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Rostislav Jolos 

Biographical Sketch 

On January 11. 2002. we celebrated the 60th anniversary of Prof. Rostislav Jolos's 

birth. His scientific carrier began with the study of collective nuclear excitations at low 

energies using the microscopical methods. Starting with the nuclear Hamiltonian as that of a 

system of interacting nucleons, and using the finite boson expansion method, R.V. Jolos 

jointly with his colleagues has managed to construct a Hamiltonian containing only collective 

quadrupole degrees of freedom. Then the collective nuclear parameters can be calculated on 

the grounds of the known d~ta on the average nuclear potential and effective nucleon 

interaction. The analysis of the collective Hamiltonian symmetry has shown that the 

Hamiltonian can also be used for describing quadrupole movement in stiff spherical nuclei 

and in the nuclei of the so-called transitional region, where quadrupole oscillations are very 

far from being harmonic. It is also applicable to the strongly deformed nuclei. where the 

rotational and oscillatory degrees of freedom can be singled out. These works were the first to 

point out that the collective Hamiltonian of quadrupole movement has in the general case the 

SU(6) symmetry, which, in the case of the strongly deformed nuclei, is reduced to a simpler 

symmetry, SU(3). On the basis of the microscopically grounded collective Hamiltonian, 

analysed and explained have been many properties of the excited levels of the nuclei in the 

transitional areas. 

These works had great resonance. In 1977, they won the First Prize of the Central 

Institute of Nuclear Research in Rossendorf, and in 1980 - the JINR Prize. The approach 

developed by R.V. Jolos has been appreciated by the community of nuclear theorists. It has 

initiated the development of the so-called algebraic models in nuclear theory. of which the 

interacting boson model is the most known. The authors of this model, which was immensely 

popular in the I 980s. F. Iachello and A. Ari ma, used the ideas and approaches of Dubna's 

physicists and themselves repeatedly admitted it. 

The story of the finite boson expansion and Hamiltonian of collective quadrupole 

movement can create the impression that R.V. Jolos's style is purely mathematical and he 

makes his discoveries following the formal logic of mathematical calculations. However. it is 

not so. He rather chooses a mathematical apparatus on the grounds of his almost intuitive 

understanding of the physics phenomenon being studied. The style of his works and his way 

of reasoning are always clear. He begins to consider a problem starting from the physics of 
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the phenomenon and using the simplest qualitative assessments. But apparent simplicity hides 

his subtle intuition in physics. which sometimes leaves behind logical constructions and long 

calculations. So lectures by R.V. Jolos have always drawn a diverse audience, including 

students, postgraduates. and eminent scientists. 

Up to now, R.V. Jolos's studies have been focused on the theory of low-energy 

nuclear excitations, or, in other terms, theoretical nuclear spectroscopy. But since the early 

1980s. a new subject has been present and gaining strength in his works: theory of collisions 

of heavy nuclei at the energies of several tens of MeV. In his numerous works, R.V. Jolos 

tries to resolve quite a complicated issue in this field: does the structure of the heavy nuclei 

affect the result of their collision? This question has an answer now: yes, it does, and very 

strongly, which is confirmed in the experiments on the deep inelastic collisions and fusion of 

heavy nuclei. The model developed at R.V. Jolos's group has great predictive power and is 

successful in the description of the experiment. For example, it has allowed the description of 

mass and charge distribution of reaction products and explanation of non-statistical effects in 

the excitation energy distribution between fragments. It has been shown that the dominating 

mechanism of collision kinetic energy dissipation consists in the colliding nuclei exchanging 

nucleons, neutron exchange being more important. Some of these works won the 1992 JINR 

Encouraging Prize. One of the makings of this success should be specially noted: in the 

1990s, a fruitful team of young researchers formed around R. V. Jolos. His group is supported 

by the Russian Foundation for Basic Research as well as by various International Foundations 

(Alexander von Humboldt Stiftung, Volkswagen-Stiftung, DFG, and DAAD). 

R.V. Jolos continues his research in the theory of nuclear structure. He won the 1996 

JINR Prize for his studies of the octupole correlations in nuclei. In this area, he is most 

interested in the display of supersymmetry in the properties of the low-energy nuclear 

excitations. In popular scientific publications and communications from physics institutes and 

laboratories worldwide, the word "supersymmetry" appears so often that there is hardly any 

need to explain how urgent and interesting is this topic. In their recent works, R.V. Jolos and 

his colleagues suggested that the octupole vibrations in nuclei be regarded as the oscillations 

in the mass asymmetry coordinate. The new approach allows us to explain in the same 

manner many experimental data on parity splitting in actinides and to propose experiments on 

the search of the octupole states. 

This book is dedicated to Prof. Rostislav Jolos, to whom we wish further successes. 
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The dinuclear system model considers a configuration of two touching 
nuclei which exchange nucleons and/or clusters. Within this concept we 
explain deep inelastic collisions, fusion of heavy ions to superheavy nuclei 
and quasifission in collisions of heavy ions, study the production of angular 
momentum of fission fragments, describe hyperdeformed states formed in 
heavy ion reactions and interpret the parity splitting of rotational bands 
observed in the spectra of actinides. 

I. INTRODUCTION 

Reactions between heavy nuclei, the structure of nuclei and the structure of nuclei 
with cluster behaviour can be described with the dinuclear system concept [1,2]. A dinu­
clear system (DNS) is a configuration consisting of two touching nuclei which keep their 
individuality and exchange nucleons and/or clusters. Other notations1for a dinuclear sys­
tem are quasimolecular configurations, nuclear molecules an1 bi-cluster configurations. 
Well known examples with light nuclei are the 8Be configuration built up by two touching 
a-particles and the nuclear molecular resonances [3] in the reactions 12C on 12C up to 
58Ni on 58Ni. Also the fusion of heavy nuclei to superheavy nuclei can be explained by 
the dinuclear system concept [4]. In this case a dinuclear system is formed in the reaction 
between two heavy ions and then the touching nuclei exchange nucleons by transfer up to 
the moment the system crosses the inner fusion barrier and an excited compound nucleus 
is formed. 

The important collective degrees of freedom of the dinuclear system are described 
by the relative internuclear distance R between the nuclear centers and by the mass 
asymmetry coordinate defined as T/ = (A1 - A2)/(A1 + A2) where A1 and A2 are the 
mass numbers of the clusters. Here, T/ = 0 means a symmetric configuration (A1 = A2) 
and T/ = ±1 denotes the fused system (A1 or A2 = 0). The mass asymmetry degree of 
freedom was used to describe mass distributions in cold fission and to predict suitable 
target-projectile combinations for producing superheavy nuclei [5]. 

In this review, which is dedicated to Prof. R.V.Jolos on the occasion of his 60th 
birthday, we demonstrate the usefulness of the dinuclear system concept for the description 
of the fusion of heavy ions to superheavy nuclei, of the quasifission, of deep inelastic 
collisions (DIC), and of special cluster properties in the structure of heavy nuclei. In 
Section 2 we discuss the fusion of heavy nuclei and justify the DNS concept; in Section 3 we 
consider the quasifission; we describe the effect of the entrance channel in fusion reactions 
in Section 4 and investigate the kinetic energy dissip11.tion in DIC in Section 5; in Section 6 
we study the role of the bending mode in fission; in Section 7 we interpret hyperdeformed 
states as dinuclear resonance states and explain the properties of alternating bands in 
actinides with collective oscillations in the mass asymmetry coordinate. 
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II. FUSION OF HEAVY NUCLEI 

The evaporation residue cross section is factorized as follows [2,4,6-8) 

<T£n(Ec.m.) = <Tc(Ec.m.)PcN(Ec.m., J = 0)W,u,(Ec.m., J = 0). (1) 

The calculations of the evaporation residue cross sections demand an analysis of all three 
factors in (1). The value of <Tc= 1r>. 2(Jmax + l) 2T(Ec.m.,J = 0) is the effective capture 
cross section for the transition of the colliding nuclei over the entrance (Coulomb) barrier 
with the probability T. The contributing angular momenta in the evaporation residue 
cross section are limited by the survival probability W,ur(Ec.m., J) with Jmax ~ 10 when 
highly fissionable superheavy nuclei are produced for energies Ec.m. near the Coulomb 
barrier. The probability of complete fusion PcN in (1) depends on the competition be­
tween complete fusion in 17 and quasi fission ( decay of the DNS in R after the capture 
stage) [6-8]. 

A. Problems of adiabatic treatment of fusion 

Models describing the fusion process as an internuclear melting of nuclei usually use 
adiabatic potential energy surfaces (PES). We apply the microscopic two-center shell 
model (TCSM) [3) with the following coordinates: elongation )., = f/(2Ro), where f is the 
length of the system and 2R0 the diameter of compound system, neck parameter c: with 
t:=0 showing no neck and t: ~ l showing necked-in shapes, mass asymmetry coordinate 
17 and deformation parameters /3; = a;fb; which are ratios of semiaxes of the clusters i=l 
and 2. The adiabatic potential is obtained as 

v.d(-X,c:,r,,r,,,/3;)i= vLDM + ou,h.11, (2) 

where Vi:,vM is the liquid drop potential, JU,he/1 the shell correction part originating from 
the TCSM. In addition to the PES. the masses Mq,q, = M~7 are calculated with the 
Werner-Wheeler (or hydrodynamic) approximation and the friction coefficients are found 
with the expression ,q,q, = rMq;q,/h (r is an average width of single particle states). 

The fusion takes place with a scenario of the macroscopic dynamical model (including 
fluctuations): 1) By using the masses M;~r, the neck fast grows after the nuclei touch 
each other and the united system falls into the fission-type valley in a short time of 
(3 - 4) x 10-22 s. 2) The compound nucleus is formed due to the diffusion process to a 
smaller elongation )., (or relative distance R) in this valley. The necessary condition for 
the compound nucleus formation is that the fusing system passes inside the fission saddle 
point at )., = ).,,d· 

In order to calculate the fusion probability we started from a value of )., = Av in the 
fission valley obtained from the dynamical calculation of the descent into this valley. The 
fusion probability is determined by the leakage J\Ju,(t) through the barrier in )., which 
separates the strongly deformed configuration with an equilibrated large neck and the 
compound nucleus: 

{'o \ 
PcN = Jo A1u,(t)dt, (3) 
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where t0 is the lifetime of the system and AJ,,. ~ exp(-BJ,,./(k0)) (Kramers expression). 

Here, BJ,,. = \t;,d(>.,d) - Vad(>.v) is the barrier for fusion in >. and k0 = J12E• / A the 
local thermodynamic temperature with the excitation energy E* of the system. For 
nearly symmetric reactions J0°Mo+J0°Mo, J0°Mo+ 110Pd, 110Pd+ 110Pd and others, the .. 
fusion probabilities in >. are much larger [6] than the values found from experimental data. 
While the experimental fusion probability decreases with mass asymmetry in the entrance 
channel [9], the calculated data give the opposite tendency (Fig. 1 ). Experimental evidence 
for a hindrance of fusion has been raised mainly by the impossibility to produce fermium 
evaporation residues with nearly symmetric projectile-target combinations. The adiabatic 
treatment of fusion in >. mostly gives the wrong dependence of the fusion probability 
on the isotope composition of the colliding nuclei (6]. The qualitative and quantitative 
contradictions obtained with the adiabatic scenario of the fusion point to the existence of 
an additional hindrance for the fast growth of the neck and the motion to smaller >.. 
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B. Reasons for a breakdown of adiabatic treatment 

Microscopic inertia tensor 

The hydrodynamical mass for the neck coordinate is small and allows to increase the 
neck of the DNS rapidly to a shape of a strongly deformed compound nucleus. However, 
crossings of single particle levels lead to a large inertia of the system which hinders the 
growth of the neck. Using the single-particle spectrum tcx and wave functions la > of 
both the adiabatic and diabatic TCSM (10], one can obtain the mass parameters with an 
extended cranking formula [6,11] 

· aill < alaaHI/J >< /Jlaq: a> ncx - np 
2 ~ q, J , 

M;°J = n L, (tp _ tcx)2 + ¼(fp + r
0

)2 tp t
0 o,/J 

(4) 
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where r O and r /J are the widths of the single particle states. The main contributions to 
Mer arise from the diagonal elements at tp ➔ t 0 • Comparing our results with Ml[W ob­
tai~ed in the Werner-Wheeler approximation for a touching configuration with excitation 
energy 30 MeV (0=1.3 MeV), we find M.f~ = Mlrw, M;; ~ (20-30)M,'!'w and M.f; ~ 
0.4 MI~w, practically independent of the mass number of the system (6,11). As result 
we conclude that the initial neck coordinate is nearly kept fixed due to the large micro­
scopical mass parameter for a time comparable with the reaction time. Since the mass of 
the neck degree of freedom is large, the neck parameter can be taken approximately fixed 
(c: = 0. 75) during the fusion. As in the previous case, the adiabatic treatment of fusion 
in ,\ (at the fixed neck parameter) yields fusion probabilities PcN which are COJ:!siderably 
overestimated in comparison to the experimental data. The reason of this overestimate is 
clearly seen in Fig. 2. In contrast to experiment the hindrance of fusion in these potentials 
is practically absent ( PcN ~ I) because there is no internal fusion barrier for the motion 
to smaller elongations. So, fusion probabilities will be considerably overestimated in any 
model of fusion in >. where only the neck parameter is taken fixed. 
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FIG. 2. Adiabatic potential in different 
reactions leading to 246Fm as a function of 
>. for a fixed c = 0. 75. The crosses denote 
the touching configurations 

Effect of structural forbiddenness of fusion in >. 

