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ON THE COMPOSITION LAW OF GROUP VECTOR 
PARAMETERS: CONSEQUENCES AND APPLICATIONS 

A.A.Bogush 
B.I.Sftpanoi·Institute of Physics.· 

'·. · Satio/l(il Academy of ScienCEs of Belarus. Mi71sk 
'•. 

TIH'. efficiency of the Fedorm··s three-dimensional vector parametrization· 
( 195S-1962) is demonstrated by listing of SPVeraf applications of the simpfe com­
position law for the grou·p parameters in the theory of the Lorentz group as well 
as iii relativistic kinematics, in gauge and other nonliitear field thPories. It is also 
shown that the introduction of thP four-dimensional quantum vector parame­
ters reveals new possibilities to use the compositiot1 law and related linearity 
relations by solving sJ)Pcific probiPms in tlwory of the simplest quantum group 
GLq(2.C), includinp; a realization of the q-deformation procedure in itself. 

Introduction. 
The crucial constructive rolf' and grPatest meaning of the symmetry 

ideas and invariancc' (covariance) conditions in the foundation and succes­
sive development -of the modern theory of elementary particles and· their 
interactions are now very well known and generally accepted. In begin­
ning, to solve the physical problems thf' simplest infinitely small continuous 
symmetry transformations were, as a rule, used. In the Lie group theory 
namely the infinitesimal approach has been worked out very. well. The 
possibility and efficiency of the finite transformati~n use, in contrast to in­
finitesimal ones, depend essentially on the convenient choice of the group 
pat;ameters and on the simplicity of the composition rules connecting these 
pai.·ametet;s." :These aspects of the 'Lie group theory did not find, in fact, 
an :adeqiiate presentation iri the existing scientific literature addressed to 
physicists dtlritig ~- long time. In order to avoid such difficulties and to 
fill the related gaps in the group theory. F.I.Fedorov (1911-1994) 40 years 
ago has developed systematiCally the vector· parametrization (VP) of the 
rotation gr~up S0(3.R) [1] and firstly worked out (1957-1959) the VP of 
the Lorentz group 80(:3.1) (see [2,:3]). . . 

In this review report the main attention will be given to the results 
which were obtained. by developitii(and applying of the VP during l~st 
two c\E'cad<'s and not _included in thE' fundamental monograph ( 1979) of 
F.I.FE'dorov "Lon·ntil Gt:(;up" [4): , · 

, lnth,E' Prefa~P to tl}e 1110J,lograph [4]it. was written: "In this bookt.he 
compiPx wd.or paranwt.rizat.ion, proposed 2Q years ago by: the .author js 
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firstly used as the basis of the Lorentz group theory. In the framework of 
such parametrization all the six parameters of an arbitrary Lorentz trans­
formation are joined into one three-dimensionai" complex vector obeying 
the simplest composition law .... The complex vector parameters in con­
junction with the composition formula being the group multiplication ope­
ration, form a group which is isomorphic 'to the Lorentz group. Therefore 
most properties of the Lorentz transformations may by obtained without 
handling the matrices of these transformations, directly on the level of the 
related vector parameters themselves .... Thus. the composition law of the 
parameters plays the most fundamental role in the presented investigations 

" 
In the following. some problems connected namely with the composi­

tion law and its consequences as well as with several their applications will 
be mainly considered. 

1. Composition law and basic properties of the vector para­
metrization. 

In the framework of the VP the finite Lorentz transformation rna-. 
trix £ E S0(3.1) of general type is presented as a product of two com­
muting 4 x 4-matrices a(+) and a(-) [2,3): 

£ = £(q, q*) = a!+J(q)aH(q*) E S0(3.1), (1.1) 

(
1 + qX 

O(±)(q) = ={=q ±q) (1 + 2)-1/2 ( ·x) -"' ( .b --1 2 3)· l q , q ac - '-abcqb, a, , C- , • · • 

defined .correspondingly by the three-dimensional complex vector parame­
ter q =a+ ib audits complex conjugated vector parameter q* =a- ib. 

As a consequence, the vector parameters q and q* of the Lorentz trans­
formation matrices £ = £( q, q*) ( 1.1) are composed independently [2,3): 

££' = £" -+ { < q, q' >= q", 
< q*, q*' >= q*"; 

£,£',£" E S0(3.1); q,q',q" E Q; 

with help of the simplest conl.position law [2,3) . . 

< q, q' >= (q + q' + [q, q'])(1 - qq')-1' 

( 1.2) 

(1.3). 

which has the same form as in the case of the three-dimensional real vector 
parameters n of the rotation group S0(3.R)[1]. 
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This main property, of Lorentz. group VP made it possible to con­
struct all' th~ possible.,finite dim~nsionar repres~nta~io;11 ~perators of 
the S0(3.1) gt:oup by. making di~ect use of the results obtained previously 
in 'th~ fran~ework of the S0(3.R)·VP [5]: . . . , . . .. . . .· . 

The geon1.etrical (physical) meaning of the introduced Lorentz 
group vector parameters ;is also investigated with help,ofcomposition law 
(1.3). The complex vector parameter q (q*) E Q of the Lorentz group is 

: con'sidered here as a coinp.osition of the n!ai' vector paramet'er of th~: space 
'i·otati<)ri' ri:atid ofthe'in1aginai:),: vector parameter of the relative motion 
.iu'[2,~l=; ·.·· ._>-_,.:':·· ·:, ·,·: · · · ... · • · - " · ·· 

· q ~a+' ib-~<:. n•;iu :>1
; (J* =a- ib =< n, ....:.iu >.. , .· ':(L4) 

, ; ; · . F.Lfedorov has fit:stly unveiled the aim, n1eaning and concrete contents 
of the. procedure cfllled ·~group parametrization~': it is necessary·to estab­
lish'and to formulate:explicitly the one-to:.One•correspondence between a 
:Lie group and· its parameters. • As a result, it wa:s proved that the multitude 
Q of. vector parameters,q of the group 80(3.1) forms·a noricommutative 
group• Q;.for .. which the nonlinear:composition law· (1.2), (1.3) plays. the 
'role of.the group operation [4) .. So, with help of this composition law the 
basic correspondence relations for the: group axioms are formulated [2,3). 
As a consequence,· particulady; :the following :naturalness conditions are 
introduced·[2-4):: : .. • · '' ;. ··· 

'< ... l ; 

, · J., ~ t+ (q, q*), c-t t+ ( -q, ~q*), Co== /4 t+ (q0 , q~) = (o; 0). (1.5) 

Th~ composition law (L2), {1.3) has allowed to treat the VP'rioio~ly 
as natural one, but also as a linear parametrization [4]. The nonlinear 
similarity.'transf~rmation realized; for·exaniple,/fot:'the2 'x 2 m~trix'LC0l .= 
L(qC0l)E S'L(2:C),· by mea118· of matrices L' ~ 'L(q)' and i-~ u: L( -q) ·· 
lead¥ 'to: the linear transformation of the' vector parameter q{O) with help 
of the mati'ix O(q) E S0(3.Cf[2;3): . . . . 

LL(o) L-1 = L(q)L(q<0l)£( ~q) = L(q'(0
)) ::::: L'0 t+ 

·,, ·.. ,, . .. 

•··. · .. t+< q,qCOl,:....q >= O(q)q(O) = q'(Ol,' . (L6) 

, ., ,, . .L = ~(q) = (1 + q2
)-

112(1-:-,iqu), . · r (f.7) 

"0·=:= O(q) = (1 +q~)-1 (1 ~·q2+2(q ~;q + qx)];·6-l ·::·() ':: 0('"-q)! (1.8) 
~<);~t:~·.:~ ;:~.-~ ~ :·;·.·~.:~<:! ~ ·-~···'~, ·,,;. ·~+.~ ·"; ~-,._-;_:· ~::j .£-./: ;;,: --~:.>~~~. __ <"~·:; ;-·- ·--· 
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From the linearity relatio~s (L6), when considering the similarity trans­
formaiim:is 'as-acting on the group generators, but not on the vector pa­
rameters, there follow the SL(2.C)- invariance conditions (similar to 
ones established in the frame\~ork of SU(2) VP in [6]): · 

L(qW L( -q) = Obc,(q)tb = 0( -q)abtb = t'u, ( 1.9) 

whi~h .defi~e sim~tltaneously the transformation properties of the genera­
tors,ta = ua /2 of the groupSL(2.C) expressed here in terms of the Pauli 
matrices u = (ua). It is easy to see that the linearity relations (1.6) (see 
[4]) as well as the invariance conditions (1.9) remain to be valid also for 
arbitrary finite~dimensional representation operators for the group under 
-~o~~ide~~tion. . 

: • The finite Lorentz transformation matrices and corresponding group 
representation operators as well as the related vector parameters may be 
expressed in terms of physical quantities used f~r description ofthe 
elementary particle free states, i.e., in terms of energy momentum and 
spin• vectors [7]. In order to realize such· possibility the vect9r parameters 
which· define in most general case the Lorentz transformation matrices 
C = .C(q, q*}connecting two arbitrary fixed four-vectors p = (p, ip0 ) and 
p' := (p', ip~) (p2

. = p'2 
;, -m2

) are found by making direct use of the 
com-position rules ( 1.4) [7]. On this basis the Lorentz group representatio'n 
operators T = T(q,q*) are constructed which realize a transition [7] (see 
also [4] and [8]) 

T(q,q*)¢1 = ?/J2 (1.10) 

where ¢ 1 = ?/; 81 (pi) and ¢ 2 = ?/J82 (p2) are the free.elementary particle state 
fun~tions. . 

. The ~hange from the vector parameters q and q* of the 80(3.1) to 
the two independent three-dimensional complex vector parameters q = 
ci t ib and g = c + id leads to the VP of the ~()mplex Lorentz group 
S0(4.C). Naturally, these vector parameters obey the same composition 
law {1.2),(1.3) [9]. 

The simple operations with vector parameters allow one to separate, 
classify and describe all the possible subgroups of the groups SO( 4.C), 
80(3.1) and S0(3.C) by making direct use of the composition law (see 
[4]) 

The VP allows, as it has been clone for the case of the 80(4.C) group, 
theaclequate quaternionic formulation [10); On this basis the con­
sistent 'algebraic theory of the v~ctors in the Lobachevski space 
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[11] j1~s been d~~~loiJed by using the composition law ( 1.3) as summation 
opPratiou for Ill<', iutrod11r<'d vectors (biq11aternions ). Later.by considering 
the biquateruious ddiued over the complex as well as the so called dou­
bl~ and dual Illllllbers, in addition to the usual complex Lorentz group 
S0(4.C): the two new space-time symmetry groups, S0(4.lt") and 
80(4. F), werr introduced and studiPd. Th.ese three groups reflect the 
specific geometrical properties of the l\Iinkowski, Euclidean and Galilei­
Ne\\·ton spaces correspondingly [12.1:3] .. The related vector parameters. 
(biquaterni~us) obey. naturally. Oll!' and I lw same composition law ( 1~:3 ). 

2. Finite transformations in relativistic kinematics, in 'gauge 
and other nonlinear field theories. 

a. The finite LorPntz transformations and their representations written 
in the vector paranwtrical form have found, first of all, wide applications by 
solving many-problems in relativistic kinematics of the elementary particle 
interactions: 

For example, the covariant approach (1961-1962) to direct calcula­
tion of interaction matrix elements (scattering amplitudes) .for 
polarized elementary j>articles was proposed and worked out [7]. It is 
based on the usage of the constructed in the framework of the VP transi­
timi operators ( 1.1 0) from one given freP particle state to arbitrary other, 
when using for describing these states· the projective· dyadic matrices, the 
general' theory of which was worked out. by F.I.Fedorov too [14]; 

. The first applications of such covariant calculation technique have shown 
its efficiency and have originated the wide successful researches in this area 
which are being cuutinued up to now (see, for example. [4,8)). 

The recent extended review paper [8] ( 1998) smns up the latest deve­
lopments and wick applications of the covariant approach to the calculation 
of the scattering amplitudes based on introduction of the so called "dia­
gonal spin basis". In the Summary we read: "The review of recently deve­
loped'new techniques for covariant calculation of matrix elements in QED. 
the so-called "formalism of Diagonal Spin Basis" (DSB), is presented. It 
is applied to calculating of differential cross sections of processes when 
polarization of particles is to he t.akPII into account... . In contrast to 
method::; of CAL<'llL-group. etc .. the d<•veloped approach is valid both for 
massive .fermions and for massless ones~·· \Ve apply this formalism to tlw . 
follmving processPs: I) l'vloller's and Bhabha 's bremsstrahlung ( e±e- ~ · 
e±e-1') ... ; 2) Compton back-scattering ... (c+n1·o--+ c+')'); 3) e+e--pair. 
production ... b+wy., ~ e+ +e-); 4) Bethe-Heitler process in the case of a 
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linearly polarized photon emission by an electron with account for proton 
rec~il a'nd fon11factors; .5) th~' reaction ep -+ ep1 with proton polarizabilit)·' 
being taken into a'cco~mt ' ... ; 6) orthopositroniu~ 3-photon annihilatio~ 
(e+e'""' 4 :31·). TlH~ results obtained \\'idlthe help of the developed DS~­
formalism: certify its efficiency for calclilating of multiparticle in:ocesses 
'~hen p'~larlzatio!i is<to be' taken into account".': · · · ''. 

A neW efficient and general approach to solve basic problems in rela~ 
tivistic kinematics wa:'> also developed [15] (see also monograph [16]) in th~ 
fni.mework of the quater.nionic for~ulation of the Lorentz group VP [10] 
and algebraic theory of the vectors in Lobachevski space [11]. . 

b. In the frames of the VP of SU(2) the transition from the global 
transformations F = U(n) E 5'U(2);,•to the local (gauge) finite ti·ansfor-: 
mations U( .!") reduces otily to the simple redefinition of the vector para­
meter: n --t n(.rL [6]. All the relations of the VP, including•the simple 
c~mposition law. remain to be valid for the local vec;,tor parameters too. 

That allowed one to derive firstly the basic relations which define ex..: 
plicitly. the transformation properties of Jhe Yang-Mills gauge· field vec­
tor p.otentials.f?1,( x) =· ( b: ( x)) under the· firiite (insteacLofthe infinite 
small one;'>, as it has been done previously) gauge (local) transformations 
O(x) = O(n(x)) [6]. As a consequence, some impbrtant·problems in,the' 
gauge fielcttheory were considered on this basis. Particularly, the nonlineat; 
equation and related Lagrangian [17] have been introduced for the prind.:. 
pal chiral fields of the 5'0(:3.R) group in the vector parametrical form. This 
equation becomes solvable in the two-dimensional space-time and allows 
the existence of soliton-like solutions [18]. The differential Cartanfo'rm 
dU(x)U-1(x) has been also expressed in.termsof local vector parametei·s 
n(x) of the gauge group SU(2) [19] with help of the composition law (see 
(1.3)), without making direct use of th~ explicit expressions for the local 
transformation matrices. The most of these results were later extended to' 
the wide set of gauge (supergauge) groups and effectively used in study' 
of actuaL nonlinear field .models. So, for example, in the Summary of the · 
recent (1994) re,iiew paper [20] it W?S written(• "The·i·eview.is devoted to'· 
the development of. the method ofvector parametrizatibh and it's ·a.pplica-'c 
tions to the gauge and chiral field theories. The direct connection between' 

· the Cartan"forms and the law of composition of parameters is established;· 
not 'resolving Cartan-Maurer's differential•equations. The explicit· form· 
of finite ga;uge transformations for the groups of local unitary, space-time 
symmetries ~.nd supersymmetry, and of the nonlinear realizations of gra-

, 
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vi tv and sup<:rgrayity, (l.re,obtained ... Th~ Carta~dorms, the Lagrangians. of 
th~_prin~ipal:chiral an~ Gol9stone fi~l~sJor. ~~itary groups U(2), SU(2), 
U(:3),',SU(:3) at:e found which have thenew types. of nonlinearit.y ... : . t~e 
vector parameters of S9(3) ~reused as, colle~tive coordinates of skyrmions. 

, . '~ , .• r ; -. ~ •:. •:: - ~ . ' •. . ' - . . . . . • • • . ' 

:3 .. Composition law for 4,dimensi~nal quantum vector para-
mete~s and linearity relations. . 
. . a. Recentlv it: was· shown. that VP may be also extended to the sim­

, pl~~t quant~~1 (q-defo.rmed) group~ (see [21]). Below, as an example, 
some new possibilities to make direct use of the composition rules for the 
'hiti:odtt'ced f6{tr~·diii1erisiona.l 'quant~m veCtor parameters in the theory of 
the quantum group GLq(2.C) will be demo~str~ted. ' · . ' 

It is knm'-:n that the q-deformed group G Lq(2.C) may be defined as a 
set· of th~ 2: x .2-m<,trices '· 

~ ' . M~0l=.(~ ~) E GLq(2.C), (3.1) 

. . ' 

the elements a, b. c. d of'which are treated as some operators satisfying 
the following commutation relations: 

'•' 

a&= qba, b£l = qcLb, be= eb,Ctc = qca, cd = qde, ad-da =:= ( q-q-1 )be; (3.2) 

1~hei·eas the quantum determinant D~0l of the matrix MJ0l (3.1) takes the 
form: . . 
., . ; . ,, . D~O) :::::: detq~/~0 ·~ad__:. qb2 = da- q-1be. . (3,3) 

(Complex number q is the quantum deformation parameter.) 
The basic quantum relations (3.2) and (3.3) may be introduced in vari­

ous ways. One of them is based on the usage· of quantum analogues· of the 
simplectic conditions and (see, for example, [22]) allows one to obtain the 
explicit quantum expression for the inverse matrix: 

. . . •. . 1 •. 
M(o)-1=D(o)-1( d_ -q:b)··;, 

q . q . -qc . a · 
.. i . ~ ' ' . 

. : (3.4) 

: - · Th~ crucial, role in' the .framework of a such q:-deformation procedure 
based on the independent introduction of the inverse quantum matrix be-
longs to the evident conditions ' 

MqMq - 1 = Mq - 1 lvlq = !2, (3.5) 
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as defining ·ones; The direct substitution of the· quantum· matrices MJ0 l 

(3.li andMJ0l-
1 

(3.4) into formulas (3.5) leads immediately to the basic 
quantum relations (:3.2) and (3.3). 

b: Let us to' consider a natural modification of the above q-deformation 
procedure in itself. 

In order to r~alize such possibility, we define the relations (see (:3.1)) 

( 
a b) ~f.(O) (a b) ~f(O) -1- .. M = c d ~ lV, q = c d ~ 1Jqlt q 7Jq. = lvlq, 

~ - ' . 

(3.6) 

where Jif E G L(2.C), MJ0l, Mq E G Lq(2.C) and the speciai transformation 
·2 x 2-matrices are introduced 

. . ( q1/4 0 ) . ( q-1/4 0 ) 
7Jq = 7J(q) = 0 q-1/: , 7];

1
. = 77(q-

1
) =. .o ·q1/4 . (3.i) 

As a result, the new expression for the quantum 2 x 2-matrix Mg is ob-
tained: 

1 
• 

( a q1 2b) . " 
l'.fq = q-1/2c a . . . (:3.~) 

The new inverse quantum matrix 

Mq -1 = D -1 ( cl -q-1f2b.) 
q -q1f2c A . a 

(3.9) 

may be also found by introducing, by analogy with formulas (3.6)~ the 
following relations: 

DM-1 = ·( d 
-c 

~b)~ v<o)MI(0)-1 =(a~ ~) ~ 
a . q q .-c a (3.10) 

~ Dl0ln-1 M'(oJ-1n = D M q •tq q •tq q q. 

The substitution of the new quantum matrices Mq (3.8) and Mg - 1 (3.9) 
depending now explicitly from two different deformation parameters q112 

and q-112 into defining conditions (3.5) leads to the same as above basic 
quantum relations (:3.2) and (:3.:3). In such a way the proposed approach 
is ,verified. . 

c;' We will show below that one can reformulate the operations (3.6) 
and {3.10) in a simple vector parametrical form directly. . 
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First of all. le1 us remind 1hat tlw quantu!n 2 x 2-matrix MJ0 > (:3.1 ). 
written in terms of the ordinary Pauli matrices 

(1 = (iun = //2.0"'), 0"' = (ua) UaUb = Oab + icabcUc 

takes the following compact form:· 

MJ01 = '-i1'iuT = 1i1u- imu = .\/,:0 \171) E GLq(2.C). 

where namely thP set of four quantities 

(lilo.lllt.lil2.1il:3) = (lilo, m) = 1i1 

( 3.11) 

(:3.12) 

(:3.1:3) 

defines the 'four-dimensional quantum vector parameter of the q-deformed 
group GL,,(2.C). Tlw auxiliary ''inverse" quantum matrix J/'~o)-I (see 
(3.4)) entering in tlw formulas (:3.10) .may be also written in the vector 
parametrical form: 

J/,:0>-1 = -iD,~ 1 11~'u. n> = (11io, -m). (:3.14) 

It is easy to establish, by using the properties (3.11) of the Pauli rna­
• trices, that. for t.he introduced quantum vector parameters 1'h (3.13) of the 
· quantum group G'Lq(2.C) the following composition rules (compare with 

(1.2).(1.:3)) are valid [21]: 

Mill Ml2l = f\JPl -t// 1j1!Il 1j,f2l ''= ,jpl = (1j1!3J ml3l)~. 
q q • q '' , // 0 , • 

·(3) ·(1).(2) ·(1)•(2) 
111 0 = 111 0 n1 0 - m m , ( 3.15) 

-mP> = 1i1.&11m121 + -mP 11i1&21 + [m1l)m121); 

i\/~ 1 > = .\/,1(1i1! 1l). M,!:.!l = .H.,(Iill:.!l), il/~3 1 = Mq(7ii131 ). 

Naturally, these composition rules consen'e their form for the classical 
four-dimensional wdor parameters of the group G L(2.C) too. 

Then. by taking into account the relations (3.6) and (3.10), in which 
the matrin•s l]q (:ti) may be treated as classical transformation matri­
ces, we will consider the general case of similarity transformation for the 
qua.nttmJ matrix i\/,~ 0 > = M.,(1hl0 l) = Mq(1ilb01 , m<0 l) (:3.12) realized with 
help of classical 2x2-matrices M = ill(m) = l\!(m 0 • m) and .u-1(m) = 
D-t M(m') = D- 1 i\l(m 0 , -m): 

l!) 



·lf ~-[ (O) l/-1 - ·l/ - ' 1 . i.l fJ ..; . - .. fJ ---r 

-1 • (0) • (U) _ . • 1(0) • 1(0) • -+D «(mu.m).(m0 .m ).(mu.-m)»-(m 0 .m ). 
• (0) . (:3.16) 

111 1o = D- 1 (mo2 + m2 )1li~U) = I11~0)• . 

m'(O) = n- 1 [m~- m 2 + 2(momx + m · m)jm(O); 

(3.17) 
( ) ( 

• (0) • (0)) ( ) -<< mo,m, m 0 ,m . , mo,.-m >>-
(OJ (O) • (0) • (0) • (0) 

= L(mo~ m)(1'i10 . m ) = (m'0 , m' ) = m' , 

L = L(m) = L(mo, m) .= ( ~- O(~n)) '. 
6Un)'=[mo2 -m2 +2(momx+m · m)](mo2 +m2)'::. 1 E.5'0(:3.C'): (:3.1S) 

m: = Eabc11lb, ( m · m )ab = 11la111b. 

d. Now. we can consider the above transformations (:3.6) and (:3.10) 
by ·making direct Lise-of the obtained generalized linearity relations ( :3.16) 
-(3.18). ',· .. 
·.' In beginning, let us rewrite in the explicit vector,-parametTical form the 

transformation matrices 17q and 17';;1 (3.7): 

· 7lq = a-o- ia3a3 = 1\1(a), a= (ao,O,O,a3); 

77;; 1 = ao + ia3a3 = MLa'), a'= (.a- 0, 0, 0, -a3); (3.19) 

ao = (1/2)(q'/4 + q-1/4), a:J = (i/2)(ql/4- q-1/4). 
. . . ' 

Then, by using the linearity relations (:3.16), we can present the trans­
formation (3.6) for the quantum matrix MJ0 l (3.12), in the following 

M(a)MI 0 l(1h)M(a') = M9 ( <<a, m, a'>>)=' M~(m(q1 12 )). 
: ·.,, q . , , . 

where.(see (3.17)-(:U9)) 

• I L( ) • ( 1f2) [. ( 1/2)] << a,m,a·>>= am= m q . =. m 0,m q , (3.21) 
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' , (l 
£(~) .~·· ~ 

0 

""'<+l 
-i..v(-) 

0' 

iw(-) 

W(+) 
0 

-~)· , 

0 ' 
1 

W(±) = (1/2)(q1/2 ± q-1/2), 

0 
(3.22) 

r- 1 (a):::: L{a) = L(a') = L(ao,-O,O,-a3). 

· As'~- result. we find th~ fom-dimensional quantum vector parameter. 
,. ', ' 

711(ql/2)=[mo(q1/2), Tn(ql/2)], mo(q1f2) = mo, 

m(q1/2) = [m1(q1/2), m 2(q1f2),m3(q1/2)] = 

= ['-'-'(+J(rlli + imn2),w(+J(1n2- iamt), m3]; 
' . ' . . '' ... 

-wHf'-'-'1+) = (1- q)/(1 + q) = a(q) =a= -a(q- 1
) 

(3.23) 

which defines thetransformed quantum matrix M 9 EGL9 (2.C) (3.8) 
. ·• : . .. . .··: ' . ' ,·. 

· ;_, · M9 = Alq[m(q112
)] = M9[n1o,m(q112 )] = 7710 ;- im(q 112 )u. (3.24) 

In a similar way. after rewriting the relations (3.10) in the vector para­
mett;ical form (see (:3.14)) we \vill have 

. Dlv/~ 1 ~ D-l NI(mo, -m) = m~ +imu-+ 
i;'. ..• . ,, 

. -+ D~0l .M~!~l- 1 =-tho+ imu·-+ D9-~ M(a')M~(o)-iM(a), 

; .. ·M(a')M; 101 ~ 1 M(a) = ·1\1/9 (« a',n1',a »)>= l)qM;-1 , 

·: « 'a'.n;',a >>= L:.. 1(a)n;' = m(q- 1i2 ). 
. ' .. 

. ' :{3.25) 
"! ;· :- l 

(3.26) 

Hence the explicit expression for .the quantum veCtor parameter m'{ q-'- 112 ) fol­
lows (see (3.19)): 

m'(q-112) = D;;1m( q-1/2) = D;1 [mo(q-1/2), -m(q-112)], 
{{·: { . ,, 

mo( q-1/2) =::, 7Jlo, m( q-1/2) = ( m1 ( q-1/2), m2( q-1/2), m3( q-:-1/2)) = (3.27) 

= { tv(+)(1h1 - iam2), W(+)(m2 + iamt), m3}, '" 

whereas the related inverse quantum matrix Mq - 1 (3.9) takes the following 
vector-parametrical form: 

M9 -:-! = Mq[n1'(q..,.112)] =·Mq[D; 1m(q-112)J = D;1[7no+im(q'"'l/2)u]. (3.28) 

~~· -=JJ==..­
'OtJtt'h~J~ i;;;t-d.! ti!.;'iiiffl f: 

J
. i\lleMH..fS w:c~e~ii~ll.O I) 
'. :_ _a:•.fliSJl~JOTS~A ~ 



It is clear that for the obtained quantum matrices Mq[m(q 112)] (:3.24) 
the composition law (3.15) remains to be valid, provided the evident change 
of the quantum vector parameters is taken into account (see (:3.1:3) ami 
(3.23)) 

1'il = (n1o, m) -4 m(q112) = (n1o. m(q112).). 

Now, by substituting the quantum matrices Mq (:3.24) and Mq- 1 (:3.28) 
into basic conditions (3.5) and applying the composition law (:3.15) only 
(/2 = Mq(l,O)): 

Jv!qMq- 1 = h -4 Dq - 1 « m(q112), m(q-112) »= (1. 0), 

!dq-1Mq = h -4 Dq-1 « m(q-1f2),rn(q1f2) »= (1.0) 

we get the basic quantum relations (:3.2) and (3.:3) written in the followiug 
compact vector parametrical form (see [21 ]): .. 

[m(q1/2)m(q-1/2)] = -mom(q-1/2) + m(q1f2)rho, 

[m(q-1/2)m(q1/2)] = rhom(q1f2)- m(q-1/2)rho; 

Dq = detqMq = rh0rn 0 + m(q112)m(q-112). 

(3.29) 

(3.:30) 

e. All the above investigations may be also extended on the cases when 
the q-deformecl Lie algebra of the quantum group is introduced and used. 
In order to realize such a possibility let us return to the formula ( 1.9) 
which follows directly from the linearity relations ( 1.6) and defines the 
transformation properties of the Pauli matrices. In fact, starting from the 
similarity transformations (3.6) and (3.10) taken in the four-dimensional 
vector parametrical forms (:3.20)-(3.22) and (3.25). (3.26), in accordancC' 
with the generalized relations (3.1.5H3.19), we can write 

1JqM~0l1J; 1 = -i1\J( a )rnO" M( a')= -i( L( a )rh)O" = -iihL - 1 (a )0' = Mq, (:3.31) 

Mq = -irnO"q = rh0 - imuq, O"q = L - 1(a)O" 

and correspondingly: 

D~r1;; 1 MJ 0 l- 1rJq = -iM(a')!1!10"M(a) = 

= -i(L- 1 (a)1h 1)0' = -in1'L(a)u = -ir'11'a" = DqM"- 1 , 

(3.32) 

(:3.:3:3) 

M-t D-1 ~,. (. ') ·D-t. ,_ D-1( • + · · - ) q = q Jv1q m. =-z q m.O"q= q 1110 zmuq, aq=L(a)O". (3.34) 
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As a result. we obtain I wo sets oft lw q-deformed Pauli matrices: 

(
I 0) . ( 0 q-111) 

auq = fTu = () I . a~<,= ""'(+lal - 1...:1-IO'"l = q1/2 0 . 

0 . -1/"l (:3.:3.)) 

( -lq ) ( 1 0 ) fT2q~"':''(+J0'2+'...:1-)0'I = iql/2 0 .. ' O'Jq=0'3= 0 ~1 ; 

(
1 0) . . ( 0 aoq =:= ao.= 0 I . 0'1q = ..... !+JO"I + 1"':''(-)0'2 = q-1/2 

q1/2) 
0 . 

(:3.:3()) .· .. : . . ( 0 -iqlf"l) 
.· a"lq = w't+la:l- lw'(-)fT1 = iq-1/2 0 . O'Jq = O'J. 

The both Sl'ls of llla!rires O"q (:3.:3:)) and aq (:3.:36) satisfy the same as 
in classical case n·lat.ions (:J .. ll): O'uqO'l•q = <5ab + iEab,·O'cq and i7aqi7bq = 
J"b +iEabca,·q· In order to reflect. the specific quantum properties of the 
q-defomwd group (,' !.,1(2.C') m• int roduc<' t lw evifknt relations connPcting 
among thern:wln•s tlw abovP two sets (si•1• (:3.:32). (:l.:H)): 

O'c,/T,/r1 = (L - 1(a))ca(L(a))db(<5ab + iEabjO'j ). 

a,.'la.,,1 = (L(a)),-a(L- 1(a))db(c5ab + iEabJO"J). (3.3i) 

Actually. by substituting. as above, the quantum matrices llfq = :_h110"q 
(:3.:3~) aud J/,; 1 = -i D;;1 

1;1
1aq (:3.:34) into definiug conditions (:3.5) and by 

usiug namely tlw n•lat.ions (:3.:Ji) WI' gl'l to the basic commutation relations 
(see (:3.2)) [21]: 

[ . . J 0 •) [ • • J . ( -1 ) ( • 2 • 2 ) 111t.m1 _=, -ma.mu-=-lq-q m 1 +m2 , 

[1i11:1iia]± = in(±q}[lil 1,1ilo]:f. [1i12; 1i13]± = io(±q)[Jil:l,lhu]'f. · . . 
which coincid(•, naturally, with t.lw general relations (:3.29) (see explicit 
expressions for m(q112 ) (:3.23) and m(q- 112 ) (:3.2i)). 

At last, thc> following schema for transition GL(2.C') -+ C:Lq(2.C) in 
the framf'work of tht> VP may be giv<'n: 

,,, --'- ~.,(0) --'- ;'f = .1, ,,,(0)17-1 • 
4 ----r .o'\ (/ ~a'\(/ q.o fJ q • 

m. a; -4 11l., O"; 4 { 1~ 1 (lJ 112 ) = ~(a)1h, 0'; 
m, O"q = L 1(a)O"; 

l!l 



\/-1 \[!{0)-1 .\J-1> =' -1 ·\·/1(0)-1 . 
' -t . 'I -t . 'I 1/q • q 1l•1 • 

·. A, .· { m(q- 112
) = L"'i(a)1;11

, a: 
m. a. -t m , a. -t A _ L( · 

· 1n', aq = a)a. 

·Thus, we have demonstrated that in the framework of the four-dimensio­
nal VP the basic problems of the q-defonned group GLq('2.C), including 
the q-deformation procedure in itself. may he solved in simple and natu­
ral way by making use of composition law and linearity relations. i.e., by 
op~rating only with the quautum;vector parameters, without making di­
re~t use of the explicit expressions for. the finite quantum transformation 
matrices. 

Conclusion. 
Finally. we can coiKlude that. the vector piu:an1etrization worked out by 

F.I:Fedorov 40 years ago turne·d ot;t to lwvery generaf and h'uitfult~1ethod 
in the Lie group theory and in its physical applications. This approach 
may be indee'cl considered as forining a foundation for elaboration of the 
general finite syn'uiletry (geometrical, dynamical and qua11tuin) transfor­
mation technique for using in the theqry of ele\nentary particles and their 
interactions. ' . 

> The work is sup1~orted by Bel~russian Republican Foundation for Ad­
vanced Studies. 
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TWO-GAUGE VERTEX FUN€TION IN METHOD 
OF FUNCTIONAL INTEGRATION 

A. Fursin, 
GSTU, Belarus 

AbstraCt 

. Gauge invariation exactly dictates a kind of interaction between 
fundamental fields. Special attention must be attaclwd to the de­
velopment of methods of the gauge field theory. In the article pre­
sented, with the help of mathematical apparatus of fui1ctional in­
tegration, the. gauge equation for Lagrangians has been obtained 
which are invariant towards local transformation of groups U ( 1), 

· SU(2), SU(3). With the help of generating functionals, calculated 
in the raw according to perturbation theory, these E;_quations are 
checked in bottom orders. 

',•• 

Pointing independence of Lagrangian L towards gauge transformations, 
generating functional.will be infinite. To obtain the final value, it is nec­
essary to fix qauge quotient. As the result, functional integral will not lw 
taken according to fields, connected with each other by gauge transforma­
tions. Strict mathematical description of this evidence, quotes in case of 
non-abelian fields to coming out·ofnon-physical fields of Facldeev-Popov. 
The above mentioned words can be considered as, at some extend, mathe-
.· t·. ', \.,·.' '. . 

matical trick, and by choosing of specific gauge calibration their contribu-
tfon can b~ eliminated . Such gauges exist. for example, axial, determi1ied 
by relation 

t1
' A~ = :3DO, t1'tJ1. = :3D - 1. ( 1) 

1. U(l)-symmetry. Quantum Electrodynamics. 
The gauge equation for 1-photon vertex function was considered in [1-2]. 

For the case of non-abelian group, this consideration was generaJizecl in [:3-
4]. The equation for 2-photori function f~llo\vs from the gauge invariation 
of quantum electrodynamics (QED) .. This prin.c_ipleres,ults in equation [5]: 

• • • ' • ' T • ' 

Jr . .. h'r ·. ·... ; '~ ' ~ of' . . . . . 
8Jl. '·4. (··).+ ier:;-(· ?j!(x) + ie~(x) C(. ) ::;;,= 3DO. u. J1. .1. . o 'f) .r) o if; x 

(2) 
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Executing tlw third funqional dc•rivatin' of the equation (2) ·accordiiig to 
fiPicls .-lw ~- t' and 111ake an C'<JUal to~= :HJv = :JD.-\1, =:}DO. we obtain 
in th= e momf'ntnm representation 

• I"' . )2 ~•-1 , 
Q (p. 0. 0: p) = :3Dr :::; (p) 

;)pJ1.8p, . (:3) 

This equation is ciC't ermi1wd fm· ·~-photou vert ex. ftinction. Dec om posing 
generating fuuctiomd iu the ra\\'. \\'<' haH' to check this formula in the t\\'o 
bottom orders. \\'c· have 

Q'"' (p. 0. 0. p) = :3DO. (4) 

As the opposite t>IC'ctron propagator S'-1 (p) = :3D')1,p1' - m = in bottoi1i 
order 

(J2S'-
1
(Jl) = :3DO. 

. iJpl,i)p,, 
(;'>) 

In the nPxt orclC'r the investment in Q1"'(p, 0, O;p) ·and after all trans­
formations gives only onc• diagram of generating functional 

Q(2}itv (p. 0. 0, ]J) ~ 

= :3Die2 j ,-'.S'(p- k)-y 11S'(p- k)-y"S(p- khwS(p- k)D.,w(k)dk (6) 

+it-2 j 1-',c,·(p- kh''S'(p- kh''S(p- /..·hw S'(p- k)D.,w(J..~)dJ..~. 

As the opposite electron propagator in the second order of m(n}wntu'i-il 
representation has t lw form 

.5'(2)-l(p) = :JDie2 J !''S'(p- k)-ywD,\w(k)d/..\ (i) 

we obtain the coincidence in the formula of right-hand and left-hand sides 
in the secoml order. 

2. Non-abelian gauge fields. SU(2)-symmetry. Spinor case. 

Let spinor q• is the dublet of group SU(2), then the law of its transfqr-
mat ion 

. 1 ('~--\) ~·----+ l/• = :3Dctp t2,Tl 4'•, (8) 

where f- Pauli-matrix.:\- arbiirary r<'al functions. 

23 



_Let's impose the consideration of gauge independence liJJOll the gener­
ating functional 

oZ = :JDO. (9) 

The unknown lwforf' equation has the form 

ot - 1 ot ___ x .-l,,(.r) + -iY'-_--,-__ 
J.41,(.r) 9 bN'(;r) 

1 _ at. _ ( l - l _ at 
-:-1(-, -Tl!-' ;r + '!f•(;r r--==;=--) = 3DO. 

2 a1p(;r) 011•(x) 

(10) 

Executing tlw second functional derivativ<> of the last f'quation according 
t~ fields /F(.rt). d.lfd putting do\\'n l- = :~Dv = :3D.{, = :~DO. :\s t lw 
result we will have in thf' mornf'ntum represf'ntation . 

f,,(p,O,p) =:3D- ~8.~'-1(p) ~ 
2 fJpl' . ( 11) 

\Ve will obtain gaugf' f'quation for double-fermions vertex function. Ex­
ecuting functional dPri vati ve ( 10) according to fields /F, lj•, A11 and con:;ider 
them equal to zero. We have 

Q-"b( .. _ . 1 . aF.C.'-1(·) 
;w ]J, 0, 0, p) = ;JD-a"b - p 

4 fJpl'op" · 
(12) 

As the bottom order the quantity Q~~/(p. 0. 0; p) is zero, We have also zero 
value. in the right part (12), because s- 1 = :3D! 11 ]Jil- m. 

3. Non-abelian gauge case. SU(2) - symmetry. Vector case. 

Let field "¢ has three components ;{; = 3D( ¢1, <h, ¢3 ) and has the fol­
lowing law of transportation 

;(;--+ ¢;' = :3De(ilXlj;, (13) 

where I - matrix generators ( ldmn = :3D - iEimn· Imposing condition of 
gauge indepe1'tdence (9) upon the generating fundiorial \ve will have the 
following equation ~ ·--

at - 1 at at -
r --- X A;,(x) +-all rA ( ) +---X ¢(x) = 3DO. 
oA!l(x) g. 0 ll X. a¢(x)' 

(14) 
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Executing the :;econd functional derivative of the last equality in the mo­
mentum representation we will have 

ac.·-1( l r-,d."(: 0. )·-'3D' edn ':-- P 
;t p, . p - . l( ;:} 

upll 
(15) 

Wf' will obtain gauge equation for· two-bozone vertex function. As the 
result we have 

c~'l"Q- td.nf(.Jl 0 o: JJ) ;, 3D~(~bea(bdf + Eb~f id")as-1(p) (16) 
I . I'" . . ' , 2 OpllfJp" . 

For pi·oving of this · equatiori'let's-riiake calculation of quantity 

Q-ed,af(JJ 0 O·JJ) in the bottom order· . . 
JlV ' "" , • 

Q;,i·"f(p,O,O;p) = 3Dall,(iea£bdf +ieff.bda). (17) 

The second derivative s-1 = 3Dp2 ~ m 2 ,has the value 2all"' what proves 
the gauge equation in the bottom order. 

4. Non-abelian case. SU(3)-symmetry. ;G~uge equation:,fpr 
tw~-gluon function. 

Let field qi (x) has the following law of transformation 
• I . • • . • ' ' , ' 

qflq' = 3De(-igtahalq, (18) 

where t"- Gel-Mann mat~:ix, Aa- a;bitrary real functio~s. Let's impose 
the corisidera.tion of gauge independence up~n the g~n~rating full~tipnai. 
Futher transformations bring into the following equation 

1· 1'f~(p, 1·;p + r) = 3Dt"(G-1(p + r)- C;-1(p)). (19). 

Let r to the zero we obtain 

r-"( 0 ) 3D aac-1(p) 
I' p, 'p = , t £l • upll 

(20) 

We will obtain the gauge equation for two-gluon function, executing 
functional derivative and consider them equal to zero. We have in the 

- momentum representation 

Q
-ad( 18Q-l() 

1
w p, 0, 0; p) =3D- p [t" td] 

2 8pll8p" • +·· (21) 
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5.Conclusion 

Let generators lvJU determine some rep1~esentation of group U( 1 ), SU(2) 
and SU(3). Then, the above obtained gauge equations can be generalized: 

f'a(p 0 p) =:3D- J,Ja a.~·-I(p) 
It , , apli , {22) 

' a b • 1 a2 .5' -l ( P) [ . . a . b 
Q..,(p, o, o; p) =:3D-:; a. a M iVI l+· ' ~ pt-t }Jll . (2:3) 

The gauge. equation obtained in the presented article; can be used in 
the overnorm~lized theory. The method described in this article presents 
interest in finding gauge equations for connected states, because only in 
.~onnected states. the gauge equation theories run into-essential difficulties. 
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Abstract 

We investigate two wide classes quantum field models with non-compact 
group symmetry: Yang-Mills theories with non-compact semi-simple groups 
symmetries and noil-coinpact sigma model. We show that quantization of 
this models are self-consistent and describe by unitary physical S-matrix. 
The conditions of absence of chiral anomalies in both types of models are 
considered. General principles of correct quantization realistic quantum 
field theries with indefinite metrics are stated. · 

1 Introduction 

Recently the non-compact groups of the internal symmetry very ofte~ appear 
in different models of quantum field theory. We enumerate papers on nonlin­
ear non-compact sigma models 1

, gauge theories including gravitation2 ,Grand 
Unification Theory 3

, superstrings 4and others.However, the use of the non­
compact groups in particle physics generates some difficulties. In particular 
if the unitary representation of such groups which are infinite dimentional are 
used, a general principle of separation from such representations the finite di­
mentional subspaces with physical content is necessary.lf the finite-dimensional 
(non-unitary) representations are used, an indefinite metric appears in theqtian­
tum· state space'of the corresponding theory, providing a positive hamiltonian 
definiteness and as a consequence there is a possibility of the appearance of the 
negative probabilities cind S-riu\trix nonu~itary .. There. are 'two methods of the, 
obtaining the self-consistenint quantum theories in the spac~s with the indefi~' 
nite metrics. The first one is to eliminate this metric:S in the physical space states 

- the appropriate condition on the state vectors. Such a method is good enough 
for a relativistic invariant formulation of the non-abelian Yang-Mills field with. 
compact group in the procedure of the BRST-quantization5 , the theory of the 
bosonic strings and superstrings6 , other quantum field theories . However, it 
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seems that this method isn't suitable for many theories with non-compact group 
of the symmetries. In particular it is impossible to formulate a self-consistent 
Yang-Mills quantum theory with non-compact group without the negative norm 

·and it was already shown for the."minimum" non-abelian non-compact group 
. SL (2;C} in Ref. 7: ·The same is in the non-~ompact sigma inooels: the quan­
tization in the space with definite norm is incorreCt8 • In. the present report, we 
show that two wide classes of the q~antum theories with non~compact groups 
of the internal symmetry: Yang-Mills field with non-compact semi-simple group 
and non-compact sigma model are correct quantized with using space with in­
definite metric. We give sufficient condition to garantee .that the quantum field 
model with indefinite metric had correct quantization. . . . ' . . 

