ~
“The VP allows, as it has been done for the case of the SO(4.C) group,
the adequate quaternionic. formulation [10]. On this basis the con-
: 51stent ‘algebraic theory of the vectors in the Lobachevski space

-

P (Pl) and ¥,

10

= —m?). are found by :making direct use of ‘the -

[11] has been (levelope(l by using the (‘omposmon law (1.3) as surnrnatlon
opelahon for the nmo(lnc( »d vectors (biquaternions). Later. by (‘onslderlng
the l)lquatenuons defined over the complex as well as the so called dou-
ble and dual’ numbers, in addition to the usual complex Lorentz group:
SO(A4. C). ‘the two new space-time symmetry groups, SO(4. W) and
SO(4.¥), were introduced and studied. These three groups reflect the
specxﬁc geometllcal properties of the Minkowski, Euclidean and Galilei-.
Newton' spaces conebpondmgl\ [12.13]. . The related vector, palanletels,
(l)]quatelmons) obey. natumll\ om and the same (‘omposmon la\\ (l 3)

-2. Finite transformatlons in relativistic kinematics, in gauge
and other nonlinear field theories. : S , -
““a. The finite Lorentz transformations and their representations written
in the vector parametrical form have found, first of all, wide applications by
solving mauy-problems in 1elatn istic kinematics of the elementaly particle
interactions. : C ' .

For example, the. covariant approach (1961- 196)) to direct- calcula»
tion of interaction matrix elements (scattering amplitudes) for
polarized: elementary particles ‘was proposed and worked-out [7]. It is
based on-the usage of the constructed in the framework of the VP transi-
tion operators (1.10) from one given free particle state to arbitrary other,
when using for describing these states the projective dyadic matrices, the -

" general theory of which was worked out by F.I.Fedorov too [14]-

The first applications of such covariant calculation technique have shown
lts efficiency and have originated the wide successful researches in this area
which are being continued up to now (see, for example, [4.8]).

. The recent extended review paper [3] (1998) sums up the latest deve-
lopments and wide applications of the covariant approach to the calculation
of the scattering amplitudes based on introduction of the so called "dia--
gonal spin basis”. In the'Summary we read: "The review of recently deve-
lopednew techniques for covariant calculation of matrix elements in QED.:

“the so-called "formalism of Diagonal Spin Basis” (DSB), is presented. It

is applied to calculating of differential cross sections of processes when
polarization of particles is to be taken into account.. In contrast-to
methods of (CAL('UL-group, ctc.. the developed apploa(‘h is valid both for
nmassive fermions and for massless ones... We apply this formalism to the:
follomng processes: 1) Moller's and Bhal)ha's bremsstrahlung (eTe™ —:.
etemy) .. i2) Compton back-scattering ... (e +nvp —= ¢+7); 3) et e -pair.
plOdUCthll oo (Y417, = et 4¢€7); 4) Bethe-Heitler process in the case of a



linearly polarized photon emission by an electron with account for proton -

recoil’and formfactors; 5) the reaction ep — epy with proton polauzabllxtv‘
being taken inté dccount ...; 6) orthoposltromum 3-photon anmlulatlon’
(ete™ = 3y). The results obtained With the help of the developed DSB-i
formallsm CE‘ltlf\' its eﬂ‘ic1ency for calculatmg of multlpaltlcle plocesses,

when polauzatlou isto be taken into account”

““A new efficient and geuelal apploach to solve basic problems in 1ela-'_

tivistic kinematics was also developed [15] (see also monoglaph [16]) in the

framework of the quaternionic formulation of the Lorentz group VP [10]

and algebraic theory of the vectors in Lobachevski space [11].
b. ‘In-the frames.of the VP of :SU(2) the transition from the global

transformations {7 = {/(n) € SU(2).:to the local (gauge) finite transfor-:

mations U/(x) reduces oiily to the simiple redefinition of the vector para-
meter: 1. — n(x):[6].

plicitly. the transformation properties- of :the -Yang-Mills gauge-field vec-
tor .potentials b, (x) = (

O(z) = O(n(

‘pal chiral fields of the SO(3.R) group in the vector parametrical form. This
‘equation becomes solvable in the two-dimensional space-time and allows

the emstence of soliton-like solutions [18]. The differential Cartan form
(z) has been also explessed in“terms of local vector parameters’

dU(z)U~

n(z) of the gauge group SU(2) [19] with help of the composition law (see

(1.3)), without making direct use of the explicit expressions for the local
transformation matrices. The most of these results were later extended to
‘the wide set of gauge (supergauge) groups and effectively used in study "
-of actual: nonlinear field .models. So, for example, in the Summary of the "
recent (1994) review paper [20] ‘it was written:» ?The-review.is ‘devoted to§ T
- the deyelopment of the method of :vector parametrlzatlon and its appllca-"“
~ tions to the gauge and chiral field theories. The direct connection betwees
" the Cartan’forms and the law of composition of parameters is established;
The explicit' form™
of finite gauge transformations for the groups of local unitary, space-time
»symmetrxes and supersymmet1y aud of the nonllnear reallzatlons of gra-'

‘not: ;resolving Cartan-Maurer’s differential-equations.’

-
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iplest quantum (¢-deformed) groups (see [21]).

All the relations of the VP, including the simple
composition law, remain ‘to be valid for the local vegtor parameters too.
That allowed one to derive firstly the basic relations which define ex-.

b%(x)) under the-finite (instead:of-the infinite’
small ones, as it has been done previously) gauge (local) transformations
z)) [6]. - As a consequence, some important:problems in:the’
gauge field.theory were considered on this basis. Particularly, the nonlinear:
equation and related Lagrangian [17] have been introduced for theé princi-’

vity and supergravl ity are, obtained.. The Cartan forms, the Lagrang1ans of

the p11nc1pal (‘lmal and Goldstone fields for.unitary groups. U(2), SU(2),
[7(3), SU(3) are found which have the new types of nonhnearlty the

vector palametels of 80(3) are used as collectlve coordlnates of skyrmlons

L ge

3. COITIpOSlthl‘l law for 4-dimensional quantum vector para-

meters and linearity relations.
-a. Recently it:was- shown_ that VP may be also-extended to the sim-
Below; as an example,

some new possibilities to make direct use of the composition rules for the

‘tntroduced four-dimensional ‘quantum vector parameters in the theory of

the quantum group G'Lg(2.C) will be demonstrated.
It is known that the q—deformed group GLq(2 C’) may be deﬁned as a

‘set- of the 2% )—mqtuces

e AL s ;llfféol:l(.(é (2) € GL,(2.C), .~ - (31)

the elements &, b e dof "vlfhivch are treated as some operators satisfying
the following commutation relations:

S

ab = gba, bd = ¢db, bc = cb aé = qca cd qdc, ad da = (q q )hé (3.2)

' wheleas the quantum determinant D(O) of the matrlx M, (0) (3.1) takes the

form: . NI -
"-“fi’”*Dyhs®%M$=ad;qw=da—qiw.h;‘h;j&@
(Complex number ¢ is the quantum deformation parameter.) ‘

The basic quantum relations (3.2) and (3. 3) may be introduced in vari-
ous ways. One of them is based on the usage of quantum analogues of the
simplectic conditions and (see, for example, (22]) allows one to obtain the
exphat quantum e\pless1on for the inverse matrix:

wprtepprt (4 B
A \-q¢a ) o

T he cr uc1al role in the framework of-a such g¢-deformation: procedure
based on the 1ndependent introduction of the inverse quantum matrlx be-

longs to the ewdent conditions

Yo,

’MM*_M*M_Q,“- (3.5)

:13



as deﬁrung ones. The direct substitution of the quantum matrices M(o)

(3. 1) and M(O)_ (3.4) into formulas (3. 5) leads 1mmed1ately to the basnc
'quantum 1elat10ns (3.2) and (3.3). :
'b.- Let us to consider a natural modification of the above ¢- -deformation

procedure in itself. : ,
‘In order to realize such possibility, we deﬁne the 1elatlons (see (3.1))

"‘Mﬁ(: 3)—>M§°’=(‘g 2)—)77,,M 0= My

_where M € GL(2.C), M®, M, € GL

D2 5 x ‘2-matrices are mtloduced

J(2. (') and the specml transformation

~ 3

-

- l/-’l i0 . ) - ) _1/4 0 o :
q -1 -nw_ [ q -
n, =nlg) = ( 0 q_1/4 ),m, =n(qg )= ( 0 /4 ) (3.7)

‘As a result the new expression for the quantum 2 X 2-matrix M, is ob-v'

tained: - 12§ :
@ ¢ .
M, = ( e g ) .. (35)
i ‘The new inverse quantum matrix 7
G d =gy
M, ' = D, ! ( 1/2* q& ) (39)

may be also found by introducing, by analogy - w1th formulas (3.6), the
foHowmg relations: -

-

5 DM—I — ( d —-b) . D(O)M'IV(O)—I - ( d‘, i
T g g A

A—c «a

O
N
'

Y D(O)n"lM’(o) 1. _ D'M

The substitution of the new quantum matrices M (3.8) and M -1 (3 9)

depending now explicitly from two different deformatlon parameters g'/?

‘and ¢~/2 into defining conditions (3.5) leads to the same as above basic

"quantum relations (3.2) and (3.3). In bUCh a way the proposed: approach

is- verlﬁed P v

‘. ' We will show below that one can reformulate the operatlons (3. 6)-'

7 :and (3 10) in a simiple vector parametrical form directly.

14

(3.6)

(3.10)

First of all. let us remind that the quantum 2

x 2-matrix. M9 (3.1).
written in terms of the ordinary Pauli matrices

o= lio0=il0). T =1(00) 0,00= b+ icusce (3.11)
takesy the followiug compact form:’
M® = it = g — itho = MO(h) € GL(2.C).  (3.12)
where naniely the set of four quantities
o (rirg. 1ty igaiiiz) = (ihg, M) = 1 (3.13)

defines the four-dimensional quantum vector parameter of the g-deformed
9 " .re e - . 0)-
group GL,(2.C’'). The auxiliary “inverse” quantum matrix U’() ! (see
(3.4)) entering in the formulas (3.10) may be also written in the vector
parametrical form:
-v\I(U)"l =—iD;'nr'e,  m' = (nig, —Th).

(3.14)

Itis easy to establish, by using the properties (3 11) of the Pauli ma-

trices, that for the introduced quantum vector parameters 1 (3.13) of the

" quantum group ('L, (2.C') the folloumg composition rules (compare with
(1.2),(1.3)) are valid [21]:

M“)M(” = \l“) M n? >= H® = (m m®)
-1712,3) = z?zf,”ﬁsz’ — M, (3.15)
M = 771(1)Th(2) + m(l)m(‘l) + [‘ﬁl“)fn(z)]'

MY = M (M) M = Al (i AL = M, ().

Naturally Lhese (omposltlon rules couserve their formt for the classical

four-dimensional vector parameters of the group GL(2.C) too.
Then, by taking into account the relations (3.6) and (3.10), in which
the matrices 1, (3.7) way be treated as classical transformation matri-

~ces, we will cousider the general case of similarity transformation for the

quantum matrix M = M,(0©®) = A, (0, hm ) (3.12) realized with
lielp of classical 2x 7-ll|'lll|(‘(‘s M= \I(m) = M(my.m) and M~'(m) =
D- ’M(m ) = D" M (g, —~m):



MM OM =M, — :
(0 - ,(0)

,'4, I D! & (mo. m) (m(O). 7 (U)).(mu.——m) >= (713’0' .m'" )
' (3.16)
m' 0 = D7 (my? + m? )m(u) = méo).
n}/(o) = D! [m'f, —‘m + 2(mem* +m - m)]rh(o)
& (myg,m), (m (0)) (mg,—m) >= .
(0) [0}~ (0) ~ (0} (3.17)
= L{mg.m)(1y ', (0)) (m ,m" ) =m"", i
‘ L = L(m) = L(my, m ) ; (0 O(m ) .
U O(m) =[me? —m?42mem* +m - m)](me? +m? e 0(3(')4 (31b) ~

X
a

m>X = gy, (M- M)y = Mmemy,.

d. Now. we can consider the above transformations (3.6) and (3.10)
-by mal\mg direct use-of the obtained genﬂahzed hneaut\ wlatlons (3. l())
In begmnmg, let us rewrite in the e\p11c1t vector- pal ametrical form the
transformatlon matrices 7, and 7 =1 (3.7): : :

a4 = ((5070,0’(‘3);
a = ((t - 07 0, 01 "'(‘3);
a3 = (z/’ 1/4 - —1/4)-

Ny = ag —tazos = M(a),
T]q = ap + lazoy = M(a )s
— (1/) ql/4+q—1/-l ).

Then, by using the lmeauty 1elat10ns (3. 16) we can present the trans-

: formatlon (3.6) for the quantum matrix M;O’ (3. 12), in the followmg form:§

o M(a)M(O’(m)M(a) (<<a m,d >> =M, (m( 112) 9) '(3.20)
| where(see(‘ill) (3.19)) ' | -
BRI A': L a,m,d" >= L( ) ' (ql"2 [m m( 1/2)1, , (321)
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(3.19f

M = M

r 0 00 v ,

0wy w0 ' 12 4 g=1/2)
. . wa = (1/2 +q7?,

0 S ] e =2 Y

o 001 | (3.22)
a)—-L(a) L(a') = L(ao,OU as). - ’

As a lebllll we find the fom dlmelmonal quantum vect01 parametel
. m(g'?) ["70(611/2) . (ql/l)]» 7"0((11/2):"10,
m(q’ )= 1/2) ma(q'%), ms(q'%)] =

(3.23)
. [u.(+)(ml + 2077'12) w(+)(m2 - zaml) mal; .
—w(- )/wm = (1-q)/(1+q) =alg)=a=—a(g™)
which deﬁnes the transformed qqgntum ma.trix M € GL (2.C) (3.8)

UM = My[m(¢MA)] = Mo m(q )] = g im(@ e, (3.24)
In a similar way, after rewriting the relations (3 10) in the vector para-

metrical form (see (3.14)) we will have

DM‘ = = D~ lll/[(mo,—m) m0+zma'—) .

—)D(O)AI'(O)_ = mo+lm0’—>D 1M( )M,(O) lM( ) (3 25

i M(a )A['(O) 1M( ) M (<<a m/, a>>) D M“

| ; '(3;26‘)
<< . m' a >> - (a)m’— m(q ‘1/2) .

Hence the exp11c1t exp1 ession for:the quantum vector pa.ra.meter m' (q‘l/ 2) fol-

lows (see 3.19)):

-m(qg~'/?)],

g = oy (1'122') 7l ),
iﬁih(‘f‘”) = tho, ( l/2) = ( ((I l/2) "72(§—1/2) "13(‘1_1/2)__ (3.27),

= {wiy(hy — zamg) w(+)(m2 + zaml yma},

Wheleas the related inverse qua.ntum matrix M -1 (3 9) takes the following
vector-parametrical form: - '
)=

=MD (g™ )] = D fotim(g /2o, (3.28)

ey

gn’Jt{:ndJ‘ !::;a.. Ea;\;iw
| WISBNETR necsezosastd) ? :



It is clear that for the obtained quantum matrices M [m(q"/?)] (3.24)
the composition law (3.15) remains to be valid, provided the evident change
of the quantum vector palametels is taken into account (see (3.13) and
(3.23))

m = (mg,m) — m(ql/2) = (mo m(q'/?) )

Now, by substituting the quantum matrices M, (3.24) and M7 1(3.28)
into basic conditions (3.5) and applying the composition Jaw (3 15) only
(I2 = M,(1,0)):

M,,M;l =1 - YDq"l < m(g"?),m(g"/?) >= (1,0),

M,™ "M, = I, = D7 < m(g™ %), m(¢"?) >= (1.0)

we get the basic quantum relations (3.2) and (3.3) written in the following
compact vector pa.rametrical form (see [21]):

[m(¢'*)m (’q"‘”)]—
[m(g7*)ym

—rhom(q~ 1/2) + m(ql/?)ﬁlo, -
)] = rgm(g?) — m(g 2y (3-29)

D, = det,M, = rnging + m(¢'?)ym(q~1?).
the g-deformed Lie algebra of the quantum group is introduced and used.
In order to realize such a possibility let us return to the formula (1.9)

which follows directly from the linearity relations (1. 6) and defines the
transformation properties of the Pauli matrices. In fact, starting from the

similarity transformations (3.6) and (3.10) taken in the four-dimensional
vector parametrical forms (3.20)-(3.22) and (3.25). (3.‘26), in accordance

with the generalized relations (3.15)-(3.19), we can write

MO = —iM(a YoM (a') = ~i(L(a)n)o =—imL™ (a)o = M,,
M, = —itho, = g — ithoy,, o, = L™ (a)o (3.32).
and correspondingly: ‘ }
. D;’n;lj’\/[;o)"lnq = —iAZ/IA(v(‘l.')ﬁz.'aM(a) = (3.33)
= —i(L7!(apit')o = —im'L(a)o = —it'G, = DM, o
M;! =D; M, ()= —iD; lﬁr’&q_ Yrot+ima,), &,=L(a)o. (3.34)
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(3.30)

e. All the above investigations may be also extended on the cases when

(3.31)

As a result. we obtain two sets of the ¢-deformed Pauli matrices:

: /10 _ o= 8
T T (() 1 ) I UL .('3 35)
D)D)

e (0 —igTV? _ (1Y 0N
;,”29.;,‘?'&?"%*.’*“-’”"(:q'” 0. /) % =%= 0 1)

S oy AN Y
él)ll =00.= (() ‘ ] ) T1q = “(4+)01 + )02 = (([—1/2 0 (3 3())

S . 0 —igl/? :
id “';0'21,‘: .,c‘+,0’~)_ —_ lw‘(_)O’] = i(1_1/2 0 . 03¢ = 03.

The both sets of matrices o, (3.35) and 7, (3.36) satisfy the same as
in classical case relations (3.11): 0,400, = dop + 1€abeOcq AN Taylpy =
dab +18abeFs4- In order to reflect the specific quantum properties of the
g-deformed group (/L,(2.C") we introduce the evident relations connecting
among themselves the above two sets (see (3.32). (3.34)):

Ha))eal L(a))asl s + i€abjoy),

OcqOdqg = (L™

_ L (337

Gerty = (L@))eal L™ (@))as(Bs + icangry). (3:30)

“Actually. by substituting, as above, the quantum matrices M, = ~iro,
(3.32) and M7 = =—iDy L a, (3.34) into defining conditions (3 5) aud by

using name]\ the l(‘lall()ns (3.37) we get to the basic (‘()mmutatlon mlr\tlous

(see (3.2)) [21]:

i)l =0, 2pRgahg)- = —i(g— ¢7h)RE +2),

[1?1.1.‘——1?1'.-,]i"= fa(£q)finaig)z. [y, ﬁ)g]i = ia(Eq)[n,. 1?)@]; '

which coincide, naturally, with the general relations (3.29) (see explicit -
“expressions for m(q'/?) (3.23) and m(q~'/?) (3.27)).

At last, the following schema for trausition GL(2.C) —» GL, . (2.C ) in

tho flamewml\ of the VP may be given:

M = MO = My =g, MO

m(q?) = L(a)i, o; v

n, gi—m. o= < . -
b { m, o, = L™ (a)o;
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TR T A "’4" ,\f"“”"'i
. M,
» -2y
~ : m L™ (a m', o
.m, oi—=m, oi— (q _ )= ( )
: m', o, = L(a)a’
| “Thus, we have demonstrated tll‘at n t.lvx‘e lfl;allle\\;dl‘k of the four-dimensio-
nal VP the basic problems of the g-deformed group GL,(2.C’), including

‘the g-deformation procedure in itself. may be solved in simple and natu- -

ral way by making use of composition law and linearity relations, i.e., by
operating only with the quantum'vector parameters, without making di-
rect use of the e\l)ll(‘lt eqnessnons for, the finite quantum transformation
matrices.- : Lo X

... Conclusion.

: Fmally we can conclude that the vector palametnzatlon worked out by

E.L Fedorov 40 years ago turned out to be very general and fruitful method -

in" ‘the Lie group théory and in its phy swal applications. This approach

may be indeed consldeled as forming a foundation for elabmatlon of the .

general finite svmmetu (geometrical, dynamical and quantum) transfor-
mation technlque for using in the the01y of elementary particles and their
1nteract10ns

‘The work is suppmted by Belalussnan Repul)llcan I‘oundatlon f01 .\(1_
Vvanced Studies. - Co ’
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TWO-GAUGE VERTEX FUNCTION IN METHOD
(OF FUNCTIONAL INTEGRATION

-+A. Fursin:;
GS TU, Belarus

Abstract

Gauge invariation exactly dictates a kind of interaction between
fundamenta] fields. Special attention must be attached to the de-
velopment of methods of the gauge field theory. In the article pre-
“sented, with the help of mathematical apparatus of functional in-
* tegration, the gauge equation for' Lagrangians has been obtained
which are invariant towards local transformation of groups U(1),
: SU(2), SU(3). With the help of generating functionals, calculated
in“the raw according to perturbation theory, these equations are
. é]lecke(l in bottom orders.

- Poiﬁiingindependehce of Lagrangian L towards gauge transformations,
generating functional .will be infinite. To obtain the final value, it is nec-
essary to fix qauge quotient. As the result, functional integral will not be
taken according to fields, connected with each other by gauge transforma-
tions.” Strict mathematical description of this evidence, quotes in case of
non-abelian fields to coming out'of non-physical fields of Faddeev-Popov.
The above mentioned words can be considered as, at some extend, mathe-
matlcal tucl\ and by choosing of specific gauge calibration their contnbu-
tion can be eliminated . Such gauges exist, for example, axial, determinied
by relation

1. U(1)-symmetry. Quantum:Electrodynamics.

The gauge equation for 1-photon vertex function was con51dered in [1-2].
For the case of non-abelian group, this consxderatlon was generahzed in [3-
4]. The equation for 2-photor Tunction follows from the gauge invariation
of quantum electlo(lynamlcs (QED) Thlb pr mclple results in equatlon [5]):

. ) ==3D0. :
ajéA,‘,(;lrr)j 61/( )1/(T)+z 2./)(.'?) ‘[)(I) Rt (2)

LN
[V

A% =3D0, t',=3D—1. (1)

Executing the third functional derivative of the equation (2) accordhig to
fields A,. . ¢ and make an equal to v = 3Dv = 3D 4, = 3D0. we obtain

in th= e momentun representation

~ D257 (p) '
fis . —_ - ‘
Qp-0.0:p) =355 (3)

This equation is determined for2-photon vertex. function. Decomposing
generating functional in the raw. we have to (‘ll(‘Cl\ llns formula in the two
hottom orders. We have

Q" (p.0.0.p) = 3D0. ‘ ' o (—1)
As the opposite electron propagator :S~1(p) = 3D7,p* — m = in bottoni

order o
S (p)

: 0]’/101)1/ = SDO | (;))

In the next order-the investment in- Q**(p, 0,0, p) and after all trans-
formations gives only. one diagram of generating functional ~

Q™™ (p,0,0.p) = .
= 3Die? f V\S(p = k)y*S(p — k) S(p = k?S(p — K)Dau(k)dk (g
Fie? [ 4\5(p — 2 S(p = K" S(p = K”S(p = k) Dao (k).

As the opposite electron propagator in the second order of momentuin’
representation has the form

S1-1(3) = 3Die? /7 (p — k) D\w(k)dk' S “(7)

we ol)tam the coincidence in the formula of right- han(l and left-hand slcles
in the second order. ‘

2. Non-abelian gauge fields. SU(2) symmetry Spinor case..

Let spinor ¢ is the dublet of group SU(2), then the law of its tlaIISfOI-/
mation

. d. R k
— Y = 3D(~“‘;l.‘])(l;T1\)‘d’, (8)
where 7— Pauli-matrix, A— arbitrary real functions.
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- Let’s impose the consideration.of gauge m(lependence upon the gener-

atlng functional

o 67 = 3D0. I (9)
"The unknown before equation has the form
| st st
= x A (v +£()“ _?I —
A,(x) 9 84ma) a0
ST P (o) + F) ) = 3D0
— =1 TY(X N )T — =. .
2\ Su(x) som) =

Executing the second functional derivative of the last equation according
to fields ¥(xy). «{y1) putting down v = 3D¢ = 3D. 4‘, = 3D0. As the
lesult we will have i1 the momentum representation ,

708 p) -

I‘(pO]))—}D——

2 Jdp* (1)

.. We will obtain gauge equation for double-fermions vertex function. Ex-

ecuting functional derivative (10) according to fields ¥, v, A, and consider-

them equal to zero. We have

P57 ()

12
Op*dp” (12)

Q (p,0,0; p).= 3045"

g

As the bottom order the quantity Qw(p 0.0; p) is zero, We have also zero
“value in the right part (12), because S~! = 3D~*p, — m.

‘ 3 Non-abelian gauge case. SU(2) - symmetry. Vector case.

Let field ¢ has three cornponents qb = 3D(¢1,¢2,¢3) and has the fol-

lowing law of transportation

§— ¢ =3DeliMg, }_ oy

whele I - matux genelatms (Ii)mn = 3D — i€imn. Imposing condition of

" gauge independence (9) upon the generating functiorial we will have the

following equation “ -
| T TR PO AT
= x Au(z) + -8 + —=—x ¢(z) = 3D0. 14)

Executing the second functional derivative of the last equality in the mo-
mentwn represeutation we will have

09’ '(p)

F‘d“(p 0. p)*— 3Die® F

(15)

- We will obtain gauge equatlon for two-bozone vertex function. As the
result we have

S ‘ L A&-1
(IuluQ:inf e 0 0 P) :'«3D:].)-(6bea6bdf + ebefebda)aaiua(;?' (16)

For proving of this ‘equation let’s make calculatlon of quantlty ;
Qe “f(p 0,0;p) i in the bottorn 01de1 o

uy L )
taiaf P 0 0 P) = 3D6u,,( bea bdf+ ebej bda) ORI (17)
The second derivative S=' = 3Dp 1-_—»1712'has the value 26,,, what proves

the gauge equation in the bottom order

4. Non-abelian case. SU(3) symmetry Gauge equatlon for ,.v
two- gluon function. :

Let ﬁeld q'(z) has the followmg law of transformatlon ,
qu = 3De (iot® A“}q R (18)

where t*— Gel- Mann matu‘{ A arbltlary 1eal functlons Let s 1mpose
the consideration of gauge mdependence upon the generatmg functlonal
Futher transformations bring into the following equation

1'“I~‘Z(p, rp+r)=3Dt(G (p+r) - G (p)). h (19)

Let r to the zero we obtain

~—1
f(p,0,p) = 3pe 9GP (20)
dp*

We will obtain the gauge equat1on for two-gluon function, executing
functional derivative and consider them equal to zero. We ha.ve in the

" momentum representation

10G1(8) 0 ,u
uu(p’o 0;p) = 3D'2- ap ua v [t ]+ - (21)
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‘5.Conclusion:: . .F i

Let generators M“ determine some representation of group U(1), SU(2)
-and SU(3). Then, the above obtained gauge equations can be generalized:

- . 29571(p) .
Catp,0.p) = 3D — Mo =55 202, (22)
-2‘§~—1 !
ab 1925 () [(MeMb),. (23)

o Q"‘b(p,0,0;p) =3D

2 dp*dpr

The gauge equation obtained in the presented article; can be used in
the overnormalized theory. The method described in this.article presents
interest in finding gauge equations for connected states, because only in
.connected states. the gauge equation theories run into-essential difficulties.
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Abstract v
We investigate two wide classes quantum field models with non-éompax;t )
group symmetry: Yang-Mills theories with non-compact semi-simple groups
' symmetries and non-compact sigma model. We show that quantization of
this models are self-consistent and describe by unitary physical S-matrix.
The conditions of absence of chiral anomalies in both types of models are
considered. General principles of correct quantization realistic quantum
field theries with indefinite metrics are stated.- g N

1 Introduction

Recently the"n'on-compact groups of the internal sym(metry' very often apf)eé.'r‘
in’ different models of quantum field theory.We enumerate papers on nonlin-
ear non-compact sigma models !, gauge theorics including gravitation?,Grand
Unification Theory 3, superstrings %and others.However, the use of the non-
compact groups in particle physics generates some difficulties. In particular
if the unitary representation of such groups which are infinite dimentional are
used, a general principle of separation from such representations the finite di-

mentional subspaces with physical content is necessary.If the finite-dimensional.

(nqr}-uniyary)_;epresen_tations are used, an indefinite metric appears in the quan-

tum state space of the corresponding theory, providing a positive hamiltonian
definiteness and as a consequence there is a possibility of the appearance of the

negative probabilities and S-matrix nonunitary. There are two methods of the,
obtaining the self-consistentnt quantum theories in the spaces with the indefi-|

nite metrics. The first one is to eliminate this metrics in the physical space states

the appropriate condition on the state vectors. Such a method is good enough

for a relativistic invariant formilation of the non-abelian Yang-Mills field with

compact group in the procedure of the BRST-quantization® , the theory of the

bosonic strings and superstrings®, other quantum field theories . However, it
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seems that this method isn’t suitable for many theories with non-compact group
of the symmetries. In particular it is impossible to formulate a self-consistent
Yang-Mills quantum theory with non-compact group without the negative norm

“and it was already shown for the "minimum” non-abelian non-compact group

" SL (2;C) in Ref.7:The samé is'in the non-compact sigma models: the quan-
tization in the space with definite norm is incorrect®. In the present report, we
show that two wide classes of the quantum theories’ with non-c ompact groups
of the internal symmetry: Yang-Mills field with non-compact semi-simple group
and non-compact sigma model are correct quantized with using space with in-
definite metric.We give sufficient condition to garantee that the quantum field
model with mdeﬁmte metrlc had correct quantrzatron

2 Spaces of states w1th 1ndeﬁn1te metric.

-2.1 Operationals decomposxtlons in the space with
indefinite metric.

Let us consider space w1th non—degenerated indefinite metric () and fixed
decomposxtlon '

CH=HteH- . @)

" We exclude degenerated states | v) with property (H -| v) = 0.We shall term
""" such spaces in the further as the Krein spaces according to used terminology?.
** “Then following propositions about H take place!®?!
" Propositionl. Let A[H] is an algebra of operators on ‘the’ H Then there is

R umque decomposition for any operator x.€ A[H] : 5 = ¢ + v where operator
-+ ¢ preserves Hilbert sectors H*,H™ ie. s:HY — H+ ,H~ — Hr and

v mixes theirs v : HY — H H™ :?;) H +.S0 we have decomposrtlon A[H]
",‘, the drrect sum :

e CAH = AHQAH) L (22),
" Where AO[H ] 1s an ‘operator algebra presrervmg H +, H = and A [H ] is
the subspace ‘mixing theirs. "

Let < .and v be a dxagonal and cross—dxagonal part of the operator x respec-‘,

tlvely

Evrdently that ¢ can be consrdered as an operator in Hrlbert spaces H + H -
but only with different ; sign of metrics. In order there not be any confusron, we
sha.ll use notatlons of the hermltlan conjugation’ and herm1t1c1ty of the operator
, which are srmllarly used i in’ ‘the’ sign-defined metrrw ot is stated in Ref4
the orrespondence of such a termmology wrth case of the mathematxcal Krein
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Proposition 2. Let (2.2) be a canonical development of the operator s in
the Krein space H: with the indefinite metrics. - Then if s is hermrtxa.n (cross—
hermitian) then the operators ¢ and v are the same. . :
2.2 Observables in the space of states w1th mdeﬁmte met-

rlc

However not a.ll operators in the space wrth mdeﬁnxte metrus may be consxdered
as observables..In particular for the operators of the type Ai[H]:, i.e. the
operators.which coincide with their cross-diagonal part, it.is true the following.

Proposition -3, - Average value of-the any v € Al[H ] hermrtxa.n (cross—
hermitian) operator for any eigen state. is zero..

If we suppose a.existence of the full. system of muta.lly orthogonal ergen
states for. any. physrcal mterestmg operator from .A[H], then one can. obta.m
immediately- .

Proposition 3*. Average value of the any v EA [H] herlmtlan (cross-
hermitian) operator for any state © € H is zero, i.e.(®:| v.| ©).-.

Such operators 3 € A[H] with non-zero v can not be observables. That is
why 1t. is 1mportant to consxder only operators of the dxagonal type as observ-
spaces wrch sign-defined norm respectively. . The, operator of a such; type ob-
viously has a spectrum which is a unification of its spectra on H + H-, and
obviously it is the same system of eigen states. :It.is necessary to note that
canonical Krein symmetry ‘J on H has the followmg properties: Jy+ = 1,
Jr--=—=1[Ref.9]; commutates with algebra - Ag[H] and anticommutates’ with
space A;[H]. Consequently, if H is the quantum state space of some physical
system then canonical Krein symmetry J commutates with arbxtrary observable
and vice versa : the’ observable in His, descnbed by the operators ‘which com-
mutes’ wrth thé canonical Krein’ symmetry J Therefore, we' have the followmg

‘Statement : let we have physxcal system 'with ‘Lagrangian L generating space
of states with indefinite metric . H = H* @ H~ in the secondary-quantized
theory. And theory has a discrete symmetry D which induced canonical Krein
operator J on H.

“Then D'is deﬁned the superselectron rule for the glven theory

. x.-.-:'é’

2.3 Cluster property

Let us consider the problem on cluster property in the consrdered theory The
property of cluster decomposrtlon may be. formulated for example, in the fol—
lowing way: ¥

(vac| C(z)B(y) | vac) .- (vac I c (x) l vac)(vaf—‘l B(y) lvaf—‘) (2-3)

- where C(z), B(y) are two local operators.- Equatxon (2. 3) is vahd for the
operators Ag[H], at least, for the H* sector. In particular it is true when (C’(a:),
B(y)) € Ao[H™] is the cluster property, it is equal to vacuum unique existence
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according to proposition 7.1 of Ref.12. Taking into account the above mentioned
it is evident that if the C(z), B(y) arethe operators belong to A(H), then (2.3)
will not be fulfilled as it is generally impossible "to divide”the A(z)B(y) product
into two operators. If they belong to A, (H) (e.g.), then the left part of (2.3)
can and can not be equal to zero, at the same time the right part, in this case,is
always equal to zero. It means in the discussed theory that it is impossible to
select a partical state with the opposite (here negative) sign of the norm from
the multipartical state. Actually it can be treated in this theory as the presence
of the property of -confinement. . Note also that while considering the cluster
- property we imply imlicitly or explicitly that the state space is Hilbert space
witha sign-defined metric but it is not pseudo-Hilbert space as otherwise a
zero norm may appear in the intermediate states . But of course, it is realised,
“if in the space with indefinite metric the cluster property may be implied in
the projection on the superselected sectors.Naturally the above mentioned is
not final conclusion and a further analysis is neccessary as the given problem
appears in any theory of supergravitation in which a scalar sector is described
as a non-compact sigma model.