Since the adiabatic PES (with and without fixed neck parameter) is not adequate for 
the description of fusion, we have to answer how fast is the transition between an initially 
diabatic (sudden or frozen density) and adiabatic regimes during the fusion process. The 
main question is the validity of the use of an adiabatic PES from the beginning of the 
fusion process. 

a) Algebraic description. Let us first consider an algebraic description. After the for­
mation of the DNS there is large structural forbiddenness effect for the motion to smaller 
elongations (melting) in the heavy cluster system (12). This effect arises from the differ­
ence,created by the Pauli principle, between the compound state and the dinuclear cluster 
state. For the fusion channel A1 + A2 ➔ A, the wave function can be written 

WA,+A, = ,4.a.{WA, WA,¢(R)}, (5) 
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where IV A; are the cluster wave functions with the lowest oscillator quanta numbers NA, 
allowed by the Pauli principle, </J( R) the function of their relative motion along the collision 
axis z and 11.a, the operator of antisymmetrization. The minimal number of oscillator 
quanta NA, +A, of '11 A, +A, is determined by application of the SU (3) group theory. The 
cluster wave function '11 Ai +A, and the compound nucleus wave function IV A belong to 
different SU(3) (or Sp(2,R) for deformed nuclei A1 and A2) representations. We have 
to construct the U(3) irreducible representation [J.fyfx] for WA,+A, which possesses the 
minimal sum f x + fy + fz and does not vanish with antisymmetrization. The proper 
procedure for the construction of the vector of highest weight of this representation is 
the use of the vector of highest weight for the wave function of the relative motion and 
the vectors of lowest weights for the wave functions of the fragments which possess the 
maximal value of the sum JJ!l + 1i1> + JJ2l + JJ2> (upper index denotes the fragment). 
The resulting NA,+A, value turns out to be essentially larger than NA if the mass of the 
lighter fragment is rather large. Therefore, we obtained the generalization of the Talmi­
Moshinsky rule for heavy ion physics. The minimal difference q = NA, +A, - NA is referred 
to the degree of structural forbiddenness for the fusion channel A1 + A2 ➔ A. The wave 
function WA, +A, of the DNS has a nonvanishing overlap integral with the wave function 
IV A of the compound nucleus if NA, +A, 2: NA + q. 

The forbiddenness effect is model-independent and the SU(3) approach is only a sim­
ple method to determine it. With the pole-to-pole orientation of the DNS consisting of 
deformed nuclei, the values of q are larger than those of the DNS with spherical nuclei. 
The quantity BJus = liwq (liw = 41MeVA-1l3) is a qualitative estimate of the minimal 
energy thresholds for the fusion in the relative distance degree of freedom at fixed mass 
asymmetry T/· 

Table 1. Experimental and calculated minimal values of the energy thresholds 6.Emin, at 
which fusion is possible, are compared with the degree q of forbiddenness and BJu, (see text) 

System 6.Emin (MeV) 6.Emin (MeV) q BJus (MeV) 
exp. [9] DNS model [8,12,13] 

40Ar+206pb -0.5±3 0 16 105 
76Ge+110Er 10±5 8 22 144 
s6Kr+160Gd 2: 15. 7 11.5 20 131 
110Pd+t36Xe 2:23.5 15 26 170 
96zr+l24Sn 6.5±3 5 28 183 
9ozr+9ozr 0.0 0.0 30 196 

100Mo+100Mo 7.2 6.0 30 196 
110Pd+110pd 12.0 30 196 

If the excitation energy of the system is much smaller than the value of Bj.,., the 
fusion in ,\ is strongly forbidden. The dependence of q on 77 is not monotonic, the q­
value is maximal for almost symmetric combinations and decreases with increasing 77. For 
very asymmetric combinations, the structural forbiddeness practically disappears. The 
structural forbiddenness in the ,\-channel is weakened by the coupling between cluster 
channels with different mass asymmetries. Since the absolute values of q (or BJu,) are large 
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for not very asymmetric DNS, there is a strong hindrance for the evolution of these DNS 
to smaller ,\ due to the large energy barrier between the initial DNS and the compound 
shapes (Table 1) [12]. 

b) Dynamical diabatic description. It is important to study whether the system has 
time for destroying the "memory" on the structural forbiddenness and reorganizing the 
density of the system for the transition from the sudden or diabatic potential 11,i;(,\) to 
the adiabatic potential V0 d(,\) [14]: 

t & t & 
V(,\,t) = 11,i;(,\)exp(- j r(,\,t)) + V.d(,\)[l -'-exp(- j r(,\,t))]. 

0 0 

(6) 

The diabatic potential can be written 

Vd;(A,c) = v.d(,\,t:) + oll,i;(,\,t:), (7) 

where oVdi = La t~in~i - Lo t~dn~d. Here, t~i, t~d and n~i, n~d are the single-particle 
energies and occupation numbers of the diabatic and adiabatic levels, respectively. The 
initial occupation probabilities n~i are determined by the configuration of the separated 
nuclei. They depend on time since the excited diabatic levels get deexcited: 

dn~;(,\,t:, t) 
-dt--= 

1 d. 
T ( ,\, C, t) ( n °

1 

( ,\, C' t) - n ~d ( ,\, C)), (8) 

where T is a relaxation time determined by a mean single particle width depending on 
the diabatic occupation numbers, r(,\, t:, t) = 21i Lo n~i / Lo n~ir o• 

Diabatic potentials show a strong increase with decreasing elongation ,\. The dynami­
cal diabatic potential V(,\, t) is the relevant tool to measure the structural forbiddenness. 
Their repulsive character screens smaller values of the elongation and hinders the DNS 
to melt into the compound nucleus. Fig. 3 shows the diabatic potential for the system 
110

Pd+ 110Pd as a function of the elongation ,\ for the initial time and the lifetime t0 of 
the DNS. The decay process in ,\ determines the lifetime t0 :::::: 10-20 of the DNS which 
mainly depends on the quasifission barrier B;,. 
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80 

~60t····,·· .... !40 ···········• ....... . 
B'•• (l=t,,) ·• •. 

20 B'<l 

0 ~--.....__...__.. _ _.__.. __ __, _ _.___,_..J 
1.2 1.3 1.4 1.5 1.6 1.7 

A 

23 

FIG. 3. The diabatic (t = 0) and fi­
nal (t = t0 ) potentials (solid and dashed 
curves, respectively) and the adiabatic po­
tential (dotted curve) for " 0 Pd+" 0Pd as 
a function of,\ 



The dynamical diabatic potential at the the lifetime to of the initial DNS (Fig. 4) 
has a very large fusion barrier in >. and, correspondingly, the fusion probability in >. is 
negligible for combinations leading to 246Fm. It should be noted that these dynamical 
potentials were calculated by using the smallest possible relaxation time for the transition 
between diabatic and adiabatic potentials [11,14). The calculated energy thresholds for the 
complete fusion in the>.- and 7J-channels lead to the conclusion that the DNS evolution to 
the compound nucleus proceeds in the mass asymmetry degree of freedom. For example, 
the average fusion barriers Btu• in mass asymmetry are about 10, 12 and 15 MeV for the 
reactions 76Ge+ 170Er (7J=0.4), 86 Kr+ 160Gd (7J=0.3) and uoPd+ 136Xe (7J=0.l), respectively 
[8]. The fusion barrier B{u• in>. is about 3-4 times larger than the fusion barrier Btu• in 
mass asymmetry. As shown in Fig. 5, the fusion probability PcN in 7J strongly increases 
with mass asymmetry in the entrance channel. The same behaviour was experimentally 
established [9]. For the reactions 40 Ar+ 206Pb and 76Ge+ 170Er, the values of PcN in 7J are 
in good agreement with experimental data from evaporation residue cross sections. 
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FIG. 4. Dynamical diabatic potential. 
· The notations are the same as in Fig. 2 

FIG. 5. Fusion probability PcN in the re­
actions leading to 246Fm with excitation 
energy 30 MeV as a function of the mass 
asymmetry in the entrance channel. The 
result of the adiabatic treatment of the fu­
sion in >. is presented by the dotted line. 
The upper limit of the fusion probability 
in >. in the dynamical diabatic treatment 
is presented by the dashed line. The fu­
sion probability in the 7J channel with a 
closed fusion channel in >. is presented by 
the solid line 

In compound systems heavier than 246Fm the difference between the fusion barriers 
and fusion probabilities in both >.- and 7]- channels is even larger (14). Our analysis with 
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the diabatic dynamics demonstrates that a structural forbiddenness exists for a direct 
lllotion of the nuclei to smaller internuclear distances during the fusion process. Fusion 
of heavy nuclei along the internuclear distance in the coordinates R or >. is practically 
impossible. These facts strongly support our standpoint that the correct model of fusion 
of heavy nuclei is the dinuclear system model where fusion is described by the transfer of 
nucleons, i.e., by a motion in IJ· 
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C. Fusion to superheavy nuclei 

Fusion probability PcN 

After the system is captured in a dinuclear configuration, the relative kinetic energy 
is transferred into potential and excitation energy. The dinuclear system develops in 
time by diffusion in the mass asymmetry coordinate and in the relative coordinate (a 
decay of the DNS). The fusion probability PcN gives the probability that the dinuclear 
system crosses the inner fusion barrier Btu• in 7J an'd forms the compound nucleus. This 
probability can be calculated by solving a diffusion equation in the coordinates 7J and 
R with approximations [7,8). The probability PcN depends on the competition between 
complete fusion in 17 and quasifission ( decay of the DNS in R) [8] and is expressed as 
follows 

>,Kr >,Kr >,Kr T. _ T 
P. _ 11 _ . 11 R 11 R (9) 

CN - >,Kr + >,Kr ).Kr + ).Kr 1 72 
R 11 R 11 • 

The second term in (9) is related to the transient times TR and r11 to reach the quasi­
stationary rates along the R and 7J coordinates ( rji1, r,;- 1 > >.fir, ;i.:-r). In the case that 
the fusion barrier is much higher than the quasifission barrier, Btu• » BqJ, i.e. if the 
transient time r11 in 7J is larger (or equal) than the lifetime t0 of the initial DNS, we obtain 

!4,7,8] PcN = ~[r,,(exp(t0/r11 ) -1) - t0). For very shallow quasifisson barriers (BqJ ~ 0) 
111 reactions with large Z1 x Z2 , the value of PcN in this expression is smaller than the 
one in the quasi-stationary regime, given by Eq. (9), which can not be reached due to the 
small value of t0 • 
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As in Ref. (8] for the quasi-stationary rates of fusion >-:r and quasifission >..~r through 
the fusion barrier (B~ = Btu•) in T/ and quasifission barrier (Bn = Bqf) in R, respectively, 
we use a two-dimensional Kramers-type expression 

( 

2 ) 1/2 [ 
)../fr = _!_ WkWf. [~] (wB•)2 _ ~ -~] 

k 271" w~•w:• 2/i + k 2/i exp (k0) · 
(10) 

The frequencies wf; (k, i = R, TJ) are calculated in the harmonic oscillators approximation 
of the potential in the variables R and T/ around the tops of the barriers Btu• and Bqf, 
and wk, wr. (k =I= k) are the frequencies of the harmonic oscillators approximating the 
potential of the initial DNS. Since the oscillator approximation of the potential energy 
surface is suitable for the reactions considered, we neglect the nondiagonal components 
of the curvature tensor in (10). As was shown in [4,7,8], the friction coefficients obtained 
with r = 2 MeV have the same order of magnitude as the ones calculated within other 
approaches. Btu• is the barrier with respect to the potential V(TJ;, Rt) of the entrance 
dinuclear configuration with the initial mass fragmentation 17; at the touching radius R1• 

The height of this barrier is strongly influenced by shell and deformation effects as shown 

in Fig. 6. 
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FIG. 7. Fusion probability for the reaction 
54 Cr+208Pb--t262 Sg as a function of the 
barrier height B?"' in the 11-coordinate. 
This barrier is assumed beside the lead 
minimum in the potential energy surface 
in the direction to more symmetric cluster 
configurations. A realistic value is B?m ~ 
4MeV 

The minima in the potential V(TJ, R = Rt) give a sensitive effect on the fusion probabil-
ity and can be used in selecting optimum target and projectile combinations for producing 
superheavy elements. This idea goes back to Sandulescu et al [15,16] who argued that 
the nuclei can fuse with higher probabilities along the valleys in an adiabatic potential 
in the R-coordinate and point to the experimentally successful choice of target-projectile 
combinations with the Pb-nucleus as target as proof for their hypothesis. The potential 
at the touching distance of two nuclei is an adiabatic-type potential and naturally shows 
the same structure of minima as the potential energy surface of Sandulescu et izl [15,16]. 
We interpret these minima as follows: A certain initial system in a minimum is hindered 
by the barrier of the potential in T/ to change fast to a more symmetric system. A more 
symmetric system has a much smaller probability of fusion and a much higher probabil­
ity for quasifission because of the larger Coulomb repulsion which leads to a dissolution 
of the DNS. Therefore, an asymmetric dinuclear system in a potential minimum has a 
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longer lifetime with respect to its decay by quasifission than outside of a minimum and 
hence a larger chance to fuse by diffusion via nucle_on transfer into the compound nucleus. 
This point is clarified by an example for the reaction 54 Cr+208Pb --t 262Sg. In Fig. 7 we 
show the calculated fusion probability as a function of the height B?m of an assumed 
L,arrier in 7/ beside the lead minimum in the direction to a more symmetric cluster con­
figuration of the system. One recognizes that the fusion probability increases over two 
orders of magnitude with growing barrier height B;ym up to a saturation value. The lat­
ter value is reached when B;ym is equal to the quasifission barrier Bqf which is 2.7 MeV 
for 54 C'r+ 208 Pb. Then the fusion probability can no more rise because the initial system 
directly decays by quasifission. 