2 Spaces of states with indefinite metric. 

2.1 Operationals decompositions in the space 
indefinite metric. 

with 

Let us consider space with non-degenerated indefinite metr1c ( . , ) and fixed 
decompos~t_ion 

H = n+ mH--: (2.1) 

·We ,excl~de degenerated states I v) with property (H I v) = O.We shall term 
such spaces in the further as the Krein spaces according to used terminology9• 

Then following propositions about H take place10•11
. • .. 

Proposition!. Let A[H] is an algebra of operators. on the.H. Then there is 
unique decomposition for any ope~ato~x E A[H] : x.=.; + v where oper!J.tor 
.; preserves Hilbert sectors n+; H- i.e. X :. n+ :-+ n+ 'n- . :-+ H-:. and 
v '~i.Xes 'theirs v : H+ ~ H"-, H.:. -~. n+ .So we have 'decompositio~ A[H] 
in the direct sum · · ·· · · ·. ·· · · 

·• ; . , .(1[HJ=Ao[H] ~ fli({i],, . : , .. ·. .. , . ·. 1 . • (2,2), 
where A0(H]is ah operator algebra, presrerving H+,H.- and A1(HJ is 

the subspa~e mixing'theirs. . .. · . "'" ·. ·. . ' . :·.. .: : : ' ... 
~:Let'~ andv be a diagonal and'c~oss~diagonal'part 'of the operator X respec-

tively:' ··· .. · · · . · · · .·· •. · .· ~····· . , .·• ·. . · · : · . ·.· 
·,Evidently that.; can be considered as an operator in Hilbertspaces n+ ,H­

but only' with different 'sign of metrics. In order there 'not be any confusion, we 
shalf use notations of the hermitian conj~gation and heriniticity of the operator 
, '.w~ich are similarly used in the sign~defined rrietrics. · .. It ·is s~~ted in Ref4 
the. correspondence of suCh a terminology with· case of the mathematical Krein 
spaces~ ' . . ' ' ' ' '' " ' 

'' ,.\ 
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Proposition. 2. Let (2.2) be a canonical development of the operator x in 
the Krein space H with the indefinite metrics. Then if xis hermitian (cross­
hermitian) then the operators .; and v are the same. 

2.2 Observables in the space Of states with indefinite met-
ric. 

,. 

However not all operators in the space with indefinite metrics may be considered 
as observables. . In particular for the operators of the type A1 [H) , i.e. the 
operators which coincide with their cross-diagonal part,: it is true the following. 

Proposition 3.. Average· value of the any ·v E A1(H] hermitian (cross­
hermitian) operator for any eigenstate is zero .. 

If we suppose a. existence of the full. system ·of mutally ·orthogonal· eigen 
states for any physical interesting operator:.from A[H], .then one cat). obtain 
immediately· ;, .. · · · :: 

Proposition 3* .. Average value of·the· any v E A1(H] hermitian (cross­
hermitian) operator for any state e E His zero, Le.(0·1 vI e).· .. 

Such operators x E A[H] with non-zero v can not be observables. That is 
why it is important to consider only ,operators of the diagonal type as observ7 

abies. Each operator of such a:typ'e is1reciticed to two operators on the Hilberl 
spaces wich sign-defined norm respectivelY: Th,e. <:Jp,erator of a su~; type ob­
viously has a spe(:trum which is a unification' of its spectra on n+' n-, and 
obviously it is the Sa.Ille system of;eige~:~tates. It .is necessary ~o .note that 
canonical Krein symmetry 'j on H ha.S tlie following properties:' Jn+ = 1, 
Jn- == -1 (Ref.9]i commtitates with algebra"Ao(HJ and ruiticommutat~s with 
space A1 [H] . Consequently, if H is the quantum s1;ate space of some physical 
system then can9nical Krein symmetry J commutates with arbitrary observable 
and vice versa : the' ~bservable in H is described by the operators:; .which .com­
mutes With the canonical Krein symmetry J< Therefore, ~e have the following 

Statezrient : ·Jet we have physical system' witli 'Lagrangian L generating sp~ 
of states with indefinite metric . H = H+ .ffi H'";" in the .secondary7qmi.ritized 
theory. And theory has a discrete symmetry D which induced canonical Krein 
operator J on H. , . · . . . . . . . , . 

· '· ·. '·Then n· is defined the superselection rule for the given theory. 
. ' 

2~3 Cluster property.' 
.~ .·! 

Let us consider the problem on cluster property in the considered theocy. The 
property of cluster decomposition may be formulated, for example, in the fol­
lowing way: 

(vac I C(x)B(y) I vac) -:-t · (vac I C(x) I vac}(vac I B(y) I vac) .. ::(2.3) 
Z-1/--+00 . 

where C(x}, B(y) are two local operators. Equation (2:3) is valid for the 
operators A0(H], at least, for then+ sector. In particular it iS tr'Ue when (C(x), 
B(y)) E A0 [H+J is the cluster property, it is ~qual to vacuum unique existence 
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according to proposition 7.1 ofRef.12. Taking into account the above mentioned 
it is evident that if the C(x), B(y) arethe operators belong to A(H), then (2.3} 
will not be fulfilled as it is generally impossible "to divide" the A(x)B(y) product 
into two operators. If they belong to At (H) (e.g.), then the left part of (2.3} 
can and can not be equal to zero, at the same time the right part, in this case,is 
always equal to zero. It means in the discussed theory that it is impossible to 
select a partical state with the opposite (here negative) sign of the norm from 
the multipartical state. Actually it can be treated in this theory as the presence 
of the property of confinement. Note also that while considering the cluster 
property we imply imlicitly or explicitly that the state space is Hilbert space 
with a sign-defined metric but it is not pseudo-Hilbert space as otherwise a 
zero norm may appear in the intermediate states . But of course, it is realised, 
if in the space with indefinite metric the cluster property may be implied in 
the projection on the superselected sectors.Naturally the above mentioned is 
not final conclusion and a further analysis is neccessary as the given problem 
appears in <my theory of supergravitation in which a scalar sector is described 
as a non-compact sigma model. 

3. Yang-Mills quantum fields with non-compact 
semi-simple group. 

3.1 D-symmetry of the Quantum Lagrangian 

The effective quantum Lagrangian of the Yang-Mills field with non-compact 
' ' 1\ 
semi-simple group G has the form 

" L8 = 1JAB (!Ftvpv,B +i8~'cA(DI'c)8 +81'BA A~ -TBAB8
) (3.1) 

where cA, c8 aie ghost (antighost) fields respectively, the multiplet of Nakanishi­
Lautrupfields BA appears as in Ref.13 and two last terms in (3.1} fix gauge; 

1\ 
the Killing metric 1JAB of the group G is negative on some maximal compact 
subalgebra g c g and positively defined on the orthogonal complement 91. to g 

1\ 
: g = g + gl. ,where g is algebra Lie of G and g is on some maximal compact 

' . . 1\ 

subgroup G C G. 
The Cartan involution D on g ,retaining g and being a reflection on gl. may 

be extended to the fields cA, c8 , EM, A{: 

D(rA) = -1]AnT8 (3.2} 
where T is any of the above mentioned fields. 
Taking into account the commutatition relations on g 

[g,g] <; g, (g,gl.] <; gl., [gl.,gl.] <; g (3.3} 
one ·cari see that D acts self-corisistenly_ on F J'V 

D(Ftv) = - 1/AnF(/v (3.4} 
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and hence retains Lg Thus·, D is the'discrete symmetry of Lagrangian 
11 •14 • As is known such Lagrangian has BRST. symmetry5 , its transformations 
have the form 

OA:(x) = ..\(D11c(x))A 

dcA(x) = -~f~ccu(x)cC(x) . 

acA(x} = i>.BA(x) 

aBA(x) = 0 

(3.5A) 

(3.5B} 

(3.5C} 

(3.5D) 

here Jtrc are structural constant g, .>.is the Grassmanian parameter.Obvjously 
the operator D commutes with BRST charge Q n : 

· [D,Qn] = 0 · (3.6} 
Actually the formula (3.6} is a direct consequence of (3.5). 

3.2 Quantization. Superselection rule. 

The reali:r.ation of the quanti:r.ation procedure on the basis (3~1) differs ·from 
the compact case only by the use of the additional sign-indefinite. multiplier 
1JAB .In partieular,the total space of the asymptotiC states Y has the'additional 
indefiniteness which is coimected to 1JAB· If H c Y is a subspace, generated by 
the transverse modes of the gauge fields, then H · has nondegenerated indefinite 
metric and H is a direct sum of H+ and H- · . · 

H = H+ ID H- (3.7} 
where H+is generated by the arbitrary number of operators of the asymp:; 

totic fields a,x(k}(a.\• (k')) with TJuu ;:::: -1 and their even numbers y;ith 1JBB =:1; 
the definition of ]j- is characteri:r.ed by the s.ame assumption but one can con~ 
sider also the odd numbers of operators with.TJnn = 1 . Here.>.',.>. = 1,2 
characterizes the p~larization value and operat~r commutators have the form 

[af (k), a f.'+ (k')) = -1]110' d.\.\• dkk• (3.8} 

Defining Yphys by the standard way: 
Yphys ={I v >E Y: Qn I v >= 0 or KerQ} (3.9} 
we obtain that D retains Yph 11.,according to (3.6}, it also.retains H ·by the 

definitioil,,?flJ a_~d ::fl}::;}(phys so ~hat.Q u;has .tlw:formr , -:,•..,- · ·:; :, " .. 

Qn = iTJAil J cfJk(bA+(k)cB(k)- cA+(k)b8 (k}) (3.10} 

In (3.10) bA+(k)(bn(k}) and cA+(k}(cn(k}) are operators of the creation 
and annihilation fields B,c respectively. One can state that Yphys = H ED Y 0 , 

where Y 0 is the degenerated state subspace Ypl•y•· It is clear that Y 0 retains 
D arid cannot be mixed with states H, lying on the zero cone 11.0 ={I w) E H: 
(w I w) = 0} by virtue of nondegeneration of the latter. That is why S-matrix 
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following from (3.1) retains V0 , commutates y;ith D and therefore we can define 
Sphys as • 

Sphys = p+ SP - (3.11) 
where P =Puis a projector. As Du+ = 1, Du- = -1, [D,Sph 11a] = 0 
Immediately we obtain that 

Sphys(H+)-=:;;_ H+, Sphys(ii-) = H­
SphysS:hys = s;h11.Sphys ·= (1u+, 1u-) 

(3.12B) follows from (3.12A) and (pseudo)unitarity Son V, Vphys· 

(3.12A) 
(3.12B) 

Thus the quantum gauge theory,which is based on (3.1), is physically ac­
ceptable and D is an operator defining the superselection rule in this theory, 
according to last statement of the section 2. All S-matrix elements and their 
corresponding amplitudes of the transition probability don't depend on the se­
lection of the decomposition of .§into g and gl. ,as 7JAB is G-in variant: 

..;.... ~~ S ~T 2 - ~ - . • " . 
P{f,i;T - l~/ltii{TII - 11/IIIITII ~ Pf,T> for 'V<; E G _(3.13) 
It follows from (3.13) that in the theory there is no negative probability: 

Pf,T = 0, if If >EH+,I r >E H-. Note that unlike Refs.13,15 His n<?t the 
space with positively defined norm. In particular in Ref. 15, only such field 
components of A~" are considered to be physical (condition o) which commutate 
with Q 8 and have a positive norm. However,in the present case the-fulfilment 
of the last statement of this condition is not required,as in the theory there is 
'the superselection rule, defined by the operator of the discrete symmetry, .. 
... All considerations,meiltioned above,are true if Vphys is" narrowed" by the ad­
ditional conaition Qc 1 v >= o ,where qc is a charge of the ghost transformations13 • 

·. Actt1ally as [D,Qc] = 0 the whole qt!antiza~ion sheme does not change.ex­
cept 'only the "decrease" Vo at the expense .of the superselection by the zero 
quantum number of the ghosts. As ERST-transformations are multiplicatively 

renormalized, [D,Q[;n] = 0 ,where Q'j;n = (Z3 /Zn) 112Qn is a renormalized 

BRST- charge, Z3' and Zn are constants ofthe field renormalizatiori c and B 
respectively14 .That's why the described scheme of the· quantization is invariant 
to the renormalization procedure.The constructed S-matrix is gauge-invariant 
i.e. it doesn't depend on the selection of·gauge: in ·(1) we used 

D.-invariant gauge explicitely. But if the theory is constructed with_the fixed 
gauge term, which isn't retained by D,then using the results16 we cometo the 
same S Pphys . The corresponding quantization seheme is· readily extended to 
the Lagrangian describing interactions of the gauge fields with matters fields of 
the spinor or scalar type. We note only that correspondent representation p of 
the group G under contraction on the maximal compact subgroup necessarily 
must be reducible 

~\,.;\ '·;>~~ ~·. .• 

PG = PI$P2 
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3.3 Involution and Z2 -graduation. 

Let us note that the theory with the non-compact. g~uge 'group generates Z2-

graduation. Actually in g it is fixed by the selection g = g0, gl- '= g1 and 
commutative relations (3.3). In H we have H+ =: Ho; H- = H1 and a prod­
uct, being a tensor' product of the different states. In·. operator algebra A( H), 
A0 (H),;::: {a I a(H±) ~ H±}; AI(Hf=,;·{.B l.B(H±) ~ H=F}arid prOduct is the 
Lie bracket (section 2). D is the involution in each of these spaces. D is trans­
formed as D 1-';-+:D'Y. under the action of the group G,as g H g7 ,-fT.i.t--';--+ gl.7 , 

H ~ H"Y, A(H) H A(H)i- "for any ~lement 'Y E G so alt.physic&l exp~essions 
remain invariant, in particular (3.3). , . , , :. . . 

Note that in the discussed case the cohomologies H(Qn) = KerQnflmQn 
are different from the compact Yarig~Mills case13 and the relativistic stringCI, 
furthemore 'some are free of' states with the' negative norm,generatoo. by' the 
·Lorentz metricg~",... Actually as in our case'Q1:::::: 0; Q')j:::!: Qn, that'JmQ '=V0 , 

H(Q8 )''= H-is the space with nondegerierated indefinitemetric,generated only 
by 7]AB. . ' • 

3A Chiral' anomalies 
:··· 

L.AI vares-Gaume and EJ Witten showed ·17 that non-abelian· gauge thearies can 
give chiral anomalies only in the complex representations, therefore if G is non­
compact then in accordance with the .statement proved above all D-symmetric 
representations automatically haven't anomalies or G-invarianting and D-~metric 
Lagrangian haven't. chiral anomalies. ·Thus the condition of the. existence of· D­
symmetry· for ·the: non-compact: theories is a suffiCient condition for 'an'otrianes 
absence. However, this condition is not necessary:for•anomalies absence. In 
general we recrul that condition of the anomalies absence is: ' · · · · ' ' 

· '" • · "-'STr(Ta1 ··Ta"+1
)- ~STr(Ta1 ·''Ta•+I)·- 0 ', · .. LJ L···L'·· LJ R···R '":"'' 

, >: .•.. .. / . Tc. ; . ·,·: · . ,Tn :'A •· '-' · .,; · ,., 

where TL, Tn stands for the.representationsofG left (right-} handed fermions 
and STr means the symmetrized trace over group generators_ involved, 2n is the 
dimension of the space-time 18 • It is known that .the whole ,thing .comes down 
to computation of tr(r)Fii for the arbitrary generator F of Lie algeb~a ¢ill' the 
representation' r ::if tr(;.)Fii = 0 then representation r is free-anoffialies: ·· ' ' 

For the odd'fi there is a correct anaiysis, which comes to this sitUa.tion to 
the compactification of G.' Namely let G he the "compactification" of G m 
the representation r i.e. generators of G are divided into two parts· { K, S}, 
where K are Hermitian (compact} and S are skew-Hermitian, Then the map 
{ K, S}-:--+{ K, iS} lis a 'compactification of G; because it reflectS no~:.COiripact 
Lie algebra' g ofG into compact Lie 'a.igeb~a g of the cOmpact group ·G. Let. r be 
the corresponding r of representation of g .. Then if ..fis real or pseudorea.i ~d 
dimr = 2k+ 1, then ris anomaly-free; because tr(i')F2"'+1 :::: 0 for any'generator 

F of g, but th~n, tr(r)-FHI = Ofor'ariyF,,E g and ris anomaly~f!ee_too. In 
particular, for non~compil.ct simple·groups we can easily identify which groups 
.W:d whiCh represimtations ~e automatically safe' iii 4k dimensi~ns1 redUcing 
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this question to a compact case. We have the following safe groups: 
l}SO(p,q)(p +q = 2k +1} 
2}SO(p,q)(p + q = 4k} 
3}Sp(p,q)(far all p,q) 
4) non-compact forms of exeptional groups G2,F4,~,E8. 
For the groups of SU(p,q} types addition:U computations are necessary. 

4 · Quantum non-compact sigma models. 

4.1 Introduction 

The non-compact a models, investigated by many authors 1 •19 , describe a scalar 
sector ofsupergravitation 20

, and in particularly N = 8 supergravitation, a 
candidate for. the unification of all interactions. 21 • Besides within the scope of 
the a model (compact or not}, the dynamic creation of the composite gauge 
boson 22 ' appearing during the procedure of compactification in the theory of 
superstrings4 •6 , is described. . 

At the same time the quantum description of the non-compact a models 
contain. such problems as the construction of the unitary S-matrix, the treat­
ment of the spontaneous symmetry breakdown, etc. In ref.8 it was shown that 

·the non-compact a model can be correctly quantized only in the case of a state 
space with indefinite metric. The quantization in the sign-defined Fock space23 

leads to contributions breaking the unitarity of the multiloop amplitudes. In 
ref.24 the non-compact two-dimensional a model was quantized in the positively 
defined state space, containing an even number of states .with negative norm. 
However, one has also analogous problems in this case. 

In the present section we will show that . a superselection rule is present in 
the non-compact a model . It has an algebraic origin and it is generated by the 
Cartan involution of a Lee algebra fJ of the non-compact group G. We consider 
also the spontaneous breakdown of a non-compact symmetry11 •25 • 

4.2 · Superselection rule. 

Let us consider the case G = O(N, 1) without loss of generality. The general case 
and in particular G = SU(N,I) (CPN+Imodel) does not.differ.substantially 
from it. It is known that hamiltonian of the non-compact O(N, 1) a model has 
the form· · · 

li= HC8oll)2 + (8;IT)2
- (8oa}2

- (8w)2 +A(ll2 -a2 +Vol (4.1) 
where IT= (IT1 , ••• ,ITJV) is a field multiplet. (IT,a) is transformed by the 

fundamental representation of the group O(N, 1), · 
N N. 

(Boll?= 2:(8olln)2
, ll2 =.I:IT! -

n=l n=l ~ 

/ois the coupling constant of the model, A is the lagrangian multiplier. The 
presence of the negative square of the field a in (4.1) leads to the state space 
with indefinite metric · . 
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. H::::, H+fiJH.c.. . .. .. .. . , ". (4:2} . 
where H+, H- are Hilbe'rt subsillices, cmitainingim 'even and an odd~umber 

of the crekltion operators ofthe fit!lda, respeCti~ely, and an arbitrary numb'e~ of 
all other fields. The states 'are generated by the positiv~ly defined Y.U:uuni ., 0}: 
The representation 

(IT, a) is decomposed on the restriction G to·the maximal compact subgroup 
G = O(N) into the sum of two J~reduciblerepr~se!ltations {IT} and{~}. Let 
us consider'the Cartan involution of the Lee algebra§= O(N, 1); In the matrix 
form this involution is defined by the matrix . . . . . 

. . . ' . . . . 

D·= ( liV 0 .) 0 -1 . . (4.3) 

The generators QA of the Lee algebra fJ obey. the following transformation 
law: 

D(QA) = -TJ~nQn ' . (4.4) 
where 1/AU is the Killing (sign-variable) metric. The 1/An' is negative on the 

maximal compact subalgebra.g c fJ and positively defined on the orthogonal 
complement gl.to g : fJ = g ID gl.. The Cartan involution D on fJ may be 
extended to the fields (IT, a). In the representations (IT, a) we have 

'( n) ( n ) . D: a. ~---:'-+ -a · (4.5) 

The considerations are the following. In the.quantum field theory the gen­
erators of the discussed non-compact group are constructed from (TI, a) .fields. 
This conclusion is a direct consequence of the·Noether theorem. The transfor­
mation laws (4.4), (4.5) are in accordance with this co~struction. Let. us note 
that it is possible, or course, to postulate · 

( 4.5 ) and then to connect it with the Cartan involution of the generators. 
Note that the analogous D-a<."tion is induced in the Z2-graduation operator 
algebra A(H) = A0 (H) ID A 1 (H), how ;in the Yang-Mills non-compact case 
(subseCtion 3.3) . · ' . .. 

D(v)=(...:.1)iv;',. '(4.6) · 
'where v E A(H), and V; are graduated components of the v. The,unique 

choice of transformation law· ( 4.5} can be. guaranteed· by the above merttioned 
algebraic considerations (eq. (4.6)]. The hamiltonian hand the S-matrix are 
invariant under the action of D. Obviously, D generates the canonical Krein· 
operator J.in Hand therefore it is superselection rule in the theory according or' 
the results :or theisection 2. Such one can choose observables only from A0 (H) .· 
, which is also D-invariant. The calculations performed in Refs .. 22;24 give 
us the :independent proof of this statement.: In Ref.24, the S-matrix unitarity 
in H+ was proved in the two-dimensional case within the scope of the 1/N' 
decomposition. It is similarly· proved also for H-. Let us note that it is not : 
necessary to proje<."t H ont~ the positive norm (physical) subsector H+~ ·•<;; 

The full Krein space . H = H+. ID H- one can consider as a physical space. 
This conclusion is based on the fact that the transitions between· subsectors 
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H+ and H-are forbidden by the above stated superselection rule. That is why 
negative probabilities are absent in the theory. The presence in the theory of 
the two sectors H+' H- can be interpreted as the existence of states in the 
theory with multiplicative quantum number with values± 1. 

4.3 Spontaneous non-compact symmetry breakdown 

The mechanism of spontaneous symmetry .break-down has some peculiar fea­
tures in the theory under discussion. They are the, following: 

( I ) The state space is the space H with indefinite metric. The vacuum 
state 1 o > in the subsector H+. 

(2) The generators of the compact part QA E O(N) do not mix the sectors 
H+ and H- i.e. belong to Ao(H), and the generators of the non-compact part 
Q8 E gj_ mix H+and H-, i.e. belong to At(H). 

The Goldstone theorem has therefore the following form: 
(a) If the non-compact symmetry is spontaneously broken only by the gener­

ators of the compact part [QA I 0 >=I- 0; QA E O(N) ], the Goldstone particles 
appear only in H+. . .. 

(b) If the non-compact symmetry is spontaneously broken only by the gener­
ators of the non-compact part [Q8 I 0 >=I- 0, Q8 E gj_J the Goldstone particles 
appear only in H-. · 1 

(c) In the case of non-compact symmetry breakdown by g and gj_ simulta-
neously, the Goldstone particles appear with both norm signs. · 

It is necessary to note that case (a) actually is not realized, as its realization 
contradicts the commutative relations in the Lee algebra g : (gj_, 91_ J c g . 

Two stationary pointswere obtained in Ref.8 within the scope of the IIN 
decomposition for ( 4.1 ) , 

u
2 

_ d-2 ( 1 1 ) II _ ' _ 0 
. N+l - 1-£ 2/ - 2/c ' - " - (4.7A) 

. ( )~d 
u = II = 0, ~ = 1 - 'f- · (4.7B) 

at I If > I I fc, and one stationary point, 
n• _ d-2 ( 1 1 ) (4 7C) 

N+l - -~-£ 2/ - 'iTe · 
Here 1-£ is the renormalization point, f is the renormalized coupling constant, 

fc is the critical coupling constant, d is the space-time dimension. It is supposed 
that the symmetry breakdown occurs in such a way that < 0 I u2 I 0 > > 0. 
But the. hermitian operator u E A1 (H) has a spectrum in iR U {0}. That is 
why it is reasonable to consider the case < 0 I u?.l 0 > < 0. But if, in the case 
of symmetry breakdown; the averages of the operators remain the continuous 
functions in the topology of the "initial" space H, then< 0 I u2 I 0 > cannot be 
more than 0. Then the points (4.7A), (4.7C) correspond to the case 11/ <life 
i.e., spontaneous symmetry breakdown, and in the case (4.7A).tlie symmetry is 
broken up to the maximal compact subgroup O(N) (case (b) of the Goldstone 
theorem], but up to the non-compact group O(N -1,1) in the'case (4.7C)8 • It 

36 

is necessary to note that then in the case (4.7A) the Green function will not 
have the tachyonic poles in the euclidean momentum, 

detG-t = N+l p2 J dd 1 - !u2 
8 {27iT'l" ~ 4 0 (4.8) 

because u6 < 0 (uo is the non-zero vacuum expectation u]. 

4.4 Chiral anomalies in non-compact sigma models. 

One of the most important problems in quantum exposition of sigmas -; models 
is also examination of anomalies and, in particular, .chiral of anomalies .. In 
a compact case this problemis well enough investigated}0·~~- -In the present 
operation the necessary requirements of absent anomalies in 'noncom pact sigmas 
- models are obtained which in a series of cases. are suffil!ient and, essentially, 
are based. on the fact presence of stiperselection rule. 

In GIH-sigma-model. the is supposed, that-H. and G.- Lie group; His 
subgroupG. In a reference case it is meant12 , that both they semi-simple and 
are compact. In our .,,. . 

case the first requirement (semisimplicity) is.maintained,.to the second re­
quirement (compactness) will be already to satisfy only group H, the group 
G .is .supposed semisimple and noncompact; · Moreover, ·.we shall suppose;. that 
H cG is maximum compact subgrbup G,.as alLexamples5..:.7 , originating in a 
high-energy physics,.are reduced to this ·case.·. . · · ·. 

Then,.as is known11 ~ 12 , GIH- symmetrical space, i.e. T.= (H;X)- the set 
of generators G. is·divided into a skew-Hermitian part {Hi} laying in H,.and 
Hermite,{Xa} belonging to some noncompact ac:ldition, concerning the.metric 
of the Killing: [H;,H;] = f/j H1., [H;;Xa] = ffa Xb; [Xa,Xb] =f!b Hi . · . 

.The systematic application. such G I H of spaces ( • with .compact .G) to low­
en~rgetical physics and algebra of currents ~as ad~ced i~ papers of Callan,Co~lmen, 
Wess and Zumino13 .' Let's mark alSo; that" it is models with the spontaneously 
broken symmetry, where H iJ;; subgroup, which preserves ~ouild State; i.e.goldstouns 
correspond to generators {X a}·' The anomalies illsigrrias .::models occiir at tl)C­
position of interaCtion of gauge fields with ch.ir3.! fermioriS. The ferniion fields of 
matter are transorrriated ·on· some representation p. of gfoup H, which; ~eneraily 
speaking, can be both nonreducible, and reduced. The relevant Lagrangian Lm 
looks like: · · . . < · ' · · ·. ' · ·. · · · ' 

Lm ;~h~·(a~> +~~>).P+-~: . · .,, . .. ·-··- '.(1),.'_ ·.::·· 
wh~re.Bp = 8~,. .• 'Y~>'are matrixesofthe Dirae, P~. ~ <.t~pl : 
1/J is correspondent fermion multiplet, wp is. the canonical connectedness cor-

respondent H. . · . , .. - . , 
Thus, as a gauge field the H.-canonical connectedness appears in .. case of 

sigma- model. Therefore examination of anomalies in this case in many, respects 
identically to study of a similar problem in the gauge theories. In particular, ail 
is reduced to an evaluation of a functional integr~ 
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e-r.u[w) = I e-fd2nzL~d'I/Jd;p 

"'·"' 
at transformation of a fermion effective action re!f[w] concerning global 

G-isometries: 

l(<p) ~ g l(<p) h-1(<p,g), w ~ h(w+ d) h-1 , f ~ hf (2) 
where -l(<p) is the local section of a principal H- bundle, g E G, h-1(<p,g) 

is compensating H-transformation. As the canonical connectedness wJJ is tran­
sormated as a H-gauge field relativity an action of G, the modification of an 
effective operation concerning infinitesimal G-transformations is given by the 
known formula for gauge anomalies . 

The build-up of a correct quantum theory for nonlinear sigma- model, which 
at a Lagrangian has terms of interaction with chiral fermions is reduced, essen­
tially to a solution of two basic problems: 

1) What groups H do not give anomalies? 
2) If the anomalies are present, in what cases are possible contrterms, cutting 

them? 
As in a case, considered in section, the group H- compact, then the answer to 

a problem 1) does not depend on ·a type of model (it is compact whether or not), 
i.e. list of anomalous- safe groups H for these two types same. In particular, 
on a role H the groups suit: SO(N).N =/= 6; SU(2); Sp(2N),N =/= 3 etc., the 
situation is completely identical with a usual compact case. But for a problem 2) 
there are distinctions. It is known , that the anomalies, if they are available, are 
possible to reduce by adding contrterm, depending from coordinates on'GIH, 

and for this purpose such is necessary to have representation p groupsG,'that 
piH = p . This representation pin a noncompact case impose on p essential 
restriction: the representation p of group H should be reduced. 

. Really, as. p is. finite-dime~sional and, therefore is nonunitary representa­
tion of noncom pact group G, correspondent contrterm generates in quantum 
description the indefinite metric~ And that the unitarity ·of the theory. was not 

broken, the restriction PI H = p should consist at leaSt of two representations 
generating states both with positive, and with negative signs of norms, which 
the superselection operator D, entered in8•9 , separates from each other. 

Besides the performance p of group H should not be compleXu (and it 
already for all types of models), for in this case it fails to regularizate the 
correspondent functional integral. 

In outcome we come to the following deduction: 
That noncom pact G I H - the sigma- model, where H - the maximum com­

pact subgroup of group G, had no of chiral anomalies, is necessary, that the 
relevant representation of a group H in space of fermions was reducible, real 
and rising up to group G, or the·group H was from the very beginning .... 
Thus, basic difference from a general case is reducibility of correspondent chiral 
represantation. 
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From here also follows, that the fundamental represent~tions ~t co~plex 
semisimple groups are unsuitable, as remain nonreducible at restriction on the 
material shape (therefore, on a maximum compa~t subgro~p). And on the con­
trary, well known examples non-anomalies of noncom pact sigmas­
modelsSO(p,q)fSO(p)x SO(q), 

SU(p, q)/SU(p) x SU(q) x U(1) are confirmation of outcome of operation, as 
the performances of maximum compact subgroups SO(p) x SO(q) and SU(p) x 
SU(q) x U(1) accordingly completely satisfy to all enumerated requirements. 
Thus, in case of non compact G I H-sigma-rriodel of pseudoorthogonal and pseu­
do unitary_ types the obtained criterion of absent chiral anomalies is sufficient. 
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NEW CRITERION OF THE INSTANTONS 
IDENTIFICATION IN DEEP INELASTIC 

SCATTERING 

V.Kuvshinov1 and R:Shulyakovsky2 
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Factorial, cumulant and Hq-rrioments in dependence on their rank q for 
the instanton-induced deep inelastic scattering (DIS) in the frameworks 
of QCD are calculated" and analysed. The obtained correlation moments 
behaviour has specific form, which can be considered as a new criterion of 
the QCD-instantons identification on experiment at HERA. 

1 Introduction 

As it.js known; such gauge theories as SM of electroweak interactions 
and QCD have degenerated vacuum· structure on' the ·Classical l{JVel [1 ]: 
potential energy is periodic with. respect to the Chern-Simons number 

. . :. ' 2 ' 

N : ~ g J d3 (Aa8 Aa + 9 abcAaA· bAc) _ (1) cs- l61r2 X€ijk .i j .k 3c i j k • 

Minimal energy (classical vacua) corresponds ·to integer Ncs· Neigh­
bouring vac~a _are_ separ~ted by a pot~11tial __ p~rrier qf.ne_ig~t -~sp (Fig.l). 

' ~·-· ~'··"·''- '.· ·~ .... ~ ,, .. , ' . ~. . . . . ~ 
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Fig. I. Schematic dependence of potential erjergy of gauge fields on Chern-Simons 
number Na. Gauge condition A0 = 0 is-use&' E,p is so-called sphaleron mass. 

Usual perturbative theory. (Feynrban rules) describes phenomena with 
Ncs = 0 only. Quaf!-t'!-Lm tunnelling transitions between neighbouring vacua 
can be described by- means of instantons, which are classical solutions of 
the Euclidean field equations with finite action [2]. Taking into account 
such tunnelling transitions leads to th~_baryon number violation in SM [3], 
which is connected with the problem 'or'matter -~nd antimatter asymmetry 
in the Universe [4]. In QCD instantoiis'leB:'d to tlie chirality violation, allow 
to solve U(l)-:problem [3], give contributio!l to, the confinement [5]. There­
fore, the experimental discovery of iristaritoris would' he of fundamental 
significance for particle physics. 

. It was suggested probability of the inst~ion transitions can increase 
in high energy collisions· [ 6). There is a possibility of the instanton-induced 
events identification in the electron:..proton DIS'at~HERA (DESY) [7].·mJ 
stanton induced DIS final states can be di~tinguished from ordinary (per-
turbative) ones through some features: ,, \ · 
- high multiplicity (the average number of partons ""' 10 [7]); 
- isotropic distribution of partons in the instahton rest system and presence, 
practically, of all light quarks (u, d, s) in each events [3]; · -~ L : • · ' 

- specific behaviour of gluon structure funCtions (8] and gluon correlation 
characteristics (9].' - - '" - · · ·l -

In our report additional "footprints" of QCD-instaritons (faetorial, cu:..' · 
mulant and Hq-moments) are studied. 
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2 Multiplicity distribution of the instanton­
induced final states 

In DIS instantons can appear in the quark-gluon subprocesses (Fig.2). The 
following usual designations are used: 

Q2 = -q2, 
Q2 

X= 2Pq' Ql2 = -q'2, I Qt2 
X= 

2pq'' 
(2) 

where transferred momentum square Q2 and Bjorken variable x describe 
total DIS process; Q12 and x' characterise the insanton subprocess. 

e----

111 

·L 

, . Fig.2.Jnstanton induced DIS (figure w~s.taken from,[lO]). 

· As it was mentioned above high parton multiplicity is one of the main 
characteristics of the instanton-induced events. The distribution on num­
bers of gluons in the instanton-ind~ced events is given by the expression: 

· .· 1 . 1 · ' ; r ·' ' • 
4 

·; : · : · ; . 2~ 

PJ9
> = CJtot n! I d!kl···d knlT(k_r, :··, kn)l , (3) 

where atot - total cross-section; T(k11 ••• , kn) is the amplitude of the pro­
duction of gluons with the energy-momentum 4-vectors. k1, ... , kn. It is 
calculated by. means of LSZ-technique applying to the Euclidean n-points 
Green function, which is given by the following Feynman path integral (in 
the quasiclassical approximation): 
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I DAe-s•[A]AT~~~ (xt).,.ArJ.I:n(xn). (4) 

where se[A] is QCD Euclidean action, Ar~'a(x)- instanton configuration (2]. 
In quasiclassical approximation Gauss integral (4)is known calculable ex­
pression. The integration is carried out on the gluon fields, which connect 
neighbour classical vacua. Factorisation in (4) leads to the Poisson distri~ 
bution on the final gluon number [8,_ 9]: 

pJg) = e-<n9> < ng >n 
n! , 

< ng >= 16:2 (1- x')2 
g x' , 0.5 < x' < L (5) 

The quarks production in the instanton processes is described by the 
well-known fixed multiplicity distribution (if we take into account z.ero. 
modes only [3]): 

P (q)- ~ 
n - U2n,,n, (6) 

where n1 is a number of massless quark flavours. We suggest that masses 
of u, d, s are equal to zero. 

Thus, if we take into account both gluons and quarks, then the following 
distribution is obtained: 

3 

Pn = e-<n9> < n9 >n-2n1 
(n-:-- 2n,)! 8(n- 2n1). (7) 

Calculation of the. correlation moments 
for the instanton DIS processes 

St:udy: of the _correlation moments is more useful sometimes than study of 
the multiplicity distribution [11]. Let us remino the well-known definition: 
of the normalised factorial moments: 

,,,.; 

~~- = <: >9 dq~~z) I .. ·'. 
z=l'' 

00 

Q(z) = L Pnzn, 
·'n=l 

OS z S L 
' : ' ' . "~ ,: 

(8) 

where < n; is theaver~ge -multiplicity, Q(z) - generating function. 
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In the case of the instanton-induced multiparticle production processes 
Q(z) and < n > have the following forms: 

00 

Q(z) = L e-<ng> < ng >n-2nt zn 
(n- 2nt)! = z2~te<n9 >[z-l] ' < n >=< n9 > +2nt-

n=2nt 
(9) 

The corresponding normalised factorial moments dependence on q is shown 
on the Fig.3. It is well-known, that normalised factorial moments for 
ordinary perturbative processes of the particle production increase with 
increasing q. Therefore the behaviour of the moments for the instanton­
induced processes can be used as a new instanton identification criterion. 

Also we can consider the normalised cumulant moments: 

Kq = 1 dqlnQ(z) I _ 
· < n >q dzq · z=l 

(10) 

It is not difficult to calculate Kq for the instanton distribution (10): 

K _ 2nt( -1)q- 1q!+ < n9 > Oql 
q- (< n

9 
> +2n1)q (11) 

It is more interesting to consider the instanton contribution to the ratio 
of the cumulant and factorial moments: 

Kq 
H--. 

q- Fq (12) 

These moments have. Uw following p~operties for the perturbative QCD: 
dec~easing oscillations, p~e~e~ce. of the negative correl~tions, there is the 
first minimum at q = 5 [11]. · · '' , .. ·' 

Unlike this, for the instanton distribution (7) Hq-moments have the 
first minimum at q = 2 (Fig.4), oscillations, which magnitude increases at 
large q numbers (Fig.5). . 

4 Conclusion 

The obtained dependences of the factorial~ cumulant and Hq-moments on 
their rank have specific forms. Therefore, the behaviour of the correlation 
moments can be used as a new signal of the QCD nonperturbative vacuum 
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phenomenon in addition to the well-known "footprints". Ofcourse, we 
need to take into account hadronization stage. Local parton.:.hadron du­
ality [12] allows to apply the obtained results for the experimental QCD-
instantons search. · 

We propose the following procedure for the experimental QCD instan-
toris search at HERA: . · · 
1) selection of the events with high multiplicity. For our approXima­
tions nhadrons 2: 12 (local parton-hadron duality gives number of the final 
hadrons nhadrons = 2npartons 2: 2nquarks = 4nt = 12}; 
2) analysis of the correlation moments for the selected events and compar­
ison with theoretical predictions. 
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Coherent atomic beam generator and its potential applications 

A. V. Soroko* 
National Centre of Pm·ti'cle and High Energy Physics, Belarusian State University; 

Bogdanovich Stnet 15.'1, Minsk 220040, Belarus · ·' · 

The concept. and properti~s of a coherent atomic beam generato~ are di~ .. , 
cussed. The techniques which are necessary to demonstrate ~he ato~ laser , ' 
based on the Raman cooling below th~ gravitational limit aie presented. 
Potential applications of the atom laser in the field of ato~ 'optics are also 
discussed. In particul~r. it is _shown that at ce~trun physical conditions 
the diffraction of an coherent atomic beam by the inhomogeneous laser 
field can be inte;.preted as if the' beam· pa5ses through a three-di~ensio~al · 
hologram.·· On thi's basis a new· ~etliod fo~ ~e'constn.ictiori of the object 
image with matter waves.is ~offered. The latter· may hiwe· useful pra~ti~· 
cal applications ranging from atom lithography to the nianufacturing'of 
microstructures, or quantum microfabrication. . . . 

03.75,Be, 42.50.Vk, 42.50.Ct., 03.75.Fi 

L. IN:rRODU,CTION 

A coherent atomic beam generator . (CAB) :or atom laser· is analogous to· an optical 
laser, but it emits matter waves instead of electromagnetic· waves.' Its output is ·a 
coherent matter wave, which means;· for instance; that·atom laser beams can interfere 
with each other. Compared to an ordinary-beam of atoms,•the beam of an atom laser 
is also extremely bright. Thus, the brightness and coherence are the essential features, 
which. pick out coherent atomic beam generators among other atomic sources. 

A number of theoretical atom laser schemes have already•been proposed [1-6],·and 
only one of them [1] is realized experimentally in MIT up to now. These schemes have 
involved some method of cooling atoms in an atomic cavity, and a coupling the atoms 
to the external atomic modes. So, the main parts of an atom laser include a cavity 
(resonator), an active medium, and an output coupler. For example, in>the MIT·atom 
laser, the resonator is a magnetic trap in which the atoms are confined by magnetic 
mirrors. The active medium is a thermal cloud of ultracold atoms, aJid ·the output 
coupler is an rf pulse which controls the reflectivity of the magnetic mirrors. 

In the reported models of CAB' the ground state of an atomic trap or cavity (the 
lasing mode) is filled with a large-number of atoms by ·using the·higher energy modes of 
the trap as a continuously pumped atomic source.· The coupling between higher energy 
modes and the laser mode.is achieved through cooling.- ·Different cooling'mechanisms 
sufficiently discriminate proposed schemes of the atom lasers.-- So',' in: the experiment 
[1], the. coupling is done by evaporative cooling,· where the evaporation process cre~tes 

_ a cloud which is not in thermal equilibrium and relaxes towards colder temperatures. 
This results in growth of the condensate, i.e., the lasing mode population. Conversely; 
in reference [2] the mechanism is dark state laser cooling, and atoms are transferred 
from the source to the lasing- mode irreversibly due to spontaneous emission~' In the 
scheme proposed by Spreeuw et al. [3] the cold atoms will· be dropped from the trap 
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onto a so-called atomic trampoline. consisting of a repulsive evanescent wave at a glass­
vacuum interface. In the turning point the atoms will be optically pumped into the other 
hyperfine ground state. The atoms accumulate in an optical cavity for matter waves, 
enhancing the transition probability for additional atoms by Bose statistics. Holland El 
al. [4] and Guzman et al. [5] use inelastic binary collisions to transfer atoms from the 
source mode to the lasing mode. In these approaches, two atoms collide to produce one 
atom in the lasing mode, and another in a higher energy mode. This process is made 
irreversible by using evaporative cooling to rapidly remove the higher energy atom from 
the system. Conceptually this methods are similar to that used in [1]. 

The number of atoms in the lasing mode depends on the pumping and loss rates. 
Above threshold the number of atoms in the lasing mode saturates. In a conventional 
laser, stimulated emission of photons causes the radiation field to build up in a single 
mode. In an atom laser, the presence of N atoms in the lasing mode; causes stimulated 
transition into that mode, i.e., enhances the probabilit.y that an atom will be scattered 
into the lasing mode by N + 1. 

This is required to have a reasonably well defined number of atoms in a single cavity . 
mode and hence a state that closely approximates a coherent state. The proposed meth-

. ods of output coupling to this state have involved either quantum mechanical tunneling 
[2] or periodically turning·off the cavity mirrors [5]. Tm'i1ing off the cavity mirrors, 
while effecti"ve for output coupling. will not provide a continuous beam. Therefore Moy 
et al. [6] have present an atom laser scheme using two atomic cavities - one for the 
source atoms and an effectively single mode cavity for the lasing mode. Higher modes 
of the lasing cavity cannot be reached as their energy is larger than that of the incoming 
atoms. Raman transitions are used to change the state of the atoms to a non-trapped 
state, to allow· the output coupling of the atoms from the lasing mode. 

There are many applications in fundamental research and industry where atomic 
beams are used, e.g., atomic clocks. atom optics, precision measurements of funda­
mental constants, tests of fundamental symmetries, atomic beam deposition for chip 
production (atom lithography), and, more generally. nanotechnology. The CAB may 
have an impact on all of these applications, if indeed will provide the necessary bright­
ness and coherence. But as a rule, the detrimental influence of the gravity effects is 
ignored in the schemes mentioned above, whereas only freely traveling matter waves 
can be sufficiently coherent. 