3. Yang-Mills quantum fields with non-compact
sem1-31mple group.

3 1 D-symmetry of the Quantum Lagrangian
T he. effective quantum Lagrangian of the Yang-Mllls field with non-compact
\sem1-31mple group G has the form

LE =map (4FAF#4B +i04¢A(D,7)P +0,B4 A7 — % BAB”) (3.1)

‘where ¢4, &% are ghost (antighost) fields respectively, the multiplet of Nakanishi-

Lautrup fields B4 appears as in Ref. 13 and two last terms-in (3.1) fix gauge;

the Killing-metric-n4p- of the group G is negative on some maximal compact
subalgebra-g C § and positively defined on the orthogonal complement gtto g

td=g+ g ,where g is algebra L1e of G and g is on some maximal compact

subgroup GcC G
The Cartan involution D on g ,retaining g and being a reflection on g* may
be extended to the fields c4,c%,BM, Al

: D(r4) = - nABTB (3.2
where T is any of the above mentioned fields. ‘
“Taking into account the commutatition relations on §

. lsdce, lmgt1Cet lotet1Ce (3.3)
’ one can see that D acts self—consxstenly on F .y

D(FA) = — nanFL (3.4)
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A . : B u
and hence retains LG . Thus, D is the discrete symmetry of Lagrangian
L1 As is known such Lagrangkm has BRST. symmetry its transformations
have the form

6AA(::) ,\(D,,c(z))A . (35A)
5c"(z)= fasc (:z:)cc(z) | . (3.5B)
5eh (z) =, i/\BA(a:); : y (3.5C)
5BA(z) = 0 S e 5D)

here fT‘ are btructural constant g, Ais the Grassmanlan parameter Obvxously
the operator D commutes w1th BRST charge Qu :
[D,Qp] = ' (3.6)

Actually the formula (3. 6) is a direct consequence of (3. 5)

3.2 Quantization. Superselection rule.

The realization of the quantization procedure on the basis (3. 1) differs from
the compact case only by the use of the additional sxgn—xndeﬁnlte multiplier
nap In particular,the total space of the asymptotic states V has the additional
indefiniteness which is connected to nap. If H C Vis'a subspace, generated by
the transverse modes of the gauge fields, then H has nondegenerated 1ndeﬁn1te
metric and H is a dxrect sum of H* and H- o
H=HtoH"- B (3 7)
where:Htis generated by the arbitrary number of operators of the asymp-
totic fields ax(k)(ax (k') with 95 = —1 and their even numbers with 55 =1;
the definition of H~ is characterized by the same assumption but one can con-
sider also the odd numbers of operators with.npp = 1. Here X',A ='1,2
characterizes the polarlzatlon value and operator commutators have the form

(54 (k),ak.*'(k ==\ S - - (3.8)

Defining Vphy, by the standard way o oo

Vobge = {lu>€V:Qplv>= OorKerQ} (3.9)

we obtain that D retains Vpy,,according to (3.6), it also, retains H: by the
deﬁmtlon of D ancl Hc, Vphy, so that @ p:has theform v ~utur 2 s vy

Qu=inan [ EEAHRSE) - (BEE) (3.105

In (3.10) b4+ (k)(¥P(k)) and cAt(k)(cP(k)) are operators of the creation
and annihilation fields B,c respectively. One can state that Vppys = H ® VO,
where V0 is the degenerated state subspace Vppys. It is clear that VO retains
D and cannot be mixed with states H, lying on the zero cone A® = {| w) € H :
{w | w) = 0} by virtue of nondegeneration of the latter. That is why S-matrix
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following from (3.1) retains V0, commutates with D ‘md therefore we can define
vsphw as

Sphys = PYSP ~ ' CT(31)
where P = Py is a projector. As Dy =1, Dy = =1, [D,Sphys] =0
" Immediately we obtain that —
Sphys(H+) - H+ sphys(H_) =H- (312A)
SphysS S}yeSohys = (Lip+, 1p-) (3.12B)
(3.12B) follows from (3. 121) and (pseudo)umtarlty Son V,Vpays-

Thus the quantum gauge theory,which is based on (3.1), is physically ac-
‘ceptable and D is an operator defining the superselection rule in this theory,
according to last statement of the section 2. All S-matrix elements and their
.¢orresponding amplitudes of the transition probablllty don’t depend on the se-
lectlon of the decomposmon of gmto g and gt ,as 4 is G-mvarlant

pcf_c,zlﬁz_flﬁ}%% lfliflnjn—}fl-_Pf,,,f‘r YVee G (313)

It follows from (3.13) that in the theory there is no negative probablhty
Pir =0,if | f > Ht,| 7 > H™. Note that unlike Refs.13,15 H is not the
. space with positively defined norm. In particular in Ref. 15, only such field
components of 4, are considered to be physical (condition 6) which commutate
with Qg and have a positive norm.. However,in the present case the fulfilment

. of the last statement of this condition is not required,as in the theory there is

(the superselectlon rule, defined by the operator of the discrete symmetry, )
* All considerations,mentioned above,are true if Vpny, is”narrowed” by the ad-
dltlonal condltlon Q:lv>=0 ,where Q. isa charge of the ghost transformatjons!3
Actually as [D,Q.] = 0 the whole quantization sheme does not change ex-
cept ‘only the " decrease” Vu at the expense.of the superselection by the zero
‘quantum number of the ghosts. As BRST—transformatlons are multiplicatively

renormahzed [D Q"] = 0 ,where Q3" = (Z3/ZB)1/2QB is a renormalized

BRST- charge, ZJ and :Z; are constants of the field renormalization ¢ and B

. respectively'4.That’s why the described scheme of the quantization is invariant

to ‘the renormalization procedure.The constructed ‘S-matrix is gauge~1nvar1ant
i.e.'it doesn’t depend on the selection of-gauge: in (1) we used

.~D -invariant gauge explicitely. But if the theory is constructed with the fixed
‘gauge term, which isn’t retained by D,then using the results'® we come to the
same Spphys - The corresponding quantization scheme is readily extended to
the Lagranglan describing interactions of the gauge fields with matters fields of
the spinor or scalar type.We note only that correspondent representation p of
the group G under contraction on the maximal compact subgroup necessarily

must be reducible
S Coodme e

. PG = Prop2
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’3 4 Chlral anomalles

3.3 Involution and Z, -graduation.

Let us note that the theory with the non-compact ga.uge group generate.v. Za-
graduation. Actually in § it is fixed by the selection’ 9= g0, gt= ¢ and
commutative relations (3.3). In H we have H + = Hy,H™ = “Hy and a prod-
uct, bemg a tensor product of the dxﬂ'erent itates. In operator a.lgebra A(H),
Ao(H) = {a| a(H%) C HE}, A\(H) ='{B | B(HE) C H*} ‘and product s the
Lie bracket (section 2). D is the involution in each of these spaces. D is trans-
formed as D.+-:D7 under the action of the group G,as gr=g7 g-" — g7,
Hw+— HY, A(H) — A(H)" ‘for any element « € G so all phymca.l exprmsmns
remain invariant, in particular (3.3). ; ‘

Note that in the discussed case the cohomologies H (QB) = KerQB/ImQB
are different"from the compact Ya.ng-Mllls case'® and the relativistic string®,

furthemore ‘some are free of ‘states with the’ negatlve norm,generated by ‘the

‘Lorentz metric g,,. Actually asin our case Q% =0, QF = Qp , that TmQ =V°,
‘H(@Qp)=H -is the space w1th nondegenerated mdeﬁmte metrlc generated only
bymam , e : -

L. AIvares-Gaume and Eletten showed l"t.ha.t. non-a.beha.n gauge theonm can
give chiral anomalies only in the complex representations, therefore if G is non-

“compact then in-accordance with the statement proved above 'aler-SYmmgtfic
representations automatically haven’t anomalies or G-invarianting and D-symmetric

Lagrangian haven’t: chiral anomalies. Thus the condition of the existence of :D-
symmetry- for the' non-compact. theories is a sufficient ccondition for anomalies
absence. However, this condition is ‘not’ necessary for: a.noma.hm a.bsence. In
genera.l we reca.ll that condition of the anomalies absence is: i :
ZSTr( T,‘j~+') ZSTr(T“‘. T;;-“) =0,

P

where TL, Tn stands for the repr-entatlons of G left (nght-) handed fermmns
and STr means the symmetrized trace over group generators involved, 2n is the
dimension of the space-time 18 1t is known that the whole thing comes down
to computation of tr(,.)F" for the arbitrary generator F of Lie a.lgebra G in the
representatlon rif tr(,.)F" =0 then representatlon ris free—anomah& ot

For the odd'7i there is-a correct a.na.lysm, which comes to this situation’ ‘to
the compactification of G.: Namely let G be the ”"compactification” of G in
the representation r i.e. generators of G are divided into two parts {K,S},
where K are Hermitian (compact) and S are skew-Hermitian: Then the map
{K, S}—-){K iS }} is'a compa.ctlﬁcatlon of G ‘because it reﬂects non—compa.ct.
Lie algebra § of G into compa.ct Lie a.lgebra. g of the compa.ct group G. Let Tbe
the corresponding r of representation of g - "Then if ¥ is real or pseudoreal and
dim¥ = 2k+1, then ¥ is anomaly-free, because trmF”‘Jrl = ( for any generator
F of §, but. then, tr(;)F2*+! .= 0 for'any F € § and r is anomaly-free too. In
partlcula.r, for non—compact sxmple groups we can easﬂy identify which groups
and which representations are automatically safe in 4k dlmenmons, reducing
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this question to a 'compz;;ct case. We have the following safe groups:
1)SO(p,q)(p+q =2k +1)
2)SO(p,q)(p +q = 4k) -

- 3)Sp(p,q)(for all p,g) _ A |
4% no(:-compact forms of exeptional groups Ga, Fy, Er, Eg,
For the groups of 'SU(p, q) types additional computations are necessary.

4 . Quantum hon—compact sigma models.

4.1 Introduction )

“The non-compact o models, investigated by many authors 119, describe a scalar
sector of supergravitation ?°, and in particularly N = 8 supergravitation, a
candidate for the unification of all interactions 2'. Besides within the scope of
‘the ¢ model (compact or not), the dynamic creation of the composite gauge
boson 22, appearing during the procedure of compactification in the theory of
superstrings®?, is described. _

At the same time the quantum description of the non-compact ¢ models
contain such problems as the construction of the unitary S-matrix, the treat-
.ment of the spontaneous symmetry breakdown, etc. In ref.8 it was shown that
“the non-compact ¢ model can be corréctly quantized only in the case of a state
_space with indefinite metric. The quantization in the sign-defined Fock space??

.. leads to _contributions breaking the unitarity of the multiloop amplitudes. . In

 ref.24 the non-compact two-dimensional ¢ model was quantized in the positively
deﬁnedstate'space, containing an even number of states with negative norm.
Howé_ver, one has also analogous problems in this case.. : e
"' In the preseht section we will show that.a superselection rule is present in
the non-compact ¢ model . It has an algebraic origin and it is generated by the
Cartan involution of a Lee algebra § of the non-compact group G. We consider
also the spontaneous breakdown of a non-compact symmetry!!:25,

4.2° Superselection rule. ~ ~ _ ' ‘
Let us thsider the ;case G= O(N , 1) without loss of generality. The general case
and in particular G = SU(N,I) (CPN+'model) does not differ substantially
fi-ofn it.'It is known that hamiltonian of the non-compact O(N, 1) o model has
theform ,, | o
T h=(0I)2 + (BTN)? — (8,0) — (Bio)? + A2 ~a? + Lfo] (4.)
_.where I = (II,...,IIy ) is a field multiplet. (II,o) is transformed by the
fundamental representation of the group O(N, 1), ,

. N N B | |
(811)? = z:l(aon,.)z, In? :z;lnf, : S B
; = n= ; e e
“+ fo'is the couplirrl‘g constant of the model, A is the lagrangian multiplier. The

presence of the negative square of the field ¢ in (4:1) leads:f.o the state space
with indefinite metric o
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where H*, H- are Hilbert subspaces, containing an even and an ‘odd niimber
of the creation operators of the field o, respectively, and an arbitrary number of
all other fields. The states ‘are generated by the positively defined vacuum | 0).
The representation : : )

(I1, 0) is decomposed.on the restriction G to-the maximal compact subgroup
G = O(N).into the sum of two irreducible representations {I1} and {g}. Let
us consider the Cartan involution of the Lée algebra § = O(N, 1). In the matrix

form this involution is defined by the matrix
Iv 0 R

The generators Q4. of the Lee algebra § obey. the following transformation
law: : S T R N TR T A
T D(Q4) = —napQ® R e e R (44)
where 74 is the Killing (sign-variable) metric. The n4p'is negative on the
maximal compact subalgebra.g-C § and positively defined on the orthogonal
complement g*to g : § = g ® g*. -The Cartan involution D on § may be
extended to the fields (I, ¢). In the representations (II,o) we have . .; .- -,
. R ag.. B p - cpr el et oE . P fooriti
_The considerations are the following. In the quantum field theory the gen-
erators of the discussed non-compact group are constructed: from (II, o) fields..
This conclusion is a direct:consequence of the Noether theorem. The transfor-
mation laws (4.4), (4.5) are in accordance with this construction. Let us note

that it is possible, or course, to postulate - (R : o

(4.5) and then to connect it with the.Cartan involution of the generators. -
Note that the analogous D-action is induced in the Z,-graduation operator
algebra A(H) = Ao(H) ® A, (H), :how,;in the Yang-Mills-non‘compact case
(subsection 3.3) S ;

| D(v) = (<1, T (46)

‘where v € A(H), and v; are graduated components of the v. The .unique
choice of transformation law: (4.5) can be guaranteed by:the above mertioned
algebraic considerations:{eq. (4.6)]. The hamiltonian h and the S-matrix are.
invariant under the action of-D. Obviously, D generates the canonical Krein"
operator J.in H and therefore it is superselection rule in the theory according of
the results of theisection 2.: Such one can choose observables only from Ag(H)"
y which is. also D-invariant. The calculations performed in"Refs. 22,24 give-
us the:independent proof of this statement. In Ref.24, the S-matrix unitarity *
in H* was proved in the two-dimensional case within' the scope of the 1/N:
decomposition. ‘It is similarly-proved also for H~.: Let us note that it is not :
necessary to project H onto the positive norm (physical) subsector H+: . i

The full Krein space: ' H = HY® H~ one can consider asa physical space.
This conclusion is based on the fact that the transitions between subsectors
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H* and H~are forbidden by the above stated superselection rule. That is why
negative probabilities are absent in the theory. The presence in the theory of
the two sectors H*, H- can be interpreted as the existence of states in the
theory w1th multlpllcatlve quantum number with values +1.

4.3 'Spontaneous non-compact . symmetry breakdown

The mechamsm of spontaneous ‘symmetry brea.k-down has some peculiar fea-
tures in the theory under discussion. They are the followmg

( 1) The state space is the space H with indefinite metric. The vacuum
state [ 0> in the subsector H*.

(2) The generators of the compact part @4 € O(N) do not mix the sectors
Ht and H- i.e. belong to Ao(H), and the generators of the non-compact part
QB € g+ mix Htand H-, i.e. belong to A;(H).

+* . The Goldstone theOrem has therefore the following form:""

(a) If the non-compact symmetry is spontaneously broken only by the gener-
ators of the compact part @410 >9é 0, Q”' e O(N) ), the Goldstone particles
appear only in H¥. = -

.(b} If the'non-compact symmetry'is spontaneously broken only by the gener-
ators of the non-compact part [QB |0 >96 0 QB € gt} the Goldstone partxcles
appear only in:H~. -

-(c) In the case of non-compact symmetry breakdown by g and g s1multa-
neously, the Goldstone particles appear with both norm signs.

It is necessary to'note that case (a) actually is not realized, as its reallzatlon
contradlcts the commutative relations in the Lee algebra §: [g*, 9] C g

“Two stationary pointswere obtamed in Ref 8 w1th1n the scope of the I /N

decomposition for (4.1'),
2

Hm=at (ko) m=a=0 (4.7A)

a;n—o,f—*,—(1—ytfe)2/d . umy

at I/f > I/ fe, and one stationary point,
. 2
A=ty -4) -(470)
Here p is the renormalization point, f is the renormalized coupling constant,
fc is the critical coupling constant, d is the space-time dimension. It is supposed
that: the symmetry-breakdown occurs in such a way that < 0| o2 | 0 > > 0.
But the hermitian operator ¢ € A;(H) has.a spectrum in iR U {0}. That is
why it is reasonable to consider the:case <0 | 0%.] 0 > < 0. But if, in the case
of symmetry breakdown, the averages of the operators remain the continuous
functions in the topology of the "initial” space H, then' < 0] o2 | 0 > cannot be
more than 0. Then the points (4.7A), (4.7C) correspond to the case 1/f <1/ f.
i.e;, spontaneous symmetry breakdown, and in the case (4.7A) the symmetry is
broken up to the maximal compact subgroup 0(N) [case (b) of the Goldstone
theorem), but up to the non-compact group O(N — 1,1) in the case (4.7C)%. It
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is necessary to note that then in the case (4.7A) the Green function will not
have the tachyonic poles in the euclidean momentum,
—_ N s
detG~! = +1 p IWW —U% (48)
because 63 < 0 [ao is the non-zero vacuum expectation oJ.

4.4 Chiral anomalies in non-compact sigma models.
One of the most important, problems in quantum exposition of sigmas - models

is also examination of anomalies and, in particular, chiral of anomalies. .In
a compact case-this' problem.is well enough investigated .!%!1. .In.the present

-operation the necessary requirements of absent anomalies in noncompa.ct sigmas

- models are obtained which in a series of cases are sufficient a.nd essentla.lly,
are based on the fact presence of superselection rule..- .. : i

In G/H-s1gma-model. the-is: supposed, that..H a.nd G.- Lle group, H s
subgroupG. In a reference case it is mea.nt”, that both they semt—sxmple and
are compact. In our :

-case -the first requirement (semlslmpllclty) is, ma.mta.med to the second re-
quirement (compactness) will be already to satisfy only group H, the group
G .is :supposed -semisimple and noncompact.- Moreover, we:shall suppose; that
H C-G is maximum compact subgroup G, as all: exa.mples5 7, ongmatmg ina
high-energy physics,.are reduced to'this case.;; =:; .-

Then,.as is known!%!?, G/H - symmetnca.l space, i.e.- T (H X) the set

of generators. G is- d1v1ded into-a skew-Hermitian part {H; } laying in ‘H,:and

Hermite,{ X, } -belonging to some:noncompact a_ddition, concerning the,metric
of the Killing : {H;, H;] = f& Ha, (Hi; Xa] = f4 X [Xa, Xo) = f3 Hiwoooor
. The systematic, apphcatlon such-G/H of spaces (. with_compact G) to low-

.energetlcal physics and a.lgebra of currents was advanced in papers of Callan Coulmen,

Wess and Zummo"’ Let s mark a.lso, tha.t it 1s models w1th the spontaneously
correspond to generators {Xa }. The anomalies in s1gmas * models occur ‘at ex-
position of interaction of gauge fields with clura.l fermlons The fermlon ﬁelds of
matter are transormated on'some representatlon p of group H, wlnch genera.lly
speaking, can be both nom‘educxble, a.nd reduced The relevant Lagtanglan L
looks hke ' :

m = ¢VYM(6 + “’u) P+ '!ﬁ . :
where Bu =2 s W ate matnxes of the Dlra.c p+ Lot
tis correspondent fermion multlplet w,, is the canomca.l connectedness cor- v

respondent H. : o
Thus, as a gauge-field the H—canomcal connectedness appears in; case of
sigma - model. Therefore examination of anomalies in this case in many respects
1dent1ca.lly to study of a similar problem in the gauge theories. In pa.rtlcula.r, all
is reduced to an, evaluatlon of a functlona.l 1ntegra.l ~ il b
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e~Terrlel = f e—Ja =Lmd¢d¢
lb,lb

at transformation of a fermion eﬂ'ectlve actlon Fef f[(d] concerning global
G-isometries: . :

I(p) — g U¢) B (p,9), w — hiw+ d) h~', f — hf (2)
_-where :I(p) is the local section of a principal H bundle, g € G, A e, 9)
is compensatlng H-transformation. As the canonical connectedness w, is tran-
sormated as a H-gauge field relativity an action of G, the modification of an
effective operation concerning 1nﬁn1tes1mal G-t.ra.nsformatxons is given by the

known formula for gauge anomalies -

The build-up of a correct quantum theory for nonhnear sigma - model, which
at a Lagrangian has terms of interaction with chiral fermlons is reduced essen-

‘tially to a solution of two basic problems:

1) What groups H do not give anomalies?
:2) If the anomalies are present, in what cases are possnble contrterms, cuttlng
them?
-Asin a case, considered in section, the group H compact, then the answer to
a problem 1) does not depend on a type of model (it is compact whether or not),
i.e. list of anomalous - safe groups H for these two types same. In:particular,

‘on a role H the groups suit: -SO(N),N # 6; SU(2); Sp(2N), N - # 3 etc., the
‘situation is completely identical with a usual compact case. But for a problem 2)

there are distinctions. It is known , that the anomalies, if they are available, are
possible to reduce by adding contrterm, depending from coordmates on'G/H,

a.nd for. thls purpose such i 18 necessa.ry to have representatron p groups G, that

e p/H = p. This representatlon p in a noncompact case impose on P essentlal
'restnctlon the representatlon pof group H should be reduced.

Really, as p is ﬁnrte—drmensronal and, therefore is nonumtary representa—
tion of noncompact group G correspondent contrterm generates in quantum
descnptlon the 1ndeﬁn1te metnc And that the umtarlty of the theory, was not

broken, the restrlctlon p/H =p should consist at least of two representatlons

generating states both with positive, a.nd w1th negative signs of norms, which

the superselection operator D, entered in3?, separates from each other.

Besides the performance p of group H should not be complex!! (and it
already for all types of models), for in this case it fails to regularlzate the
correspondent functional integral.

_ In outcome we come to the following deduction:

‘That noncompact G/H - the sigma - model, where H - the maximum com-
pact subgroup of group G, had no of chiral anomalies, is necessary, that the
relevant representation of a group H in space of fermions was reducible, real
and rising up to group G, or the group H was from the very beginning ..

. Thus, basic difference from a general case is reducibility of correspondent chiral

represantation.
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From here also follows, that the fundamental representations of complex
seinisimple groups are unsuitable, as remain nonreducible at restriction on the
material shape (therefore, on a maximum compact subgroup) And on the con-
trary, well known examples non-anomalies of noncompact sigmas -
modelsSO(p, ¢)/SO(p)x SO(q),

SU(p,q)/SU(p) x SU(q) x U(1) are confirmation of outcome of operation, as
the performances of maximum compact subgroups SO(p) x SO(q) and SU (») x
SU(q) x U(1) accordingly completely satisfy to all enumerated requirements.
Thus, in case of noncompact' G [H -srgma—model of pseudoorthogonal and psen-
dounitary t.vpes the obtained Lm'.erlon of absem chiral anomalies is sufficient.
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'NEW CRITERION OF THE INSTANTONS
- IDENTIFICATION IN DEEP INELASTIC
SCATTERING

V.Kuvshinov! and R. Shulyakovsky
“Institute of Physics
National Academy of Sciences of Belarus
Scarina av.,68, Minsk 220072 -
BELARUS

Factorial, cumulant and H, -moments m dependence on their rank g for
the instanton-induced deep melastrc scattering (DIS) in the frameworks
of QCD are calculated and analysed. The obtained correlation moments
behaviour has specific: form, which can be considered as a new criterion of
the QCD—mstantons 1dent1ﬁcat10n on experrment at HERA

1 Introductlon

As 1t ds- known such gauge: theorles as SM of electroweak 1nteractrons
and QCD have degenerated vacuum structure on'the -classical level [1]:
potential energy is per10d1c with' respect to the Chern Srmons number

Ni= / d%e,,k Aaa A;;+ 35“”°A“A°A°) W

Minimal energy (classrcal vacua) corresponds to integer Nc, Neigh-
bouring" vacua, are separated by a potentral barrler of. he1ght E‘,p (Flg 1).

kuvshmo@dragon bas-net by | ER
Shul@dragon bas-net. by
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Fig.1. Schematic dependence of potentlal energy of gauge fields on Chern-Simons
number N. Gauge condition Ao = 0 is'used: E,, is so-called sphaleron mass.

Usual perturbative theory (Feynrnan rules) describes phenomena with
N, = 0 only. Quantum tunnelling transitions between neighbouring vacua
can be described by means. 6f mstantons, which are classical solutions of
the Euclidean: field equatlons ‘with finite action [2]. Taking into account
such tunnelling transitions leads to the Jbaryon number violation in SM [3],
which is connected with the problem of matter.and antimatter asymmetry
in the Universe [4]. In QCD instantons léad to the chirality violation, allow
to solve U(1)-problem (3], give contribution to the confinement [5]. There-
fore, the experimental discovery of instantons would 'be of fundamental
significance for particle physics. : e

- It was suggested probability. of the! mstanton transitions can increase
in high energy collisions [6]. - There is a poss1b111ty of the mstanton-mduced
events identification in the electron-proton DIS at'HERA (DESY) [7]. In-
stanton induced DIS final states can be dlstmgulshed from ordxna.ry (per—
turbative) ones through some features: ' ay
- high multiplicity (the average number of partons ~ 10 [7]) ‘

- isotropic distribution of partons in the instanton rest system and presence,\

‘practically, of all light quarks'(u, d, s) in each events [3];

- specific behaviour of gluon structure functlons [8] and gluon correla.tlonf'
characteristics [9]. i : o

In our report add1t10na1 ”footpnnts” of QCD—mstantons (fa.ctonal cu-l‘
mulant and H, -moments) are studied.
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2 Multipiicity distribution of the instanton-
~ induced final states

In DIS instantons can appear in the quark-gluon subprocesses (Fig.2). The
following usual designations are used:
g Q* Q"

2__ 2 2 _ _ 2 X
QP=-0, =55, @ ¢ = @)
where transferred momentum square Q2 and Bjorken variable z describe
total DIS process; @ and z’ characterise the insanton subprocess.

Flg 2 Insta.nton induced DIS (ﬁgure was ta.ken from [10])

As 1t was mentioned above hlgh pa.rton mult1phc1ty is one of the main
charactenstlcs of the instanton-induced events. The distribution on num-
bers: of gluons in the 1nstanton-1nduced events is glven by the expre5510n

p(g); ——/d4k1 d4 lT(ku “ n)l (3) :

Otor T
where ot — total cross-sectlon T(kl, n) is the amphtude of the pro-
duction of gluons with the energy—momentum 4-vectors ki, .. k,. It is
calculated by. means of LSZ-technique applying to the Euchdean n-points
Green function, which is given by the follow1ng Feynman path mtegral (in
the quasmlassmal approximation): - oy S S
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/DAe'Se[A]A’,"‘l".(:zl).;.A’u:"(:z:n). S (4)

where 5¢[A] is QCD Euclidean action, A’ ?(z) - instanton configuration [2).
In quasiclassical approximation Gauss integral (4) is known calculable ex-
pression. The integration is carried out on the gluon fields, which connect
neighbour classical vacua. Factorisation in (4) leads to the Poisson dlstn-
bution on the final gluon number [8, 9J: o ‘

p(g) —e

- 2 /
_<n><ng > 167° (1 -z
.T’

. , i
R <ng >= e ) , 0.5 < :z:'<1(5)

The quarks 'production in the instanton processes is described bythe
well-known fixed multiplicity distribution (if we take into account zero
modes only [3]):

P(q) = J‘Zn/,ny ’ ' S : (6)

where ny is a number of massless quark ﬂavours We suggest that masses
of u, d, s are equal to zero.

Thus if we take into account both gluons and quarks, then the followmg
distribution is obtained: '

n-2n
>< Ty > 4

P = ,—<Ng
n=¢. (n—2nf)'

O(n - 2ny). - (7)

3 Calculatlon of the correlation moments
for the 1nstanton DIS processes ‘

Study of the correlatlon moments is more useful sometimes than study of

the multiplicity distribution [11). Let us remind the well-known definition:
of the normalised factorial moments:

wt oy

1 d'Q(z)

T <> dae

LR

2=t

Qz)=3 F2", 0<z<1. (8
where ‘< n> is _theA,a\",er.e.ge multiplicity, Q(z) —;‘ge‘nerating funetion..
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In the case of the instanton-induced multiparticle production processes
Q(z) and < n > have the following forms:

o) <n, >" 2ny ,n _ ‘
Qlz)= Y e <> =27 = = el < >=<ing > 420y

(n — 2ny)!

n=2ng

| (9)

The corresponding normalised factorial moments dependence on ¢ is shown
on the Fig.3. It is well-known, that normalised factorial moments for
ordinary perturbative processes of the particle production increase with
increasing q. Therefore the behaviour of the moments for the instanton-
induced processes can be used as a new instanton identification criterion.

Also we can consider the normalised cumulant moments:

1 dinQz)| .

T <>t dat | (10)
It is not difficult to calculate K, for the instanton distribution (10):
 ony(~1)0! 4 < ng >4, o
K, = DT a <ny > a (11)

(< ng > +2ny)9

It is more interesting to consider the instanton contribution to the ratio
of the cumulant and factorial moments:

K,
Hy = 7, (12)
These moments have. the following properties for the perturbatlve QCD:
decreasing osc1]]at10ns, presence of the negatlve correlatlons there is the
first minimum at ¢ =5 [11]." L Lo
Unlike this, for the instanton dlstrlbutlon (7) Hj-moments have the
first minimum at ¢ =2 (Fig.4), oscillations, whlch magmtude increases at
large g numbers (Fig.5).

4 Conclusion
The obtained dependences of the factoria]: cumulant and ‘H,-moments on

their rank have specific forms. Therefore, the behaviour of the correlation
moments can be used as a new signal of the QCD nohpertUrbati\{e vacuum
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phenomenon in addition to the well-known ”footprints”. .Of course, we
need to take into account hadronization stage. Local parton-hadron du-
ality [12] allows to apply the obtained results for the expenmenta.l QCD-
instantons search.

We propose the following procedure for the experlmenta.l QCD lnsta.n-
tons search at HERA: '

1) selection of the events with high multiplicity. For our a.pproxxma.—
ti0nS Tpadrons = 12 (local parton-hadron duality gives number of the final
hadrons npegrons = 2npari&ons 2 znqua.rks = 4nf = 12)1
2) analysis of the correlation moments for the selected events and compar-

ison with theoretical predictions.
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Coherent atomlc beam generator and its potentlal appllcatxons

: “AL V. Sorol\o '
National Centre of Particle and High Energy Physics, Belarusian State Unwers:ty,

- Bogdanovich Street 153, Minsk 220040, Belarus -~~~ : b

The concept and propert)e% ofa coherent atomic beam generator are dis- ;
cussed. The techniques \Vthh are necessary to demonstrate. the atom laser
based on the Raman coolmg below the grav1tatlonal limit are presented.
Potential applications of the atom laser in the field of atom optlcs are also .
discussed. In partlcular it'is shown that at certain physxca.l condxtlons o
the dlﬂ'ractlon of an coherent atomic beam by the mhomogeneous laser

" field can ‘be mterpreted as if the beam’ passes t.hrough a three-dlmensmna.l -

‘ hologram On thig basis a new "methiod for reconstriction of the object
image with matter waves is “offered. The latter may have" useful pracu-‘:‘ R
cal applications ranging from atom lithography to the manufacturmg of )
microstructures, or quantum mlcrofabncatxon o : i

03.75.Be, 4” 50 Vl\ 42. 50 Ct, 03. 75 Fl :

. I. INTRODUCTION

A colerent atomic beam generator (CAB) or atom-laser-is analogous to an optical
laser, but it emits matter waves instead: of electromagnetic: waves. ' Its: output is-a
coherent matter wave; which means; for instance; that-atom laser beams can intérfere
with each other. Compared to an ordinary:beam-of atoms, the beam. of an atomlaser
is also extremely bright.: Thus; the brightness and coherence-are the essential features
which. pick out coherent atomic beam generators among other atomic sources.

A number of theoretical atom laser schemes have already:been proposed [1-6] and
only one of them [1] is realized experimentally in MIT:up to now. These schemes have
involved some method. of cooling atoms in an atomic cavity, and a coupling the atoms
to the external atomic modes. So, the main parts of an atom laser include a cavity
(resonator), an active medium, and an output coupler. For example, in:the- MIT -atom
laser, the resonator is. a magnetlc trap in which the atoms are confined by' magnetlc
mirrors. . The active medium is a thermal cloud of ‘ultracold atoms, and the output
coupler is an rf pulse which controls the reflectivity of the magnetic mirrors.:

In the reported ‘models of CABthe ground state of an atomic trap ‘or cav1ty (the
lasing mode) is filled with a large:number of atoms by using the higher energy modes of
the trap as a continuously pumped atomic source.: The coupling between higher energy
mades and the laser mode:is achieved through cooling: ‘Different cooling mechanisms
sufficiently discriminate proposed schemes of the atomlasers.So, in’ the ‘experiment
[1], the: coupllng is done by evaporative cooling; where the évaporation process creates
a cloud which is not in thermal equlhbrlum and relaxes towards colder temperatures
This results in-growth of the condensate, i.e., the lasing' mode population.' Conversely,
in reference [2] the mechanism is dark state laser cooling, and ‘atoms are transferred
from the source to the lasing mode- irreversibly due to spontaneous emission. In the.
scheme proposed by Spreeuw et al. [3] the cold atoms will:be 'dropped from' the trap
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onto a so-called atomic trampoline, consisting of a repulsive evanescent wave at a glass-
vacuum interface. In the turning point the atoms will be optically pumped into the other
hyperfine ground state. The atoms accumulate in an optical cavity for matter waves,
enhancing the transition probability for additional atoms by Bose statistics. Holland et
al. [4] and Guzman et al. [5] use inelastic binary collisions to transfer atoms from the
source mode to the lasing mode. In these approaches, two atoms collide to produce one
atom in the lasing mode, and another in a higher energy mode. This process is made
irreversible by using evaporative cooling to rapidly remove the higher energy atom from
the system. Conceptually this methods are similar to that used in [1]

The number of atoms in the lasing mode depends on the pumping and loss rates.
Above threshold the number of atoms in the lasing mode saturates. In a conventional
laser, stimulated emission of photons causes the radiation field to build up in a single
mode. In an atom laser, the presence of N atoms in the lasing mode; causes stimulated
transition into that mode, i.e., enhances the probability that an atom will be scattered
into the lasing mode by, N + 1.

This is required to have a reasonably well deﬁued numbel of atoms in a single cavity .

mode and hence a state that closely approximates a coherent state. The proposed meth-

- ods of output coupling to this state have involved either quantum mechanical tunneling
[2] or periodically turning off the cavity mirrors [5]. Turhing off the cavity mirrors,
while effective for output coupling, will not provide a continuous beam. Therefore Moy
et al. [6] have present an atom laser scheme using two atomic cavities - one for the
source atoms and an effectively single mode cavity for the lasing mode. Higher modes
of the lasing cavity cannot be reached as their energy is larger than that of the incoming
atoms. Raman transitions are used to change the state of the atoms to a non-trapped
state, to allow the output coupling of the atoms from the lasing mode.

There are many applications in fundamental research and industry ‘where ‘atomic -

beams are used, e.g., atomic clocks, atom optics, precision measurements of funda-
mental constants, tests of fundamental symmetries; atomic beam deposition for chip
production.(atom lithography), and, more generally, nanotechnology. The CAB may
have an impact on all of these applications, if.indeed will provide the necessary bright-
ness and coherence. But as-a rule, the detrimental influence of the gravity effects is
ignored in the schemes mentioned above, whereas only freely traveling matter waves
can be sufficiently coherent. :
Two ways are envisioned to prepare a stable quantum state of matter in the gravita-
tional field: to bound particles or to suspend-them free in an inhomogeneous magnetic
field using Stern-Gerlach effect. In the first approach atoms are confined by -a conser-

vative trapping potential which can be realized; e.g., in a far-off-resonance or a dipole

trap, where an intensity gradient provides a spatially dependent ac Stark shift::In mo-
mentum space, up to now only the existence of an approximate dark state (DS), which
in turn may be used as a lasing mode, has been demonstrated:[7]. This state does not
" interact with the photons in the process of laser cooling and characterized by a decay
rate in a special 1D atomic and laser field configuration much smaller than that of all
other states in the trap.  The finite lifetime of approximate DS evidently- restricts the
cooling possibilities in a trap, leaving the question about going below tle gravitational
limit to be clarified. However,.a scheme [8] which is based on the creation of a dark
state in position space with the help of an appropriate spatial profile of the cooling
laser, e.g., in a doughnut mode, seems to be much more efficient, allowing to cool a
significant fraction of atoms to the ground state of the trapping potential.
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Another approacli may be applied to atoms possessing 'a magnetic moment. Superim-
posing a weakly inhomogeneous magnetic field onto the path of pre-polarized particles
and appropriately adjusting the field gradient it is possible to compensate for the ef-
fects of gravity for a definite internal dtolmc state. However, the magnetic field induces
spatially dependent shifts of the Zeeman levels. whicli lead to unwanted residual excita-
tion fron1 the DS in the framework of any traditional subrecoil coolipg method. such as
velocity selective coherent population trapping {VSCPT) [9] and Raman coocling [10].
Moreover. in-the case of VSC'PT the dark state cannot be au eigenvector of the total
Hamiltonian since only one of the internal states forming the superposition which is not
coupled to the laser field may escape gravity, Thus, both VSCPT.and Raman cooling
mechantsis in their standard form are incompatible with the last approach.

To resolve this problem we suggest a modification of. Raman cooling method [11], in
which the ground-level atoms are made motionally free with the Stern-Gerlach effect
and the DS is created and supported in momentum space of these atoms with additional
velocity-selective two-photon transitions. The transitions couple e\ternal momentum
states of the same ground internal level and are organized in ~u(h a manner that DS
cyclically occupies different thin sets of velocity modes while remaining unreachable for
the Raman excitation-repumping pulse \equcnces at all times.

In a bosonic system, where the losses in DS population can be compensated by the
quantum-statistical enhancement of feeding rate, our cooling mechanism may be used
as the basis for extensive ('AB implementation. An easy tunable wavelength will be
one of the advantages of such a device. because as we will see below the momentum of
a cooled atom is readily defined by the geometry of laser beainis.

In Sec. II we specify the maguetic field to conipensate for the gra\'xl\' effects. In Sec.
III a detailed qualitative treatment of the cooling mechanism is given, and numerical
simulation in one dimension is presented. An application of the coherent atomic beams
to the atom-optics holography [12] is demonstrated in Sec. 1V, namely, the inhomoge-
neous laser radiation is shown to behave like a three-dimensional hologram with respect
to the coherent matter wave. Section [V concludes with a ssunmary of the results.