Survival probability W,ur 

The compound system is formed in an excited state and mainly decays by fission. If 
only one neutron is emitted, the survival probability is roughly the ratio 

r 
Wsu,(l neutron emission)~ r;, (11) 

where I'n is the neutron emission width and r J the fission width. The widths and the 
probability are obtained with a statistical model [14] and vary moderately with the shell 
structure of the compound nucleus between 10-4 and 10-2 for lead-based fusion with the 
<'vaporation of one neutron as shown in Fig. 8. 
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Results Jo,· lead (bismuth) - based reactions AZ + 208 Pb f 09 Bi)--t superheavy 11ucle11s + Jn 

a) Optimal excitation energies: To get the largest cross section for producing a com­
pound nucleus by fusion, one has to choose an incident energy which is sufficiently high 
that the system is able to cross the inner fusion barrier Bt"'. Since the potential V(11, H) 
counts the energy above the ground state energy of the compound nucleus, the optimal. 
i.e., smallest excitation energy of the compound nucleus is given by 

Ec·N = V(1/i, Rt)+ Et"'. (12) 

In Fig. 9 we compare calculated optimal excitation energies with the experimental ones. 
The calculated values depend sensitively on the deformation effects. 
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b) Capture cross section, fusion probability, survival probability and evaporation 
cross section: In Table 2 we list the capture cross section, fusion probability, survival 
probability and evaporation cross section for selected reactions (see Ref. [4] for further 
reactions). Whereas the capture cross section is nearly constant, the fusion probability 
is exponentially decreasing with increasing projectile mass (Fig. 9). The reason for this 
strong decrease is that the mass asymmetry of the initial DNS gets smaller with growing 
projectile mass which means an increase of the inner fusion barrier Et'" and, therefore, an 
exponential decrease of PcN according to Eq.(9). Since the variation of the survival prob­
ability is moderate, the evaporation cross section drops from nb over pb to fb because of 
the exponential decrease of PcN- The calculated evaporation residue cross sections agree 
with the experimental data in about a factor of 2 as shown in Fig. 10. 

In Pb-based reactions with neutron-rich nuclei 70
•74 •78Ni, 80Zn,86Ge and 92Se a decrease 

of PcN can be compensated by W,ur increasing with the number of neutrons (Fig. 11). For 
example, in the 62Ni+208Pb reaction the yield of the Z=ll0 element is comparable with 
the yields in the 70

•
74Ni+208Pb reactions. The calculated values of PcN in the cold fusion 

reactions are maximal when the neutron number of the projectile is a magic number [4). As 
follows from our model, intensive beams of neutron-rich nuclei will be useful for producing 
heavy actinides, for example Fm as listed in Table 2. In the Pb-based reactions the use of 
neutron-rich projectiles leads to values of O'ER comparable with evaporation residue cross 
sections for reactions with stable projectiles. 
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Results for actinide - based reactions 

The actinide-based fusion reactions 48Ca + 238U, 242•244Pu and 248Cm were used at 
JINR in Dubna to synthesize the elements 112, 114 and 116 [21). The theoretical and 
experimental evaporation residue cross sections with the emission of 3 and 4 neutrons 
are of the order of lpb. Table 3 shows th~ various cross sections and probabilities for 
reactions with 

48
Ca. Since in these reactions the DNS are more asymmetric then in the 

lead-based reactions, the fusion probability is larger. However, the survival probability is 
diminished because the compound nucleus has an excitation energy of about 30-35 MeV 
and, therefore, 3 to 4 neutrons have to be emitted to reach the ground state. 
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Table 2. Excitation energy, probabilities and cross sections for selected reactions 

Reaction EcN Cl cap PcN W,ur 17
th exp 
In <7 In 

(MeV) (mb) 

66Zn+t74Yb-+238fm+2n 26.0 9.6 4x10-2 8x10-7 0.3 nb 

76zn+li4Yb-+248Fm+2n 23.0 8.8 2x10-3 6x10-4 10.6 nb 

76Ge+110Er-+244fm+2n 24.6 8.4 5x10-4 3x10-4 1.3 nb 1.6:::~ nb 

62Ni+20sPb-+269110+ In 12.3 3.5 4.5xl0-6 5 X 10-4 7 pb 3.5:r~ pb 
64Ni+208Pb-+271 llO+ln 10.7 3.4 lx10- 5 5x10-4 17 pb 15:i pb 

70Ni+20spb-+211110+ In 13.5 3.1 7xl0-8 5xl0-'-3 1.1 pb 

74Ni+20spb-+2s1110+1n 15.0 3.0 6xl0""'8 2x10-2 3.6 pb 

78Ni+2osPb-+2s4110+2n 17.5 3.0 2x10-7 6x10-2 36 pb 

64Ni+209Bi-+212111 + ln 10.5 3.4 2xl0-6 6x10-4 4.1 pb 3.5:t~ pb 

Table 3. Calculated evaporation residue cross sections in the actinide-based reactions leading 
to the nuclei with Z =110, 112, 114, 116 and 118 are compared with available experimental data 
(21) 

Reaction EcN (MeV) xn Uxn 
a-exp 

· xn 

4sca+232Th 32 3n 1.4 pb 2:g pb 
4sca+23su 33 3n 1.7 pb 5:; pb 

48Ca+244pu 35.5 4n 1.0 pb ~ 1 pb 
48Ca+242pu 32 3n 1.0 pb 2.5:n pb 
48Ca+248Cm 32 3n 0.2 pb 
48Ca+248Cm 35 4n 0.2 pb ~ 0.5 pb 
4sca+249Cf 30 3n 0.02 pb 

III. QUASIFISSION 

A. Mass and charge distributions 

Quasifission means no formation of a compound nucleus but the decay of the dinuclear 
system over the quasifission barrier Bqf• The time-development of the dinuclear system 
includes the transfer of nucleons changing the mass asymmetry coordinate and the quasi­
fission described by the internuclear coordinate [22). Both processes are strongly coupled 
and have to be treated simultaneously. We use master equations in order to calculate the 
probability Pz,A ( t) for finding the dinuclear system at time t in a configuration where the 
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light fragment-nucleus has charge and mass numbers Z1 = Z and A1 = A, respectively, 
and the heavy fragment-nucleus Z2 = Z1o1al - Z and A2 = A1o1a1 - A. 

dPz,A(t) (-,oJ p ) (+,oJ 
~ = 6.z+1,A+1 z+1,A+1(t + 6.z-1,A-1Pz-1,A-1(t) 

+ 6.~'.-tl1Pz,A+1(t) + 6.~:,t21Pz,A-1(t) 
_ (6.(-,o) + 6.(+.o) + ll(o,-J + ll(o,+J + Aqf )P (t). Z,A Z,A Z,A Z,A Z,A Z,A (13) 

Here, the transport coefficients Lli~.fl and t:.~i) are probability rates for transfer of a 

proton and neutron, respectively, and A¥,A the decay rate in the coordinate R for quasi­
fission. The transfer rates are calculated microscopically, the decay rate is approximated 
by the I<ramers rate which is proportional to exp(-Bq1/(k0)). The measurable charge 
and mass yields for quasifission are obtained from 

(o 
Yz,A(to) = A¥,A lo Pz,A(t)dt, (14) 

where the reaction time lo is determined by solving the equation 

f f' 0 

L A'.l:,,A lo Pz,A(t)dt = 1 - PcN-
z,A O 

(15) 

Fig. 12 shows the mass yield as a function of the mass number of the light fragment for 
the hot fusion reaction 48Ca + 244Pu ➔ 292 114 in comparison with experimental data [23]. 
We note that near the initial masses, the quasifission events overlap with the products of 
deep inelastic collisions and were taken out. in the experimental analysis since they are 
difficult to discriminate from the deep inelastic events. Maxima in the mass yield arise 
from minima in the driving potential which are caused by shell effects in the dinuclear 
system. 
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FIG. 12. Mass yield Y(A) = Lz Yz,A(t 0 ) 

of the quasifission products as a function 
of A of the light fragment for the hot fu­
sion reaction 48Ca+244Pu -t292 114 at a 
bombarding energy 230 MeV correspond­
ing to an excitation energy of the com­
pound nucleus of 30 MeV. The experimen­
tal data (23) are shown by solid points 
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B. Total kinetic energy distribution 

In order to calculate the average total kinetic energy (TKE) of the quasi fission products 
and its dispersion, one has to regard the deformation of the fragments in addition. The 
distribution of the fragments in charge, mass and deformation can be written as 
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P = P(Z1,A1,/31,Z2,A2,/32) = Yz,,A 1 (to)Pp,(Z1,Ai)Pp,(Z2,A2), (16) 

Here, Pp(Z, A) is a distribution in deformation at fixed values of Zand A. It can be taken 
as 

1 
Pp(Z, A)= ~ exp(-(/3- < f3 > )2 /(2a~)) 

V 27l'a~ 
(17) 

with o-1 = ;c"°'."' coth(liwv;b/(2k0)), where Wvib(Z,A) and Cvib(Z,A) are the frequency and .. , 
stiffness parameter of quadrupole vibrations, respectively, and 0(Z, A) is the temperature 
of the dinuclear system. Applying the distribution (16) we calculate the average total 
kinetic energy as a function of the mass number A1 of light fragment: 

< TI< E(Ai) >= J J d/31df32 L, T /{ £ · Pf(j J df31df32 L, P) 
z, z, 

~ L, TI( Elt1,=<t1,> Yz,,A, (to)/ L, Yz,,A, (to), (18) 
z, z, 

with T /{ E = Vnuc1(Rb) + Vc 0 u1(Rb), where the radius Rb= Rb(Zi, A,,/31, Z2, A2,/32) is the 
position of the Coulomb barrier. The variance of TKE can be written as ,a sum of the 
contributions of variances from the exchange of nucleons and from the deformations: 

ah,,E(Ai) ~ "f:,TkE2lt1,=<t1,>YZ,,A,(to)/L,Yz,,A,(to)- < TI<E(Ai) >2 

z, z, 

+ (a}efE(Ai))Jight nucleus 1 + (a}'{E(Ai))heavy nucleus 2• (l9) 

where 

( ) 21 def 2 ar [{ £ 2 
(arnE(A,))i = L, ~ ap, Yz,,A, (to)/ L, Yz,,A, (to), 

Z1 J /31=<.131> ZJ 
13i~<f3-i> 
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FIG. 13. Calculated variance of the total 
kinetic energy of quasifission products in 
the reaction 48Ca+244 Pu as a function of 
the mass number of light fragment. The 
incident energy 230 MeV corresponds to 
an excitation energy of 30 MeV of the 
compound nucleus 

(20) 

Calculations of the mean value of the TKE yield < TI< E > = 260 MeV of quasifission 
products for A = A 1 = 146 ± 20 in the reaction 48Ca + 244Pu at an incident energy 230 
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MeV which corresponds to an excitation energy of the compound nucleus of 30 MeV. 
Fig. 13 shows the variance of the TKE as a function of the mass number A = A 1 of 
the light fragment. The minima in O"fKE appear at mass numbers where one of the 
fragments is a very stable nucleus, namely Pb, Zr and Sn. The ratio between both kinds 

· ···of contributions to the variance, r(Ai) = ( a';J:/'inge)2 /(a}'JE)2, is in the same reaction 
r(76) = 30/570, r( 110) = 27 /610 and r(l44) = 1/893, which shows the high importance 
of the fluctuations in the deformation for the variance of the TKE. Further investigations 
and comparison with experimental data are presently carried out. 
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FIG. 14. Comparison of the calculated 
capture ( a) and fusion excitation function 
(b) as well as calculated total excitation 
functions of evapJration residues with the 
experimental data (c) for the 40 Ar+176Hf 
[25], 124Sn + 92Zr [27], and 86 Kr + 130Xe 
[24] reactions leading to 216Th 

IV. EFFECT OF ENTRANCE CHANNEL IN COMPLETE FUSION 

REACTIONS 

Differences between fusion excitation functions of reactions leading to the same com­
pound nucleus allow us to analyze the effect of the shell structure on the fusion mechanism. 
Experimental data [24-27] reveal that the maximum value of the evaporation residue (ER) 
cross sections in the 40 Ar+ 176Hf (I) reaction is twelve times larger than in the 86Kr + 130Xe 
(II) reaction and three times larger than in the 124Sn + 92Zr (III) reaction. Since the 40

Ar+
176

Hf reaction has the largest initial charge asymmetry (17z = (Z2 - Z1)/(Z1 + Z2)) 
in comparison with the two other reactions (II,III), the height of the inner fusion barrier 
(Bfu') is smaller than those in (II,III). The excitation functions for capture and fusion 
calculated within the DNS model [28] for these reactions are presented in Fig. 14. The 
calculated excitation functions of the ER are in good agreement with the experimental 

1 
data. Taking into account the deformation effects in the calculation of the DNS potential 
energy as a function of 17 or T/Z, one can explain that the maximum value of the ER cross 
section for 124Sn + 92Zr is four times larger than for 86Kr + 130Xe at nearly the same 
value of EcN• 
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The ER cross section in the 86Kr + 136Xe reaction is about 500 times larger than in 
reaction (II) (Fig. 15c). This result is related to the two characteristics of the fusion-fission 
mechanism. First, the fusion cross section calculated with the approach given in Ref. [28] 
is larger for the reaction 86Kr+ 136Xe than that for 86Kr+ 13OXe (Fig. 15b ). Second, the 
survival probability [29] of 222Th is larger than the one of 216Th because the fission barrier 
is larger for the isotope A= 222 than for the isotope A = 216 and the neutron separation 
energy of 222Th (Sn = 7.808 MeV) is smaller than that of 216Th (Sn = 8.701 MeV). 
Therefore, the r n/ r I ratio is larger for 222Th than for 

216
Th. 

V. DEEP INELASTIC COLLISIONS 

Dissipation of a large amount of the kinetic energy in deep inelastic heavy ion collisions 
(DIC) is a fundamental time-dependent process [30-37] that has attracted theoretical 
interest since the discovery of this class of reactions. At an earlier stage of investigations 
it was assumed that the excitation energy is distributed between reaction partners in 
proportion to their masses. However, after a series of experiments, it became clear that 
a large part of the excitation energy is concentrated in the light fragments for a wide 
range of total kinetic energy losses. Various models have been proposed to explain this 
phenomenon, taking into account the coupling of the relative motion to intrinsic degrees 
of freedom. The simple macroscopic models with phenomenological friction forces can 
not be used to treat this problem. The important aspect of the description of the nucleon 
transfer and kinetic energy dissipation is connected with an influence of the peculiarities of 
the shell structure of the interacting nuclei on the correlations between the kinetic energy 
loss and the width of the fragment charge distribution. Indeed, it was demonstrated by 
analysing experimental data of different reactions that these correlations are sensitive to 
the projectile-target combination. 
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FIG. 15. Comparison of the calculated 
capture (a), fusion (b) and evaporation 
residue (c) excitation functions as well as 
the measured excitation functions of evap­
oration residue cross section (c) for the 
86Kr + 136Xe (solid curve, open circles) 
(24) and 86Kr + 130Xe (dashed curve, solid 
squares) (24) reactions 

The present microscopical model is based on the assumption that the colliding nuclei 
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ioving approximately along the classical trajectories conserve mainly their individual 
1:roperties at the kinetic energies under consideration. Each nucleus is described by nu­
I !eons captured in a potential well (Woods-Saxon potential). During the interaction time 
~oth potential wells act on the nucleons in each nucleus causing transitions of nucleons be­
tween single-particle states. The transitions taking place in every nucleus are particle-hole 
excitations while those occurring between partner-nuclei are nucleon exchanges. Thus, in 
the proposed model the single-particle mechanism is considered as the main mechanism 
of excitation and dissipation. Although easily excited surface vibrations can contribute 
to the dissipation, the adiabaticity of the relative motion with respect to these vibrations 

decreases their effect. 
The total Hamiltonian of a clinuclear system if is taken in the form 

J{ = }[,,/ + H;n + ½nt (21) 

The Hamiltonian H,.e1 = P2 
/2µ + U(R) of the relative motion in R consists of the kinetic 

energy and the nucleus-nucleus interaction potential U(R). 'The last two terms in (21) 
describe the intrinsic motion of nuclei and the coupling between the relative and intrinsic 
motions. Employing the Ehrenfest theorem it is easy to obtain the classical limit of 
equations of motion in the collective variable R from (21 ): 

R = 'vp(Jl,,1+ < t/¾ndt >), 

P = -'vn(H,e1+ < t/¾n1/t >), 

(22) 

(23) 

where < t/ ... 11 > means an average over the intrinsic state at the time t. It is clear 
that the relative motion of the nuclei additionally depends on the nonconservative and 
nonstationary coupling potential < t/¾nt\t > which can be calculated by solving the 
equation of motion for the single-particle density matrix n. 