Two ways are envisioned to prepare a stable quantum state of matter in the gravita­
tional field: to bound particles or to suspend them free in an inhomogeneous magnetic 
field using Stern-Gerlach effect. In the first approach atoms are confined by a conser­
vative trapping potential which can be realized, e.g .. in a far-off-resonance or a dipole 
trap, where an intensity gradient provides a spatially dependent ac Stark shift. In n1o­
mentum space, up to now only the existence of an approximate dark state (DS), which 
in turn may be used as a lasing mode, has been demonstrated [7]. This state does not 
interact with the photons in the process of laser cooling and characterized by a decay 
rate in a special ID atomic and laser-field configuration much smaller than that of all 
other states in the trap. The finite lifetime of approximate DS evidently restricts the 
cooling possibilities in a trap, leaving the question about going below the gravitational 
limit to be clarified. However, .a scheme [8] which is based on the creation of a dark 
state in position space with the help of an appropriate spatial profile of the cooling 
laser, e.g., in a doughnut mode, seems to be much more efficient, allowing to cool a 
significant fraction of atoms to the ground state of the trapping potential. 
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Another approach may ))f' applied to atoms poss!'ssing a magn~tic m~me;{t. Superim­
posing a w<•akly inhomogeneous maguPtic field onto the path of pre-polarized particles 
and appropriately adjusting tlw liPid gradiPnt it is possib!P to compensate for the ef­
fpct.s of gravity for a definitP inlf'rual atomic state. However, the magnetic field induces 
spatially dependent shifts of tlw Z<><'JIIan l<'vels. which lead to unwanted residual excita­
tion from the DS in the framework of any traditional subreeoil cooli11g method. such as 
velocity selectivP coherent population trapping (VSCPT) [9] and Raman cooling [10]. 
l\loreover. in the case of \'S( 'PT t.lw dark state cannot be an eigenvector of the total 
Hamiltonian since only o1w of the inl<'rnal states forming the superposition which is not 
mupled to the laser field may eseap<' gra,;ity. Thus, both \'SCPT and Raman cooling 
nwchanisms in their standard form an• iummpatible with the last approach. 

To resolve this problem Wf' suggest a modification of. Raman cooling method [11], in 
which the ground-level atoms arP n•acle motionally free with the Stern-Gerlach effect 
and the DS is created and supportPd 'in momentum spacP of these atoms· with additional 
vPiocit.y-select.ive t.wo-photon transit ions. Tlw transitions couple _external momentum 
states of the same ground int•·rnal l•·,·d and ar<> organized in such a m·anner that. DS 
cyclically occupies different thin sf'ls of wlocity modes while. remai1iing unreachable for 
the Ramau excitat.ion-repumping pulsP sequ<>nces at. all times. 

In a bosonic system, wher<> tlw loss<.'s in DS population can be compensated by the 
quantum-statistical enhancenwnt of feeding rate. our cooling mechanism may be used 
as the basis for extensive CAB impkmentation. An easy tunable wavelength will be 
onP of the a.dvant.ag<'s of such a devin·. bPCCIIJse a:o< Wf' will see below the mom<'nt.um of 
a cooled atom is readily cl<'filwd by tlu• geonJPtry of laser lwains. 

In Sec. II we specify the maguf't ic li<·ld to compensate for the gravity dfects. In Sec. 
III a detailed qualitative trPatnwnl of th<> cooling mechanism i:; given. and nlJmerical 
simulatiou in olle dimension is pn•s•·ntPd. An application of the coherent atomic beams 
t.o the atom-optics holography [12) is demonstrated in Sec. IV. namely. the inhomoge­
neous laser radiation is shown to lwhave like a three-dimensional hologram with respect 
to the coherent matter wave. Section IV concludes with a summary of the results. 

II. COMPENSATION FOR GRAVITY 

Consider for ddiuiten<'ss an ato111 with a ./ = ~ to .! = ~ t ransit.ion, e.g., s~dium 
or cesium. The magnetic field D(r) applied to cOiilp<>nsatP t.iw gravity is supposed to 
contain a homogeneous component D0 dir<'cted along .th<' gravity acceleration Bo tt g. 
The remaining inhomogeneous part of t.he fi~ld BJ(r) = B(r) - Bo should be sma!I · 
rompm·<'d to this component.,. · 

IBdr)l « Bo = IBol·' (2.1) 

As we will see below, to fulfil. this condition it. i:< ;H'CPssary t~ t.ake Bo in t.h<' range 
103 + 104 G. In practice stwh a field is strong euough to .indut'P Z.ee1nan. shift~ which 
co'nsiderably exce<'d t.lie hypprfiJie :;plit..tiug int:ervals "' hwuFs · (biJt. not the multiplet 

- ones). Therefore an internal atomic !'igenst.ate IJ.I, M;, lllJ) may be well described 
using the set. of quaut.um munlwrs consisting of t.lw angular mom<'nt.a of t.he d{'ctronic 
shell .!" itlld t.he nucl<'us /, and tlwir local projeet.i01is M;. lliJ on t.he direction of the 
mag1let.ic field. . 
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In the framework of pert.urbat.iou theory. IJ. I. M J; 1111) represents a combination of 
eigenstates IJ. I, M;, m1 )I OJ related to the atomic Hamiltonian without the hyperfine 
interaction, 

IJ.J. M;. mi) = IJ.I .. \1;. IIIJ)(OJ + -. _a 
. 2Jin!JLBu 

x {[(J + .\1;)(.1- :\!; +'1)] 1 1~[(1 + 1111 + l)(J-mJ)J 1 '~ 

xiJ.I .. \!;- 1. m1 + 1)1°l 

-[(J + M; + l)(J- lvl; )]'1 2[(1 + m 1 )(I- m 1 + 1)]'12 

X IJ. I. M; + 1. 1llf- 1)10)}. (2.2) 

where a is the hyperfine coupling constant (a oc hwufs, e.g., for Na a/h = 885.8 MHz) 
and 9L denotes the Lande factor. The corresponding energy eigenvalue is determined 
not only by the multiplet level E; but. also by the magnetic field B(r) = IB(r)l and 
therefore is spatially dependent 

EtJ,I,M1 ,mi)(r) = E; + aM;m1 

+(JtB9LlliJ- Pnuclllf )B(r), (2.3) 

where Jlnuc is the nuclear magnetic moment. Because of the condition (2.1) such a spatial 

dependence, however, mainly arises from the longitudinal (B~I(r) = Bo · B1(r)jB0 ), 

rather than the transverse (Bf (r)) component of th~ vector B1 (r}, provided that the 
components are defined relative to B 0 . This is evident from the expression 

B(r} = \/ [ Bo + B~1 (rf +[Bf(r}]
2 

:::: Bo + Bl1(r} + [Bf(r}]
2 

/(2Bo}, (2.4} 

where the term containing Bf{r) is small and can be neglected. Consequently, by 

adjusting the gradient of the field B~l(r):one can achi~ve tran~lational invariance of the 
ground state 11) = 11/2, I, -1/2. I) in three dimensions: 

Etl}(r)- Mg 'r = const. (2.5) 

For example, to balance the gravitational force in this way for sodium it is necessary 

to create a gradient 'V B~l(r} = b1g/lgl, where b1 = -4.033 G/cm. This condition does 
not contradict the Maxwell equation 'V · B1 (r) = 0, because variation of B[(r) is not 
restricted. Note also that the choice B0 = I03 -:- I04 G maintains the condition (2.1) 
very well within a spatial region of the size - 10 em. 

All the other levels are affected by the residual external potential. In particular, 
after a transition from II) to the neighboring state 12) = II/2, I, -1/2, I- I} the atom 
experiences a force 

MJtnucg f- . 2
- (I/2)J!B9L + Pnuci 

(2.6} 
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III. COOLING SCHEME 

In our scheme. we use pulses of laser light. at frequencies "-'1 andw2 which are roughly 
tuned to the II) -4 13) and J2) -t 1:1) transitions. where 13) = I3/2,I,~3/'f 1 I} is an 
excited state with the lowest energy. The typica;l size 2L of atomic sample is res.tricted 
by the condition L « a/(·M g). which allows to regard E13)(r} as the closest to. resonance 
excited level within the whole interact.ion. domain .. Indeed, the force f3 acting on the 
atoms in the st~te 13), may be estimated ·from Eqs. (2.3) and (2.5) .a~ 1£31- Mg. 
The maximal spatial shift of the !eve) ":" MgL which it induces is .much less than the 
hyperfine splitting intervals (MgL «a- nWHFS). and the hierarchy of detunings is 
rPtained. Therefore an atom initially in II) or 12) state behaves as a three-level system 
with respect. to the processes with stimulated emission of photons. 

Since the atomic dipole momentum operator d is diagonal in quantum numbers I 
and m 1. in the basis IJ, I. Ah. m1 )< 0 l, the transitions which change m1, e.g.; ·12} '-t 13}, 
are allowed only clue to hyperfine itl.teraction, as is 'seen from Eq. (2.2). The valrte 
of any matrix element like l(:~ldl2)1 is approximately oc 7]HFI(3Idl1}1, where 7]HF = 
a/(2JtB9LBo) « 1. As a consequence, the upper state 13} decays to the lower ones 
preferen~.ially in the channel 13) -t II) (with the rate /)· This circumstance ntakes 
it. possible to deal wit.h an atom as a three-level system even if spont1meous photon 
emission takes place. · 

When the atom is irradiated with two laser beams at frequencies "-'1 and "-'2• the 
two-photon Raman transition from 11) -t 12} has twice the Doppler sensitivity of a 
single-photon transition provided that "-'1 - "-'2 - "-'HFS and the beam wave vectors 
k 1, k 2 are opposite [10]. However. if we take into account the force (2.6), a w,ide set 
of atomic momenta p tnay satisfy the resonance c~ndition, as follows from the 'energy 
conservation: 

h.6:q- 2p · tl.p/M = ht..2- f2 · r + 2D..~/M. (3.1) 

Here detunings D..m := "-'m + [E!mj(O) ~ £13)(0)]/h, m = 1, 2, are defined in the center of 
atom-laser interaction region (r = 0). tl.p = f1.(k1-'- k2}/2, and t..;, = ltl.pl· The.dip in 
the velocity dependence of absorption rate broadens so that the width of the trapping 
zone [13] becomes 

OV- Llf21/(2D..p). (3.2) 

As a consequence, since' the sample of unconfined particles considered in this pap~r may 
spread up to L .,.:, 1emduring the cooling, the effective temperature of atoms leftiri the 
state 11}, \~hich con:~titutes - M(6v) 2 /(2k8 ); generally lies far above thegrav~tati6nal 
limit [14] kBTa = f..{gJk. 'Fo~ example. in th~easeofsodium, where D.p/h = 1.07 x 10

5 

cm-1 and 1£21/h = 7.3 x 104 cm- 1 s- 1, such a temperature.may reach 6.4Ta~ . · ,: 
Despite insufficient velocity selectivity of the II} -t 12) transition, state 12} mai be 

used in Raman excitation cycle. To avoid unwanted radil~tion impact on the selected 
group of particles, which are referenced here as the DS atoms, one 'should ~ove. them in 
momentum space to ai10ther place, where the resonance condition (3.1) brakes down. 
It can be achieved by means of a two-photon 11} -t 11} transition while the atom is 
irradiated with two noncolinear laser beams at the same frequency Wt. . 

If the ground-level ini~ial nionl.entum distribution. along the direction of vector tl.p 
were as shown in Fig. 1(a), such' a transition would have selectively brought particles 
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concentrated near the point -AI' (the DS. as we will see below) to thl> point -lp. and vice 
versa. To prove this imagine an atom with momentum p passing through a superposition 
of two laser beams. The superposition may be treated as a diffraction grating in the case 
k1 t ,J.. k2 (standing wave) (15,16), or. as ~:~-n effective atomic hologram when directions 
of the wave vectors are arbitrary [12]. At low laser light intensity and large detuning 
A1 only the first-order Bragg scat.t.ering is of importance. In this case, two diffraction 
modes with indices 0 and 1 resonantly couple 'with each. other. ~hysically. the .first­
order Bragg resonance corresponds to an absorption and stimulated photon emission 
process fro1~1 one. laser beam to another. As a consequence of tire atomic kinetic energy 
conservation one gets the Bragg resonance condition 

±p. dp = t:~.;, (3.3) 

which is satisfied for any momentum with the componentp ==! ±Ap along the vector 
dp. Figure 1(b) contains the final distribution, the peak around Ap being the moved 
DS. So the first step of our scheme consists in the 1nomenturi1 transfer of DS as it is 
indicated with arrows in Fig: l(a). 

(a) • 

P1i 

~ '\,_ ~ I II) I / I 

-6 0 6p p p 

(b) 

P11 

6~rr_\ __ l3) 

- J 
61~~12) 

'\,II I 

II)' --.-r 0 ip p 
p 

• . 13} 
(c) 1\"/ 

.1 i_l2) pl '\.. . 
·-~ 

II) _;;- 0 tJ.p p 
p 

. FIG. 1. Energy Ievel:diagram and profile of ground state atomic distribution pu as a function 
of p, the momentum component along the direction of vector Llp: (a) before DS transfer with 
the tv.'o-photon II) -4 II) transition; (b) before the Raman excitation II) -4 12) cycle; and (c) 
before the optical repumping pulse. tuned to the 12) -4 13) transition. The curly braces denot.e 
momentum intervals involved in each of these processes. 

In the second step of cooling, the Raman excitation cycle (10] takes place.· In ac­
cordance with :Eq. (3.1), atoms with any negative p can be transferred to state 12} by 
varying the difference of beam frequencies. Due to the finite width of trapping zone 
atoms with positive p < M ov also have a chance to undergo transition .• The DS, .being 
hidden near the. point p = Ap > Mov, does not take part in this ·process, as illustrated 
in Fig. 1(b). . 

In. the third step, an optical pumping pulse at frequency· w2 is used to return the 
atoms back to.the state 11}. It is important· that the ground .level appears to be far 
off resonance a_nd laser light. does not affect .DS ~irectly. The, population of DS rises 
during the spontaneous emission process, which randomizes the atomic momenta [see 
Fig. 1(c)]. -

Then the sequence of. steps 1 - .'] is repeated with opposite directions of k 1 and 
kz involving residual positive-momentum atoms of the ground level in DS filling aiul 
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finishing a 1D cooling cycle along d 1,. After this stage the DS occupies its initial place 
near the point -,.Ap; · · . 

Dy choosing linearly independent vectors d~" in a set of two (m =-1,2) or three 
(Ill = 1. :.!, 3) lD cooling cycles one can proceed with decreasing the temperature in Lwo 
or three dimensions by repeatedly applying such sets. 

To increase the efficiency of DS filling one can admit several Raman and optical 
pumping pulses, i.e., a number of steps 2 and~. between two consecutive' first steps. It 
can be done, for example, as in the classical method [10], where every Raman transition 
is followed by the optical repumping,.or by applying a series of cycles, each including 
multiple Raman and one optical pumping pulses. 

Since the time necessary to collect all the atoms in DS is, generally speaking, infinitely 
long, it may be useful to separate the .DS from background with the final first-step 
transitions (on one for each dimension) so that the DS and background atoms will 
move in opposite directions and eventually will not spatially overlap. In particular, 
when vectors A;;'. m = 1,2,3, form an,orthogonal basis, our scheme will produce a 
cooled atomic beam with the average momentum d; + A~ + d: as follows from Eq. · 
(3.3). The minimum allowed temperature (but not the intensity) of such a peam is 
obviously determined. by the widt.h of velocity selection specific to fi1·st-step transitions 
and therefore can be much less t.lmn t.he gravitational limit. 

Pu 
2 

1 

0 

2 pjllp 
- n 

FIG. 2. One-dimensional ground-sLate distribution pu for Na as a function of atomic mo­
mentum p and the number 11 of cooling cycles normalized to 1 mi the scale p/ Ap. Half-integer 
values of 11 cotTespond to the beginning of the second stage of each cooling cycle which starts 
when laset· beams reven;e. The curve with n = 0 gives the initial distribution. The high~st 
peaks ~f the function represent the OS. . ' . 

A, Nuiucl'iclc\l l'csults 

In the following we present on~dimensional results obtained for Na assuming u;at all 
vectors have only z-components;·i.e., lie on the same axis with the gravitational force, 
and the:> laser beams with. k 1 and k2 are counterpropagating. Au initial· distribution 
of ground-state atoms is considered to be Gaussian. Since in our scheme we imply 
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that.an nt.omic sample precooled t.o the. recoil~limit1s:used, it· is reasonable lo take' the· 
wave number of laser light. k = l.Ui x 105 cm- 1 as an input for mom'entum dispersion: 
Up; Note .that for the cmisidcred laser-beams geometry ·A,./11 = k: We also take the 
parametell 'lHF =.2;5 x 1.0:::?, which correspond!! to Bo = 1U:I.G;· - ·: ':. :-:-: ~- ;.,; 

In the numerical simulation of a cooling cycle each ji1·st-step pulse was followed by five' 
repetitions of.a·set' involving seven Raman and (n!e OJ)tical 'pumping pulses; 'Both first 
and second steps.of cooling continued during·rr~pulse times. The duration of the 'optii:'ai· 
pumping pulse \Vas taken to·provich·-a·complete depopulation· of the 12} ~tate. The 
r.emaiuing parameters werP chose11 :as follows·. For the first· slej1:- the Rab) frequeticies' 
n, = n2 = 0.08j, and the detuning ~1 = .;c,l(h;'''For the St:COIId:step: n·, = OAj, 
n2 =· 0.04')',; and ;all' seven HanHt'n.·pulscs ·were- 'dcttined· to the ·red ·so that the·sum 
A1· + A 2.:::: -32j' remaitled con:Staut.: while· the difference ~1 - A2 :was increa.Sed•by 
-135, 118. 372; 625, 880, 1135,- and t:HJ3 kllz. Such a choice of detunings was tailored 
both: to span. :the momentum interval 0• =::; 11 =:;- :JAp ai1d to minimize the losses of -os· 
population due to parasitic exdtalion by·sidelobes·it~ the frequency spectrum of Raman 
tra)Jsitions. For the third step .. we pttt. 0 2 =·0.1')',· and A 2 = 0. The initial size of atomic• 
sample was taken _L ,;;: I em. However, for the given set of Raman light-parameters: 
this, or indeed .any smaller, v<~,lue of L tueans_that the widtli: of velocity selei::tion does 
not depend o'n L. Ti1erefore our results remain correct for all L.=:; 1 em. 
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FIG. :t Final ground-state distribution PI; 'of at~ms with positive morn~nta as a function or.' 
p. The full-scale distribution· is nonualized a5 in the Fig. 2 whereas the plotted part' contains. 
~ 59% of all particles. - · - · . • · ' .. ' ' ' ·: . 

Figure 2 shows the initialmomeul.ttlll distributiou p11 (p, p, 0) aud the formation of a 
DS peak during two first cooling cycles including iutermediate stages when the position 
of this peak is alternated. Although each 11) -t 11) transition captures atoms in a rather 
wide momentum interval·,... 2c5p ~ U.28Ar, the width of the DS peak (at half-maximum) 
decreases rapidly with the nmuber of applied cycles because of a pronounced maximum· 
in the transition rate profile. Arter 10 cycles the decrease slows down and approaehes' 
at 0.005D.1, by the end or cooling. At the same time, the peak height··growth is far · 
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from saturation. and after lOll woliug cycles this value exceeds the initial distribution 
111aximum in morP than 98 t.imes · _ · 

The fraction of cold atoms in t.IJP interval -~r·-'5p =::; p =::; -Ap + c5p depends on 
the diffprencP bPtWPen the fePding .ratP clue t.o optical pumpi1ig and losses during DS 
transfPr. and constitutes about ()!) •;(by the end of cooling. 

When separated from tlw background by the final first-step transition which transfers 
tlw afon•ttwntioned interval to posit)i.'e tnomentum half-axis. the DS peak acquires a 
~ltapt' represPnted in the Fig. :t ..-\s ;, result.· the effective temperature calculated as a 
nwan kuwtic mergy of t.IJP atoms distributed within the domain ~P- tSp S p =::; Ap +c5p 
readws 0.4 nK or O.Ul!'iTc;. .~-

IV. ATOM~OPTICS HOLOGRAPHY 

'A. ,Typi<;al layout design 
' "' .• ,-'! 

In our scheme the atom mo~es insitle a·stip~rposition of the reference and the object 

beams 

E(i.-. t) = E, (r. t)+ E,.(r, t), (4.1) 

where t.he laser light. has the frequency·J:i, . 
', ,, ... '· -~ - .; .. 

E{s.r} (r, i) = E{•.r} (r)e-iwt + c.c. (4.2) 

Each- bearil is' represented a.i; ·a discrete sum of plane monochroinatic 'electromagnetic 
waves. In particular, we use the following decomposition of the electric field' in the 
object. beam: . 

.. E,(r) = L E,;, exp{ik;,.. r),< (4.3) 

rn~l 

when~ Em and k, stand for the complex amplitude of the mode m and. its wave vector, 
respectively. Such an. approach does not restrict the generality of our consideration, 
because the expression (4.3) must well describe the real laser field only in the atom­
laser interact.ion region: Evidently, the latter 'requirement can· always be -satisfied by 
decreasing the minimal angle between the mode wave vectors. In this case we can also 
regard tlie reference beam as a single mode (\vith the index m = 0),. · · ·' 

'- Ei-(r) = E 0·exp(iko 'r) ·· (4:4) 

which just as the condition 

IEoF! » IEml2 , m 2: 1, (4.5) 

is a typical arrangement for optical holography. The layout design of laser and atomic 
beams maybe as shown in the Fig,4. ,, 
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FIG. 4. Typical layout design of laser beams and matter wave packets suitable for atomic. 
holography. 

B. Off-resonance solution of the master equation 

We are considering the case when laser frequency is far off resonance and ultracold 
atoms in the beam are supposed to move with momenta close to the photon ones. Then 
the. one-particle atomic density matrix can be represented as the sum 

Pab(rt. r2, t) = P~b(ri, r:j, t) + P~b(ri, r2, t) + p~ (ri, r2, t), (4.6) 

where the term p~b(r 1 , r 2 , t) arises due to stimulated scattering of light, the term 
p~(r1, r2, t) is responsible for the effects of spontaneous emission and the term 
Pab(ri ,r2, t) describes dipole-dipole and other atomic interactions. Here indices a, b ... 
span the internal atomic states. 

Since the inhomogeneous magnetic field applied to compensate for the gravity creates 
large enough Zeeman splitting to suppress shifted stimulated photon scattering we get 
non-vanishingp~b in agreement with the energy-momentuin conservation only when we 
take into account those two-photon processes which leave atoms in the ground state 
lg). Below we also assume almost critical cross correlation of the laser field. which, for 
instance, can be achieved when all field modes originate fron1 one iiiitial laser mode. 
Therefore after stochastic averaging over the laser field fluctuations outside the atomic 
beam the perturbation theory gives the result 
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P~b(l'J,l'2,t) =I cil/llef(v,e) 

x¢(r1,1;v.£) ¢{r2,l;v,e)c5a9c5bg· (4.7) 

where 

111 I ¢(r, t; v,e) = --2 'rlr'G9 {r -.r';e) 
2rr!1 . 
xu,.,(r') E1 (r')E"(r')¢o(r',t;v,e), (4.8) 

and /{1', .:) is atomic beam distribution funct.ion on energy e and quantum numbers v, 
which define the wave function 4>u(r,/; ''·e) of a free particle with the mass A/. In the 
Eq. {·!.~) G9{r;e) denotes the Green function of the Helmholtz equation, and O"ln(r) 
stands for the coherent-scattering tensor weakly dependent on 1' because of the external 
magnetic field inhomogeneity. In fact, expressions (4.7),(4.8) describe the scattering of 
aton1s by a lightshift potential in a regime when it can be treated perturbatively and 
whcu 8pontancous emission and collective e:iecLs are negligible. 

·C. At.om-opt.ie::< i nt.erJH'I~tation 

To gPt the atom-optics int<·rprl'lalion of I he solution (·1.7).{·1.~) \\'e will assuinf' tlw 
atomic beam apPrt.ure to lw wid I' e•nough in t lw rPgion of alom-!idd interaction and will 
regard Qn{l', f; IJ, E) as a \\'a\'!' funrtion of a fre!' dP!inil e-IIIOment IIlli partide, using the de 
Broglie wave vector k" as an Pquin1knt of quantum numbPrs {I/,=}. On analogy with 
conventional optics, this funct.ion can be Wl'll approximated by the plane wave having 
a finite· spalial 1•xtension along diaphragn1 t:orming tlw bPam (sl'e' Fig.!} for dPt.ails). 

It. is co11venient. to put. til!' origin of a rd'c•re·nl·l' frame· al tlw ce11ter of n•gio11 when, 
both referen(·p and object. wavl' cross llw atomic beam as illusl rated in Fig. 5. Near a 
point ofradius-vect.or R. tht' int.Pgral in Eq. (·1.8) can be caleulatl'd within the l~irchholf­
Fn•stiC'I approximat.ion if typical longitudinal (:U.) and lransn·rsal (:.!D) dimensions of 
t.lw re·gion with respect to R salisfy tlw conditions: >. « { / .. U} « H « D2 j)., where 
>. is the laser wavelength. As a n•snlt om• gets 

WIH'l'l' 

r • 
{p;9 (r,.r~./)) = !/{l't ....,. r~)IJ'(rt) 1)1 (r~). 

) :.1:\//. ;,, ) l'"' I)J(r = -.,- ,r. 0 11tm(1' ~ .• {r). 
· h-ku 

.'/(r) = / dk../(k., J.n~·;;-• (I~- kn) ~ (k., - ku)] 

X I'Xp(i(k,, - ku) · rj, 

and .J{h) = siti(H)/{H). 
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FIG. 5. Typical geometry of laser and atomic beams. 

On analyzing the expression ( 4.11) with respect to the peak shape of the function 
J(k) one may easily find the density matrix (4.9) to describe the coherent state (4.10) 
as soon as the atomic distribution is compatible with the condition 

J(k-:- ko) · (ka- ko)J :S rrl•o/(2L). (4.12) 

where k is some typical wave vector in the object beam. 
On the other hand, the. spatial concentratimi of atoms is defined at r 1 = r 2 and 

would be received independently fi·om mentioned condition. as if all particles had the 
same wave function (g(O)jl12 w(r). So in both c~es because tensor O'!m{r) yaries,sl~wly 
in the interaction region, one deals with th~ atomic wavereproducing the amplitude 
and phase characteristics of the object wave. · 

D. Physical conditions 

1. Applicability of the per·turbation theor·y 

The formula (4.10) remains correctprovided that lw(r)l <~ l¢o(r,t;ka)J, or that the 
perturbation of the incident atomic beam is weak. This in turn sets an upper limit on 
the object wave amplitude 

I m J 112ko I I T ~-1 
E, (r) « 

2
M L E0a1,(r) . (4.13) 

Note, that correspondingly low values of the object wave intensity result in the linear. 
response of the atomic system to the laser-field inhomogeneity. 
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2. ( "or11pe~1salion for gravity 

Another important prerequisite for successful wave front.reconstruction with massive 
particles concerns ~he, need to COlllJJensate for the potent~aJly detrimental influence of 
gravitational effects, Thisca11 be dane as described in Sec. II ·' 

:J: ~educing b"~kgmund /mm I lie .sponfan~ous r;~issi0n 

First of all we must insure a small background arising from the spontaneous emission 
of atoms, i.e., 

(P~b(rJ. r2. t)) » (p~b(r1, rz, t)). (4.14) 

This condii.ion fulfils ifth~ ol~ject. wave amplitude is large enough 

JE,(rjf » 2f,2 kU(3M LP), {4.15) 

where P = g(O)/nb represents the part of particles distributed due to peak shape of 
function J(k) within the domain (4:12). · · · 

4. Reducing effects of the interatomic collisions 

Since our model neglects all atomic interactions apart from dipole-dipole interaction 
(i.e. relevant at short interatomic ditit.ances), it can only be u:;ed for systems that are 
not too dense. In particular, the mean field interaction energy per particle [17] must be 
much less than the typical kinetic energy of an atom, whence . . . . 

nb « k~/(8rra,;c); ~· (~.16) 

where nb denotes spatial concentration of atoms; and a5c is the scattering length'directly 
related.to the low energy .5'-wave cross section (us= 4rra;c):· 

5. Elimination of the dipole-dipole interactions 

Condition (4.16), however, do not fix completely possible range of !lb. To satisfy the 
inequality 

(P~b(rJ, rz, t)} » (p~~(r1, r2, t)}, (4.17) 

we must also provide elimination of the dipole-dipole interactions. In the' fr~m~~ofk 
of the mean-field approach one can readily get an additional restrii:tiort'on the spatial 
concentration of atoms · · · • ' . · . . .. 

llb = J dkaf(ka) « (8rrllaz~1 (r)jl)- 1 • ''·' ! t' 
'(4.18) 
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E. Numel"ical example 

The method of atomic wave creation, we have just. considered theoretically, proves to 
be currently available. In particular, it. is possible to choose the beam and laser field 
parameters so that all necessary conditions may be satisfied whereas the amplitudP 
l[g(O)Jl/21J!(r')l of desired .wave would be sufficient. 

For example, let us take the atomic beam with lib - 10111
- 11 nn-3 as typical for 

Raman cooling experiments [10]. Such a concentration is obviously compatible ·with 
the conditions (4.16),(4.18) because for most atoms, the scattering length does not 
exceed .1Q2a8 , and in nonresonance case the components of tensor Dtm (r) are of the 
order a~, where as denotes the Bohr radius. 

If the width of atomic beam is imagined to be about 1 em. and intensity of background 
· wave is - 1 W fcm 2

, then mean intensity - 0.1 W Jcm2 of tlw object. wave will not. 
violate the conditions (4.13),(4.1.5). where we have substituted P ~ 2 x 10-5 . At. such 
parameters, the atomic wave amplitude will be l[g(O)j11 2w(r)l- 101- 2 cm- 213 leading 
to quite observable concentration 11 5 - 102 - 4 cm- 3 of atoms in the created wave. 

A way to enhance this concentration consists in preparing the atomic beam appro­
priately. Since only the part. P of all atoms undergoes the stimulated photon scattering 
giving contribution to the wave (g(O)jli 21J!(r), we should cool tlw beam as much as pos­
sible. If, fo.r instance, P ~ 1, then \\'f' get. n 5 - 108-f' cm-3 in the same experimental 
situation as above. An extraordinary role here may be played by coherent atomic-beam 
generator:; [1-6]. that. are under d!'velopment now. 

V. CONCLUSIONS 

· In conclusion, creation of an atom laser based on the cooling scheme below the grav­
itational limit seems to be possible, but more thorough investigations are necessary. 
A large number of atom optics applications requires such a device, for instance, the 
atom-optics holography, which will ))f' a powerful tool to manipulate atoms. A way to 
enhance diffraction efficiency of an atomic hologram consists in using of the coherent 
atomic beam so that all the particles get the same momentum as the momentum of pho­
tons in the reference wave, and a special role here may be played coherent atomic-beam 
generators, which are under development. now. 

• Electronic address: soroko@hep.by 
[1] M.-0. Mewes, M. R. Andrews, D. M. Kurn, D. S. Durfee, C. G. Townsend, and W. 

Ketterle, Phys. Rev. Lett. 78, 582 ( 1997). 
[2] H. M. Wiseman and M. J. Collett, Phys. Lett. A bf 202, 246 (1995). 
[3] R. J. C. Spreeuw, T. Pfau, U. Janicke, and Mr Wilkens, Europhys. Lett .. 32, 469 (1995). 
[4] M. Holland, I<. Burnett.. C. Gardiner, .J. I. Cirac, and P. Zoller, T'hys. Rev. A 54, R17."i7 

(1994). 
(5] A. M. Guzman, M. Moore, and P. 1\leystre, Phys. Rev. A 53, !)71 ( J9!)G). 

62 

[G) (;, :\1. :\loy . .1. J. Hop~. ai1ll C'. :\1. Sa\'age. Phys. Re\· .. A 55,3631 (1997). 
[i] T. Pellizzari. P. l\larte, and P. Zollel'. Phys. Re\'. :\52, 4109 (1995). 
[8] (;. :\lorigi. J. I. Cirac. K. Ellinger. and P. Zoller. Phys. Re\'. A 57. 2209 (1998). 
[!J] :\. :\,p .. ct. E. Arimondo. n. l.:aiM'I'. :'\. \'an,h·<·nkiste. and ('. C'olwn-Tannoudji. Phys. 

HI'\'. Leu. Gl. 8:!G (198X): .1. Lawall. S. Kulin. B. Sauhamea. :'\.Bigelow, !\1. Lf'duc, and 
C. Cohen-Tannoudji. i/m/..75. ·II!J-1 (I!J!Jo"•). ' 

po]l\1. Kase\'ich and S. Chu. l'hy, .. H<'\' .. Lett. .. GO. 1141 ( 1!)!):!): N. Davidson. H . .J. Lee. !\1. 
t.:a,e\'ich. ami S. Chu. i/;id. 72. :J[,;x (l!l!H): II. J.' Lee.('. S. Adams. l\1. Ka,e\'ich. and S. 
C'hu. ibul. 76, :!GS8 ( 199G ). 

[II) :\. \'.Soroka, Phys. Re\·. :\ 58. :I%:! (l!l9.~). 
[12] :\. \'. Somko, J. Phys. B. 30. 5G:! I (l!l!ll). 
[H] .1. Hl'i<'hel. F. Bardou. !\1. lkn Dahan. E. l'l'ik. S. Rand. C'. Salomon. and C. Cohen­

Tannoudji, Phys. He\', Lt·tt. 75. -loi'j.j ( Hl!l5). 
[1-1] H. Dum and l\1. Ol'shanii. Ph.\',.({,., .. A 55. 1:!17 (19!)7). 
(15] P. E. 1\Ioskowitz. P. L. Gould. S. H. Atlas, and D. E. Pritchard. Phys. Re\'. Lett. 51. 370 

( 1!)83).· 

[IG] P . .1. l\lartin. ll. C'. Oldakel'. :\. :\. :\liklich. and D. E. Pritchard. Phys. Re\·, Lett. 60. 515 
( 1988). 

[II] 1\L Lcwenstein. L. '{au, .1. C'oop!'r. ami K. Bumett. Phys. Re\·. :\50. 2201 (1994). 

. . 

... 
•· 

63 

... 



Confining Properties of a Conformally 
Flat Effective Metric 
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Minsk 

Abstract 

The confining aspects of the confor~ally flat metric are dis­
cussed. It is shown that the Lorenz-scalar potential and the damping 
normalizing factor introduced in some nowadays relativistic fe­
nomenological quarkonim models for providing quark confinement 
arise pure geometrically as a consequence of the existence of the 
conformally flat static effective metric. The classical (geodesic 
equations) and quantum (Dirac and Klein-Fock-Gordon equations) 
cases are considered. The possibility of treating the conformally flat 
metric appearence as a kinematic effect connected with existence of 
the maximal acceleration or the maximal rate of energy change is 
discussed. The expression for the generalized linear element for the 
particle moving in a given external field is proposed. 

Coordinate - dependent mass as a confining 
condition 

It is well known that the standard confining potentials v(r) being 

used in phenomenological relativistic quark models based on Dirac equation 
with the Hamiltonian 

H = aKpK + f3mo + v(r), (1) 

don't give necessary asymptotic ( at r ~ oo) behaviour. 
However the problem can be solved via including in (I) sotpe Lo­

renz-scalar potential what is equivalent to jntroducing the coordinate - de­
pendent rest mass. Then we have instead of ( l) the Hamiltonian 

H =aKpK + f3moU(r)+V(r), 
where U(r) is some function of spatial coordinatesl1

1. 
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(2) 

The necessary condition of the corresponding analytical behaviour 
of solutions is the following: the Lorenz scalar pot~ntiaJI (u(r )) .must in­
crease with a distance more fast' than. the' tlme:..li.ke component' of thb 'v~ctor 
one '(V(r_)}121. ·:.. . ·, ·· .• :. ·. ,·, ·.· .· ·., .'_ . ; ..• ·'': .. : . :. ·:!.:: .. :;;···,c;:.:c. ,,. 

· · This circumstance can be easily demonstrated using (1:+1) ~v.~rsio~,of 
Dirac equation. which can be presented in the following form:" · · · · ·· · · ··· 

. ( . . d . . )· . - - ·c : . . ) . '.' · -1o-2-·- + 0"3 111 If/ =Bij/; ii = C = 1 ; 

!f
1 

dx (0 l.J· . .•·(:•1 -~J 
where !f=(- ), o-1 = , C!3 = · . •· .. , .. If/: 1 0 . ; . 0 '·l . . . > 

! ' 
'~ .. J (3) 

;~ . 

m- rest mass, c:- energy. . : . 
·Considering m and c: as the coordinate - dependent quantities ( i.e. 

m =m(~), c =c(x}) \Ve obtain thefollowingtwoequations: 

{

-; dlf/2 +~ex) = o 

-iJ;
1
·-:(x_):• ~: .' . • • ' ., ·. 

d 
., ' '1'2 . '.· X . 

., 

. '(4) 

where ¢(x) = m(x) -'.&(x), 17(x) = ln(x)+ c(x}. 
. '). ~ ; i 

The quad~i~ed ~~u~ti~n.(for 'lf/2 ) is: :.: 

d2
ru, (ld~J d"'2 : -'~",-+ _'f' . _r_- '7(x)¢(x)!f2 = 0 • 

dx- ¢xlx dx . . 
·: ~ ' (5) 

If m(x): und · &(x) are both increasing functions of x the second term 

Under X~ 00 in (5) can be neglected and asymptotically We have'eq~ation' 
(omitting the index "2") 

d2 . ' 
~ -012(x)-c2 (x)}vr=O. (6) 

.. ,dx · .· .·;: .· ., ... :•. · · ..... 
We see that the asyrtptotic. behaviour of 'I' is unambiguosly deter-

mined by the sign of difference ~2(x)- c2 (x) in the region u~de~ consid~ 
_eration. We have exponentially descreasing solutionsif m

2
(x)>c

2
(x) and 

the o~cillating ones in the case m2 (x)< c 2 (x). Eg. (6) clearly demonstrates 

the crucial role of the mass coordinate dependence as the neccessary con-
fining condition: · · 

. If m2 ( x) = m0 
2 '.we obtain equation 
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d 21f/ , 2 
--

2 
+ c-(X)If/ = n10 If/ 

dx 
admittind asymptotically ( at x ~ oo) oscillating solutions only. 

Let us demonstrate that such a coordinate dependence arises purely 
geometrically when equations of motion are defined in space possessing 
conformally flat static metric [JJ, 141 

!.Classical picture: Geodesic equations in the conformally 
flat static metric. 

Geodesic equation in general case is: 

d 2 p d d d p 
_x_ + r" __::___::_ = 0 (7) 
dr2 ap dr dr 

where r;P are the standard Christoffel symbols, dt is the proper time ele­

ment. 
Let us consider the conformally flat metric with 

gpv =U 2 (x)1Jpd I]JJV =diag(l,-1,-1,-1), 

where U(x)is some function, which depends on x'' only. 

(8) 

The connection between the elements of proper time (d't) and the 
laboratory one ( dt ) is: 

~ 
~=~U~~~-7 ~ 

Geodesic equation (7) in the case of the metric (8) can be written in 
the following form: 

!!_(u 2 dxP)-~ pv 8(U
2

) =O, 
dt dr 2U 2 1] Dxv 

(10) 

Being multiplied by the constant m0 with the dimension of mass Eq. (I 0) 

can de written in the following noncovariant form: 

dp m2 2 
~+ oC 
dt 2M grad(U

2
)=0 

dE m~c2 8(U2
) 

------=0 
dt M at 

66 

, (II a) 
~ 

(lib) 

where p = M ~ , E =Me~ , 

m0U(x) 
M=[7 

VI~~~ 
(12) ,. 

If the conformally flat . metric is static one, i.e. 

U(x) = U(r), c(U~) = 0, equation (lib) leads to dM = 0 the "mass" M de-- & . . ~ . 
termined by ( 12) is conserved quantity ( integral of motion) and one ob-
taines from (11a) the following equation: · · ·· · 

M d2r m,; d(U')· 0 -, +-· gra - = . 
dr M 

(13) 

This equation coincides formally with the nonrelativistic equation of 
motion of a "particle" possessing the "mass" M in a "potential field". 

1 m
0
c-

1 F=-/:1grad(U ); (14) 

The essentially new feature ofthe solutions of equation (13) is the 
existence of the peculiar parametric 'dependence on the initial comditions,. 
because the integrals of motion appear in ( 13) instead of numerical con­
stants. 

We see that momentum !!.. and energy E are connected by the stan-

dart condition 
. ' ......... "'' ') ") . ., 4 

1~- -c- p- = m,jU-(!_) c 

which showes that the quantity molf(!._} plays. the role of coordinate­

dependent rest mass. The sam~results can be certainly obtained via standard. 
variational procelure with an 'action determined by linear element · · 

d\" = ((T d-cPdv'')ll~ 
• ("lpv ... "'' 

defined by metric (8). ; ~ 

The corresponding Lagrangian is: 
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g , 
L = -m0c-U(c) . -

2. Dirac·eguation 

Let us consider Dirac equation in the general covariant form 151: 

Yfl{ a111f/+±rv(apyv -f,~vYa~ }+nlolf/ = 0 · (15) 

Here r" are generalized Dirac matrices satisfying the standard con-
dition 

ypyv + yv y" = 2gw, rzv are Christoffel symbols, mo is the rest 

mass. 
Bispinor 'I' satisfies the condition 

i Jv;r"lf/~, = 1 (16) 

x0 = t =cons t 

v; is the Dirac conjugated bispinor, dfil is hypersurface X0 = t = cons 
t element. 

In the case of metric (8) y matrices can be chosen in the following 
form: 

(r" = u-' k)r~'), " r" = U(rJ r,, (17) 

0 

where y11 are constant Dirac matrices corresponding to the flat space-time, 

i.e. 
0 0 0 0 

r" rV + rV r" = 21]fJV • 
After substituting (17) in equations (15) and (16) we obtain Dirac equation 
in the following form: 

i a: ={a.,(P.,- ~ u-'a.,u )+ PmoU}q', (18) 

0 0 0 

where a., =ror.,,P=-iy
0
,P., =-ia.,,c=Ji=1. 

The normalizing condition (16) takes the form: 

J lf/+lf/U 3d 3x = 1 (d3x = dx1dx2dx3
) 

X
0 = t = cons t . 
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After introducing the new wave function 
<I>= u3 2'¥ (19) 

which satisfies the conventional normalization condition 
- :"; !"";;_;-.! :_._: ·'' •' ;: ":"' •• .. 

J'<P .. <l>d3x ~1 ·' ;. • .• ; '--~· : ; . .! ~:- ,•: 

X
0 = t =cons t 

we obtain Dirac equation.in the. form :!•. 

j- ' t ~ 
·.i-

., 

·. (20) .. i ~ = {a··p~ ~ ftnloUCD}t>.: . 

We see th(lt: Dirac equation for the particle .with restmass. mo.in con­
formally flat stat!~ .metric . g ~;: ~ U(r)~~'v coi~~ides fo~mal.ly. with Dirac 

equation for particle with. some· coordinate., dependent effective 'rest ;mass 
m(r) = moU(r) in flat space-time. , . : .. . . • . . . : :· , .. 

The external fields can be included in (20) in a standard way. · 

where 

3.Klein- Fock- Gordon (KFG) equation 
The KFGequation . 

. . , ; . ' . : .(. (. "m):)' 
( 0 + ~ ) <p = 0 Jlo A = T , 

·D = )-;:a" (•ft gWBJ 
-v-g 

in the case of metric (8) can be written in the following form: 
(o + ~2 )<p = 

: ~ 

. ' 

! •:. 

' 

1 ( 1 a2 
, ) 2 z · =- -.,---a~ .. rn.,-'-r:-(8 U\a rn+ ll.m;=Q '•" ": · ···::(.ZP' '·'· uz (:2 atz •.. '/"•' v3 . IC } K'r . r'O'f' . . , } 

, .:.: --... 1.· )' ·r:-:· .r:-•. ;:: :-: ··!~:~ .:·. ·:~· .. · .. , ... ,; , i·. _. ·-~ .;_; 

The term in (21) containing the first,derivative 8.,rp:is .excluded .by 

the substitution: 
U-1_,( . . . 

(/J,= :cop.,: ' . . . ' '. '. 

Then (taking into ·accoJnt' the ~ondition: au. ·J 0) KFG equation for 
: . , .... .... . . ,. . . · ....... ,·.at.·· . . .... ·.. . : 

the.function ¢ is: .. 
,; . .·'· .. 
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{_!_~-a: +u-•a;u + p~U2 }r/J = o (22) 
c2 or 

Thus we obtain the equation for the "particle", possessing the effec-

tive (coordinate-dependent) mass p, -determined by formula 

M2 = 112U1 +U-•o2U 
o ro K 

It is interesing to notice that conformally flat metric gives us some 
peculiar mechanism of"mass gneration': initially massless (mo = o) particle 
behaves as the massive one possessing the coordinat-dependent mass 

Mo = (u-•v:.uy 
As an illustrative example let us consider the function 

U = 1 +e-l(o' 
corresponding to the metric which differs from flat one in the restricted 

space region r :::; K:1 only and is asymptotically flat. 