II. COMPENSATION FOR GRAVITY

Consider for definiteness an atom with a J = % to J = % lldll\lllon e. g “ aodmm
or cesium. The magnetic field B(r) applied to compensate the gravity is supposed to
contain a llomogeneom component By directed along the gravity acceleration Bg 11.g.
The remaining inhomogeneous part of tlle ﬁeld B,(x) B(r) — Bg.should' be-small :
compared to this component., . R TN

: IB1(r)| <« Bo = |Bo| S S (2 1)
As we will see below, to fulfil this condition it is now“arv to tal\e Bo m tllC range
10% + 101 G.. In practice such a field is strong, vnough to. m(luve Zeeinai; al]lfls .which.
considerably exceed the hyperfine splitting intervals ~ hunps (I)ul not the multiplet
ones). Therefore an internal atomic eigenstate [J, I, My, my) may be well described
using the set of quantum munbers consisting of the angular momenta of the electronic
shell J and the nucleus I, and their local projections Ay, my on the dlrectnon of the
magnetic field. :
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In the framework of perturbation theory. |J. I, A{j.my) represents a combination of
eigenstates |J, [, M, m)©) related to the atomic Hamiltonian without the hyperfine
interaction,

a
2upyL By -
x {[(J + M) = My + D2+ my + 1) = mp)?
x| I, My =1, + 1)(0)
=[(J + My + 1)(J = MDOM?[T + mg)(I = mp + 1)]H?
x |J. 1, My+1.my — 1)“”}. (2.2)

W1 My my) = |J L My ) ¢

where a is the hyperfine coupling constant (« x hwyFs, e.g., for Na a/h = 885.8 MHz)
and gy denotes the Lande factor. The corresponding energy eigenvalue is determined
not only by the multiplet level E; but also by the magnetic field B(r) = |B(r)] and
therefore is spatially dependent

Eyg 1 Mymy(v) = Eg +aMjmy .
+(/"BgLA[J - l‘-nuc”ll)B(r)‘ (23)

where e is the nuclear magnetic moment. Because of the condition (2.1) such a spatial
dependence, however, mainly arises from the longitudinal (Blll(r) = By : Bi(r)/By),
rather than the transverse (Bi (r)) component of the vector By (r), provided that the
components are defined relative to By. This is evident from the expression

Bw) = /[Bo+ Bl0)] + [BE )] |
~ Bo+ B(r) + [BE(r)]* /2Bo), ' (2.4)

where the term containing Bi(r) is small and can be neglected. Consequently, by

adjusting the gradient of the field B”(r) one can achieve translational i invariance of the
ground state |1) = [1/2,1,—1/2.1) in three dnueus1ous

Em(x) - Mg:r= const . . (25)

For example to balance the gravitational force in tlus way for sodium it is necessary

to create a gradient VBl (r) = b,g/lg|, where b; = —4.033 G/cm. This condition does
not contradict the Maxwell equation V - B (r) = 0, because variation of B (r) is not
restricted. Note also that the choice By = 103 < 10* G maintains the condition (2.1)
very well within a spatial region of the size ~ 10 cm.

All the other levels are affected by the residual external potential. In particular,
after a transition from |1) to the neighboring state |2) = [1/2,1,—-1/2, ]~ 1) the atom
experiences a force '

-
§

£, = M/-‘nucg
(1/2)pBIL + prucl”

(2.6)
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L. COOLING SCHEME

" 1n our scheme. we use pulses of laxer light at frequencies w) and ‘wy which are roughly
tuned to the |1) = |3) and |2) — |3) transitions. where [3) = [3/2,1,- =3/2,1)is an
excited state with the lowest energy. The typical size 2L of atomrc sample is restrrcted
by the condition L < a/(Mg), which allows to regard E|3)(1) as the closest to resonance
excited level within the whole interaction: domain., Indeed, the force f3 actlng on the
atoms in the state ‘[3) may be estimated from Egs. (2.3) and (2.5) as |fs]' ~
The maximal spatlal shift of the level ~ MgL which it induces is much less than the
hyperfine splitting intervals (Mgl < a ~ hwyrs), and the hierarchy of detunrngs is
retained. Therefore an atom initially in|1) or |2) state behaves as a three-level system
with respect to the processes with stimulated emission of photons. ,

Since the atomic dipole momentuin operator d is diagonal in quantum numbers I

-and my in the basis |J, 1. My, m)®), the transitions which change my; e.g.; 12) = |3),

are allowed only due to hyperfine interaction, as is seen from Eq. (2.2). The value
of any matrix element like |(3|d|2)| is approximately o nurl(3|d|1)], where nyp =
a/(2ppgrBo) < 1. As a consequence, the upper state |3) decays to the lower - ones
preferentially in the channel |3) — [1)- (with the rate y). This circumstance makes
it possible to deal with an atom as a three-level system even if spontaneous photon
emission takes place

When the atom is irradiated with two laser beams at frequencies w; and ws, the
two-photon Raman transition from [1) — |2) has twice the Doppler sensitivity of a
single-photon transition provided that wy — w2 ~ wyrs and the beam wave vectors
ki, ko are opposite [10]. However, if we take into account the force (2.6), a wide set
of atomic momenta p may satisfy the resonance condrtxon as fOIIOWs from the energy
conservation:

hAy = 2p - Ap/M =hAy—f2 v+ 2A§/M. ' (3.1)

Here detunings Ap, = wi + [Ejmy(0) = E|3)( ))/h,m = 1,2, are defined in the center of
atom-laser interaction region (r = 0), &, = h(ki = k2)/2, and A, = |Ap|. The dip in
the velocity dependence of absorption rate broadens so that the wrdth of the trapprng
zone [13] becomes ' —

Asa consequence since the sample of unconfined partrcles consrdered in this paper may
spread up to L ~ 1'cm durlng the coohng, the effective temperature of atoms left i in the
state |1), “which constitutes ~ M(v)? /(2LB) -generally lies far above the gravrtatronal
limit [14] kgTe = Mg]k 'For example, in the case of. sodlum where Ap/h= L. 07 x 105
em~! and |fo]/h = 7.3 x 10* cm=?s~1, stich a temperature may reach 6.47g. " .
Despite insufficient velocity selectrvrty of the |1) — [2) transition, state |2) may. be
used - in Raman excitation cycle. To avoid unwanted radiation 1mpacl; on the selected
group of particles, which are referenced’ here as the DS atoms, one should move them in
momentum space to another place where the resonance condition (3.1) brakes down.
It can be achieved by means of a two-photon |1) — |1) transition while the atom is
irradiated with two noncolinear laser beams at the same frequency wi. Co :
If the ground -level 1n1t1al momentum distribution. along the direction of vector A
were as shown in Fig. 1(a), such a transition would ‘have ‘selectively -brought partrcles
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concentrated near the pomt —A, (the DS, as we will see l)elo“) to the point A, and vice
versa. To prove this imagine an atorn with momentump passing through a superpouhon
of two laser beams. The superposition may be treated as a diffraction grating in the case
ki .1l ko (standing wave) [15,16], or. as an effective atomic hologram when directions
of the wave vectors are arbitrary.[12]. At low laser light intensity and large detuning
Aj only the first-order Bragg scattering is of importance. In this case, two diffraction
modes with indices 0 and 1 resonantly couple’with each other, Physically, the first-
order. Bragg resonance corresponds to an absorption and. stimulated photon emission
process:from one laser beam to another. As a consequence of the atomic kinetic energ)
conservation one gets the Bragg resonance condition

tp-Ap = A7, o . (3.3)

which is satisfied for any momentum with the component p ="+A, along the vector
A,. Figure'1(b) contains the final distribution, the peak around A being the moved
DS ‘So the first step of our scheme consists in the momentum transfer of DS as it is
mdlcate(l \\1t,h arrows m Flg l(a)

_l+_|3) -

@, 0 e © < [3)
A,T \ é
2 Py
o . , y
Pi1 Pu AI—ZT_ Pn % o

¥

| I

)

>
(=]
>
~

h ]
hl

FIG. 1. Energy level diagram and profile of ground state atomic distribution priasa funct.lon
of p. the momentum component along the direction of vector Ap: (a) before DS transfer with
the two-photon |1} = |1} transition; (b) before the Raman excitation |1} = |2} cycle; and (c)
before the optical repumping pulse.tuned to the |2) = |3) transition. The curly braces denote
momentum intervals involved in each of these processes.

In the :second step of cooling, the Raman excitation cycle [10] takes place. - In‘ ac-
cordance with:Eq. (3.1), atoms with any negative p can be transferred to state |2) by
varying the difference of beam frequencies. Due to the finite width of trapping zone
atoms with positive p < Mév also have a chance to undergo transition. ;The DS, being
hidden near the pomt. p= A > Miv, does not. take palt in tlns process as lllustrated :
in Fig. 1(b). -

In the third.step; an optxcal pumpmg pulse at frequency wa' ls used to return the
atoms back to_the state |1). It is important that the ground level appears to be. far
off resonance and laser llght does not affect DS directly. The:population of DS rises
during the spontaneous emission 1)1oceas which randomizes the atomic momenta [se(*
Fig. 1(c)]. » : :

Then the sequence of. steps 1 - ] is repeated w1th oppo»lte (llrectlons of kl aud
ko involving residual positive-momentum.atoms of the ground level in DS filling and
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finishing a 1D cooling cycle along A,. Al'ter this stage the DS occuples u.s mmal place
near the point —A,; ' :

By choosing linearly mdependent vectors A" in a set ol' two (m =1, 2) or three
(m = 1,2,3) 1D cooling cycles one can proceed thh decreasmg tlle t.emperature in two
or three dimensions by repeatedly applying such sets.

To increase-the efficiency of :DS ﬁllmg one. can admit. severa.l Raman a.nd optlcal
pumping pulses. i.e., a number of steps 2 and 3, between two consecutive. first steps. It .
can be done, for example, as in the classical method [10]; where every. Raman transition
is followed by the optical repumping,.or by applying a series of cycles. each including
multiple Raman and one optical puniping pulses. :

Since the time necessary to collect all the atons in DS is, generally speakmg, mﬁmtely,
long, it.may be useful to separate the DS from background with the final ﬁrst-step
transitions (on one for-each dimension) so that.the DS and background atoms will
move in opposite-directions. and -eventually will not spatially. overlap.. In particular,
when vectors AD', m = 1,2, -3, form an orthogonal. basis, our. scheme’ will produce a
cooled atomic beam with the average momentum Al + A2 + Aﬁ as follows from Eq ‘
(3.3). The minimum allowed temperature (but not t.lle mt.ensny) of such a beam is
obviously determined. by the width of velocity selection specific to first- -step transitions
and therefore can be much less than the gravitational limit.

FIG. 2. One-dimensional ground-state distribution p11 for Na as a function of ato'nric mo-
mentum p and the number n of cooling cycles norinalized to 1 on the scale p/A,. Half-integer
values of 1 correspond to the beginning of the second stage of each cooling cycle which atarts‘
when laser beams reverse. The curve with 1 =0 gives the initial distribution. The hlghest'
peaks of the function represent the DS. :

A. Nu incrical results

In the followmg we present one-dunells.lonal results obtamed l'or Na. assummg that alI
vectors have only z-components, i.e., lie on the same axis with the gravitational force,
and the laser beams with k) and ka are counterpropagatmg .An initial distribution
of grouud-state atoms:is considered to be Gaussian. Since in our scheme’ we imply
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that.an atomic sample precooled to the recoil:limitis:.used, il is reasonable to take the:
wave number of laser light & = 1.07 x 10% cin~! as an input for momentum dispersion:
o, “Note that for the cousidered laser-beams geometry &, /h = k.- We also take the
parameter g =:2:5 X 1074, whicl corresponds to B =103.Gy 77 L owl s

In the numerical simulation of a cooling cycle €ach first-step pulse was followed by five*
repetitions of .a:set’involving seven Ilaman and one optical pumping pulses:'Both first
and second steps:of cooling continued during w-pulse-times. The duration of the optical
pumping pulse. was:taken to-provide a:complete-depopulation of tlie {2) state. The:
remaining parameters were choseisas Tollows. For the’ first  stej: the Rabi fréquencies:
Q, = Q2 = 0.087, and the detuning Ay = =169::For the second step: ) =047,
Q= 0.049, and:all' seven -Raman-pulses ‘were: detuned to the ‘red ‘so ‘that the-sum
Ay 4+ Az, =:=327 remained constaiit: while the difference Ay — A ‘was increased-by
-135,.118, 372; 625,880, 1135,"and 1393 -kllz. :Such-a choice of detunings was tailored’
both:to span:the momentum interval 0-< p <34, aind Lo minimize the ‘losses of DS’
population due to parasilic excitalion bysidelobes iit the frequency spectruim of Raman’
transitions, For the third stép.we pit 3 =-0.19, and A, = 0. The initial size of atomic:
sample was taken .L = | cm. lowever, for the:given set of Raman light:parameters:

not depend on L. Therefore our results remain-correct for all L < 1-cm.

this, or indeed any.smaller, value -of L. mecans that the widlli of velocily selection does:

Pu 45 . v v
0t
a5}
ol -

PR S

0.

FIG. 3.  Final ground-state distribution p; of atoms with pdsil;i\ie'miqm'én&a‘ as a function o"fj
p. The full-scale distribution’is normalized as in the Fig. 2 whereas the plotted part contains
~ 59% of all particles. R Gl

Figure 2 shows the initial momentum distribution g1 (p, p,0) and the formation of a
DS peak during two first cooling cycles including intermediate stages when the position
of this peak is alternated. Although each |1) — |I} transition captures atoms in a rather
wide momentum interval '~ 26p s 0.2845, Lhe width of the DS peak (at'half-maximum)

decreases rapidly with the nutiber of applied cycles because of a pronounced maximum*

in the transition rate profile. ‘After 10 cycles the decrease slows down and-approaches”
_at 0.0054,, by the end of cooling. - At the sanie lime, the peak height growth is far -
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from saturation. and after 100 cooling cycles this value_;:xcggds t.hg initial distribution
maximum in more than 98 times. LT

The fraction of cold atoms in the interval —A,—dp-< p < —A, + dp depe'nds on
the difference between the feeding rate-due to optical pumping and losses during DS
transfer. and constitutes about 65 % by the end of cooling. N )

When separated from the background by the final first-step transition which trapsfers
the aforemmentioned interval to positive momentum half-axis, the DS peak acquires a
shape represented in the Fig. 3. As a result.. the effective t‘en?pera.ture calculated as a
mean kinetic energy of the atoms distributed within the domain Ap —Sp<p<LOp+dp
reaches 0.4 nlx or 0.0157¢. ST

X
SN

IV. ATOM-OPTICS HOLOGRAPHY

‘A. Typical layout design .~
In our scheme the atom moves inside a superposition of the reference and the object
beams : : . : .

E(r.{) = B, (v ) + Eo(r,1), | (4.1)
where the laser light has t.her }f“}"e»ql_l‘e‘l]‘-(‘y‘;ujf‘}-;‘
E{,,(r,1) = E{orj(r)e™" +cc. - (4.2)

Each-beam is represented as-a discrete sum of plane monochromatic electromagnetic
waves. In particular, we use the following decomposition of the electric field in the
object beam:

R = Y Emesplikn or), L (4.3)

m>1

where E,, and k;, stand for the complex amplitude of the mode m and»itswa;ve vec.tor,‘
respectively. Such an approach does not restrict the generality of our ct_)nsnderatlon,'
because the expression (4.3) must well describe the real laser field only in tlle atom-
laser interaction region: Evidently, the:latter requirement ca.n'alwz}ys be satisfied by
decreasing the minimal angle between the mode wave vectors. In this case we <_:\a\.n»a.ls9‘
regard tlie reference beam ‘as a single tnode‘(ivigl) the index m = 0), Lt ‘

G B =Edesplikeir) o 0 (44)

which just as-the condition . <« o Can o i

o Eof? > [Eml?, m>1, e (48)

is a typxcal a‘rral'lgemen‘t'for optiéa.l h‘olography. The la.ybut design of laserpnd atomic :
beams may be as shown in the Fig. 4... .. .« e v e oo L
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. FIG. 4. ‘Typical layout design of laser beams and matter wave packets suitable for atomic -

hélpgrapl}y. ]

B. Off-resonance solution of the master equation

’ “We are considering the case when laser frequency is far off resonance and ultracold
~atoms in the.beam are supposed to move with momenta close to the photon ones.. Then
the one-particle atomic density matrix can be represented as the sum

Pab(r1,r2,8) = pgy(re,vs,8) + PR (1, v, 8) + p% (11,12, 2), : {4.6)

wrlilere th¢ term pEb(r,,rz,t) arises due to stimulated scattering of light, the term

. pg(r1,r2;t) is responsible for the effects of spontaneous emission and the term
Pab{T1,T2,1) describes dipole-dipole and other atomic interactions. Here indices a, b ..

span the internal atomic states. o
Since the inhomogeneous magnetic field applied to compensate for the gravity creates

- large en9ugh Zeeman splitting to suppress shifted stimulated photon scattering we get
non~V_amShmg Pab In agreement with the energy-momentum conservation only when we
take into account those two-photon processes which leave atoms in the ground state

: lg) Below we also assume almost. critical cross correlation of the laser field, which, for
instance, can be achieved when all field modes originate from one initial laser mode.

’g‘heref(;]re after stochastic averaging over the laser field fluctuations outside the atomic
eam t he pftrturbatlon theory gives the result

g
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pEb(l'].l‘z,i) = /dmlsf(u,s)

XQ‘)(I‘,.‘;V.E) C.S(l'z.‘; v, E)Jagébg; . (4'7)
where » o .
d(r tiv,e) = 211_‘,‘2 /'(lr’Gg(r —r';e)
xam(r') EN (') E" (+)bo(r', L v, €), (4.8)

and f(#, <) is atomic beam distribution function on energy € and ¢uantum numbers v,
which define the wave Tuuction ¢y(r.l:v.€) ol a free particle with the mass M. In the
Eq. (4.8) Gg(ri€) denotes the Green [unctiou ol the Heliloltz equation, and ain(r)
stands for the coherent-scattering teusor weakly dependent on r because of the external
magnetic field inhomogeneity. In fact, expressions (4.7),(4:8) describe the scattering of
atoms by a lightshiflt potential in a regime when it can be treated perturbatively and
wlien spontancous emission and collective effects are negligible.

‘C. Atom-optics interpretation
I

To get the atom-optics interpretation of the solution (1.7).(4.8) we will assuine the
atomic beamn aperture to be wide enough in the region of atom:-lield interaction and will
regard ég(r.1; v, £) as a wave function of a [re¢ definite-momentun particle, using the de
Broglie wave vector k, as an equivalent of quantum numbers {v, =}. On analogy with
conventional optics, this function can be well approximated by the plane wave having
a finite spatial extension along diaphragm forming the heam (sce Mig. 5 lor details)..

It is convenient to put the origin of a reference frame at the center of region where
both reference and object wave cross the atomic beam as illustrated in Fig. 5. Near a
point of radius-vector R.. the integral in Eq. (4.8) can be calculated within the Kirchhofl-
Fresnel approxination il typical longitudinal (2£) and transversal (2D) dimensions of
the region with respect to R satisly the conditions: A « {L. D} € R « D*/A. where
Ais the laser wavelength. As a result one gets o

(PF, (r1. v 0)) = gy = r2)¥(r1) W (r2), (4.9)
where A
201 T
Y(r) = T EL apn(v)EM (v). (1.10)
)= . :

o) = [ e 0 18 (=) - (e = o)
xosplitks —ka) ¢ (4.11)
and J(k) = sin(kL)/(kL). 8 )
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FIG. 5. Typical geometry of laser and atomic beams.

On analyzing the expression (4.11) with respect to the peak shape of the function
J(k) one may easily find the density matrix (4.9) to describe the coherent state (4.10)
as soon as the atomic distribution is compatible with the condition

I(k — ko) - (k, — k)| < mho/(2L), (4.12)
where k is some typical wave vector in the object beam.

On the other hand, the, spatial concentration of atoms is defined at ry = ry and
would be received independently from mentioned condition, as if all particles had the
same wave function [¢(0)]/2¥(r). So in both cases because tensor oy, (r) varies slowly
in the interaction region, one deals with the atomic wave reproducing the amplitude
and phase characteristics of the object wave. '

D. Physical conditions
1. Applicability of the perturbation theory

The formula (4.10) remains correct provided that |¥(r)] < [¢o(r,¢;k,)|, or that the
perturbation of the incident atomic beam is weak. This in turn sets an upper limit on
the object wave amplitude

-

%k
2 IE(I)alm(r) I—l-

1B ()] < g (4.13)

Note, that correspondingly low values of the object wave intensity result in the linear,

response of the atomic system to the laser-field inhomogeneity.
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2. Compensation for gravity

Another important prerequisite for successful wave front reconstruction with massive
particles concerns the need to compensate for the potentially detrimental influence of
gravitational effects, This can be done as described in Sec. II ..

" '3. Reducing background from tke spontaneous emission

First of all we must insure a small background arising from the spontaneous emission
of atoms, i.e., . S .

(Paalrr 2 1)) > (ply(r1,v2,1)). (419
This COlldiﬁO}l fulfils if'tvh)e object \&avé,am‘plit“ude is lairge en'(:)ugh: . l
' C U EIP > 2Rk/BMLP), T (415)

where P = g(0)/ny, represents the ‘pait’ of particles distribute_d due’ to peak shape of
function J(k) within the domain (4:12). o ‘ " ' -

4. Reducing effects of thé interatomic collisions

Since our model neglects all atomic interactions apart from dipole-dipole interaction
(i.e. relevant at short interatomic distances), it can only be used for systems that are
not too dense. In particular, the mean field interaction energy per particle [17] must be

much less than the typical kinetic energy of 'éii“at(‘)m,"whence

K kz'/(Sﬂasg); b e (416)
where ny, denotes spatial concentration of atoms; and ae'is the scattering length'dir¢é§ly

related.to the low energyS-wave cross section (o5 = 4mwaZ,): '

5. Elimination of the dipole-dipole interactions

Condition (4.16), however, do not fix completeiy possible range of np. To satisfy the
inequality

{pes(r1.72,1)) > (plh (r1,72,1)), Y

we must also provide elimination of the dipoli_é—_dipole'inte;actions; In ﬁhe_;ffamgw'étk ;
of the mean-field approach one can readily get an additional restriction on the spa}t_gal
concentration of atoms’ ; ‘ S D

T

me= [ k) € Grllam (el

: .
Tt

L (4.18)
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" E.'Numerical example

. The method of atomic wave creation; we have just considered theoretically, proves to |
'be currently available. In particular, it is possible to choose the beam and laser field
parameters so that all necessary conditions may be satisfied whereas the amplitude

{lg(0)]2¥ (/)| of desired .wave would be sufficient.

For example, let us take the atomic beanr with np ~ 1019-11 ¢in~
Raman cooling experiments [10]. Such a concentration is obviously (‘ompatil)le ‘with
the conditions (4. 16) (4.18) because for most atoms, the scattering length does not
exceed - 102a5. and ‘in nonresonance case the components of tensor ay,(r) are of the
order aB, where ag denotes the Bolir radius.

If the width of atomic beam is imagined to be about 1 cm, and intensity of background

i'wave is ~ 1 W/cm?, then mean intensity ~ 0.1 W/cm? of the object wave will not
violate the conditions (4.13),(4.15). where we have substituted P ~ 2 x 10=%. At such
parameters, the atomic wave amplitude will be [[¢(0)]"/?¥(r)} ~ 10'=? em~*/3 leading
“to quite observable concentration ns ~ 10°~* cm=3 of atoms in the created wave.

A 'way to enhance this concentration consists in preparing the atomic beam appro-
pnate]y Since only the part P of all atoms undergoes the stimulated photon scattering
giving contribution to the wave [(0)]'/2¥(x), we should cdol the beam.as much as pos-
sible. If, for instance, P ~ 1, then we get ny ~ 103~ cm™? in the same experimental
situation as above. An extraordinary role here may be played by coherent atomic-beam
generators [1-6], that are under development now.

V. CONCLUSIONS

" In conclusion, creation of an atom laser based on the cooling scheme below the gray-
itational limit seems to be possible, but more thorough investigations are necessary.
A large number of atom optics applications requires such a device, for instance, the
atom-optics holography, which will be a powerful tool to manipulate atoms. A way to
enhance diffraction efficiency -of an:atomic hologram consists in using of the coherent
atomic beam so that all the particles get the same momentum as the momentum of plio-
tons in the reference wave, and a special role here may be played coherent atomic-beam
generators, which are under development now.
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Confining Properties of a Conformally
Flat Effective Metric

L.M.Tomilchik
B.1.Stepanov Institute of Physics
National Academy of Sciences of Belarus
Minsk

Abstract

The confining aspects of the conformally flat metric are dis-
cussed. It is shown that the Lorenz-scalar potential and the damping
normalizing factor introduced in some nowadays relativistic fe-
nomenological quarkonim models for providing quark confinement
arise pure geometrically as a consequence of the existence of the
conformally flat static effective metric. The classical (geodesic
equations) and quantum (Dirac and Klein-Fock-Gordon equations)
cases are considered. The possibility of treating the conformally flat
metric appearence as a kinematic effect connected with existence of
the maximal acceleration or the maximal rate of energy change is
discussed. The expression for the generalized linear element for the
particle moving in a given external field is proposed.

Coordinate — dependent mass as a confining
condition

It is well known that the standard confining potentials V(r) being

used in phenomenological relativistic quark models based on Dirac equation
with the Hamiltonian )

H=a.p, +pm,+V(), (1
don’t give necessary asymptotic (at » — o) behaviour.
However the problem can be solved via including in (1) some Lo-

renz-scalar potential what is equivalent to jntroducing the coordinate — de-
pendent rest mass. Then we have instead of (1) the Hamiltonian

H=ap, +pnUE)+V(), )

~ where U(r) is some function of spatial coordinates!.
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The necessary condition of the corresponding analytlcal behaviour
of solutions is the followmg the Lorenz scalar potentlal ( ( ) must in-
crease with a distance more fast than the t1me llke component of the 'vector
One (V(_))IZ] TR c : ) A ‘ |

~ This c1rcumstance can be ea51ly demonstrated usmg (1+l) ‘versmn of
Dirac equation, which can be presented in the following form:

i

r(—'iai‘—q—'%mmjw ZEY] (h:c:l); Dot f(3)
- dx G L

v, o1y (1o
Where l//':( - )7 c :( )!«q:”.—( o [ A E VRIS S b .

— rest mass, € — energy. :
Consnderlng m and ¢ as the coordlnate - dependent quantltles ( ie.
m=m(x), £€=&(x)) we obtain the; following two equations: Do

dy, i
i g =0,
dx- R e .

S0, ”
where ¢(x) m(x) = e(v) r;(x) m(x)+ e(x) e RIRTEEY
The quadrlzed equatlon (for y/z) is. S _‘ o
,d y, (1d¢ dW2 =0. - 5
e +[ ¢dx] & ri(x)¢(x)wz ©)

If m(x) und* &(x) are both increasing functions of x the second term

under x — o in (5) can be neglected and asymptotlcally we have equatton?
(omitting the index “27) SR ,

dV’ {m (x) e(x)),/ 0. f - ©
kWe see that the asymptotlc behavtour of \|l is unamblguosly deter-
mined by the sign of difference m (x) £ (x) in the reglon under con51d-

eration. We have exponentially descreasing solutlons if m*(x)>¢&*(x) and

the osclllatlng ones in the case m*(x)< & (x) Eg ©) clearly demonstrates
the crucial role of the mass coordinate dependence as the neccessary con-

: ﬁmng condition:

If m (x) m; , We obtain equatlon
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dy
de
admittind asymptotically ( at x — o) oscillating solutions only.
Let us demonstrate that such a coordinate dependence arises purely
geometrically when equations of motion are defined in space possessing
conformally flat static metric B> 14!

+& (X =m'y

1.Classical picture: Geodesic equations in the conformally
. flat static metric.

Geodesic equation in general case is:
d*x" dx? dx” . -
—tI——=0 o 7
dt *dr dv : . Y
where T/, are the standard Christoffel symbols dt is the proper time ele-
ment. -
Let us consider the conformally flat metric with

gpv = Uz (x)n/lv 2 77,,v = diag(l7_1’_ 12_1) 2 . » (8)
where U(x)is some function, which depends on x* only. ~

The connection between the elements of proper time (dt) and the
laboratory one ( dt ) is:

dr=dt(/(x)1’1—12- . )
e

Geodesic equation (7) in the case of the metric (8) can be written in
the following form:

af e de) ¢? g AU )
dt dr ) 2Uu* " o'

=0, - (10)

Being multiplied by the constant m, with the dimension of mass Eq. (10) )

can de written in the following noncovariant form:

dp mic* .
=4 d(U*)=0, 11
o o gedn =0, o (11a)

dE mac’ d(U?) _

11b)
d M o (11b)
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where p=My , [E=Mc,

mU(x)

r M= (12)

If the conformally. flat .. metric . is -static : one, i.e.
0(( )
Ux)=U(),

termined. by (12) is conserved quantity ( integral of motlon) and one ob-
taines from (1 1a) the followmg equation:

d’r m . ,
M—+2gradU*)=0= ' = - (13
EANYES (U”) (13)

=0, equation (11b) leads to % =0 the “mass” M de-

. This equation coincides formally with the nonrelativistic equation of
motion of a “particle” possessing the “mass” M in a “potential field”.

F—'l’“—c— a3 a4

The essentlally new feature of the solutions of equation (13) is the
existence of the peculiar parametric dependence on the initial comditions,
because the integrals of motion appear in (13) instead of numerical con-
stants. ‘

We see that momentum p and ener gy E are connected by the stan-
dart condmon : .
*-c p —an ) .
which showes that the quantity mOU(r) plays. the role of coordinate-

dependent rest mass. The same results can be certamly obtained v1a standard‘
variational procelure with anaction determined by linear element

ds = (g, dc"de")

defined by metric (8).
The corresponding Lag,ranglan is:
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L=-m,cU(r),|1- v—, .
pE

2. Dirac'eguation

Let us consider Dirac equation in the general covariant form *!;

(4 l v
r’ {6,,1/1 37 @.r.-T ,,Vn)w}+mn¢// 0. (15)
Here y” are generalized Dirac matrices satisfying the standard con-
dition '
yly" +y"y" =2g",I;, are Christoffel symbols, my is the rest
mass. |

-

Bispinor v satisfies the condition
i[yr"pdf, =1 (16)
x"=t=const.
w is the Dirac conjugated bispinor, df, is hypersurface x° =t = cons
t element.

form:

=U()7, ("= )y’ ] Can

. 4
where y, are constant Dirac matrices corresponding to the flat space-time,

Le.

yiriry =2
After substxtutmg (17) in equatlons (15) and (16) we obtain Dirac equation
in the following form: .

Oy . 3
l—at—z{a (PK—?U ‘GKU)+,Bm0U}‘I’, (18)

where @ =y, y*,f=-iy,,P.=-id_,c=h=1.
The normalizing condition (16) takes the form:
IW+WU3d3x=l (d’x:dx‘dxzdx3)

° const.
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Inthe case of metric (8) y matrices can be chosen in the following

After.introducing the new wave functlon
O=UY B TR D SR (19
Wthh satlsf' es the conventlonal normahzatlon condltlon B

x"=t=const
we obtaln Dirac equatlon in the form . -

ORI R

oy B B

o ,%_ {a P+ fm, U(r)}cb L (20)
We see that, Dirac equatlon for the particle w1th rest mass m,in con-
formally flat static metric g, =U (r)r]ﬂ coincides formally with Dirac
equation for particle with some: coordinate, ~ dependent effectlve ‘rest:mass
m(r)=mU(r) in flat space-fime. ... ., .. i IO
The external fields can be included in (20) ina standard way..

3 Klein - Fock - Gordon (KFG) equation
The KFG equatlon

(D+IJ-0 )o= 0 (‘uo )’ R N

A _ h
where R

in the case of metric (8) can be wr1tten 1n the followmg form:

@+’ )= - ‘
L1 i
U U? az N | »
The term in (21) contammg the ﬁrst denvatlve axqo is. excluded by

the substitution:
p= - U-l ¢ i

Then (takmg mto account the condltlon %‘— 0) KFG equatlon for

6’]40 —,—(a U)6K<o+uo<o«—0 3 (21)

the functlon @ is.:
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Li_a +U"6iU+p3U3}¢ =0 (22)
cror

Thus we obtain the equation for the “particle”, possessing the effec-

tive (coordinate—dependent) mass y, - determined by formula
2772 -12
M:‘; = ,uoU +U 6KU

It is interesing to notice that conformally flat metric gives us some *
peculiar mechanism.of“mass gneration’: initially massless (m, = o) particle
behaves as the massive One possessing the coordinat-dependent mass

in i 12 !

M, =UBUY

- Asan illustrative example let us consider the function
U=1+e™ -

corresponding to the metric which differs from flat one in the restricted -

space region 7 < ;' only and is asymptotically flat.
Inthis case we have '

o

UaU =(e +1)“(x2 - 2"'));
;

o :I‘his expression obviously trends to zero at r—oo. However at the
small distances one obtaines ‘ :
=122 K,
U aanl Kk r «1 NK'Z ——Z—r
r 2
The KFG equation (22) for massless particle (m, = 0) in this case
takes the form:

I L, ,
{c—zgﬁ—a;+l(;—7"——"--r ¢$=0,

which corresponds the spinless particle possessing rest mass x,, moving in

t.he stati.c exter‘nal field which is the sum of the Coloumb attractive and the
lineary increasing repulsive potentials. ‘

Phenomenological relativistic quark models

and conformally-flat metric
_ As.we have seen, making suitable choice of the conformally flat
~ static metric, one can obtain confining solutions of Dirac equation, which is’
used in phenomenological relativistic quark models. ’

s 7
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" For example in the “new hadronization model” proposed inteM7} tf)

explain the present data on charmed meson decays the quarks satisfy a gen-

eralized Dirac equation with the Hamiltonian. . L L B
U Hy =at(eie, ix[x)+ A T @)

The quark wave ﬁmctio‘nftherefofé has the form: S

r

wir)=e e (24)

1

ie. w(r,0) is the plane wave damped by a gaussian-factor (e_ﬁ], Xo-1s. the

effective hadronization radius. . N
Comparing eq.(23) with Dirac equation (18) in the general case of
the conformally flat static metric

g/lv = (/:(!:),][IV 2 » §
and taking into account the general fdrmulé (19) ¥=U %4 in the private
case when ¢=exp{ipﬂx"}, we obtain U :(r)=e T, or

L3S
r

Ury=e>. o e
Thus we see that authors [6,7] actually deals with Dirac equation in:
the case of following conformally flat metric: = : o

2r?

g, =¢" (25
as it was shown in the paper [4].. - s
In the case of metric (25) we obtain
vl et | Bt
. x; 9%, .
" _The corresponding KFG equation (21) takes the form:
s oL o LEm el !
— =0, +ne o4 p——rp=0 26)
Cz a’_ X o x:; 9 x.; ¢ o (

o

what coincides with the result obtained in'®! R o
To estimate the numerical value of x,-one can consider. the: small*

distance approximation ( %, « 1) to eg. (26): In this ‘case to first ‘order in "

o



77 eq. (26). coincides formally with the energy eigenvalue equation for an|
x) ' e

isotropic harmonic oscnllator

The allowed values of the square of mass (M?) in this approx1mat10n |

% '
2+2m 3 1+ 2 2n+F+3
x> x, V3 3m’x’ 2

are  given by (See[xl) M?=

c (27)

| h=c=1)

" We see that in this picture the slope o' of a Regge trajectory depends on pa-
rameters m and x,. In the case of sufficiently light confined particles (mx, «

-

1) eq. (27) gives a'=—=, and since a'z 1Gev? we obtain an estimate of

the parameter X,: x°~l 2 Gev'! in good agreement with the experimentéi
value, x, = 1 -1,5 Gev'', obtained from the data on charm decay.

Possible origin of the effective
conformally-flat metric

The hypothesis of maximal acceleration was conjectured by Caian--

1ello[ I Different aspects, formulation and consequences of the p0551ble ex-

- istence of a limiting value to the proper acceleration of a particle were ad- |

vanced on classical and quantum grounds by several authors (see, for exam-
ple 1o-011 and the references there).

.straight consequence of the existence of maximal acceleration.
The model proposed by Caianiello and his coworkers to include the

effects of a maximal acceleration in a particle dynamics consisted in enlar- -
gihg the space — time manifold to an eight-dimensional space — time tangent -

dx*
dr’

bundle, where the coordinates are X* ={x";%£"}, u=1, ... 4, xt'=

A is the parameter whose dimension is acceleration.

The fundamental infinitesimal interval for a particle is the folloving

eight-dimensional line element:
2

dS? = dx"dx,, +~—di"ds, @28)
A2

Assummg the background metric as the Minkowski one, i.e. 8™ M= diag

(1, -1, -1, -1) and taking into account
dx* = di"dr we obtain from (28)-
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In particular the effective conformally flat metric can arise as an’

Py st S
- tdS? :(li’x_A;&}dsz FEEF TR SRR P S V2 A \'1,1'3(29) L

)2;,” .

a’.x

where x = dx"dx —c dr i ié"a spacellike‘ vectOr (ie.