Tlw single-particle basis is constructed from the asymptotic single-particle state vec­
torn of noninteracting nuclei: for projectile "P" /P > and target "T" /T > in the form 
/? >= /P >-½Lr /T >< T/P >, /T >= /T >-½LP /P >< P/T >. The orthogonality 
condition for the given basis is fulfilled up to the second order of the overlapping integral 
<PIT>. 

The single-particle Hamiltonian of a dinuclear system il is as follows 

• A (-fi2 . . ) H(R{t)) = L -L'l; + Up(r; - R(t)) + Ur(r;) , 
i=l 2m 

(24) 

where m is the nucleon mass, A = Ap + Ar is the total number of nucleons in the system. 
The average single-particle potentials of projectile Up and target Ur include both the 
nuclear and Coulomb fields. 

In the second quantization form the Hamiltonian (24) can be rewritten as 

'fi(R(t)) = H;n(R(t)) + ¾nt(R(t)), 

H;n(R(t)) = I:l;(R(t))ata; = I:ep(R(t))a}ap + I:lr(R(t))a,tctr, (25) 
i P T 

¾nt(R(t)) = L \,-;;,(R(t))ata;, 
ifi' 

= L xV),(R(t))atap, + L x~'.J.(R(t))a}ar, + L gpr(R(t))(atar + a:}ap)-
~r NP U 
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Up to the second order in < PIT> Ep(R(t)) = €p+ < PIUr(r)IP >, fr(R(t)) = er+ < 
TjUp(r - R(t)JIT >, \~f,(R(t)) =< PIUr(r)IP' >, xr),(R(t)) =< TjUp(r-R(t))IT' >, 
gn(R(t)) = ½ < PjUp(r-R(t)) + Ur(r)IT >. Here, €p(T) are single-particle energies of 
non perturbed states in the projectile (target) nucleus. These states are characterized by 
the set of quantum numbers P = (np,jp,lp,mp) and T = (nr,ir,lr,mr)- The diagonal 
matrix elements< Pl Ur IP> and < TjUpjT > determine the shifts of the single-particle 
energies of the projectile nucleus caused by the target mean field. The corresponding 
nondiagonal matrix elements x~), and x!!J., generate particle-hole transitions in the same 
nucleus. The matrix elements gPT induce the nucleon exchange between the reaction 
partners due to the nonstationary mean field of the dinuclear system. The contributions 
of noninertial recoil effects to the matrix elements are neglected since they are small. 

Since a residual interaction requires extensive calculations, it is customary to take the 
two-particle collision integral into account in a linearized form ( r-approximation) in the 

equation for the single-particle density matrix: 

. Dii(t) • • iii • • di--;,= [1-£, n(t)] - -[n(t) - n'q(R(t))], 
ui T 

(26) 

where r is the relaxation time, n'q(R(t)) is a local quasi-equilibrium density matrix at 
fixed value of R(t) which is determined by the excitation energy of each nucleus. 

The present model allows us to calculate the average number of protons < ZP(T) >= 
z:=Z np(T)(t) or neutrons <NP{T)>= ZN 1lP(T)(t), their variances a}(N) = z:=Z(Nlnp(t)[l-
~T) ~T) p 
np(t)] and to determine the intrinsic excitation energies Ehn(t) = LP(T)[€P(T)(R(t)) -
€Fp(Fr)(R(t))l[np(T)(t)], for every nucleus. Here, €Fp(Fr)(R(t)) is the Fermi energy of a 
projectile-like nucleus" P" or target-like nucleus "T". The top index Z(N) at the sums 
restricts the summation over the proton(neutron) single-particle levels. 
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FIG. 16. a) Ratio Rp of the projectile-like 
fragment excitation energy (Ej,) to the total 
excitation energy for the reaction 74 Ge(629 
MeV) + 165Ho as a function of the total 
excitation energy E1.,. = Ej, + Ei,. Trian­
gles mark the experimental data. Solid line 
presents the theoretical result of our model. 
Dotted line corresponds to thermal equilib­
rium (Ej,/E,.., = Ap/(Ap+Ar)). 
b) Calculated ratios R~r) = E~(er) /(E~(er) + 
E~(•rJ), R~h) = E~(ph) /(E~(ph) + E~(ph)) as 

a function of E10,. are presented by long­
dashed and short-dashed lines, respectively 

The model described is capable to explain both the multinucleon transfer data (the 
values of charge (mass) drift and variances of charge (mass) distributions) and the distri­
bution of the excitation energy between the primary fragments in DIC for a wide range 
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of tot ill erwrgy losses (Figs. 16-18). The results obtained show that a redistribution of 

1 
Ii•· ,,:-;cit at ion <'11<'-'rgy takes place during the whole interaction time, not only at the initial 

,iag<'. :\'uclcoa exchaage, particularly, neutron exchange is a dominant mechanism of 
,.

11
,-rgy dissipation. However, for the heavy DNS (AP,T >100) the p - h excitation ener­

gies E;/}h) become equally important as the nucleon exchange energies E~~~). Influence 
of the shell structure of the interacting nuclei on the nucleon transfer and the partition 
of excitation energy is significant. The density of the single-particle levels of the proton 
aud wutron subsystems near the Fermi surface determines the ratio between the excita­
t iou energies of the products of the collision. The shell .. structure strongly influences the 
correlations between the width of the charge distributions and the total kinetic energy 

losses . 
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FIG. 17. Centroids of the Zp, Ap dis­
tributions for projectile-like fragments of 
the reaction 74Ge(629 MeV) + 165Ho as 
a function of the total excitation energy 
E10,.. Circles give the primary values (38], 
dashed lines present results of the nucleon 
exchange transport model (39] and solid 
lines are predictions of the primary distri­
butions with our model 

FIG. 18. Variances of the Zp, Ap dis­
tributions for projectile-like fragments of 
the reaction 74Ge(629 MeV) + 165Ho as a 
function of energy loss E10,.. Symbols are 
the same as in Fig. 17 



VI. APPLICATION TO FISSION 

At the scission point, a fissioning system can be approximately considered as a DNS 
whose intrinsic degrees of freedom are in thermal equilibrium. However, the shape of the 
DNS is not equilibrated. We assume [40] that the angular momenta of fission fragments are 
generated by small bending vibrations of DNS nuclei around the pole-to-pole orientation. 
This model [40] describes quite well the measured angular momenta of fission fragments 
as a function of the total number of evaporated neutrons v for the fragmentation Mo+Ba 
of 252 Cf [41] as shown in Fig. 19. The DNS excitation was estimated for the standard 
fission mode by assuming a small deformation energy of the nuclei. 

For v > 5, the calculated values of the angular momenta of the fragments, obtained 
by neglecting a possible formation of an alpha particle chain in the neck, deviate from the 
experimental ones. However, the higher values of the neutron multiplicity are connected to 
the second mode of fission which could have a different cluster composition which is more 
complicated than that of the DNS. The system 102zr+ 4He+ 4He+ 142Xe which supplies the 
experimental TKE is assumed for the second fission mode. The c~lculation for this mode 
is done for v 2'. 8 by assuming a rigid coupling between the alpha particles and heavy 
nuclei. The calculations for the cluster configuration give a better agreement with the 
experimental data for v >8 than the calculations with the DNS used for the standard 

- I 

fission mode. 
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VII. APPLICATION TO NUCLEAR STRUCTURE 

Dinudea.r configurations are also import.ant for the explanation of special nuclear struc-
1 ure C"ffect.s. In this section we report on states of the dinuclear s_\·stem in the rela.ti\·e 
,rnd rnass asymmetry motions and therewith explain hyperdeformed states and the pa.rit~· 
splitting in alternating parity bands of actinides. 

A. Hyperdeformed nuclei as dinuclear configurations 

IlypPrdeformed (HD) nuclei a.re usually assumed as strongly dPformed 11nckar systems 
with an ratio of axes of about 3 : 1. For such large ratios a neck rnuld be formed and a 
dinurkar configuration could be thought. Under the assumption that HD states can lw 
expla.ined as st.at.es with a dinudea.r configuration. we consider their direct formation in 
collisions of h<'avier nuclei [42]. As example \\'C' choose the reactions 48 C'a + 140C'e and 
9UZr + uozr. 

Th<' potpnt.ial for di11uclea.r configuratio118 has a depression around the touching dis­
tance as shown in Fig. 20 in which quasi 0 bound states are situat<'d. In the examples of 
Fig. :W we find one to three quasi-bound states with liw ~ 2.2 MeV for angular rnoml'nta 
L > 10/i. The escape width through the fission barrier is a.bout 10 eV. The absolnl<'. 
enngy values at L = 0, t.he quadrupole moments of (70 - 80) x 102 cfm2 and moments of 
inntia ( 160-190) fi 2 /"'r.kV of these dinuclear configurations are clos(' to t hos<' est imat..d 
for III) stall's. Quasi-ho11nd states are also known in reactions of light hcav~· ions. e.g. in 
t ht• 

12
(' + 12

(' n•artion, where they show up as quasi molecular resonances. 
W(• propose to form HD states with heavy ion react.ions in which quasi-bound stales ar<' 

occupiPd [42). In order that this can happen, the DNS must be formed nearly mid which 
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means that the nuclei are captured into a quasi-bound state via a quantum tunneling 
through the potential barrier. The target and projectile nuclei should be magic or double 
magic, i.e. they should be stiff against nucleon transfer which has as consequence that the 
potential energy is in a minimum with respect to the mass asymmetry coordinate. The 
quasi-bound dinuclear state can decay by ,-transitions to energetically deeper dinuclear 
states, i.e. HD states, with lower angular momenta in coincidence with fragments of the 
DNS decay. The lifetime against DNS decay is of the order of 10-

16
s. 

Optimum conditions for the considered reactions are 

48Ca + 140Ce: 
9ozr + 9ozr: 

Ec.m. = 147 MeV, 
Ec.m. = 180 MeV, 

90/i < L < 100/i, 
40h < L < 50h. 

The estimated cross section for the formation of a HD nucleus is about 1 µb. 
Heavy ion experiments with coincidences of ,-rays and qua.sifission could verify 

whether the cluster interpretation is suitable for hyperdeformed nuclear states. In princi­
ple, this means the search of nuclear molecular resonances in heavier systems. 

B. Parity splitting in alternating parity bands of actinides 

The actinide isotopes of Ra, Th and U have a ground state band with positive parity 
and a related first excited band with negative parity. In comparison with the positive 
parity states the negative parity states are shifted which is denoted as parity splitting. 
This parity splitting is characterized by two quantities: the energy of parity splitting at 
the beginning of the bands and the critical spin value when the effect vanishes. The parity 
splitting can be explained by octupole vibrations superimposed on the rotation spectrum 
of a quadrupole-deformed intrinsic shape. Here, we apply the dinuclear model for the 
description of the parity splitting [43]. · 

Calculating the binding energy of the dinuclear system for the actinide nuclei Ra, Th 
and U, we find an alpha-cluster configuration mixed to the ground state wave function: 

A z _,(A-4) (Z - 2) + Q'.. 