In this case we have 

u-:•a;u = (e'o; + 1t( K~- 2~0 ). 
This expression obviously trends to zero at r-+oo. However at the 

small distances one obtaines 
. 3 

U-•azu z Ko Ko 
K a/ I( r<<}~/(0 ----·r 

0 r 2 
The KFG equation (22) for massless particle (mo = 0) in this case 

takes the form: 

{ 
l a2 3 } 2 2 Ko Ko ---a +K ----·r_ ""=O c2 812 .- 0 r 2 'f' , 

which corresponds the spinless particle possessing rest mass K0 , moving in 

the static external field which is the sum of the Coloumb attractive and the 
lineary increasing repulsive potentials. 

Phenomenological relativistic quark models 
and conformally-flat metric 

As we have seen, making suitable choice of the conformally flat 
static metric, one can obtain confining solutions of Dirac equation, which is 
used in phenomenological relativistic quark models. 

7-
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For example in the "new hadronization model" pi:oposed in1GJ,(7! to 
explain the present data on charmed meson decays the quarks satisfy a g~n~; 
eralized Dirac equ,ation .with the Hamiltonian . - · - · " 

· H 
0

' =a"(- iC:, - ix) x,: )+ fJ_m. . (23} 

The quark wave function therefore has the form: 
r1 • 

- .,:\."i rp x• (24) lf/(1.:,_,/) = e -- o e "" 

i.e. lf/(1.:._,1) is the plane wave damped by a gaussian factor (e-;~} Xo is the 

effective hadronization radius. 
Comparing eq.(23) with Dirac equation (18) in the generai case'of 

the conformally flatstatic metric 

g pv = lJ 2 {[)!J pd 

and taking into account the general formula ( 19) 'I' = u-%¢ in the private 
' . ' ,z 

case when ¢=expvp,,x"}. we obtain crJ.S.<,.>=e- 2
-';. 

or 

r' 
U(r) = e3x; . 

Thus we see that authors [6,7] actually deals with Dirac equation in 

the case offollowing conformally flat metric: 
2r2 

3x2 

gJIV = e o l]JIV 

as it was shown in the paper [4]. 
In the case of metric (25) we obtain 

U -•a1 ll =( ·:EtJa2 ()~ J = 2- i ,.~ ,- e ,.e ,+ 4 . x,: 9 xo 
- . -

The corresponding KFG equation (21) takes the form: 

{ 

0 2r
2 

, } · l ()- , , );> 2 4 r-
-. --c1- +m-e ·o +-+-- ""=0_ c2 812 ,,. " x2 · 9 x4 'f' ·, · 

0 0 

-~ 

(25) 

(26) 

what coincides with the result obtained inlKI 
To estimate the numerical value of Xo one can consider the' small 

distance approximation ( r I « 1) to eg. (26): In this ·case to firsforder in 
/Xo 
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-~~ eq. (26) coincides formally with the energy eigenvalue equation for an 

isotropic harmonic oscillator. 
The allowed values of the square of mass (M2

) in this approximation 

. 1~1 . 2 2 2 2m H ( 2 )''( 3) are gtven by (see ).M =ma +2+-· -· 1+~ 2n+l!+-
x, xu 3 3m X0 2 

(27) 
(h=c=I) 

We see that in this picture the slope a' of a Regge trajectory depends on pa­
rameters m and Xo. In the case of suffiCiently light confined particles (mxo « 

I) eq. (27) gives a'=: Jx:, .and since a'= 1Gev·2 we obtain an estimate of . 4 . 
the parameter X0 : x0 :::: I ,2 Gev·1 in good agreement with the experimentai 
value, Xo::::: I -I ,5 Gev·1

, obtained from the data on charm decay. 

Possible origin ofthe effective 
conformally-flat metric 

The hypothesis of maximal acceleration was conjectured by Caian­
iellol9l. Different aspects, formulation and consequences of the possible ex­
istence of a limiting value to the proper acceleration of a particle were ad­
vanced on classical and quantum grounds by several authors (see, for exam­
ple IIOJ,(IIJ and the references there). 

In particular the effective conformally flat metric can arise as an 
straight consequence of the existence of maximal acceleration. 

The model proposed by Caianiello and his coworkers to include the 
effects of a maximal acceleration in a particle dynamics consisted in enlar- · 
gihg the space- time manifold to an eight-dimensional space- time tangent 

bundle, where the coordinates are xa = {x"; !:...x"}' ~=I, ... 4, x" = dx" ' . 
A dr 

A is the parameter whose dimension is acceleration. 
The fundamental infinitesimal interval for a particle is the folloving 

eight-dimensional line element: 
2 

dS
2 = dxfldx" + ~ 2 di"dx" (28) 

Assuming the background metric as the Minkowski one, i.e. gJlv= TIJlv= diag 
(I, -:I, -I, -1) and taking into account 

di" = dX"dr we obtain from (28}" 
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~ .. ' ( 
x"x l ··. · · · 

dS~ = l+ ~/')~~~- .• :. . •.. .. (l9) 

di II '. '' · .. '. • . , ,. " ... 

where i'' ~~-.. d.~: = dx1'iix~J= c2'dr2
, 'x'; is a space:.Iike vector' (i.e .. 

- . . "d ,- . ' . . : ; "': ' ; . ·: ~· ",' ; · .. : .·. ' '' 

x"x
11 

< 0. The explich form of x"x~ iri rioncoyariant notations is:' '. 

.· .. " ~- _· ( 
1
- . V2 )'~3 {·' 2 '· · t·r~· ·)·_z_}· . " '' 

X X -- -- a - -@V " cz ' ,..,... , c2 . :::. 
'(30) 

J "!• .. '·. 

dr d
2
r 

where v = -= a = ---=- . - .dt ' - dt 2 

In ·the· case · v = 0' · ( cla~sical ~etur~ing. p~int) we obtai~ . from (29), 
' 'J ·-- .; ' . -. . . ·'· ' .•. 

(30) the formula , .. , . . . . 

· · · dS 2 ='c2dr2 I-~ . •·· · · · ·· ( 2) 
. . ...: . , . . . A2... '·'. . .... 

which demonsthlte the· limiting role of A. :; . ' ' ' '' . : . .. :_ '; 
The use of line element (29) as a starting point of particle· dyrtamics 

(both classical and quantum) obviously leads as 'to the theory with high de-
rivatives. .·. ,: .. 

It is more productive to consider tile acceleration field x"xP of the 

particle'as a result of its interaction with an 'external fields. 
,If one considersJor.simplicity the case ofnon~relativistic eleCtron in 

an electrostatic external field·~(!:} the term x''xi<:reduces to· · •! · '· 

2 .. ~ ' ~ : •: " . . ~ \ • 1 ;"" L ~ . '! . ,,, ~ . ·. 

: . .. . ... lrl2 - e . E2 (r) . •, . , . . . . • ... , . 
•••• > .. ·..:.·-mz·- ,. ......... , ... _._.,:, 

where if neglecting terms of order A'4 E..(r) restricts to central ele~tric field 

E(r)=zeh2. 

Then from (29) weobtain 

ds2 =(.i+~-;-x"~ ;). ds2 ~(~-(· 'a)
4

)dsi ~U2ds2,, 
··.·A . '' .. "' · · ·· · r ·· .. ····•· · 

t41) 
. i 

.. 
where.·· 

I 

. • _.(Ze2:)2 r·- .. 
· .. ~;- mA' .;,;t :"" J ., I ~ • 

I 

, 4 I }2 z·e . · ··• U(r)~{l.:.. 2A·_,_·.·,4 .·. . , m .. .. . . ·"' 

._ ·' 

(32) 
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is the conformal factor. 
The maximal acceleration corrections to the Lamb shift of one­

electron atoms were calculated in [II] starting from the Dirac equation in 
conformally flat metric with the conformal factor determined by (32). 

An interesting apporoach to explain the connection between maxi­
mal acceleration and the effective geometry proposed in[l2J. 

They considered a particle of mass m and charge q moving in back­
ground Minkowski metric under the action of an externally applied electro-
magnetic field. The classical equation of motion is · 

dx"=.!LF:dxv (33) 
me 

This equation can be taken as the first order approximation to the 
real velocity fields ofthe particle.' If one substitute (33) in(28) one can cal­
culate the correction of order A"2 to the classical background metric IJ

11
v . 

This procedure can be iterated, by calculating the new velocity field and 
substituting it again into the metric to obtain the corrections A-4 and so on. 
Because the value of the maximal acceleration is very high we can neglect 
O(A 4 ) terms. This leads to metric 

ds 2 = g dx" dxv 
,IJV ' 

where 

- q2 a 

g"v = 'lflV- A2m2 ~,vFv (34) 

The effective geometry is curved by the acceleration due to the in­
teraction ofthe charges particle with the electromagnetic field and this cur­
vature affects the motion of the particle itself. 

The modifield equation of motion of the charged particle may be 
obtained from the action 

S = f {-me'(;( _.d!:" d<" )l + qA ,x' }dr. 

Now we notice that the alternative starting ·point' to introduce the 
fundamental infinitesimal interval of the type given by (28) is the Born reci­
procity principlel

13
1. The corresponding reciprocity-invariant interval is: 

dS
2 = ds

2 t-~dp"dp~: , • (35) 
K . 

0 

where p" is a momentum, and '"' is a constant, whith dimention momen­
tum/length or energy/time. This constant was introdu¢ed by author 
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in 1974 ll
4
L K 11 = dm" . Inthe limit K0 ~ oo(dm << x

0
) arises two inde-

dr dr 
pendent Lorenz-invariant intervals in Minkovski and momentum spaces cor­
respondingly. The connection between 1\o and the maximal acceleration is : 
A =m- 1cK

11 

The interval (35) can be written in the following form 

d!:{ = (1 + ~ dp'' dp,, )d\-~ 
!\.",~ d\· d\· (36) 

dp" ' 
Using the equation of motion -- = ~~·~!'lJY and introducing a new con­

d., c· 
' 

stant g = CK,: with dimention of energy density (maximal energy density) v h . . . 

we obtain 

dS
2 

= {1 +~F rrF U''U''}d\· 2 
J1 VIZ ._ ' 

P .. 
(37) 

where a = e2 I . 
o /ftc 

Being expressed by the standard electromagnetic energy-momentum tensor 
7~;;·"'> notations formula (37) gives: 

dS
2 = {1- 4

1l"a., (~· 27;;:-"'>l/ "l!'' + Lce-m) )L
2 

dS 2 , • (38) 
Po · f 

where Lre-m) is the standard electromagnetic field Lagrandian. 
In the comoving reference frame we obtain from (38): 

I 

dS =(1- a, E 2
)

2 

d\· 
Po 

(E- is the electric fields vector). This leads exactly to the conformal factor 
introduced in [II] by calculating maximal acceleration cirrection to the 
Lamb shift. ltis very tempting to suppose that (38) gives us some uniyersal 
rule, which is suitable for any particles interacting with corresponding ex­
ternal field via coupling constant u. I.e. 

I 

dS = {1- 47ra(_!_ru>trtr +JY>)}~ d\· , Jll, 
P. c· 

" 

75 
• 



where T~[l and LUl are the external field energy-momentum tensor and 

Lagrangian correspondingly. 
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. V. V. Andreev 1 

Cornel State University, Physics Department, 246699 Cornel, Belarus 

Abstract 

We consider a model of meson, based on the Poin~are' -c~variant qu~k m~del with 
analytical solutioi1 of the mass spectrum. We inve~tigate possible"limitations of·. 
model parameters, implied from the lepton decay constants as well as from the -
mass spectrum of light· mesons. 

1 Introduction 

The investigation of bound states of particles is one of the effective methods to study 
the properties and dynamics of the interaction of particles. This method is widely- used 
in various areas of nuclear physics and physics of elementary particles. ' In studies of 
properties of quarks, of which the mesons and baryons consist, this method has important 
value, as the quarks are not observed as free states. Today, the electroweak decays of 
hadrons enable us to measure the parameters of the Standard Model (SM), and also these 
decays are the tool of exploration of effects of new physics i.e. physics beyOJ{d the.SM. 
In particular, the hadronic decays allow determining the elements of a ma8s ~~tri~, as 
well as angles of mixing. The leptonic decays of pseudoscalar mesons in a model with two 
charged Higgs bosons become sensitive to masses of these bosons [1]. Information about 
the structure of hadrons are required for these investigations and it is import!lnt to have 
the description of properties of hadrons in the framework the relativistic models of bound 
states. 

Many different descriptions of relativistic bound systems have been developed and 
even a brief survey of the vast literature on this subject goes far beyond the scope of. 
this paper. In the present work, for the description of bound states,. we use a Poincare'­
covariant model of hadrons. The basis of this II\Odel is a constituent quark model and 
Relativistic Hamiltonian Dynamics (RHD)[2] . -

The aim of this work is to present combined description of lepton decay constants 
of pseudoscalar meson and Regge trajectories of light meson in the Poincare' covariant 
quark model, based on the point form of the RHD. We consider a simple model with an 
analytical solution of the mass spectrum and investigate the possible limitations of model 
parameters, implied from the lepton decay constants as well as the mass spectrum of light 
mesons. · 

2 Bound quark-antiquark of a state in the RHD 

In the quark model the mesons represent a system consisting of a quark and an anti­
quark. In the framework of RHD, the interaction, which is determined by the generators of 
the Poincare' group f>,, and M'"' is hitroduced as follows .. The construction of generators 

1E-mail: andreev@gsu.unibel.by 
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for a system of interacting particles starts from the generators of an appropriate system 
composed out of noninteracting particles {further we shall note such operators without 
"hat"), and then add interaction so that the obtained generators also satisfy the commu­
tation relations of Poincare' group. Unlike the case of a usual nonrelativistic quantum 
mechanics, in the relativistic case it is necessary to add interaction fJ in more than one 
generator to satisfy the algebra of the Poincare' group . Dirac [3] has shown that there is 
no unambiguous separation of generators into the dynamic set (generators containing the 
interaction U) and a kinematic set. There are three versions of separation on dynamic 
and kinematic sets (so-called RHD forms): the point, instant form and dynamics on light 
front. In all three forms the interaction contains mass operator Af i.e. Af = M

0 
+ U, 

where M0 is an effective mass of a system of noninter~cting_parti.£!es . .!!_1 an instant form 
the interaction enters also in the operator of a boost N = (M0!, M 02, M 03 ), which makes 
wave functions of mesons Lorentz -noninvariant. In the dynamics on light front the inter­
action is contained with components J 1, J2 of the operator of an angular momentum J = 
j (J"'=(M23 , M31

, M12)), that results in violation of a rotational covariance. In a point' 
form RHD 4-velocities of bound and noninteracting systems are equal, i.e. 

V = V12, V = P/M, V12 = P12/Mo~ (1) 

where P and P12 are the 4-momenta of the bound and free from the interactions of particle 
system. In all forms of the RHD 4-momentum of a bound system P and total momentum 
of free particles are not equal, i.e. P 1= P12. 

Let's consider in the context ofRHD, a bound state with momentum P, mass M, spin 
J and it's projection 1-L consisting of two particles. Let these particles have the following 
characteristics: momenta p1 and p2 , masses mt. m2 , spins s1 and s2 , projection of spins 
A1 and A2 • The construction of a bound two-particle state includeS the following stage 
[2]: 

1. Definition of the two-particle Hilbert space as the tensor product of the one-particle 
spaces and of the appropriate basis: 

with the normalization 

IPtAt} IP2A2} = lmtst;PtAt} ® lm2s2;P2A:l} 

{p~A~I {p~A~IIPtAt} IP2A2} = 
oAp.O.x;A.a{p--: - P't)o{P~ - fh). 

(2) 

2. The Clebsclt-Gordon coefficients of the Poincare' group are constructed and are 
used to reduce the two-particle representation of a Poincare' group to linear superposition 
(direct integral) of irreducible representations. As result we obtain the basis: 

j.P12, /-L, [J, Mo(k)], (ls); [m1s1; m2s2J) = 

L L I df Wm,_(P't)Wn:_2 {p2)A::o 
b .\1.\2 Wm1 (k)Wm2 (k)WM0 (PI2) 

L L (slvl> s2v2i sA} (lm, sAl J !-L} Ytm (f). 
m..\ 111112 
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Dl~~. (fi (Pt. Pt2)) Dl~~ (fi ~. pl2)) IPtAt} W2A2}' 

We used the following notations: 
P12 =Pt +P2 

is the total momentum of a free system, whereas 

- _ P12 ( ft12 · ftt - ) :::;:t - ~-~ k=pt+M . .. - .-t'wm,(iit) ,li=k/k 
o WM0{Pt2) + Mo 

·,•; 

(3) 

is the relative momentum of two particles, and (s1vt. s2 v2L sA}, (lm, sAl JJ.I.) are Clebsch-

Gordon coefficients of SU{2)-grmip. The fimction Yin.(k) is spherical harmonics and 
D 112 

( fi) = 1 - iii . a I JI + ii1 is the D-function of Wigner rotation, which is determined 
by the vector-parameter fi{pt,P2) ,;, i11 x i12/(1-ilt · i12) wi~h i1 = pf (wm (p) + m). Apart 
from that, the following reductions are· used: 

(vlo 
Wm(k) 

Mo(k) = Wm 1 (k) TWm2 (k), 
.Jk2+m2,k=: ["tj. (4) 

The following step consists 'of adding the intera.Ction iJ. to. the ~ass operator. ~f a 
noninterading syst~rn: · · · · · · '· . .. ·. ., ' . · · · · .· .. 

M, = 'J.!o +f);:. 

If the operator fJ satisfies the conditions: .. ·. · i 

• - • t .11! -:-.M, .M >.0,. 

[P12, iJL =c[ivfi' .. ,'iJJ_ = [J, fJJ_ = o (5) 

then a similar set ~f interacting particles will satisfy the same commutation relations as 
the set of norhinteracting system.' -

The problem of eigenvalues of the mass of a bound system can be expressed in three 
equivalent forms in the Hilbert space[2]: 

·' M ,~ llt >= (Mo+ iJ) lilt·>= M I 'llt :>;; · 
2 ~ 2 ~ ~2 "'' 2 

M0 + Wu jilt>= M jilt>, Wu = M - M0 , 
;~·· 

' ,, . 

(k
2 + W) jilt>= 11lllt>, W =.~ [(M2 ~ M~) f (m~;_ ~).+ .(~2 ~-~) ] •. (6) 

' . 

where M and 11 ani connected: 

M2 = 211·+ in~ + ~ + 2,j17(17 + m~ + ~) + m~~- (7) 

The solution of the problem (6) will allow to find wave functions, which determine the 
vertex of the transition from free from interaction to a bound system of particles. In the 
Point form this wave funCtion is determined as follows: 

(v12, J,/-L, k, (ls) fV, i ,/-L',M) = oJJ'op~·o(V- V12)wJ" (kls). (B) 
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Wave function generally satisfies the integro-differential equation, which follows from 
Egs.(6) and (8): 

00 

L I< kls II WJ II k1 l1 
8
1 > wJ(k1 l1 s1

; M)k12dk1+ 
l'&' 0 

+k2wJ (k l s) = 7JWJ (k l s) 

with the reduced matrix element of operator W 

( ~ ( I~ I ~I I I I I I ) v12,J,p.,k, ls) w v12JJ,p.,k,(ls) = 

• oJJ'o~<~<'o(~2- V{2) (k, (ls) /ICVJII k1
, (l1s1)). 

The wave functions are normalized: 

Nc "£ koo dk k2jwJ (kls)l
2 = 1, 

b 0 • 

(9) 

(10) 

(ll) 

where Nc is the number of quark colors. Thus in the point form the meson state is defined 
as state of on-shell quark and antiquark with the meson wave function wJ (kls) 

IP,J,p.,M) = ~ L L I d3k I Wm, cepwm. (I!) 
~ WM (ft) b >.1>.2 ~ Wm1 ( fC) Wm2 ( fC) 

wJ (kts) 'L 'L (s1v1, s2v21 s>.> (tm, s>.l J p.} l'lm (7!) 
m,\Vt"2 

nl;~. (rt (p1, P12)) nl~~. (rt (P2, H2)) lv1>.1} lv2>.2}. (12) 

Let's mark, equation (9) for a wave function is a similar radial equation in a quantum 
mechanics (only the impulse representation). ' 

Using standard relations for. the coordinate operator, orbital. momentum and· spin 
operators we reduce the integra-differential equation of RHD (9) to the ordinary quantum­
mechanical radial equation with the oscillator potential·(only impulse representation) 

[ 
a2 2 a l(l + 1) k2 ] . • , Wo _:_ 11 

Dk2 + k Dk - -p:-- !i:q 'II (.kls) = fJ:q. 'II (kls), 

- . ( 3 1). 
W0 = W0 +a, -o,o4 +6,14 .. 

The eigenfunctions of Eq. (14) are 

with 

w(kls) = N._ 1exp -- ·- F -'n l +- -( k2 ) ( k )l ( 3. k2) 
n 2tJ:q . fJqQ ' 2' tJiq 

rrl-3/2 
1-'qQ 

Nnl == r(l + 3/2) 
r(n+l+3/2) 

f(n + 1) 

(14) 

(15) 

where n, l = 0, 1, 2 ... , F(a, b, z) is the hypergeometric function, r(n) is the Gamrrla 
function. Note that the wave function of the ground state (n, l == 0) has the oscillator 
form, which is used in many relativistic models of hadrons: · 

w(kls) = w(k,/39q) = 2/ (!i~b21r 1 l4 ) exp (-
2
;;J. (16) 

Quantization condition is defined by 

17 = Wo + 2fJ:q (2n + l + 3/2) +a, ( -o.oJ + o,l D. (1 i) 

3 Regge trajectories of mesons in Poincare' -covariant 
The spectra of mesons, composed of quarks with equal masses (mq = mq = m ) are 

1 · given by: 

quark model 

In this section we apply the formalism developed above to calculate the mass spectra 
. of mesons containing u, d and s quarks. To choose the appropriate interquark potential 
we use the well-known experimental fact that light hadrons populate approximately lin­
ear Regge trajectories, i.e. M 2 ~ fJl +canst, with the same slope tJ ~ 1.2 GeV2 , for 
all trajectories (see, for example, (4]). We take the effectiv~ model potential W in the 
oscillator form with spin-spin interaction a, ("71 "7 2) 

. . . - -

W(r) == w0 o (f)+ tJ;qr2 +a, ("71 "72) 
where Wo, a, and fJ9q are free parameters. 

(13) 
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M:q (l) = 4 ( m
2 
+ w~ +a,( -:-:o•0J + oa~~)) + 8tJ:q (2n + l + ~). (18) 

Thus we reproduce the linear dependence of M 2(l) in the framework of the two-body 
relativistic equation (9). 

Now we determine possible limitations on parameters of the bound systems with equal 
quark masses (u- d and s- s states), which are implied from meson Regge trajectories. 

The parameters Wo and f3uu have been found from fitting th~ p-Regge trajectories (see 
Fig.1): 

2 w. 1 2 m,. + o + a,4 = -0.28962 ± 0.0264 GeV ,fJuu:;:: 0.3818 ± 0.0116GeV. (19) 

If We assume that f3uu · =· fJud · = fJdd, we obtain that the differences of the squared 
rnasses of spin-singlet and spin~ triplet for u- d systems are determined by Ml=

1 
(l == 0)-
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M~=O (l = 0) = 4a,. Using that M: - M; = 0.5711 GeV2 we see that parameter of 
spin-spin interaction have value: 

a,= 0.14275 ± 0.00025GeV2
• (20) 

Experimentally, the differences of the squared masses of corresponding spin-singlet and 
spin-triplet quarkonium states, which contain at l.east one light quark, weakly depend from 
quark masses. For example 

M!- M; = 0.5711 GeV2,M}.- M} = 0.55 GeV2,M1.- M1 = 0.55 GeV
2

. 

Therefore we suggest that parameter a, does not depend from masses of quarks. Thus we 
have that 

m~ + W0 = -0.3253 ± 0.0264 GeV2
• (21) 

There are eight meson Reggc trajectories populated by u-d bound states (for each isospin 
I and angular momenta J = 1+1, J =I, J = 1-1 and total spinS of qQ system-S= 0, 1). 
Some of the trajectories are plotted in Fig.2 using parameters (19)-(21). We observe that 
all experimental data are in good agreement with the spectrum given by Eq.(9) for S = 1 
(Fig.2a-2b). As in the case of bound states with S = 0, !he agreement between our 
theoretical predictions and the existing experimental data is not good (see Fig.2c-2d). 
Such deviations can be explained by the absence of tensor spin-dependent terms, short­
distance term of the potential and octet-singlet mixing for the 7]-meson trajectory. 

If we shall assume "ideal" mixing for ¢ meson i.e. the mesons, which correspond to 
¢-meson Regge trajectory (see Fig.3), consist of only s-quarks, from linear fit (18), we 

obtain 
{3 .. = 0.400077 ± 0.00841 GeV, 

m~ + Wo = -0.26486 ± 0.02013 GeV2
• 

(22) 

We can also find a ratio between masses of quarks. It is easy to verify, that m, and mu 
have the relation 

m~- m~ = 0.06044 ± 0.0332 GeV2
• (23) 

Thus, using Regge trajectories of mesons containing quarks with equal masses we have 
the following limitations of model parameters: 

a, = 0.14275 ± 0.00025 GeV2
, 

f3uu = f3ud = /3dd = 0.3818 ± 0.0115 GeV, 
{3.. = 0.400077 ± 0.00841 GeV, 

m~ + Wo = -0.3253 ± 0.0264 Ge V2
, 

m; + W0 = -0.26486 ± 0.02013 GeV2
• (24) 

As is easy to see, our method for bound systems with different quark masses does not 
require a special procedure to solve the ~ain equation of RHD (9), as was pointed out in 
[4] (introduction of additional parameter). When the masses of the quark and antiquark 
are different, using Eq.(7) MiQ can be written 

M'!,... (l) ,; 
27] + m~ + m~ + 2 71(71 + m~ + m~) + m~m~ = (25) 

(271 + m~ + m~) 1- (m~- m~)
2 

I (211 + m~ +!ll~f. 
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where the quantizationcondition of the 7J is defined by Eq.(17). The dependence MiQ (l) 
is also linear if we assume that in Eq.(25) 

( 
2 ,2)2 ,( , .2 .. 2)2'; 

mq - mQ / 27] +mq + mQ « 1. 

However, from the an~lysis the Regge of trajectories, ~~ cannot fiX m~~of;the 
quarks. Therefore the additional experimental data are ·necessary for' further analysis. 
We shall consider the limitations that we can obtain from alternative experimental data. 
Then we shall again pass to the construction of the Regge trajectories of ~e8ons w'ith 
strange quark. · 

Concluding this section, we remark that, the a~alytical solution of a mahi equation of 
the RHD can be used as zero approximation for solving the problem with more realistic 
potentials. 

4 Le:ptOni~ .cfecays in a Poh:~care'-covadant ·m6d.el of 
mesons 

In this section we sh~ll consider possible constraints· o'u the parameters of the model, 
which can be obtained from. ~eptonic decays of pseudoscalar mesons (pion, kaon): In 
the SM the w.idtli of purely.leptonic decays of charged mesons p+(Qq) ~ z+v1 ha.S the 
expression: ·· . ·. 

r(l ( 2 )2 + + .. .,..F . 2 2 2 . m, 
, r~M (P ~ l v,) .~ ~11" IVqQI,{:m,Mp 1-M~ , ' (26) 

,,• ,' 

where GF is a Fermi constant and m,,Mp ani the masses of the charged lepton z+ and of 
the pseudoscalar meson P, respecti~ely. 'The leptonie decay constant fp of a pseudoscalar 
meson P( Qq) is defined by 1the matrix !'!l\)ment · '. . 

(~ li~ (o)l P,u;) = i(l/2•)'" J ·1 
P,fp, 

2WMp (P) 
(27) 

where J!(O} is the operator of the meson curre!lt .. , .. ·· . 
Using the relativistic impulse approximati'on and Eqs.(8),(12) we find that in 'the point 

form dynamics · ·' · · 

·.fp(mq,mQ,/3qQ)= 

l::lc/ ( 1rv'2} (mq + mQ) f0
00 dk k2 '11. (k;{3qQ) 

MJ:-(m9 -mq)2 

(...,..,) , (....,.,) ' 
Wmq k. Wmq k Mg 

·. (28) 

where Nc is the number of coio~, ~q and mQ ~e ·the m~~ of ~he quarks. If m9 = mQ, 
the _leptonic decay constant is defined by _i • .· · • ·' · 

fp (mQ, /3qq) = NcmQ {oo dkk2W (k, /3qQ) 
·,' •. 11". lo <,w3/2<(?k) • .. ' . , mq . 

(29) 
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For further calculations we shall use the wave function of oscillator fomt (16), 
is the solution equation of the relativistic bound states witlt model potential (13). 
the experimental values of the pion and kaon decay constants and the theoretically 
culated formula we shall receive the limitations on parameters of the model. The moder!J 
experimental data give the following values of constants of decays of a pion and kaon [5] 

f;"P = 0.130.7 ± 0.00046 GeV, J:fP = 0.1598 ± 0.00188 GeV. 

The 1r-meson decay constant is defined by 

( ) _ v'3m,. [ 314 ( 1) (3) (3. 1. m~ ) j" m,.,/3,.d - -· , ·' 2 r -4 r 4 tFt 4' 4' 2{3~d 
2m

3

1
2

fi ( 3) (3 7 m 2 
)] - ;~~2 r -4 1Ft 2; 4; 2f3Jd . (30) 

For the decay of the K-meson, which consists of quarks of different mass, the decay 
constant is set by Eq.(28). To obtain the Iirrlitations on the parameters of model, it · 
necessary to solve the set of equations: t 

J,. (m,.,f3ud) = J;"'P, .fK (m,.,m,,/3,.,) = j:fP. (31) 

For the solution of this system of equations we use the following procedure: we get 
the limitations on m,., f3ud, which follow from the first equation of a system (31). Further 
let's assume, that 

m. =a* m,.,f3,.. = v * f3ud, (32) 
where a, V are some numbers. The values of a and V are obtained by minimization 
deviation 

IlK (m,.,{j,.d,~, V).,.... f:fPj. 
Graphically it means, that the solution points coincide for both experiments on the plane 
m,. - f3ud· The result of the procedure are displayed in Fig.4. The coincidence curve is 
achieved at a = 1.48, V = 1.236. If we assume that f3ud = 0.329 GeV (see Fig.4), we 
receive 

. . 
em,. = 0.250 GeV, m, = 0.370 GeV, 
{3,.. = 0.407 GeV. 

(33) 
This result (33) agrees with the results obtained in the instant form of the RHD for 

oscillator wave function [6]. In the dynamics of light front for the data of the quark masses 
and the parameter f3 of the wave function are approximately equal numerically (33) [7]. 
Now we shall use the value of the parameters f3ud~ wltich we haye found from the analysis. 
of the Regge trajectories (see (24))-f3ud = 0.3818 GeV. In this'case we obtain, that 

m,. = 0.216 ± 0.02 GeV, m, = 0.320 ± 0.03 GeV. 

· We shall return to the analysis. ofthe Regge traje~tories. ~hen the masses of quarks are 
fixed we can calculate the remaining·parameters of a model potential. So from a ratio 
(24) we receive for the parameter W0 tlte following value: 

Wo ,;, -0.3120 ± 0.0264 Ge V 2• 
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Using mass pseudoscalar K-ine5o;t'mK''= 0~4937 GeV ~nd equation (25) we obtain, that 
parameter of a wave function f3 ... is: equal: . 

f3u. =;= p,3~25~0.06 GeV. 

Thus for mesons containing u, d and s quark wit}} the interquark potential (13). we have: 

a, = 0.14275 ± 0.00025 GeV2 , 

fiuu = f3ud = f3dd = 0.3818 ± 0.0115 GeV, 
f],., = 0.3925 ± 0.06 GeV, 

f].. = 0.4000ii ± 0.00841 GeV, 

H'o = -0.3720 ± 0.0264 GeV2 

m,. = md = 0.216 ± 0.02 GeV, 

m, = 0.320 ± 0.03 GeV. (34) 

Let's remark, that the squared masses of the u and s-quarks, obtained from the 
leptonic decay constants, and from the analysis of the c/>--meson Regge trajectories are 
approximately agreed (see (23) and (34)) 

2 ~ rn,- rn,. 
.. 2 ~ 

rn, - 111,. 

0.056 ± 0.021 Ge V2 
- leptonic decays, 

0.06044 ± 0.0332 GeV2
- Rcgge trajectories. 

The evalutations of parameter V = {J,.,f flud are agreed little a bit worse 

V = 1.236 ± 0.020 -leptonic decays, 

V = 1.02 ± 0.30 - Rcgge trajectories. 

We compute the strange meson Regge trajectories using Eqs.(25) and (34) (see Fig.5). 
The model describes two Regge trajectories with S = 1 and and one with S = 0 in quite 
a satisfactory way (sec Fig.5a, 5b, 5d). nut for the K•-meson trajectory the agreement 
between the model and the experimental data is not good (see Fig.5c) 

Thus, in the framework of the model of the mesons based on a point form of the 
RHO with seven parameters we have a satisfactory description of decay constants of 
pseudoscalar mesons and their masses. Also the model potential, which solves the equation 
of the bound two-particle relativistic system with an adequate accuracy reproduces the 
Regge trajectories of light mesons. nut a realistic potential (one boson exchange + 
nonperturbative part of potential+··-) is necessary for a more satisfactory description of 
the spectrum of masses. 
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Time-reversal-,·iolating interactions of the electrons and nucleus cause 
the appearance of ne~v optical phei1omena. These phenomena are not 
only very interesting from fundamental point of view, but give us a new 
key for studying tlw time-reversal-violating interactions of tlie'~lerii~e~tary 
particles. · 

Violation of tiuw reversal symmetry hi.<;~ 'bee~ observed 6'n.iy -i~·/{0-
decay many years:ago [1], atid ~·emains one of the great unsolved problems 
in elementary partide physics. Since the discovery of the CP-violation in 
decay of /\.'0-mesous, a few attempts have been updertaken to observe .this 
phenomenon experimenta.lly in ,differ~l1t processes: However, those 'exper­
iments have not been succes~f~l: At- fl~~ ~res~ilt time-~~vel rn~;~·pr~cise 
experimental schemes ar~·ac,tivdy discuss~d: observation of the atom [2] 
and neutron [3] electt:ic dipole moment, T-violating (time reversal) atom 
(molecule) spiq rptationin-a:Ja.ser wave and-T-violating optical activity of 
an atomi~ or molecular gas [4, 5]. 

According to [6] a new optical phenomenon appears due to violation 
of the time reversal symmetry: the photon polarization plcine rotation 
and cit:cuh\i·' dichi:~i~l~1 in an optintlly ho~ogeneous isotropiC 'medi~m ex­
posed to an electric field. This T-odd phenom~non is a)<inematic analog 
of the famous T-eveu phenomenon of the phot~n polarization pl~ne 'rota­
tion in the medium exposed to a magnetic field (Faraday phenomenon) 
(see figure.1). One In ore T-odd phenomeiwn of photon polarization plane 
rotation and circular dichroism appears at photon passing through non-
centet.:.s'ymmetrical diffraction grating [6]'~ · . · · · 

In the pt~esenfpa.J·)et:·the T-'odd phenomena of photon polc1rization plane 
rotation by an'ele'etric.field andl)y a diffraction grating are considered. The 
magnitude of effects 'are estimaied and the possibilities of experimelltal 
observation are discussed; . . · . '· 

1. Phenomenon of the time-reversal-violating photon polar­
ization plane rotation by an electric field. 
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where fs is the P-.T- invariant scalar amplitude. ft' is the P-violating 
scalar amplitude. and f[ is the P-.T- violating scalar amplitud<·. 

It can easily be found from (7,8) that the term proportional to d;· (/.;) 
vanishes in the case of forward scatterin? ( ii' ---+ ii). Vice versa, in the case> 

of back scattering ( ii' ---+ -ii) the term proportional to !3;' (.rt') gets equal 
to zero. 

Thus, one can conclude that the T-violating interactions manifest them­
selves in the processes of scattering ·by atoms (molecules). However, tlw 
scattering processes are usually incoherent and their cross sections are too 
small to hope for observation of the T-violating effect. Another situation 
takes place for diffraction gratings in the vicinity of the Bragg resoni'uice 
where the scattering process is coherent. As· a result, the intensities of 
scattered waves strongly increase: for instance, in the Bragg (reflection) 
diffraction geometry the amplitude of the difl'racted-reflectecl wave may 
reach the unity. It gives us an opportunity to study the T-violating scat­
tering processes [5]. 

To include the P: T violating processes into the diffraction theory, let 
us consider the microscopic Maxwell equations: 

1a.B - 1ae 41T-
curtB = -- + -j 

cat c curiE = 
c at 

(9) 

. divE. 41Tp d. B- o ap 1· -t o 
zv = . at + c w J = 

where E is the ekctric field strength and B is the magnetic field in­
duction, p and ] are the ~11icroscopic densities of the electrical charge 
and the current iuduced by an electromagnetic wave, c is the speed of 
light. The Fourier transformation of. these equations (i.e. E (r', t) == 

2
!

4 
IE (f,w) eik>"(.-iwtd3kd~ and so on) yields to equation forE (f,w): 

( 
·. · w

2
) _ (- ) 41Tiw [-(- ) czk

2 
( _(_ ))] -k~ + c

2 
E k,w = ----;}2 j k,w - w2 ii iij l..:,w . , ( 10) 

h - k w ere n = k. 

In linear approximation, the current] (r',w) is coupled withE (r,w) by 

the well-known dependence: j; ( r, w) = I d3r' a;J (r, .f' w) Ej (t' w) with 
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rJ,,~ (r. ;:' ,..._•) a~ tlw lllicroscopic conductivity tei,1sor being a sum ()f the 

conductivity tl'llsors of th<' atoms (molecules) co11stituting the diffraction 
• (- _J ) "" 

1 (- _J ) l 4 • I I .. gral lllg: ai.i 1'. I' • ~·. == L.:4=I a[j I" .1' • ..._• • H:'re <7ij IS t le cone UCti\'Ity 
tPHSOI' of tlw A-1.\'IH' scatterers. Tlw summation is done over all atoms 
(molecules) of t h<' ~rating. ·In a diffract ion grating. the tensor a;j ( 17 • 1-! • ..._•) 

j~ a spatial!\· JH'riodic fuuctio11. Th1•rd:orl'. j; (f. .... :) can lw writkn a~ 
follows: 

j; (L---·) = ,1~ ~a;j (f.f- f . ..._·) E.i (f- f . ..._'). (11) 
T 

where a;j is tlw Fourier transform of the coi1cluctivity tensor of a grating;s· 
clc·nH'Iltary n•ll. f is I lw n·ciprocallatt in• vector of the diffraction grating. 

llsing CIIIT<'Ill r<'jli'<'SI'IIIatioll ( 11 ). one can obtain from ( 10): 

2 

( -1.-" + h'c~) /:'; (f..._•) = - ~~ ~· \i.i (f:. k- f) E.i (f: -~f) ( 12) 
T 

Tensor of the diffract ion grating susceptibility is given by 

\;.i (f.f- f)= (Sit- n;nt) \l.i (f.f:- f) ( 1 ;J) 

with 

( - - ) ·hi (- - ) '17TC
2 

(- - ) \t.i k,/,·- f = -,. ,ati I..·. I..:- f = \' .. 2 F1.i k,k -~f . 
uw '0"" 

Here• l·i.i (f. k- f) == i.;fati (f:. k- i) is tlw amplitude of coherent elastic 
scattering of a11 IJ(<'dromagnetic wave by a gra.t.i11g elementary cell from a 
state· with I Ill' \\'a\'1' vector ( k - f) to a state with t.lw wav<' vectoi· k. 

Till' amplittttk 1·/i is obtai11ed b~· summation of atomic (molecular) 
!'OJtC'l'C'Il( eJas(ic SCi\l.t;•rillg amplil.\tdes 0\'l'l' a grating's element.ar~• c(,ll: 

• /,> 

l'i.i (f:' = r + f.f:) =(t .li) (t = f: + i,k) t.-irll.l)' (14) 
..1-1 

\Vlwrt> .fij is t.lw colwrPnl. <'last.ic scatll'ring amplitude by 'an :\-type atom 

(n-toll'ntlc•), i?. 1 is tIll' gravi t.y t'l'llll'r coordinate of the A-type;· <1 ton1 ( moknt­
le), N .. is t.he mtmlH·r of th<' atoms (tllokntks) in an. elementary n•ll. allgn­
~<ll· hrackl't.s dl'll<>k a\'<'raging 0\'<'r I lw coorcliHat<' dist rihution of scat t<•n•rs 
Itt a grat.ing's ~·knwnt.ary n·ll. 
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The amplitude ft.i has been given by equation (7,8). 
From (1:3 ). ( 14) and ( 8) one can obtain an expression for the suscepti­

bility \lj of the eknwntary cell of an optically isotropic material: 

(
- - ) 'P - T -\l.i k. k- i = \ .. -ro,, + i\,-r~t.i1 ,/;1 + \.-r~li1 ,/;1 ( 10) 

where 

(~.T) = 4.7iC2 (~ {A(P.T) (k k- i) e-i1'RA) 
\ ST l: ,2 ~ • S ' ' 

'O'-'- A=J 

\s1' is the scalar P-. T- invariant susceptibility of an elementary cell. \.!~is 
the P-violating. T- invariant suscc·ptibility of the elementary cell. aud \~~ 
is the P- and T- \·iulatiug susceptibility of the elementary cell. 

-..;-
1/1 -

2k- i 

l2f- ri 
-1' T 
1/2 = -. 

T 

Then, using ( 12.1:3,1.5) one can derive a set of equations describing the 
P and T violating interaction of an electromagnPtic wave with a diffraction 
grating 

( 
p ) - k5 + 1 E; (f) - (J;j- n;nj} \.0 Ej (f) -

. p (-) -l\,,0 (<5;,- nin,)C:ij1n1Ei k -

-2:: {(Jij- 1i.ini)\.rEi (f- i) + (16) 
7';CO 

+ix~ (J;,- n;ni) c:,jfv{1Ei (k ..:..._ i) + 
T - (- ) +xs.,(o;,-n;ni)c:lifv;1Ei k-i }, 

where ko = ~ 
c 

Assuming the interaction to be P, T invariant (x~ = xf = o), eqs. (16) 
are reduced to the conventional set of equations of dynamic diffraction 
theory [9]. The detailed analysis of these equations was done in [6]. 

According to [6] the angle of the photoi1 polarization plane rotation out 
of Bragg conditions is defined by 

{) = -koRex; (0) L + 2kon;1 Re [x1s (7) xis (7)- X2s (7) xfs (i)] L (17). 
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So. the T-\·iolat ing rotation arises in the case of nonzero odd part• of 
the susceptibility: \ 2 ( 7) # 0; Such asituation is possible if an elementary 
cell of the diffra;ction grating'does not posses the center of symmetry. 

h.1 accord<lpce with ( 17) •. the angle of the T-violating rotation grows at 
Or -t 0. Hm\·ever. .tiw condition Or l\s (7)1 « 1 is violated at o;- 1 .-t 0, 
when the amplitude of diffracted and transmitted waves are comparable: 
E (f- i) ~ E (f) and, consequently, the perturbation theory gets unap­
plicable. A rigorous dynamical diffraction theory must be applied in this 
case. . ... · ., .,, 

Let the Bragg. condition is .fulfilled only for thediffracted wave.1t allows: 
us to use the two-wave approximation of the dynamical diffraction theory 
[9]. Then, the set of equations (10} is reduced to two coupled equations, 

wl~ich for the back-s<··attering diffraction scheme (ko II i} taKe the form [6] 

( ~; -I) E; ( k) = \• (0) Er{k) + i~; (0~ ~;mJ Em (k) n 1+ 
f\$ (T) Ej (~- 7) + \~ (i)c:imfEm (f.-. i) vt1, · 

(
F :_r Y . . . . . . . .. . . . 