%, < O The exp11c1t form of x"x m noncovarlant notattons s

e :_(1_~] {a ———(._xv)z} e
i c

dr a= u"r
where v= ar e a’l‘ ,
"In ‘the’ case v-O (classncal returmng pomt) we obtam from (29),

(30) the formula

: a’ .- C

A d 1———5 R _
which’ demonsttate the limiting role of A, T o N
The use of line element (29) as a starting point of pamcle dynamtcs

(both classical and quantum) obviously leads as’to 'the theory with hlgh de—

rivatives. » ot
It is more productive to consider the acceleration field ¥"x, of the

pamcle as a result of its interaction with an ‘external fields.
..If one considers. for simplicity the:case of non-relativistic electron in

an electrostatlc external field: E(r) the term x"x reduces to:

where if neglecting terms of order A-4. E_(r) testticts 'tO: ce(ntral:el‘eetrlc field

E(r)= zeZZ .

Then from (29) we obtain

AR

PR | P S SETSTN BN O 1 IR TN o
where . *° . _l. . S
‘ - B
) = TSR, e’ b E"" AL ) Zez?;. 20 o o 32 R
B U(r)z{l— mzAIF} ro—(-m——z oo () virinE



is the conformal factor.

The maximal acceleration corrections to the Lamb shift of one-
electron atoms were calculated in [11] starting from the Dirac equation in
conformally flat metric with the conformal factor determined by (32).

An interesting apporoach to explain the connection between maxi-
mal acceleration and the effective geometry proposed in!'?. ,
They considered a particle of mass m and charge ¢ moving in back-
ground Minkowski metric under the action of an externally applied electro-
magnetic field. The classical equation of motion is '
det =L prgy o (33)
mc - '
- This equation can be taken as the first order approximation to the
real velocity fields of the particle. If one substitute (33) in (28) one can cal-

culate the correction of order A? to the classical background metric /P

This procedure can be iterated, by calculating the néw velocity field and
substituting it again into the metric to obtain the corrections A and so on.

Because the value of the maximal acceleration is very high we can neglect

0(A™) terms. This leads to metric
ds’ =g, dx"dx",

where

— 2 o E ' .
€, =1y ———F, F" (34)

Azmz, uvtov

- The effective geometry is curved by the acceleration due to the in-
teraction of the charges particle with the electromagnetic field and this cur- .

vature affects the motion of the particle itself,

The modifield equation of motion of the charged particle may be

obtained from the action

5= {— mc(g, dcrae B + qA,,xﬂ}dr.

Now we notice that the alternative startiﬁg "pointxto‘ introduce the

fundamental infinitesimal interval of the type given by (28) is the Born reci- ;

procity principle!". The corresponding reciprocity-invariant interval is:

1 —
dS? = ds? +—dpdp, , . (35)
K] )
where p” is a momentum, and «, is a constant, whith dimention momen-
tum/length or energy/time. This constant was introduced by author
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in 1974 D4 K, = @’i Inthe limit «, — oo(@— << xn) arises two inde-

dr dr ‘ ' '
pendent Lorenz-invariant intervals in Minkovski and momentum spaces cor-
respondingly. The connection between &, and the maximal acceleration is :
A=mck,

The interval (35) can be written in the fo]lc;wing form

- I dp” dp .
dS" =|1+— L Zalys 6
( K, dy db‘) s o @9
dp”

Using the equation of motion —~— = —/-U" and introducing a new con-
s ¢” R DI

~

‘ CK, . . . . ST
stant g = Yy with dimention of energy density (maximal energy density)
. ¢ S|

we obtain

ds* = {1 +ﬂF,,”F.,f,U/‘U'}dv3, (37

where ="/ .
o he , R
Being expressed by the standard electromagnetic energy-momentum tehsor

745" notations formula (37) gives:

dS: — {1 _‘471'0” (C":Y;f:—m)(/'“(/v + L(e-m))} dSZ , ) - (38)

(RN

where L™ is the standard electromagnetic field Lagrandian.
In the comoving reference frame we obtain from (38):
1 e
ds:'(l —ﬂE_Z) dy
P.
_(E ~ is the electric fields vector). This leads exactly to the conformal factor
Introduced in [11] by calculating maximal acceleration cirrection to the
Lamb shift. Itis very tempting to suppose that (38) gives us some universal
tule, which is suitable for any particles interacting with corresponding ex-
ternal field via coupling constant . I.e.

i
ds = { -4 (l IO + 1}»”)} dy
pll -

C
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where 7/ and L are the external field energy-momentum tensor and
Lagrangian correspondingly.

References

" Calucci G.Lett.Nuovo Cim.,1979, 26,449.0no S.Phys.Rev.,1982, D26,
2510. Ravndal P.Phys. Lett., 1982, 113B, 57.

2} Bykov A.A., Dremin 1.M.., Leonidov A.B.. Pisma JETP, 1983, 193, 33.
Usp.Fiz.Nauk, 1984, 143 3.

Bl Gorbatsevich A.K., Tomilchik L.M. (1986). Preprint N415
Phys.Inst. Ac.Sci. of Belarus, Minsk: High Energy Physics Problems (Proc.
IX Seminar, Protvino, 1987, Moscow, “Science”, pp.378-383. (in russian)
) Gasperini M., 1987, Phys.Lett. B195, 453,

B} Schmutzer E. Relativistische Physik, 1968, Leipzig.

61 Basdevant J.L., Bediaga 1., Predazzi, (1987), Nuclear Physics B294,
1054-1070. ’ ' ,
7] Basdevant J.L., Bediaga L., Predazzi E., Tiomno J. Ibid. 1071-1080.

B Caianiello E.R., Gasperini M., Predazzi E., Scarpetta G. 1988,

Phys.Lett.A132, 82-84.

Pl Caianiello E.R. 1981, Lett.Nuovo Cimento, 32, 65; Rivisita del Nuovo
Cimento, 1992, 15, p.4.

(o] Papini G., Feoli A, Scarpetta G. 1995, Phys.Lett. A202, 50.

U ambiase G., Papini G., Scarpetta G., 1997, hep-th/9702130, 17 Feb.

12 Feoli A., Lambiase G., Papini G., Scarpetta G. (1997), hep-th/9702131,\

17 Feb.

(131'M Born. Rev.Mod.Phys, 21, 463 (1949).

MiTomilchik LM. Vesti AN BSSR, ser. Fiz.-mat.nauk, N4,1974, p.72.
(Proc.Belorussian Ac.Sci. in russian).

76

Relativistic Physics of hadrons and nuclei



The mesons in relativistic Ham1lton1an dynamics
‘V.'V. Andreev'!
Gomel State Umversrty, Physrcs Department 246699 Gomel Be}arus

Abstract :

We consider a model of meson, based on the Pomca.re covanant quark model wrth )
analytical solution of the mass spectrum. We mvestrgate possible limitations of
model parapeters, implied from the lepton decay constants as well as from the
mass spectruin oi' light' mesons.

1 Introduction

The investigation of bound states of particles is one of the effective methods to study
the properties and dynamics of the interaction of particles. This method is widely:used
in various areas of nuclear physics and physics of elementary particles. = In studies of
properties of quarks, of which the mesons and baryons consist, this method has important
value, as the quarks are not observed as free states. Today, the electroweak decays of
hadrons enable us to measure the parameters of the Standard Model (SM), and also these
decays are the tool of exploration of effects of new physrcs i.e. physxcs beyond tlre SM.
In particular, the hadronic decays allow determining the elements of a mass matrrx as
well as angles of mixing. The leptonic decays of pseudoscalar mesons in a model wrth two
charged Higgs bosons become sensitive to masses of these bosons [1]. Information about
the structure of hadrons are required for these investigations and it is important to have .
the description of properties of hadrons in the framework the relatlvrstrc models of bound
states.

Many different descriptions of relativistic bound systems have been developed and
even a brief survey of the vast literature on this subject’ goes far beyond the scope of.
this paper. In the present work, for the description of bound states, we use a Poincare'-
covariant model of hadrons. The basis of this model isa constituent quark model and
Relativistic Hamiltonian Dynamics (RHD)[2] .

The aim of this work is to present combined description of lepton decay constants "
of pseudoscalar meson and Regge trajectories of light meson in the Poincare’ covariant
quark model, based on the point form of the RHD. We consider a simple model with an
analytical solution of the mass spectrum and investigate the possible limitations of model
barameters, implied from the lepton decay constants as well as the mass spectrnm of nght
mesons.

2 Bound quark-antiquark of a state in the RHD

In the quark model the mesons renres'ent a system consisting of a quark and an anti-
quark. In the framework of RHD, the interaction, which is determined by the generators of
the Poincare’ group P,, and M* is introduced as follows. The constructlon of generators

'E-mail: andreev@gsu.unibel.by
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for a system of interacting particles starts from the generators of an appropriate system"

composed out of noninteracting particles (further we shall note such operators without

"hat”), and then add interaction so that the obtained generators also satisfy the comnu-.

tation relations of Poincare’ group. Unlike the case of a usual nonrelativistic quantum
mechanics, in the relativistic case it is necessary to add interaction I in more than one
generator to satisfy the algebra of the Poincare’ group . Dirac (3] has shown that there is
no unambiguous separation of generators into the dynamic set (generators containing the
interaction f]) and a kinematic set. There are three versions of separation on dynamic
and kinematic sets (so-called RHD forms): the point, instant form and dynamics on light
front. In all three forms the interaction contains mass operator M ie. M = My + 0,
where M is an effective mass of a system of nonintera_.pting _particles. In an instant form
the interaction enters also in the operator of a boost N = (M, 92, if 93), which makes
wave functions of mesons Lorentz -noninvariant. In the dynamics on light front the inter-
action is contained with components Jy, J; of the operator of an angular momentum J =
J (J=(MB, i3, M'?)), that results in violation of a rotational covariance. In a poiut
form RHD 4-velocities of bound and noninteracting systems are equal, i.e. N

V =Vi,V=P/M, Viy=Pu/M,, 1)

where P and Py, are the 4-momenta of the bound and free from the interactions of particle'

system. In all forms of the RHD 4-momentum of a bound system P and total momentum
of free particles are not equal, i.e. P # P,. .

‘Let’s consider in the context of RHD, a bound state with momentum P, mass M, spin
J and'it’s projection p consisting of two particles. Let these particles have the following

characteristics: momenta p; and p;, masses my, My, spins s, and s,, projection of spins-

Ar and A;. The coustruction of a bound two-particle state includes the following stage

[2]:

1. Definition of the two-particle Hilbert space as the tensor product of the one-particle

spaces and of the appropriate basis:

[P1A1) Ip2da) = [mis1; 1AL) ® [masa; pa)a) , 2).

with the normalization :
PIX] (P22 1) [p2da) =
a2, 000, 8(P) — PG - B).

2. The Clebsch-Gordon coefficients of the Poincare’ group are constructed and are-

used to reduce the two-particle representation of a Poincare’ group to linear superposition
(direct integral) of irreducible representations. As result we obtain the basis:

'ﬁn,#, [V, Mo(K)], (Is); [mlsx;m252]> =
e wml (ﬁl)wm: (ﬁZ) MO
k = = =
L \|wm.(k>wm,(k)wM°(Pn)

2. > (i, 20| 5X) (I, sA| ) Vi (I:;‘)

mA vz
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. Djio (i (1, Pra)) Divs (7 (P2, Pr2)) [pid) lp2da), ~ 00 (3)

We used the following notations: IR A
Pa=p +p2

is the total momentum of a free system, whereas -

Py ( Pa-

E=p +

MO' - 'men(ﬁl)) !? = E/IEI 7

w.lt'lo(ﬁlyz) + My . )
is the relative momentum of two particles, anvd'(élull,k szbgLs}\), (lm, sAyl Jp) are Clebsch-
Gordon coeflicients of SU(2)-group. ~The function’Y;m(K) is spherical harmonics and
DV2 (i) = 1 —ifi- &/v/1+ 72 is the D-function of Wigner rotation, which is determined
by the vector-parameter 7i{p;,p2) = @ X @2/ (1 =1, - tiz) with @ = 7/ (wm (P} +m). Apart
from that, the following reductions are used: e e g

My = My(k) = wm, (F) # wem, (),

o I £

wn(k) = VR +mk=|E|. A ()

The following step 'cbii_'sistsfi)ffna.,(:i'(;l‘i.x‘lg't}ié mteractlonf} t:(,’,the‘mass operator of a
noninteracting system: = o

.

S MMl

If the operator U éatisﬁés'the ‘cionditi(')'ns: . .
| G 1[:!_,;;_1\7‘!‘*, M >0,

o [13127 [7]— =[16ﬁ'u’[7]-=[j.’ ﬁ]‘ =0 (5)

then a similar set of intéractirig particles will satisfy the same commutataionbrelatio‘ns as

-the set. of non-interacting system.:

The problem of eigenvalues of the mass of a bound system can be expressed in‘three
equivalent forms in the Hilbert space[2]:

L MU SE (Mo D) [ IS M U S

M+ Wy | U >=M? |0 > Wy=M-M2,

P S R S O [P S YA o S ‘l
(B+W)|U>=n|v > W=7 [(M” )+ (mf—m';‘) * ’(H, —-mu-)], (6)

where M and 7 aré connected:  °

ME= il 2ol md A m]) Fmdmd. .M
‘The solution of the problem (6) will allow to find wave functions, which determine the
vertex of the transition from free from interaction to.a bound system of particles. In the

Point form this wave function is determined as follows:

<V‘12) J) Hy k) (ls) |V7 ‘]'; I"r M) = 6JJ’6mt'6(V - ‘712)‘1’.’“ (kl S) - (8)
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Wave function generally satisfies the integro-differential equation, which follows from
Egs.(6) and (8):

3 / <KW KU > T ' M)K2dE+
Vs’ g

, +E*W (k1) = nU7(kis) - (9)
with the reduced matrix element of operator W

Vo dn b, (1) W [V, ', B, (157)) =

855:8,08(Via — V1) (k. (1s) ||]| &, (¥'s)). (10)
The wave functions are normalized: - ’
N3 [T ki |e (ks =1, (11)
1s 70 .

where N, is the number of quark colors. Thus in the point form the meson state is defined
as state of on-shell quark and antiquark with the meson wave function U7 (kis)

i) - (e TG

7 (kls) D3 (sim, s sA) (Im, sA} Ju) Yim (?)

mA Vi

D3ty (7 (1, Pra)) DL, (7 (52, Pra)) lpu ) o)

Let’s mark, equation (9) for a wave function is a similar radial equation in a quantum
mechanics (only the impulse representation).. . : '

)

3 Regge trajectories of mesons in Poincare -covariant

quark model

. In this section we apply the formalism developed above to calculate the mass spectra
of mesons containing u,d and s quarks. To choose the appropriate interquark potential
we use the well-known experimental fact that light hadrens populate approximately lin-

ear Re.gge trajectories, i.e. M2 ~ Bl + const, with the same slope g ~ 1.2 GeV?, for
all .tralcctories (see, for example, [4]). We take the effective model potential W in the
oscillator form with spin-spin interaction ay (?1?2)

W) = Wod () + Bl % o, (3,7) ©

where |
nere WOr‘“a and B4 are free parameters.
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Using standard relations for the ccv)ordinz‘ite‘operat'br, ofl)tiAt‘alAmofnefltum_ and’spin
operators we reduce the integro-differential equation of RHD (9) to the ordinary quantum-
mechanical radial equation with the oscillator potential (only impulse representation)

(& .20 w+y ®y o Wiy o

[W + E'gz el —*kz—— -_ E \II(Lls) = ﬂ4 y lI/(kls) ) ‘
Wo=Wa+a, (~02 +6,1). e
. 0 ="Vrp-ta, ao4 3;4‘- v ,( )

The eigenfunctions of Eq. (14) are
2 ! o 2

V(kls) = Nyexp (——k—z—) (i) F(‘—‘n,l+§;k7) ST 18)
- 2 9Q/ \FeQ/ - 2 9Q RS : ’

with 1> s - ’ i
oo P [Pm+i33/9)
_ MUTAH3)\ T Tt
where 1,0 = 0,1,2..., F(a,b,z) is the hypergeometric function, I'(n) is théCamm'a"

function. Note that the wave function of the ground ‘state (n,! = 0) has the oscillator
form, which is useéd in many relativistic models of hadrons: - ‘

. , )
U(kls) = W(k, fo) = 2/ (B35 n"/") exp (_._"z_) . (16)
N . : 2'3«,70
Qua.ntizatiou‘couditiou is defined by .
3 1 i RN
n=Wy+2 30 (2Tl+l+3/2)'+ a, (—6,04—4'6,12). (17)

The spectra of mesons, composed of quarks with equal masses (mg=1mg=m)are

- given by:

Mo (1) =4 (m? + Wy +ja;(j6,0§ + ;5,;%)) +86% (2n+1+ g) . 8)
Thus we reproduce the linear dependence of M?(l) in the framework of the two-body
relativistic equation (9). : : : s -

Now we determine possible limitations on parameters of the bound systems witl equal
Quark masses (u — d and § — § states), which are implied from meson Regge trajectories. .
. The parameters Wo and B, have been found from fitting the p-Regge trajectories (see

ig.1): ~ ‘ ‘ ' B

m2 -+ W + a,4l = —0.28062 + 0.0264 GeV?, B, = 0.3818 % 0.0116GeV. (1)

If we assume that By, =" B,y '= fu, we obtain that the differences of the squared
Masses of spin-singlet and spiti-triplet for u — d systems are determined by MZ_, (1=0)-
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Ms_ (=0) = 4a,. Using that M7 — M} = 0.5711GeV? we see that parameter of

spin-spin interaction have value: v
= 0.14275 £ 0.00025 Gev2 (20)

Experimentally, the differences of the squared masses of corresponding spin-singlet and
spin-triplet quarkonium states, which contain at least one light quark, weakly depend from
quark masses. For example

M? — M} = 05711 GeV?, MZ%. — M% = 0.55 GeV?, Mp. — Mp = 0.55 GeV%.

Therefore we suggest that parameter a, does not depend from masses of quarks. Thus we

have that

m2 + Wy = —0.3253 £ 0.0264 GeV2.. (21)
There are eight meson Regge trajectories populated by u—d bound states (for each isospin
I and angular momenta J = I+1,J =1,J =1-1 and total spin'S of ¢@ system-S =0, 1).
Some of the trajectories are plotted in Fig.2 using parameters (19)-(21). We observe that
all experimental data are in good agreement with the spectrum given by Eq.(9) for S =1
(Fig.2a-2b). As in the case of bound states with S = 0, the agreement between our
theoretical predictions and the existing experimental data is not good (see Fig.2c-2d).

Such deviations can be explained by the absence of tensor. spin-dependent terms, short-

distance term of the potential and octet-singlet mixing for the 7-meson trajectory.

If we shall assume “ideal” mixing for ¢ meson i.e. the mesons, which correspond:to’

¢-meson Regge trajectory (see Fig.3), consist of only s-quarks, from linear fit (18), we

obtain :
Bss = 0.400077 £ 0.00841 GeV,

m? + W, = —0.26486 % 0.02013 GeV2.

We can also find a ratio between masses of quarks.. It is easy to verify, that m, and m,
have the relation

(22)

m2 — m? = 0.06044 % 0.0332 GeV>. o (23)

Thus, using Regge trajectories of mesons containing quarks with equal masses we have
the following limitations of model parameters: '

a, = 0.14275+0.00025 GeV?,
Buy = Pud = Paa=0.3818 % 0.0115 GeV,
B,, = 0.400077 % 0.00841 GeV,
m: + Wo —~0.3253 £ 0.0264 GeV?,

il

m?+W, = —0.26486+ 0.02013 GeV?2. . : (24)

As is easy to see, our method for bound systems with dlﬂ'erent quark masses does not
require a special procedure to solve the main equation of RHD (9), as was pointed out in
[4] (1ntroductlon of addmonal parameter). When the masses of the quark and antiquark
are different, using Eq.(7) MZ; can be written

qQ 0=

2n+m’+m§,+2\f(n+m2+m§,)+m2m§,= - (25)
(21;+m +mQ \/1— m’—mq) /(21;+m2+mq)
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where the quantization condition of the 7 is defined by Eq. (17) The dependence M (l)
is also linear if we assume that in Eq.(25) .

(m? —mQ) /(21;+m +mQ) <<1

However, from the analysrs the Regge of trajectorles, we ca.nnot ﬁx masses of the
quarks. Therefore the additional experimental data are necessary for further analysis.
We shall consider the limitations that we can obtain from alternative experimental data.
Then we shall again pass to the constructlon of the Regge tra]ectorles of mesons with
strange quark. - .

Concluding this sectlon we remark that the analytlcal solutlon of a main equatlon of
the RHD can be used as zero approxrmatlon for solvmg the problem with more realistic
potentials. :

4 Leptonic decays in a Poincare-covariant model of
mesons ' : ; ‘

In this section we shall consider possible constraints on the parameters of the model,
which can be. obtained from,leptonic decays of pseudoscalar mesons : (pion, kaon): In
the SM the wrdth of purely. leptonic decays of cha.rged ‘mesons, P+(Qq) - l+u1 has the
expression: -

2\ 2 . )
l"SM (P+ - l+ul) quql f ,2M (l - —;%) , (25)
IR Mg ) s

where Gr is a Ferm1 constant and m,,Mp are the masses of the charged lepton [ and of

the pseudoscalar meson P, respectively. The leptonic decay constant f; of a pseudoscalar
meson P(Q7).is defined by the matrix element . ..o wimieen e

1 Pf;;,‘i
S, (B)

N .

R @

where J%(0) is the operator of the meson current :
Usmg the relativistic 1mpulse approxlmatlon and Eqs (8) (12) we ﬁnd that in the pomt
form dynamrcs : : S
. L fP (mq.mq,ﬂqq)
Ne/ (wf ) (mo+ mQ) I§° dkK* U (K, Bra)

. M2-(mg-mg)? " FER,
\‘”“v(?)::d(%)hp’ i (28)

Wwhere N, is the number of colors, mq a.nd mQ are the masses of the quarks If mg =myq,
the leptomc decay constant is deﬁned by R

cmq /oo dkk’\ﬁ (k, 5@)
0

% (%)

fr (mq, 5qQ) (20)
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For further calculations we shall use the wave function of oscillator form (16), which
is the solution equation of the relativistic bound states with model potential (13). Using
the experimental values of the pion and kaon decay constants and the theoretically cal.
culated formula we shall receive the limitations on parameters of the model. The modery,
experimental data give the following values of constants of decays of a pion and kaon {5]-

Jr® =0.130.7+0.00046 GeV, ‘fZP = 0.1598 =+ 0.00188 GeV.
The n-meson decay constant is defined by

) 2
.5ﬂ“l_ [23/4[‘ (_1) r (E) v (g’ 1; l;)
ST ("2) 4/ " \4 44’2682,

- w[‘ (_g) ;Fx (E 7. m, )] ' ' . (30)

g 4 2’4282,

Jx (mu) ﬂud) =

For the decay of the Kfmeson, which consists of quarks of different mass, the decay
constant is set by Eq.(28). To obtain the limitations on the parameters of model, it is
necessary to solve the set of equations:

-

fr (mu, ,Bud) = f, Jr (mux My, ﬂus_) 7= f’e(:p ) (31)

For the solution of this system of equations we use the following procedure: we ‘get
the limitations on Ty, Bug, which follow from the first equation of a system (31). Further
let’s assume, that ' : ) e
My = a*m,, ﬂus =V ﬂud; : (32)
where a,V are some numbers. The values of @ and V are obtained by minimization of
deviation o ( o
R . lfk(murﬁudﬁayv)-_fle(xpl' [
Graphically it means, that the solution points coincide for both experiments on the plane
My — Pua. The result of the procedure are displayed in Fig.4. The coincidence curve is

achieved at @ = 1.48,V = 1.236. If we assume that B4 = 0.329 GeV (see Fig.4), we
receive

om, 0.250 GeV, m, = 0.370 Gev, )
Pus = 0.407GeV. ' o (3)

" This result (33) aérees with the results obtained in the instant form of the RHD for
oscillator wave function [6]. In the dynamics of light front for the data of the quark masses

and the parameter 8 of the wave function are approximately equal numerically (33) [7]. |-

Now we shall use the value of the parameters Bua, which we haye found from the analysis
of the Regge trajectories (see (24))-B,q = 0.3818 GeV. In this case we obtain, that

my = 0.216 & 0.02 GeV, m, = 0.320 + 0.03 GeV.

We shall return to the analysis of the Regge Vt,rajec‘tories.» Whenvthe masses of quarks-are
fixed we can calculate the remaining parameters of a model potential. So from a ratio
(24) we receive for the parameter Wo the following value:.

- We = —0.3720 + 0.0264 GeV2.
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Using mass pseudoscalar K-meson'mg’ = 04937 GeV and equation (25) we obtain, that
parameter of a wave function g, isequal: = . o e T

Bus = 0:3925:£ 0.06 GeV.
Thus for mesons containing u,d and s quark with the interquark potential (13).we have:

as = 0.14275+ 0.00025 GeV?,

Pus = Pua= Baa=0.3818 £ 0.0115 GeV,
Bus = 0.3925+0.06 GeV,

Bss = 0.400077 + 0.00841 GeV,

Wo = —0.3720 + 0.0264 Gel/2

My = mg=0.216 £ 0.02 GeV,

my, = 0.320 +£0.03 GeV. (34)

Let’s remark, that the squared masses of the u and s-quarks, obtained from the
leptonic decay constants, and from the analysis of the ¢-meson Regge trajectories are
approximately agreed (see (23) and (34))

= 0.056 & 0.021 GeV? — leptonic decays,
0.06044 + 0.0332 GeV? — Regge trajectories.

[
, 8
!

-
<
~

The evalutations of parameter V = Bus/Bua are agreed little a bit worse

Vv
|4

1.236 = 0.020 ~ leptonic decays,
1.02 £ 0.30 ~ Regge trajectories.

It

We compute the strange meson Regge trajectories using Eqs.(25) and (34) (sce Fig.5).
The model describes two Regge trajectories with § =1 and and one with § = 0 in quite
a satisfactory way (sce Fig.5a, 5b, 5d). But for the K*-meson trajectory the agreement
between the model and the experimental data is not good (see Fig.5c)

Thus, in the framework of the model of the mesons based on a point form of the
RHD with seven barameters we have a satisfactory description of decay coustants of
bseudoscalar mesons and their masses. Also the model potential, which solves the equation
of the bound two-particle relativistic system with an adequate accuracy reproduces the
Regge trajectories of light mesons. DBut a realistic potential (one boson exchange +
Nonperturbative part of potential4-- - -) is necessary for a more satisfactory description of
the spectrum of masses.
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TIME-REVERSAL-VIOLATING OPTICAL GYROTRQPY
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Time-reversal-v |olat111g 1ntel actions of the electrons and nucleus cause
the appearance of new optical phenomena. These phenomena are not
only very interesting from fundamental point of view, but give us a new
key for studying the time-reversal-violating interactioris of the elementary
particles. " L

Violation of time reversal symmetlv has been- observed -only -in- Ixo-
decay many years‘ago [1], arid remains one of the great unsolved problems
in elementary particle physics. Since the discovery of the CP-violation in
decay of Ky-mesons, a few attempts have been undertaken to observe this
phenomenon experimentally in. dlffelent _processes:. However, those exper—
iments have not been successful. At the present time ‘novel more precise
experimental schemesare actively dxscussed observation of the atom [2].
and neutron [3] electric dipole moment, T- violating (time reversal) atom
(molecule) spin rotation in-a laser wave and- T—v1olat1ng optical act1v1ty of
an atomic or molecular gas [4, 5]: . - A e

According to [6] a new optical phenomenon appears due to v101at10n
of the time reversal symmetry: the photon polarization plane rotation
and circular dlCthlSln in an optlcally homogeneous 1sotroplc medlum ex-

‘posed to an electric field. This T-odd phenomenon is a lunema.tlc analog

of the famous T-even phenomenon of the photon polarlzatlon plane rota-
tion in the medium exposed to a magnetic field (Faraday phenomenon)

~‘(see figure.1). One more T-odd- phenomenon of photon polarization plane

rotation and circular dichroism appears at photon passmg through non-
center-symmetucal diffraction’ grating (6], ‘ .

In the present paper ‘the T-odd phenomena of photon polarlzatlon plane
rotation by an’electric ﬁeld and by a diffraction’ grating are considered. The

“rnagmtude of effects ‘are est1mated and the poss1b1ht1es of experlmental-

observat1on are dlscussed

1. Phenomenon of the time- reversal—v1olat1ng photon polar—
ization plane rotation by an electric field.

: 93



where f, is the P-.T- invariant scalar amplitude, fF is the P-violating
scalar amplitude. and fI is the P-.T- violating scalar amplitude.

It can easily be found from (7.8) that the terin proportional to H (fr‘)

vanishes in the case of forward scattermg (n - n) Vice versa, in the case

of back scattering (n - — n) the term ploportlonal to AP (fP) gets equal
to zero.

Thus, one can conclude that the T-vnolatmg interactions manifest them-
selves in the processes of scattering by atoms (molecules). However, the
scattering processes are usually incoherent and their cross sections are too
small to hope for observation of the T-violating effect. Another situation
takes place for diffraction gratings in the vicinity of the Bragg resonance
where the scattering process is coherent. As'a result, the intensities of
scattered waves strongly increase: for instance, in the Bragg (1eﬂect10n)
diffraction geometry the amplitude of the diffracted-reflected wave may
reach the unity. It gives us an oppmtumtv to study the T-violating scat-
tering processes [5]. . : i

To include the P T violating processes into the diffraction theory, let

us consider the microscopic. Maxwell equations: e
, 108 10F dn
‘l = —_——— — —_——
curl E v TalR curl B = o +—7 , (9)
= .= op | . =
divE = 4np , divB=0 , E + divy =0

where E is the electric field strength and B is the magnetic ﬁeld in-
duction, p and ] are the microscopic densities of the electrical charge

and the current induced by an electromagnetlc wave, ¢ is the speed of -

light. The Foul__1e1> transformation of‘these__equatlor‘ls (i.e. E(r t) =
5—71;;] E (k,rw)‘e"k’?é"f“”’(l:‘/c(lc;) and so on) yields to equation for E (k,w),

(_'k;z;j_j)-ﬁ(;:.w):'_ﬁ;@' 7 () - S | o

where 71 =

i

In linear approximation, the current ;_(F,w) is coupled with E (7yw) by
the well-known dependence: j; (F.w) = [ ®r'o;; (F,f‘,w) E; (?,w) with
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o (f’ F’.w‘) as the microscopic conductivity tensor being a sum of the
conductivity tensors of the atoms (molecules) coustituting the diffréthi‘on
grating: ;; (F'. FI.,.:) =¥, a;’J‘- (f". l_'l.w‘) . here 0’;;‘- is. the conductivity
tensor of the A-tyvpe scatterers. The summation is done over all atoms
(molecules) of the grating. Tn a diffraction grating. the tensor g;; (F. l_‘w)
Therefore:

is a spatially periodic function. Ji (l.'..c) can be written as

follows:

A (FF-7) B (F-7e) )

.5 -1
(F)=Lx
where o}; is the Fourier transform of the conductivity tensor of a grating’s

elementary cell. 7 is the reciprocal lattice vector of the diffraction grating.
Using current representation (11). one can obtain from (10):

- P . .
Fi () = — 2\ (kk-7)E (F=7) (12)

Tensor of the diffraction grating susceptibility is given by

\ij (Efﬁ*f') = (i — i) \uj (/:J:_—Tﬂ) ‘ (13)

(—k* +43)

with

Here 1, (I? k- 7"? = ——alj (l: k- ‘F) is the amplltude of coherent elastic
scattering of an el dxonmguetl( wave by a grating elementary cell from a
state witly the wave vector (l. — 7) to a state with the wave vector k.

The amplitude F; s obtained by sumimation of atowic (moleculal)
coherent cldsll( 5S¢ alt(ung, amplltu(lcs over a glalmg elenwnlal\ (ell -

e

by (K =+ 7, A) <Z i} (A =k+7 k) -'f"\>. ‘(i4’)_

where f,;‘ is the coherent elastic scattering amplitude by :an-A-type atom

(molecule), 124 is the gravity center coordinate of the A-typéatom (molecu-

: €}, Nois the number of the atoms (tolecules) in an elementary cell. angu-
ar brackets denote aver aging over the coordinate distribution of scatterers
in gmllng s clementary cell.
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The amplitude f;; has been given by equation (7,3).
From (13). (14) and (8) one can obtain an expression for the susceptl-
bility \y; of the elementary cell of an optically isotropic material:

v (8= 7) = b, 4 Dyl L], (15)

\gi:n <Z f4(PT) (A A ) ;—ir‘ﬁ.4>‘

\s7 is the scalar P-. 'T- invariant susceptibility of an elementary cell. \ ' is
the P-violating. T- invariant susceptibility of the elementary cell, and %,
is the P- and T- violating susccpl.il)ilit\' of thie elementary cell,

where

‘Then, using (12.13,15) one can derive a set of equations describing tlle’

P and T violating interaction of an electromagnetic wave with a diffraction
grating

k? o R )
(_Q + 1) L; (k) = — (&5 —nin;) XL E; (k) -
~i\4g (80 — n-nz)s;,-,n,E- (ij) —
_Z{ ) NG E; (]:'_7'-')_}_ (16)

o |
+l\ (b —mn ”‘)‘~1.1fo/ (]: )
+XST,, (6 — n,nl)ewquj (;‘; -},

where ko =

Assuming the interaction to be P, T invariant (xf =xl = 0), eqs. (16>)’
are reduced to the conventional set of equations of dynamic diffraction
theory [9]. The detailed analysis of these equations was done in [6].

According to [6] the angle of the photon polarization plane rotation out
of Bragg conditions is defined by

9 = —koRex? (0) L + 2ko2; ' Re [x1, (7)
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) x5 (F) = xa (AXL (] L (7).

So, the T-violating rotation arises in the case of nonzero odd part: of
the susceptibility: \; (7) #.0. Such a situation is possible if an elementary
cell of the diffraction grating:does not posses the center of symmetry.

In accordance wit h (17)..the angle of the T-violating.rotation grows at
ar — 0. However . the condition a, |\s ()] € 1 is violated at a;! — 0,
when the anlplltude of diffracted and transmitted waves are comparable
E (l. - T) ~ F (A) and. consequently, the perturbation theory gets unap-
plicable. A rigorous dy namxcal diffraction theory must be apphed in this

case: Pty

Let the B1 age. COl](llthll is fulﬁlled only for the dlffracted wave. "It allows
us to use the two-wave approximation of the dynamical diffraction theory
[9]. Then, the set of equations (10) is reduced to two coupled equations,
w ll](‘ll for the lncl\ -5¢ attelmg dlﬁlactlon scheme (ko I 'r) take the form [6]

B

(g._l)[) (")_\8(0 ()'l‘lx (O)Ejmem (k)nf-}-

CFL@E (_—-T)-l—\s(l)c’,m/E (k—F)y;",,,u
G2 sEa-

FiE (O ejmpny (F=7) Bm (F=7) 4

+\a (=7) E; (E) +X; (_Tleﬁn!l’zf Er (5),
7l (E - 7'-') = l%‘—il These set of equations tan be dlagonahzed for the pho-
ton with a certain circular polarization. Let the right- c1rcularly polarized
photon (€;) be incident on the diffraction grating. Then, the diffraction
process ylelds to the ?)pearance of a back—scattered photon with the left

circular polarizatiof* ) (this is because the momentum of the bacl(—

scattered photon F =k—7is antiparallel to the momentum E of the
incident one). ‘And visa versa obviously the left-circularly polarlzed pho—
ton will produce a right-circularly’ polauzed back-scattered one. R

.-Thus, for:circularly polarized: pliotons'the’ set of vector equations (18)
can' be split. into two' independent sets of scalar’ equatlons [6]. " The ex-
plicit solution of these equations yield to'the following’ expression for the ’
tlansrmtted ‘wave amplxtude [6] (all the symbols are deﬁned in [6]): -

Ei—ei( 1) 6
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where
ko (ar2 —~ 2, (o)L

Ad:
8rb L

1
px = ko 3€i (a12) —
Using this equation one can find the angle of the polarization plane rotation

J = Re(py —p_) =" +97,,

where 9F = —kyRexF (0) L - defines the P-violating T-invariant rota-

tion angle and 97, corresponds to the T-violating rotation:.

koL
x [x12 (7) Rex?, (7) = xa (7) Rex], (7)] ,

BRI anb\? f
19?,2(011,2) = :F87?2b2\’4(ﬁ3+xg’)+(—) X (19)

the sign (=) corresponds to oy . the sign (+) corresponds to a;.