The united ( compound) system has an higher binding energy than the alpha-cluster con­
figuration. The potential is schematically depicted as a function of the mass asymmetry 
coordinate in Fig. 21, where also the reflection-a.symmetric shapes of the alpha-cluster 
configuration are shown. The mass asymmetry coordinates of the later configurations are 
T/o = ±( 1 - 8/ A). The deformation parameters of the dinuclear ground-state shape of 
226Ra are /32 = 0.17 and (33 = 0.09 in agreement with the measured octupole deformation 

of /33 :::; 0.1. 
According to quantum mechanics the dinuclear system oscillates in the potential V(77) 

( see Fig. 21), which is a two-center potential in the coordinate x = 77- l for 77 > 0 and x = 
T/ + 1 for T/ < 0. The ground state in this potential is split in a lower positive parity state 
and a higher negative parity state where the difference in energies (splitting) decreases 
with an increase of the barrier at T/ = 1 (x = 0). This splitting is interpreted as the parity 
splitting observed in experiment. With increasing nuclear spin I the splitting approaches 
zero because the moment of inertia in the rotational energy V,.01 = h2 

I(I + l)/(2J(TJ, R)) 
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,vhich is added to the potential V ( TJ) lets increase the barrier at 17 = 0 with increasing 

11
ucle~r spin. 
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FIG. 21. Schematic picture of the poten­
tial in the mass asymmetry and of the 

11 two states with different parities ( paral­
lel lines, lower state with positive parity, 
higher state with negative parity) 

~ 

ll 

FIG. 22. Experimental (points) and theoret­
ical rotational spectra for 238,236,234,232U 

For the application of this model to the spectra of the isotopes of the actinides Ra, 
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Th and U, we calculated the eigenvalues of the Hamiltonian 

h2 d2 4 2k 2k 
H = ---d 2 + I:>2k(/)(x - x 0 ), 

2M~ x k=I 

(27) 

where M~ are chosen as a constant mass for all the considered nuclei: !vi~ = 20 x 10
4
m 

fm2• The parameters a2k(I) are obtained by fitting the calculated potential values for 
l11I = 1, l110I = 1- 8/A and l77Lil = 1 -14/A. Fig. 22 shows the results for U - isotopes in 
comparison with experimental data. Similar agreement with the experimental spectrum 
is found for the isotopes of Ra and Th [43]. 

VIII. SUMMARY AND CONCLUSIONS 

The dinuclear system concept assumes two touching nuclei which.can exchange nucle­
ons by transfer. In this concept one describes the fusion of heavy nuclei to superheavy 
nuclei, the competing quasifission, fission and nuclear structure phenomena connected 
with cluster structures. The dynamics of the dinuclear system has essentially two degrees 
of freedom: the mass asymmetry degree of freedom and the relative motion of the nuclei. 

The fusion is described by nucleon transfer between touching nuclei. The potential 
energy surface is diabatic and forbids a direct melting of the nuclei. The transfer process 
proceeds by diffusion. Available experimental data for fusion and quasifission of super­
heavy systems formed in lead- and actinide-based reactions can be well reproduced. This 
large set of data gives a strong experimental support for the usefulness of the dinuclear 

system concept. 
HD nuclear states and the parity splitting observed in the spectra of actinides are 

explainable by clusters within the dinuclear model. In heavier nuclei HD states are inter­
preted as dinuclear resonance states which can be formed in heavy ion reactions. These 
configurations have very similar properties as the well-known quasimolecular resonances 
in light heavy ion systems, e.g. in the 12 C + 12 C system. 

The properties of alternating parity bands in actinides can be described with collective 
oscillations in the mass asymmetry. The octupole-deformed reflection-asymmetric shapes 
near the ground state are thought as dinuclear configurations with a large component of 
an alpha-cluster configuration. 

The fusion and quasifission proceed at excitation energies and level densities of the 
dinuclear states where statistical methods can be used. The nuclear structure phenomena 
are explainable by selected states of the dinuclear system, quasi-bound or bound states 
in the relative and mass asymmetry coordinates, respectively. So, the dinuclear system 
concept has a large variety of applications. to heavy ion scattering, fission and bound 
nuclear systems, and is astonishing which large part of nuclear structure physics and 
dynamics can be described within this model. Future experimental and theoretical studies 
will settle down further details of the basic principles of this concept. 
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I. INTRODUCTION 

This paper is dedicated to the scientific work of Professor R.V.Jolos on the occasion of 
his sixtieth birthday. We had the pleasure to work with him on many projects. On this 
occasion we remember many fruitful discussions and the discussion of science is very much 
at the heart of science. 

The paper will discuss the concept of Q-invariants and its connection to the Q-phonon 
· scheme and the shape parameters. It will also discuss the simple relations among the Q­

invariants, many of them discovered in seminal work by R.V. Jolos. These relations allow 
one to determine crucial nuclear observables, like the quadrupole moment, Q(2t), in future 
measurements with rare isotopes beams. 

After a brief survey over collective models we will introduce the concept of Q-phonon 
excitations. The Q-phonons serve as a basis to the concept of Q-invariants that lead us to 
the dimensionless K-invariants, Kn. These K-invariants serve as a suitable generalization to 
the shape parameters beta and gamma, which work only for rigid rotors. Finally we discuss 
the determination of the K-invariants from accessible observables and simple relations among 
these observables, which were proposed by Prof. Jolos. 

The low lying excitations of nuclei can be described by a few nucleon Shell Model [1] near 
the magic shells and by the collective model [2] nearly everywhere else. In recent years the 
technology of Shell Model has made marvellous progress in the hands of Tokyo, Tiibingen, 
and Madrid groups (cf. (3-5] and references therein) so even the heavy nuclei may become 
accessible. At present the collective models are still the centre of our understanding of 
non-magic heavy nuclei. 
. In the geometrical model of Bohr and Mottelson [2] the low-lying excitations are described 
Ill terms of three different Hamiltonians for vibrators, rigid deformed and gamma soft rotors 
[2, 6, 7]. The different models clearly led to a search for unification. This was achieved in 
the seventies by various models such as the Bohr Hamiltonian [2], the Greiner Gneuss model 
~so called GCM model) [8], the quadrupole boson model [9, 10], and the Interacting Boson 

ode! (IBM) [11-14]. Of these models the quadrupole boson model is by Jansen, Donau, 
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and Jolos. They are right to be proud of it. The most developed and used model is of course 
the IBM. Although these models differ in various aspects they all achieve the unification of 
the three separate collective Hamiltonians. 

From this unification one may surmise that there is an underlying similarity of the wave 
functions of the various modes. This similarity is put in evidence by the so called Q-phonon 
scheme. This scheme was suggested for the 0(6) dynamical symmetry by Otsuka and Kirn 
(15] and was developed by the Cologne, Dubna, Tokyo, Yale collaborations (16-23]. 

II. WAVEFUNCTIONS OF THE 2t AND 2t STATES IN THE Q-PHONON 
SCHEME 

In the Q-phonon scheme one exploits the fact that there are comparably simple, ap­
proximate relations between the wave functions of different collective states, including the 
ground state. These relations stay the same for a wide range of values for the Hamilto­
nian parameters. The wave functions of some excited states can be described by successive 
actions of one-body operators on the ground state wave function with good accuracy. In 
even-even nuclei, where the ground state is a o+ state, the wave function of the 2t state 
is given by the quadrupole operator, Q, acting on the ground state. The generalization of 
this concept has been named the Q-phonon scheme (15-23]. In this approach one describes 
the low-lying collective positive parity states of even-even nuclei in the basis of multiple 
Q-phonon excitations of the ground state, Jot), 

JL+,n) = N(L,n)~(L)Jot). (1) 
n 

In the IBM-1 the Q operator of the Q-phonon scheme is the isoscalar electric quadrupole 
operator, which is also the E2 transition operator in the Extended Consistent Q Formalism 
(ECQF) (24, 25], 

T(E2) = Q = en QIBM ' (2) 

where QIBM is the quadrupole operator in the IBM 

QIBM = QX = s+J + d+s + xWd'JC2l (3) 

and e8 is the effective boson quadrupole charge which is fixed for a given nucleus. 
In the framework of the IBM-1 (12, 13] it has been shown over the whole parameter space 

of the Casten triangle (26] of the ECQF (Extended Consistent Q Formalism) Hamiltonian 
(24, 25] that each of the wave vectors of the yrast states can be described by only one 
multiple Q-phonon configuration with good accuracy (16, 17, 19]. This finding has been 
recently supported by the results of microscopic calculations in terms of the shell model 
done by the Tokyo group (27]. The Q-phonon scheme suggests the existence of selection 
rules for the matrix elements of the Q operator. These selection rules may not always 
be exact since the Q-phonon excitations do not form an orthogonal basis in general. But 
indeed, one finds that E2 transitions between Q-phonon configurations, that differ by more 
than one Q-phonon, are weak compared to transitions between those configurations that 
differ by only one Q-phonon. During the last years much data on ,-soft nuclei has been 
collected, especially in the A = 130 mass region (28], which support these selection rules, 
e.g. (16, 18, 29, 30]. 
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Since single Q-phonon excitations generally exhaust large portions of the wave function 
of a collective state, they can be used as an alternative basis with a faster convergence 
(few important terms). In the 0(6) dynamical symmetry of the IBM, which describes ,­
soft nuclei, all low-lying states with the 0(6) quantum number u = N can be described 
as multiple Q-phonon excitations of the ground state [15]. The 2t and 2t states in the 
0(6) dynamical symmetry are represented exactly by only one individual multiple Q-phonon 
excitation. In general, however, multiple Q-phonon excitations.may not be eigenstates of the 
Hamiltonian. The wave vectors of the lowest-lying eigenstates may then be approximated 
by series expansion in multiple Q-phonon excitations of the ground state 

JLt) ~ [ L a;,k(Qi ... Qk)<LJ] Jot) . 
k'?,L/2 

(4) 

It has been shown that, for the ECQF Hamiltonian of the IBM, and for the Davidov Fillipov 
model of a rigid triaxial core, the convergence of this series is fast. This makes the Q-phonon 
scheme a useful concept for semi-analytical descriptions outside the dynamical symmetries 
of the IBM. 

To be specific we will now give the Q-phonon wave functions for the first and second 
2+ states in nuclei. These wave functions are generically valid for collective nuclei, e.g., for 
nuclei with a ratio R4; 2 = E(4t)/E(2t) > 2, i.e., for which the 4t state has at least double 
the excitation energy of the 2t state (26]. 

The wavefunctions of the first two 2+ states are well approximated by the expressions 
(23]: 

J2~) = Nq Q Jot) (5) 
and 

J2~q) = Nqq [(QQ)<2J - v Q] Jot) (6) 
in large regions of the Hamiltonian parameter space. The quantity v is obtained from the 
orthogonality condition 

(2~J2~q) = 0 (7) 
The value of v is 

(otJ(QQQ)<0JJot) 
v = (0tJ(QQ)(DJJOt) 

The normalization constants Nq and Nqq are_ obtained from 

(2~J2~) = 1 = (2~Q12~q) 

yielding the expressions 
1 

Nq = V (ot J(QQ)<0JJot) 

and 

(8) 

(9) 

(10) 

_1_ =. /_1 [(o+J((QQ)C2J(QQ)C2l)(oJjo+) - (Otl(QQQ)<oJJot)2] . (11) 
Nqq V -15 i i (otl(QQ)(OJJot) 

These "wave functions" are, of course, implicit as nothing is said about the structure of 
the ground state which is highly complex, in general. The "wave functions" depend further 
on the structure of the Q operator, e.g., on the x parameter of the quadrupole operator 
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in the IBM as is shown in Eq.(3). In the Davidov Fillipov model of a rigid triaxial rotor 
[7] with 1 = 30° expressions for the wavefunctions in the Q-phonon scheme were obtained 
by Jolos [31]. The normalization constants, N are expectation values of multiple moments 
of the quadrupole operator (ot IQnlot) up to n = 4. These quantities were discussed and 
extensively used first by Kumar and Cline [32, 33], who called them quadrupole shape 
invariants. We will refer to them mostly as Q-invariants. They can be calculated from a few 
B(E2) values between low-lying states [21]. 

III. Q-INVARIANTS 

Following Kumar [32] and Cline [33, 34] we define [35] Q-invariants up to fourth order of 
the quadrupole operator: 

q2 = (Otl(Q · Q)IOt) 

/35 
q3 = y 2 l(Otl[QQQJC0>1ot>1 

(12) 

(13) 

There are three possibilities to couple the quadrupole operators to obtain fourth order 
scalars, 

(0) 
q4 

(2) 
q4 

(4) 
q4 

(Otl(Q. Q)(Q. Q)IOt) , 

= 7'15 (otl [[QQ]c2>[QQj(2>]co> 1ot), 
2 

365 (Otl [[QQj<4l[QQ](4)](0) IOt), 

(14) 

(15) 

(16) 

The notation [ ... ](L) abbreviates the tensor coupling of two operators to rank L, the dot 
denotes scalar product, and [QQQ](o) abbreviates the unique tensor coupling to rank zero. 

These three scalars are equal according to Dobaczewski, Rohozir\.ski and Srebrny [36], if 
the Q-operators commute. 

qio> = qi2> = qi4> = q4 · (17) 

In the IBM-1 the Q-operators do not commute. The effect of the non-commutativity of the 
quadrupole operators scales, however, with 1/ N and is, therefore, neglected in first order. 

With the Q-invariants (12-16) we define [35] the dimensionless K-invariants by normal­
izing relative to an appropriate power of q2 

Kn= qn/2 for n E {3,4,5,6}. 
q2n (18) 

The quantities Kn do not depend on the effective boson charge e8 . The shape invariants 
Kn differ slightly from earlier definitions of Jolos et al. [21] by normalization constants and 
tensor coupling. We stress again that we neglect in this work the non-commutativity of the 
Q operators implying interesting ambiguities for the tensor coupling scheme in the definition 
of the K-invariants that we will exploit below. All K-invariants are exactly equal to unity 
in the limit of the rigid symmetric rotor and in the SU(3) limit of the IBM. 

In the rigid rotor the shape invariants are functions of the fixed deformation parameters 
/3 and 1 . If we do not stipulate a rigid deformation, we can give expressions for the shape 
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jurariants as 

q2 = 

K3 

K4 = 

(3~:R2) 
2 

(/32
) = (3~:R2) 2 /3./ 

(/33 cos 3,) _ 
(/32) 3/2 = cos 3,eff 

(/34) 
(/32)2 

(19) 

(20) 

(21) 

explicitly using expectation values of /3 and cos 3,- We can define effective values of the 
deformation parameters f3eff and 'Yeff by Eqs. (19,20). 

The shape invariants are measures of effective deformation parameters and their fluctu­
ations. This is made more explicit by defining the following quantities as measures of the 
fluctuations of /3 and cos 31 

(/34) _ (/32)2 
(/32) 2 = K4 - 1 CY(J 

(22) 

_ (/36 cos2 31 ) - (/33 cos 31 )2 _ K _ K 2 
CY-y - (/32 ) 3 - 6 3 · 

(23) 

We note that in the large N limit of the IBM-1 the theoretical values for the K 4 are 1 for the 
SU(3) and the 0(6), and 1.4 for the U(5) dynamical symmetry limit, distinguishing between 
,B-rigid and vibrational nuclei, respectively. 