' ·· · : . ~JT ~ l)E),(k~ f) ~y,,(O)Ej(k- f)~ ' ' (18) 

+ix~ (O) €jm1n1 (f- ;) Ern (f: '7):+' 

+\s ( -i) Ej (f) + x!' ( -i) €jmfv2f Em (f) , 
ii (f- i) = 

1
t;

1 
. These set of equations can be d_iagonaliz~d for the pho­

ton with a certain circular polarization. Let the right-circularly polarized 
photon ( e+) be incident on the diffraction grating. Then, the ciiffraction 
p:·ocess yields .to ~he ~~earan~e .of a ba.ck-scatt.ered photo.r:t wi,th the,left 
circular pola.rizatwil ~ ~) . (this IS .becaus'e .the. momentum of the· back-

scattered photon k' = k - 7 is antiparallel to the momentum k of the 
incident one}. And visa versa: obviously the left~citcularly polarized pho­
ton will produce a right-circularly"polarized back-scattered one~ ' :' 

• Thus; for:circula.rly polarized·photons:the set of vector equations (18) · 
ca.n: h'e split into two indepe.ndent sets of scalar equ'ations · [6]. 'The ex­
plicibmlution of these equations yield to· the following: expression for the · 
transmittedwave amplitude [6] (all the s)rnibols'are defined in [6]): . 

. ' '! 

- b • 
E± = e± ( -1) e'""±, 
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where 
_ 1.· [~-± ( ) _ ko (o:1,2- 2x. (0)) L ~±] L 

'P± - u 2 t 0:1,2 87rb 

Using this equation one can find the angle of the polarization plane rotation 

tJ = Re ( 'P+ - 'P-) = i.JP + 0[2 , 

where fJP = -k0Re\; (0) L - defines the P-violating T-invariaut rota­
tion angle and vf2 corresponds to the T-violating rotation: 

v[z (o:t,2) 
k

3
L

3 I (47rb) 2 

=F s;zbz ~ 4 (xi.+ x~.) + koL x (19) 

x [xts (7) Ro .. f. (7)- Xzs (7) Rex[. (7l], 

the sign (-) corresponds to o:1 . the sign ( +) corresponds to o 2. 
The imaginary part of the T-violating polariza.bility /m\J~,:l is re:spou­

sible for the T-violating circular dichroism. Due to that process, a linearly 
polarized photon gets a circular polarization at the diffraction grating's 
output. The degree of the circular polarization of the photon is deter­
mined from the relation: 

J1,2 = 
1£+1~ -1£-1

2 

I.E+ I:.!+ I.E-12 ~ Im<p_- lm<p+ = kolmx; (0) L± (20) 

kJL
3 I ( 2 2) (47rb)

2
[ (-I T(-) (- T(-] ±87r2b2~4 Xts+ Xzs + koL Xts T) mxzs T - X2s T)Imxls T) 

It should be pointed out that the resonance transmission condition is' 
satisfied at a given b for two different values of o:. This is because there 
is a possibility to approach to the Brilluan (the total Bragg reflection) 
bandgap both from high and low frequenGies. The T-violating parts of the 
rotation angle are opposite in sign for o:1 and for o:2. It gives the addition 
opportunity to distinguish the T-violating rotation from the P-violating T­
invariant rotation. l11deed, the P-violating rotation does not depend on the 
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back Bragg diffraci ion iti the ge11eral case because the P-~i~latirig kca.tt~r­
ing a.mplitud<' equals ZPI'O for back scattering (see [6]): In a.ccorcliuic~ \vith 
(HI.20) the T-violatii.tg rotation and dichroism grow sharply'in the viCinity 
of t lie 1'eson atii·c· B mgg t 6mstitission. :\ t the first glance. mie cm~lcl ~'xpect 
for ,JT tlw dqj<'iid<·un· !l'f "' kuRf\;~.:l (i) L (see (17)). Ho\\'ever: 'in the 
viciitity of resomu1n"'. tlw rotation angle> ·,)T turns out to be n1ultiplieclby 

. . . '. . . . . . . 2 .. . . . 

the factor; lJ = (~_:o 2 b1 )- 1 l.·u -1 (\Is+ \;J+ (t;t) Lko\sl.2L wb.ich pro-

vide~ the .above' lll<'nt.ioned gro\\'th (for example. B "' 105 at \s -~ 10-1 
, 

ku ~ 10-t 7105cm- 1 
• L = lcm . b = 1 ). 

Now. lc•t .~ts <'slillwle the efl'cct magnitude. To do that we must-deter­
mine. in arcordann• with formula ( 19) for 1JT. the T-violating susceptibil~ 
ity \ft.:.!• which is proportional to the T-violating atomic polarizability J!'·. 
The C'stimal!' carri<'d out by [-1. :). I] gives .i.{ ,...., 10-:3 7 10--t d1'. where .:J!' 
is the P-violat.ing T~iuvariant scalar polarizability. The polai"izability 3;' 
was studied both theoretically and experinientally [7]. Particularly. the 
theory givc·s .1;• 2:' 1o-:10 cnr:3 for atom~ analogous to Bi, Tl. Pb. It yields 
the estimate;::= 10-:I:J 7 w~:J·1 cm3 for the T-violating atomic polarizability. 
The pola.rizability J_;· causes the P-violating rotation of the polarization 
plaue by tlw angle iJ 1' ~ !.· Rc \; (0) L 2:' 10-7 rad/ em XL for the gas density 
p = 10w7 J0 17cm-:1• :\sa result, in ourcase t.heparameter <.p = h'\; (rJ L 
turns out to be ..p 2:' l0~ 10 7 10- 11 rad/nnxL and ca11 be. even less by the 
factor hjd. where' h is the' corrugation amplitudP of tlw diffraction grating 
whilP dis the dist.<uin' lwtwceu waveguide's mirrors. Assumiitg this factor 
to be ,...., 10:-1 • we shall find <p 2:' 10- 11 710- 12 racl/cmxL. Thus, the final 
estimate or the T-violat.ing rotation anglc> r)T is 

;fl' ;::= 1 0 :-II 7 10- I 'l 1'(((/ h'u 2 \ ; { ~) L 3 (21) 
C/11 

In real situation t.lH' susceptibility of a grating \s (T) may exceed the 
unity. However. our analysis has been performed under the assumption 
\s « l. If. for t-'Xample. we take \s = w-l • ko = 104 then i)T ~· 
10~6 7 10-7 La au d. consequently. for L= 1 em we will have the rotation 
angle t)T ~ 10-t>, 7 10-7 rad. · 

As it is s<'c>ll, W<' have obtained t.lw T-violating rotation angle t~T of 
tlw sanw order of rJ 1'. It make's JlOssibk experimental observat.iou of the 
phenomenon of tlw '1'-violat.ing polarization plane rotation. 

It should be notc·d that. Uw manufacturing of diffraction gratings for 
the range lwiug mon· longwave than the visible light one may be sim-
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pler. That is why we would like to attract attention to the possibility of 
studying of the T-violating polarization plane rotation in the vicinity of 
frequencies of atomic (molecular) hyperfine transitions; for example, for 
Ce (the transition wavelength is>.= :3.26 em) and Tl ( >. = 1.42 em). 

Thus, we have shown that the phenomenon of the T-violating polar­
ization plane rotatiou appears while the photon is scattered by a voluiiH' 
diffraction grating. The phenomenon grows sharply in the vicinity of the· 
resonance transmission condition. An experimental scheme based on a 
waveguide, containing a diffraction grating and gas, has been proposed 
that enables real experiments on observation of the T-violating polariza­
tion plane rotation to be performed. The rotation angle has been shown 
to be t9T = 10-6

-:- L0- 7 L3
• where L is the waveguide length (thickness of 

the equivalent volullle diffracting grating). 

The possibility to observe the phenomena experimentally can be dis­
cussed now. In accordance with (6) the angle of the T-odd rotation in 
electric field can be evaluated as follows: 

_1r 2rrpv.).TL ,3k_,1p _ 1 (dE)(V~ni)P .. 
u "" -c-ijE "' jJf u "'a ~ (V!) . (22) 

According to the experimental data [12. 13] being well consistent with 
calculations [7] the typical value of IJP is l)P "'' w-6 rad (for the length 
L being equal to thP several absorption lengths of the light propagating 
through a gas La). 

· (dE) 
For the electric field E "" 104 V · cm,- 1 the parameter ~ can be 

. (dE) , (dE) 
estimated as ~ "' 10-5 for Cs, Tl and ~ "' 10-4 for Yb and lead. 

Therefore, one can obtain {)T "' w-13rad for Cs, Tl and {)T "' 10-12 rad 
for Yb and lead. For the two-atom molecules (TlF, BiS, HgF) the angle 
{)T can be larger. because they have a pair of degenerate opposite parity 
states. 

The final estimate for the T-noninvariant effect in a diffraction grating 
gives for the T-violating rotation angle {)T 

i)T ~ 10-11 -;- w-12 rad k~x; ( T) L 3 
ern 

(23) 

In real situation the susceptibility of a grating Xs (T) may exceed the 
unity. However, our analysis has been performed under the assumption 
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\s « 1. If. for example, we take Ys = 10-1 
, ko = 104 then tJT ·~ 

w-"-;- 10-7 L3 and. consequently. for L= 1 em we will have the rotation 
angle i)T ~ w-ll-:- L0-7rad. 

As it is seen. we have obtained the T-violating rotation angle fJT of 
the same ordc·r of rJ 1'. It makes possible experimental observation of the 
phenomenon of tlw T-violating polarization plane rotation. 

It should be noted that the classical up-to-date experimental techniques 
allow to measure angles of light polarization plane rotation up to 4, 3 · 
10- 11 rad [H]. 

A way to increase the rotation angle i)T is to increase the length L of 
the path of a photon inside a medium (see (6)). It can be done, for exam­
ple, by placing a medium (gas in an electric field or non-center-symmetrical 
diffraction grating) iu a resonator or inside a laser gyroscope. This becomes 
possible clue to the fact that in contrast with the phenomenon of P-ocld 
rotation of the polarization plane of photon the T-odd rotation in an elec­
tric field (as well as in a diffraction grating) is accumulated while photon 
is moving both in the forward and backward directions. 

For the first v~ew the re-refiection of the wave in resouator (or light 
multiple passing over circle resonator of a laser gyroscope) can not provide 
the significant increase of the photon path length L in comparison with the 
absorption length L" because of the absorption of photons in a medium. 
Nevertheless this difficulty can be overcome when the part of resonator 
is filled by the amplifying medium (for example, inverse medium). As a 
result, the electromagnetic wave being absorbed by the inv~stigated gas 
is coherently amplified in the amplifier and then is refracted to the gas 
again. Consequently. under the ideal conditions the light pulse can exist 
in such resonator-amplifier for arbitrarily long time and, for example, the 
polarization plane of the wave rotates around the E direction: i.e. the 
peculiar "photon trap" appears (phase difference of waves with right and 
left circular polarizations moving in the opposite directions in a laser gy­
roscope increases in time). The angle of rotation i)T = nr. t, where nr 
is the frequency of the photon polarization plane rotation around the 1l 
direction, t is the time of electromagnetic wave being in a "trap". It is 

. i)T 
easy to find the frequency nr from (6): nr = -yc = 2rrpw{3~. From the 

estimates of i)T it is evident that for i)T "' 10-12 rad (Lead, Yb) the fre­
fJT 

quency nr appears to be nr = Lac "' 10-4 sec-1
• Therefore fjT "' 10-4 t 
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and for the til'ne t of about '3 hours the angle 1?T becomes "". 1 1'ad. Tlw 
similar estimates for the atoms Cs, Tl ( iJT'""" 10-13 rad) give that for tiw 
same time the angle JT"" 10-1 rad. 

'The timet is limited, in particular. by spontaneou~ radiation ofphotous 
in an amplifier that gradually leads to the depolarization of photon gas in 
resonator. Surely. it is the ideal picture, but here is the way t<'> fm:ther 
increase of the experiment sensitivity. 

All the said can be applied not only for the optical range but for th<' 
radio frequency rang<' as well where the observation of tlw nwntioned ph~­
nomenon is also' possible by the use of the same atoms and molecules [ 6]. 

Thus, we have shown that the T-odd and P~odd phenomena of photon 
polarization plane rotation and circular dichroism in an electric field ai-e 
expected to be observable experitnentally. . 

It should be noted, that the new T-odd and P-odcl phenomenon of 
photon. polarization plane rotation ( cii-ctt!ar dichroism) in an electric fiE' lei 
has general meaning. Due to quantum electrodynamic effects of electronc 
positron pair creation in strong electric, magnetic or gravitational fields, 
the vacuum is described by the dielectric permittivity tensor Eik depending 
on these fields[ll, 15]. The theory of c;k [11; 15] does not take into account 
the weak interaction -of electron and positron with each other. Consider~ 
ing the weak interaction between electron and positron in the process ~f 
pair creation in an c>lectric (gravitational) field one can obtain that th~ 
permittivity tensor of vacuum in strong electric (gravitational) field con-

. h t vac "{JT ' ( vac ·{JT . ::::-7 g 0 . tams t e erm cik "' 1. -;o'tE:;klniE E:;k · "' t --:!rEikln/9 , n 9 = -, 9 IS 
vac J:!-' , vac 9, g 

the free fall acceler~tion), and as a result, the polarization plane rotation 
(circular dichroism), phenomena exist for photons moving in an electric 
(gravitational) field in vacuum. And visa versa ')'-quanta appeared under 
single-photon electron-positron annihilation in an electric (gravitationa.l) 
field will have the admixture of circular polarization, caused by T-odd 
P-odd weak interactions. 
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('0\":\Rl:\\T DEFl\ITIO\ OF TE~SORS OF IIADRO\ 
POLA.RIZABILITIES BASED 0:\ THE SY~H .. IETRY PHOPERTIES 

OF TWO~PHOTO;\S PROCESSES 

O.M.Deryuzhkova, E.N.Kalantai, N.V.Maksimenko 

Skaryna University, Sovietskaya Str., 104, 246699, Gomel, .. , 
. · · ' . Belarus . · . . · . '. . 

It is known that hadrous arE' structural P<lrtides. For that rea:;;o.t) ·we 

can define their properties by their electromagnetic characteristics. such 
as (r2 ), polarizahilit ies and gyi·atious or'. as the latter is presently kilo~vn: · 
spin polarizabilit)es [ 1-4. 5]. . . 

·The introduc.tion of liadrori.electrom~gnetic cha1~~1.cteristics 'in tl~e (~ffe~-' 
tive Lagrangians is unan1biguous in the iwiH;elati~'istic physics. How~~er, 
while 111oyiug to tlw relativistic theoretical-fie~~!, descriptiot; of. the hiu!ron 
polarizahilities. th<'ir ambiguous dPfinition appears in the amplitudt>s of 

two-photqn processes [:3]. 
Therefore. to construct the effective relativistic; Lagrangian:;.' of the 

interaction betweeu the electromag11eti.c field· and· hadrons, we can use . 
the principle of correspondet;ce of the classical electrodynamics of n1ov~ 
ing mediums. the relativistic qimntum'field theo~y [6], and t.he Poinare 
group algebra of.~lw operators and m,atrices, contai,ned ii1 the hadron mo~ 
tion equations. · . i . 

The classical uon-relati vistic part of Hamiltonian of the interaction of 
the electromagnetic field with. neutral isotropic medium is [7·,8]· 

HI= -271" (?,E +~1 ff) . . 
' . ~ ' I 

(1)_ 
•' 

If we take only the medium polarizability into consideration then 

? = oE, ;\{ = tJii. (2) 

The polarizability tensors a and /3 for spinless particles are 

Ctij = aoOij, {3;; = {3oOij· (3) 

Let us consider the low-energy Compton scattering for structural par­
ticles with 0. 1/2 and 1 spin. We will assume that the tensors & and /} 
depend on spin operators -which satisfy some commutative relations. This 
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statement is in full agreement with the fact that the polarizabilitiesten­
sors can be expressed with the amplitude of Compton scattering. This 
amplitude is based on the invariance relative to P- and T- transforma­
tion and rotation group [9]. Under such approach there is no a physical 

interprc>tatiou of scalar functions. 
The amplitude or scattering of low-energy photons is defined by the 

expressiOn 

F 
}.{_, __ (-';;'1(_/3._') (--')(_'{3._') = ..,._, c ae + ne1 n e + ne e n + 

+(e 'e)(ii.Jil'l- (ii'ii)(eBe') + (nn'. e'e- n'e. ne')Sp(/3)}, (4) 

where w is a frequency of incoming wave, n and n' are unit vectors of 
incoming and SCattered WaVeS, e and e I are Unit poladzation Vectors of 

incoming and scat.! <'red waves respectively. • 

To determine the tensors Ctij and ,t3ij in terms of spin operators S for 
structural particles of spin 1/2 and 1, we use the commutativerelations of 

the spin operators components. 
In both cases the expression 

( ~ ~ 1 ~ S;, Si = ic;jkSk 
(5) 

is true. In this expression Sijk is a completely anti symmetrical unit tensor. 
For particles of spin 1/2 operators Si can be also de~ned by the expres-

swn ~ ~ 1 i ~ 
S;Sj = 4oij + 

2
sijksk. (6) 

According to this statement tensors are expressed as 

T;i(S) = Tooii + iTtciikSk. (7) 