- The imaginary part of the T-violating polarizability Im\7] , is respon-

sible for the T-violating circular dichroism. Due to that process, a linearly
polarized photon gets a circular polarization at the diffraction grating’s
output. The degree of the circular polarization of the photon is deter-
mined from the relation: ' '

2 l—a'2

012 =
|E+ +|E-

K3L3 4rb
:ts 2b2J4(X15 + YZs) + (k L) [Xls( )ImX% (T) X23 )ImXTs (7_:)] :

It should be pointed out that the resonance transmission condition is

satisfied at a given b for two different values of a. This is because there

is a possibility to approach to the Brilluan (the total Bragg reflection) =
bandgap both from high and low frequencies. The T-violating parts of the.
rotation angle are opposite in sign for c; and for as. It gives the addition .

opp01tun1ty to distinguish the T-violating rotation from the P-violating T-

invariant rotation. Indeed, the P-violating rotation does not depend on the
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— E__ | -
s ~ Imp_ — Imyp, = kolmxP (0) L+ (20)°

back Bragg difftaction in the general case because the P- v1olatmg scatter-

‘ing amplitude equals zero for back scattering (See [6]): In accordance with

(19.20) the T-v 1olatmg rotation and dichroism grow sllalply in the vncmltv
of the vesonance Br: agg transmission. At the first glance. one ‘could expect
for T the depeidence T ~ koRexT, , (F) L (see (17)). Howeverl'in the
vicinity of resonance. thv rotation ang.,l( Y7 turns out to be multlplled l)\

the factor, b’. (\7."1) 'AU\/I \13 + \:2 ) (“b) Lkg\sl oL \\lll(‘ll pro-
10% at o2 107,

vides the above mentioned growth (for example, B ~
ko ~ 10 = 10°cm™! . L =lem . b=1). . ’ ,

Now, l(l us estimate the effect maoullu(le To do that we must- (letel—
mme in accordance with formula-(19) for. 7. the T-violating susceptibil-
ity \ 1} 5. which is proportional to the I-violating atomic polarizability 37
The estimate carried out by [1. 3. 7] gives 37 ~ 1073 = 107137, where f’
is the P-violating I-invariant scalar poldu/ablllt\ Flle polanzabll;t_x JSP
was studied both theoretically and e\peumentallv [7]. Particularly. the
theory gives 37 = 107 em? for atoms analogous to Bi, Tl Pb. It yields
the estimate = 10733 = 10~ em® for the T-violating atomic polarizability.
The polarizability 37" causes the P- \1olat1ng rotation of the polarization
plane by the augle 11’ = kR\P(0) L = 1077 rad/cmxL for the gas density
p= 10"+ 10"em™". Asa result, in our case the parameter p = I\T(r)L
turns out to be » = 1070 = 10-1 ld(l/(lIlXL and can be even less by the
factor /1/(/ where I is the corrugation amplitude of the diffraction grating
while d is the distance between waveguide's mirrors. Assuming this factor
to be ~ 1071, we shall find p = 10711 = 107" la(l/cme 'Ihus, the ﬁual
estimate of tlle T-violating rotation angle 97 is

prad,

= [0 107 =k’ Z(T) e
~In real situation the susceptibility ol a grating \s (7) may exceed the
unity. However, our analysis has been pe1f01mecl under the: assumption
s € LI, for example, we take \; = 107! . ko = 10* then 97 ~
107% = 1077 L? and. consequently, for L= 1'cm we w1ll have the lotatlou
angle 97 ~ 107% <+ 107 rad. : ST e :
As it is seen, we have obtained the T-vlolatmg rotation angle t)T of
the same order of ¥, It nmiakes possible experimental observation of the
phenomenon of the T \1()1dlmg, polarization plane rotation.
1t should be noted that the manufacturing of diffraction gratings for
the range l)(‘mg more I()ng\mve than. the visible light one may be sim-
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pler. That is why we would like to attract attention to the possibility of
studying of the T-violating polarization plane rotation in the vicinity of
frequencies of atomic (molecular) hyperfine transitions; for example, for
Ce (the transition wavelength is A = 3.26 cm) and TI ( A = 1.42 cm).
Thus, we have shown that the phenomenon of the T-violating polar-
ization plane rotation appears while the photon is scattered by a volume
. diffraction grating. The phenomenon grows sharply in the vicinity of the
resonance transmission condition. An experimental scheme based on a
waveguide, containing a diffraction grating and gas, has been proposed
that enables real experiments on observation of the T-violating polariza-

tion plane rotation to be performed. The rotation angle has been shown
+1077L3, where L is the wavegulde length (thickness of .

to be #7 = 1076
the equivalent volume diffracting grating).

The possibility to observe the phenomena experimentally can be dis-
cussed now. ln accordance with (6) the angle of the T-odd 1otat10n in
electric field can be c¢valuated as follows

o 2ape 4T 3k P, 1 {dE) <‘/;l:'r> WP 95
U~ . AL ~ 351) A (Vuf)l) . | (22)
According to the experimental data [12, 13] being well consistent with
calculations [7] the typical value of 9% is ¥¥ ~ 10~%rad (for the length
L being equal to the several absorption lengths of the light propagatmg
through-a gas L,).
E)

d
A
estimated as <Cif> ~ 107® for Cs, Tl and %?l ~ 107 for Yb and lead.
Therefore, one can obtain 97 ~ 107 3rad for Cs, Tl and 97 ~ 10~"%rad
for Yb and lead. For the two-atom molecules (TIF, BiS, HgF) the angle
97 can be larger. because they have a pair of degenerate opposite panty
states.

The final estimate for the T-noninvariant effect in a diffraction gr ating
gives for the T-violating 1otat10n angle 97

can be

For the electric field £ ~ 10V - em™ the parameter

12T‘acl

T 2107 2107 —Kix (1) 1P - (23)

In real situation the susceptibility of a grating v, (7) may exceed the
unity. However, our analysis has been performed under the assumption
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\s & 1. M. for example. we take v, = 107! | kp = = 10% then 97 ~
107% = 1077 L3 and. consequently, for L= 1 cm we w11] have the rotation
angle 97 ~ 107% = 10~ rad.

As it is seen. we have obtained the T-violating rotation angle 97 of
the same order of v/, It makes possible experimental observation of the
phenomenon of the T-violating polarization plane rotation.

It should be noted that the classical up-to-date experimental techniques
allow to measure angles of light polarization plane rotation up to 4,3 -

107" rad [14].

A way to increase the rotation angle 97 is to increase the length L of
the path of a photon inside a medium (see (6)). It can be done, for exam-
ple, by placing a medium (gas in an electric field or non-center-symmetrical
diffraction grating) in a resonator or inside a laser gyroscope. This becomes
possible due to the fact that in contrast with the phenomenon of P-odd
rotation of the polarization plane of photon the T-odd rotation in an elec--
tric field (as well as in.a diffraction grating) is accumulated while photon
is moving both in the forward and backward directions. :

For the first view the re-reflection of the wave in resonator (or light
multiple passing over circle resonator of a laser gyroscope) can not provide
the significant increase of the photon path length L in comparison with the
absorption length L, because of the absorption of photons in a medium.
Nevertheless this difficulty can be overcome when the part of resonator
is filled by the amplifying medium (for example, inverse medium). As a
result, the electromagnetic wave being absorbed by the investigated gas
is coherently amplified in the amplifier and then is refracted to the gas
again. Consequently. under the ideal conditions the lig'ht pulse can exist
in such resonator-aiplifier for arbitrarily long time and, for example, the
polarization plane of -the wave rotates around the direction i.e. the
peculiar "photon trap” appears (phase difference of waves with right and
left circular polarizations moving in the opposite directions in a laser gy--
roscope increases in time). The angle of rotation 97 = QT - ¢, where QT
is the frequency of the photon polarization plane rotation around the
direction, ¢ is the time of electromagnetic wave Tl?eing in a "trap”. It is

easy to find the frequency QT from (6): QT =
estimates of 97 it is evident that for 97 ~ 10712 rad (Lead YD) the fre-

ﬂT
—c~ 107" se Therefore 19T ~ 10"‘t

a

—c = 2mpwPE. From the

quency QT appears to be QF =
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and for the time ¢ of about 3 hours the angle 97 becomes ~ 1 rad. The

- similar estimates for the atoms Cs, T1 (97
same time the angle 07 ~ 107! rad.

"The time ¢ is limited, in particular, by spontaneous radiation of pliotons
in'an amplifier that gradually leads to the depolaiization of photon gas in
resonator. Surely, it is the ideal picture, but he1e is the way to fulther
increase of the experiment sensitivity. - :

All the said can be applied not only for the optical range but for the
radio frequency range as well where the observation of the mentioned phe-
nomenon.is also possible by the use of the same atoms and molecules [6].

Thus, we have shown that the T-odd and P-odd phenomena of photon
polarization plane rotation and circular dichroism in an electuc ﬁeld are
expected to be observable experimentally. 5

It should be noted, that the new T-odd and P- odd 1)heuomenon of
photon. polarization plane rotation: (citcular dichroism) in an electric field
has general meaning. Due to quantum electrodynamic effects of electron-
positron pair creation. in strong electric, magnetic or gravitational fields,
the vacuum is described by:the dielectric permittivity tensor e, dependlng
on these fields[11, 15]. The theory of &;; [11,15] does not take into account
the weak interaction-of electron and positron with each other. C0n51der-
ing the weak. interaction between.electron and positron in the process of
pair creation in an.clectric (gravitational) field one can obtain that lh'(;
perm1tt1v1ty tensor of vacuum in stlong electrlc (glawtatlonal) field con-

c = _ 9 -
~ ifT G EiMMg g = ==, F s

~ 107" rad) give that for tlie

talns the term gvec ~ 43T ﬁqunw
vac

the free fall accelelatlon) and .as a 1esult, the polauzatlon plane rotation:
(circular dichroism) phenomena exist for photons moving in an’ electric
(gravitational) field in vacuum. And visa versa v-quanta appeared under
single-photon electron-positron annihilation in an electric (gravitational)
field will have the admixture of circular polarization, -

caused by T-odd
P-odd weak interactions. - : : :
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COVARIANT DEFINITION OF TENSORS OF HADRON.. \
PQLARIZABILI’I']ES BASED ON THE SYMMETRY PROPERTIES
OF TWO-PHOTONS PROCESSES -~ - -~ * =

0.M.Deryuzhkova, E.N.Kalantai, N.Vf.Malésﬁnenko ;

Skaryna University, Sovietskaya Str., 104, 246699, Gomel,, :,

Belarus

It is known that hadrons are structural particles. For that 1‘.6"(\50_!11‘\\'(*‘

can define their properties by their electromagnetic characteristics, such

as (r?), polarizabilities and gyratios or: as the latter is presently kiiown.:

spin polarizabilities {1-4. 5).

-The introduction of liadron electromagnetic characteristics in the effec-

tive Lagrangians is unambiguous in the non-relativistic physics. However,

while moving to the relativistic.theoretical-field description of the hadron.
polarizabilities. their ambiguous definition appears in the amplitudes of

two-photon 1)1‘0C€55(*9,[3]. BN Pt

Therefore. to construct the effective relativistic: Lagrangians.’of the

interaction between the electromagnetic field ‘and: hadrons,.we can use
“the principle of correspondence of the classical eléctrodynamics of mov-

ing mediums. the relativistic quantum field theory [6], and the Poinare

group algebra of the operators and matrices, contained in the hadron mo- .

tion equations. ; : (o
The classical non-relativistic part of Hamiltonian of the interaction of

the electromagnetic field with neutral isotropic medium i§ [7,8] - 7

U

Hy= -2 (BE4MH).
If we tal\e o‘n‘l‘y.ﬂ;‘ef ﬁxedi‘u}n‘Vpolyalb‘iza‘bility= int(; coﬁs;i&eragi(;n then
P=aF, M=sil | @)
The polarizability tensors & and 3 for spinless particles are
a;j = aobij, Bi5 = Pobi;- (3) |

Let us consider the low-energy Compton scattering for structural par-
ticles with 0. 1/2 and 1 spin. We will assume that the tensors & and 3
depend on spin operators which satisfy some commutative relations. This
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statement is in full agreement with the fact that the polarizabilities ten-
sors can be expressed with the amplitude of Compton scattering. This.
amplitude is based on the iuvariance relative to P- and T- transforma-
tion and rotation group [9]. Under such approach there is no a physical
interpretation of scalar functions. ;

The amplitude of scattering of low-energy photons is defined by the
expression

QoA -, A=t R ]
F = e 'aE + (We)(Ape’) + (ne )(epn)+
[ e P R R o oo 3 e

+(€ ') (Asi’) — (A'7) (e )+ (i’ -€'€—me-ne )Sp(B)}, (4)
where w is a frequency of incoming wave, 7. and 7' are unit vectors of
incoming and scattered waves, ¢ and €' are unit polarization vectors of

incoming and scattered waves respectively. -
To determine the tensors a;; and f;; in terms of spin operators S for
structural particles of spin 1/2 and 1, we use the commutative relations of

the spin operators components.
In both cases tlie expression

[gi,gj] = iE,‘jkgkv . v ‘ (5)

is true. In this expression gk s @ comgletely anti symmetrical unit tensor.
For particles of spin 1/2 operators S; can be also defined by the expres-

sion . L A -
’ gggj = Zéij + %a;ijk. (6)

According to this statement tensors are expressed as

T:J(S;) = Todij + iTlé';jkgk. k ' (7

-3
~

(We imply that T}; are tensors aj and Bij)
On the other hand, structural particles of spin 1 are deﬁned by:

~" o~ oA 1 A ~ ) PPN ~ '
5:8;50 = s+ (50 + Sibi) + gr S5+ S5 @)

That’s why tensors a;; and B;; can be represented by the expansion by the
following independent combinations o T

ng(g") = To‘sij + iTIEijkgk + T5(5:5; + 5;55). _ (9)
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Based on (4). (7) and (9) the scattering amplitude can be represent ¢d
by R S -
F = A\ aol@/8) + ion(S[ET ) + e {57 Se)+

+ Jo([Em)[e ‘7)) + i S[E T e+
+3,{5[éR). 5[ "7} I, (10)

where x and \* are the spin functions of the particles, the square brack-
ets represent a vector multiplication, the braces represent a commutator.
;From the equation -(10) one can be sec that K
1) the scattering amplitude of a scalar particle is defined by g and dy:
2) the scattering amplitude of a spinor particle is defined by the polariz-
abilities ag, B, a1 and By; ' :
3) the scattering amplitude of a vector particle contains ag. B and the
spinor polarizabilities ai, o, 3 and .
For the amplitude .(10) of the second order in terms of the frequency to
satisfy the condition of cross-symmetry, it is needed to set the spin polar-
izabilities a; and (3; to zero. , -

Using the low-energy expansion of Born’s part of the scattering ampli-
tude and the expression (4), one can obtain that the averaged C'ompton
scattering amplitude for particles with spin 1 is

o aw? -
O(w) = - + WE (2;12 —4p+ ‘ZQ) +
w? ‘. N
+—3—(3a0+3[30+402+4[32), , (ll)

where a = €?/4r is the fine structure constant. Let us assume that the
amplitude ® satisfics the dispersional relations with one subtraction

w? [ Im®(w')dw'

o(w) = (w =0)+ ;- (12)

W (w'? —w?)
Based on the optical theorem, the expression (12) can be written as

2‘2'0(1/
wm=¢w=m+{} Tror Q0 (13)

By comparing (11) and (13), the [ollowing rules of sums can be obtained:

w'?— w2'

1 [ orudw .4 e \
om?] o7 (a0 + Po) + §(m + 32) + W(Q +put —2p).  (14)
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Similar rules of sums were obtained in [10]. However. in this work the
authors introduced four coustants (1.2, Cy and Cy. that do not have a
physi('a] interpretation. ;From the expression . (14). one can see that these
constants are nothing but polarizabilities ag and Jg. a.ndvspin (tel}so;')
polal‘izal)ililivs ag and J;.

According to the relativistic clectrodynamics of the moving mediums
the effective Lagrange function is [7]:

L = 2m (P DBl (15)

In this expression ¢, = Fa e o= [:1,,,('”" F. = r}:‘“upan"- where
I, and F,,,, are the tensors of the electromagnetic field, a,, and j3,, are
tensors that are expressed by the polarizabilities in a medium at rest. U,
s the 4-dimensional velocity of the medium.

By analogy with the non-relativistic quantum theory let us consider
that tensors o, and 3., depend on the momentum operator and the Pauli-

Lubanski vector-operator

IS

Qpp = 0;::/("‘1!#1’“)'

The operators 11, and p, are subordinated to comuntative correlations
in the limits of quantun-mechanical Poincare group [L1]. H these commu-
tative expressious are nsed, then we obtain the following expansions:

1) for particles with spin 1/2 ' '

s R
B = B + ,-ils“,,p; 1Wepes | o (17)
2) for ‘part.i‘cyiés with Sl’.il,l)'l - - , o k .
i = g 4 a0+ L), us)

S = B EREN LA AR [ N )

According to the cross-symmetry laws, a; and: 3 in (16) and (17) are
equal to zero. lowever, in (13) and  (19) o and. 3y differ from. zero.
Consequently. as_one can. be see from (15), in the second order of :the
photon fl‘(‘(]ll(‘ll(‘.\'l the effective Lagrangians of hadrons with spin 0 and -
1/2 are defined only by ag and Jo.
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The effective Lanmnglans of the interaction of the (’lc‘( tromagnetic field
and ha(hons with spin Iin the same d])pl()\lllldtlol] depend on the oper-
ators I, i (relativistic genexahzatlou of spin) and are dehned by the coelli-
cients ay 3. which. dC(m(lmg to (h\) (l‘)) ran 1)(* Ca“P(] spm (leus(n)
polarizability. - ‘

If we move from the Lagrangian (15) to the the01et1cal ﬁeld Laglanglan
on the basis of the (011espon(lence principle. then we obtam (4]

1) for particles with spin 0

PO m . "y » . u . ./. 0y e
LEfy = i (e N 002) + (002)005%) = (740,000 + 20,0,5%)] W,
2)vf;)r_4pa‘rt‘iclesi with sﬁin 1/2

gl o o s N
1{” = — (u.a,,,((),,u) (V) ) K, (21)

where K, = aq /f',,,, F,ﬁ’ + ..J(,F“,, F
particles with spin 6 and 1/2.
If the medium is isotropic-gyratropyca.l (3]

— - -

P=aE+i [w:] | (22)

M= 9H+h [ﬁ?] | )
where # and # are the gyration tensors. A , ‘
For relativistic imoving mediums L.;; is [7]

Lesy =27 {e“o,m(" BB b + 0 R0, FY R Fed, 7). (24)

As it follows from the couesponden(e principle and expression (24), the
theoretical-field effective Lagrangian of the interaction between the eloc-
tromagnetic field and spinless hadrons will not satisfy the law of parity
preservation. if the components 1,,, K,,, differ from zero. However, if we
proceed to the definition of Lagrangians of the interaction between the elec-
tromagnetic field and hadlons with spin that is different from zero, then.

using a vector - operator: Wu it is possible to'construct the stluctuxes of‘

Lagrangian that satisfies the law of parity preservation.
‘On the basis of commutative relatlons between W and p, it is poss1ble
to show, that :

Nuwp = 7/0€Zup VVUV (25)
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' pand ¢ are the wave functions of

The similar expression is also fair for x,,,. In expression (25) 5o and ko are

the gyrational scalar factors or, as we call them now, spin polarizabilities.
The theoretical-field effective Lagrangian of the interaction between the

electromagnetic ficld and hadrons with spin 1/2, in this case is

Loy = Ly + LY. o (26)

In (26) L?Y} is defined by ratio (21), and

Sp __ . ,j‘._)A uy.‘._ pa_'H ~ uu_’Fpa
Leff =Ny do Uup’z'F 95 F* =% 85 6,0 F** 9, +

~ULL ~po

- & ~UigE— e~ pd -
+'IMO{ ()u prlf F 80F —'ll' 60 é-y.pd) F 0 F }7 (27)
. o = —
where G, = 5(7:% = o)y 0u=0, — O, . -

The effective Lagrangian satisfies the cross-symmetry and also satisfies
all requirements of relativistic quantum field theory. Besides, as follows
from expression (27), spin polarizability for hadrons with spin 1/2 gives
the contribution to the effective Lagrangian. Structures of this Lagrangian
are proportional to the third order of the radiation frequency In low-
energy applo\xmatlon in the terms of order O(w?) an amphtude ( ) has
a form: :

Lty = iw X+{776{'2 §(e'd) ~ 2(7i") (5 [ /8)) +

B Y37 — (7o) e )
+hp {-2(5 [[ﬁ'é' '] [né]] )+ @ [[ve [ a) - G [[FE e Mx. (28)
If take into account the invariant spin structure or Lagrangian {4], it is

not difficult to confirm that the amplitudes for Compton scattering coincide
with such as one in works [1,4,5].
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Production of the cumulative particles in the

FRITIQF model

~A.S. Galoyan. V.V. Uzhinskii
Joint Institute for Nuclear Research
Laboratory of High Energies
Dubna. Russia

June 6. 2000

In the framework of the modificd FRITIOF model. the inclusive spectra of
the cumulative w0-mesons produced in the forward divection in the nmucleus-
nucleus interactions al 4.5 GeV/e/nucleon ave caleulated. It is shown that
the model reproduces ynalitatively. and i=n some cases quantitatively the
main experimental regnlarities. Accordi= ng to the model, the production
of the cumulative particles is connected with the mechanism of the “soft”
nueleon-nucleon interaction. and with the character of the QCD string
fragmentation. Fermi motion docs not play an essential role. Possibili-

~ties of the model in an application to the - cumulative particle production

processes are. discussed.

According to the generally accepted view point, the cumulative particle.
production is caused by the existence in the nuclei heavy compact objects
called "fluctons™. An alternative possibility of the.cumulative particle
creation as a result of the so-called: "hot” process does not consider now.
However, the "hot™ models ideas have found an extraordinary application
in high energy physicsin some modified forms! "They ‘are tsed in the well-

“known miodels-of multi-particle production as FRITIOF 13). " RQMD [4].

and HLJING [5]. The common assumption of the models is that the soft
inelastic hadron-hadron collisions have a binary character @ +b < "+,
where @'~ and b'- are cxcited hadrons. The excited hadrons:with inasses
My, my > Mg, 1y are considered as QCD-strings, and LUND-model [7]
is used to describe their decays. : : C s o T

S
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In the case of hadrou-nucleus interactions. the models assue that an
excited hadron @ can collide with other nuclear nucleons and increase its
mass. The same can take place in nucleus-nucleus interactions.

~As one can easily mark, the, general representation- of the.hadron-
nucleus interactions assumed by the '1i16(lels is'éll'mosf similar to that con-
sidered in Ref. [1]. The authors, Qf'Rjé'f,fEf]_suﬁp&ed, heave hadron system
(a fireball) which does not include a leading particle. is created in the first
collision of projectile hadron with a nuclear nucleon. The fireball moving
in the nucleus collidés with other 11\.1c]¢6ns.'.;slb\\'sr(ld\r\'n and increases its
mass. As a results; a production of particles in the reégions kinematically
forbidden in free hadron-nucleon -collisions ;hecomes ‘possible. Thus, one
can expect that the cuinulative particles have to appear in the models, in
particular, in the FRITIOF model. o

Figs. 1, 2 show the experimental data [8] on fast 7°- mesons production
in nucleus-nucleus interactions at P = 3D 4.5 A GeV/c with FRITIOF
model calculations taking into account the last corrections (9] As seen,
the FRITIOF model predicts the:cumulative particle production.. .

7% mesons production in the pC-, pCu-, aC-, aCu-,-CC- and CCu-
interactions at momentumn 4.5. A, GeV/c have been studied experimentally

_in Refs. [8]. 7-:quanta were registered at the experiments by 90-channel
Cherenkov v-spectrometer of . LHE:FOTON setup. 7% mesons: with the
angles in laboratory system (in:the rest frame of target ) 0'< 16°. and en-
ergies E; > 2 GeV were considered after estimation background conditions
and 7% identification. ... T LU Tt RERE

" . In Fig.1, the experinientally measured invariant crossisections of 7%
mesons production per mass number of projectiles (A,) as a function of

cumulative number X are presented by circles. The va,riable X was deter-

minedas '
- E - R pivalio

' "2 . . ., R T
X =3D : mNEWO"—.-‘ m,,ro/2. ; TR Cetlh
- CEvmy — EnEgp —mb + Py Pocostyo’

where my z}_n,d'fn,,o‘ are ’_nucleon and meson masses, respectively, Py is:the
mqmepthm.of projectile per nucleon ( Py = 3D4.5 GeV/=El) Py is .’
momentum, En = 3D/M¥ + Ph. E = 3D, /m2, + P%. The systématic
errors ‘of the cross-section is about ~-20 %. The statistical errors-are'in
the circle limits. e ’ DR i

. In figl, ‘histograms demonstrate calculations of the cross-sections of
7% mesons production at Eo > 2 GeV and 0z < 16° performed within
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the framework of I RITIOF model. The calcula.fion results are normalized

. on the nucleus-nucleus interactions cross sections obtained in Glauber ap-

proach [10]. As seen. the slopes of experimental and the calculated curves
are close. but the calculated cross-sections overestimate the experimental
values 2-3 times. : o

Fig. 2 illustrates a better agreement between calculations and experi-
nental data. Fig. 2 gives the invariant cross-sections of 7°-mesons produc-
tion with respect to the #9% -meson transverse momentum. The model re-
produces both spectrum forms and the absolute values of the cross-sections.
The reason of such different descriptions of experimental data of fig. 1 and
fig. 2 is not clear for us. . ' SRR

The model FRIT10I allows one to decipher the cumulative particle
production mechanisin in detail. The different characteristics of ccC-
interaction events accompanied by the fast 7¥ -meson production are pre-
sented in fig. 3. Fig. 3a shows the yields into the invariant inclusive
cross-section of projectile and target nucleons ('dashed and dotted curves,
respectively). The relative yields are given in fig. 3c. As seen, thercc'mtri-
bution of the target nucleons is about ~ 25 %. SRR T

Fig. 3d shows the average lougitudinal momenta of projectile and tar-
get nucleons before and after the interaction (solid and dashed curves,
respectively). Accordiug to the figure, more and more energetic projectile
nucleons are selected with increase the cumulative number. Accounting
the Fermi-motion is not critical for the description of the inclusive cross-
sections because without the Fermi-motion the cross-section in the region
of X ~ 0.9 - 1.3 does not decrease in needed quantity, the slope of the
cross-section is only changed (see fig. 4). It is natural that.the longitudi-
nal momenta of projectile nucleons decrease some during the interaction,:
but this takes place below X ~ 1.5. The nucleons acquired the momenta
larger than momenta of incident nucleons, give the contribution in the re-
gion of large X.. It is clearly seen in the calculations performed without
taking the Fermi-motion into account (see insert in fig. 4). The consid-
ered effect of the nucleon acceleration is a specific feature of the assumed
nucleus-nucleus interaction mechanism. ‘

Fig. 3e gives the analogous characteristics of the target nucleons. The
longitudinal momenta of target nucleons are small before the interaction
(see dashed curve). In the course of the interaction, the nucleons have
to acquire significant longitudinal momenta for the cumulative particle
production in the forward direction (see solid curve).
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- Fig. 3f shows the masses of the projectile and target nucleons which give
the cumulative meson, after_the interaction(see solid and dashed curves),
As seen, the projectile nucleons acquire larger excitations then the target
nucleons. These coincide with the main imaginations of the "hot” models
with the exception of the possibility of the nucleon acceleration.

The presented results allow one to expect a description of spectra of
cumulative - and K- mesons. Most probably. a problem of a cumulative

proton production will take place. The matter is Glauber approach used in:
the FRITIOF model underestimates multiplicity of ejected nucleons.  So..

taking into account additional destruction of nuclei is needed what can be
done, for example, within the framework of approach of Ref. [11]. In this
case, the Fermi-motion manifests itself stronger. Probably, a relativistic
quantum molecular dynamics (RQMD) model [4] application allows-one-to

avoid the problem, because the model describes the proton production tak--

ing into account the. secondary interactions in nuclear residuals.’ However,
the models can.not ‘predict the yields of deuterium, tritium and heliun
nuclei. Perhaps, one should take into account the multi- -quark states (in
the nuclei and their fragmentation. : : : s
The first task is to calculate the absolute values of the inclusive cross-

sections. The questlons about fluctons in nuclei will be arisen if the cal--

culated values are less than the experimental ones. In order to solve the
problem we are going to turn to the hadron-nucleus interaction data.

The authors express their sincere gratitude to Kh.U. Abraamyan, G.L.
Melkumov and A.G. Litvinenko for’ theu fruitful discussions and valuable
remarks. ‘
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Figure 1: Invariant inclusive cross-sections of 7%-mesons production in
nucleus-nucleus interactions at 4.5 GeV/c/nucleon. The points are exper-
imantal data {8}, histograms are the FRITIOF model calculations.
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Figure 2: Invariant inclusive cross-sections of #%mesons production in
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One dimensional relativistic bound state problem for
superpos1t10n of \' J-potentials

V.N. Kapshal, T.A.Alferova
Gomel State Unircrsity. Sovetskaia str.. 102, Gomel. 246699. Br[{uzu

Abstract _
. The one-dimensional relativistic bound atate \\a\efuuclnons for
- four kinds of quasipotential equations for superposition of N §-
potentials are obtained. The quantization condition for such kind
_of potentials is studied in details.

In the past models of point interaction have been much developed in quan-
tum mechanics [1]-[3]. At this time the one-dimensional Shrédinger and
Dirac equations with pomt interactions and their ge nexallmtlons ln\(* at-
tracted a lot of attention [4]-[7].
~ The investigation of the relativistic two-particle equations [8 9] with
single and two é-potentials has been started in [10, 11]. Now our aim is to
solve the relativistic quasipotential equations with N §- potentials and to
study the effects, available for such potentials for bound states.

In the case of particles with equal masses (m; = my = m) the:one-

dimensional equation for bound state wavefunctions ¥!/ (p) in the rela-

vy

t1v1stlc configurational representation (RCR) has the form -

v (p) = /J (Buip.d)V (UL . ()

Eiw = /m? 4 (10)? = mcosé, (2)

and gy (E;.:p.p’) are relativistic Green functions in the RCR. In this
paper we consider [our kinds of quasipotential equations. The Logunov-
Tavkhelidze equation for two scalar particles (7 = 1) and Kadyshevsky

equation for two spinor particles (j = 2) contain the following Green func—
tions [12]:. S :

where

) (Eiwsp,p) =

—1 sinh [(er- - f) m(p— P')]
msin2€  siph [%m (p— /)')] ,

0 (Buippf) = ——L sinbllr=Omlp—p)) _ (Umcose)™
wi )= msin2€  sinh[rm (p — p')] " cosh [—m (p— P'I

(3)
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For the modified Logunov-Tavklelidze (j = 3) and modlﬁed KadysheVSky
(j = 4) equations the Green functions are

—1 cosh [(% — f) m(p— p')] :
I (Einip.p) = Smsiné  cosh [g-m 7. p')] , . (9)

—1 sinh[(x = &) m(p— P')].
sinh [rm (p — p')]

g . ’ (6)
(B - ) 2msiné
Our purpose is o investigate relativistic two-particle equations (1)-(6)

with some superposition of N §-potentials (V; are real)

N E
Vip) = Z\f"s5(p—as); a, =2a(s—1). (7)
s=1

The wavefunctions of equation (1) with potential (7) can be obtained easily:

Eiwipyas) Va0 (a,), )

lll(’) ZJ(I)

where constants \IJ(') (as) (S =1+ N) should be solutions of the following

e

algebraic system

MU (En) 8 (a,) = 0;

W

MYEN(Ei) = 85 — 99 (Biwymsag,a). (9)
The quantization coudition can be determined as follows

det M?(E;,) = 0. (10)
Let us consider the potential as a superposition of N é-"holes”(V, =
-~V < 0). The curves for the energy levels E as functions of the "hole
depth” V for the superposition of 3 6-"holes” with the same value of pa-
rameter a are given in figure 1. Number of energy levels is equal to the
‘number of §-"loles™ (see figure 2(a)).
" In order to compare the relativistic and non-relativistic results let us ;
consider the parameters V and E in the range of value correspondmg to
the non-relativistic case: V < m, E is close to m. To emphasize the.
descrlptlve behaviour of the curves let us choose the parameter a as large:*
as there is only the first energy level. The behaviour of the first level
for all four relativistic equations and Shrédinger equation as a function of -
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parameter V" is given in figure 2(b). In the region of small values of 1” tlu
relativistic results coincide well with the non-relativistic one.