The invariant K 4 , as well as the fluctuation c,1 = K6 - K;, are of special interest as they 
differ clearly between rigid and soft potentials in /3 and 1 , respectively, which can be difficult 
otherwise, e.g., for the 0(6) and U(5) symmetries. Q-invariants have been studied in the 
GCM, as well [37]. Finally we note that the values of c,1 change most rapidly [35] for IBM-1 
Hamiltonians that show shape coexistence [38, 39]. 

IV. SIMPLE RELATIONS AMONG E2 MATRIX ELEMENTS BETWEEN 
COLLECTIVE STATES 

From the Q-invariants one can deduce information about nuclear deformations. The value 
of the K's can be obtained from a complete set of E2 matrix elements. Shape invariants 
were first introduced by Kumar [32] and Cline [33] in the discussion of a large set of E2 
matrix elements obtained in Coulomb excitation experiments. Calculating shape invariants 
in the geometrical model shows their connection to the deformation parameters /3 and 1 
introduced by Bohr and Mottelson. Actually the K-invariants generalize the deformation 
parameters f3 and I to soft nuclei. In this case we can define effective parameters, f3eff and 
'Yeff, and the fluctuations of those. 

For the determination of the shape invariants from experimental data it is convenient 
to write the expressions for the Q-invariants as sums over E2 matrix elements. The ten­
sor properties of the quadrupole operator are taken into account and the unit operator 
l== I:Ji M IJ;M)(J;MI is inserted between every pair of quadrupole operators. Using the 
Wigner'-Eckhardt theorem and the unitarity relation of Clebsch-Gordan coefficients one ob­
tains 

q2 I:<ot 11 Q 112t)(2t II Q 11 ot) (24) 
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q3 = {!a I ~(ot II Q 112t)(2t II Q 112t)(2t 11 Q II ot)I 
1,J 

(25) 

qi
0
l = I)□tllQll2t}(2tllQIIDt)(otllQll2t)(2tllQIIDt) , (26) 

i,j,k 

qi
2
l = to I)□tllQll2t)(2t1IQll2t)(2_t1IQll2t)(2tllQll □t) , (27) 

i,j1k 

qi
4
' = ts 2)□tllQll2t)(2tllQll4t)(4tllQll2t)(2t11Qll □t) (28) 

i,j,k 

that involve reduced matrix elements between o+ , 2+ and 4+states only. Equations (24 -
28) allow the calculation of the Q-invariants in all nuclear structure models able to predict 
E2 transition matrix elements. 

We note that q2 is equal to the total absolute E2 excitation strength from the ground 
state 

q2 = L B(E2; ot ---+ 21) . (29) 

Thereby, q2 is the only quantity in the set of ivariants q2 , Kn where an absolute value of the 
effective quadrupole charge (e8 in the IBM) appears. 

In view of the (approximate) selection rules of the Q-phonon scheme, the sums (24 ··• 28) 
can be reduced drastically in first approximation. If, for instance, E2 transitions between 
states with !J.Q > 1 are neglected (15], the set of E2 matrix elements necessary for the 
calculation of qt) (n = 0, 2, 4) reduces to the matrix elements· 

(2tllQll4t) -+ i = 1 , 

(2tllQll2t) -+ i = 1,2, 

(2tllQIIDt)-+ i=l,2,3. 

(30) 

(31) 

(32) 

The first three o+ states are taken into account, because the ot 3-eigenstates of the ECQF 
Hamiltonian are mixtures of two- and three-Q-phonon o+ config~rations for a wide range of 
parameter values. Of course, if there are low-lying non-collective o+ states, the ECQF Ot,3 

eigenstates may refer to higher lying physical states. 
We will show now how one can obtain simple relations [40] between matrix elements of 

E2 operators from the above. As an example we consider fourth order scalars obtained 
by coupling the four quadrupole operators in different ways. One obtains several different 
expressions for the fourth order quadrupole shape invariants in terms of only a few E2 matrix 
elements. The approximate identity of these expressions can be used to derive approximate 
relations between various observables, e.g., for the quadrupole moment of the first 2+ state 
or the lifetime of the first excited o+ state, and more easily accessible nuclear data. Such 
information is very desirable for nuclei where complete experimental information about low­
lying states is not - or not yet - available as, e.g., nuclei which are produced using rare 
isotope beams. 

From Eqs. (17,26 - 32) one obtains a relation for the quadrupole moment of the 2t state: 

(2tllQll2t)2 + (2tllQll2t)
2 

= ~(2tllQll4t)2 (33) 
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or 
Q2 _ 32rr [B( . + +) ( . + +)] 

2
t - 35 E2, 41 ---+ 21 - B E2, 22 ---+ 21 • (34) 

.If.we define B(E2;2t ➔ 2n = 1/5(2tliQll2t)2
, we can rewrite expression (33) in an 

intuiti,·ely appealing way: 

B(E2; 2t ➔ 2n + B(E2; 2t ➔ 2t) = B(E2; 4i ---+ 2t) . (35) 

We stress that this relation is exactly valid in the ECQF for the 0(6) limit, for the whole 
0(6) -t U(5) transition path and for the U(5) limit with x = 0. Its approximate validity 
for all U(5) and SU(3) like nuclei was already well known, while now it can be extended also 
to transitional nuclei. The predictive power of relation (34) is tested for several nuclei with 
dramatically different structure in Table I. A relation similar to (34) for N ---+ oo has been 
obtainPd earlier by Jolos et al. [20]. 

Applying the above results leads to an important approximation formula for K 4 that has 
already been obtained by .Jolos [21] 

K ~ 7 B(E2; 4t ---+ 2n _ Kappr, ) 
4 ~ 10 B(E2· 2+ ---+ o+) = 4 . (

36 
, I 1 

Combining Eqs.(34,36) one finds 

35 Q~+ [10 B(E2· 2+ ---+ 2+)] 
q(2t) = 32rr B(E2; 2t

1

---+ on = 7 K 4 
- B(E2; 2t ---+ Dt) 

(37) 

Eq.(37) connects in a remarkably simple way three fundamental quantities of nuclear 
quadrupole collectivity: the quadrupole moment of the 2i state, and the relative quadrupole 
transition strengths within the yrast cascade and to off-yrast states. This relation can well 
be used to demonstrate key signatures for structure changes. We note that K 4 E [1, 1.4]. 
Let us consider the 0(6) to SU(3) transition for which K4 = l. In the SU(3) limit 
[B(E2; 2t -+ 2t)/B(E2; 2t ---+ ot) ~ O] the relative quadrupole moment, q(2t), is 10/7. 
In the 0(6) limit [q(2t) = OJ one finds B(E2; 2t ---+ 2t)/ B(E2; 2t ---+ Ot) = 10/7. In the 
transition from 0(6) to SU(3) the value of q(2t) rises from zero to 10/7, while the value of 
B(E2; 2t ---+ 2n/ B(E2; 2t ---+ on drops from 10/7 to zero in leading order. Thus, these 
ratios characterize nicely the change of structure. 

To summarize, the Q-phonon scheme and the concept of Q-invariants is reviewed. This 
concept offers a simple method to derive sets of relations between experimental observ­
ables for the quadrupole operator, including quadrupole moments and reduced transition 
matrix elements. This approach is based on the use of the quadrupole shape invariants, 
the approximate selection rules of the Q phonon scheme and the fact that corrections from 
non-commutativity of the components of the quadrupole moment operator in the IBM-1 are 
small. As an example of the general scheme, up to fourth order Q-invariants of the ground 
state are given. A satisfactory agreement between data and theoretical relations has been 
obtained in many cases, but some exceptions clearly need further study. 
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TABLE I: Comparison of the experimental value for the quadrupole moment of the 2t state-with 
the relations obtained from the Q-phonon scheme for various nuclei. 

Q~+ 
I 

[e2b2] [e2b2] 

Eq. (34) exp. 
l56Gd 3.79(11) 3.72(15) 
158Gd 4.19(11) 4.04(16) 
160Gd 4.20(10) 4.33(17) 
164 Dy 4.09(22) 4.12(81) 
186Os 1.91:M 1.16!~~ 
188Os 1.80!~1 1.72!~g 
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108Pd 0.20::'.:~0 0.38::'.:: 
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Phase Transitions and Critical Behavior in Nuclei 

R. F. Casten 

WNSL, Yale University, New Haven, CT 06520, USA 

The origin of shape transitions in finite nuclei is discussed, focusing on 

the conditions under which finite nuclei undergo shape changes with nucleon 

number in a way which closely resembles phase traI1Sitional behavior. Evi­

dence for such behavior has led to the proposal, and discovery, of a new class 

of critical poiut symmetries that provides new paradigms for structure. 

I. INTRODUCTION 

Traditionally, the concept of phase transitions has been reserved for infinite, many-body, 

systems in which some observable (the order parameter) changes rapidly as a function of a 

control parameter (typically the temperature in macroscopic systems). However, in recent 

years, the idea of finite system phase transitions has also been much discussed [l]. 

Nuclei play a unique role in many-body physics, being composed of two interacting 

"fluids'' (protons and neutrons) interacting under the strong and electroweak forces. They 

have sufficiently many constituents that many-body methods are essential for the microscopic 

calculation of their properties. Yet, as finite systems, one would not expect them to exhibit 

sharp phase transitions. On the other hand, the conceptual separation of their constituent 

nucleons into closed shells and valence nucleons means that their structure is usually, in 

fact, determined by just a few nucleons and, therefore, the variation of nucleon number 

by small amounts can often alter structure dramatically. Thus, the irony that finite nuclei 

can display phase transitional behavior, reminiscent of many-body systems, as a function of 

nucleon number precisely because so few nucleons determine structure and, hence, a small 

change in the number of such key constituents is fractionally significant. 

Tims, a key question is what is it about nuclei that allows phase transition-like brha\·inr 

to occur? Why are just a few nucleons so potent as to induce major, and often sudden, P<Jlli-

55 



librium shape changes? This is not such an easy question and has been the subject of much 

discussion [2]. It is the purpose of the present paper to try to put together some comments 

on this issue and to briefly summarize recent experimental results on phase transitions, phase 

coexistence, critical points, and critical point symmetries in nuclei. 

This paper is dedicated to Slava Jolos to commemorate his many major contributions to 

nuclear physics over decades of prominence in the field. Despite his quiet and unassuming 

manner, he has played a pivotal role in so many aspects of nuclear structure ranging frorn 

fundamental work on the collective building blocks of nuclei [3,4], to simple models [5,6] 

of octupole correlations, parity splitting and octupole deformation, important insights into 

the Q-phonon structure [7-10] of collective modes, and elucidation of concepts of nuclear 

supersymmetry [11,12]. He has also played a significant role for me personal!y, as an admired 

collaborator, as one who can explain difficult ideas simply [13], and, in general, as a friend 

and colleague for many years. 

II. BEHAVIOR OF SHAPE TRANSITION REGIONS 

In trying to understand why nuclei become deformed and how phase transitional behavior 

can result with the addition of just a couple of nucleons, it is useful to first inspect the 

phenomenology of different transitional regions. The most obvious fact is that some regions 

are gradual and smooth, while others are extremely rapid. The actinides, and the region 

around A~120-130 with N<82, are examples of the former. The A=lO0 and 150 regions are 

extraordinary paradigms for the latter. 

Of course, with integer nucleon number as the control parameter, one cannot, even in 

principle, discuss real phase transitional behavior, which involves concepts of discontinuous 

derivatives of some observable against the control parameter. However, we have shown 

[14] that a change in variables to a control parameter that is potentially continuous can 

obviate this dilemma. The energy of the first 2+ state, E(2t), serves this purpose. Figure 1 

illustrates this with 2-nucleon separation energies in the N<82 and N>82 regions. For N<82, 
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there are gradual changes reflecting a gradual onset of collectivity. For N>82, though, the 

behavior of S2n resembles that of a classic phase transition with a sharp kink - nearly a 

discontinuity at E(2t) ~100 keV, where deformation is indeed known to set in. 

30r---------.-------,------, 

XXX X X N<82 
X X 

X X X X 
X X XX X X 

20 ~ 
X XXX X X 

xxx x xx~ x ~ x~xx 

> X 

Q) 

6 
" N 

CJ) 

10 ~ ,~xx xxx~x x 
X XX N>82 

X 

50<Z~66 
0 
0.0 0.5 1.0 

E(2~)(MeV) 

FIG. 1. Two nucleon separation energies against E(2t) for two regions. From ref. [14] 

Deformation depends on the buildup of correlations and configuration mixing and there­

fore on a certain abundance of valence nucleons. However, singly magic nuclei (such as Sn) 

do not deform regardless of the number of valence neutrons. Their level schemes resemble 

more those of the single-j seniority scheme. The like-nucleon interaction is strong but it is 

strongly attractive primarily only in the J=0+ pairing channel which favors spherical shapes. 