(We imply that T;j are tensors Ctij and t3ii) 
On the other hand, structural particles of spin 1 are defined by: 

~~~ 1 ~ ~ i ~~ ~~ 
S;SiSk = ic;jk + 2(S;oik + Skoii) + 2clik(SiSl + S,Si)· (8) 

That's why tensors Oij and {J;j can be represented by the expansion by the 

following independent combinations 

T;j(S) = Tooij + iT1sijksJc + T2(S;Sj + SjS;). (9) 
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Based on (4),' (i) and (9) the scattering amplitude can be represenl<;d 

by - - -2 + _,,_ . ~ __ , . ;;_, ::-
F = ...... \ {n0 (f f)+ 10 1(.'->[u ]) + n:L{Sc . .'-lc }+ 

+.3o([e'i"i][e 'ii']) + itJ1.( .5[[e 'n'][ eii]J )+ 
~ ~ 

+ilz{ .5[eii]. S[e 'ii']} }\, ( 10) 

where X and ,x+ are the spin functions of the particles, the square brack­
ets represent a vector multiplication, the braces represent a commutator. 

z.From the equation ( 1 0) o1w can be sec that 
1) the scattering amplitude of a scalar particle is defined by no aud .du: 
2) the scattering amplitude of a spinor particle is defiued by the polariz~ 
abilities no, t3o. n1 and f]I; 
3) the scattering amplitude of a vector particle *contains a 0 ,j30 and the 

spinor polarizabilities n1, Oz, d1 and /h. 
For the amplitude . (10) of the second order in terms oft he frequency to 
satisfy the condition of cross-symmetry, it is needed to set the spin polar­

izabilities a 1 and j31 to zero. 
Using the low-eii<'rgy expansion of Born's part of the scattering ampli­

tude and the expression (4), one can obtain that the averaged Compton 

scattering amplitude for particles with spin 1 is 

o ow2 -
<I>(w) =- M + 

311
;/3 (21?- 4p, + 2Q) + 

w2 
+;r(:3no + :3f3o + 4nz + 4f3z), ( 11) 

where a = e2 /47r is the fine structure constant. Let us assume that the 
amplitude <I> satisfi<'s the dispcrsional relations with one subtraction 

<!>("'-') = <I>(w = 0) + w2 J Jm<I>(w')dw' 
27r w'(w'2 -w2)' 

Based on the optical theorem, t.lw expression ( 12) can be written as 

2w2 J atotdw' 
<l>(w) = <l>(w = 0) + ~ ,2 2 · 1r w -w 

(12) 

( 1:3) 

By comparing (11) and (1:3), the following rules of sums can be obtained: 

1 J atotdw' · _ . 4 _ 2e
2 

2 

2
7r

2 
w'z = (nu + f:lo) + 3(n2 + {12) + 3M3 (Q + JL - 2JL). (14) 
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Similar rules of stuns wen· obtained in [10]. However. in this work the 
"uthors iutrodun·d four constants C1.C2.C':1 and Ct. that do not have a 
physical intc•rpretatiou. {.From the expression (14). one can see that these 
constants an• not h iug lnit polarizabilities o 0 and Bo. and spin (tensor) 

polarizahilit ic·s n 2 <t1HI 'i2. 
:\cconling to tlw n•latiYistic ckctrodynamics of the moving mediums 

the effectiv<' Lagrall!!.l' fuucl ion is [1]: 

I I'"/ _ ·)- { I' I' f1 1 J f 1
'} 

•
1
JJ- -" ( 0 111,( + I d 111, I . 

(15) 

In this expn•ssion ( /1 = I~ /I,{'''. h Jl = r~/1,(!". Fl"' = &E JIVPCT F"". where 

1·~11, and i''
111

, arc t lw tensors of the electromagnetic field, a 1,v and ,!3~-'" are 
tensors that are expressed by the polarizabilities in a medium at rest. U11 

is (II<' cJ-cJilll<'IISionaJ \'(•locify of t\w nwdium. 
By analogy with I lw 11011-relat ivistic quantum theory let us consider 

that tensors n 
11

, and 1
111

, depend on t lw 11101\lentum opera! or and the Pauli-

Luhanski n•ctor-OJH'rator 

(\I"' =(\Ill'( J·l·l'' JjJt>· 

The op<'rators 11·
1
, ami Ji

11 
arc suhorclinat.ed to commutatin• corn•lations 

in the limits of quantlllll-lll<'Chanical Poi11care group [ll]. If these conllllll­

tative expressions ar<' used. then we obtain the following expansions: 

1) for particles \rit !1 spin 1/"2 

o 1"' = nocl1w + OtE 111, 1,cr Hl1'f1", 

iJJII' = !3ocl1w + _j1EJII'P"lt'Pj)"; 

2) for particles witll spiul 

n '"' = n uc\1'' + n :z ( 11·11 11·,, + l·l·,, ,,,.11). 

JJII' = ;1diiJII' + J2( ~~·Jill',,+ ll·,, \~i'Jt ). 
,~ ; . 

(16) 

(li) 

( 18) 

( 19) 

Arcol'ding tci tlw noss-symnwtry laws. n 1 and 1'i1 in (16) and (li) are· 
equal to zero. llom•vc•r, in ( 18) ami (HJ) n:z and /32 differ from zero. 
C'ousequent.ly. as. o11<' can lw se<' from (I!)). in the seem HI order of ,t lw 
photon fn·qu<'1H"Y~ tlw <'fl(•d ive Lagraugians of hadrons with spin 0 aud 

1/"2 are dPiined onlY h~· n 0 and .'io. 
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Tlw effect i \'P Lt1!;ra ngia us oft lw intnact iou of tlw elc>ct romaguet ic fief d 
and hadron's with spin r in t lw sanw approximation. depend Oil the C)()('~"­
ators ~i·J.L (relativistic generalizatic>ti of !>pin) and are defined by the cm•tli­
cients o2 3;. whick accorcliug to ( i~). (19). can lw called spin (tf'nsor) 
polarizability. · · . · . · . 

If we move from the Lagrangian ( 15) to the theoretical-field Lagrangian 
on the basis of the cori·espondence principle. then we obtain [4]: · · 
1) for particles \\·it !I spin 0 

L pol il" [(')' +(') ) ("l' J(>l +). ( +'l a· 'l >l +l] j"l"' ejj = 4J/ 2 Cw; ) u,,;; + ut•Y u,,;; - y u1, ,,;; + yu1,u,,;; \ . 

, (20) 
2) forpq,rticles ~vith spin 1/2 , 

. I il" ( - . - ) . 
L~'jf =- t'/,,(iJ,,t•)- (Dvt'•hJ.Lti' A"~''', 

111 
(21) 

where /\.·,,, = nuf.;,,.f;~ + Jof.,,,,i'.~~·. y am) t;' arP t!w wavt• functions of 
particles with spi11 0 and l/'2. 

If the medium is isotropic-gyratropycal [8] 

? ~ 0 e + 11 [ v e] , 
~ . - [- ~] M = !3H + ~ v~ : 

where 1] and f;_ are t lw gyratiou tensors. 
For relativistic moving mediums Lef f is [7]: 

L ? { I' y +hi' ·J I" + J.LVPF ·a pa + .J.LVPF~ a F~ a} ej j = -il" f 0 Ill'( jJI'V l 1] jJa V p 1\, !'a V p • 

(22) 

(23) 

(24) 

As it follows from the correspondencP principle and expression (24), the 
theoretical-field eff(•ctive Lagrangian of the interaction between tl~e ~l~c­
tromagnetic field and spinless hadrqns will not satisfy the law of parity 
preservation. if tlw c·omporients 1]1'"P "~"P diffet~ from zero. However, if we 
proceed to the definition, of Lagrangians of the interaction between the elec­
tromagnetic field and hadrons with spin that is different from zero, then. 
using a vector - operator IV1,. it is possible to 'construCt the structures 'of 
Lagrangian that satisfies the law of parity preservation. 

On the basis of commutative relations between WJ.L and p
1
, it is possible 

to show, that · 

1J1wp = 1/oE::vp Wa · (25) 
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The similar expression is also fair for "J.Lvp· In expression (25) 1]o and "o are 
the gyrational scalar factors or. as we call them now, spin polarizabilities. 

The theoretical-lielcl effective Lagrangian of the interaction between the 
electromagnetic field and hadrons with spin 1/2, in this case is 

L Lpol LSp 
<Jf = eff + ejj• (26) 

In (26) L~''/1 is defined by ratio (21), and 

LSp - . {· ~ :+ • , F"'' ~ FP<1 .T. ++ • VJ1. -t pa} eff- llo If a, u,,p¢' &a - 'f/ &a ui'P1f;F &v F + 

{ 

_ ++ ~vl<t-- ~pa _ ++ ~VJ.L-t ~pa} 

+ko ~· (},, a,,p¢' F &aF -~' aa a1,p1/J F avF , (27) 

. ++ t-- -t 

where a1,p = t(li<J!' -lPll')' a,,=al' - ai,. 
The effective Lagrangian satisfies the cross-symmetry and also satisfies 

all requirements of relativistic quantum field theory. Besides, as. follows 
from expression (27), spin polarizability for hadrons with spin 1/2 gives 
the contribution to the effective Lagrangian. Structures of this Lagrangian 
are proportional to the third order of the radiation frequency. In low­
energy approximation in the terms of order O(w3 ) an amplitude (27) has 
a form: 

L;J1 = iw3 x+ { 7Jb{2 (a [e 'e'J) - 2 ( nn') (a [e 'e'J) + 
+ (11e ')(a [n'e'J)- (n'e') (a [ite'])}+ 

+kb { -2 (a [[n'e 'l [neJ]) + (a [[n'e 'J [n' eJD - (a [[neJ [ne ']])} }x. (28) 

Iftake into account the invariant spin structure or Lagrangian [4], it is 
not difficult to confirm that the amplitudes for Compton scatterihg coincide 
with such as one in works [1,4,5]. 

This work was supported by grant No. F98-105 (01.03.99) from the 
Foundation for Fundamental Research of the Republic <?f Belarus. 
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in tllf framnl'orl• of thr 1/lor/Zfiul FfUTJOF morld tht inclusiUt sptcfra of 
the cumulative ;r0 -lllf80/18 producul in the forward direction in tht I!Uclt'us­
nucleus interaction"' at {.:J Ge \ 'jc/nucleon an calculatrd. It is shown that 
tin modrlnpmducr 8 rJurditatiL'dy. a11d i= 11 some cases quantifafiecly flu 
main e.rperimental nyularities. Accordl= ny to the model, tin production 
of tin cumulafit•e parliclcs is cmwecff'd with tin mechani~m of the "soft'' 
nucleon-nucleon infcrarlion. and tl'ifh the character of thr QCD strii1g 
fmgmmfafion. Fermi 111ofio11 docs not play an essential rolf. Possibili­
ties of the model in rut application to thr cumulatit•e parfich jJroduction 

proccs,<;es an di.'<CU-"8rd. 

According to the g<'tH'rally accepted view point, the cumulative particle 
production is caused h.v t.he existence in the nuclei heavy compact objects 
ca.IIPd "fluctons". A 11 alternative· possibility of the. cumulativf' particlf' 
creation as a. rPsult of tIt<' so-called ''hot'' process does not consider now. 
However, the "hot'' models ideas havf' found an extraordinary application 
in high enei·gy ph}'si·('s iusome modified fonns: The)' are iuie'd in the ·,~ell­
known models of mult.i-pa.rticle production as FRITIOF '[3]. RQl\ID [4]: 
and HI.JING [5]. Tlw commo11 assumption of the models is that. the soft 
inelastic hadron-hadron collisions have a binary character a +b 0 a'· +b', 
where a'- and b'- are ~·xcited hadrons. The excited hadrons with inasses 
1JJ"'' mb' > ma, l11b an• considered as QCD-strings, and LUND-model [7] 
is used t.o descrih<• t.ltl'ir tlecays. ' 

Jl!) 
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In the case of. hadrou-nudeus interactions. the models assume that an 
excited hadron a' can collide with other nuclear nucleons and increase its 
mass. The same can tak1· place in nucleus-nucleus interactions. 

:As ,one can easily mark. the. gent;>ral repr~seqt(\tio11 ,of. the J1adron­
nucleus intei·actions as.sumed hy 't1~e 'rilO'clels is. aln1~st Similar 'to that CO~­
sidered in Ref. [ 1]. The authm:s. or'ReL [l]stiJ)l)~sed, heave hadron system 
(a fireball) which does not include a leading particle. is created in the first 
collision of projectile hadron with a nuclea.ruu<:Jeon .. The fireball moving 
in the nucleus collides' \~·itb tither llUclec)ns. ~lows r~Jown and increases it~ 
mass. As a results. a t>roduction of pa1;tides in the i·egions kinematically 
forbidden in free hadrou-nucleon collisions becomes possible. Thus, one 
can expect that the cumulative partid(fs ha:ve to appear in the models, in 
particular, in the FRITIOF modei. . · . 

Figs. 1, 2 show the experimental data[~}on fast 1r
0

- mesons production 
in nucleus-nucleus int<'rc1ctions at P = :3D 4.0 A GeV/c with FRITIOF 
model calculations taking into account the last corrections [9]; As seei1. 
the FRITIOF model predicts the cumulative pa1:ticle production. , 

1r0 - mesons production in the .pC-, pCu-, o:C-, o:Cu-, CC- and CGit­
interactions at momei1tum4.5.4p Ge V / c have been studied experimentally 
in Refs. [8}. ''h quanta were registered at the experiments hy 90~channel 
Cherenkov 7-spectronwter of,LHE'- FOTON setup. 1r

0
- mesons yvith the 

angles in laboratory ·system (in• the rest frame of target ) Orr ''5: 16° and en­
ergies E.,; 2: ·2 GeV were considered after estimation backgrourid conditions 

and. 1r
0 ide~tification. 

, In Fig.1, the expel'imentally measured invariant cross~sections of 7r
0

-

mesons production per mass number of projectiles (Ap) as a function of 
cumulative number X an' presented by circles. The variable X was deter-
mined as ' . ': ' ' ' ' ' : . ' ; ' ' .. 

';r: 

'' 
X= 

3
D . . mNErro-; m!o/2 . .-.· 
· EsmN- ENErro- m'Jv + PNPrrocosBrro' 

,;•;, 

wher~ m/v ~n.d. ~rrO. are nucleo~ a!ld meson masses, respectively, PN is the 
momentum of projectile per nucleon (PN = 3D4.5 GeV/=El) Prro is.7r

0 

momentum, EN = 3Dl\t~ + P'fv., Erro· = 3Djm!o + P;o. The systematic 
errors of the cross-section is about "' 20 %. The statistical errors are: in 
the circle limits. , 

, In figl, histograms demonstrate calCulations of the cross-sections of 
1r0- mesons production at E1fo 2: 2 GeV and O.,ro ~ 16° performed within 
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the framework of FlUTIOF model. The calculation results are normalized 
on the nucleus-uuclt'us iuteractions cross sections obtained in Glauber ap­
proach [10]. As seen. the slopes of experimental and the calculated curves 
are dose. but tlw calculated cross-sections overestimate the experimental 

values 2-:J times. 
Fig. 2 illustrates a better agreement b~tween calculations and experi-

nwntal data. Fig. 2 giv<'s the invariant cross-sections of 1r
0
-mesons produc­

tion with respect to the rr0 -meson transverse momentum. The model re­
produces both spectrum forms and the absolute values of the cross-sections.' 
The reason of such different descriptions of experimental data of fig. 1 and 

fig. 2 is not clear for us. 
The model FRITlOF allows one to decipher the cumulative particle 

production mechanism in detail. The different characteristics of CO­
interaction eveuts accompanied by the fast 1r

0 -meson production are pre­
sented in fig. :3. Fig. :3a shows the yields into the invariant inclusive 
cross-section of projectile and target nucleons ( clashed and dotted curves, 
respectively). The relative yields are given in fig. 3.c. As seen, the contri­
bution of the target nucleons is about rv 25 %. 

Fig. 3d shows the average longitudinal momenta of projectile and tar­
get nucleons before and after the interaction (solid and dashed curves, 
respectively). According to the figure, more and more energetic projectile 
nucleons are selected with increase the cumulative number. Accounting 
the Fermi-motion is not critical for the description of the inclusive cross:­
sections because without the Fermi-motion the cross-section in the region 
of X "' 0.9 - 1.3 does not decrease in needed quantity, the slope of the 
cross-section is only changed (see fig. 4). It is natural that.the longitudi­
nal momenta of projectile nucleons decrease some during the interaction, 
but this takes place below X "' 1.5. The nucleons acquired the m~m~nta 
larger than momenta of incident nucleons, give the contribution in the re­
gion of large X .. It is clearly seen in the calculations performed without 
taking the Fermi-motion into account (see insert in fig. 4). The consid­
ered effect of the nucleon acceleration is a specific feature of the· assumed 

nucleus-nucleus interaction mechanism. 
Fig. 3e gives the analogous characteristics of the target nucleons. The 

longitudinal momenta of target nucleons are. small before the interaction 
(see dashed curve). In the course of the interaction, the nucleons have 
to acquire significant longitudinal momenta for the cumulative particle 
production in the forward direction (see solid curve). 
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Fig. 3fshows the masses of the projectile and target nucleons which give 
the cumulative meson, after the interaction (see solid and dashed curves). 
As seen, th~ projectile imcleons acquire larger. excitations then the target 
nucleons. These coincide with the. main imaginations of the "hot" models 
with the exception of the possibility of the nucleon acceleration. 

The presented results allow one to expect a description of spectra of 
cumulative 1!"- and /\·- mesons. Most probably. a problem of a cumulativP 
proton production will take place. The matter is Glauber approach used in 
the FRITIOF model uHderestimates multiplicity of ejected nucleons. So. 
taking into account additional destruction of nuclei is needed what can be 
done, for example, within the framework of approach of Ref. [11). In this 
case, the Fermi-motion manifests itself stronger. Probably. a relativistic 
quantum molecular dyuamics (RQMD) model [4] ~.pplication a.llows one to 
avoid theproblem, because the model describes the proton production tak­
iug into account the secondary interactions in nuclear residuals. However, 
the models can not pn·dict the yields of deuterium, tritium and helium 
nuclei. Perhaps, one should take into acco1mt the multi-quark states in 
the nuclei and their fragmentation. 

The first task is to calculate the absolute values of the inclusive cross­
sections. The questions about fluctons in nuclei will be arisen if the cal­
culated values are less than the experimental ones. In order to solve the 
problem we are going to turn to the hadron-nucleus interaction data. 

The authors express their sincere gratitude to Kh.U. Abraamyan, G.L. 
Melkumov and A.G. Litvinenko for' their fruitful discussions and valuable 
remarks .. 
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Figure 1: Invariant inclusive cross-sections of rr0-mesons production in 
nucleus-nucleus interactions at 4.5 GeV /c/nucleon. The points are exper­
imantal data [8], histograms are the FRITIOF model calculations. 
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One-dhuensional relativistic bound state problen1 for 
· ·superposition of N 6'-potentials · 

V .N .Kapshai, T .A.Alferova 

Goniel Strdt Cnit·r r8if y. Soutfsl:aia .81 r .. 102. C~'omd. :!4 6v9.9. Btlrt ni:s 

Abstract 
The one-diuiensional relativistic bouiJd ::late wavefunctions for 

four kinds of quasipotential equations for superposition of ?v' a­
potentials an· obtained. The quantization condition for such kind 
of potentials is studied in ~let ails. 

in the past models uf point interact im1.i1ave been much dc:'\~elopPd in qu<m­
tum mechanics [1]-[:3]. At this time the ouP-climensional Shrodinger and 
Dirac equations \\'it h point interaCt ions and their generalizations have at-
tracted a lot of attc·ution [4]-[7]. ' 

The investigat)ou of the relativistic two-particle equations [8, 9] with 
single and two cl-potentials has been started in [10, 11]. Now our aim is to 
solve the relativistic quasipotential equations with N cl"-potentials and to 
study the e'ffects. ~vailable for such potentials for bound states. 
. In tl~e ca_se of particles with <'qual masses ( m 1 = m2 = 111) the :one­

dimensional equation for bound state wavefunctions wl~! (p) in the rela­
tivistic configurational representation ( RCR) has the form 

.T,(j) ( ) - I (j) ( E· . ') \1 ( ') .T;(j) ( ').I I 
'i'jl(' p - 9m IW>p,p p 'l'jW p Cp' ( 1) 

where 

E; 11 • = /m 2 + (iw) 2 = 111 cos~. (2) 

and g!;{l ( E; 11 .: p. p') <Ire relativistic Green functions in the RCR. In this 
paper we consider lour kinds of quasipotential equations. The Logunov­
Tavkhelidze equation for two scalar particles (j = 1) and Kadyshevsky 
equation for two spiuor particles (j = 2) contain the following Green furic­
tions [12]: 

g!,!l(E;w;p,p') = -1 sinh[(~-') 1n (p- p')] 

111 sin 2~ sinh [~m (p- p')] 
(3) 

(2l(E . ') 9m iw,p,p 
-1 sinh[(n-Om(p-p')] (4mcos0-1 

) 

1n sin 2~ sinh [nm (p- p')] + cosh [ ~m (p- p')1 

124 

for the nwdified Logunov-Tavkhelidze (j = :3) and modified Kadyshevsky 
(j == .}) equatio11s tlw Green functions are 

_ 1 cosh [ ( ~ - ~) m (p - p')] , 
(5) g!3l ( E;".: p. p') = 

'2m sin~ cosh [ ~m (p- p')] 11! 

-1 sinh [(n- ~) m (p- p')] 
(6) (4) (£ ') -

'2m sin~ sinh [1rm (p- p')] . g ;,..:p.p -
111 

Our purpose is to investigate relativistic two-particle equations (1)-(6) 
with some superposition of N J-potentials (Vs are real) 

N 

l·.(p) = L V~cl"(p- as); as= 2a (s -1). (7) 
s=! 

The wavefunctions of equation ( 1) with potential (7) can be obtained easily: 

N 
,,,til (p) _ "'gLil (E· . p ) \: .T,(j) (a ) '~'ia• - ~t.·n1 tw, ,as 's'l'iw s , (8) 

s=! 

where constants wl}/(as) (.s = 1 ..;- N) should be solutions of the following 
algebraic system . 

~.1Ul(E· )'T,Iil ( ) - O· ~f(i)(E. · ) - ' - Ul (E· · ) (9) 
lV. ks HU '¥ iw as - l 1~ ks tW - Oks 9 tW' ffi, (lkl as • 

The quantization condition can be determined as follows 

det Mi(E;w) = 0. (10) 

Let us consider the potential as a superposition of N J-"holes"(V: = 
- V < 0). The curves for the energy levels E as functions of the "hole 
depth" \l for the superposition of 3 o-"holes" with the same value of pa­
rameter a are given in figure 1. Number of energy levels is equal to the 
number of J-" holes .. (see figure 2( a)). 

In order to compare the relativistic and non-relativistic results let us 
consider the parameters V and E in the range of value corresponding to 
the non-relativistic case: \l ~ m, E is close to m. To emphasize the 
d~scriptive behaviour of the curves let us choose the parameter a as large., 
as there is only the first energy level. The behaviour of the first level 
for all four relativistic equations and Shrodinger equation as a function of 
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parameter \/ is giw·n in figure 2(b ). In the region' of small vahws of l' t lw 
relativistic results coincide well with the non-relativistic one. 

The behaviour of energy levels of the Logunov-Tavkhelidze equation a~ 
a function ofF and a function of a are given in figure :3. The wavefunctiou~ 
of all the considered relativistic quasipotential equations are presentf'cl in 
figure 4. 
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Figure 1: Energy levels as a function of \1 for ma = 1.5, .N = 3 a) the 
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Effects of fer1nion and boson 1nixing at e+ e- lhiear 
collider 

A. A. Babich 

Gamel State Technical Univer.sity named by Pavel Sukhoy~ 
Gamel, 246746 Belaru.c; 

Abstract 

This lecture contains a brief introduction to the formalism of fermion 
and gauge boson mixing. Separately considered the mixing in charge and 
neutral fermion sectors. The effects of simultaneous fermion and gatlge 
boson mixing are discussed too. The modern experimental constrains mi 
the some common mixing parameters are represented. 

1 Introduction. 
Grand unified theories (GUT's) arP an attractive extension of the stan­
dard model (SM), allo\\'iug us to understand the relative values of the 
gauge couplings, the qua11tization of the electric charge, ~s well a.s suc­
cessfully predicting some fermion mass ratios.· Furthermore; GUT's are a 
natural outcome of more fundamental theories such a.s superstrings. As 
soon a.s one considers unification groups beyond the simplest SU(5), two 
general consequent result: (i) thC' low-energy gauge group often contains 
extra U( 1) factors; (ii) t.he fermionic sector is enlarged, since the matter 
multiplets are in larger wpresentations [16 for 5'0(10), 27 for E"', etc. ]. 
Moreover, since with the fermion content of the SM no new anomaly-free 
currents are possible beyond those ofSU(5), the presence of new fermions 
in any extended unified gauge model is a necessary condition to ensure 

anomaly cancellation. 
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In many models the 111asses of the nf'\\' fNmions arise from the same 
vacuum expectation vahws ( VEV's) that give mass to the extra gauge 
bosons. and hence are expected to be not much larger than jfz, itself. If 
ne>-.:fennions are present. there .are g~od reasons ~o believe that they. Will 
mix ~ith the knm~·n st~t~·s: ·f~r th~ n~utt:al ferniion~ 'th~ mixing n~tur~lly 
arise in seesaw models. which pt:o\•id~, a nice explanation for the lightness 
of the known neutrinos. For the charged fermions. a mixing would pro­
vide a natural channel for the decay ofheavy ones. avoiding cosmological 
consequences that would lw pi·obleniati'c if the heavy fermions were stable 
[1], [2]. Hence, in the preseuce of a light (100 GeV - 1 TeV) Z' boson, 
on~·als.o expects some light (~·.1 TeV.) fermions mixing with the· known 
ones, and the modificat.i~ms. on the electroweak observables induced by the 
presence of both these kinds of new states may well complete. so that it is 
important to consider all c>ffects simultaneously: 

.!,From the phenomenological point ofview much effort has been devoted 
to constrain a Z' bosou associ'ateCI 'with an extra U( 1) surviving below 
t.he TeV sqtle via.its indirect eff~c~s [:3] - [6]. In addition to ~he direct 
searches for neyvparticles, s'troug bound~ have been also. se.t on the mixing 
between the known fern1ions and heavy new ones. which would affect the 
couplingsofth~light $tates to tl~e st~nclarcl gauge. bosons P']-{9]. While 
rather exhaustive analvsis exist where either only the modification clue. to 

. ~' ' ' ' . . - ... 

an extra neutral boson. or only the mixing effects induced. by the new 
fermions, are considered. at present only a few steps have been clone in 
trying to take into account these two effects sirnultanemisly-!lOJ-l[1,2]. The 
aim of the present report is to study in detail the interrelation between the 
two possible sources of deviations from the SM predictions. 

:· ' . } 

2 Exotic fermions. 

In the SM, all left~ handed ( L) fermions transform as ~~~~tbl~t·~ under ~~~k 
S'U(2)w, while all right-handed (R) fermions are singlets: 

( v~ ) ( v~ ) ( v: ) ( u ) ( c ) ( t ) , (l) 
· e ,L J-l L. T L¥ d L s L b L 

. efi Pfi. rfi UR 

dn 
CR tR '• 

SR bR, .. :; ,(2) 
. . 

Many models which go beyond the SM predict the existence of new 
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fermions which transform in a non-standard way under SU(2)w. in E6 

models, for example. in the 27-plet one finds, in addition to the ordinary 
particles, vector singlet quarks and vector doublet leptons. Vector singlet 
(doublet) fermions refer to particles whose L and R components both trans­
form as singlets (doublets) under SU(2)w. One also finds new. S'U(2)w -
singlet Weyl neutrinos in the 27-plet. Mirror ferrnions are another type of 
exotic fermion, whose trausformation properties under S'U(2)w are oppo­
site those of ordinary fennions, i.e. left-handed singlets and right-handed 
doublets. These appear. for instance, in grand unified theories which in­
clude family unification. 

The possibilities for new fermions are listed below: 

• Canonical S'U(2)w x U(l) assignments 

a) sequential fermious 

( v) (u) £- 'L ER, D L 

• Non-canonical S'U(2)w x U(l) assignments 

a) vector doublets 

UR 
DR 

(3) 

( ~~ ) L ( ; ) R, ( ~ ) L ( ~ ) R (
4) 

b) mirror fermions 

(; )R, 
UL 

, ( ~) R EL. DL 
(5) 

c) vector singlets 
UL UR 

E£ ER_, DL DR 
(6) 

d) Weyl neutrinos 
NL NR (7) 

Here pairs of particles enclosed in parenthesis indicate S'U(2)w doublets 
and otherwise they are S'U(2)w singlets; N - neutral lepton, E - charge 

,lepton, U- up-quark(+~) and D- down-quark (-~). In following all 
particles with unconventional isospin assignments (left-handed singlets or 
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t·· 

right-handed doublets) will be denoted as e:rotic fermions. and all remain­
ing new fermions as well as all the standard ones. which have com'en~ 
tiona! assignments, are ref1•1Ted to as ordinru;y. Since no new fennious haw• 
been directly observed yet. if new states exist they should be rather heavy 
(mnew 2: Ebeam/2, where Ebeam ·_ beam energy modern electron-positron 
colliders (LEP2, SLC)), with possible exception of the singlet neutrinos. 
However, since the light mass eigenstates will in general correspond to su­
perpositions of the known and new states, the nPw fermions could manifest 
themselves indirectly through a mixing with the known ones. 

3 Fermion mixing formalism. 

Now· we discuss the fermion mixing form'l!lism between the known and 
new states in general context. Since S U (1 ), 711 and S U ( :3 )c are unbroken, 
different gauge eigenstates can mix only when they have the same electric 
and color charges, and h<'nce the electromagnetic and color currPnts of thr 
mass eigenstates are not modified by the fermion mixing. So fermions can 
be divided into four categories, a namely, u - type with Qem = 2/3, d 
- type with Qem = -1/:3. e - type with Qem = -1 and n - type with 
Q,m = 0. The case of mixing in neutrino sector is more complicated and 
we consider the charged fermion mixing and the neutral fermion mixing 
separately. 

3.1 Charged fennion 1nixing 

As known in the gauge currents chirality is conserved, and it is convenient 
to group the fermions with the same electric charge and chirality a = L, R 
in column vector of the !mown and new gauge eigenstates \II~ = ( \11~, wt )~­
The eigenstates in \II~ cart be mixed via the mass matrix, and their relation 
with the corresponding light and heavy mass eigenstates Wa = (Wt, \I! h)~ 
is given by a unitary tratisformation 

( o ) ( ) ( G' ) -WK Wt - A , 
wt a= U"' w" ,, , wh:re Uo = F H n, a= L, R (8) 

The submatrices A and F describe the overlap of the light eigenstates 
with the known and tlw new states, respectively. The unitarity of Ua 
reqmres 

-.4t:1 + FtF = .4.4t + c;c;t =I, (9) 

l:J.1 

and so the matrix A deviates from unitary one by small light-heavy mixing 
effects contained in F. 

In terms of the fermion mass eigenstates the neutral current corre­
sponding to a generator Q -is 

} II _ """' ,j, • ~.l'l .·t Q [." •T• 
• (l- L '-*'~..--..I ·t.l'L c...l 't:t'*'o· ( 10) 

u=L.R 

Here Q represents a genl'ric diagonal matrix of the charges for the chiral 
fermions. From ( 10) one n•adly notes that if in one subspace of states with 
equal electric charge and chirality the matrix Q,, is proportional to the 
identity. the current for t lwse fermion:; is not modified in going to the base 
of the mass eigenstates. and the corresponding gauge couplings are not 
affected. This happens for example in the Sl'vl. where for a given electric 
charges and chirality the <'igenvalues of T3 are indeed the same, implying in 
particular the absence (at the tree level) of flavor-changing neutral current 
(GIM mechanism). 

In model with He\~- fi·rmions. tlH' matric-es Q,, have the general form 
Qa = diag(Q~, Q;;'). Also. if the gauge group is generation independent 
all the known states appParing in one vector Ill~ have the same eigenvalues 
with respect to the ge1wrators of the gauge symmetry, and hence Q~ = 
q~I with q~ = t 3 (.(~-).q 1 (f,~)- This also happens for the new charged 
sta.tes in E6 , i.e., Q~' = <f~ I. In contrast, since more different types of 
neutrino are present in F:li· for the nt•utral states appearing in w1r. Q;; is 
not proportional to the id(•ntit.y. 

Keeping only those tenus which involve just light states the weak neu­
tral current can now be <·xpressed as 

J l'· 
IQ """' -\{T --'i· r· ~..- 4t 4 F- t JllfF J ·T· ~ - lo / qo ~· 1..1" 4 n + o ~o o '.¥ /._-r 

•>=L,J/ 

"""' \{1 I' [ K + ( !If K)ptollfp] •T• L...., lc> l q" q,, - q,, a~,, n 'J' lcr• 
tt=L,/1 

h 

( 11) 

(12) 

The first form ( 11) is g<'II<'ral, and describes the effects of fermion mixing 
in the neutral current or light states for a wide class of model, while thE' 
second form (12), obtained via the unitarity relation (9), holds wlwn the 
lllixing is with only 011(' type or new states that have the same q:'f charges, . 
as is the case for the chargl'd fermions of E6 and the neutrinos in 80(10). 

The important point t.o recognize here is that, since neither A> nor F,., is·· 
Unitary, AlAa and r.:!J·~. arc' not necessary diagonal In other words, FCNC 
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will in gei}eral bejndun·cl among t lH' light particle. However. extr~me!v 
~t~·ingent constraint exist on Jl c. sd aud bd transitions,; and imply that 
thP corresponding·terms are at most :--- 10-4 [1:3]. Tight bounds ,...., .IQ-1 

exist for bs, Tt and TJI liavor chauging parameters as well [1:3].: Hence, 
if flavor changing vertices exist in Z0 interactions. most of them must be 
negligible. and it is then reasoriable to concentrate in constraining possible 
deviations in flavor diagonal couplings. Assuming the absence of FCNC 
is equivaler:1t to assume that different light mas~ eigenstates are not mixed 
with th~'same exotic p~rlJ;er in \vhich case th~ FtF ten~lS coq·esp~mling 
to ordinary - ~xotic mixing arP diagonaL With this assumptiou,:we can 
define the mixing angles o{R that describe the mixing between L or R 
ordinary and exotic.partll;'l"S through . . · 

' . . . -

(F1F,~)JJ' = (s(.) 26jj •. . r,.J:: ~ tR,11R.TR.d£,S£,bL, ' ( 1:3) 

where (.s{.R) 2 = 1-·(cf.ul2
' = sin2 BL1. Tlw flavor diagonal chiral coupling 

to the Z0 of the corresponding light mass eigensta.tes thf>u read as 

- ( n - 1 ( .! l2 + .2 ::.oR . - -2 :;R :;w, f = e,p, T 

EoL(fl = 1 !2 .1 2 
-2(c£l + 3sw, f = d,s,b. (14) 

Similarly, the chiral couplings in the Jf' current are also flavor diagonal. 
and we find ·, 

cJR(f) = qr(fa) +(.sf. )2[(/J (.f;") - q1(.f::X )j, .f = en, flR, TR, dL, 8£; b£ • . (•15) 

Ift3(.fN) = t3(.fK), as in case the left-handed charged leptons and right­
handed qem = -~ quarks in E6 , then, since the coeffiCient of the pt F term 
in ( 12) vanishes identically. the .J6' current is not modified in going to 
the mass eigenstate basis,, and the chira.l couplings of the corresponding 
fermions conserve the standard forin . 

1 1 
·cot( e)= -2 + .s~v, con( d)= 3s~. (16) 

In contrast, in general q1 UN.) -=/= qj'(JK), and the mixing between the or-· 
dinary known and new fennions·will indeed affect-the £ 1 couplings; Unfor­
tunately, since Z0 interactions cannot provide information on the pt F pa­
rameters, there is not p~ssibility to derive constraints on ordinary-ordinary 
mixings .. 
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Fermion mixing affect the charged current sector as well. For the 
hadrons, since the only Pxotic quarks present in E(3 are dL type, the gen­
eral formalism acquires a much simpler form. In the standard base, where 
the gauge and mass eigenstate up quarks coincide, the charged current 
between light mass eigenstate quarks i_s 

1 j11 ,'j',u pAd •Trd 2 nr ='~'ILl L'~'IL• (17) 

where WIL = (u,c,t)l am! wfL = (d,s,b)I. At here plays the role of an 
apparent CKM mixing matrix, but clearly it is not unitary due to the 
mixing with the exotic quarks. 

3.2 Neutral fennion 1nixing 

For the neutral fermions situation is more complicated and a few specific 
assumptions have to be formulated as well. At first, neutral fields with 
three different weak -isospin assignments can mix simultaneously in the 
presence of Majorana mass term. In fact, in addition to the known neutri­
nos in SM there are new ordinary neutrinos in the L doublets (N E-f. 
The exotic neutral states with t 3 = -~ appearing in (E+ Nc)I can also 
mix with the known neutrinos through lepton-number violating b..L = ±2 
Majora.na mass terms, and finally, for each fermion family. In E6 two 
8U(2) exotic singlets vf and SL are also present. -

At second, there is the lack of experimental constraints on neutrino 
FCNC's so that, as for the ordinary-ordinary mixing, again we cannot 
make any assumption on the form of the Ft F term in ( 11). However, in 
all the measurements the final-states neutrinos are not detecte·d, so that a 
sum over the flavor of the final mass eigenstates has to be taken. Underthis 
condition, we can again account for the mixing effects in the neutral sector 
without introducing explicit FCNC parameters. A further assumption has 
to be made regarding the number of light neutrinos. For simplicity we 
assume that only the three known neutrinos, which are mainly ordinary 
states, are light. 

In analogy with the charged fermions, it is convenient to· introduce a 
vector n1 = (v~, vJ.t )I for the known and new neutral gauge eigenstates and 
a vector nL = (n1, nh)I for the light- and heavy-mass eigenstates, to label 

· the elements of the basis with indices a, b ... and i,j ... , respectively, and to 
· drop the index/( when no confusion can arise. We will also not distinguish 
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between left-handed neutrinos and antineutrinos. They are all described 
by _field n£. The right-handed fields will be denoted as n'R = Cni, and 
clearly. n'fl = U RnR with ,[J R = U£. t{ence it is understood that ( 11) has 
to be restricted only to L-chirality states in this case. · 

It is useful to decompose the vector of newstates and the matrix FL. 

relating the new state with the light ones, as 

zij1L = (.V,Nc,S)I, FL = (O,E,S)I, (18) 

where each submatrix describes the overlap of the light states witl{ the new 
ordinary, exotic doublet, and exotic singlet neutrinos, respectively. Three 
light neutrino states are 1 he standard v~ i1eutrinos, and the matrix AL, 
describing the overlap of the light neutrinos with· the ordinary knmvn ones. 
is 3 x 3 and deviates from a unitary one. only by small mixing effects •in 
FL. 

In the flavor basis Stich that' the charged lepton flavor. eigenstates co­
incide with the charged n1ass eigenstates up to light-heavy mixing effects, 
the charged current betweei1 light states is . 

1 11 - J1 t -c J1 t e 2.Jw = ncy ALeL + nR"f ERsReR. (19) 

In the first term in this equation the overall strength of the left-hand~d 
is reduced by the effect of light-heavy n1ixii1g appearing in the At neutrino 
projector, while the seconcl term corresponds to an induced right-handed . 
cu~rent that will produce nel!trin<,>s of the nonconventional helicity in weak 
decays. It is convenient to introduce the leptonic analog of the CKM 
~atrix, K1, by writing ,-1t = f(1A

111
• The matrix !(1 is unitary and is 

nontrivial if no~degenerate masses and mixing are present for thelight 
neutrinos. __ Th~ ~xotic mixing appear only in A11

, \Vhich can be. ch~sen 
to be Hermitian, and deviates from the identity by terms of O(s2 ) •. For 
instance, in a we~k decay itt~olving the ea --+ n; transition, the change with 
respect to the SM decay rate r 0 induced by the corresponding mixing is 

r
1 2:::: r(ea--+ n;) = (ALAl)aa + (sJii(EREh)aa· 
0 i 

. (20) 

The first term (ALAlJaa = (A11 )~ = (c£a)2 = 1- (s'i:) 2 accounts for' 
the reduction in the light neutrinos coupling ·strength, and we see that the 
information in K1 is lost ""'hen the sum over the unobserved final neutrino 

138 

eigenstates. The second tc·rm, in which (EREhlaa = (sji')2
• appears only 

both the light neutrino and the R charged lepton mix with components 
of an exotic douhkt (a~ i~ requirt>d by llf'licit~· conservation in the H' in­
teraction), and is 0( _..-t) iti the light-IH'avy mixing. Each ( s}i)2 represents 
an additional mixing parameter that ia ·in principle unrelated to the cor­
responding ( sl: )2 • For c" = f, JL. thl' I.'Xisting direct constraints on the 
right handed currents ( H II C's) [1:3] ensure that it is safe to neglect the 
C)( .~4 ) terms. However for the T lepton, the existing direct limit is too 
weak to justify the sauw approximation. Nevertheless it is easy to show 
that (s[i} 2 is bounded b_,. (·'R )2 ~ Lu(s'/?') 2 = Tr(ElELJ ~ La(8l:' )2 • and 
this ensures that it is safe to neglect the corresponding RHC contributions 

as well. 
Using the unitarity relation" (12) and the unitarity of[\·/, we can intro-

duced common neutrino parameters by writing 

= [A)(.llAL + F{FL)l\'i],"' 

( -"")2 + ('" + \U + \U + '")( ,v0 )2 cL "N "N" "11" "-s ~L • (21) 

where, e.g., A'Jv(.s~_") 2 = (l\}010LJ\·t),"' describes the amount of mixing 
with the heavy ordinaric·s .\', and analogous expressions hold for- the other 
>.~·. parameters that describe the mixing with the exotic. These parameters 

satisfy 0 ~ .X~ :=; l and L: .. .x:: = l. 

4 Simultaneous mixing of gauge bosons and 
fermions mixing. 

The neutral current tc•nn of lagrangian for the multiplet Ill of a given 
electric charge, for the case· when both types of mixing are present, is then 

.-NC- c ~ ,f,O I'(D Hi Hn) .r.o(zo zo zo)T-_ _,_ ---- L...., 'l'a/ a' u'"""' a ~1.'J.'a ' 1, ... , n Jl.-

SWCJI' n=L./1 

~ .r. 1'(l:t /) l' l'tl/ 1[' crt}f"l' ) .r. R(Z Z Z )T ---- ~ '¥(r1 a '' ·n~ 'u u ·u, ..... ·a n "tt J''i'u. " 1 ...... ., -~n 1, .. 
81\'CJI' . 

c 

a=L.H 

where R is the ( 11 + 1) x ( 11 + 1) orthogonal n1atrix that diagonalizes the 
neutral boson mass matrix; H~ are the (na + ma) X (na + nia) matrices 
that express the coupling s of the non universal family diagonal (NlTFD) . . . ' . ~ 
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and family changing (F(') g<).uge bosons to matter. In the simplest case of 
' jl ' ,f • . . - •. 

o!1ly one extra neutral ga\'W'. boson. the H llli;lt~·ix is 
' . . ;· . . 

:.: 
H = ( c~s (j ..:... ~il1 0 ) 

sm e. cos o (22) 

and for the lagrangian \\'C• have 

NC f_ -:-L =--X 
sw·cw 

x. L · W;.( 11 U1(D,,cos0 + Ha sinO, H" cosO-· D., sin,O}l1
11
1l\( ;,) 

a=L,R . . 
11 

Her~ H = diag(Ho, H£). Th~re aye no HEOnor HoE termsin H which 
would give rise to Z? nwdiatecl transiti~ns between exotic ai,ld ordinary 
fermions as long as the horizontal group commutes with the SM gauge 
group. The general neutral current lagrangian term in the· light sector is 

-LNC = -. -
1

- L Wla/ 11 (/\a, 1\'~)Wia ( ;, ) .' 
. .SJ!'CW "=L;R . . . w 

(23) 

where 

I<L = [ ( Ft F) L (t3lc"J.- i:30L) + t3oL- Qs~v] cos 0 +'(Hu)L sin 0, 

I< R = [ ( Ft F) R i :3E 11 - Q -?f1:] cos 0 + ( Hu) R sin 0, 

li.'t =; ·_ [ (FtF) L (i:j£L~- t3oL)+ .t3oL- Qs.iv J sin O.+(Hu·)~ cos 0, 

1~·~ = - [ ( Ft F) R i:3ER- Qs~v] sin 0 :t(Hu )u c~s 0.· . ' . ·. 

It is useful to'introduce coupling parameters A and:::: as 

l\L = (.\L+i3oL-Qs?v)cos0+~LsinO 

KR = (AR- Qs?v) cos 0 + 3R sin 0, 
(24) 

(25) 

where AR = (Ftp)R i:3£R, :h = (Ft F)L (t3EL-i3oL) and 3a = (Hu)a; a== 
L,R. . 

Should note that there are two contributions to the F,C couplings of the 
light ferinions to the' Z, "" ( pt F)a cos 0 and~ (Hu)a sin 0, .which may b~ in 
principle of the same order. In the limit of no mixing betwee'u exotic .a:-nd 
ordinary fermion's. (Fa =· 0) ·and no mixing bet~veen th~ Z and Z' (0 = 0) 
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the SM coupling are rPcovered. - And at last, in the absence of mixing 
with the exotic fermions the FC couplings of the ordinary fermion (of a 
given helicity) to the Z may still survive through the term (Hu)a sin B, pro­
vided that the family of ordinary fermion of the given helicity transforms 
nontrivially under horizontal generator Ho. 

Since for the light charged fermions: the dimension of W IL and W IR are 
th<' same (there is an equal number of left and right handed fermions), we 
can rewrite the general lagrangian as 

• f - 5 f f 5)•Tr ( Z ) -£Nc = . wn~'(9~·- 9AI ,9v- 9.41 "'I Z' ' 
281\"CJI' J1 

(26) 

where 9V = l\L + h'u and 9A = h'L - KR. 

5 Model independent constraints. 

We consider the constraints on mixing parameters from two different pro­
cesses, a namely, constraints from the lepton family diagonal processes 
Z -t IJ; and from lepton family violating processes. For the first ones 
when both mixing effects are presented the branching ration B(Z -t LJ;) 
in the Nfz » m1; approximation, is given as 

- 1 (,'F'Mi (I "12 I ''12) B(Z -t l;l;):::::: -r . r.c 9v + 9:i = 
tot 6v 27r 

. (27) 

= 1 GpMi (IAii + =-ii(}- ~ + s2 12 + IAii + :::;iio + 82 12) + 0((}4). 
r 3

f?= L L ') W R R W . 
tot V .!-7!" ~ 

The experimental values of the branching ratios are Bee = (3.366 ± 
0.008) ·10-2 , B

1
,{l. = (3.367 ± 0.013) ·10-2 and Brf = (3.360 ± 0.015) ·10-::2

• 

So we have constraints 

lA~ + ::::~ol <few· 10-3
. 

For the branching ration of second types of Z decays we have 

- - B(Z -t Ll) (I ijl2 I ijl2)-
B(Z-tl;li+l;lj)::::::2l l2 I l2 9v +9A . -:-

9v + 9A 

- B(Z -t Ll) (IAij + :::;ii012 + IAij + :::;ii012) + O(B4). 
- 41 12 + I 12 L L R R 9v 9.4 
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(28) 

(29) 



;,From ( [13]) experimental values are B,ii < 1.1· 10-6 • B,r- < /.:3 · 10-6 al1d 
Bp.r < 1.0 · 10-5

• So mixing parameters A~ are bounded to lie in a circidar 
region centering at (-=.~e. -=.~e) and the radius "- 10-3 . 

6 Conclusions 

The lect~re is devoted to fermion and gauge boson mixing effects. We see 
that the new fermions will naturally mix with the known light states and 
we have outlined a general formalism that allows the study of the simulta­
neous effects of the iwvv degrees of freedom on electroweak observables. We 
have shown that flavor-changing neutral interactions could naturally arise 
in these models, since in g('neral they are not equipped with a GIM mecha­
nism. However, large masses for both the new fe~.:mions and the new gauge 
bosons lead to a natural suppression of the flavor-changing low--,energy 
couplings of the light· statb. and the FCNC are easily accommodated ii1 
these models. 

We identified a set of parameters that describe the new' physics. The 
efl'eets of the new gauge hoson have been parametrized in .tenus of a Z0 -

-Z1 mixing angle e and of its physical mass M'z. We have described the 
fermion mixings in the neutral sector with three parameters (s[Y, ~nd 
we have introduced the additional effective parameters A~, 1 to· describe 
the kind of new states i11volved in neutrinos mixing. For the charged 
sector, relying on the very stringent experimental limits on FCNC, we have 
neglected possible flavor changing couplings of the light fermions. But this 
restriction is not crucial to derive reliable limits for common fermion and 
boson mixing parameters .\" and =.". 
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Abstract . 
The explicit expressions for the lowest-order radiative correction to the single 

W-production in hadron-hadron collisions are presented with taking consideration 
the contribution of bremsstrahlung. The calculation is made in the framework 
of the quark parton model. The infrared divergence is extracted by using the 
covariant method. 

1 Introduction 

Precise measurements of the W boson mass - one of the fun­
damental parameters of the Standard Model (SM) - along 
with other precision electroweak measurements will lead to 
more accurate information on the top quark and the Higgs 
boson masses, that will provide restrictions on the parame­
ters of the supersymmetric extension of the SM. Our current 
knowledge of the W boson mass (mw = 80.43 ± O.llGeV, 
D0Collaboration [1]) will be significantly improved up to an 
uncertainty in the range 30-50 MeV at LEP II [2], 20-30 MeV 
at the Fermilab Tevatron pp collider [3] and 15 MeV at the 
upgrated Tevatron. Besides, the LHC gives opportunity to 
measure the W boson mass to a precision of better than 15 
MeV [4]. 
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To extract the data on mw with high precision from hadron 
collider experiments, it is necessary to take into account con­
tribution from electroweak corrections (EWC). The final state 
photonic corrections were calculated in [5]. More accurate cal­
culation of the lowest-order EWC to the resonant W produc­