The behaviour of energy levels of the Logunov-Tavkhelidze equation as
a function of 'V and a function of « are given in figure 3. The wavefunctions
of all the considered 1elat1v1stlc quasipotential equations are pwsented n
figure 4.
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Effects of fermion and boson mixing at ete~ linear
collider o

A. A. Babich

Gomel State Technical University h,amed by_Pavel Sukhoy, *
Gomel, 246746 Belarus s

Abstract

This lecture contains a brief introduction to the formalism of fermion
and gauge boson mixing. Separately considered the mixing in charge and
peutral fermion sectors. The effects of simultaneous fermion and gauge
boson mixing are discussed too. The modern experimental const&.r‘ains”on
the some common mixing parameters are represented. S

1 Introduction. -

Grand unified theories (GUT’s) are an attractive extension of the stan-
dard model {SM), allowing us to understand the relative values of the
gauge couplings, the quantization of the electric charge, as well as suc-
cessfully predicting some fermion mass ratios.’ Furthermore, GUT’s are a
natural outcome of more fundamental theories such as superstrings. As
soon as one considers unification groups beyond the simplest SU (5). &t.wol
general consequent result: (i) the low-energy gauge group often contains
extra [/(1) factors; (ii) the fermionic sector is enlarged, since the matter
multiplets are in larger representations [16 for S0(10), 27 for Es, etc. )
Moreover, since with the fermion content of the SM no new anomaly-free
currents are possible beyond those of SU(5), the presence of new fermions
in any extended unified gauge model is a necessary condition to ensure
" anomaly cancellation: '
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In many models the masses of thie new ferniions arise from the same
vacuum expectation values (VEV's) that give mass to the extra gauge
bosons. and hence are expected to be not much larger than My itself. I
new fermions are present. there are good reasons to believe that they. wil}
mix with the known states: for the neutlal fermions the mixing natmally
arise in seesaw models. which provide a nice explanation for the lightness
of the known neutrinos. Ior the charged fermions. a mixing would pro-
vide a natural channel for the decay of heavy ones. avoiding cosmological
consequences that would be problematic if the heavy fermions were stable
(1}, [2]. Hence, in the presence of a light (100 GelV' - 1 TeV) 2 boson,
one-also expects some light: (<1 T'el’) fermions mixing with the known
ones, and the modifications on the electroweak observables induced by the
presence of both these kinds of new states may well complete, so that it is
important to consider all effects simultaneously.*

¢From the phenomenological point of view mucl effort has been devoted
to constrain a Z' boson associated with an extra {/ (1) surviving below
the TeV' scale via. its indirect effects [3] - [6]. In addition to the direct
searches for new particles, stloug boundq have been also set on the mixing
between the l\nown fermions and heavy new ones, whlch would affect, the
couplmgs of the light states. to the standard gauge bosons [7]-[9]. While
rather exhaustive analysis exist where either only the modification due.to
an extra neutral boson. or only the mixing effects induced. by the new
fermions, are considered. at present only a few steps have been done in
trying to take into account these two effects simultaneously: [10]4[12]. The
aim of the present report is to study in detail the interrelation between tlle
two p0551ble sources of (l(’\'la.thIlS flom the SM predlctlons ' e

2 Exotic fermions.
In the SM all left- -hande (L) fermions transform as doublets unde1 weal\
SU(2)w, while all ught handed (R) fermions are singlets:

‘(e_)vL ('L‘_)L <T—)L'<d>[, (S).L (b)L, . (1)
- 672 R 7;5 Up  cr iR | o | (2)

| dr - sn bp
Many models which go beyond the SM predict the existence of new
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fermions which transform in a non-standard way under SU(2)w. in Eg
models, for example, in the 27-plet one finds, in addition to the ordinary
articles, vector singlet quarks and vector doublet leptons. Vector singlet
(doublet) fermions refer to particles whose L and R components both trans-
form as singlets (doublets) under SU(2)w. One also finds new. SU(2)w - .
singlet Weyl neutrinos in the 27-plet. Mirror fermions are another type of
exotic fermion, whose transformation properties under SU(2)w are oppo-
site those of ordinary fermions, i.e. left-handed singlets and right-handed
doublets. These appear. for instance, in grand unified theories which in-

clude family unification.
The possibilities for new fermions are listed below:

e Canonical SU(2)y x U(1) assignments

a) sequential fermions »
N U Ur ‘ k
A‘u_ . ER’ ( ) L ’ (3)
( 2 ) L D, Dr ;

o Non-canonical SU(2)w x U(1) ass1gnments

a) vector doublets

(), (), (5), (B), o

b) mirror fermions

c) vector singlets

B, Ba, b R Q
d) Weyl neutrinos
N Ng (7)

Here pairs of particles enclosed in parenthesis indicate SU(2)w doublets
and otherwise they are SU(2)w singlets; N — neutral lepton, £ — eharge
lepton, U - up-quark (+%) and D ~ down-quark (—3). In follewmg allr
particles with unconventional isospin assignments (left—-handed singlets or
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right-handed doublets) will be denoted as exotic fermions. and all remain.
ing new fermions as well as all the standard ones. which have convel-
tional assignments, are referred to as ordinary. Since no new fermions have
been directly observed yet. if new states exist they should be rather heavy
(Mnew > Ebeam /2, where Epn — beam energy modern electron-positron
colliders (LEP2, SLC)), with possible exception of the singlet néutrinos,
However, since the light mass eigenstates will in general correspond to su-
perpositions of the known and new states. the new fermions could manifest
themselves indirectly through a mixing with the known ones. -

3 Fermion mixing formalism.

Now" we discuss the fermion mixing formalism between the known and
new states in general context. Since SU(1)em and SU(3), are unbroken,
different gauge eigenstates can mix only when they have the same electric
and color charges, and hence the electromagnetic and color currents of the
mass eigenstates are not niodified by the fermion mixing. So fermions can
be divided into four categories, a namely, u - type with Q.,, = 2/3, d
- type with Qem = —1/3. ¢ - type with Qum = —1 and n - type with
Qem = 0. The case of mixing in neutrino sector is more complicated and
we consider the charged fermion mixing and the neutral fermion mixin

separately. '

3.1 Charged fermion mixing

As known in the gauge currents chirality is conserved, and it is convenient
to group the fermions with the same electric charge and chirality « = L, R
in column vector of the known and new gauge eigenstates U0 = (0%, ¥3,)7.
The eigenstates in U2 can he mixed via the mass matrix, and their relation:
with the corresponding light and heavy mass eigenstates U, = (¥, ¥;)7
is given by a unitary traisformation ‘

Uy v, - A G ‘ |
=[] e [/, = — Q
( 0, )a U, ( v, )O, where /, <F H )a, a=L R (8)

The submatrices A and F describe the overlap of the light eigenstates
with the known and the new states, respectively. "The unitarity of Ua
. requires

A+ PP = AAt L GGt = 1, o (9)
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and so the matrix A deviates from unitary one by small light-heavy mixing

effects contained in F. : S
In terms of the fermion mass eigenstates the neutral current corre-

sponding to a generator Q is S

Jo= Y WAL,
o=L.R \

(10)
Here Q represents a gencric diagonal matrix of the charges for the chiral
fermions. ‘From (10) one readly notes that if in one subspace of states with
equal electric charge and chirality the matrix Q,, is proportional to the
identity. the current for these ferniions is not modified in going to the base
of the mass eigenstates. and the corresponding gauge couplings are not
affected. This happens for example in the SM, where for a given electric
charges and chirality the cigenvalues of T are indeed the same, implying in
particular the absence (at the tree level) of flavor-changing neutral current
(GIM mechanism). .. _ : , : ‘

In miodel with new fermions. the matrices Q.. have the general form
Q, = diag(QX, QY). Also. if the gauge group is generation independent
all the known states appearing in one vector W have the same eigeuva{ues
with respect to the gencrators of the gauge symmetry, and hence QX =
¢<T with ¢8 = t3(f*).qi(fX). This also happens for the new charged
states in Fg, 1.e., Qf,‘r = qf’[. In contrast, since more different types of
neutrino are present in [Z. for the neutral states appearing in ¥$, Q¥ is
not proportional to the identity. :

Keeping only those teris which involve just light states the weak neu-
tral current can now be cxpressed as

> iyt [l ALA + FIQYF,] i,

Jig = (1)
o o=L.I} ’
= 2 [+ — ROV E] b, (12)

u=L,”

The first form (11) is general, and describes the effects of fermion mixing
in the neutral curreut of light states for a wide class of model, while the
second form (12), obtained via the unitarity relation (9), liolds rwhen the
Wixing is.with only one type of new states that have the same gV charges, -
3 is the case for the charged fermions of Es and the neutrinos in SO(10). -
The important point Lo recognize here is that, since neither A; nor F,is "
Unitary, A} A, and F1F7, are not necessary diagonal. In other words, FCNC

(L Sl
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will in general be,induced among the light particle. However. extremely
stringent constraint exist on ge. sd and bd transitions,;and imply: tliat
the corresponding-terms are at most ~ 1077 [13]. Tlght bounds .~ 102
exist for bs. 7e and Ty Havor changing parameters as-well [13].. Hence
if flavor changing vertices exist in Zg interactions. most of them must be‘
negligible. and it is then reasonable to concentrate in constraining possible
deviations in flavor diagonal couplings. Assumiug the absence of FCN(
is equivalent to assume that different light mass eigenstates are not mixeq
with the same exotic partner. in which (‘aSP the I tF terms couespon(lmg
to 01dma1) - exotic mixing ale (Ilagonal With tlns assumptiol.: we. can
define the ml\mg anglex ()LR that (Iescube the mixing between L or R
ordinary and e\otlc pallm Is tlnough

(FtFa)jj' = (D)5 fu )l = 'E'R-,JIR- TR~.(1L'73L-;bL’~. "'(13')
whele (“L rE=1— (({ 1) = sin’ HL jir- The flavor diagonal Clmal (ouplmg
to the Zy of the Couespou(lmg hgln nass elgenslates llleu 1ead as

EOR( )
COL(f)

It

“‘3(51?)."“ Sty f— & 1y T 4

it

2 o
—5ler)’ + 3sh f= dsb (14)

Slrnxlally the chual (ouplmgs inthe ]‘ Cuuenl are also ﬂav01 dlag)onal
and we find - - R o o S ~

eir(f) = aulfa) + (D a () = aulfa)l, ff = eyt 7y iy 535 bi - (15)

If tg(fN) = t3(fK) as in case the left-handed cllalged leptonsan(l 11ght—
handed Qem = quall\b in £, then, since the coefficient of the F!F term
in (12) vamshes idenitically. the J§ current is not modified in going to
the mass elgenstate basis, and the chiral- couplmgs ‘of the cmrespondmg
fermions conserve the standard form

S, 1 9 1
‘«:OL(C) = '——+3w’ ~€or(d) ’—Sw C (16)
In contrast in genelal a () # qrtf*), and the mixing between the or-’
dinary. known and new feriions will indeed affect the £; couplings. ‘Unfor-
tunately, since Zy interactions cannot provide information on the FtF pa—

rameters, there is not possibility to derlve constraints on ordlnal y—ordlnary
mixings. . : '
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* the elements of the basis with indices a, b..
drop the index K when no confusion can arise. We will also not distinguish .

Fermion mixing affect the charged current sector as well. - For. the
hadrons. since the only exotic quarks present in Eg are dr, type, the gen-
eral formalism acquires a much simpler form. In the standard base, where
the gauge and mass eigenstate up quarks coincide, the charged current
hetween light mass eigenstate quarks is : :

o |
S = Uyt AL, (17)

where ¥} = (u,c, t)L and \Il,L = (d,s,b)f. A% here plays the role of an
apparent CIKXM mixing matrix. but clearly it is not unitary due to the
mixing with the exotic quarks.

3.2 Neutral fermion mixing

For the neutral fermions situation is more complicated and a few specific
assumptions have to be formulated as well. At first, neutral. fields with
three different weak -isospin assxgnments can mix SImultaneously in the
presence of Majorana mass term. In fact, in addition to the known neutri-
nos in SM there are new ordinary neutlmob in the L doublets (N E-)T.
The exotic neutral states with t3 = —3 appearing in (E* Ne)T can also
mix with the known neutrinos through lepton-number violating AL = £2.
Majorana mass terms, and finally, for each fermion family. In Eg two
5U(2) exotic singlets vf and Sy, are also present. )

At second, thele is the lack of experimental constraints on neutrlno
FCN(C’s so that, as for the ordinary-ordinary mixing, again we cannot
make any assumption on the form of the F'F term in (11). However, in
all the measurements the final-states neutrinos are not detected, so tha.t a
sum over the flavor of the final mass eigenstates has to be taken. Under this
condition, we can again account for the mixing effects in the neutral sector
without introducing explicit FCNC parameters. A further assumption has
to be made regarding the number of light neutrinos. For simplicity we
assume that only the three known neutrinos, which are mainly ordinary
states, are light.

In analogy with the charged fermlons it is convenient to introduce a
vector n§ = (vg, %)} L for the known and new neutral gauge eigenstates and
a vector n, = (ny,n4)L for the light— and heavy-mass eigenstates, to label
7 . and i, j..., respectively, and to
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between left-handed neutrinos and antineutrinos.: They are all describeq
by field nL -The right-handed fields will be denoted as n§ = C'@l, and
clearly. n% = Ugn$ with I/ = U}. Hence it is understood that (11) has
to be restrlcted only. to L-chirality states in this case. =

It is useful to decompose the vector of newstates and the matux FL
relating the new state with the hght ones, as

VY = (N, NC.S){, FL=(0,E,S)T, (18)

where each submatrix describes the overlap of the light states with the new
ordinary, exotic doublet, and exotic singlet neutrinos, respectively. Three
light neutrino states are the standard ¢ neutrinos, and the matrix Ay,
describing the overlap of tlie light neutrinos with-the ordinary known ones,
is 3 x 3 and deviates from a unitary one.only by small mixing effects:in
Fr.

‘In the flavor basis such that ‘the charged lepton ﬂav01 elgenstates co-
incide with the chalged mass eigenstates up to light- heavy mwmg eﬂects
the charged current between hght states is

7.]{‘4,' =nagy*Ales + aSy* EhsSer. (19)

In the first term in this equatlon the overall stlength of the left— handed
is reduced by the effect ofhght ~heavy mixing appearing in the A neutrino

projector, while the secoud term corresponds to an induced ught —handed .

current that will produce neutunos of the nonconventional helicity in weak
decays It is convenient to 1nt1oduce the leptonlc analog of the CKM
matrlx, K, by wrltmg At = K.A4Y'. The matrix K, is unitary and is
nontrivial if nondegenelate masses and mixing are present for the hght
neutrinos. The exotic mixing appear only in A”, which can be chosen
to be Hermltlan and deviates from the 1dent1Ly by terms: of 0(52) .For
mstance, in a weak decay 1uvolvmg the e, — n; tr ansition, the change with
respect to the SM decay rate 'y 1nduced by the corresponding mixing is

] F—Ozj [(ea ~ 1) = (ALAL)aa + (s5) (ErER)a . (20)
"~ The first term (ALA}_‘),1 (A)2 = (c°)? = 1 — (s4°)? accounts Afoi‘
the reduction in the light neutrinos couphng strength, and we see that the

information in' Kj is lost when the sum over the unobserved final neutrino
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cigenstates. ‘The second tern, in which (ERER)aa = (s%). appears only
both the light neutrino and the R charged lepton mix with components
of an exotic doublet (as is required by lielicity conservation in the " in-
teraction), and is O(s') in the light-heavy mixing. Each (s})? represents
an additional mixing parameter that ia-in principle unrelated to the cor-
responding (s7°)%. For ¢, = e,p. the existing direct constraints on the
right -handed currents (RUC’s) [13] ensure that it is safe to neglect the
O(s') terms. However for the 7 lepton. the existing direct limit-is too
weak to justify the same applo\mmtxon Nevertheless it is easy to show
vry2 2 a2 — 'E < u.,)z and

that (s57)? is bounded by (s5)* < 2. (sg)° = T (ELEL) < Tl
this ensures that it is safe to neglect the couebpon(hug RHC contributions

as well.

Using the unitarity re lation (12) and the unitarity of I}, we can intro-

duced common neutrino parameters by writing

(NN AL AL+ Ff 1'1)!\':],.“
= () (MY F A+ A 2SN (21)

i

where, eg A% (s])? = (l\',TOL(jLI&'l)(,(, describes the amount of mixing
with the heavy ordinaries V. and analogous expressions hold for the other
X¢ parameters that describe the mixing with the exotic. These parameters
swllbfy o< <land 3, A =1

4 Slmultaneous mlxmg of gauge bosons and

fermions m1x1ng

The neutral current term of lagrangian for the multiplet ¥ of a given

_electric charge, for the case wlen both types of mixing are present, is then

-L:NC — €
SWOW —L.n

J) T
U0 (Da, Hy, Z =

4

W HM), (20, 20, ..,

7 T

Zn)y s
SWCW o=L,R ;

where R is the (n + 1) x (# + 1) orthogonal matrix that dlagonallzeb the .

neutral boson mass matrix; Hi are the (ng + ma) X (na + M) matrices
that express the couplmg., s of the non umvexsal famlly dlagonal ( UFD)
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and famlly changing (F'(") gauge bosons to matter. In the simplest case of
onl) one e‘<t1a neutldl gauge l)oson the R matrix is

' It = cosf  —sind o S )
. , T\ sin 0. cost - o (22)
and for the laglanglan Ave ha\e
. E\C l 6 % o
, sM(H e S ] . . N -
X Z \Pa7“l (D,,‘C()s()+ H,1 siuH,H,, cosf — D,, smﬂ)((,lp ( ; ) -
F7

Here H = diag(Hy, Hg). There are no Hgp nor Hog terms in H whlch
would give rise to Z7 me(llated transitions between .exotic and ordinary,
fermions as long as th( horizontal group commutes with the SM gauge
group. The general neutral current laglangldu term in the light sector is

_E}\"Cj \IJ - Z a¢
w'he_re o _ ‘ ‘ o
I\" — FTF (i g —1 { _ q2 - X ) L BN
L 3L soL) + 1301 — Qs | cos O 4+ (Hy)p sin 0,
(I\R = [(FTF)R131.1;—Q6H]COSH+ Hu)Rsm0 DIUESIC TN
Ky =" [(FTF) (tspL — l‘aoL) + tsor, — wa] sin () + (H”)L coso
Ky = — [(FTF)R l3gr — Qs ] sin 0 + (HH)R cosﬂ |

It is hsefulvto;initroduyée». couplmg parameters A and = as ‘
A = (~'\th+ ~t230[’ - Q.S%,V) cos f + E.L sin ; . (24)

Kr = (Ar—Qs%)cosf+ =gpsinb, ' (25)

where Ap = (FTF)R tsgn, AL.= (F'F)L (tagr~tsoL) and Z, = Hu)a, a=
L,R. '
Should note that there are two contubutlons to the FC couplmgs of the
light fermions to the Z, ~ (FTF) cosd and ~ (Hu smG which may be in
principle of the same 01de1 In the limit of no mlxmg betWeen exotic. andf
ordinary fermions (F, = 0) and no mixing between the Z and Z' (0=0)
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the SM coupling are recovered. - And at last, in the absence of mixing
with the exotic fermions the FC couplings of the ordinary fermion {of a
given helicity) to the Z may still survive through the term (Hy), sin 8, pro-
vided that the family of ordinary fermion of the given helicity transforms
pontrivially under horizoutal generator Ho.

Since for the light charged fermions, the dimension of ;. and ;g are
the same (there is an equal number of left and right handed fermions), we
can rewrite the general lagrangian as

. 3 T ’ ’ Zy oa
LN = — \Dn“(gv—gﬂs,gv—gﬂs)\l’l( Z') » o (26)
u o

25y e

where gy = A'p + g and g4 = k' — Kg.

5 Model independent constraints.

We consider the constraints on mixing parameters from two different pro-
cesses, a namely, constraints from the lepton family diagonal processes
Z — I;l; and from lepton family violating processes. For the first ones
when both mixing effects are presented the branching ration B(Z — [; L)
in the Mz > my, approximation, is given as

1 G M3 it 12 ' . o
B(Z - L) ~ 5— 6i/_Z (|gvl +‘9A|>= , (27)
tot N i .
3 .. L1
L GrMy (,|A2+520 —+bw|2+| };+'“"0+sw| > +0(0%).

- Ftat 3\/ 27

The experimental values of the branching ratios are Be.: = (3.366 £
0.008)-10~2, B,z = (3.3674+0.013)-10~% and B.; = (3.360 £0.015) 1072.

So we have constraints

< few - 1072, (28)

For the branching ration of second types of Z decays we have

o B(Z = Il ’
B(Z—+,l,~lj+l\,-l,-)'.:2|g—v(|—2—+-|—gﬁ; (Igi1? + 1951 = (29)
B(Z i1 iy =i -—w RS
=4 2820 \5 g S0 4 (A + S0P +O(0Y).
gv ]+ 1gal
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¢From ([13]) experimental values-are B,; < 1.7-10°6. B.., < 7.3-10~% > ang
B,r <1.0-107°. So mixing parameters A* are hounded-to lie in a CllCllldl
region centerlng at (—__”6 ——""”0) and the 1ad1us ~ 1073. /

6 Conclusions

The lecture is devoted to fermion and gauge boson mixing effects. We see
that the new fermions will naturally mix with the known light states and
we have outlined a geneml formalism that allows the study of the simulta-
neous effectsof the new degrees of freedom on electroweak observables. We
have shown that flavor-changing neutral interactions could naturally arise
in these models, since in general they are not equipped with a GIM- mecha-
nism. However, large masses for both the new fermions and tle new gauge
bosons lead to a natural suppression of the flavor— —changing low-energy
couplings of the light' states, and the FCNC are easily accommodated in
these models.

We identified a'set of paraméters’ that describe the new phvsncs The
effects of the new gauge hoson have be *ell parametrized in terms of a Zo -
—Z; mixing angle 0 and of its physical mass M%. We have described the

_fermion mixings in thé neutral sector with three parameters (.>L) , and
we have introduced the additional effective parameters A, o1 to describe
the kind of new states involved in neutrinos mixing. For the charged
sector, relying on the very stringent experimental limits on FCNC, we have
neglected possible flavor changing couplings of the light fermions. But this
restriction is not crucial to derive reliable limits for common fermion and
boson mixing parameters A, and = . :
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Abstract -
The explicit expressions for the lowest-order radiative correction to the single
W-production in hadron-hadron collisions are presented with taking consideration
the contribution of bremsstrahlung. The calculation is made in the framework -

of the quark parton model. The infrared divergence is extracted by using the
covariant method.

1 Introduction

Precise measurements of the W boson mass - one of the fun-
damental parameters of the Standard Model (SM) - along
with other precision electroweak measurements will lead to
more accurate information on the top quark and the Higgs
boson masses, that will provide restrictions on the parame-
ters of the supersymmetric extension of the SM. Our current
knowledge of the W boson mass (my = 80.43 + 0.11GeV,
D@Collaboration [1]) will be significantly improved up to an
uncertainty in the range 30-50 MeV at LEP II [2], 20-30 MeV
at the Fermilab Tevatron pp collider [3] and 15 MeV at the
upgrated Tevatron. Besides, the LHC gives opportunity to

measure the W boson mass to a precision of better than 15
MeV [4].
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To extract the data on my with high precision from hadron
collider experiments, it is necessary to take into account con-
tribution from electroweak corrections (EWC). The final state
photonic corrections were calculated in [5]. More accurate cal-
culation of the lowest-order EWC to the resonant W p‘roduic-
tion at hadronic collisions have been suggested in [6], where
both the initial and final state radiation have been included.
In this report we present new explicit formulae for EWC to
the inclusive single W-production in hadron-hadron collisions.
Since in the final state only charged lepton is detected, we sug-
gest to use the covariant Bardin-Shumeiko method [7] for cal-
culation of EWC in that reaction. Indisputable advantage thls
method is that the final expressions are independent on any
poor deﬁned, unphysical‘parameters (photon 'softness’ and 0.
on). 0

2 Bofn cross section of process. pp(pﬁ) — ,l*yz

The process of the single W-boson production is co¥131dered in-
the framework of the quark parton model o

p+p(+p) - WE+X o 1+ X, (1)

Notice, that for the partonic process
p1i~4-momenta of the first (anti)quark (favour 4, mass ml)
pe—4-momenta of second (anti)quark (7', ms), vk
k1-4-momenta of final charged lepton I~ or I* (m), =
ky~4-momenta of (antl)neutrlno ,
The standard set of Mandelstam 1nvar1ants 1s the followmg: _

s=(p+p), t= (Pl — k)’ u= (kl pz)
The matrix element of the partonlc subprocess,comcideS“
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Fi’gur’e 1: Feynman graph for the single W -production on partonic leve’l’

with one from [8] (everywhere the W-boson propagator (s i

m2,)? replace by (s — m#%)? + m% %)), and the unpolarlzed

invariant parton-parton cross section has the form

042 Bii d? kl d3k2 :
4Nsis (s — k1o 2k’

Bii = {

Then we integrate over 4-momenta of an unobservable
(antl)neutrlno

dk2

do =

2 )26(171 + D2 — kl k2
where

u? — for g — 170y, 4q — Ty,
t? — for g7 — I*w,gg = "mn.

o) Pt P2 k1 — ks) = 8(s +t +u —m? — m}

and according to QPM (see for éxamplé [9]) substitute D1(2) - N |

T1(2)P1(2), Where Py(9) — 4-momenta of initial hadrons, z,(y) is
the fraction of the first(second) hadron’s momentum carried
by the corresponding struck quark. We shall denote this pro-
- cedure by a operator ”hat”. Then we multiply on the parton
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- mz)’ﬂ :

densities of the first and second hadrons and integrate over i

and 2.
The integration over z, is performed with the help of &-
function taking into consideration that

s(5+t+a— m? —mj —m?) = §(z122S + 71T + z2U) =
1 :L‘1T
5 1
©S +U (e2+ 2550
and, hence, o = 23 = —z1T/(z1S + U). That case corre-
sponds to born kinematics and will denote by the index ”0”.
S,T,U are Mandelstam variables for pp(pp) — Ly

S =2PP,, T = —2P ik, U= —-2Pk,— <z <1

U
S+T ~

Finally, let us consider the general form of the cross sec-
tion of the process pp — ly. In the hadron- hadron collisions

the center of the parton-parton masses frame has an unde-

- termined motion along the beam direction. Therefore we use

standard in that case variables: the component of the 4-vector
of the detected particle transverse to the beam direction (k1. ),
and rapidity (y). Integrating over azimuth @ (it is possible
since the initial hadrons are unpolarized) we have phase space
d3k1/k1g = ndydk,’ 1. Hence

dapp—)lu '
b = dz, fi(z1, Q%) %0, .-
dydkll 121;/ $1f (531 Q ) 0y

@
whére o

Yo = E‘xz:a:g = ﬂ-a2 : l-V’:illzBﬁ'fi'(a"Z’ Q?)lm:zgr ,

4N, s45(5 — miy)? (z1S+U). -
(3)

and the sum is over all types of quarks and antiquarks both
of initial hadrons. So, for

qq — My, i =u,ct; =d, 5, b;
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Figure 2: The full set of Feynman graphs for the contnbutton of add:twnal mrtual
particles . : ‘ ‘
qg—= 1o, i=a,6,t @ =d,s,b;
qfg = 170y, i=d,s, b7 = i, c,t
gg— 'y, i=4d,5, b i =u, ct

In the expressions (2), (3) 1/N, = 1 /3 is the color factor, V,: is
CKM matrix element, f;(z1(2), @*) are the spin averaged quark
densities, Q is a typical momentum transfer in the partonic
reaction, so, for the numeric estimations we choose accordmg
[6] value Q2 =m%,.
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3  Contribution of additional virtual particles

The one-loop contribution of additional virtual particles (V-
contribution) in the on-mass renormalization scheme and t’Ho-
oft-Feynman gauge is presented. It could be written (for detail
see [10],[11])

doy
=5 [d ,
kT = 2/ dnfilen@

Here the factor dy consists of seven terms:

)5V|12_1020

v = 0w +dvi+8vg + dsi + 8sq + 64w + dzw-

where | .
W (s)

_m%V

S = 2R

is the W self—energy contrlbutlon

Sy = 2§R(SFWW(5)
is leptonic vertex correction;
by = 2REFVH(s)
is quark vertex correction"z o | o
, S
g (g
is v self energy; | | ’

(0 4 m m 9 mzb %

s u-quark self energy;

w = %?de(@i-’i’ v (5, ) + Q“HW(&?’ “))
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is YW 'box contribution;

Sow = k?;cl[(('u; + a;)(v, + a;) + (v,, + a,,)(v, + aj ))I1 (s, t)

+((vi + ap) (vir + ap) + (v, + a,,)(v, + a;))IZV (s, u)]

is ZW box contribution. .
Here the quantities I{’ 5 and IZY can be found in [11] (see
formulae (A.3), (A.4) and (A. 6)) IR part of V—contrlbutlon

can be presented as
2

5 = —1 —(Qz +QF +QF ~ QuQuin —5—

m2m?

t°
+QiQiciln —— — Q1QwciIn
m m

u'’’e dm2)

@ is the charge of the fermion j expressed in the units of

the proton’s charge (e.g. Qu = Qa = +2/3).

-4 Contribution of bremsstrahlung pp(pp) — vy

Let’s present the cross section of bremsstrahlung (R-contribu-
tion) according to the covariance method of extraction of the
infrared dlvergence (IRD) [7] in the usual form

) d IJR;)-—)lllz"y dU dO'R )
dydk,> dydlsll dydk,2 "

To get the first part (off) we should do dperatlon k —+
0 (k is 4-momenta of the real bremsstrahlung photon). . So,
- analogously the form of Born case

do
. d ; 2EIR
Tydk? = 5] defilen @ORE
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Figure 3:

Here the substitutions -

and

are used.

u(t,)

g - (TR

The full set of Feynman graphs for contribution of the bremssirahlung

X VUmaz dv EI[FIR]

T Y Vmin

dzy = dv/(z:5 + U)

d3k

I[A] = 5[(;01 +pa—k - k)2][A]-

The quantity F% is defined as'

FIR -

where

2

z ; CtQth—— + lele'—— + Q

P — QiQi—

21Uy

m2
Q2

YR

e for qq N l 1, 4q [ I,
“ —1— for qq—)l"’w,qq—)l .

The kmematlc variables read:

tl = (p2 - k2)27 z = 2kkl)

21 :Qkp1=2'—tl+t7
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u1—2kp2—'u+t1—t,
v—-2kk2—s+u+t—m1 m3 — m?

Introducing

?

J(t,v) = v lin}) I[F™),
where A is a photon mass as the parameter of IRD, adding

and subtracting the terms —(a/m)XJ(t,0)/v -as well as
—(a/m) LI [F®] we will have three parts of the cross section:

Vmaz d’U X (Vmaz

b dv(Z — Xo)I[F1H]

—-zo/ " do (1L - J(t,0)v).

The second and the third addenda are IR-finite. That’s why
they have the value v,,;;, = 0, but the first term contains IRD.
We will calculate its in the center-of-mass—system of the 1n1t1al
partons [12]. Then vy, = (k = 0) =:2Mkyg = /50, Umaz =
(Tomaz = 1) = z1(S +T) + U, and the IRD-part of the cross
section has the form ' "

a «
—;EOJ(t, 0)in(vmaz/A/S0)- -
Surnr:n.ing up IRD-parts V— and R- contribution we get ..

dolf’ " doiR
dz: fi(e,
dydkiZ dydk] Z/ o1l @ )

| "2

ma:c ’
i.e. the infrared d1vergence has canceled successfully.

In the process of the 1ntegrat10n I [FIR] we were forced to.
calculate by the next express1ons

L1t R
”?J T my’ I[;?] T omv’
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| I[;-Z]—'——Lt, I[E{]u—_—EL“’,M
I[__]=__Ls,' 1[ 2]__L it
Z 'ul . L mz’U NPT RATIRE
| Lt = lnm2m%a L,= lnm, ETRITIEEO R
Zin 82"&2,'

m1m2
and J(t, v) has the form ’
J(t,v) = QF + CzQzQth - ClQle’L i

+Q? - QiQu L, + Qi
We:turn' attentlon to the fact‘that if theiindex 0™ is absent,
correlation:between: s,¢, u: corresponds to the case v # 0, ‘that
is not-born. kinematics!:: ¥ RIS SO LT S A
After IRD-extraction from the‘cross sect1on of: the partomc
process -remaining part. of R-contribution (so called ”hard”
photon contr1but1on) have the form® o t Lot

F__% R 2dI‘ St
dER 26 2 %USJ=l,q,w| | T Lagnimid
—l——————é _|_ -k —k

dF TR [( D1 pz 1 )l

Here'we have 1ntegrated over k. And then we 1ntegrate over‘i

whole’ phase space of the! real photon and get followmg termsi |

in the previous formuila’ 1t
axh

d dk2 8 4 qu’l2(Q szl + QlHlqu
Yyary,
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+V, + QIIViy, + IV, + 1I2V,).
Index of values V corresponds to the particle which radiated
photon (I — final lepton, g — iIiitial quarks, w — W-boson).
Double index corresponds to the same interference term.
At last, the cross section of inclusive process pp(pp) — [ iury

- have the form

da}'; 9

qyder; = 5/ dmdeafil@n @) &
ooz, )L SR
1 2) dydk%l'

5 Conclusion

So, in this report the expressions for the lowest-order radia-
tive correction to the single W-production in hadron-hadron
collisions are presented. All calculations are made in the
framework of the quark parton model. The one-loop contri-

bution of additional virtual particles in the on-mass renor-
malization scheme and t’Hooft-Feynman gauge is considered.:
The infrared divergence is extracted from the contribution

of bremsstrahlung by usmg the covariant' Bardm-Shumelko
method.

We emphasize that the formulae for lowest order radiative
correction have the invariant form, that is allowed one to use

them for the numerical estimations in any modern and fu-
ture 1nclus1ve single W-production experiments on the hadron-

hadron colliders: Tevatron, and LHC especially.

154

References

(1] B. Abbott, et.al // Phys.Rev. D58 (1998) 092003 hep—
ex/9712029 |

(2] D.Abbaneo et.al / / CERN PPE/ 97—154

(3] D.Amidei et al. FERMILAB-Pub-96/082

[4] S.Keller, J.Womersley // Eur. Phys J. G5 (1998) 249 hep—
ph/9711304 | |

[5] F. Berends R.Kleiss: /12 Phys C 27 365 (1985)

[6] U.Baur, S. Keller, D.Wackeroth //- Phys Rev. D59 (1999)
013002 hep-ph/9807417

~ [7] Bardin ‘D.Yu., Shumeiko N. M. / / Nucl Phys (1977)
~ V.B127, p.242

8] DWackeroth WHolhk /] Phys RevD (1997) V55
6788 e

9] Berger Qiu // Phys Rev D (1989) V. 40 N 3 o
[10] Bohm, Spiesberger / /Fortsch. Phys (1986) V. 34 p. 687 -
[11] Bohm, Sp1esberge1 / /Nucl Phys (1986) V. B304 p- 749‘ o
[12] Byckhng E., Kajantie K ’Partlcle Kmematlcs ' 1973 S

155




. ON THE REACTION ep = ep

M.V. Galynsky and M.I. Levchuk * ‘ S
Institute of Physics, Belarusian Academy of Sciences, Minsk

*+ Abstract

We have studied the reaction ep’ = epy in the kinematics corresponding ‘to
electron scattering at small angles and photon scattering at large angles, where
proton bremsstrahlung dominates. The analysis is based.on the direct evaluation =
method of the ‘matrix elements in the so-called diagonal spin basis. The results =
of numerical calculations for electron beam energy E. = 200MeV in the above

~ kinematics show that-the relative contribution of the Bethe-Heitler and interfer- '
ence terms to the reaction cross section is less than 10 %, and the cross section
for the reaction ep = epv is quite sensitive to tliefi)rdt'i)n polarizability. Owing to
the factorization of the squared electric and magnetic form factors of the proton,

" a compact expiression_has been obtained for the differential cross section: of -the ix
Bethe-Heitler emission of a linearly polarized photon by an electron, taking into
account the proton recoil and form factors. A covariant expression has been oh-
tained for the lepton tensor in which contributions of states with transverse and .

¢ longitudinal polarizatjons of the virtual.photon are separated. Ly

1 The reaction ep — epy and the proton polatizébﬂity

There has recently been much interest in studying Compton scattering on nucleons
at low and intermedliate energies, - The motivation is that the fundamental structure

constants of the nucleon, the electric and magnetic polarizabilities, can be determined
in this process. The nucleon polarizabilities contain important information about 'the -
nucleonstructure at large and mtermediate distances, in particular, about the radjus of

the quark core, the meson cloud, and so on. A detailed discussion of these questions can

be found in'[1. 2] Knowledge of thé amplitudes for Compton’scattering on nucleons is -

also required to interpret the data on photon scattering off nuclei. For example, such
studies can answer the question of in what degree the electromagnetic properties of free
and bound nucleons differ. -

All the experiinental results on the proton polarizabilities have been obtained from
data on elastic vp scattering below pion photoproduction threshold [3]). However, it has
recently been shown that measurements of the proton polarizabilities at the Novosibirsk
storage ring with electron beam energy of 200 MeV using an internal jet target appear
to be very promising. As proposed in [4], this can be done using the reaction

e (p1) +p¥(q1) = €™ (p2) + pt(g2) + (k) (1)

*E-mail: galynski@dragon.bas-net.by, levchuk@dragon.bas-net.by
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. the kinematics corresponding to electron scattering at small angles and phptorl s'ca-xt.-
o ing at large angles, i.e. in conditions of small 4-momentum transfer f}'om the initial
S:zctron to t;e final photon and proton. In the l'owe§t order of perturbation theory, the
process (1) is described by three graphs shown in Fig.1.

K S5k

D, P P P > P P >

G G Q2> G QB @ < _ q2>
a b | ¢

Figure 1: Graphs corresponding to the reaction ep — epy.

The first two (a) and (b) correspond to electron ‘bremsstrahlung (Bet.he-H.extlerl
graphs), and the third (c) corresponds to protop brem'sstrahlut.lg {(graph with v;lrtua
Compton scattering (VCS) on a proton). The kinematics described aboYe was chosen
for the following reasons. First, the subprocess of real Cpmpton scattenpg (RCS) on .
the proton is realized in it since at small electron scattering angles the virtual photpn
with 4-momentwm » = p; — ps (see Fig.1) becomes almost real‘. Here the quantity
7| = /=(» — p2)? tumns out to be small, |r] ~ m, wher'e m 1s.the electron mass.
Second, for electron scattering at small angles and - photon scattering at !axge ang!es,
the contribution of the graph corresponding to proton bremsstrahlung dO{mnates, being
several orders of magnitude larger than the contribution of t'lle Beth&H?Itler gra.phs to
the cross section for the process (1) [5]. This is the main requirement .needed to separate
the subprocess of Compton scattering on the proton [4] in .the reaction ep — epy.

The estimates in the framework of the method of equlvzj.le.n't photons f'01: a sc?xlar
model [4] showed that the reaction (1) offers a gopd possibility of obtalnn.lg h‘xigh-
statistics data on the Compton scattering cross section and t.h‘e .proton polz?rlzabllx.ty.
Measurement. of the electric (a,) and magnetic (5;) polarizz?bxlxtxes of the proton Wlth
higher accuracy than in earlier studies is:one of the most important problems to be
solved by experiments in the near future [6, 7). . :

However, to obtain high-statistics data on the cross section for yp scattering and -
the proton polarizability it is essential to use a the‘oretlcal model' more acqurate :tk}tlan
that of [4].” It must include both the spin properties of the particles and parbamz ers
characterizing the electromagnetic structure of the hadror.lf The modgl can l?e ased v(zin‘
the result of [8], where a general calculation of the reaction ep — epy was perfglfme .
The cross section was expressed in terms of 12 form factors co.rresl.)kondmg‘ to the VCS
subprocess on the proton (i.e., the contribution of the gragh in Fig.lc) and two form
factors correspondiug to the Bethe-Heitler graphs. ) ‘ . -

" The differential cross section for the reaction ep — epy in t‘he above .kmematxcs was
calculated in [9). It was expressed in terms of the six invariant amplitudes for RCS
(1, 10], and also the electric and magnetic form factors of the proton [11].
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The matrix element correspondmg to the sum of the two Bethe-Heitler graphs (@
and ®)i in Flg 1 reads

. C g 1 S
My =u(p2)Qulpr) - U(g2) L™ )ulqr) e (2)
A "pl'—l;:+m.._ pat+k+m " .
Q= T T T T )
° 1 .
Lulg™)=h 7u+l_pf2 (97 —Tu9) ., (4)

where u(p,) and u(q;) are the bispinors of electrons and protons with 4-momenta p; and
gio Pl = . qf = M2 Tp) ulps) = 2. Wlgr) ulgg) = 2M. (= 1.2). k= k¥ 5
are the Dirac matrices. v°> = —ivy1y*43, 4%+ =45 p,. fi1. and. fa are lespo(tnel_\
the anomalous magnetic moment and the Dirac and Pauli form factors of the proton
[11], ¢ = g2 — q1 is the momentum transfer, ¢ is the polarization 4-vector of a photon
with momentum &, ek = k% =0, and M is the proton mass.