Rather, it is generally accepted that deformation arises primarily because of valence 

proton-neutron interactions. The competition between these and the like-nucleon pairing 

interaction determines how structure evolves. Since the latter scales with total valence 

nucleon number, NP + Nn, it will invariably lose out [15] to p-n correlations, which go as 

NPNn [ref. 16], if there are sufficient valence nucleons of both types. How quickly this will 

happen depends on the strengths of the p-n and pairing interactions, which depends on 

Which orbits are being filled. A useful guideline [16] is th~ parameter P=NpNn/(Np + Nn)-
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When P ~ 5, nuclei become deformed, reflecting the fact that p-n interactions (which p-n interaction that plays a key role. This is the renowned Federman-Pittel mechanism 

individually are on the order of 200 keV) achieve structural control over pairing interactions [l5,19] and is illustrated in Fig. 2. In the 9ozr region, the 28-40 proton shell is too small 

(~1 MeV) when there are about 5 p-n interactions for each like-nucleon pairing interaction. and has too low degeneracy to develop enough quadrupole correlations for the develop-

However, as noted, there are variations from region to region. To understand how and where ment of deformation. Moreover, the proton-neutron correlations are relatively weak with 

phase transitional behavior can occur in nuclei, it is necessary to understand the origins of 6 n==l and/or ~l=l. However, above N=56, when neutrons begin filling the lg1/2n orbit, 

these variations, in particular the relation of the p-n interaction to shell structure, and the the strong monopole p-n interaction with the lg912P orbit leads to a lowering of the pro-

relative importance of deformation-driving quadrupole correlations involving normal and ton lg912 single particle energy [15,18,19] and to the obliteration of th~ Z=40 shell gap. 

unique parity orbitals. This immediately increases the "gene pool" of proton configurations that can contribute to 

Since (J # o+)configuration mixing is tantamount to deformation, and since the multi-j correlated J # o configurations and leads to tl1e sudden onset of deformation. 

environment of normal parity orbits offers more opportunity for configuration mixing [17], 

then, everything else being equal, the normal parity orbits should be dominant in promoting 

spherical-deformed transition regions. However, not everything else is, in fact, equal. Resid­

ual interactions depend on the nl quantum numbers of the independent particle model orbits 

occupied by the valence nucleons. The smaller the differences ~n and ~l are between two 

interacting orbits, the larger the interaction [18]. In typical major shells in heavy nuclei there 

is a wide range of principal quantum numbers and of orbital angular momenta (e.g., n=l-3, 

l=l-5 for N=82-126). Hence, many p-n interactions will be rather weak. However, interac-

tions between particles in the highest j orbits (e.g., lh11/2p and li 13t2n) or between spin-o_rbit 

partner (SOP) pairs (e.g., lh11/2p and lh9/ 2n) are enhanced, and further augmented since 

high-j orbits can contain larger numbers of nucleons than low j orbits. 

So, what then, is the relation of normal and unique parity configuration mixing in the 

development of deformation? The answer depends on the mass region. In some regions (e.g., 

A~120-130: see Fig. 1 (top)), where deformation sets in gradually, interactions involving 

protons and neutrons in both types of orbits are important. The abundance of J/ o+ pairs 

that can be made from the normal parity orbits controls the development of collectivity. 

Here the quadrupole interaction (especially the quadrupole p-n interaction) is paramount. 

However, in other regions, where there are significant sub-shell gaps, it is the monopole 
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FIG. 2. Evolution of proton single particle energies, due to effects of the monopole p-n interaction 

[18], as the neutron lg712 orbit is filling in the A~lOO region. The p-n interaction leads to a rapid 

dissolution of the Z=40 mid-shell gap [19]. Other p-n interactions among high-j orbits, such as 

lg9/2p - ll1u/2n, also play key roles [20] 

Thus, it is the effect of the monopole p-n interaction in modifying the effective space in 

which quadrupole p-n and like-nucleon interactions operate that allows this extremely rapid 

transitional region to occur. A similar explanation applies to the A~150 region [21] and 

accounts for the very different "trajectories" of nuclei like Ba and Gd through the spherical­

deformed transition region. 

A related way to look at this is directly in terms of the kind of level crossing phenomenon 

that underpins the idea of a first-order phase transition and the Jahn-Teller effect [20]. As 
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long as the Z=40 gap is pronounced, configuration mixing involving the lg9/2p orbit Will 

lead to highly excited deformed configurations. However, when the SOP lg9/2p - lg712" or 

other large, monopole p-n interactions, reduce the Z=40 gap, this deformed configuration 

is lowered in energy. At some point - the critical point - its energy "crosses" that of the 

spherical ground state (whose proton configurations are composed primarily of orbits in the 

28-40 shell) and deformation immediately ensues [18-20] as in a true phase transition. 

III. PHASE TRANSITIONS AND CRITICAL POINT SYMMETRIES.-

Having seen how, under appropriate circumstances of shell structure and proton and 

neutron orbits near the Fermi surface, phase transitions can develop in finite nuclei, we now 

turn to the description of nuclei undergoing such phase transitions, that is, at the critical 

point (or configuration crossing point). Such nuclei have traditionally been considered the 

most difficult to treat, precisely because of the competition between such different (i.e., 

spherical and deformed) degrees of freedom. 

Thus it is all the more remarkable that Iachello has recently been able to develop [22] a 

new class of symmetry that describes critical point nuclei analytically and in a parameter­

free way (except for scale). The idea is the essence of simplicity. Before the phase transition, 

the potential has a global minimum for quadrupole deformation /3=0 and an excited mini­

mum at finite /3. After the phase transition, the energies of the two minima are reversed. At 

the critical point the two minima are degenerate, with a small barrier between them. If one 

assumes that the "walls" of this potential are very steep (that is, the nuclear oscillations in 

f3 are strongly confined), and if we ignore the small internal barrier between the minima, we 

can approximate the potential by a square well in /3. This is the ansatz leading to the E(5) 

and X(5) critical point symmetries that describe the second order vibrator to ,-soft rotor 

[U(5)-+O(6)] and the first order vibrator to symmetric rotor [U(5)-+SU(3)] critical points, 

respectively. The main difference between these two cases is that, for X(5), the potenti~l is 

not ,-flat so that a change of the potential in 7 is involved as well. Of course, to describe 
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actual nuclei, the problem must be solved in 5 dimensions (/3, , and the three Euler an­

gles). In the important /3 degree of freedom, the resulting wave functions are simply Bessel 

functions. However, their order is half-integer for E(5) and irrational for X(5), and the 

eigenvalues are given by the zeros of these Bessel functions. The essential point is that the 

predictions are completely characteristic of the critical points - that is, they are completely 

analytic, and parameter-free (except for energy and transition rate scales). We stress that 

these two new critical point symmetries are solutions to a differential equation in f3 and 7 

(i.e., the 130hr Hamiltonian). They are not symmetries of the IBA [although the IBA can 

be used to numerically simulate E(5) and X(5)]. 

s=l s=2 
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I.Sf 10+ w 320 

> .fi'l73 4• g• ~ IU g+_. - m ~~-4+ 
;::. 1.0- 40 
~ ~ 

/ 52' I l4 
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4+ 4 + ~ // 

z+ V' l/1/ 2+ lilflll Ill' 
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E(4)/E(2)=2.91 2.80 3.01 2.69 

E(~)/E(21)=5.67 5.62 

X(5) 
1s2Srn 

FIG. 3. Comparison of X{5) [see ref. 22] with the data for 152Sm. From ref. (23] 

As soon as Iachello developed the E(5) and X(5) symmetries [22], empirical examples 

were found [23] - in 134Ba and 152Sm - and, subsequently, an additional candidate for X(5) 

has been found in 150Nd [24]. Figure 3 shows a comparison of X(5) with the data for 152Sm, 

The overall agreement is superb, and discussed in detail in the literature [22], as have the 

discrepancies seen in Fig. 3. E(5) and X(5) provide two new paradigms of structure as 

illustrated in the symmetry triangle of Fig. 4. These are the first wholly new, analytic, 

61 



paradigms in half a century, since the development of the vibrator, axial rotor, and 1-soft 

rotor in the 1950's. 

Ax. Asym. Rotor 
(y - soft) 

U(5) 

Vibrator 

0(6) 

X(S) SU(3) 

Sym. Rotor 

FIG. 4. New structural triangle for nuclei showing the three historic benchmarks of structure 

at the vertices. The new critical point symmetries E(5) and X(5) are noted along two transition 

legs. The line connecting X(5) and E(5) is a region of first order transitions (rigorously, the line 

has small but finite width) culminating at the second order phase transition point E(5) 

IV. CONCLUSIONS 

We have discussed the origins of deformation and shape transitions as a function of ' 

nucleon number in nuclei, with emphasis on understanding how phase transitional behavior 

can occur in finite systems, especially in systems whose structure is dominated by the effects 

of only a few valence nucleons. One conclusion, perhaps ironic when expressed this way, is 

that it is precisely because of the dominance of a few nucleons that small changes in particle 

number can induce sudden structural changes in many-body nuclear systems so that their 

systematics resembles the phase transitional behavior of larger systems. This resemblance 

is not accidental since the origin of such rapid structural changes is in fact a crossing of 

spherical and deformed configurations with nucleon number, a characteristic feature of a 

first-order phase transition. 

Such phase transitions develop in regions where the evolution of shell structure fosters 

rapid changes, namely regions with significant sub-shell gaps, whose obliteration by the 
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effects of the monopole p-n interaction in modifying single particle energies can suddenly 

alter the size of the valence space available for deformation-inducing configuration mixing. 

We then discussed the development by Iachello of a new class of symmetry [developed in 

two manifestations, E(5) and X(5)] that gives analytic descriptions of nuclei at the critical 

points of first and second order phase transitions, respectively. Finally, we discussed the 

discovery of empirical manifestations of these critical point symmetries and we showed the 

comparison of X(5) with the data for 152Sm. 

I am grateful to Slava Jolos for wonderful collaborations and for many enlightening 

discussions over the years. I am also grateful to Victor Zamfir for help in preparing this 

paper and to he, Peter von Brentano, Stu Pittel, Alejandro Frank, Witek Nazarewicz, and 

Kris Heyde for discussions of these issues in recent years that have helped me in putting 

together some of the ideas here that they und.erstand far better than I. Work supported by 

USDOE Grant Number DE-FG02-91ER-40609. 
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A variety of dynamical symmetries related to nuclear clusterization is 
discussed. 

I. INTRODUCTION 

Clusterization is an important phenomenon of nuclear structure, covering a broad 
range of mass number, excitation energy, angular momentum, deformation, and clus­
ter types. Its theoretical description is a fairly complex problem, and symmetry­
considerations can help in finding the solutions. 

Different symmetries may show up in cluster configurations, here we concentrate on 
the dynamical symmetries. Even they have remarkable variety, and we discuss them in 
the sequence of increasing complexity. 

We pay more attention to the method, than to the details of the phenomenon; and 
the physical examples mentioned below simply illustrate, how the concept of dynamical 
symmetry can contribute to our understanding of nuclear cluster structure. 

II. EXACT SYMMETRIES · 

A quantum mechanical system is said to have a continuous symmetry described by a 
Lie group G, if its Hamiltonian (H) commutes with all the group-generators (X/Gl): 

(H,X/G}l = 0. (1) 

The algebraic properties of the group is defined by the corresponding Lie-algebra: 

[xf a} x~a}l = " {G}k x{a} 
1 , J L..,, c,,3 , k , (2) 

k 

where cf.1lk denote the structure constants. In such a case H can depend on the generators 
only through the Casimir-invariants of the group. 

If both the potential and the total energy is invariant, the symmetry is called geomet­
rical, contrary to the dynamical symmetry which leaves invariant only the total energy 
[l]. Well-known examples are the 0(4) dynamical symmetry of the Coulomb problem, 
and the U(3) dynamical symmetry of the harmonic oscillator problem. In both cases 0(3) 
is a geometrical symmetry. 

If an 'exact symmetry holds, then several important consequences follow. 
i) Good quantum numbers specify the energy-eigenstates. In other words: the eigenvectors 

'It is a pleasure to dedicate this paper to Professor R. V. Jolos, an expert of clusterization and 

8Ymmetries, on the occasion of his 60th birthday. 
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are symmetric in the sense that they transform according to irreducible representations 
(irreps) of the symmetry group and its subgroups: 

G::,G'::,G"::, .... (3) 

ii) The states have a multiplet structure { defined by the relations of irreps of groups in 
(3)). 
iii) The eigenvalue-problem has an analytical solution. 
iv) The multiplets are degenerate. 
v) Selection rules are available. 

It is worth stressing that some of the consequences [i), ii), iv), v)] apply even if the 
exact Hamiltonian is not given explicitly, only its symmetry is known. 

In short, we can say that an exact symmetry holds, if both the (Hamilton) operator 
and its eigenvectors are symmetric. 

Familiar exact (geometrical) symmetry of nuclear structure is the three-dimensional 
rotation, giving rise to the conservation of angular momentum. When applied to a cluster­
decay of a parent nucleus ( P) into two daughter nuclei ( C1 and C2) it reads: 

j{P} = J{Ci} 18) J{C2} 18) J{R}, (4) 

where J indicates the angular momentum of the nuclei (P, Ci, C2), R stands for relative 
motion, 0 denotes direct product (vector coupling), and the' =' sign says that J{P} is 
supposed to match with one of the results of the products on the right hand side. 

The exact dynamical symmetries, as discussed here, hold only for very special forces, 
therefore, in this strict form they are not very helpful in building up models of few- and 
many-body systems. 

III. DYNAMICAL(ALLY BROKEN) SYMMETRIES 

It is a generalized version of the dynamical symmetry that proved to be very successful 
in various areas of physics: when the Hamiltonian can be expressed in terms of Casimir­
invariants of a chain of nested subgroups (3) (see e.g. [2,3]). 

From the presence of such a dynamically broken symmetry consequences i) ii) iii) and 
v) still follow. The degeneracy, however, which corresponds to an exact G symmetry 
splits up. The Hamiltonian with this kind of dynamical symmetry contains more general 
interactions than the one with an exact G symmetry. The symmetry-breaking interaction 
does not have to be week (perturbative), it can be very strong, but it needs to be very 
special, expressed in terms of the invariant operators of the subalgebras. 

In case of this kind of general dynamical symmetry {or as it is called sometimes 
dynamically broken symmetry) the operator is not symmetric, yet its eigenvectors a.re 
symmetric. 

Dynamical symmetries (in its general form) are very important in nuclear structure. 
The isospin UT(2), Wigner's U5T(4) spin-isospin symmetry [4], and Elliott's U(3) (space) 
symmetry [5] are well-known examples. 

When applied to the cluster-decay of the previous section the U(3) and U5T(4) selec­
tion rules read: 
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[n/F}. ntl. nY}J = [nfd, nfd, nf'l] 0 [nf2l, nf2}, nf2}] 0 [n[n},O, OJ, (.5) 

[f{P} f{P} f{P} !{/'}] = [J{C,} f{C,} !{Cd f{C,}l 0 [f{C2} f{C2} f{C2} f{C2}] 
1 ,2 ,3 ,4 1 ,2 ,3 ,4 1 ,2 ,3 ,4 , (6) 

where [11,,112,113] and [J,,h,h,f4] denote irreps of the U(3) and U5T(4) groups, respec­
tive!\'. 