tion at hadronic collisions have been suggested in [6], where 
both the initial and final state radiation have been included. 
In this report we present new explicit formulae for EWC to 
the inclusive single W-production in hadron-hadron collisions. 
Since in the final state only charged lepton is detected, we sug­
gest to use the covariant Bardin-Shumeiko method [7] for cal­
culation of EWC in that reaction. Indisputable advantage this 
method is that the final expressions are independent on ~ny 
poor defined, unphysical parameters (photon 'softness' and so 
on). 

2 Born cross section of process. pp(pp) -+ t±_vl 

The process of the single W-boson production is considered in· 
the framework of the quark parton model - · 

P+P (p+p)-+ w± +X-+ z± +X. (1) 

Notice, that for the partonic process . 
PI-4-momenta of the first (anti)quark (flavour i, class m}), 
P2-4-momenta of second (anti)quark (i', m2), 
ki-4-momenta of final charged lepton z- or z+ (m), 
k2-4-momenta of (anti)neutrino. . . . 

. : . . . . . . . ~ 

The standard set of Mandelstam invariants is the following: 

2 . 2 2 
s = (PI + P2) , t = (PI - ki) , u = ( k1 - P2) . 

The matrix element of the partonic subprocess. coincides 
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Figure 1: Feynman graph for the single W -production ~n partonzc level .. 

with one from [8] (everywhere the W-boson propagator (s­
m~ f replace by ( s - m~? + m~ r~), and the unpolarized 
invariant parton-parton cross section has the form 

~ ~, ~~~~ 
du = 4N· 4 ( 2 )2c5(p1 + P2- k1 - k2)-k -2k , 

cSwS S - mw 10 20 

where 

B··, _ { u2 - for qij ~ z-iit, ijq ~ z+vt, 
n - t 2 - for qq ~ z+vl, qq ~ z-vl. 

Then we integrate over 4-momentaof an unobservable 
( anti)neutrino: 

I d
3k2 . . - 2 2 2 

-
2
k 8(p1 + P2- k1- k2) = o(s + t + u- m1 - m2 - m ), 

20 . 

and according to QPM (see for example [9]) substitute p1(2) ~ 

x1(2)p1(2), where P1(2) - 4-momenta of in~tial hadrons, x1(2) is 
the fraction of the first(second) hadron's momentum carried 
by the corresponding struck quark. We shall denote this pro­
cedure by a operator "hat". Then we multiply on· the part6n 
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densities of the first and second hadrons and integrate over x1 

and x2. 
The integration over x2 is performed with the help of c5-

function taking into consideration that 

o(s + i + ft- mi - m~ - m2
) ~ o(x1x2S + X1T + X2U) = 

1 X1T 
c5(x2 + s u), 

X1 + 
and, hence, x2 = xg = -x1Tj(x1S + U). That case corre­
sponds to born kinematics and will denote by the index "0". 

S, T, U are Mandelstam variables for pp(pp) ~ lvt: 
u 

s = 2P1P2, T = -2P1k1, u = -2P2k1,- s + T < X1 < 1. 

Finally, let us consider the general form of the cross sec­
tion of the process pp ~ lv1• In the hadron-hadron collisions 
the center of the parton-parton masses frame has an uncle-

. termined motion along the bsam direction. Therefore we use 
standard in that case variables: the component of the 4-vector 
of the detected particle transverse to the beam direction ( ku..), 
and rapidity (y). Integrating over· azimuth <I? (it is possible 
since the initial hadrons are unpolarized) we have phase space 

d3kifk10 =? 1rdydk1~· Hence 

~~;1;1 = ~ J dx1Ji(xb Q
2
)Eo, · (2} 

y l.L l,l1 
. . ' 

where 
• • I ' 2' A • • • 2 
_ I _ 1ra2 IVii'IBii'fi'(x2,Q.)Ix2=xg, 

Eo- E x2=xg - 4N 4 A( A 2 )2 ( . S U) cSwS S - mw X1 + .· · . 
(3) 

and the sum is over all types of quarks and antiquarks both 

of initial hadrons. So, for 
- z+ · t ., d- - -b qq ~ Vt, 1. = u,c, ; 1. = ,s, ; 
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Figure 2: The full set of Feynman graphs }or the contribution of· additional virtual 
particles ' ' . · · ·' 

ijq-:-+l-Dt, i=u,c,l; (=d,s,b; ,.,,,. 

qiJ-:-+ z-vt, i = d, s, b; i' = u, c, f; ·· 

ijq -:-+ z+vl, i = d, s, 'hi /. u, c, t: 
In the expressions ( 2), ( 3) 1/ Nc = 1/3 is the c_o.lor factor, Vii' is 
CKM matrix element, fi(x1(2), Q2

) are the spin averaged quark 
densities, Q is a typical momentum transfer in the partonic 
reaction, so, for the numeric estimations we choose according 
[6] value Q2 = m~.· 
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3 Contribution of additional virtual particles 

The one-loop contribution of additional virtual particles (V­
contribution) in the on-mass renormalization scheme and t'Ho­
oft-Feynman gauge is presented. It could be written (for detail 

see (10],[11]) 

dav . J . 2 A 

d
. dk 2 = L dxlfi(Xb Q )8vlx2 =xgEo 
Y lL i~ . 

Here the factor 8v consists of seven terms: 

where 

8v = 8w + 8vt +8vq + 8st + 8sq + 81w + 8zw. 

Aw 
8w = 2RE (s~ 

s-mw 
is the W self-energy contribution; 

8vt = 2R8FWev(s) 

is leptonic vertex correction; 

8vq = 2R8FWud(s) 

is quark vertex correction; 

( 

2 2 3) a 2 mz . mz 
8st = -Q1 ln.-. - 2ln- +-

47r ,m; .-\2 ·. 2 

is v self energy; 

a 2 . mz mu 2 mz md . '( . 2 . 2) '( 2 . . . 2) 
8sq, ,"7 41r[Qu· lnm~ -2ln ;\2 . -Qd lnma -;2ln ~2 ] 

is u-quark self energy; 

2a nw··· w 81w = -Qzcz(Qi 1 (s, t) + Qi'Ii. (s, u)) 
1r . . 
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is 1W box contribution; 

2a . . · zw · o zw = -cl [ ( ( vz + al) (Vi + ai) + ( Vv + av) (Vi' + ai')) I 1 ( s, t) 
1f ' ' - . 

+((vl + al)(Vi• + ai•) + (vv +av)(vi + ai))IfW (s, u)] 

is ZW box contribution .. 
Here the quantities Il,r and I{Jf can be found in [11] (see 

formulae (A.3), (A.4) and (A.6)) IR part ·of V-contribution 
. can be presented as 

s2 
IR a S (Q2 Q2 Q2 . Q Q 1 _ Oy = -In , 2 1 + i + i' - d u n 2m2 

27r A • mu d 

t2 u2 
+QlQictln 2 2 - QlQi•Cz In 2 2) 

mume mdme 

(4) 

Qj is the charge of the fermion j expressed in the units of 
the proton's charge (e.g. Qu = Qu = +2/3). 

- 4 Contribution of bremsstrahlung pp(pp) -~ lvn 

Let's present the cross section of bremsstrahlung (R-contribu­
tion) according~ to the covariance method of extraction of the 
infrared divergence (IRD) [7] in the usual form 

d R d IR'. d F 
app~lv(y _ aR · aR 

-----"-"-----,i2'-'- - 2 + 2 . 
dydk1~ dydk1~ dydk1~ ' 

To get the first part ( afl) we should do operation k ~ 
0 (k is ~momenta of the real bremsstrahlung photon). So, 
analogously the form of Born cas~ 

d IR 
aR ""1 · ( 2).A IR , dk 2 = L dx1fi X1' Q 'E R ' 

y 1~. i,i' 
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q ± 
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q tdtJ ~
q ± 

e 

q t.(t.l 

q 

q tl.lii.) 

Figure 3: The full set of Feynman graphs for contribution of the bremsstrahlung 

'EW = -a lvmaz dv'EI[FIR]. 
7r Vmin 

Here the substitutions 

dx2 = dvj(x1S + U) 

and 
1 d3k 

I[A] =-I -k_ o[(P1 + P2- k1- k) 2][A]. 
7r 0 

are used. 
The quantity F 1R is defined as 

IR . 2m2 . . t . u 2mi s 
F = Qz-- ezQzQi- + ezQzQi•- + Qi -2 - QiQi•-

where 

z2 ZZ1 ZU1 Zt Z1 U1 

2 2m2 
+Qi,-2, 

U} 
'" \ ·., 

= { +1-, for qij ~ z-vt, ijq ~ z+vl, 
Cz -1- for qij ~ z+vl, ijq ~ z-vl. 

The kinematic variables read: 

tl = (P2 - k2)2' z = 2kkt, 

zt = 2kpt = z - t1 + t, 
151 

• 

!1 

II 

~I 



U1 = 2kp2 = V +it - t, 
. 2 2 . 2 

v = 2kk2 = s + u + t - m 1 - m2 - m , 

Introducing 
J(t, v) = v lim l[F1R], 

,\~0 

where .A is a photon mass as the parameter of IRD; adding 
and subtracting the terms -(ofrr)EoJ(t, O)jv as well as 
-(ofrr)L:0I[F1R] we will have three parts of the cross section: 

. L;~R = -0: L:oJ(t, 0) 1Vmaz dv - 0: hVrnaz dv(L:- L:o)I[FIR] 
'Tr Vmin V 'Tr . 0 

- O:L:o hvmaz dv(i-[F;RJ ·_ J(t, 0)/v). 
7r 0 . 

The second and the third addenda are m.:£1nite. That's'why 
they have the value Vmin = 0, but .~he first term contains IRD. 
We will calculate its in the center-of-mass-system of the initial 
partons (12]. Then Vmin = (k = 0) .. ~2,.Ak2o = .AFo, Vmax; ~­
(x2max = 1) = Xt(S +·T) + u, and th~ IRD-pai:t of the cross 
section has the form 

0: 
--L:oJ(t, O)ln(vmax/ AVSQ). · 

7r 

Sumi;Iling up IRD-parts V.., c;tnd R- contribution we get 
. . dcf~R .' .· . da~R . . 2 

. dk 2 + d dk 2 . L J dxtfi(xb Q } 
y l..L y l..L . i,i' • 

A2 o: . so 
27r L::oJ~t, O)ln V~ax, 

i.e. the infrared div~rgy:h~~.ha8 c~nceled succe~sfully. 
In the process of the' integrationJ(F1R] we were forced to 

calculate by the next expressions: 
1.·. 1 ; 1 ,. 1· 

J(z2J = m 2v' I[z2] = m 2v' 
. 1 1 
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where 
",J ' 

[ 
1,]; 1.: : \ 'J[ l ']' ... 1: .. I-.- =·--Lt; -·-· ·= --· ·Lu, 

ZZt V~ .. ZUt VU 
. '. ·'; 1 : ''i . ' . : ' . i . l . ' J " ' .. ··:.• 
·I[-.-]=-. L;, ![2] ='T' ··. •· 

.. , ; ZtUl: VS . Ut,.,,-,. ,"J.1il! . _,. .·":: ., . 

·. '; t2:· '" 

Lt = lnm2mi' 

;. 2'' u 
Lu = lnm2mr 

. 2· 
'· s ·. 

Ls ····zn mi,m~' 
'. 

>).-

and J(t, v) has the form . , 

J(t, v) = Qr + czQzQiLt- ezQzQi'Lu 

+Qr··- QiQi'Ls + Qr,. 
t ·' ! ~- . t • ? t 

we. turn attention to, the fact:that if.the•index·".O'~··is absent,. 
correlation ;between: ·s, .t, u: cor.responds to the case~ v ·#- 0, 1that 
. t b k' t' I . .. . . ... IS no · orn.: 1nema 1cs.:. ;; .::.; : . .' ·· · :r·, .:;;,:· :,::, · 

After IRG. extraction from the 'cross section: of the·partonic 
process. -remaining part. of R-contribution (so c_alled · "hard"! 
photdri contribution) have: the form · ·· · ·: · ·· n': · " 

; ,·!·; '. ;·, ~3 1 ..:. . . ',;,· 
d~F . . . . ~. IR 12dr· . . 

" I . , LJ E. :::= 26 2 4 . L_., j ) .\ ' 
'Tr Sw S j=l,q,w . 

•. ··.· .. ld3k'·d3k''. •' ., ,'i '' . ,•,' . ''' " . .. 1' . ' ,, ' . '2 
. . dr --::-

4
-k .... -:--li 8[(Pt + P2··- kt :- k) ]. . . .. . .. ',' ,} ' ' . . 10' 0 ' . ' ·. 1 ••..• '. . ·' '' ' 

Here'we have'integiated over /i2: Ani then ,we'integrate .o've~ 
whole'pha~~ space.ofth'e1.r~~1'photori:and: i~.t:foll9wihg_teflll~. 
in the previous'forhltila' · ;; :,; :~.::; · ·· -, · · :· :Y ··· '' .:·_, ' ,. ': .: 

dL:~ 0:
3 2 2 2 

d dk2 = -
8 4 !Vii' I (Qziiz Vi+ QziizViq 

y l..L SwS 
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+Vq + Qlii~Viw + IllVqw + II~Vw)· 
Index of values V corresponds to the particle which radiated 
photon (l- final lepton, q- initial quarks, w - W-boson). 
Double index corresponds to the· same interference term. 

At last, the cross section of inclusive process pp(pjj) -+ [±vry 

have the form 

duh j ( 2 , dk2 = L dx1dx2fi Xt, Q ) 
y l..L i, i' 

AF 

( 
2 dEn 

fi1 X21 Q ) - -- n • 

(5) 

5 Conclusion 

So, in this report the expressions for the lowest:..order radia­
tive correction to the single W-production in hadron-hadron 
collisions are presented. All calculations are made in the 
framework of the quark parton model. The one-loop contri­
bution of additional virtual particles in the on-mass renor­
malizationscheme and t'Hooft-Feynman gauge is considered.· 
The infrared divergence is extracted from the contribution 
of bremsstrahlung by using the covariant· Bardin-Shumeiko 
method. 

We emphasize that the formulae for lowest order radiative 
correction have the invariant form, that is allowed one to use 
them for th~ n~merical estimations in any modern and fu'­
ture inclll;sive;single W-production experiments on the hadron­
hadron colliders: Tevatron, and LJIC especially. 
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o'N THE REACTION tp ~ ep1 

M.V. Galynsky arid M.l. Lev<;huk * 

Instituft of Physics, Bel~rusian Academy of Science;, Minsk 

Abstt·act 

We have studied the reaction ep -t Ep-y in the kinematics corresponding to 
electron scat t.<'ring at small angles and photon scattering at large angles. where 
proton bremsstrahlung dominates., The ani;\lysis is based on the direct. evaluation 
method of thE' matrix elements in tlie so-called diagonal' spin basis·. The r~sults 
of numerical calculations for electron beam energy Ee = 200 MeV in the above 
kinematics show that.the relative contribution of th~ Beth~-Heitler and interfer~ 
ence terms to the reaction cro~s section is less than 10 %, and the cross section 
for the reaction ep -t E[J"f is quite sensitive to the'pr<iton polarizability. 0\ving to 
the factorization of the squared electric and magnetic form factors of the proton. 
a compact. ex)iression has been obtained for the differential cross section· of the 
Bethe-Heitler ~mission of a linearly polarized photon by an electron, taking into 
account the· proton recoil and form factors. A covariant expression has been ob­
tained for tlte lepton tensor in which contributions of states with transverse and 
lopgitudin.al polarizations of the virtual photon are separated. 

- ~ ... ~ 

1 The reaction ep -+ ep-y and the proton polarizability 
. : 

There has recently been much interest in studying Compton scattering on nucleons 
at low and interl!H·diate. energies.. The motivation is that the fundamentahtri.idure 
constants ofthe uude6;1, the ele~tric and magnetic polarizabilities, ~an be determined 
in this process. 'rite nucleon polarizabilities contain important information about 'the 
nucle;r; 'stru~ttire at large ai;d illtel·m~diate distances, in partic;tlar, ~bout the raci'iu~ .of. 
the quark core. the meson cloud, and so on. A detailed discussion of these questioqs can 
be found in[l. 2].' Knowl~dge of' the a;riplitudes for Comptot{scattering on nucleons is 
also required to interpret the data on photon scattering off nuclei. For example, such 
studies can answer the question of in what degree the electromagnetic properties of free 
and bound nucleons differ. 

All the experimental results on the proton polarizabilities have been obtained from 
data on elastic ~IP scattering below pion photoproduction threshold (3]. However, it has 
recently been ,;howu that measurements of the proton polarizabilities at the Novosibirsk 
storage ring with electron beam energy of 200MeV using an internal jet target appear 
to be very promisiug. As proposed in (4], this can be done using the reaction 

e- (pt) + p+(qt) -t e- (P2) + p+ (q2) + 'Y(k) (1) 
*E-mail: galynski·{idragon.bas-net.by, levchuk@dragon.bas-net.by 
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in the kinematic·~ corresponding to electron scattering at small angles and photon scat­
tering at large augl<>s. i.e. in conditions of small4-momentum transfer from the initial 
electron to the final photon and proton. In the lowest order of perturbation theory, the 
process ( 1) is desni bed by three graphs shown in Fig.l. 

k' "\ k 

p, p, p, 

q, 
a b c 

Figun· 1: Graphs corresponding to the reaction ep -t ep')'. 

The first two (a) and (b) correspond to electron bremsstrahlung (Bethe-Heitler 
graphs), and the third (c) corresponds to proton bremsstrahlung (graph with virtual 
Compton scattering (VCS) on a proton). The kinematics described above was chosen 
for the following rPasons. First, the subprocess of real Compton scattering (RCS) on 
the proton is realized in .it since at small electron scattering angles the virtual photon 
with 4-momentum 7' = Jil - P2 (see Fig.1) becomes almost real. Here the quantity 
11·1 = .j-(Pt- }1:!) 2 turns out to be small. 11·1 ....., m, where m is the electron mass. 
Second, for electron scattering at small angles and photon ·scattering at large angles, 
the contribution of the graph corresponding to proton bremsstrahlung dominates, being 
several orders of magnitude larger than the contribution of the Bethe-Heitler graphs to 
the cross section for the process ( 1) (5]. This is the main requirement needed to separate 
the subprocess of Compton scattering on the proton (4] in the reaction ep -t ep')'. 

The estimates in the framework of the method of equivalent photons for a scalar 
model (4] showed that the reaction (1) offers a good possibility of obtaining high­
statistics data on the Compton scattering cross section and the proton polarizability. 
Measurement oft he electric ( ap) and magnetic (J]p) poladzabilities of the proton with 
higher accuracy than in earlier studies is one of the most important problems to be 
solved by experiments in the near future (6, 7]. 

However, to obtain high-statistics data on the cross section for 'YP scattering and 
the proton polarizability it is essential to use a theoretical model more accurate than 
that of (4]. It must. include both the spin properties of the particles and parameters 
characterizing tlw Plectromagnetic structure of the hadron. The model can be ba8ed on 
the result of (8], where a general calculation of the reaction ep -t en was 'performed. 
The cross section was expressed in terms of 12 form factors corresponding' to the VCS 
subprocess on the proton (i.e., the contribution of the graph in Fig.1c) and two form 
factors corresponding to the Bethe-Heitler graphs. 

· The differential cross section for the reaction ep -t en in the above kinematics was 
calculated in (9]. It was expressed in terms of the six invariant amplitudes for RCS 
[1, 10], and also t.lw electric and magnetic form factors of the proton (11]. 
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The matrix element corresponding to the sum of the two Bethe-Heitler graphs (a) 
and (b) in Fig. I reads · . 

' ' ., '1 
M1 =u(p2)Q~'u(pJ) ·u(q2)r11 (q-)u(ql)-;;. 

' q-
(:!) 

Ql' 1, P1 - k + m P2 + k + m 1, = 1 t +e I 
f -2p1k 2p2k " 

(:3) 

2 - Jlp r,,(q l -!I 111 + 
4

M h ( q111- ~~~q l . (4) 

where u(p;) and u( 'li) are the bispinors of electrons and protons with 4-momenta p; a!l(l 
q;, Pl ~ m 2 • q[ = M 2 , u(p;) u(p;) =2m', u(q;) u(q;) =2M. (i = 1.2). k = k1,1 1'.1 1' 

are the Dirac mat.rices. 15 = -h0 1 11213
, 15+ = 15

; fir· fi, andJ2 are respectively 
the anomalous magnetir moment and the Dirac and Pauli form fartors of t.lw protou 
(11], q = q2 - '11 is the momentum transfer, t is the polarization 4-vector of a photou 
with momentum k. ek = k2 = 0, and Af is the proton mass. 

In the limit of interest 11·1 - m, the matrix element -corresponding to the graph of 
Fig.1c is expressed in terms of the six invariant RCS amplitudes T; (i = 1, 2, ... , 6). It 
has the form (8] 

1 
M2 = u(p2h1'u(pl) · u(q2)M11vevu(qJ) 2 , 

r 

C1,Cv . . D11Dv . 
.\111v = (.'2 (11 + T2l\) + ~ (T3 + T4l\ )+ 

. (CJ<Dv- CvDJ<) 5 r, (C,,Dv + C'vDJ<) T. iJ 
+ D2 I 5 + D2 6 . 

(5) 

(G) 

(7) 

The tensor M11v is constructed using a set of four mutually orthogonal4-vectors C, D, B, 
and/{: 

1\· = 1/2 (1· + k) , Q = J/2(7:- k). ,R = 1/2(q1 + 1J2l , 

C.= R- (Rl\')_F- (RB) B B = Q- (QJ\) y 
· · ]{2 \ B2 • ]{2 \ • 

(8) 

D
1
, ::::: c11vpol{v BPCO , 

and it satisfies the requirements of parity conservati01; and gauge invariance: 

M1wkv = r 11 M,w = 0 . ': (9) 

In the unpolarized case it is most efficient to use the standiud approach (ll].for 
calculation of the differential cross section of the proc~ss ( 1) 'together with evaluation 
of matrix elements in the diag~I~al spin. basis (DSB) (12]-(15]. In the DSB, the spin 4-
vectors Sl and s2 of particles with 4-momenta PI and P2 (s1P1 = S2P2 = 0, si = s~ = -1) 
belong to the hyperplane formed by the 4-vector~ P1 and p2: . . 

( V1 V2) VJ - V2 
S I = - -'--7:==-'='=:::==='= 

j(v1v2)2-,l 

(v1v2)v2- v1 
82 = J(vl.ti2J2- 1 
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.(10) 

where l't = i'J/"IJ and 1'2 = p2/m2. To find the probability for_the process (1) it is 
sufficient 1 o calndat<· t.he matrix elements of the electron and proton currents 

(J;-6.6),, = ltH(P2h,u(pJ)6' 

±~I J' -±J' . -J {J' (JI' · )1, = u (tl2)f1,(q-)u (qJ). 

and ~lso tlw quautit.y 
-±6' .6' -±6' . v 6' -\, = 11 (q2)M1we u (qJ). 

Tlw calculatiou>< gin· [1:1]-(15): 

( J"-'') - •> ( ) ( J-J,J) - :1-' ( ) - r--::;/2 
• ' '' - .::Ill au '' . , ' I' - - uy_ UJ '' • JJ- - V -p:. ' 

J' c5' • -c5' 0' . '' ' , r--::; . (JI' · )1, = :!g,M(bo)1,, (Jp ' )1, = -26 Y-!lm(b6•) 1,, JJ_ = y-q:/2, 

where 

(ll) 

(12) 

(13) 

(14) 

(15) 

au= ]J+f/0-. a3 = ]1-/Fi, a2 =[au· a3]xk'/p. UJ =[no· n3JXa2. (16) 

P± = /'2 ± /'t . <~±•' = u1 ± ioa2. o =±I . a2~· = 0. af =a~= a~= -a~= -I. (17) 

bo = IJ+I Vi{. b3 = IJ-/ P, b2 = [bo · b3]x k/ p' , b1 = [bo · b3]xb2 , (18) 

fJ± = '12 ± '~' . b±~~' = b1 ± ;o'&2. s' = ±1, b2k = o, bi = b5 = b~ = -b~ = -1. (19) 

In Eqs.(16), ( 18) allCI below a dot. between any two 4-vectors a and b, square parentheses 
and symbol ·· x·· stands for dyadic product of vectors (but not scalar product) a· b = 
(a· b)

1
.., = (a) 1, (b).,. altemat.ing dyadic [a· b] = a· b- b ·a and dual operation (a· b] x = 

([a· b]x) 1.., = l/:1~· 1 ,., 1,"([a· b])"" = .:1wpa(a)f(b)", respectively, .:1"'1'" is the Levi-C'ivita 
symbol (Eo123 = -l); p and p' are determined from t.he normalizati-on conditions (17) 
and ( 19). finaly. y, and !/m are just electric and magnetic form fact.ors of the protoii 
(Sachs form fart.ors) (ll]: . 

. q3 ' 
!le = /J+ 1'1• <1M2 h • !lm = fi +Ill' h · (20) 

Therefon•. in t.lw DSO the 111atrix ele11tent.s of the proton current. for spin-non-flip and 
spin-flip transitions are expressed in terms of the electric !le and magnetic !lm form 
factor. resped.iwly (see (16]). 

Once the matrix elements of the proton current ( 12) have been determined, the 
calculation of the contribution of the two Bethe-Heitler graphs reduces to the calculation 
of VCS on the ekctron (9, 14, 15]: 

IA,1±o',J'I2 _ _!_I-( ) (JH',J' Pt - k + m J12 +- k + m J±J'.J') ( ')l2 
I - ·1 u. 712 I' 2 '· e + e 2 '- I' tl PI . 'I - Ptt.: P2..: 

(21) 
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Denoting the resulr of averaging and summing the expression li\/~ 6 '·"'1 2 over tlw polar­
izations of tlw initial and final particles by )·~<. onP obtains (9. 14. 15]: 

'I\" - . • .:=:_±c5' ,c5' 
}~, = 1/4 L T,.{ (1'2 + m) Q~c5 .c5 (PI+ m) Q, }fq4 , (22) 

••• 

where Q'!'c5'.c5' = (Qt') (J1~c5'.c5'L, is tlw operator in parentheses between the e)Pclron 
..:::::..±J',&i ..-.. I I 

bispinors u(p2) and u(pJ) in Eq. (21). and Q. = /o (Q'!'c5 ·6 )+/a. Owing to the 
factorization of thP electric and magnetic form factors g, and 9m in (15). thP BPtiH·­
Heitler term in til<' cro:;s section for the reaction tp--+ f;Jl') }~, (22) contains only the 
squares of tlw Sada, form factor:; (se<: (9. 12, 14. 15, 17. 18]). 

Similarly. the calculation of the contribution from the graph in Fig.1c reduces to thP 
calculation of quasi-real Compton scattering on the proton. Using the expressions for 
the eledron curn·nt (14). onp has 

I Mf"·• 1
2= 7~4 I u(q2l Qi"·" u(qtll 2

, (23) 

where Qt6·6 = (J,H.op• M,.vtv. Denoting the result of averaging and summing Eq. 
(23) over the polarizations of the initial and final particles by};,, •. we obtain [9]: '· 

· _ -±o o · };.,. = 1/4 L 1'1'{ (q2 + M) Q;•·• (qJ +A/) Q
1
, , }/1·4 , (24) 

oe 

~ ±o,o ~ . , . 
where Q~ _ · :::::· ~/' (Qt6

•
6 )+"Yo. Finally, tocalculate the. interference term in the case· 

of unpolarized part ides 

Y.1, = 1/4 L 2Re Mt M2 (2.5) 
c5,c51 ,< 

we shall US!' tlw uaatrix elements ofthe proton current (15) and also the 4-vectors x;····1 

(ia), which have the form [9] 

X -o1
,c5

1
_ 2 . . 1 

1 b k(C,.Cvrp DJ.!DV"' _.8 ~ • 1 (C,.Dv+CvD,.)"') v 
" --oy_t C2 .t2+ D2 .t4+z Y+Y- D2 .t6 e' 

•01 01 
• ( 

1 (C,.Cv ( VtM · ) DJ.!DV ·( VtM )) 
XI,· :::;:2 .fl+ '--z;2 T,+1-TT2 +~ T3+1-TT4. + (26) 

81 1 (C!JDv- CvD,.) T.) v + y_ D2 . 5 e_ ' 

where y~ = ji{.12 = Af ..;r:::T, r = q2 /4M 2 and Vt = kq+f2M 2 • As a result, one 
has for the matrix element M2 (5) ~ 

Af2 = u(p2 ).\'±0
1

.•

1 

u(pl)j,-2 , (27) 
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and Eq.(25) reduces to the trace (9]: 

'I\" _±61 .~ ..:...±6' ,6' 
}~ 1• = 1/-1 L 2Rt {T1· ((p2 + m)Q. ' (PI+ m)X )}jq

2 
jr

2
, (28) 

c5,c5' ·' 

J' ., ± ~~ J' _±~' .o' J' J' where x± ,() = ~ 1' -\, ( . and .\ = (X;!' . )""Y". The interference term }'~p (28) 
is a linear combination of the proton electric and magnetic form factors, because the 
operators o;·· .cl' are expressed linearly ill terms of the matrix elements of the proton 
current: {g-•'- 6' = (Q,)1'(J1~c5',c5'),., (see Eqs. (3) and (15)). Therefore, the problem of 
finding the probability for the reaction ep--+ epj in this approach has been reduced to 
calculations of the t.races (22), (24), and (28), which were done making the use of the 
program REDPCE. For the differential cross section we then obtained (9, 14): 

dCT = n 3 1 T 12 o4 (Pt +q1- P2 -qz- k) d
3 fiz d

3
ij2 d

3k 
2rr2j(ptqJ)2- m 2 M2 2]J20 2q2o 2w ' 

IT f= 1/4 L I Mji 12= Yee +Yep +Ypp , 
pol 

. 8M2 o • . ., 
Yee = - 4-. ( g; }'I+ T g;;, Yu ) , 

q 
( . • . 0 . 

. .· At .\2 m2q2 ( 1 .1 ) - r2q2 
} I = - A

2 
- At - -2- AJ - A2 - 2AtA2 

- .,7n2 -(p,q+ _P2q+)2 __ r_((p,q+)2+(p2q+)2) 
2AH1- r) Az AI · , (1- r) A1A2 

. AJ A2 m2q2 ( 1 . 1 ) 2 r2q2 -
}II=- A2- AJ --2- At+ A2 -2A!A2 

+ m 2 (]J1ci+ _P2q+ )
2 + _r_ ((p,q+)

2 + (p2q+fl 
2Af2(1- r) Az At (1- r) . A1A2 

( 2 2)2 . ( 1. 1) 
- 2 7, - 72 + 4 1112 

A! - A2 ' 

. 32M
3 

{ · [ ( v1M ) ( VtM . )] Yep=-_ ., 
2

(
4 2 . 2 ) g.Re Yt T, + -1-T2 + Y2 T3 + -1-T4 

1·-q v4 -:- v2 - r - - r : 

[ 
v1M · ] } +rgm -
1

..:.. T Re(y1T2 + Y2T4) + 4M Re(z1T2 + z2T4 + Z3T6) , , 

(29) 

(30) 

• (31) 

(32) 

(33) 

(34) 

}~P =- {(oio3 + v3)[(l- r:JITJ! 2 + 2v1M Re(T,T;) +M
2
(v;- vhiT2I

2J', 

+ (o2 + v3)[(1- r)IT3I2+ 2vtM Re(T3T4) + M 2(v;- vi)IT412
] (35) 
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:2 . · ( ITs I~ M 2 
2)} .l()A/

4 

+ {u1oJ + n2 + 2vJ)T --.-------4 ., + -IT.;I --4- · 
1J Vi OJ r 

For the invariaut variables in Eqs. (L!J) · (:35) used in det<'nnining the B<>tlw-ll<'itl,.1• 

term (Y,, ). the iuterference term (} ~p). and the term corre~ponding to protou lm·nb­
strahlung (}~p). we used the notation adopt.ed in (8]: 

Yt.= 2ot(otnJ(v2vs- v1v4) + 2vJ + v2vJ], Vt = kq+f2M2 , v2 = -kq_f2M2 . 

Y2 = 2o2 (v2vs- v1v4)- Otvi, VJ = r2/4lvf 2, V4 = kq+f4M 2
, Vs = P+q+f4M 2 , 

YJ = -(4vJ/v~) (otOJ(VtV2(v2 + VJ)- 2v4(VtV4- v:2vs)) + v4(4vJ- v~)]. 
a1 = v~ + VJI/.,(Lv3 + v2)/v~. OJ= v?f(v~ + (v2 + v3)(vi- //~)). 

a2:::::: m 2 /M 2
- VJ + M 6 

/ D 2(-(vtv4 + v2vsf + 4vJ(vJ- VJV4Vs)- 4v:~vJ(v:? + va)]. 
2 t- ., .. , ? fi ? ' > 

D = M' (v~ + (v2 + VJ}(Vj- Vi))= M'v::dn3, ..\1 = J11~·, >.2 = ]J2k. 

Zt = VtV4oio:i , Z2 = V3V4Ct2 , Z3 = 1/4al (2v2(2a2 + V2 + VJ) + 4vJ- V~) . 

It should be noted that the expression obtained for the differential cross section (2!J) 
coincides, within the definition of the initial quantities (tlie tensor M1w ), with the result 
obtained in (8]. if one expresses in thP latter the form factors ft and h through fJ, and 
Ym· Nevertheless, the Bethe-Heitler term Y .. and the interference term }'~ 1, have a mon• 
compact form duf' to the factorization of the electric and magnetic form factors. 

Let us consider contributions of all three graphs to the cross section for the reactiou 
(I) in the selected kinematics when the initial proton is at rest (qt = (J'v/,0)), and tlw 
electron beam etwrgy is E, = 200 MeV. Performing the required integration over the 
phase space we obtain (9]: 

aJw2 I - IT 12 du = q2 
l67r2M I Pt I {p2k) dEpk drlq, dfl-y ' {36) 

where df27 and clOq, are the elements of the photon and proton solid angles, and E'
1
,k is 

the kinetic energy of the rPcoil proton. The differential cross section (36) was calculat<•d 
numerically in the region 5 :S Epk :S 35 MeVwith the sum and the differencE' of tllf' 
electric {ap) and magnetic (,Bp) polarizabilities equal to ap + ,Bp = 1~ and ap- ,Bp = 10 
{in units of 10-4 fm3

) (1]-[4]. We assume that the reaction kinematics is planar. and 
that the photon etJJission and proton scattering angles are t?7 = 135° and t?1, = -20.5°, 
respectively (all angles are measured from the direction-of the primary electron bPam). 
Calculations show that in the entire range of proton kinetic energy considerNI. 5 :S 
Epk :S 35 MeV, for the selected angles t?7 = 135° and t?r = -20.5°, the electrou 
scattering angle 1i, and the 4-nwmentum transfer 11·1 = j -(p2 - pt)2 an• bouuded by 
the values lt?el :S !i/1° and lrl :S 7.3 MeV, with the minimum value of 11·1 corresponding 
to forward elect.ron scatt.Pring (9, 14]. 

The results of Humerical calculations of the cross section (36), clu/clE'I'k/clrl""/clSl., 
in the above kiuPmatics are shown in Fig.2. We see that in the angular range studied 
the cross section for the reaction ep-+ en has a sharp peak consisting of two maxima. 
This peak originatt·s from the factor 1/r4 in Eq. {35) for }-;,P. The two maxima have a 
kinematical origin and arise from the interference of two pole graphs corresponding to 
quasi-real Compton scattering. The cross section {36) has a strong angular dt>]wnd<>nt·P, 
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which, in part.inllar. causes the two maxima to disappear when the_ proton scattered (or 
photon emission) angle is changed by only one degree (i.e., for tlp = -19.5°), ~o that 
we havP an ordinary peak at E'pk = 25 1\le\'. -
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Figure 2: Difft•n·nt ial cross section (:l6) for the reaction (1) in the kinematics where 
proton bremsstrahlung dominates (set> conunent.s in t.he text). Proton scattering ~ngles 
are iJp = -20.5° (solid line), tlr = -20.0° (dashed line), tlp = -19.5° (dot-dashed line) 
and photon Pmission angle is t1"~ = 135°. · 

The differential cross section (36) shown in Fig;2, is the sum of the Bethe-Heitler 
(rree). tlw int.erfl'l'<'lll'f' (ITq,). and tlw proton (u1,1,) terms (see (30)), where t.lw symbol 
(u) denotes lllf' noss section of tlw form (36) with I T 12 replacecl' by }·~,, }:., .. and 
}~'P• respectively. Numerical calculations show that in the entire range of proton kinetic 
energy st.udil'd, !} :S Erk :S 35 MeV, the ratios of the BethP-HeitiPr term IT., and the 
interference t.l'rlll IT"' to the term corresponding to proton emission 1Tpp are bounded 
by the vahws IT" /171'1' < 0.02 and lrr.1.1/u1,p < 0.05. The cakulations carried out for 
another set of angl<·s (t?-y = 135° and t?p = -20°) give results which are only slightly 
different: u,,fu1,1• < 0.05 and lrrepl/rrpp < 0.075. Since these ratios are much smallPr 
than unity, t.lw 111ain requirement (see [4]) for separation of the background. which is 
mainly ell'ctron br<'lllssti:ahluhg, is:satisfied. 

To investigat.P t.he sensitivity of the reaction { 1) to the proton polarizability II'<> 
perfornwcl numerical calculations of the cross section {36) for the same set. of angl"" 
(1'1., = J:l5° and ;,,, = -20°) and fixed sum of the electric and magnetic polariz_abilit.ies 
a1, + f]p = 14 but diii'Preni. values of the difference: (a) llp- f]P = 10 and (b) o1.- ;31, = !i. 
It turned out. that. t.he cross section (36) is about. 8% larger. for the smaller difference. o( 
-polarizabiliti<>s. Tlwrefore, in this kinematics th<' cross sert.ion for tlw r<'aet.ion cp-+ ep1. 
is quite sensitivP to tlw proton polarizabilit.y (!J]. . .. 

•; r· 

163 

• 



2 E1nissiou of a linearly polarized photon by an elec• 
tron in the reaction ep -t ep; 

Let us consiciPr IHJII" tlw emission of a liw·arly polarized photon by an elect ron in I Jt,. 
reaction tp ---+ lJ'~. taking into account. the proton recoil and form factors. Our study 
will be limitPd to the contribution of the ·two Bethe-Heitler graphs (a) and (b) in 
Fig.l. which rorrf'sponds to the matrix P)em~nt (2). Tlw contribution of t hP graph 
with \'C'S on a prCJton c·an bP neg!Pgt.Pd wlwu tlw initial P!Pctrons havf' ultrarPiativis­
tic energies. and tlw photon and fiual e!Pctron an· scattered at small forward angl<'s 
(t1.., -m/E •. 1l,- 111/E,. m/E, « 1). , 

\Ve arc· iut<·rc·~t<-d in tlwsc· effc•cls for tlw followiug reasons. First. 1'\"1'11 though rlu· 
Bethe-Heitler pn.n·ss has been in.tensivdy studied earlier in tin• cas!' oftlw l'lllissiou 
of linearly polarized photons [19. :.!OJ and is widely used to obtain them at accelerators 
(21], up to nm\· tlw proton rPcoil and form factors have not bPen accurately taken 
into account (in •·outrast to the unpolarized ·case). Second. as- was shmvn in (22]. thf• 
inclusion of tlwsc· factors in tlw casP of u'npolarizPd photous leads to a stroug chang" 
of the differential noss section for the> BPthf'-Heit.ler pwrf'ss. Since the polarization 
characteristic of tlw scattf'mJ raaiatioil arP Pxpresse.d in tPrms r)f tllP diffPrPntial cross 
section for the· I'Jllissiou of an uupolarizecl photou (seP bPlow). it is dPar that irwlusiou 
of the recoil aucl form factors is essential. · 

The covariant expression for the differential cross section for the Bethe-Heitler pro­
cess (ilftl1e Born approximation) taking into account. the proto11 recoil arid'fonn factors 
in the case of Nirission of a linearly polarized photon has been obtained by us in (23]. 
It has t11e form 

1 a 3 14 12 c54 (PJ + '11 - J!2- '12- k) d3
fi2 d3rf.! d3k 

(I fiiJ/1 = . o "I 'I ,, 'I -, - -, .-, -, -

'2r.- /(PJ qJ)- - 111-M- '2fJ~o '2q~o '2...; 

2_ 4M2 2 .• e 2 .• e I Te I - -4- ( fie } I + T Ym } II ) • 
q 

. }·j' = 2- At ""'" A:!·_ -· _r_ (kq+)2 + '12 (ea)2 + 4 (eAf ' 
.·.·.; A2 A1 1-r AtA:! . · 

. ,AJ A2 . ' T . (kq+f ., ., , '., . ., 
}Ii = -'2- \- \ + -- --;-;---- + (q- + 4nr) (ea)-- 4(tA)- . 

112 II] 1- T 11]112 . , 

(:H) 

(:J8) 

(39) 

(40) 

=PI _ P2 .4 = b + (bop2)PI _ (boPt)P2 (41 ) 
a A1 A2 ' . 0 At A2 

All the quantities entering (37)-(41) are defined in the previous section. Thus, the 
differential cross section for the Bethe-Heit.ler process in the case of emission of a linearly 
polarized photon diTBH (37) is naturally splitted into the sum of two terms containing 
o"nly the squares of t.he Sachs fo~m factors and corresponding to the contributioi1 of 
transitions without ( ~ g; Y1 •) and with (- r g;, YJ!) proton spin flip. 

Let us discuss the properties of the 4-vector a, which is well known from the theory 
of emission of loug-wavelength photons [11]. and the 4-vector A. They both satisfy 
a condition which follows naturally from the requirement of gauge invariance: a k = 
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1P"' 

........... 

.4 k = 0. and. in addition. they are spacelike vectors: a 2 < 0 and A 2 < 0. This is easily 
n·rifPd b~· using tlw 4-monwnt.um conservation law and the explicit form of a2 and A 2 : 

., ., ( 1 1 )
2 

r
2 

a- = IW At - A2 + A1..\2 ' · 

\ ., m
2 

( 'I+Pl 'I+P2) T 'I+Pl . 'I+P2 --=1+ -----+---=-.:....:....:..._,.;:...:...:...c.. 
- 4M2(1- r) ..\2 At 1- T AtA2 

We notP that tlw 4-vector A was first introduced in (23]. 
Using the ,.j,,·tron 4-momenta p1 and P2 and the photon 4-momenta k, we construct 

the 4-vectcirs oft lw photon linear polarization ell and e1. (e11k = e1.k = e11e1. = 0): 

(p2k)pt- (Ptk)p2 (pt·P2]xk 
ell= , , e1. = , p p . 

where p' is cletPrrnined from the normalization conditions: efi = e}. = -1. Then the 

degree of photor1 linear polarization will be given by the following expressions [23]: 

I Tl. 12 
- 17]1 12 At 

p"'l = I Tl. 12 + I 7JI j2 = A2 ' (42) 

where 
16M2 ., . 

.41 = --4- (g; A1l + T g~. At2) ' (43) 
q 

8M2 2 .- 2 
A2 = - 4- (ge }1 + T 9m Y2), (44) 

q 

}"1 = 2- ~- A2 - _r_ (kq+)
2 

-2 rM 2 a 2 - 2 A2 , (45) 
A2 At 1- T AtA2 

. At A2 T (kq+) 2 . 2 2 2 2 2 ( ) Y2 = -'2- - - - + -- --- - 2 T M a + 2 A -2m a . 46 
..\2 At 1- T AtA2 

.4. 11 = A 2 + T !11 2 a 2 + 2(el.bof , 

At2 = -A2 + r M 2 a 2
- 2(eJ.ba) 2 + m 2 a2 

, 

., 4(SD) 2 

(eLba)·=- M2(1- r)a2AIA~ ' 

SD = 1/2 (Jlvpu(pt)l'(p2t{qt)P(q2)u, 

It is easy to check t.hat. A2 (44) coincides with the expression for Yee (31) determining 
the Bethe-Heit.ler cross section in the case of unpolarized particles: A2 = Y ••• and also 
that Yt = Yi and }2 = Yu (see (32) and (33)). 

Therefore, owing to the factorization of the squared form factors 9e and 9m and also 
the use of the 4-vect.ors a and A (41), the differential cross section for the Bethe-Heitler 
Process both for linearly polarized photon (38) and unpolarized photon (44), (31), c_an 
be written in a rather compact .form. 
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An integration of Eq. (37) over d3 ij2 and dp2o in the rest fran1e of the initial proton 
(qi = (J'vf.O)) giws the following result.: 

duaH a 3 w IP"2I ITI2 

dw dO., dO, = (2rr) 2 IPII 7 (47) 

ITI2 = 9; Y/'+ T 9~. }']j. (48) 

Let us consider the limit of the cross section (47) when the proton is a pointlike 
(structureless) particle with infinite mass, i.e., we assume that g, = 9m = 1 and 
q2 = (M. q):::: (M, 0), where ij= PI -p2- k is the momentum transferred t.o the proton. 
In this limit (M -t •X>), Ekp = ij 2 /2M -t 0. ij/211! -t 0, and b0 = (l,ij/2M):::: (1,0). 
We choose the Coulomb gauge for the photon polarization vectors: t = (0. e) in whic-h 
one obtains 

PIE P2E PIE P2f ~ ~ ., 
Ebo = 0, w = 1';- ~· EA = P2o 1';- Pio ~· r(q+k)- = w-q- . 

Using these expn·ssions we have in the above limit. for (~8): 

2 AI ..\2 W
2q2 

2 2 2 ITI = 2- ---- - + q (ea) + 4 (eA) , 
. >.2 AI >'1>.2 

(49) 

or, in expanded form, 

ITI2 = 2- >.I - >.2 w2q2 
..\2 >.I - >.t >.~ + ( 4p~o + q2 ) (~~e) 2 

2 ? p?e ? Pte · p?e 
( )

2 

+ ( 4Pto + q-) A2 -2 ( 4PtoP2o + q- ) >.t>.2- . (50) 

The expressions ('17), (50) fort.he differential cross section for the Bethe-Heitler proce~s 
duaH/dwfd07 fcln, in the limit where the proton is an infinitely heavy, structureless 
particle coincide with the result of [19]. 

3 Virtual-photon polarization in the reaction 
ep -7 ep1 ( ep -7 eX) 

The reactions ep -t E'{Y'f and VCS on the proton have recently become interesting 
· not only at low and intermediate energies [4], but also at high electron energies and4-

momenta transfem·d to the proton [7], [25]-[28]. The VCS offers greater possibilities for 
studying hadronic structure than the RCS process, because in it the energy and three~ 
momentum transferred to the target can be varied independently. These attractive 
properties of VCS have led to the suggestion that it could be used for experimental 
study of the mwkon structure [25. 26] allCI have made it. necessal·y to perform a t.horongh 
theoretical study of the reaction ·f], -t qry (see; [7, 27, 28] and references therein). To 
calculate VCS 011 the proton, it is necessary to know the hadron (W1..,) and lepton 
(L11v) tensors [7, 2!J]: · 

L 11v = J11 J=, J1, = u(p2)'y11 u(pl) , (51) 
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where u(Jl;} an· •·l•·•·tron bispinors. u(p;)u(p;) =2m, and m is the electron m·ass (i = 
1, 2). Tlw intl'rpn·tation of the results is considerably simplified if the tensor L1w is 
expr<>ss<>d in 1<'1'111' uf t lw longitudinal ami t ransv<'rse polarization we tors oft lw ,·irt ual 
photon. Tlw ··orr<'..;pomling <'Xpressions ean be found in [7] and [:29]. Ho\\'ever. they 
have t.wo def<'cts: ( l) t.lw Pleet.ron In ass is neglegted, which is of course justified at 
ultrarelat.ivisti.- <'I<'<'! ron energies and large squared 4-momentum of the virtual photon: 
(2) they havP a no1wovariant form. A lepton l!'nsor free of these defects was constructed, 
in [24]. 

Let. us eonsickr the question of the polarization state of a virtual photon with 4-
momentum ,. = /'I - I'~ which is exchanged between the electron and proton in the 
react.ion fJI --+ 'Vi (s<'<' Fig. !e). {'sing the Yf'ct.ors of the orthonormal basis a.-1 ( W). 

(A= (0. L :2, :l)): 

ao =1'+1~. a3 =P-IP. a2 = [ao · a3]xqJ/p. at= [ao · a3JXa2. (52) 

I'± = p~ ± 1'1 , U21J1 = 0 , ai = a~ = a~ = -a6 ::::: -1 , 

which satisfiPs tlw •·ompleteness relation 

au · rtu -a 1 • a1 -a:! · a2 - a3 · a3 = !l , (5:J) 

where !I = (!iJw) is the metric tensor with signatttrf' g1"' = (+- --). \H' construct'' 
the 4-vect.ors oft lw longitudinal (e3 ) and t.ransver:;e (e 1 • e:?) polarization of a virtual 
photon \\'ith •1-1111l11H'lll.tnn I' [211]: 

[au · at]q1 [ao · a3)X q1 ( 1 + a3 · a3)q1 
f) = ' f·> = (/.•> = ' f3 = ' (54) 

yl(a.~'/1 )"+'If - - P .j(a3q1 )2 + qr 
where 

? ( . )'' 2PIP2 · Jll q1 · P2q1 - /11 2 ((PIP2 )2 - m4) - m
2 

((PI qt) 2 + (p2qt)
2
) 

p- = CltiJt - = ? (PtP2)- - m4 

It is easily verifPd that thP 4-vect.ors e; ( i = 1, 2, 3) are orthogonal to each other ( e; c j = 
0. i =f. j). and also that. e;l' = e;a3 = 0 and ei = e~ = -e~ = -1. The 4-vectors e; (54) 
are not changed \\'lwn the auxiliary 4-vect.or 'It is replaced by q1 +PI - P2 =· q2 + k (since 
PI- P2 = I'= -'2.1JCI3, where y = v::r'i/2. and t.he vectors .aA (52) are orthogonal). 
For this reason, t.lw virtual-photon polarizatioi1 vectors .e;' (54) in the rest frame of the 
incident. proton or in the c.m. frame of the final proton and photon can be considered 
as equivalent. and t.lwir use lead t.o the same expressions. Below we restrict. ourselves t.o 
the rest. frame of the incident proton, q1 =(A/, 0, 0, 0), where the 4-vect.ors c; have t.he 
form: 

, 1 = (O.l. 0. 0). e2 = (0. O.l. 0). c3 = ~(I rj. 1·oii3) . (55) 

-where ti3 is a unit. vector directed along r (1il = 1), and t'o is the time component o(' 
the 4-vect.or 7' = (ro. 17). . . 

The four mut.ually orthogonal vectors e1 , e2 , e3, and a3 also satisfy the completetiess 
relat.ioll: . 

e3 · e3- e1 · Et - e2 · e2- n3 · a3 = 9 , . (56) 

167 
.. 



which allows a 0 and a 1 to lw PXprc•ssPd in l<'rllls of r 1 and '3: 

liJ = oe3 - Jt 1 , a.o = df3- OtJ , J32 = (+ 0~ (57) 

o = e3a1 = aofJ = a.,q, , ;J = e 1a 1 = e3 a0 = aoqi 
J(a3q1 l2 + qr · · j(a3q1 l2 + qr 

(58) 

In the DSB ( 10) 1lw matrix elements of the electron current have the form of ( 14). Let 
us write the111 iu lr·rms of tlw 4-vectors f.; (54) [24]: 

. (J;·6 j 1, =2m {,3t 3 - utd". (J,-•·•) 11 = -~oy (<H 3 - ,Je 1 + ir5t~} 1,. (i'iU) 

Therefore. for spin-non~flip transitions (.]:·•) the virtual-photon polarization \'et·tor is 
a superposition of the longitudinal (J3e3 ) and transverse linear (-oeJ) polarizations. 
while for spin-flip transitions (J.- 6·6 ) it is a superposition of the longitudinal (ot3 ) aud 
transverse elliptit'al [eo = (O: e0 ) = ..:..tJe 1 + ir5e 2] polarizations .. Here the state of a 
photon with ellipli<·al polarization vee lor f 0 = (0. i',s) has degreP of linear polarir.atiou 
(equal to tlw ralio of tlw diffPI'PJH'C' ami snni of tlw squarP(I s~>miaxPs) [2•1]: 

J32- 1 02 
h: ------,- 132 +1- iJ2+1. (60) 

Inverting this rPiat ion. WI' obtain: 

3
0 1 + ,., 0 2~.:.., 

I- - -- n- - --
- 1 - """ . - 1 - ~>.., 

Now we find tlu· squared moduli of the vectors i',s and a0 : 

I - I" ., 2 I - I" 2 
Ci -=1+13-=-

1
-, ao -=(1+t3)(1+~.:L), 
-1\,--r 

_, 7'/i _" rfi 
KL = ~.:..,eJ- = ~.:.., (-7'2) ' eJ- = (-7'2) . (61) 

Let us introducf' t.l1e normalized vectors .eo 1 and a0 ': 

eo'= e• ~ J1 + tP = V T eo . le.'l
2 = 1 . (62) 

- I UJ R-~.:..,- ,-,,2 -2 flo = fl7lj;; = --
2
- UJ , U0 = 1 + K..,e3 = 1 + KL , 

v1+tJ2 · 
(63). 

It is seen that the elliptical-polarization vector eo of a virtual photon can be normal­
ized to unity (leo 'j2 = 1), but the presence of a longitudinal polarization makes this 
normalization impossible for the total vector a0 '.simultaneously. The quantity KL (61) 
corresponding to the inequality lao '1 2 = 1 + ll.L f:. 1. has the meaning of the degree 
of longitudinal polarization of a virtual photon emitted in a transition with electron 
spin flip. In tlw ultrarelativistic limit, when the electron ma~s can be neglected, the 
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quantities h:.., and ,,. L can be interpreted as the total degrees oflinear and longitudinal 
polarization of tlw virtual photon. ln this (massless) case we have: 

_., 
(64) ., ry 21"- 2 2 2 

(a3'/IJ- + qi = -M -ry • (a1qt) = M ctg il/2, 
1"" 

-2 
,.-l = 1-2 :...__ tg21l/2. 

.., 7'2 
(65) 

where iJ is the aug!<· between the vectors p1 and P2· Equation (65) for""' coincides with 
the result of [2~1] . 

The vector {i,i 1 (():3) can also be writ.t.en a'l 

- I r;:-:-- J1 + h:oy - ·~ ~ _ 
a0 = y~'>L n3- .-2-. e1 + tu V ~-2- e2 , 

which makes it easy to C<?nstruct the polarization density matrix for a virtual photon 
in the massless limit (both in the polarized case, which for massless particles is helical 
polarization, and in the unpolarized ca'>e; see [29]). 

To obtain tlw t"omplete expression for h:-, and KL arising from the contributions of 
the matrix elenH'III,.; both without and with spin flip, we construct the lepton tensor 
averaged over elc>dron spin states. Using the matrix elements (14) this can be easily 

done (24]: 
(66) L

1
., =4m2 (ao) 11 (ao)v + 4y2 ((at) 11 (at)v + (a2) 11 (a2)v) . 

Using the completeness condition (53) and gauge inv~riance, the tensor L11v can be 

written as 
L1., = 4x2 (ao) 11 (ao)v- 4y2 911v , . (67) 

where x2 = m 2 + y2 . The tensor LI'V (67) is used to reduce the calculation of th~ 
contribution of graphs with VCS on a proton to the cross section for· the reaction 
ep --+ epAf to 'calculation of the trace of a product of tensors: 

- 1 yt'l' = L,..v W,..v • wi'V = v,.. v: • v,.. = u(q2) M,..vev u(qt) 2 . (68) r 

Let us express the tensor L
1
w (66) in the terms of the virtual-photon polarization vectors 

e; (54). As a.result. it naturally breaks up into the sum of three terms corresponding to' 
the contributions of transverse ( Lr) and longitudinal ( L i) s~ates and their interference 

(LLr) [24): 

L = 4y2 (Lr + LL + LLr ) , 
Lr = e1 · e1 ({32 + a 2m2 /y2) + e2 · e2 , 

LL = EJ. EJ (a2 +{32m2 fy2) ' 

LLT :=- (e~ · e3 + e3 · et)af3 (1 + m 2 fy
2
). 

Then the total degree of linear polarization of the virtual photon is given ,.by 
< ' > ; ' • 

., .f32+a2m2jy2_ 1 . . 0 2 . . 
h: - . - ./ 
..,- f32+a2ui2fy2+1- f32+1-2m2fx2. 
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(69) 

(70)' 

.• (71): 
(72) 

(73) 



Since a and ;3 are the same in Eqs. (60) and (73) (see (58)). the inclusion of the electron 
mass in the ultrarelativistic limit. leads only to a slight increase of n-, (24]: 

( 
2m

2 
) K~ :::::: n..., 1 + x2(I + ;J2) (74) 

Inverting the relat.ion in (73). we find 

? ? ? ., 1 + n1 
? ? ? ? 2n1 

1112 d- + n-m- jy- = __ .., . n- +a-m-hr = __ ..,_ +--;;-. 
1- n~ 1- n~ y-

(7'>) 

We can separate the completely polarized and unpolarized parts in the transverse tensor: 
LT = e1 · e1 (fJ2 + a 2 m 2 fy2 - 1) + e1 · e1 +e2 · e2 = 
= 1 _2.,~ ( K~ e 1 ·e1 +(1-,.;:;J (el-e1+e2·e2)/2). Therefore, the virtual-photon polarization 

density matrix Pi.i is obtained from the tensor L;j (69) just as in the massless c·asc· (sr~· 
(29]): 

Pij = (1- n~) Lij/8il. (ili) . 
For the degree of longitudinal polarization of the virtual photon we then obtain: 

I 0 I , '"'( ,.2 ( m2 ( 1 - n,l ) ) 

"L = (-7'2 )"7 1 + YF 2K; . (77) 

The expressions (7:J) and (77) for n.; and ,.;:~ with m = 0 obviously become ~>.., and nJ. 
of (60) and (61 ). -

We conclude, by noting that the region of applicabilit.y of thf' tensor I,"' (tiU) is 
not limited to ouly VCS on the proton. Since in fixed-target. experimet.s tlw charged­
lepton scattering at available energies is mainly determined by virtual photon ex­
change, the tensor L1w (69) can ~!so be used to study deep-inelastic electron scattering 