In the limit of interest |r] ~ m, the matrix element corresponding to the graph of
Fig.1c is expressed in terms of the six invariant RCS amplitudes T; (i = 1,2,...,6). It
has the form [8] . ’ o

) -
M =a(p2)v"u(p1) - g2) Muve"ulqr) 75 )
enen DuD
My = —25% (71+T.1\)+ e (Ts+ Tuk)+ (6)
. (C[ADII_C'VD[A) 5 (C“D +C D#) -
+ D2 Ts5 + 7 (1)

The tensor M,;,, "is constructed using a set of four mutually orthogonal 4-vectors C', D, B,
and K: ; .
R=1/2(¢1 +q2) ,

(Ql\)

Q=1/2(r—k),
(RB) |
B"
Dy = €uupe K¥ BPC

K=1/2(r+4k),

(R]\)

C=R- K-

B,B=Q- K, , 7:(8)

and it satisfies the requirements of parity conservation and gauge invariance: ’
M,,,,k",: MMy =0 )

"In the unpolarized case it is most efficient to use the standard approach [11], for
calculation of the differential cross section of the process (1) together with evaluation
of matrix elements in the diagonal spin. basis (DSB) [12]-[15]. In the DSB, the spll] 4-
vectors §) and sa of particles with 4-momenta py and p2 (s1p1 = s2p2 = 0, 52 = .s-, = -1)
belong to the hyperplane formed by the 4-vectors p; and ps:

_(mv)u—vs - (miwa)uz —n

s =

o)
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where v, = pi/m; and v9 = pa/ma. To find the probability for the process {1) it is
sufficient to caleulate the matrix elements of the electron and proton currents

(iné'a)u = Uia(l"’)'ht“(pl) ' : (1)

(JE ) = T ()T (0%)e () (12)

and also the quantity L ’ ‘ ;
X2 = g2 () Myeu (1) - L (13

The calculations give [12]-[15):

(I, = 2m(au), © (J730), = ~28y_(as)u . y- =+/—p1/2. {14)
(I8 ) = 20 M (bo)y o (I ) = —26"y_ gmlbar)u  y= = (/=42 /2, . (15)

where
ag = pye/\[r} - as=po [/ =P s aa=[ao-az]*k/p . ay = [ao- as)*az . (16)
pr=paEp.uxs=a £idanr . I =21, a.l. =0.dl=d =ai=—aj=-1. (17)

bo = qi/\Jui < ba=q-/y[—a% , ba=[bo- ba)*k/p , by = [bo - b3]*b2 (18)
ge =qatqr . byp =bixidby 8 =1, bak =0, b} =b3 = b3 = b3 =-1. (19)

In Egs.(16), (18) and below a dot between any two 4-vectors a and b, square parentheses
and symbol "*" stands for dyadic product of vectors (but not scalar product) a -b =
(@ b)ue = (@), (b)w. alternating dyadic [a-b] = @b —b-a and dual operation [a - b)* =
(l@- 6w = 1/ 2z pmpa(la - BT = cpupa (@) (b)7, respectively, €, p0 is the Levi-Civita
symbol (€023 = —1); p and p’ are determined from the normalization conditions (17)
and (19). finaly. g and g,, are just electric and magnetic form factora of the’ proton
(Sachs form factors) [11]: -

1 “‘l" :f1‘+/"}‘4jvl\7j S !lgvx = fl _+[lp fa. . . (20)

Therefore, in.the DSB the matrix elements of the proton current for spin-nou-flip and
spin-flip transitions are expressed in terms of the ele(.lrln ge and-magnetic ¢, form
factor. respectively (see [16]).

Once the matrix elements of the. proton current (12) have been determmed the
calculation of the contribution of the two Bethe-Heitler graphs reduces to the calculation
of VCS on the electron [9, 14, 15]: : B

£6'802 _ b s g1 —k+m pe + E+m Y
|ME = il (J,, ok € TE Dok J3

) up)F.(21)
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Denoting the result of averaging and sunnning the expression M[i‘s

|2 over the polar-
izations of the initial and final particles by Yee. one obtains [9, 14, 15):

~ et et ~+6'4
Yoo =14 Tr{(pa+m) QX (m+m) Q. ~ /g, (22)
e

where @f's’-'s’ = {Q") (J,,*'s"‘sl),, is the operator in parentheses between the electron
~+6'4 .~

bispinors (p2) and u(p) in Eq. (21), and Q, = 70 (QF ¥ ) +,. Owing to the

factorization of the electric and magnetic form factors ge and g, in (15). the Bethe-

Heitler term in the cross section for the reaction ep — cpy Yo, (22) contains only the

squares of the Sachs form factors (see [9. 12, 14. 15, 17, 18))... .

Similarly. the calculation of the contribution from the graph in Fig.lc reduces to the
calculation of quasi-real Compton scattering on the proton. Usmg the expressions for
the electron curre ot (14). one has

+6,6 A+6,6 2
| My = Iu(qo ) Q" ulqn) I7, (23)

where Q*“ = (JE4d)n My, ¢, Denotiug the result of averaging and summing Eq.
(23) over the polarizations of the initial and final particles by Y, . we obtain [9]:

v
Vip = 174 3 Tr( (4 + M) G259 (o + 1) a3,

(24)
) de !

where Qp
of unpolanzed pdrncles » ,
Yop=1/4 > 2Re My M;

8.8

(25)

we shall u»e the matxl\ elements of -the ploton current (15) and also t,he 4-\ect01s
X*‘S &1 3), which have the form [9] '

x5 =--z<5'.u'_b1k(cé?"Tz+ Dg? Ty +i6'yyy. _“(C = [—)i-ZC‘, ) )e )
. (C.C M DiDy’ M o
xp s =2 (v, (Lt (n 4 22 r,) + 22 (1 4 2 o))+ e

. o (CuD, —C,D,) '
+5y___"_D_2_t:_uT5 ¢,

where y; =/431/2 = M1 T =¢*/4M? and v, = I»q.,./ZM2 As a result, one
has for the matrix element M, (5) ~ .

My = T(p2) X2 u(py)/r? (27)
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58 =0 (Q*“)'* 0, Finally, to calculate the. interference term in the cajséi

and Eq.(25) reduces to the trace [9]:
AHEs s (s e YT
Yo =1/ Y 2R ATr ((p2 + m)QE " (1 +m)X  )Yg/r*, o (28)
8¢ - o

1 gt

where X*&8" — - \i‘s 4" and X (\i'sl 4')*y# . The interference term Y, (28)
is a linear (oml)nmllon of the proton electrlc and magnetic form factors, because the

operators Qi‘s 4" are expressed linearly ih terms of the matrix elements of the proton
current: Qi‘s 4= (Qe )“(J*‘s 4 ) +-(see Egs. (3) and (15)). Therefore, the problem of
finding the probability for the reaction ep — epy in this approach has been reduced to
calculations of the traces (22), (24), and (28), which were done making the use of the
prograi REDU( E. For the dlffelentlal cross sectlon we then obtained [9 14]

o3| TP 8 (pr+g—pr—ga— k) daPZ &g f’:

do = o C29)
2m2/(p1g1)® — m'—’M.2 . 2pao 2,‘120 w y
[T 1P=1/4 Y| My P= Yee + Yep + Yop - (30)
pol . o
8M? 9 - 9 ’ U
Yee = ‘*qT,( ge Y1+7gmYir), _(81)

M A mig? ;1__!_?_‘7'2‘12 B
LS v W 21z Do

X2 A2 \& X
n? (p1q+ B pgc/+)2 T ((p1g4)” + (p244)?) , (32)
TIAMI(1=7)\ As Av) o (1=1) A1he
M A mig? 1+L)2 r2g? °
’”“XZ‘XT 2 \ntx) T
m__ (mds _raa\', T (e + (pen)?) gy
+ ¥
QAIQ(I—T) /\1 (I—T) ; 142, S
m:’ m?\? ( 1" 1 ) po
-2 == 4 — ==, R
2(,\1‘ ,\-,)+ AN %
. 32M3 nM MT ]
Yep = re tl (41/4 - Vz) {yERe [yl (Tl + 1- TZ) + (T3+ 1- ! s
+7gm [— IUIA{_RC(lez +y2T1) + 4M Re(n1T2 + 22Ta + 33T6)] } , o (39)
op = {(0103 + ua)[(l -7) |T1| + 2u1h1Re(T1T-> ) + IW (ul - uq |T"| ]
+ (m +us [(1 - r)|T3|2 + 2u1MRe(T3T4) + Mz(ul - u2)|T4|2] (35) ~
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. o [Ts]2 M2 16MH
+ (0103+02+2V3)T( YR +——|7],| o

For the invariant variables in Eqs. (29) - (35) used in determining the Bethe-1eitlep

term (Ye.). the interference term (Y¢,). and the term corresponding to proton brems

strahlung (Ypp). we used the notation adopted in [8]:

o1 = 2a1[0103(vavs — vive) + 205 + vaws), vy = kg J2M?, va = —kq_[2M7
Y2 = 200 (vavs — v1vyg) — a\vF, vs =12 JAM?, vy = kqpJ4M? | vs = p+q+/41\/"';
ya = —(4va/V2) [aas(vyva(va + v3) — wavy — vavs)) + u4(4u:f -],

o =vs+ U]l/|(2U3 + ) Vi a3 =03 2/ (Vi + (va+ l/‘;)(ul vi)) .

az =m*/M* — 3+ JWG/D [—(rva ¥ vavs)t + 41/3(1/4 - V1V4Ur) Ausvi (v + y},)]_

D? = M% (vi + (va+ ) (Wi —vd)) = M3 as, M =pik, A = pak |

n = U1U401(l3 o = Vavaory, 23 = 1 /4o (202202 + v2 + v3) +4u4 - u-,) .

It should be noted that the expression obtained for the differential cross section (29)
coincides, within the definition of the initial quantities (tlie tensor M, ), with the result
obtained in [8]. if one expresses in the latter the form factors f and fa through ¢, and
gm. Nevertheless, the Bethe-Heitler term Y., and the interference term Y, have a more
compact form due to the factorization of the electric and maguetic form factors.

Let us consider contributions of all three graphs to the cross section for the reaction
(1) in the selected kinematics when the initial proton is at rest (g, = (M,0)). and-the
electron beam encrgy is E, = 200 MeV. Performmg the required integration over the
phase space we obtain [9]:

%w? || T

do = ~ =
1672M | Py | (p2k)

dEpk dS,, d22, , (36)

where dS2, and dS2, are the elements of the photon and proton solid angles, and Epris
the kinetic energy of the recoil proton. The differential cross section (36) was caleulated
numerically in the region 5 < Epp < 35 MeVwith the sum and the difference of the
electric (ap) and magnetic (ﬂ,,) po]arlzabxlltleb equal to ap + fp = 14 and ap — 3, =10
(in units of 10~* fin3) [1]-[4). We assume that the reaction kinematics is planar, and
that the photon emission and proton scattering angles are 9, = 135 and 9, = —20.5",
respectively (all angles are measured from the direction of the primary electron beam).
Calculations show that in the entire range of proton kinetic energy considered, 5 <
Ey <-35 MeV, for the selected’ angles Uy, = 135° and Up = —20.5%, the electron
scattering angle J. and the 4-momentuin transfer || = \/—(p2 = )2 are bounded by
the values |J.] < 6.4° and |r| < 7.3 MeV, with the minimum value of || corresponding
to forward electron scattering [9, 14].

The results of numerical calculations of the cross section (36), do/dE,./dQ,,/dQ,
in the above kinematics are shown in Fig.2. We see that in the angular range studied
the cross section for the reaction-ep — epy has a sharp peak consisting of two maxima.
This peak originates from the factor 1/r* in Eq. (35) for Yp,. The two maxima have a
kinematical origin and arise from the interference of two pole graphs corresponding to
quasi-real Compton scattering.- The cross section-(36) has a strong angular dependence.
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which, in particular. causes the two maxima to disappear when the. proton scattered (or
photon emnission) angle is changed by only one degree (1 e., for 1),, = —19. 50) so-that
we have an ordinary peak at Epr = 25 MeV. i

40 : T T T T T
E,=200 MeV

d’s/dE, da da (nb/MeV/sr)

Figure 2: Differential cross section (36) for the reaction (1) in the kinematics where
proton blem:.atmhluug dominates (see conunents in the text).. Proton scattering angles
are ¥, = —20.5° (solid line), 0, = =20.0° (dashed line), v, = ~19.5° (dot-dashed line)
and photon eniission angle is ¥, = 1359,

The differential cross section (36) shown in Fig:2, is the sum of the Bethe-Heitler
(Cee). the interference (0¢p). and the proton (o,,) terms (see (30)), where the symbol
(o) denotes the cross section of the form (36) with | T |? replaced by Ye.. Yip. and
Yors respectivel\ Numerical calculations show that in the entire range of proton kinetic
energy studied, 5 < Ep; < 35 MeV, the ratios of the Bethe-Heitler term o, and the
interference term ¢, to the term corresponding to proton emission @, are bounded
by the values o, fopp < 0. 02 and |(re,,|/a'p,, < 0.05. The calculations carried out for
another set of angles (9, = 135° and 0, = —20°) give results which are only slightly
different: o/, < 0.05and |0'ep|/0'pp < '0 075. Since these ratios are much smaller
than unity, the main requirement (see [4]) for beparatlon of the background, which is
mainly electron bremsstrahlung, is:satisfied.

To investigate the sensitivity of the reaction (1) to the proton polarizability we
performed numerical calculations of the cross section (36) for the same set of angles
(¥, = 135 and 1),, = -—200) and fixed sum of the electric and magnetic polamnlnlltlc\
ap+ 3, = 14 but dillerent values of the difference: (a) ap— [3,. = 10 and (b) ap— 5= 6.
It turned out that the cross section (36) is about 8% larger for the smaller difference, of;
polarizabilities. Therefore, in this l\mematma the cross section for lhe reaction p ey
is quite sensitive to the proton poldnzal)llltv [9]. ;
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2 Emission of a linearly polarized photon by an elec-
tron in the reaction ep — epy

Let us consider now the entission ol a linearly polarized photon by an electron in the

reaction ep — (. taking into account the proton recoil and form factors. Our study .

will be limited to the contribution of the ‘two Bethe-Heitler graphs (a) and (b} in
Fig.1, which corresponds to the matrix element (2). The contribution of the graph
with VCS on a proton can be neglegted when the initial electrons have ultrarelativis-
tic energies. and the photon and final clectron are scattered at small forward angles
(O ~m/E.. b, ~m/E.. m/E, < 1). '

We are interested in these effects for the following reasons. First. even though the
Bethe-Heitler process has been intensively studied earlier in the case of the emission
of linearly polarized photons [19, 20] and is \\ldely used to obtain them at accelerators
[21], up to now the proton recoil and form factors have not been accurately taken
into account (in contrast to the unpolarized case). Second. as-was shown in [22]. the
inclusion of these factors in the case of llll])Oldll?((l pholom leads to a strong change
of the differential cross section for the Bethe-Heitler process. Since the polarization
characteristic of the scattered radiation are éxpressed in terms of the differential cross
section for the emission of an unpolarized. photon (see below). it is clear that inclusion
of the recoil and forn factors is essential. ' :

The covariant expression for the differential cross section for the Bethe-Heitler pro-
cess (in'the Born approximation) taking into account the proton recoil and form factors
in the case of emission of a llnearly polanzed photon has been obtamed by us in [23]
It has the form

o [T P64 py+q1 —po— g2 — k) flaffz &B3F &Pk

=V ey T T I
7. = 20 g2 r‘ﬁ +r gk Vi), 8)

yf = —z;-::\\—;‘-%vqr T (’:\q:r\) + (¢ +4m?) (ea)? -4 (e,\)-". (40)
ST "’°§j"’l - "’éﬁ;"’ﬂ . an

All the quantitics entering (37)-(41) are defined in the previous section. Thus, the
differential cross section for the Bethe-Heitler process in the case of emission of a linearly
polarized photon dogy (37) is naturally splitted into the sum of two terms containing
only the squares of the Sachs form factors and corresponding to the contnbutlon of
transitions without (~ g2 ¥,¢) and with (~ 7 g2,Y;§) proton spin flip. :
Let us discuss the properties of the 4-vector @, which is well known from the theory
of emission of long-wavelength photons [11], and the 4-vector A. They both satisfy
a condition which follows naturally from the requirement of gauge invariance: a k =
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A k= 0. and. in addition, they are spacelike vectors: a? <0 and A? < 0. This is easily

verifed by using the 4-momentum conservation law and the explicit form of a2 and A2:

(12—1112 L 1 :’+ r?
- /\1 /\2 /\]/\2 T

o m G+PL G4 T Q+P1-q4p2
’ 4M2(1-17) AL 1-71 PYPY) ’

We note that the 4-vector A was first introduced in [23].
Using the eleciron 4-momenta p; and p2 and the photon 4-momenta k, we construct
the 4-vectors of the photon linear polarization ¢) and ey (ek = e k = ejjeL = 0):

_p2k)p1 — (p1R)pa o1 -pa]™k
gl = . eL =T ’
P , [
where p' is determined from the normalization conditions: ef = e = —1. Then the

degree of photon linear polarization will be given by the following expressions [23].

L P -1y P _ A

P = =4 42
IR R E & “2)
where 6 M
16 M? ’
Ay = p (92 An+7g% A, (43)
8 4"]2 LIRS b N

Az = (9. 1+ 797 Y2), (44)

Al A2 T (kqy)? 2 2 2
=21 Y TToT e 2TMe 247, (45)

3 2 N

PR UL W S A .23 P A VE B P S e B

A=A+ 7 M2 d® +2(e bo)?,
Ay =—A%+ 1 M?a® - 2(e bo)? + m? a?,

4(SD)?
M2(1—1)a2A2)0% "’

SD = 1/2 €ups (P1)* (p2)” (11)7(42)°

It is easy to check that As (44) coincides with the expression for Y. (31) determining
the Bethe-Heitler cross section in the case of unpola.nzed particles: A2 = Yee, and also
that ) = ¥7 and Y2 = Yy (see. (32) and (33)). i
Therefore, owing to the factorization of the squared form factors Je and Im and albo‘
the use of the 4-vectors a and A4 (41), the differential cross section for the Bethe-Heitler,
process both for linearly polarized photon (38) and unpolarized photon (44), (31), can
be written in a rather compact. form Coe

(erbo)® =~
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An integration of Eq. (37) over d3s and dpag in the rest frame of the initial protoh
(g1 = (M. 0)) gives the following result:

dopy @’ w [P |T|2 (47
dw dS2, dQ. (27 13l 4 )
1T =92 Y, +7 90 Y] - (48)

Let us consider the limit of the cross section (47) when the proton is a pointlike

(structureless) particle with infinite mass, i.e., we assume that g = ¢, = 1 and
g2 = (M.§) ~ (M.0), where § = 5y — jz — k is the momentum transferred to the proton.
In this limit (M — o0), Exp = 72/2M = 0, §/2M — 0, and by = (1,§/2M) ~ (1,0).
We choose the Coulomb gauge for the photon polarization vectors: .€ = (0 €) in which
one obtains

pie . p2¢

p1e pae
eby =0, ea=-/\—l——--xg- eA = onT—Pm 1\2."'(11+’~)"=Wf1

Using these expressions we have in the above limit for (48):

22
M de WL ) 14 (ea)? (49
112

/\1 /\2 w2 e 2
TP=20-"2-2Z2 2 1 4 (4p3, 4+ (
7| sl winbww (4p3 +4°) Y

pi€ - pae
Ade
The expressions (17), (50) for the differential cross section for the Bethe-Heitler process

dopy /dw/dS2,/dQ. in the limit where the proton is an infinitely heavy, structureless
particle coincide with the result of [19].

2
2 2\, 2
+ (4l + %) (%) -2 (4p1op2o +¢° ) (50)

3 Virtual-photon polarization in the reaction
ep = epy (ep = eX).

The reactions ¢p — epy and VCS on'the proton have recently become interesting
- not only at low and intermediate energies [4], but also at high electron energies and 4-
momenta transferred to the proton [7], [25]-[28]. The VCS offers greater possibilities for
studying hadronic structure than the RCS process, because in it the energy and three-
momentum transferred to the target can be varied independently. These attractive
properties of VCS have led to the suggestion that it could be used for experimental
study of the nucleon structure [25, 26] and have made it necessary to perform a thorough
theoretical study of the reaction ep — epy (see:[7, 27, 28] and references therein). To

calculate VCS on the proton, it is necebsary to know the hadron (W‘,,,) and lepton_

(L) tensors [7, 29}

Luu=JJ Ju=u(p)rulp), (5]
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where u(pj;) are electron bispinors, T(p;)u(p;) = 2m, and m is the electron mass (i =
1,2). The interpretation of the results is considerably simplified if the tensor L, is
expressed in terms of the longitudinal and transverse polarization vectors of the virtual
photon. The corresponding expressions can be found in {7] and [29]. However. they
have two defects: (1) the electron mass is neglegted, which is of course justified at
ultrarelativistic clectron energies and large squared 4-momentum of the virtual photon:
(2) they have a noncovariant form. A lepton tensor free of these defects was constructed :
in [24].

Let. us consider the question of the polarization state of a virtual photon with 4-
momentum # = py — ps which is exchanged between the electron and proton in the
reaction. ep — ¢pa (sec Fig.le). Using the vectors of the orthonormal basis a4 (16},
(A= (0. L.2.3)):

5

Cao = pa /0L a3 = p-/\/—PL . aa= [(10 casl*qi/p . ay = [ao - az]az, (52)

pi.zpr:tpl,u,ql_o f:af;:ag:——aa:—l,
which satislies the completeness relation
g - Ug — ay - ay —{l.-_.~(tg—'ﬂ5-(1;;:g . (53)
where g = (y,.) is the metric tensor with signature Y = (+ = —=). we construct’/

the 4-vectors of the longitudinal (e3) and transverae (e1. €z2) polarization of a virtual
photon with 4-momentum » {24]:

(14a3-a3)q

PR ES
[a0 - 1] o=ty = [ao - as]* @ ea=

N oo

(54)

where

2mps - pqr - pagi — MA((pip2) = m¥) = M ((m @) + (p2r)? )
(mp2)* —m?

Pt = (aq)* =

It is easily verifed that the 4-vectors e; (i = 1,2,3) are orthogona,l to each other (e;¢; =
0, i # j). and also that e;r = e;ag = 0 and ¢} = e = —e3 = —1. The 4-vectors ¢; (54)
are not changed when the auxiliary 4-vector g, is replaced by ¢1 +p1—p2 = g2+ k (since
p1 — p2 = r = —2yaz, where y = V—72/2, and the vectors a4 (52) are orthogonal).
For this reason, the virtual-photon polarization vectors e; (54) in the rest frame of the
incident proton or in the c.m. frame of the final proton and photon can be considered
as equivalent and their use lead to the same expressions. Below we restrict ourselves to
the rest frame of the incident proton, ¢, = (M,0,0,0), where the 4-vectors e; have t.he
form:

1 =(0.1,0.0), €2 = (0.0,1.0). 3 = - i (|'|10713) . ‘(‘55,);;.

~where i3 is a unit vector directed along 7 (fi5> = 1), and rgis the tlme component ofw’
the 4-vector r = (1g.7). o

The four mutually orthogonal vectors €, €2, €3, and as alsoysa‘.tisfy the gompleteness‘
relation: C R
€3-e3—€)-€ —€a-€2—U3-A3—=4G, (56)
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which allows ag and @) 1o be expressed in terms of ¢ and ¢3:
) = aez — Jey . g = Jdes —ae;, PP =14+a” . (57)
- gy aoq

B -':Qf](ll = €3ag9 = (58)

a = €3 z(t(lfl=-ﬁ" ——————
‘ ' Viaaq)® + g7 Viaaq)? + qf

In the DSB (10) the matrix elements of the electron current have the form of (14). l el
us write themi in terms of the 4-vectors ¢; (54) [24]:
J:'o),,_;bn (:363—,(”’1);4 (J“’") —Zdy ({hf3—‘ Jey +ld(.)“ . Ik (')‘))

. | . e e ) LIl . 8.0y . y . . S
Therefore. for spin-non-flip transitions (.J2:°) the \’lrt.ual-phot‘on polarization vector is

a superposition of the Iongitudinal (fe3) and transverse linear (—ae;) polarizations,

while for spin-flip transitions (J 49} jtis a superposition of the longitudinal {ae3) and
transverse elliptical [es = (0.¢5) = ~ ey + idea] polarizations. Here the state of a
photon with elliptical polarization vector ¢5 = (0.&;) has degree of linear polarization
(equal to the ratio of the difference and suni of the squared semiaxes) [24]:

o = 3 =1 _ o .
TT A+ B+ (60)
Inverting this relation. we obtain: _
3= 1+ Ay . n':" = 26y
I — &y N
Now we find- the squared lﬁoduli of.t,he vec('o.rs €5 and as:
~ |2 2_ 2 2
|6 |P=14 3 = =T @ = (1+3%) (1+ kL),
=2 3 -2 3
KL =K = c = ]
L €3 "'1( 1 7y ' -3 (_1_2) (()l)
Let us introduce thie normalized vectors €5 / and as
J— E& ‘ 1—[{-7 “ ! 2.
€s €5 , =1. 32)
\/l + /}q 9 é leé I (()2)
(16 1- f€-7 - -2 - o
BV ey G P =l S L, (69

It is seen that the elliptical-polarization vector €5 of a virtual photon can be normal-
. . - 2 . i N
ized to unity (|& ‘|* = 1), but the presence of a longitudinal polarization makes this

normalization impossible for the total vector @ ’ simnltaneously. The quantity x; (61) .

correspouding to the inequality @ ‘|> = 1 + k. # 1.has the meaning of the degree’
of longitudinal polarization of a virtual photon emitted in a transition with electron
spin flip. In the ultrarelatlthlc limit, when the electron mass can be neglected, the
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quantities #+ and . can be interpreted as the total degrees of linear and longitudinal
polarization of the virtual photon. In this (massless) case we have:

X

(asp)? + 4} = —M? =5 . (mq)? = M ctg®d/2, , (64)
72 :
k;l=1-2 T 19%9/2, " (65),

where 9 is the angle between the vectors p) and pa. Equation (65) for & coincides with
the result of [29 '
The vector @; ‘ {63) can also be written as

1 1-
s '= kL fiz =/ +M€1+15 M

which makes it easy to COl]btl‘llCt the polanzatlon dens1ty matrix for a v1rtual photon
in the massless linit (both in the polarlzed case, which for massless particles is helical -
polarization, and in the unpolarized case; see (29]).

To obtain the complete expression for k- and kg -arising from the contributions of
the matrix elenents both without and with spin flip, we construct the lepton tensor
averaged over electron spin states. Using the matrix elements (14) this can be easily

done [24]:
L;.V—‘im ﬂo)u(ao)u+4y ((al)u(al) (az2)u (az) )- (65)

Using the completeness condition (53) and gauge invariance, the tensor L,,,, can be
written as

S fhu = 432 aﬂ)u(aﬂ)u - 4y2 Guv sy - Do (67)

where 2% = m* 4 y*. The tensor Ly (67) is used to reduce the calculation of the
contribution of gmphs with VCS on a proton to the cross sectlon for’ the reactlon
ep — ep~ to calculation of the trace of a product of tensors:

— 1
YPI‘ = LFV l'Vm, s I’V p = V V Vﬂ = 'U(q2) ;we u(th) 1' . (68)
Let us express the tensor L, (66) in the terms of the virtual-photon polarlzatlon vectors
e;-(54). As-aresult. it naturally breaks up into the sum of three terms corresponding to
the contributions of transverse (LT) and- longltudmal (LL) states and thelr mterference

(Lrr) [24]

L=4y (Lt + L + Lt ), o R ERRRREY (69)'
Lt =e1-€ (ﬂ2+02m2/y2)+62 eq, .o s (70)
Ly =es-es(a® + B*m*/y) , oy
LLT = (61 63+ €3 - 81) aff (1+m2/y2) > ', (72)

Then the total degree of lmear polanzatlon of the v1rtual photon is glven,by . :» o N

v"\: ﬁ2+a m? [y? —1 Dol / ("3)
B2 +a?m?fy?+1" T @ ri-2mij2
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Since a and J are the same'in Eqs. (60) and (73) (see (58)). the mcllmon of the ele(‘tron
mass in the ultrarelativistic limit leads only to a slight increase of x., [24]:

' 2m’ ) .
Ky = Ry (1+ 21+ 37 ) (74)

Inverting the relation in (73). we find

o . 1+4# 2! m?
3 +a’m?fy = g r;:’ ot + PPy = 1 _Z, 2 (7—))

We can separate the completely polarized and unpolarized parts in the transverse tensor:
Lr=e1-e1 (B2 +a’m?/y’ = 1) +e1-e1+es-e3 = ‘
= ﬁ (Kl er-er+(1—~l) (e1-e1+€32-€2)/2) . Therefore, the virtual-photon polarization

den51ty matn\ pi; is obtained from the tensor L,_, (69) just as in the massless case (s(‘(‘
[290): | |
pij = (1= ) Tij/8¢* .. . (76)

For the degree of longitudinal polarization of the virtual pholon we then obtain:
i . ‘2, ‘

2 ")

a4 g [ 0 m (l—h,y) -
= 1+ 2 )

KL (_.,.2)"’1 ( + v 2 (77)

The expressions (73) and (77) for &, and &7 with m = 0 obviously become «., and &,
of (60) and (61). ’ a
We conclude by noting that the region of applicability of the tensor Lo (69) s
not limited to only VCS on the proton. Since in fixed-target experimets the charged-
lepton scattering. at available energies is mainly determined by virtual photon ex-
change the tensor Ly, (69) can also be used to study deep-inelastic electron scattermg

(e*p = ¢t X), and muon scattermg (u*tp — pEX), where inclusion of the mass is more.

important.

Conclusion

We have studied the reaction ep —+ epy in.the kinematics corresponding to electron
scattering at.small angles and photon scattering at fairly large angles, where protor
bremsstrahlung. dominates. The results of numerical calculations performed in the rest
frame of the initial proton at electron beam energy E. = 200 MeV in the chosen
kinematics show that the conditions needéd to separate the subprocess yp — vp from
the reaction ep — epy are satisfied, because the relative contribution of the Bethe-
Heitler and interference terms to the reaction cross section is less than 10 %, and the
cross section for the reaction ep — epy is quite sensitive to the proton polarizability.

* A compact. expression was obtained Tor the differential cross section of the Bethe-
Heitler emission of a linearly polarized photon by an.electron, taking into account the

proton recoil and form factors, owing to the factorization of the squared electric and’

magnetic form factors of the proton. In the limit where the proton is a pointlike particle
of infinite mass. this expression becomes to be the ‘well-known one.
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A covariant expression has been obtained for the lepton tensor in which t he‘_(“;or‘uri-
bution of states with transverse and longitudinal polarization of the virtual photon is
separated. 1t has been shown that inclusion of the lepton mass tends to increase the
degree of linear polarization of the virtual photon.
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Exact calculatlon of the O( ) order’ QED
corrections for the Processes fii — fa fz
with polarized initial particles .....
Knotilo{rich VG ’Shun.leiko;N.M.
National Scientific and Educatwnal Centre of Partzcla and

High Energy Physws of the Belaruszan State Unwerszty

‘Abstract
 Exact covariant expressions are obtained for the energy’ spec--
trum of one of the outgoing fermions, total cross section and po-.i .
larized asymmetrles for the processes f1 fiofofa with polanzed
initial particles in QED to order o?. :

1 Introduction.

The problem of calculatlon of the radlatlve correctlons (RC) for a process

of fermlon-antlfermlon annlhllatlon 1nto another fermion- antlferrmon L
f1+f1—>f2+f2 (1)

is one of the best studied both in the Standard Model framework and be-
yond [1]. Even the calculation of RC in QED for this simple:process is a
very cumbersome task. But QED-corrections, as background for the effects '
of more "subtle” physics, are required first of all. So far only one work is »

known [2] whére analytlcal RC calculation was performed for unpolanzed
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case without neglecting the particle masses. At present time the perspec-
tives of linear ete™- and u*pu~-colliders [3, 4] with polarized beams are
widely drscussed Therefore we have done here calculatlon a.nalogous as in
[2] but for the case of a.rbltrary polarlzed 1n1t1al partlcles ‘In that case we
have much more cumbersome expressmns and addltlonal dlfﬁcultles with
integration. To overcome these difficulties the tensor 1ntegratlon method

have been modified and computer algebra systems were widely used.
2 Method of calculation.

The exact expressions for virtual corrections for. the process (1) are well
known (e.g. [5]). The infrared divergence is handled with the help of co-
variant Bardin- Shumeiko method [6]. The main difficulty is fourfold exact
a.nalytica.i integration of the squared matrix element of the bremsstrahlung

process

fl(plrm)f—-) +}T(p2;m7€+) - f2(_P5,M) +—f;(p3’M) +7(p4’0) ’ (2j)

where p; (i = 1..5) and m, M are particle momenta and masses, {s are

polanzatlon vectors of the lmtla.l partlcles

i

" The main pa.rt of the necessa.ry scalar bremsstrahlung 1ntegra.ls was\

calculated in [7] To 1ntegrate polarization dependent terms we apply the
tensor integration method as in [8]. But we have made some modifications
in it, making use of basic ideas of the algorithm proposed in [9] for tensor
loop ‘intregrals. Using the generalized'Kroneker' deltas technique allows to
fulfill reduction to scalar integrals qulckly and in very compact form. If

we denoté vector and tensor integrals as”

‘([PQ];[PQ‘];[PQ‘PK]:[P?PZHPPP D —/dF (pé‘,pq,p“pa:p«;m,pam) 4, @
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where dI is phase space of the reaction (2) and A is some function’ of

integration variables, then we get the results:

=), =P, b= R+ 6;’:’:%’35

v k av ] v [ k] av !
vl = (Pprn) + el et | ) = (e + Delepitetoee
(4)
with :
) t P Pl D2
Pyyy = (1’” p§(4)pz+1’” s4)P1) 2

where

D: D1D2P4 DiPD2Pa
ShiDibs » Dk = Epipaps » Dok =pipaps  (5)

_ shpP2
Ay = 61’1202 » Dy =
are shorthand notatlons for Gram deternnnants
These formula are implemented in REDUCE program ‘that make all

calculations — from squaring matrix element to final results.

3 Results.

After making three analytlcal integrations we get the fermlonlc energy

spectrum as an intermediate result

ldo _ ;E{(Qgs,@)m}spe)(l42/»))><

Jo dz

2 2 - * e S
<1+P£"PL1 z + PP cos Ay 1+2p)+ el

+Q? (P*PL ASL(:L‘) + P+P cos Ay p ASt,(z))}

175



Here = . . . . .. o

4ma?

O = —Qsz )
5= m—){‘2xﬁ= 1+ 60100 - o1+ 305 - 28 22

B
+2$2ﬁ: [1 Y P 20p - p(l + 42p 40p )L(ﬁ)] R

~L(Bz) [(1 +20)(1+2p+ 12 pr) = 20(1 +2p + 4p(1 - p)(1 + 6pf))§%J s

+z(1 — z)L(B;) [1 + 2p;i- 1:2p2 - 24pi(1 p) (’B)]

+L(z,Be) '1[1'5* 6p —4p" ~4p(1 + 2,;?)@] b

p
ASir(z) = gz—(lm{xﬂ: [.,8;#-22P—. (3+26p— 44p”)£§,£_)]_.— |
207, [11 +38p -“(‘3+3‘sp‘4'56p2)@} oy
#E(B) [300+26)(1+ 207) = (1 =+ 6001 — (1 + 27 “’)}
—a(1 - z)L(B:) [2 +10p ~ (1 + 10p(1 - 2p))L(,3)] sl e
—L(z, Bx) [4 +2p—(3-2p- 4P2)—(Eﬁl]} T
- . ™)
where Q;(Q f) are initial (final) particlé charges,

S=(pl+p2)27 x'—p;o E’l] =%27 "pf=M?2a

ﬁ= Vl_4pa B = \/1_4pf/$2 ) :Bf':ﬁ:l:c:l =V1_4pf )

. 1+ﬂ 1 12— z(l = Br)

L(B) = ) L(.x, Be) =5 [L(ﬂz) +1In m}
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E is energy of colliding beems, PE and PZ are longitudinal and transver- ‘
sal polarizarion degrees of initial particles. Exact expressions for functlons
Sy(z) and Sr(z) were obtained in [2]. As it is seen from (6) transversal
polarization dependent part is proportlonal to the initial particles masses,
and therefore we take it into account only as an example of exact calcu-
lation. Polarization structure of the ﬁnal state radiation is rather 51mple
It is proportional to unpolarized part. New results are functions ASL(J:)
and AS,.(z), that define deviation from this proportlona.hty for the 1n1tlal
state radiatiomn.