(e±p-+ e± X), and muon scattering (p±p-+ J.l:± X), where inclusion ofthe ma:;;s is more 
important. 

Conclusion 

We have studied the reaction ep -+ en in- the kinematics corresponding to e!Pctron 
scattering at small angles and photon scattering at fairly large angles, where protm·1 
bremsstrahlung dominates. The results of numerical calculations performed in the rest 
frame of the initial proton at electron beam energy E. = 200 MeV in the chosen 
kinematics show that the conditions needed to separate the subprocess -yp -+ -yp from 
the reaction EJI -+ ep-y are satisfied, because the relative contribution of tlw BPI-Ilf'­
Heitler and interference terms t.o the reaction cr9ss section is less than 10 %, aud tlw 
cross section for t.he reaction ep-+ ep-y is quite sensitive to the proton polarizabilit.y. 

A compact. expression was obtaiJ]ed 'for the differential cross section of t.hf' Ad.lw­
Heitler emission of a linearly polarized photon by an.electron, taking into account. the 
proton recoil and form factors, owing to the factorization of the squared electri(" and 
magnetic form fadors of the proton. In the limit where the proton is a pointlike particle 
of infinite mass, this expression becomes to be the well-known one. 
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A covariaul (');]JI"('SSiOII has bef'll obtaiuf'd for the lepton tensor in which tlw contri­
bution of statc·s ll'il h transverse and longitudinal polarization of the virtual photon is 
separatt•d. It ha,. '"'"II shown that inclusion of the lepton mass tends to increase tlw 
degrPe of linc•ar pnlarizat-ion of.t he virt-ual photon. 
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Exact calculation of the 0 (a} order QED·. · 
correctio:qs for the processes !1 !1 ~ !2 !2 ·. 

with polarized initial particles 

Khotilovich V.G., Shumeiko N.M. 
National Scientific and Educational. Centre of Particle and 

High Eneryy Physics ~! the Belarusi~n stdte Univ~rsity 

Abstract 

Exact covariant expressions a~e obtained for the energy' spec.!, 
trum of one of the outgoing fermions,, ,total. cross section and po-, , 
larized asymmetries for the processes 11 11 -t h h with polarized 
initial particles in QED to order a 3• · 

1 Introduction. 

The problem of calculation of the radiative corrections (RC) for a process 

of fermion-antifermion annihilation into another fermion- antifermion 

!t+!t~h+h · .. (i) 

is one of the best studied both in the Standard Model framework and' be-:. 

yond [1]. Even the calculation of-RC in QED for this simple process .is a 

very cumbersome task. But QED-corrections, as background for the effects 

of more "subtle" physics, are required first of all. So far only on~ work is 

known (2] where analytical RC calculation was performed for unpolarized 
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case without neglecting the particle masses. At present time the perspec­

tives of linear e+ e-- and JL+ J.C -colliders [3, 41 with polarized beams are 

widely discussed. Therefore we have done here calculation analogous as in 
l • " . > ,: ) ~ • • • ~- : • ; .'-: • ' • ) • ~ ··~ • 

[2) ~ut for the case of arbitrary polarized initial particles. In that case we 

have much more cumberso~e 'expr~ssions ~rid additioi~al difficulties with 

integration. · To' overtome these diffic~lties the tensor integration method 

have been modified and computer algebra systems were; widely used. 

2 Method of calculation. 

The exact expressions for virtual corrections for.. the process ( 1) are well 

known (e.g. [5]). The infrared divergence is handled with the help of co­

variant Bardin- Shumeiko method [6]. The main difficulty is fourfold exact 

analytical i.ntegratio!l of the squared matrix element of the b~~msstrahlung 
i ' ~ ·: -,· 

process 

J 

ft(pb m,e-) + f1 (p2, m,e+)- f2(ps, M) + f2(p3, M) + 'Y(P4, 0) , {2) 

where Pi (i = 1..5) and m, M are particle ~o:q~ep~a ail;d .masses, ~e± ~e 

polarization vectors of the initial particles. 

The· main part of the· necessary scalar bremsstrahlung i~tegralsi ~as 
calcUlated i~ [7]. To' irit~grate polarizati~n d~pe!ldent terms we apply the. 

tensor integration method as in [8]. But we have made some modifications 

in it, making u8e of basic ideas of the algorithm proposed in [91 for tensor 

loop intregra.JS. · Using the generalized • Kroneker deltas' technique allows t6 

fulfill reduction to scalar integrals quickly and in very compact form. If 

we denote vector and tensor integrals a~( · 
. ' . ! ' ~ 

<~1. [li;J, ~p;J, [If,;p~J. ~pm = j dr (p~,p~.P!tP~.p~p~,p~p~).A, {3) 
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where dr is phase space of the reaction {2) and A is some function· o'f 

integration variables, then we get the results: 

[p~l = [Pfl, [p;'l = [P.f] , r....l' vl _ [P"' pvl [6.3] 1:PtP2JL av 
LP3P3 - 3 3 + 26.~ UPIP2Cf.9 . ' 

I...J'plll = [P"' Pill + [6-k] oPlP2JLgall 
LP4 4 4 4 26.~ P1P2cr. ' [p·,.. vl [P"' pvl [D.pk) if.1P2JL av 

3P4 = 3 4 + 26.~ PtP2cr.Y , 

with 

where 

P.i' _ 1 (..JJ.oPl P2 + ..JJ.{JPI P2 ) 
3( 1) - ,6.

2 
l'I P3(1)P2 1'2 P3(4)Pt • 

1\ _ 1:P1P2 " _ 1:P1P2P3 A _ 1:P1P2P4 1\ _ 1:P1P2P4 
.U.2 - UPlP2 , UJ - UP1P2P3 ' .U.k - UPlP2P4 ' L.l.pk - UP1P2P3 

are shorthand notations for Gram determinants. 

{4) 

{5) 

These formula are implemented in REDUCE program,· that make all 

calculations - from squaring matrix element to final results. 

3 Results. 

After making three analytical integrations we get the fermionic energy 

spectrum as an intermediate result 

1 da 
a0 dx 

= ;~{ ( QiSr(x) + Q}SF(x)(1 + 2p)) x 

( 
+ 1 - 2p + . 2p ) . . . 

x 1 + PL P£ 1 + 2p + PtrPt; cosD.cp 1 + 2p ,+ · 

+Qi (Pt P£D.SL(x) +~~Pt; cosD.cp p D.Str(x))}. 
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Here 
.; ;• 

47ra2 2 2 
CTo = JSQiQf • 

~; 

LlSL(~)·~ .B2{l ~ 2p) {-:--2x.Bx [1 +6p~ 14p2- p(1 +30p- 28p2)L~)]+ 

+2x2P~ [1 + 9p+ 20>- p(1 + 42p- 40p2)L~)] -

-L(f3x) [(1 + 2p)(1 + 2p + 12p Pt)- 2p(1 + 2p + 4p{1- p){1 + 6p1 )) L~)] + 

+x(l - x )L([J,) [I + 2p + 12p2 
- 24/{1 - Pl~} l + 

+L(x, .Bx![ 1,+ 6p- 4p2 ..:...:4p(l + 2l) L~)]} , 

1 [ · · ' ' · · · L(,B)] · .. 
LlStr(x) = ,82 ( 1 + 2p) { x.Bx ?:+ 22p-:- (~ -1:- 26p- 44p2)7J . -

(6) 

-2x2 .Bx [ 11 +28p- (3 + 38p- 56l) L~)] + .. 

+L([J.) [ 3{1 + 2p )(! + 2p1) - 2{1- 4p +6p(l - p)(l + 2pj)) L~) l­
~x(1 - x)L(.Bx) [2 +lOp- (1 + 10p(l~ 2p)) L~) J ~ . ': . '' 

[ 
2 L(,B)]} -L(x,.Bx) 4 + 2p ~ (3 ~ 2p-:- 4p )-y- .' . 

(7) 

where Qi(Q,) are initial (final) particle charges, 

2 P3o [M ] m
2 

M2 

s = (Pl + P2) ' X= E E E' 1 ' p = s ' < Pt = s ' 
/3 = V1- 4p, f3x = V1- 4pt/X2 ~ f3t = f3xlx=1 = )1- 4pf , 

1 + {3 1 [ 2- x(1 - f3x)] 
L(/3) = In 1 _ f3 , L(x, f3x) = 2 L(f3x) +In 2 _ x(

1 
+ f3x) , 
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E is energy of colliding beems, Pf and P~ are longitudinal and transv:er­

sal polarizarion degrees of initial particles. Exact expressions for functions 

S1(x) and SF(x) were obtained in [2]. AB it is seen from {6) transversal 

polarization dependent part is proportional to the initial particles masses, 

and therefore we take it into account only as an example of exact calcu­

lation. Polarization structure of the final state radiation is rather simple. 

It is proportional to unpolarized part. New results are functions LlSL(x) 

and .6.Str(x), that define deviation from this proportionality for the initial 

state radiation. 

Similarly to article [8] we can introduce spin-flip asymmetry 

A(x,p,pt) 
1 dcr TT _ dcr 1l Q~ .6.8 (x) 

__ dx dx _A + 1 L (Sl) 
- Pt P£ d~T + d~:!;,-· 0 QrSr(x) + Q}SF(x)(l + 2p) '1 

where A0 
= 1- 2p ' (9) 

1 + 2p' 

which dependence m1 x is shown· in the fig. 1. 

Total cross-section of the process fd1 -t fd2 ('Y) with polarized initial 

particles in the order a 3 is 

CT = CTa + Pt F£ CTp+ Pt~ Pt; COS .6.<p CTtr = 
= u~(1 + 8a) + Pt P£u~(1 + 8v) + Pt~Pt; cos .6.<p u~r(~ + Dtr) = 

- (u~ + Pt P£ u2 +A~ Pt; COS .6.<p CT~r)(l + Oa) + 

+ Pt P£ u2.6.8p + Pt~ Pt; COS .6.<p CT~r.6.8tr , 

where 

a~= u0~ (1 + 2p)(1 + 2pt) 

is unpolarized bor.n cross~section part, and 

CT~ = CTo~ (1.- 2p)(i +2pt), CT~r = CTo~ p(l~ 2pt)_ 
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A(x,p,pr) 

1 

0.9 

0.8 

.4-
0.7 0 

~ 

0.2 
·-----·-----~ X 
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Figure 1: Exact and apptoximate results for the asymmetry A(x, p, PI) for 
the process pji-+ e+e--y at E=16 GeV. · 

is longitudinal and transversal polarization dependent born cross- section 

.Parts. 

Corrections 6a, liv aud Dtr equal 

Oa = 61 +OF+ Oyp 1 . Op = Oa + f:::.6p 1 Otr = Oa + f:::.Otr 1 (11) 

where 

t::.o = ~Q~ 1 . { ~ L(f3) ·[8 - 8{3
2 

+ {34 
- 3{36 

_ 2 8- 8{32 - f34] _ 
p 7r I (32(1 + (32) 2 {3 _. . . 3 ,;_ {32 . 3 - f3} . 

- . 2L(f3J) -- [2(9 ~ 8rJ2 .;_ '.Jp4)' :.:_ 3 L~)(3 .f.'p2)(1- {32)2] -

8 [ 2 4 9-5{3
2
]'} 

3(3 _ f32) 9 - 2f3 - 3f3 -:: 6 3 _ P} , (12) 

t::.o = ~Q~__!_{_L({J) [18+12{32 +5{34~-'12 3+2(3
2 ]· 

tr 7r 1 (32 3{3 3 _ (32 3 - fJ} + 

L({Jj) . . . [2(9. ·- ~ a2).· -.£({3) (9- . ~ a4)] : . . 
+ {3,(3- (32)(3- {Jj) - - OfJ - T - OfJ + ' 
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+ 4 [ 3(3- (32) 9 + {J2- 69- 2[J2]} 3- p, . (13) 

Correction 6a (11) corresponds to the unpolarized case. The corrections 

61 (oF) were first obtained in [2] and are responsible for initial (final) state 

corrections. 6v p is the vacuum polarization contribution. 

Deviations f:::.{jp and ·b.6tr from 6a are the new results. For longitudinal 

polarization we can again introduce spin-flip asymmetry 

1 all-all a 1+6 
A(p, P!) = PiP,~ all + ai! == a: = Ao 1 + 6: = Ao(1+ 6A) , (14) 

where born asymmetry A0 and correction 6A to it are given by 

-6 -4 -81 
m, 

ao 
Ao = J!.. ao , 

a 

b.6p 
DA = 1 + Oa • 

oA,% 

/ 1- logpr 

m~ 

-2 

- -4 

-6 

-8 

. (15) 

"'·' 

Figure 2: Dependence of the .{jA on the final fermion mass for the p';~~e8s 
pfi-+ f /(-y) at E~2 GeV'(dashed line- approximate values). ': ·· 
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In the fig. 2 the difference between exact and approximate values of 

DA .is presented. This difference is noticeable only at close to threshold 
. ,r . , 

energies. 

4·· ·Conclusion: · 

We·have obtained exact expressions for the fermionic eriergy spectrum, 

total cross-section,· and corresponding polarization asymmetries· for . the 

process f 1 ft - h h (!) with massive fermions to order O(a3) in QED. 

Oil~" results generalize the results of [2] in the case of arbitrary polarized 

initial particl,es: . 
,•'1 
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Polarization to Probe an. Extra Neutral 
Gauge Boson at e+ e- Linear Collider .. ·. 

d, 

A. A. Pankov 1 

Department of Physics, Technical University, Gomel, Belarus 

Abstract 

The sensitivity to the Z' couplings of the proceS§eS e+ e- ~ z+ z-' bb 
and cc at the linear collider with ..jS = 500 Ge V with initial beam 
polarization, for typical extended model examples are studied. ::£'o 
this aim, the suitable integrated, polarized, observables directly re­
lated to the helicity cross sections that carry information on the 
individual Z' chiral couplings to fermions are used. We discuss the 
derivation of separate, model-independent limits on the couplings 
in the case of no observed indirect Z' signal within the expected 
experimental accuracy. In the hypothesis that such signals were, 
indeed, observed we assess the expected accuracy on the numeri­
cal determination of such couplings and the consequent range of Z' 
masses where the individual models can be distinguished from each 
other as the source of the effect. 

1 E-mail: pankov@ggtu. belpak.gomel.by 
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1 Introduction 

Extra neutral gauge bosons are a feature of many models of physics beorid 
the Standard Model (SM)',· If discovered they would represent irrefutable 
proof of new physics, most likely that the SM gauge group must be roc­
tended [1, 3]. The search for the Z' i~ included in the physicsprogiamme 
of all the present and ·future high energy collider facilities;'•In partichlar, 
the strategies for the experimental determination of the Z' couplings to the 
ordinary SM degrees of freedom, and the relevant discovery limits, have 
been discussed in the large,: and still growirig, literature on this subject' 
[1]-[8];. . . . . 

Taking into account' the limit Mz· > 600 - 700 GeV from 'direct' 
searches at the Teva:.tron [9],-only 'indirect'' (or virtual) manifestations 
of the Z'· can be expected at LEP2 [10] and at the planned e+e- linear 
collider (LC) with CM energy :yS =· 500 GeV [11,; 12]. · · 

Such effects would be represented by deviations from the calculated SM 
predictions of the measured observablesrelevant to thediiferent processes~ 
In this regard, of particular interest for the LC is the annihilation into 
fermion pairs . . . . + .. - ,. . ., ' . 

e +e-~f.+J, ·_(1). 
l ' '' . 

l that gives information on ,the Z' f f interaction. 
In the case of no observed signal within the experimental accuracy, 

I limits on the Z' parameters to a conventionally defined--confidence level 
I can be derived, eiti~er from a general a~alysis taking into account the I full set of possible Z' couplings to fermions, or in the framework of spe­
j cific models where characteristic relations among the couplings strongly 
I reduce the number of independent free parameters. Clearly, completely 
l model-indeptmd~nt limits can ~esult 'only 'in the optimal situation where 

I the different couplings can be disentangled, by means of suitable observ­
ables, and ·analysed . independently so as . to avoid potential cancellations. 

J The essential role of the initial electron beam polarization has been re­
I peatedly emphasized in this regard, and the potential of the linear collider 
l along these lines has been ~tensively reviewed, e.g., in Refs. [7, 8]. 

The same need of a procedure to disentangle the different Z' couplings . 
_ arises in the case where deviations from the S_M were experimentally ob-; · 
served .. Indeed, in.this situation, the numerical values of the·iridividual · 
couplings must' be extracted from the measured deviations in order. to iden- · 

- tify the source of these effects and to make tests of the various theor~tical 
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from.the mathematicalpoint of view, in the next Section:we preferto use 
(;.±, that are found more convenient to discuss the expected uncertainties 
'and, t'h~·~cor~espo~di.ng s~nsiti~ities .to the .Z'. coupling~. Also, it, turns 
out .n~uneric.aJ.ly. that?-* = 0_.,59 in (10) and ,(11) maximi:z;es the statistical 
significance of the results. . . . . . .. , : , .. 

The helicity amplitudes Aap in Eq. (5) can be written as 

A~p = (Qe)a(QI )p ~ 9~ 9b Xz + 91~ 91~ ~Z'• (13) 

int~'~. not'atiori .wh~re the _general neut~a~-current interaction. is written as. 

L ·: ·: . J 11A. J 11 Z 11 J 11 Z' 
- NC = e 'Y 11 + 9z z 11 + 9z' Z' w (14) 

Here, e = v'47ro:e.m.; gz = ~/swcw (s~ = ·1- c~ ='·sin2 0w) and 9Z' 
are the Z and Z' gauge couplings, respectively. Moreover, in {13), Xi = 
s/(s.,... .Ml,+ i'Mifi) are the gauge boson. propagators with•i· == Z and 
Z',. and the g's .are ·.the left- and right-handed fermion co'uplings: ·The 
fermion currents that couple to the neutral gauge boson i are expressed-aS 
Jf = L-1 ifin11 (L{ PL+R{ Pn)'I/JJ,with PL,n = (l=f/5)/2 the projectors onto 
the left- and right-handed fermion helicity states. With these definitions, 
the SM couplings are 

'" ·,. ·;, .. 

Rf=QI; 
'Y Ll = Ql; 'Y R~ = -Qis'fv; I I 2 . ) Lz = 13L - Qlsw, {15 

where Ql are fermior1-electric charges, and the couplings in Eq. {13) are 
normalized as 

I 9z I 
9L = -Lz, 

e 
I..:... 9ZRI . 

9n- e z, 
tl 9Z' I 9L=-Lz,, 

e 
·If- 9Z' Rl 
9 R---;- Z'· 

{16) 
In what follows, we. will limit ourselves . to a few representative mod­
els predicting new gauge heavy bosons. Specifically, models inspired by 
GUT inspired scenarios, superstring-motivated ones, and those with Left-

· Right symmetric origin [4] .. These are the x model occurring in the 
breaking 80{10) -t 8U(5) x U(1):~, the 'lj; model originating in E6 .-t 
80{10) x U{1).p, and the TJ model which is encountered in superstring­
inspired models in which E6 breaks directly to a rank-5 group. As an ex­
ample of Left-Right mo_del,. we consider the particular value K = gn/ 9L = 1, 
corresponding to the most commonly considered :case.of Left-Right Sym-: 
:rll:e'tric Model (LR). For ali such grand-~nified E6 and Left-Right models 
the Z' gauge coupling in {14) is 9z' = gzsw [4]. 

186 

~ 

I 

I 
I 

I 
·,· j 

As they are constrained from present low-energy data [2] and from 
recent data from the Tevatron [9], new vector boson effects at the LC are 
expected to be quite small and therefore should be disentangled from the 
radiative corrections to the SM Born predictions for the cross section. To 
this aim, in our numerical analysis we follow the strategy of Refs. [17]-[18], 
in particular we use the improved Bo~n approximation accounting for the 
electroweak one-loop corrections. · . 

3 · Model independent Z' search and discov­
ery limits 

According to Eqs. (3), (4) and (12), by the measurements of u+ and CT.- for 
the different initial electron beam polarizations one determines the cross 
sections related to definite helicity amplitudes Aap: From Eq. (13), one can 
observe that the Z' manifests itself in these amplitudes by the combination 
of the product of couplings g:: g~ with the propagator XZ'· In the situation 
.jS «: Mz' we shall coi1sider here, only the interference of the SM term 
with the Z' exchange is important and the deviation of each helicity cross 
section from the SM prediction is given by · · · 

. A - S~ ~ N. ·. 2 R.. [(Q Q e I ) ( te tf. * )] L.l.O'ap = O'ap -(ToP - C·O'pt e e, f + 9a 9p Xz . g (l g {3 Xz' . 
"{17) 

As one can see, 6.u0 p depend on the same kind of combination of Z' 
parameters and, correspondingly, each such combination can be considered 
as a single 'effective' nonst~:J.ndard parameter. Therefore, in an analysis of 
experimental data for u 0 p based on a x2 procedure, a one-parameter fit is 
involved and we may hope to get a slightly improved sensitivity to the Z' 
with respect to other kinds of observables. 

As anticipated, in the case of .no observed- deviation one can evaluate 
in a model-independent way the sensitivity of process {1) to the Z' pa.:. 
rameters, given the expected experimental accuracy on u+ and u_. It is 
convenient to introduce the general parameterization of the Z'-exchange 
interaction used, e.g., in Refs. [8, 13]: 

2 M.2 
9z' · .. z 
411" Mj,- s' 

2 M2 9z' z ---2- . 
411" Mz,- s 

G l -RI _n- Z' Gl -LI 
L- Z' {18) 

An advantage of introducing the 'effective' left- and right-handed couplings 
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of Eq. (18) is that the bounds can be represented on a two-dimensional 
'scatter plot', with no need to specify particular·values of Mz' or ·s: '' ·· • 

Our. X2
. procedure defines a x2 function for any observable 0: · 

' ~2 = (~)~·. 
,)_;. 

(19) 

where ~0 ~ O(Z')- O(S.M) ~nd oO is the ex~>;ected uncertainty on. ;he 
considered observable combining both statistical and systematic uncertain­
ties. The domain allowed to the Z' parameters by the non-observation of 
the deyfations .~0 within the accuracy oO will be. assessed by imposibg 
X

2 < X~rit, where the actual value of X~rit specifies th.e. q~sir~~ '<;op.fjdence' 
level. The numerical analysis has been performed by means of the program 
ZEFrr, adapte~ to.the prese!lt 9iscu~si\)n, which. has to be us~d along with 
ZFITTER [~~], ·':'ith. ii!PU.~ yahJes. mtop =: l75 GeY andmu = 300 GeV,. ·. 

. In the reaJ case, the long!tl,ldinal polarization of the beams w~Ilnot 
exactly b.e' ±(and, consequently, ipst'eaq Qf the pure helicity cross sectio,n, 
the experi'rperitally' rrieasured ·.a± will. determine the linear· combinations 
~I1~.~he right'.hanq ~id~.~r);qs.': (3) ·.~1)~ (4) with .l~~i (and I Pel) .less .thap 
unity. Thus, ultimat~ly, .the separation ,of aRR from aLL .will, be obtained 
by solvi~g'the'li~~ar'system of t~o .. eq~ations co~resp.~nding to,thedata.on 
a+ for, e.g., both signs of the electron longitudinal polarization. The same 
is trueforthe separation,ofo-nL antt 'aui us~ng the data on a.::; · , · ·: 

In the 'linear' approximation of Eq. (17), and with Mz' ~ .jS, the 
constraints from the condition x2 < X~rit can be. directly· expressed in 
terms of the effective couplings (18) as: . ·: . 

' IGeGFI' < ~e.m. ~-·· (· oa!tf)·I.A ~MIMi '(2~)(, 
(l: /3 ' 2 VXcrit '' aSM a/3 s. . . ,. ·. , . 

. ; : . : . ' . . . . ; ' : . : ·.'' . .a/3 , . '. '. ' . ' .. •· 
We need to evaluate the expected: uncertainties Oaa/3· To this aiin,,starting 
from the discussion .of a+,>we consider the· solutions of the system of 'four 
equations corresponding toPe== ±P and P~ = 0 in Eqs: (3) and '(4): · i 

l + p· ' ' ' . 1 ..:.. p ' ' . -. 
aLI. = -pa+( -P)- -pa+(P),• (21) 

1+P 1-P ·. 
ann = -pa+(P)- -pa+( -P), (22) 

1+P·. ~ 1-P 
C!Ln = -pa-(-P)- -p-0'-(P), · (23) 

1+P 1-P 
aaL = -pa:...(P)- -pa-(-P). (24)" 
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From. these relations, adding the uncertainties, e.g. oa+(±P) on 
a+(±P;) iii quadrature,• Oa~R has the form . , . . . 

1 + p '2 l- p ' ' 2' J 
2 ' ' :2 • 

oann = ( ---:p-) (oa+(P)) + ( -p-) (oa+( -P)) , (25) 

and o;,Li ~an be e~pressed quite similarly. Also, we combine statistical 
and 'systematic uncertainties in quadrature.' In this case,· if a+(±P). are 
directly measured via the difference (10) of the integrated cross sections 
al+(±P) and a2+(±P), one can see('that oa~t has the simple property: 

oa+(:!:P)stat = ( a~M (±P)jd:.int) 
112

, ·where,.Cint is. thetim?-in~~grate~ ;lu­
minosity, E is the efficiency for detecting the final state under consideration 
and a8 M(±P) is th~~pola;t"ized total cross section. For thesystematic hn-

' i ' . ' . i 1/2 : .' 
certainty, we use oa+(±P)sys- osys (a~+(~P) + ai+(±P)) ·, assuming 
that a1+(±P) and a2.t(±P) have the same'systematic error osys. Orie can 
easily see that oaLL can be obt~ned by.changing oa+(P) H Of.!+(__:P) 
in (25) ~nd that the expression for OaRL a.Ild 8aLR: also follow from this 
equation by oa+ -t 'Oa_. ' . .. ·. l , ' .. 

Numerically, to exploit Eq. (17) 'with 8aa/3 expressed as above, 'we 
assume the following values for, the expected i.dentificatioll .efficiencies 

. and· systematiC. UilCertainties ·on :the VariOUS fermionic finai states , [20]: 
€ = 100% ·and. 08~8 ~ q:5% fol" Jept(ms; .E ~ 60%_:and}~,~s:,,; 1%, ,for: b 

. quarks; € = 35% and c)SYS = 1.5% for c quarks.' Also, X~i~: ~; 3.84 as
0

,tyj:>ical 
for 95% .C.L. with a one-paraJI1eter fit. We take . .jS =· 0.5 TeV.·an(a one-
year run·. with 'Cint ~ 50/fi-:o~ .. For for-polarized beam~, we a5~umel/2 of 
the ~otal integrated luminosity quoted a:bo~e for eachvalue;or'the ~lectron 
polarization, Fe=±?. Conceniing polarization,.in.thenumerical analysis 
presented· below we t~ke three: different vhlii~s, p =1, 0.8 a~d'0~5, ·i~ order 
to test the dependence oft he bounds! on i this variable~ ' : : ' ' .. . . 

'As-already.noticed, ii1 the gener~l case wher~ proc~ss (l}depe~ds: on ,all 
four independent Z'.f f couplings, only the products Gn.G~· arid GtG{ can 

·be constrained by .the a+ measurement via Eq;,,(17), while the.products 
G'kG{:and.GiGk can be anruogously bounded. by. a_. The eXception is 
lepton pair production . (f :: l)with , ( e · '::'. l) universality ofZ' couplings, 
in which ease C!+ can ~ndividually constr8.in eit~er G[.;' ol" -G'k. ; Also, it is 
intenistirig to note that such' lepton universality implies URL· =. a~R and, 
accordingly, for Pe. =:= 0 electron polaiiz~tion d~ops from: Eq: ·(4) ;which 
becomes equivalent' to the .unpolarized one, with a prio'ii n'o. benefit from 
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Table 1: 95% C.L. model-independent upper limits at LC with Ec.~. = 0.5 
TeV. For polarized beams, we' take Cint .,; 25 fb- 1 for each 'possibility Of 
the electron polarization, Pe = ±P. 

couplings IG1lGkl112 IGi,G{jl/2 IG1lGfl112 1GiGkl112 
(10-3) (lo-3) (lo-3) (lo-3) 

observables ann aLL anL aLn 
process p 

e+e -+ z+z ·1.0 2.1 2.1 3.0 3.2 
e+e -+Z+z 0.8 2.3 2.3 3.3 3.4 
e+e -7 z+z 0.5 2.7 2.7 3.9 4.0 

e+e -7 bb LO 1.9 2.0 2.5 4.6 
e+e -4 bb 0.8 '2.2 2.1 2.8 4.8 
e+e -7 bb 0.5 3.0 2.3 *3.7 5.7 
e+e -7 cc 1.0 2.3 2.6 4.1 3.9 
e+e -7 cc 0.8 2.5 2.7 4.5 4.1 
e+e -7 cc 0.5 3.2 3.0 5.5 .· 4.6 

polarizatio~. Nevertheless, the uncertainty in Eq. (25) still depends on the 
longitudinal 'polarization P. The 95% C.L. upper bounds on the products 
of lepton couplings (without assuming lepton universality) are reported in 
the first tlireerows of Table 1. · · · 

For quark-pair production (! = c, b), where in general ~nL =/: aLn due 
to the appearance of different fermion couplings, the analysis tak~s ·into 
account the reconstruction effiCiencies and the systematic uncertainties 
previously introduced, and iri Table 1 we report the 95% C.L. upper bounds 
on the relevant products of couplings. · · ' ' · 

Also, for illustrative purposes, in Fig.l we show the 95% C.L. bounds in 
the plane ( Gn·, G~), represented by the area limited by the four hyperbolas. 
The shaded region is obtained by combining these limits with the ones 
derived from the pure leptonic process with lepton univ~rsality. Thus, in 
general we are not able to constrain the individual couplings to a finite 
region. On the other hand, there would-be the possibility of u~ing Fig. i 
to constrain the quark couplings to the Z' -to a finite range in the case 
where some finite effect were observed in the lepton-pair channel. The 
situation with the other couplings, and/or the c quark, is similar to the 
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Figure 1: 95% C.L. upper bounds on the model independent Z' couplings 
in the plane ( Gn! G~) determined by ann· The areas enclosed by vertical 
straight lines are obtained from the process e+e- -7 ttl-:-; while those 
enclosed between hyperbola.<; are from e+e- -7 bb at Cint =:= 50 fb- 1 and; 
.JS = 500 GeV. The dbt:-dash, solid and dotted contours ar({obt.l.iiled. 
at P = 1', 0.8, ·. 0.5, respectively. The slladed regioit 'is "d~rived · froin tli.~ 
combination of e+ ~-; ---+ z+ z-. and. e+ e.!. ~ bb at p ::.:::: 0.8. . . 

one depicted in Fig. 1. ._ __ . . . . . 
Table 1 shows that the integrated observables a+ and a_ are quite sen-: 

sitive to the indirect Z' effects, with upper limits on the relevant prod~Cts . 
IG~ · G~l ranging from 2.2 · ~o-3 to 4.8; 10:.:3 ai the. m~i~~ pla~n~d. 
value P = 0.8 of the electron longitudina1 polarization.·· In· most cases, 
the best sensitivity 'occurs for-the lib finalstate; while the'worst on'e is for 
cc. Decreasing·. the electron polarizatioh from P · = 1 toP =- 0~5 re~ults 
in worsening the' sensitivity by _as mucli as_ 50%, depending on the 'final 
fermion charinel. · . . - . 

Regarding- the role of the assumed uncertainties on ·the observables 
under consideration, in the cases of e+e- ---+ z+z- and e+e-:- ---+ bb the 
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expected statistics are such that the uncertainty turns out to be dominated 
by the statistical one, and the results are almost insensitive to the value 
of the systematical uncertainty. ·Conversely, for e+ e- -7 cc both statistical 
and systematic uncertainties are important. Moreover, as Eqs. (3) and (4) 
show, a further improvement on the sensitivity to the various Z' couplings 
in Table 1 would obtai(l ifboth initial e'-, and e+ longitudinal polarizations 
were available [12]. ,. · 

4 Resolving power and: model identification 

If a Z' is indeed discovered,' perhaps at a hadron machine, it becomes 
interesting to measure as accurately as possible itscouplings and mass at 
the LC, and make tests of the .. various extended gauge models. To assess 
the accuracy, the same procedure as in· the previous §ection can be applied 
to the determination of Z' parameters by simply replacing the SM cross 
sections in Eqs. (19) and (25) by the ones expected for the 'true' values of 
the parameters (namely, the extended model ones), and evaluating the x2 

variation around them in terms of the expected uncertainty on the cross 
section. 

' 

4.V Z' couplings to leptons 

W:e,no~ examine:boundsonthe Z' couplings,for Mz• fixedatsome value: 
Starting from the leptonic proc~ss e+e- -7 z+z~. let us assume that a. Z~; 
signal is ·detected by means orihe observables u+ and u_. Using Eqs. (22). 
and (21), the measurement of a+ for the two values Pe = ±P will allow to 
extract unn and ur,L which, in turn, determine independent and separat~, 
values for the right- and left-handed Z' ~puplings Rk,· and·L~, (we assume 

" ~· 0 • : t 0 : , < • 1 < - ' • ~ ' • ' • . -. ' : ' • J: ' . : • , · • · . • ' · . • ; ' ' ' 

lepton ·universality). The_ x2. proc~dure. determi:qes _the accuracy, or the 
'ie5oiyii!g P;?V;er~ ·.9(s?c~: dete~minat'iollS ~ven the' exp,ected. experimental . 

. uncertamty (statistical plussystem11:tic). . . . . , .. . .· 
_ ~Table 2 we give'theresolut!on on the Z'lepto~iccouplings f9r,lth~~ 

typi~~ model examples introduced iri Sectioi12, ~~t,~ /:1z:, ~ .~-;:f~Y· In this , 
regard, one should recall that the two-fold ambiguity intrinsic in, process . 
(1 )'does 'not allow to distin~ish the pair of values of (g::: 9ft) from.the one 
( -g::1-_g//),see Eq. (17). Thus, the actual sign of the couplings Rk, and 
Lk, ca~n?t be determined from the data (in Table 2 we have chosen the 
signs dictated by the relevant models). In principle, the sign ambiguity of 
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Table 2: The values of the Z' leptonic and quark chiral couplings for 
typical models_ with Mz• = 1 TeV and expectedl-u error bars from com­
bined statistical and systematic uncertainties, as determined at the LC 
with Ec.m = 0.5 TeV and P ·= 0.8. 

X ·tjJ 1J LR 
.. .. 

Rz, 0 204 +0.042 . . -0.069 0. 264 +0.052 - . -0.043 -0.333~:~~ -0.438:!:8:8~ 
·. 

Le Z' 
0 612+0.020 . . -0.020 

. 
0 264+0.042 . -0.052 ' 0 166+0.102 - . -0.061 

.. 0. 326+0.036 . -0.039 

R~, -0 612+0.110 "' . : .,-0.111 -0 264+0.lll . . . -0.172 0 166+0.096 . . .-0.075 . -0.874+0.116 . . . ~0.138' ·:· 

l.; . ' '·· 
,• 

• I : ~ • 
."• 

' 
" • . - ' . 

L~'-, -0 204+0·0~ 0 0 264+0.158 (j J33+0.230 _ 0 uo+o.o8o 
. ' . -0';0~2 . - -0.103 . . "-0.168 . . .;...0.085' 

-< .: . . ·'.;. 

Rz •. 0 204+0.092 ·:. . . ' :-0.090:-: 0 264+0·138 
--:-:, : ,..-0.207 -0.333+0•114 

''• ,. ' -0.145 
0 656+0.122 " . " . -0.104 ·:: 

: ., ' . ' .· ~ . 

'. 
0 204 +0.059' 

. 
·o 33~+o.577 -o 'nb+o:wG Lzi 0 264+0•222 

.. -::- . -0.064 : ·.. -0.149 ;. . ... -0.326 I ·.· . : . -0.134· 
'!. - .,·. 

~ -.: '·. 

fermionic couplings might be resolved by considering other 'processes stich 
'as,· e.gi,•e+e- '4_w+w-. . . ; ' ' : . ' . d; -· . '. ·.• .. < 

Ano~hei 'interesting ·question · i~- the· potential. 'o{ the. leptonic· ptoce~s 
(1) to i,deritify the 'Z' model underlying 'the )neasured signaJ, 'through . t~e 
measuremEmt of the'helicity cross''sedioris aR.n 'and ULL:· Such cfoss sec­
tions'o~ly'depe~d,ont·li~ relevant ieptonirichiralcoupllng and on Mii, so 
that su~ _ resolvirig power. Clearly' depends 'on the actual _ valll:e. of- the · Z' 
mass~ ·.In Figs. ·2a· wd 2b we 'show thisdepimden~e for the E6 '~ci'the 
LR models' of interest:'here. In these figures, the hcirizontal'lines repre8~n"t 
the vahies'of the coupllhgs'pi:edicted .by the various models, and the lines 
joining ,tn'e ppp~r anq 'the .. lower en~s of ~he' _vertical b~rs represe~t the 
expected experimental uncertainty at the 95% CL. The intersection ofthe 

• • • -, -. . ~ • ' :; . ·• • . " : ' . • • • . . .;: ·. ;. • • . -~ ~ . •. - t •.• 
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Figure 2: Resolution power at 95% · C.L. for the absolute value of the lep­
tonic Z' couplings, IL~,l (a) and IRi-,1 (b), as a function of Mz,, obtained 
from CJLL and CJnn •. respectively, in process e+e- --+ z+z-. The error bars 
combine statistical· and systematic uncertainties. Horizontal lines. corre­
spond to the values predicted by typical models. 

lower such lines with the Mz' axis determines the discovery reach for the 
corresponding model: larger values of Mz' would determine a Z' signal 
smaller than the experimental uncertainty and, consequently, statistically 
invisible. Also, Figs. 2a aitd 2b show the complementary roles of CJLL and 
CJnn to set discovery limits: while ULL is mostly sensitive to the Z~ and 
has the smallest sensitivity to the Z~, CJnn provides the best limit for the 
,Ztn ~nd the worst one for theZ~. 

As Figs. 2a and 2b show, the different models can be distinguished 
by means of CJ± as long as the uncertainty of the coupling of(me model 
does i10t overlap with the . value predicted by the other model. Thus, 
the identification power of th~ leptonic process (1) .is determine~ by the 
minimum Mz, value at which such 'confusioJ1 region' starts. For eXample, 
Fig. 2a shows that the X rnodel cannot be distinguished from the LR, t/1 
and ~-modelsat Z'niasses larger titan 2165 G'eV, 2270 GeV and 2420 GeV, 
r~spectively. The identification power for the typical models are indicated 
in Figs: 2a and 2b by the symbols circle, diamond, square and triangle: Tlu~ 
corresponding Mz· values at·95% C.L. for the typical E6 and LR models 
arelisted in Table 3, where the Z' models listed· in first columns should be 
distinguished from the ones listed in the first row assumed to be the origin 
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Table 3: Identification power of process e+e- --+ J fat 95% C;L. expressed 
in termsof Mz' (in GeV) for typical E6 and LRmo~els at Ec.m. = 0.5 'feY 
and t-int= 25 fb- 1 for each value of the electron,polarization, Pe = ±0.8. 

CJnn · ' CJLL ' ' 

e+e- --+ z+z- . t/1 77' ·x .LR t/1 7] X LR, 

t/1' --- 960 830 1470 - 840 2270 920 
'7] 950 - 970 1210 960 - 2420 1220 

X 830 1165 - 1615 1170 840 - 1400 
· LR 1160 1220 970 - 915 840 2165 -

e+e --+ bb t/1 7] X LR t/1 7] I X .. .LR 
t/1 -- 725 1180 2345 - 710 1120 940 ,-

7] 700 - 1210 2410 750 - 1250 750. 
X 1175 1100 - 2130 1130 1140 - .·'950 

LR 1210 1100 1540 - 940 760 1370 -

e+e --+ cc t/1 7] X LR t/1. 7] X.·' LR 
t/1 -- 865 800 1740 - 620 935 .. 800 
7] 880 - 880 ,1580 645 - 1035 665 

X 760 1050 - ,1840 935 9~0 :~, _810' 
LR 1050 1280 880 ' 

780 .. 685. :1135 ·'' ,, 

of the observed Z' sigrt'al. For this reason Table' 3 is not. symmetric: 
Analogous considerations hold also for CJLn and CJ~·L· These ~ross sec­

tions give qualitatively similar results for the product L'z,R~;, bu(with 
weaker constraints because of smaller sensitivity. 

4.2 Z' couplings to quarks 

In the case of process (n with ijq pair production (with q .= :c, b),:th~ -~.nal.: 
ysisiscomplicated by tlu~·fact thattlu~ n!levanthelicity aJhpiit~de~depend 
on three pararri~ters(g:;,· 9rar~d Mz;)'i~steadoft:Wo: Nevertheless, :th~r~ 
is· still some possibility to derive general information on the Z' chi!al _cou~;­
plirigs to. quarks. : Firstly,· by the nuriterical procedure introduced' above ririe. 
can determine from the measured cross 'section the products· of elect~o:D:s·. 
arid frnal state quark couplings of theZ', from' ~hich one derives allo~~cf 
reF;ions t'o such couplings in the ,independent, two-dim~nsional, planes 
(LZ,.,£1-,) and (L~~.Ri,). Th~ .former regions are determined 'throug~ CJLL, 

' • • i . • 
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and the latter ones through aLn· As an illustrative example, in Fig. 3 
we depict the bo1.mds from the process e+ e- ~ bb in the: ( Lz., ,L~,) illld 
(LZ,.,R~,) planes for the Z' of the X model; with Mz,:::::: 1 TeV~ Taking·intb 
account the above mentioned· hvo-"fold ·ambiguity; the allowed regions are 
the ones included within the two sets of hyperbolic contours in the upper­
left and in the lower-right corners of Fig. 3. Thi:m, to get finite regions for 
the q1,1ark, couplings, one must combine the hyperbolic regions so obtained 
with the determinations of the leptonic.Z' couplings from the leptonic pro­
cess (1), represented by the two ve~tical strips.,-.':fhe corresponding shaded 
areas represent the determinations of L~,, while the hatched·areas are the 
determinations of R~.. Notice. that, in general, there is the alternative 
possibility of deriving constraints' on quark couplings also .in the case of 
righf:han4~d _ele~trcins, namely; from 'the dete~minations of th~ pairs of 
couplings (RZ,.,L~,) arid '(Rz,,,R~;). However, as observed with regard to 
the previous analys-is of t~e leptonic process, ·t~e 6e11sitivity to, tl!e right­
handed electron coupling turns out to'be smaller than for LZ,,, so that the 
corresponding constraints are weaker. . ' ' .. 

The determinations of the~ Z' touplings with the c and b quarks for 
the typi~atE6 and LR models'with: Mz' = 1 TeV,;~e given in Table ·2 
whereth¢ combined statistical and systematiC uncertainties are taken into 
account. Furthermore, similar to the· analysi~ presEmted in Section 4.1 
an:d the corresponding Figs. 2a and 2b, we depict in Figs. 4a and 4b the 
different models id_entification po~er .as ~function of Mz•, forthe reactioi1 
e+e- ~-bb as a representative example .. The modei id~ntificationpower ~f 
th~ bb and ~c pair production processes ~~e r~po~ted in' Table 3.' ... 

; • • < • ~'; I , ' '.' ' o • ,.·, : '.' • ,· • • ' ' ' 

5 Conclusion 
,: ·~: ;J ·_; ·~· ~-' ;~ .· ,·, .~: ... 

We briefly summarize our findings concerning the Z' discovery Fmits ,and 
theinodels identification power of process. (1) via the separate mea:SuremEmt 
rirthe helicity' ~ross section:s a aP at the LC, with .JS = 0.5 Te V and .Cint ~-
25 fb:... 1 for each value Pe = ±P the electron longitudinal polarizatiori: 
Giveri the preseritexperimentallowerlimits dn Mi,, onlyindirec£effect~ of 
the Z'caribesttJdied a:t theLC.'In general, the helidty'cross sections'allo~ 
to extract separate, 'and'm6del-indpendent, informatioil'on the 'indiV:idu~l' 
'effec~i've1 Z' .couplings (G~ ··G~). As d~pendirig o~ tlie minimal' number· 
of free•paiameter8; the§ may be expeCted to show some convenienc~. with' 
respecfto other'observables in an analysis of the experimental 'data: ba.Sed 

196 

--
0.8 

f.· 
0.6 

0.4 

0.2 

Lbz· 0 ~-~ 

-0.2 

-0.4 

-0.6 

-0.8 
-0.8 -0.6 

.'·. 

. . 0.8 

" 
'-

0.6 

0.4 

0.2 

b 
o Rz· 

.2 

.4 

.6 

'·r 

. ~ :· ... )_'";· 

~ 

;.,...,_ 

Figure 3: Allowed bounds at 95% G.L. pn 4' £Otiplings with'Mz,,:;:: l.TeV 
(x model)jn-the two-dimension.planes (LZ,,L~,) and. (LZ,.,R~t-).obtained 
fr9m helicity~ross sections aiL (s~lid.-lines) and aLR (dashed lin.~s); respec ... 
ti'{ely. The .shaded and hatched regions. are derived from' the combination 
ofe+e;: ~ [+['-;- and e+e- ~-bb processes. Two allowed regions for each· 
helicity cross section correspond to the two-fold ambiguity discussed ·in· 
text. · · · .. 1 

• '· 

on a x2 procedure; . . . 
· In th'e 'case' of no observed;signal,' i.e:, no deviation of ao,fi''from the 

SM prediction withir1 the experimental accuracy, one can directly obtain· 
niodel-i~dependent· bouilds. on the leptonic chinil couplings of the Z' fro~ 
e+e-: ~ [+[- and on' the products of couplings G~ • G~' from·:~+e- ~- ijq 
·(With ·l ... ·;:= ~, r and~q ~ 'c; b). From the numerical point of ~Tiew, :U~p' are 
fqun(i fojust n~ve i·cf>mplementary I:Ole with respect to other observables'' 
like -a ana A:Fn:f .. , ~, · · • . ' -· · ·· :~ , :. ·. · · · < · · · ·. · • -. · · 

···~In the fase··z' "fnknif~stations. are· ob~er'Ved as deviations from the SM, 
with Mz' of the order off TeV;,.the"role of a~,B,;is.more irit~re5ting, spe­
cially as regards the problem of identifying the various models as potential 
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Figure 4: Resolution p'ower at 95% C.L. for IL~;L~,j 112 (a) and IR~,R~,I 112 
(b) as a function of Mz· obtained from O'LL and unn, respectively, in process 
e+ e- -7 bb. The error bars combine statistical and systematic errors. 
Horizontal lines correspond to the values predicted by typical models. 

sources of such non-standard effects. Indeed, in principle, they provide· a 
unique possibility to disentangle and extract numerical values for the chi· 
ral couplings ofthe Z' in a general way (modulo the-aforementioned sign 
ambiguity), avoiding the danger of cancellations, so that Z' model pre-· 
dictions can be tested. Data analyses with other observables may involve 
combinations of different coupling constants and need some assumption to 
reduce the number of independent parameters in the x2 procedure. In par­
ticular, by the analysis combining 0'0 p(l+l-_) and O'ap(ijq) one can obtain 
information of the Z' couplings with quarks without making assumptions 
on the values of the leptonic couplings. Numerically, as displayed in the 
previous Sections,for the class of E6 and Left-Right models considered here . 
the couplings would be determined to about 3- 60% for Mz• = 1 TeV. Of 
course, the considerations abovehold only in the case where the Z' signal 
is seen in all observables. Finally, one can notice that for V8 << Mz• the . 
energy-dependence of the deviations b.uap is determined by the SM and 
that, in particular, the definite sign Aaaa(l+z-) < 0 (a= L, R) is typical 

. of the Z'. This property might be helpful in order to identify the Z' as the 
source of observed deviations from the SM~in: process (1). 
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ON TWO-PHOTON CREATION OF LEPTON PAIRS 
IN HADRON-HADRON COLLISIONS 

N. Shumeiko, A. Soroka, P.Starovoitov 
NCPHEP, Belarus 

1. Introduction 
The modern experiments at hadron colliders (Tevatron, LHC) are of 
the most interest for studying of the opened HEP questions (such as 
Higgs boson registration, SUSY particle searches, etc;) Analyzing the 
observable quantities one can predetermine the validity of the 
standard theory or, on the other hand, models described so called 
"new physics" (when find th·e deviations from the SM predictions). 
And if these deviations are fixed, we should be sure, that they origin 
not from the systematics, and are not resulted by the background. In 
this connection the consideration of double photon leptoproduction in 
the pp collisions 
p->----(-·-/·-· .=.> ~ p', 

1 ·-.:.; I 

ql~ 
t-····· ............... >····· ............ p_ + 

1·-········-·"(·---p 
q ' + y 

2.' 

R 
,.. .... L.., , 

~ ·-.::::=:::>········- R 
'-. ....... /------ ::1 

/·-·'\..-- ··-·--· ., 
R ------>---( . J :> P. 

I '·< 1 

q · .. · . (.. 

't==R q ( p_ 
- 2 ~ 

... ..2~ . , 
R-.__j· ) > R 2 ..... - ..... '-- . ') 

p + p -t e + e- +X (1) 

is actual, since it can be competitive in background with Drell Yan 
processes. In addition, since, at least at ATLAS the luminosity 
monitoring are planned to be organized through pair production 
measurements, this is one more motivation for detailed studying of 
this process. 
We have built a programme to calculate exactly (in second order of 
perturbation theory) three-fold cross section for lepton pair production 
via two-photon exchange in hadron-hadron collisions when· only pair 
is registered. 

2. Kinematics, cross section 
The following determinations are used 
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-.... 

'• ,; i S =p,.+ Pi . .! =p,- P::.· 

Q = p.,+p_,L= p+- p:, 
X=p;·+ p;.· -.,_ 

We use squared pair mass, it's ene'rgy and azimuthal angle between 

pair momenta and collision axis in laboratory system ( S = o) for 
description of lepton pair. 

. 4mi::; Q2
::; (:[Si -(M1 +Mi +2M")) 2

: 

, ~S2Q2 ~SQ::;~(S2+Q2-(~,+M2+2M,r)2), 
.2 ·.•. . ' .... 

. · -l:S;cosBQ:::;I. 

There are _two additional ~ngle variables to desribe leptons 

o::; eL ::; "· . 
0::; lflL ::; 2JC 

in Q-vector rest frame. 
Mass, energy, azimuthal and polar angles of p; in the rest frame of 

vector X (S along z-axis) are used for description of jets. 

(M2 +M") 2
::; p;2

::; (lf -;(M1 +M")) 1
, 

- ~X2p;2 ::;Xp; ::;~(X2+p;2-(M, +M")2), 

o::; ep2 ::; "· 

0:S;1fJp; :S;2JC. 

The formula for three fold cross section is 

d30" - 27r)(~)4 M,M2 * 
dQ 2d(SQ)dcosBQ -( - 4JC l-:~ 2 (S,J)X 2S 2 

) _ 4.m2 ~~ ~ (O ~'\* 
. Q2 2 -· 

*j dp; 
2 
d(Xp; )~-·~i (X;p; )si~ e Pipe p;dfPp;d(-coseL )drpj_ * 

* WJlP (q,, P1 )Wvu (q2 'Pz) L'"'vu 
• (Q,2Qi)2 ' ' ' ~ 
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where Q; = -q~, Qi = -q;, ~2 -Gramm determinant of second 

order, W PP -hadron tensor of DIS, Lppvu -lepton tensor. 

Integration over L-vector' angles i_s performed analitically in REDUCE 
environment and the four-dimensional integration over jet variables is 
fulfiled in FORTRAN code (we u-se GRV98 structure functions). 

3. Numerical analysis 

We have calculated the cross section distribution over cosBQ for 

electron-positron pair creation in pp -collisionsfor Tevatron energy 

(1.8TeV) .for some values of Q1 and SQ . 
The figure shape (as cup with drastic side) demonstrates additional 
(along with the background measurements) possibilities of studying 
processes. In contrast to Dreii-Yan process which cross section is 
allocated evenly to the whole kinematical region, the most 
contribution to the cross section of the process (1) is concentrated 
near the kinematical boundaries ( cosBQ =±I, correspond to the case 

of forward/backward scattering) and therefore it is suitable to use this 
process for the purpose of luminosity measurements. 
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Figure 1. Cross section in mb/GeV4 ws cos8Q 
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4. Conclusions 

1. We have built a programme to calculate exactly (in second order 
of perturbation theory) three-fold cross section for lepton pair 
production via two-photon exchange in hadron-hadron collisions 
when only pair is registered. 

2. Cross section rapidly decreases with increasing of energy) and 
squared mass of lepton pair except the forward/backward region, 
where it slightly increases. 

3. Contribution to the cross section is concentrated near the 
kinematical boundaries cos8Q = ±1 and therefore it is suitable t~ 

use this process for the purpose of luminosity measurements. 
One have to take into account proccess (1 ), when 
forward/backward scattering is studied . 

4. One need to investigate Z-boson exchange( r- Z, Z- Z ). 
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