Similarly to article [8] we can introduce spin-flip asymmetry

QzASL(.’II)

1 d,,TT d,,Tl

A z,p, = dz_ =A l+
Aepn) = pip e =M g, @+ sp<x)(1+2p)\8)
o 1—-2 : o

which dependence on z is'shown'in the fig. 1.
Total cross-section of the process fl fi— f2 fg(’)’) w1th pola.rlzed initial

particles i in the order o? is
| 0 =04+ PE’PL“UP‘+ P} P cosAcp Ot =
= od(1+6,) + P{Pga"(l + 6 p) + Py Py cos Ap oo (1 + 6;,) =
= (a2 + PEPL‘dp' + P;P cos Acp or,,)(l +6a) +
+P[-,*-PL_0-2A6P + R-;'-Pt: cos A(p atrAétr ) St (10)

where Lo
o 0 = ool 4 2p)1 42
Ta = 00 ﬂ( +2p)(1 + 2p¢)
is unpolarized bor_n(cv'rossisection ‘pé.rt,_ and

ol = ao%f(;—_ 20)(1+2p7), 0% = 0}0}%’!’(‘1;-‘?'2‘Pf);’k;:g,y;_; .
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Flgure 1: Exa.ct a.nd approximate results for the asymmetry A(:z:, p, py) for
the process pp — ete™y at E=16 GeV."

is longitudinal and transversal polarization dependent born cross- section
,parts

Correctlons ba, oy aud Our equal

6a=6[+6F+6VP,’6p=6a+A6p, Otr =60+ A6y ,  (11)

where , ‘
oo 1 /{3L(ﬁ) 8 867 + ' — 36° 58— 86% — B
‘Br(1+ ) | 2 B - gy ]—
_ﬁf(3—ﬁ2)(f12—ﬁ}) [0 a6+ 39 =55 Ps i - ] -
= ' - g ) (12
_o .1 [ Lp)[18+126°+56%  3+26° ,
Bl Q‘ﬁ?{ 3p [ 3-F —123—ﬁf]+ -

L)) . 6 a2y LB) o ran|
.31(3 5% (3 - ﬁ‘) [2(9 58%)y = — (9~ 0.34)] +
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) N 9—2ﬂ2]} e
tsa=m Pt 55| - (13)

Correction 6, (11) corresponds to the unpolarized case. The corrections
67 (6F) were first obtained in [2] and are responsible for initial (final) state -
corrections. 6y p is the vacuum polarization contribution.ﬂ ' ﬂ
Deviations Af, and Ab;, from §, are the new results. For longitudinal

polarization we can again introduce spin-flip asymmetry

1 o"-ol! g 1+6 o

- = 14
Alp,pr) = PrP ol +olt o, 146, (14,

where born asymmetry Ag and correction 64 to it are given by
ol Aéb
Ag=-L, bp=1% (1)
To0 T 146, 9
on%

Figure 2: Depeudence of the 6,4 on the final ferxmon mass for the process :
pp — ff(7) at E=2 GeV'(dashed line - approximate -values). - :
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In the fig. 2 the difference between exact and approximate values of
04 is presented. This difference is notlceable only-at close to threshold
energles v
4" "Conélusion.”
" We-have obtained exact.expressions for the fermionic energy spectrum,
total cross-section,and corresponding: polarization asymmetries’ for - the
process fi fi — fa fa (7). with massive fermions to order O(a®) in QED.
Otir ‘results ‘generalize the results of [2] in the case of arbltrary polarized
initial particles.. - = . ..

-
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Polarization to Probe
Gauge Boson at e*e™ Llnear Collider -

A. A. Pankovl

Department of Physics, Technical University, Gomel, Belarus -

Abstract

The sensitivity to the Z’ couplings of the procesges ete~™ — IT1~, b
and Cc at the linear collider with /s = 500 GeV with initial beam
polarization, for typical extended model examples are studied. To
this aim, the suitable integrated, polarized, observables directly re-
lated to the helicity cross sections that carry information on the

individual Z’ chiral couplings to fermions are used. We discuss the '

derivation of separate, model-independent limits on the couplings
in the case of no observed indirect Z' signal within the expected

experimental accuracy. In the hypothesis that such signals were;

indeed, observed we assess the expected accuracy on the numeri-
cal determination of such couplings and the consequent range of Z'
masses where the individual models can be distinguished from each
other as the source of the effect. :

1E-mail: pankov@ggtu.belpak.gomel.by
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Extra Neutral

1 Introduct1on

Extra neutral gauge bosons are a feature of many models of physics beond
the Standard Model (S\/I) If discovered they would represent irrefutable
proof of new physics, most likely that the SM gauge group must be ex-
tended [1, 3]. The search for the Z' is included in the physics programme
of all the present and ‘future ‘high energy collider facilities.”In partlcular
the strategies for the experimental determination of the Z’ couplmgs to the
ordinary SM:degrees of freedom, and the relevant discovery limits, have
been’ dlscussed in the large, and stlll growmg, hterature on th1s subJect‘
[1)-[8]: |

Taklng intoaccount’ the hm1t Mz: > 600 — 700 GeV from ‘direct’

- searches at the Tevatron [9]; only ‘indirect’ (or virtual)' manlfestatlons

of the Z' can be expected at LEP2 [10] and ‘at the planned ete "‘hnear
collider (LC) with:CM energy /s = 500 GeV [11,:12]. * e
Such effects would be represented by deviations from the calculated SM
predictions of the measured observables relevant to the different. processes.
In this regard, of particular interest for the LC is the annihilation 1nt0'
fermlon palrs , o P T L e A
T ; et +e —>f+f, (1)
that glves 1nf0rrnat10n on: the A f f interaction. . P
In the case of no observed signal within the experlmental accuracy,
limits on the Z' parameters to a conventionally defined” confidence level
can be derived, either from a general analysis taking into account the
full set of possible Z' couplings to fermions, or in the framework of spe-

cific models where characteristic relations among the couplings strongly

reduce the number of independent free parameters. Clearly, completely
model-lndependent limits can result’ only in the optimal situation where
the different couplings can be disentangled, by means of suitable observ-
ables, and ‘analysed independently so as to avoid potential cancellations.
The essential role of the initial electron beam polarization has been re-
peatedly emphasized in this regard, and the potential of the linear collider
along these lines has been extensively reviewed, e.g., in Refs. [7, 8].

The same need of a procedure to disentangle the different Z’ couplings -

_arises in the case where deviations from the SM-were experimentally ob-:’ ’
- served. Indeed, in this situation, the numerical values of the individual -

couplings must be extracted from the measured deviations in order to iden-

-tify the source of these effects and to make tests of the vanous theoretlcalg
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from the mathematical point of view, in the next Section:we. prefer to use
Ot that are found more convenient to d1scuss ‘the expected uncertainties
,and the correspondmg sen51t1v1t1es ;to the Z’ couplings. Also, it;turns

out ‘numerically. that 2*.= 0.59 in (10) a.nd (11) maximizes the statistical

51gn1ﬁcance of the results o
The helicity amphtudes Aag in Eq (5) can be wrltten as

Ang = (Qe) (Qf)ﬁ b % gg Xz + geq% fo W

1n the nota.tlon where the genera.l neutra.l—current mtera.ctlon is wrltten as.‘

_LNC=eJ,,A,,+gZng,,+gg,JZ,z. T (1)

Here, e = /anQem; 9z = ¢/swew (s =1 — ¢y ='sin’Ow) and gz
are the Z and Z' gauge couplings, respectively. Moreover, in (13), Xi =
s/(s:— M} + iM;T;) are the gauge boson. propagators with:é-='Z and
Z',.and the g¢’s.are-the left- ‘and right-handed fermion co'uplin‘gs: The
ferrmon currents that couple to the neutral gauge boson 7 are expressed:as

=3t ¢f7”(LfPL+RfPR)¢f, with Pp, p = (1F75)/2 the projectors onto

the left- and right-handed fermion helicity states. With these definitions,
the § SM couphngs are : T

Rl=Q; LI=qy

normalized as

g£ = 'g_Z'Léa q{izg?ZRf o g'f‘_— gZ’ka’H’ o .'q'f' = g_ZI‘Rf
- (16)
In' what follows, we w1ll 11m1t ourselves to a few representative mod-
els predicting new gauge heavy bosons. Specifically, models inspired by
GUT inspired scenarios, superstring-motivated ones, and those with Left-
‘Right symmetric origin [4]. These are the x model occurring in the
breaking SO(10) — SU(5) x U(1)y, the 1 model originating in Eg —
SO(10) x U(1)y, and the 7 model which is encountered in superstring-
inspired models in which Eg breaks directly to a rank-5 group. As an ex-
ample of Left-Right model, we consider the partlcular value k = gr/gr =1,
correspondrng to the most common]y considered case ‘of Left-Right Sym-
metric Model (LR). For all such grand-unified E6 and Left~RJght models
the Z' gauge coupling in (14) is gz =gzsw [4).
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Rf =—-Qssty; Li= JgL - Q,sa;, '('1’5)

where @Q; are fermion-electric charges, and the. couplings i in Eq (13) are-

As they are constrained from present low-energy data (2] and from
recent data from the Tevatron:[9], new vector boson effects at the LC are
expected to be quite small and therefore should be disentangled from the
radiative corrections to the SM Born predictions for the cross section. To
this aim, in our numerical analysis we follow the strategy of Refs. [17]-[18],
in particular we use the improved Born approxrmatron accountmg for the
electroweak one—loop correctrons

'3 Model 1ndependent A search and dlscov-

ery limits

Accordmg to Egs. (3), (4) and (1 ), by the measurements of o, and o_ for
the different initial electron beam polarizations one determines ‘the cross
sections related to definite helicity amplitudes A,5. From Eq. (13), one can
observe that the Z’ mamfests itself in these amplitudes by the comblnatlon
of the product of couplings g gﬁf with the propagator xz. In the 51tuat10n
/3 € Mz we shall consider here, only the interference of the SM term
with the Z' exchange is important and the dev1at10n of ea.ch hehcrty cross
sectlon from the SM predlctlon is g'rven by

Aaaﬁ = aaﬁ uﬁ - NC Upt 2 Re [(Qe Qf + ga gﬁ XZ) . (Q'i g'faX'z)] .
- an
As one can see, Agug depend on the same kind of combma.tlon of 72’
parameters and, correspondingly, each such combination ea.n be considered
as a single ‘effective’ nonstandard parameter. Therefore, in an analysis of
experimental data for 0,5 based on a x* procedure, a one-parameter fit is
involved and we may hope to get a slightly 1mproved sens1t1v1ty to the Z' .
with respect to other kinds of observables. - _
- As anticipated, in the: case of no observed deviation one can’ eva.lua.tei
in a model-independent way the sensitivity of process’ (1) to the Z' pa-
rameters, given the expected experimental accuracy on o, and o_. It is
convenient to introduce the general parameterization of the Z'-exchange
interaction used e.g., in Refs [8 13] ‘

9% . M3 'g, M2 -
GL=1f 4fr MQ,Z—s : G = Ry 4Z Mglz—s (18)

An advantage of introducing the ‘effective’ left- and right-handed couplings - -
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of Eq. (18) is that the bounds can be represented on'a two—dlmensmnal
‘scatter plot’ with no-need to spec1fy particular-values of M ors:
Our. x? procedure deﬁnes a X function for any observable O:

I

EEC o o

where AO = O(Z’) - O(SM ) and 80 is the expected uncertalnty on the

considered observable combining both statistical and systematic uncertain-
ties. The domain allowed to the Z' parameters by the non-observation of
the devxatrons AQ within the accuracy 8O- will ‘be assessed by i 1mposmg
x* < X2, where the actual value of X2, specifies the des1red ‘confidence’
level. The numerical analysis has been performed by means of the program
ZEFIT, adapted to the present discussion, which has to be used along with
ZFITTER [19] w1th 1nput values Mgop = 175 GeV and my = 300 GeV. .
In the real case, ‘the long1tud1na1 polarlzatlon of the beams will; not
exactly be +1 and, consequently, mstead of the pure hehc1ty cross section,
the experlmentally measured O w1ll determine the linear. comblnatlons
on, the right hand’ s1de of Eqs (3) and @) with. IPI (and | P|) less: than
unlty Thus, ultnnately, the separatlon of ogr from oy will, be obtained

by solving the linear system of two equations correspondlng to the data on -
a4 for, e.g., both signs of the electron longitudinal polarlzatlon The same

is true for the separatlon of on and or; using the data on o_;

--In the ‘linear’ approximation of Eq. (17) and with Mz > \/_ s, the
constramts from the condition y? <« cht can’ be d1rectly expressed ‘in
terms of the effective couphngs (18) as:- ;

i e s aem L (548 M R
; |G G | gm ( )l .S'M z. o (20)

We need to evaluate the expected uncertalntles 60,,,9 To th1s aim,; startlng
from the discussion .of o ;iwe consider:the solutions of the system of four
equatlons correspondmg to P, = :l:P and P— =0 in Egs:- (3) and’ (4)

ou = 2P0 P) 'Pa+(P),' i -(21)
omn. = 1-{1;1’ L(P) - P a+( P, (22).
an = 2o (- P) PP o(P) (23)
R = AIJIZ‘P"'—(P)‘ Lo.-p). RRTEY (24)»"
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'a+(:l:P) in quadrature (50'1312 has the form B

: qua.rks ‘€ = 35% and 6°% = 1.5% for ¢ quarks Also, ch:

“year run: w1th Lmt =50 fb-.

From these relations, adding the uncertalntles, eg 604(£P) on

JURR = \/(1—;‘13-) (60 (P)) + ( -PIFD)V2(>50+ P))2» (25) |

and JaLL can be’ expressed qulte 51m11arly Also, we comblne statlstlcal
and ‘systematic uncertainties in quadrature.  In this case, if 04 (£P). are
directly measured via the dlfference (10) of the integrated cross.sections
O14 (:l:P) and 02+(:l:P) one can- see “that d* has the s1mple property:

doi (:l:P)““t ( sM (:l:P) / eLmt) , where Line is'the tlme-mtegrated Tu-
m1nos1ty, €is the efﬁclency for detecting the final state under con51derat10n
and aSM (£P) is the: polarlzed total cross section. For the systematlc un-

certalnty, we use 6a+(:l:P)3y’ = 6“”( (:l:P) +a2+(:l:P)) ’ assumlng
that 014 (£ P) and ‘g5 (+P) have the same systematic error §*°. One can
easily see that dor; can be obta.lned by .changing 60 (P) + JU+( P)
in 25) and that the express1on for JJRL and 60LR also follow from thlS
equation by doy — bo_. : SRR
-Numerically, to exploit Eq. (17) w1th 60,,,9 expressed as. above ‘we
assume the following values for the expected identification efficiencies -

‘,and systematic .uncertainties on . ‘the various fermlomc ﬁnal states [20]

100% and 6’-”’31‘— 0. 5% for leptons €= 60% and 6’”’ 1%_for b
84 as. typlcal
for 95% C.L. with a one-parameter fit. We take V35=105TeV and ‘a one-
‘For for polarlzed beams, we assume 1/2 of
the total 1ntegrated lum1n051ty quoted above for each value. of the electron
polarlzatlon P, =+P. Concernlng polarlzatlon in the numencal ana.lys1s
presented: below we take three: different values, P=1, 0 8 and‘ ',5, m order
to test the dependence of the bounds on th1s vanable ' e

As: already noticed, in the general case. where process (1) depen son all

four 1ndependent Zf f couphngs only the products G Gﬂ and GLGf can

‘be constralned by the o, measurement via Eq.’ (17), whlle the products

GL and Ge GR can be ana.logously bounded by, o “The. exceptlon is
lepton palr productlon (f = 1) with (e= l) unlversa.hty of Z’ couplings,
Jin which case g can 1nd1v1dually constram either G LOr Ge ' Also, it-is -
1nterest1ng to note that such lepton umversahty 1mp11es aRL = OLR. and
accordingly, for P— =0 electron polanzatlon drops from Eq (4) whlch,
becomes’ equlvalent to the unpolanzed one, with a priori no beneﬁt from
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Table 1: 95% C.L. model-independent upper limits at LC with E,,, = 0.5
TeV. For polarized beams, we take L;,; = 25 fb~! for each possibility of
the electron polarization, P, = +P.

couplings | |GRGHI'? | 165612 | |GRGL|? | IG5GE2
o ol (@) (073 | o) [ (107
observables ORR SoLL ORL oLR
‘process =~ | P ' N e '
etem - |10 21 Fo2.1 3.0 3.2
ete- = IT- |08 23 23 | 33 34
ete 21T 105| - 27 - | 2.7 39 .| 4.0
ete” —=bb | 1.0 1.9 < 2.0 2.5 " 4.6
ete- > bb 08| 22 21 28 48
ete" = bb. [ 0.5 3.0 . 2.3 %37 | 5T
ete-—> e [1.0|. 23 . - 26 - 41 . 39
ete-se |08 25 297 . 495 . 41
ete" e [ 0.5 3.2 3.0 55 - 4.6

'polarrzatlon Nevertheless, the uncertamty in Eq. (25) still depends on the

lorigitudinal polarization P. “The 95% C.L. upper bounds on the products
" of lepton coupllngs (without assumlng lepton un1versa11ty) are reported in
the first three rows of Table 1.’ ‘

For quark-palr productlon ( f =c b) where in general gy, #0Lr due

to the appearance of different fermion couphngs, the analysis takes into
account the reconstruction efficiencies and the systematic uncertainties
prev1ously introduced, and in Table 1 we report the 95% C.L. upper, bounds
on the relevant products of couphngs

Also, for illustrative purposes, in Fig. 1 we show the 95% C.L. bounds in
the plane (G G R), represented by the area limited by the four hyperbolas.
The shaded region is obtained by combining these limits with the ones
derived from the pure leptonic process with lepton umversahty Thus, in
general we are not able to constrain the individual couplings to a finite
region. On the other hand, there would be the possibility of us1ng Fig. 1
to constrain the quark couplmgs to the*Z' to a finite range in the. case
where some finite effect were observed in the lepton-pair channel. The
situation with the other couplings, and/or the ¢ quark, is similar to the
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Figure 1: 95% C.L. upper bounds on the model 1ndependent VA couphngs‘
in the plane (G% , G%) determined by ogp. “The areas enclosed by vertical
straight lines are obtained from the process ete™ = — It17; while- those_
enclosed between Lyperbolas are from ete™ — bb at E,,.t =50 fb~! ‘and’
s = 500 GeV. The dot-dash, solid and dotted contours are obtalned )
at P =1; 0.8, 0.5, reSpectlvely The’ shaded" region’ is derlved from the\i
comblnatron of e+e — l+l“ and e+e —) bb at P = 0 8 ' '

one deplcted in Frg 1. o
" Table 1 shows that the 1ntegrated observables a+ and o_ are qu1te sen-'i
sitive to the indirect Z' effects, with upper limits on the relevant products 5
|G¢, -+ G| ranging from 2.2 - 10‘3 to 4.8 - 103 at the max1mal planned’;’:
value P = 0.8 of the electron longltudlnal polarlzatlon ‘In most cases,
the best sens1t1v1ty occurs for-the bb final state, whlle the worst one is for .
ec. Decreas1ng the: electron polarrzatlon from P'=1to P =05 resultsf’s
in worsening the sensrtrvrty by as much a.s 00%, dependlng on the ﬁnal

- fermion channel

" Regarding the role of the assumed uncertainties on the observables '
under cons1deratlon, in the cases of e+e — I*17 and e+et - bb the_ N
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expected statistics are such that the uncertainty turns out to be dominated
by the statistical one, and the results are almost insensitive to the value
‘of the systematical uncertainty.- Conversely, for e*e™ — &c both statistical
and systematic uncertainties are important. Moreover, as Eqgs. (3) and (4)
show, a further improvement:on the sensitivity to the various Z’ couplings
in Table 1 would obtain if both 1nrt1al e” and et longitudinal polarizations
were available [12] :

4 Resolving po;vverandf‘jmodel identiﬁcation

If a 2’ is indeed discovered,® perhaps at a hadron machine, it becomes
interesting to measure as accurately as possible its couplings and mass at
the LC, and make tests of the.various extended gauge models. To assess
the accuracy, the same procedure as in'the previous section can be applied

to the determination of Z’ parameters by simply replacing the SM cross -

sections in Egs. (19) and (25) by the ones expected for the ‘true’ values of
the parameters (namely, the extended model ones), and evaluating the x>
variation around them in terms of the expected uncertamty on the Cross
sectlon » ,

4 1 Z’ couphngs to leptons

We now examrne bounds on the Z' couplmgs for M 70 ﬁxed at some value

Startmg from the leptonrc process ete™ — 11~ let us assume that a Z',
vsrgnal is detected by means of the observables o and o_. Using Egs..(22).
and (21), the measurement of o for the two values P, = +P will allow to

extract opr and oy, which, in turn, determine independent and separate,

values for the right- : and left-handed Z! couplings R%, and LZ, (we assume

lepton unrversalrty) The x procedure determrnes the accuracy, or the
‘resolving power’ of such determrnatrons given the expected experrmental‘ :

. uncertainty (statrstrcal plus systematrc)

“In Table 2 we give the resolutron on the A leptonrc couplmgs for, the.~i ‘
typrcal ‘model examples mtroduced in Sectron 2, wrth Mz = 1 TeV In this
regard one should recall that the two-fold ambrgurty 1ntr1nsrc in, process‘
(1) does not allow to distinguish the pair of values of (gl, gﬂ /) from the onei

(=g, —gif 95 ), see Eq. (17). Thus, the actual sign of the couplmgs R% and

Ly cannot be determined from the data (in Table 2 we have chosen the
srgns dictated by the relevant models). In principle, the sign ambiguity of

_
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Table 2: The values of the Z’ leptonic and quark chiral couplings for
typical models with Mz = 1 TeV and expected 1-¢ error bars from com-
bined statistical and systematlc uncertainties, as determmed at the LC
wrthEcm—OaTeVandP 0.8. :

x T v [ @ ] IR
z 020475555 | —0264+082 —0.33325833 ~o. 438t88§
Iy | 0si2dg | oanedsy | -oroettist| 0:326733%
| B | ~0612751 | ~0.264 700 016618832_, -0. 874;‘3{;;
Ly -0204t8823 02641‘8133 03331‘8?%2 —0 1101‘8822 1
Ry | 02042885, | 026473335 | =0 333t3 e | 0 656i3 122
Ly | 0. 204t88332 02641‘833' 033313‘;’;;‘, o, 1101‘8{22

fermionic couplings might be resolved by consrdermg other procesSes such
fas e.gi, ete” —)W+W' N

‘Another” 1nterest1ng questron is the potentlal of the 1epton1c process'
(1) to identify the: 'Z' model underlylng the’ measured srgnal through the :
'measurement of the helrcrty Cross sectrons ORR and OLL- " Such cross sec-
tions’ only depend on the relevant’ leptonrc ch1ral couplrng and on M 7/, 50
that such resolvmg power clearly depends on the actual’ value of the Z'

mass.. 'In F1gs 2a and 2b we ‘show this. dependence for ‘the Eg and the S

LR models of 1nterest here In these ﬁgures, the honzontal lines represent

- the values of the couplrngs ‘predicted by the 1 various models, and the llnes

joining the upper and the lower ends of the vertical bars represent the
expected experlmental uncertamty at the 95% CL. The rntersectron of the

-.193

L)



o 0y —_— ar
. Wzl Ok - S . IR
o L T il ®
a1 e 5 .
X+q¢ u.;.z._.*__r:.'...:r‘.. {.,. — ..1_,-- s e ’ o3
LT B ) 1R-e e o
ost Sl : 04
0 - T e Y- >‘&'\ -
: . e S — 2 ‘)IN s
ey B - A =i 1.
Al ~ < Rt 2y . C x-=-02 :’f g : '
a02 b, L . NN B
a1 ‘»'L NN A a1 b
) '\L ’ B! _) )

) )
600 900 1200 1500 1300 2100 2400 . 600 300 1000 1200 1400 1600 1300 2000
: L Mg ' R VS ~

Figure 2: Resolution power at 95% C.L. for the absolute value of the lep-
tonic Z' couplings, |L%] (a) and |R%| (b), as a function of Mz, obtained

from or1 and ogp, respectively, in process ete™ — I*1~. The error bars
combine statistical and systematic uncertainties. Horizontal lines-corre-

spond to the values predicted by typical models.

lower such lines with the Mz axis determines the discovery reach for the
corresponding model: larger values of Mz would determine a Z' signal
smaller than the experimental uncertainty and, consequently, statistically
invisible. Also, Figs. 2a and 2b 'show the complementary roles of o1z, and

orr to set discovery limits: while au, is mostly sensitive to the Z, and

has the smallest sensitivity to the Z
Z1r and the worst one for the Z;.
As Figs. 2a and 2b show, the drfferent models can be dlstlngmshed

y 0rr provides the best limit for the

by means of o as long as the uncertainty of the coupling of one model -

does ot overlap with the value predicted by the ‘other model Thus,
the identification power of the leptonic process (1) is determined by the
mlmmum ‘M3 value at which such ‘confusion region’ starts For exa.mple,
',Flg 2a shows that the X ‘mnodel ca.nnot be drstlngurshed from the LR, ¢
- andq models at Z' masses larger than 2165 GeV, 2270 GeV and 2420 GeV,
respectlvely The 1dent1ﬁcatron power for the typical models are indicated
in Figs. 2a and 2b by the symbols circle, diamond, square and trrangle The
» correspondmg Mgz values at<95% C.L. for the typical Eg and LR models

are listed in Table 3, where the Z’ models listed-in first columns should be

dlstmgurshed from tlxe ones listed in the first row assumed to be the origin

s
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Table 3: Identification power of process e+'e“>-->” f f at 95% C L. expressed
in terms of My (in GeV) for typical Es and LR models at E;r,. = 0.5 TeV
and Line = 25 fb~! for each value of the electron, polarlzatlon P, = +0. 8.

ORrRR ~ : : oLr Pl
e+e" ==y Y || x |'\LR || ¥ ] x |"LR i
T — 960 | 830 | 1470 || — 840 12270 920
| 1950 | o — 17970 {1210 || 960 — 124207171220 |
X 830 | 1165:] — | 1615 ) 1170 840 | — "|'1400 |-
LR 1160|1220 ) 970 | — 915 | 840 | 2165 | — |
ete = bb P 7 ' x TLR.J v "n | x | LR |
P — |.725 [ 1180 | 2345 ) — 710 111201 940 |
7 700 — 1210 § 2410 f 750. } — 11250} 750 |
"X T1175 [1100 | — [2130 | 1130|1140 | — [ 950 |
LR 1210 | 1100 | 1540 | — || 940 | 760 | 1370 — .|.
ete” = cc P Vi x | .LR.|| o n..} x| LR |
Y - | 865 | 800 | 1740 | — | 620 | 935.] 800
c . 880 | — | 880 |:1580 || 645 — .1 1035 [:665 |
X - 760 {1050 | —. |.1840 | .935:,|: 940 .| ~— -{:810:f:
. LR : .1050 _1280 880 . — ‘780' ~_685;. 51135 e

of the observed Z' signal. For this reason Table 3i not symmetrlc“'

“Analogous’ considerations hold also for OLR and opr: These. cross sec—i
tions give qualitatively similar results for the product L"ZIRZ,, ‘but with’
weaker constraints because of smaller sensitivity.

4.2 zZ! couplmgs to quarks

In the case of process 1) w1th qq pa1r productron (wrth q =, b), the anal-v'

ysis is comphcated by the fact that the_ relevant hehcrty amphtudes depend

on t.hree parameters (g, g 9p 7 and Mz:) instead of two.. Nevertheless, there: '
is still some possrblhty to derlve general 1nformatron on the VA chrral cou-~
phngs to quarks.’ Firstly, by the numencal procedure mtroduced above one,
can determine from the measured cross section_the products of electrons;
and ﬁnal sta.te quark couplrngs of the Z', from whlch one derrves allowed:
regions to such couplings in the 1ndependent two-dlmensronal _planes
(LG, L%). and (LZ, R The former regions are determlned through. au,,{
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and the latter ones through opp. As an illustrative example, in Fig. 3
we ‘depict- the bounds from the process ete~ — Bb i in the’ (L%, LY.) and
(L%, RY:) planes for the Z' of the x model; with My =1 TeV. Taking into
account the above mentioned two:fold" ambiguity, the allowed regions: are
the ones included within the two sets of hyperbolic contours in the upper-
left and in the lower-right corners of Fig. 3. Then, to get finite regions for
the qua.rk couplings, one must combine the hyperbolrc regions so obtained
with the determlnatrons of the leptonlc Z’ couplings from the leptonic pro-
cess (1), represented by the two vertical strrps ‘The correspondmg shaded
areas represent the determrnatrons of LY, whrle the hatched-areas are the
determinations of RZ, Notrce that, in general there is the alternatrve
poss1b1]1ty of dermng constramts on quark couphngs also in the case of

right- handed electrons, namely, from the determinations of the pairs of -

couphngs ( 51 Ly) and (RZ,,RZ,) However as observed with Tegard to
the’ prev1ous analy51s of. the leptonic process, the sensrt1v1ty to the right-
handed electron coupling turns out to'be smaller than for LZ,, s0. that the
correspondlng constraints are weaker. °

The determinations of the | Z’ 60uplmgs w1th the c and b quarks for
the typical’ Es and LR models with My = 1TeV, dre given in Table 2
where the comblned statistical and systematic uncertainties are taken into
account. Furthermore, similar to the: analysis presented in Section 4.1
and the corresponding Figs. 2a and 2b, we depict in Figs. 4a and 4b the
dlﬁ'erent models 1dent1ﬁcatlon power as a function of Mz, for, the reaction

te~ —'bb asa representatlve example The model 1dent1ﬁcatlon power of
the bb and cc pa1r productron processes are reported in Table 3.

5 Conclusion

L.,”v

We briefly summarize our ﬁndmgs concernlng the A dlscovery hmrts and :

the models identification power of | process (1) viathe separate measurement
of the helicity cross sectlons G'aﬁ at the LC with /5 = 0.5 TeV and Line =
25 b1 for each value P, = +P ‘the electron longitudinal polarrzatlon
Givén'the present experlmental lower limits on Mg 7, only mdlrect effects of
the Z" can be studied at the LC.In general, the hellclty Cross sectrons allow
to’ extract separate ‘and model—mdpendent information on the 1nd1v1dual
‘effective’ Z'" coupllngs (Ge - Gﬁ) As dependmg on the’ mmlmal number
of free parameters ‘they may be expected to show some convenience, with’
respect to other® observables in an analysis of the experimental 'data based
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Figure 3:-Allowed bounds at 95% C.L..on. Z’ couplings with: Mz: =.1.TeV:
(x model).in.the two-dimension: planés (L%:;LY) and. (L, RY+).obtained
from helicity.cross sections o;, (solid lines) and o (dashed llnes); respec-.

tively.-The shaded and hatched regions are derived from the combination:
of etew — I*17 and e*e~ —».bb processes. Two ‘allowed regions for each:
helicity - cross section correspond:.to:the -two-fold : ambrgurty discussed ‘in:

on a x? procedure e RN : : .,
* In' thie ‘¢ase of no observed' signal;” i, no dev1at10n of Oap’ from the,
SM predlctlon wrthm the experlmental accuracy, one can drrectly obtam:
model-mdependent bounds on the’ leptomc chrral couphngs of the Z" from
etem— I*1~ and on the products of couplrngs Ge : G} from’ e+e —) aq
(with l = u,’r and‘q ='c, b) From the numencal pomt of view, G'aﬂ are_k
fourid o Just have a complementary role w1th respect to other observables;
lll(e o and AFB ¢ »7
“In the case'Z’ mamfestatlons are observed as dev1atlons from the SM, , -
with Mgz of the order of 1° TeV, “the Tole of Oap is more lnterestmg, spe-
cially as regards the problem of 1dent1fy1ng the various models as potential -
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Figure 4: Resolution‘;')'owéf-é.t 95% C.L. for |L% LY |}/? (a) and |Rg RY, /2

(b) as a function of Mz obtained from o1, and orr, respectively, in process
ete™ — bb. The error bars combine statistical and systematic errors.
Horizontal lines correspond to the values predicted by typical models.

sources of such non-standard effects. Indeed, in principle, they provide a
unique possibility to disentangle and extract numerical values for the chi-’
ral couplings of the'Z’ in a general way (modulo the aforementioned sign:
ambiguity), avoiding the danger of cancellations, so that Z’' model pre-:
dictions can be tested. Data analyses with other observables may involve .
combinations of different coupling constants and need some assumption to-

reduce the number of independent parameters in the x? procedure. In par-
ticular, by the analysis combining oas(I*{~) and o,s(gg) one can obtain

information of the Z' couplings with quarks without making assumptions -

on the values of the leptonic couplings. Numerically, as displayed in the

previous Sections, for the class of Eg and Left-Right models consxdered here -
the couplings would be determined to about 3 — 60% for Mz = 1TeV.. Of

course, the considerations above. hold only in the case where the Z’ signal

is seen in all observables. Finally, one can notice that for V8 & Mz the

energy—dependence of the deviations Aoy is determined by the SM and
that, in particular, the definite sign Aoaq({11~) < 0 (@ = L, R) is typical
.of the Z’. This property might be helpful in order to identify the Z’ as the
source of observed deviations from the SM’in: process (1).
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ON TWO-PHOTON CREATION OF LEPTON PAIRS
IN HADRON-HADRON COLLISIONS

N. Shumeiko, A. Soroko, P.Starovoitov
NCPHEP, Belarus

1. Introduction

The modern experiments at hadron colliders (Tevatron LHC) are of
the most interest for studying of the opened HEP questions (such as
Higgs boson registration, SUSY particle searches, etc:) Analyzing the
observable quantities one can predetermine the validity of the
standard theory or, on the other hand, models described so called
"new physics" (when find the deviations from the SM. predlctlons)f
And if these deviations are fixed, we should be sure, that they origin
not from the systematics, and are not resulted by the background. In
this connection the consnderatlon of double photon leptoproductlon in
the pp colhsnons -

. - '/ ‘<4. PR ’ -~ / . \.._.......... . mvensnrersanes V3
P maey p>—(O==p
G4 s

J\ ....................................... Q + \E______<..__ pl

q i .......... .<....M...p+ q i———é——g

2 ]
4"'(‘\' ........................... e ’ f-z-"' ~’
R——( _===0 Q——((_==R

p+p —>e’e” +X(1)

is actual, since it can be competmve in background with DreII Yan
processes. In addition, since at least at ATLAS the luminosity
monitoring are planned to be organlzed through pair production
measurements, this is one more motivation for detailed studying of
this process.

We have built a programme to calculate exactly (in second order of
perturbation theory) three-fold cross section for lepton pair productlon _
via two-photon exchange in hadron-hadron collisions when’ only pair
is registered.

2. Kinematics, cross section
The following determinations are used
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S=p+psJ=p—ps o
C=perplepopy
X =pitpy e -
We use squared pair mass, it's energy ‘and azimuthal angle between

pair momenta and collision axis in laboratory system (3 0) for

description of lepton pair.
|  Ami s’ <(JS_- (M, +M; +2M,))*,

JSQ <30< (S2+Q —(M +M +2M))
| =—1<cos€ <L

There are two additional angle variables to desrrbe leptons
0<6, <7,

"ITV,O_S(DLSZﬂ. .

R RN

in Q vector rest frame

Mass, energy, azimuthal and polar angles of p; in the rest frame of;

vector X (S along z-axis) are used for description of thS. -

(M, +M,)" < p? S(NX? (M, +M,))",
X S Xpy S0 - (M, +ML Y,

<8, <
0,0},1 <,

0<¢, <27
The formula for three fold cross section is

i 7 o MM,

szd(SQ‘)‘dcoseg ,/-A (S, HX? S2

4m2

0 ,/—A .9

J’ A d (X, VoA (X p,)sme depzdwhd( cosf )dgo, .

W, @ bW s (42, P2) v,
QR0 e e

* 1=
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where QF =—¢i,0; =-q1, A, -Gramm determinant of second
order, W, -hadron tensor of DIS, L*" - lepton tensor

Integration over L-vector angles is performed anahtrcally in REDUCE
environment and the four—dlmensronal integration over jet variables is -
fulfiled in FORTRAN code (we use GRV98 structure functions). '

3. Numerical analysis

‘We have calculated the cross sectron drstnbutron over cose for

electron-pasitron pair creation in pp -collisions for. Tevatron energy .

(1.8TeV) for some values of 0 and SO.

The figure shape (as cup with drastic side) demonstrates addltronal
(along with the background. measurements) possibilities of studying
processes. In contrast to Drell-Yan process which cross section is
allocated evenly to the whole kinematical region, the most
contribution to the cross section of the process (1) is concentrated
near the kinematical boundaries (cosé, = +1, correspond to the case

of forward/backward scattering) and therefore it is suitable to use this
process for the purpose of luminosity measurements. ’
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Figure 1. Cross section in mb/GeV* ws cosd,
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4. Conclusions

1.

We have built a programme to calculate exactly (in second order
of perturbation theory) three-fold cross section for lepton pair
production via two-photon exchange in hadron-hadron collisions
when only pair is registered. '
Cross section rapidly decreases with increasing of energy>and
squared mass of lepton pair except the forward/backward reglon
where it slightly increases.

Contribution to the cross section is concentrated near the
kinematical boundaries cosé, = 1 and therefore it is suitable to

use this process for the purpose of luminosity measurements.
One have to take into account proccess (1), . when
forward/backward scattering is studied.

One need to investigate Z-boson exchange(y - Z,Z - Z ).
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