'];hf' l'(:l) and usr(-1) symmetries turned out to be relevant for light nuclei, therefore, 
the application of these selection rules provide us with interesting information on the 
possible dustPr structure, and consequently, on the possible decay modes of states of light 
nuclei. 

In [6] the relation of special deformed states and cluster configurations were investi­
gated. Special deformation includes spherical, supei·deformed, hyperdeformed, etc shapes; 
in general: any ellipsoidal shape with the ratios of main axes expressed as ratios of integer 
numbers. Alpha-like light. nuclei were considered from 12C to 44 Ti, and alpha-like binary 
and multirluster configurations were taken into account. 

In [i] tlw allowPd and forbidden binary cluster-configurations were determined for 
t lie ground-sta.tP-like configurations of the sd-shell nuclei. They are considered to be 
important in the fission studies of light nuclei [8], as well as in elastic transfer reactions 
[9]. 

A further interesting study can investigate the structural influence on the mass­
distribution of cold binary fission (as a function of the quadruple deformation of the 
parent nucleus) (10]. 

Similar questions are even more interesting concerning heavy nuclei, due to the fact. 
that fission can take place from their ground-state ( contrary to similar procedures in light 
nuclei, which are energPtically forbidden). Unfortunately, however, the U(3) symmetry 
is not valid for heavy nuclei (in its original form), due to the strong spin-orbit and other 
symmetry-breaking interactions; therefore, one can not apply the U(3) selection rule, as 
it is done for light nuclei. Nevertheless, it seems that an even more general symmetry, as 
discussed in the next section, may work, and enable us to formulate a selection rule based 
on the microscopic structure. 

IV. EFFECTIVE SYMMETRIES 

ls there any way for a quantum mechanical symmetry to act, when neither the (Hamil­
ton) operator, nor its eigenvectors are symmetric? Surprisingly enough, the answer is yes. 
This kind of symmetry is called effective symmetry, and its consequences are as rPmark­
able, as its appearance is. 

The effective symmetry is more general, than the dynamically broken symmetry of the 
previous section in the sense that the symmetry-breaking interact.ions of the Hamiltonian 
in this case mix the basis vectors of different irreps, thus the energy-eigenstates are given 
in terms of linear combinations. 

In order to illustrate the situation, let us consider a case characterized by a simple 
group-chain: 

G:)G', (,) 
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I a , fJ) , (8) 

where we have indicated the representation labels as well, and in general a and (J may 
denote several indices. The matrix elements for a representation are: 

(a',fJ'lf(X/Gl)la",(J") = f(a,(J), {9) 

where the f(X/Gl) operator represent the X}G) generator, and f stands for a function 
of the representation labels, which is well-defined for the group G. We take the linear 
combinations: 

V'/3 = I::Cala,(J). (10) 
0 

Let us assume that this kind of expansion is available for several (J's, and the coefficients 
c0 are the same for each f]. We can calculate the matrix elements between the 1P/3 states: 

(1P/J1 lr(X/Gl)l1/J/J" ). (11) 

If the f ( a, /3) function is linear in the a quantum numbers (which is the case for some 
physically important groups), then the equations (9) hold also for the linear combinations 
( 10). Then, supposed that there is enough 1/;µ's, (9) is again a representation of G. This 
kind of representation is called embedded representation [11], and the states (10) are said 
to form a soft band. A soft band is an intermediary between the extremes of pure bands 
(belonging to a single irrep) and arbitrarily mixed states. An embedded representation 
behaves like a representation of its own. 

If the f( a, /3) function is not linear in the a quantum numbers, then we can make a 
series expansion, and the linear approximation may still prove to be reasonable in some· 
domain of the parameters (which is the case for some other, physically important groups) 
[11-13]. 

A couple of remarks seems to be appropriate here, concerning the physical applications 
of the embedded representation (i.e. effective symmetry). The approximation that gives 
rise to its appearance in physical terms corresponds to the assumption of adiabaticity 
[11]. Since it is the basis of many models, the effective symmetry opens up new territories 
for symmetry-considerations. Once, however, the presence of a symmetry seems to follow 
from the experimental data, attention has to be paid to the distinction between real or 
effective symmetry (i.e. simple band structure, or the presence of soft bands). 

The very general nature of the effective symmetry explains, why some models are 
successful, when seemingly they do not have any right ( due to their assumptions) to be 
so. 

Shell model studies of heavy nuclei revealed the important role of the effective SU(3) 
symmetries [13]. On the one hand side experimental data gave evidence for the soft 
SU(3) band, and furthermore, microscopic shell-model configuration could be assigned to 
the intrinsic state of a soft band. These essential findings inspired the application of the 
effective symmetry in cluster studies of heavy nuclei. 

A novel feature of nuclear clusterization was found by the recent multiple gamma­
coincidence measurements of spontaneous fission [14]. Cold binary fission processes were 
detected from the ground state of the 252Cf nucleus. The results indicate the presence of 
very exotic (e.g. 1548a + 108Mo) cluster-configurations. The relative importance of these 
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kind of very exotic clusterization in the ground state of the parent nucleus is, therefore, 
an interesting question. 

The relative preference of the Ba+Mo configurations were studied from the viewpoint 
of nuclear structure in [15], based on the concept of effective U(3) symmetry. The main 
point of this work is, that both the Pauli-principle, and the deformation of the nuclei 
(parent and daughters) are taken into account, as well as the possible relative orientation 
of the deformed clusters. The calculated relative forbiddenness characterizes the overlap 
of the ground-state wavefunction of the parent nucleus (with its well-defined normal de­
formation) with the possible exotic cluster configurations. Further studies are in progress 
[16], considering other nuclei, as well as the question of the deformation-dependence of 
the mass-distributions. 

We note here, that somewhat similar firbiddenness-calculations have been carried out, 
based on the real SU(3) scheme [17,18]. There are, however also important differences 
between the two methods. One of them is the use of the real or effective SU(3) symmetries, 
and the other is the way how the forbiddenness is defined. In [17,18] it is calculated on the 
basis of the number of oscillator quanta, making no difference between different nuclear 
shapes, and orientations, while in [15] these effects were taken into account, and proved 
to be important. 

V. BEYOND THE SYMMETRIES: SPECTRUM-GENERATION 

In light of the usefulness of the algebraic methods in the description of ( exact or 
broken) symmetries, one may wonder, if similar techniques could be used for generating 
the excitation spectrum of the system as well. We may try to look for an algebra, which can 
describe not only the symmetries of the system, but also generates its energy-spectrum, 
and accounts for the transitions between its states as weli, in such a way, that all states 
belong to a single_irrep. Such an algebra is called dynamical algebra [19] (sometimes it 
is called spectrum generating algebra [2]). Obviously, the dynamical algebra has to be 
a bigger algebra, than the symmetry algebra, and the latter needs to be its subalgebra. 
If a dynamical algebra can be found, then several of the fruitful consequences discussed 
in Section 2. are still valid. We illustrate the situation with the example of a dynamical 
algebra for the two-body-problem, which is important (among others) in the description 
of the relative motion of clusters. 

The relative motion of a two-body system reduces to a one-body problem after remov­
ing the center-of-mass-motion. We can apply a harmonic o;cillator basis, thus we start 
from the single-particle harmonic oscillator problem in three dimension. It has an exact 
U(3) dynamical symmetry [l], and the generators of the symmetry group are the particle 
number conserving bilinear products of the oscillator quantum creation (a1, i = x,y,z) 
and annihilation (a;) operators: A;;= aJa;. They close under the commutation relations: 

[A;;,Ak,] = O;kAil - 0;1Ajk• (12) 

If we introduce a fourth dimension ( s) and associate a boson to this direction as well 
(which is called scalar boson, as opposed to the vector-bosons a) then we can generate 
the spectrum in the following way. The s boson is supposed to have a lower-lying single­
particle state, than the vector boson. Then the ground state of the system corresponds 
to the case when there are only s bosons. The oscillator spectrum is obtained by creating 
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a bosons and annihilating s bosons: a;s. Now we have four creation and annihilation op­
erators, they give 4x4=16 bilinear products, which close under the commutation relation, 
exactly like (12), except that the indices run over four coordinates: i = s,.r.y.:;. Tlw 
resulting algebra is U(4), and a possible algebra-chain is: 

U(4) :::i U(:3) :::i 0(3). (l:l) 

One can introduce symmetry-breaking interactions, expressed in terms of tlw invariant 
operators of (13), and the result is a dynamical symmetry starting with a dynamical 
(spectrum-generating) algebra. Thus, one has again good quantum numbers, multiplet­
structure, analytical solution, and selection rules. 

The U(4) algebraic model of the two-body problem is called vibron model [20], and 
it is applied in molecular physics, hadron spectroscopy, and nuclear structure. as well. 
The physical operators of the model are expressed in terms of the U(4) generators, tlw 
model states belong to an U(4) irrep, therefore, the matrix elements can lw calculat<'d 
with group-theoretical methods. 

Similar (spectrum-generating) procedure can be applied for the description of other 
degrees of freedom. E.g. the (five dimensional) quadruple collectivity is essential iu 
nuclear physics which has a U(5) symmetry-group. A possible dynamical algebra is U(6) 
[21,2]. 

VI. SYMMETRIES OF THE SEMIMICROSCOPIC ALGEBRAIC CLUSTER 

MODEL 

The basic assumption of the cluster models is that the relevant degrees of freedom of 
the atomic nucleus are the relative motion of the clusters, and their internal structure. 
The vibron model can be applied for the algebraic description of the former one, in case of 
a multicluster configuration one U(4) model for each independent relative motion. As for 
the internal structure of the clusters, they can be accounted for by the U(3) shell model. 
or by the U(6) collective model. . 

One further aspect has 'to be considered. A nucleus consists of protons and neutrons, 
which are fermions, therefore, the total wavefunction should be antisymmetric. Thus, in a 
cluster picture one has to take into account the Pauli-exclusion principle not only betwee11 
nucleons in the same cluster, but also between nucleons sitting in different clusters. Whe11 
it is appreciated, we talk about a microscopically constructed model space, and the model 
is called fully microscopic, or semimicroscopic, depending on the fact whether or not the 
applied interactions are microscopic (effective two-nucleon forces), or they are treated 
phenomenologically. If the exclusion principle is not taken into account, the model is 
called phenomenological. The latter one has the advantage of being simpler, and in some 
cases, when the antysimmetrization is not important, e.g. in highly excited molecular 
states of nuclei, it can be very fruitful, too. 

Algebraic cluster models can be formulated both on the phenomenological, and on 
the semimicroscopic level. Here the adjective 'algebraic' is meant in the strict sense that 
not only the basis states of the model are characterized by the irreps of an algebra, but. 
the physical operators as well. Thus the matrix elements can be calculated by algebraic 
methods. ( Group-theoretical techniques are very useful also in fully microscopic models, 
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but they are not algebraic in the strict sense used here.) We summarize briefly the basic 
concepts of the semimicroscopic algebraic cluster model (SACM) [22] which can be applied 
both in the ground-state region, and at the high excitation energies. 

The internal structure of the clusters are described by Elliott's shell model, and the 
relative motions by the vibron model. For a configuration of k clusters the model has a 
group-structure: 

ut;(4) 0 Uc, (3) 0 ... ug(4) 0 Uc.(3) 0 URJ4) 0 .. ,uR._,(4), (14) 

where Uf,_T(4) stands for the spin-isospin symmetry of the C cluster, Uc,(3) is its space­
symmetry-group, and the UR,(4) are the dynamical groups of the vibron models, associ­
att>d to the k - I independent relative motion. 

The physical operators are given (phenomenologically) as expansions of the generators 
of this direct-product group. The Pauli-exclusion principle requires a truncation of the 
corresponding model space (otherwise we end up with a phenomenological cluster modei). 
The exclusion of the Pauli-forbidden states can be done by different methods, one of them 
requires a matching between the model space of the (not antisymmetrised cluster model 
(14)), and the fully antisymmetric U(3) shell-model space of the whole nucleus. 

Several dynamical symmetries of this model can be constructed. A very important 
one is obtained by thC' coupling on the U(3) level: 

ug(4) 0 Uc, (3) 0 ... Ug(4) 0 Uc.(3) 0 Un, (4) 0 ... Un,_,(4) :::i ... 

:::l U/1'(4) 0 Uc(:!) 0 UR(3) :::l ... 

:::i Ul(2) 0 U{(2) 0 U(3) 

:::i U[.(2) 0 U/(2) 0 0(3) 

:::i UT(2) 0 U(2). 

(15) 

When the Hamiltonian is expressed in terms of the invariant operators of the groups 
in this chain, an analytical solution of the energy-eigenvalue problem is available. This 
circumstance makes the application fairly easy and the model can be applied for the 
unified description of tlw clusterization in the ground-state region together with the very 
high-lying molecular resonances (observed in resonant reactions of heavy ions). Low and 
high-spin states and different clusterizations can be calculated in this way. Spherical, and 
deformed (including triaxial deformation) can be accounted for, as well as the different. 
relative orientation of the deformed clusters [23]. 

A spt>cial case of the model reduces to a simple vibron model, as far as the operators 
are considered. It happens when we consider a binary configuration of two closed-shell 
clusters, and there is no need to involve coupling between the relative motion and thP 
internal cluster degrees of freedom. The model space, however, is different even in this 
case from that of the simple vibron model; the Pauli-exclusion requires the trunrntion of 
the U(3) basis from the low-lying side. 

Due to the break-down of the U(3) symmetry in the heavy nuclei, as mentioned in 
Section 3, this dynamical symmetry is applicable only for light nuclei. One of the spec­
troscopic features of heavy nuclei, which calls for a detailed description in terms of cluster 
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configurations is the appearance of low-lying negative-parity bands [24]. For problems, 
like this the SACM and its dynamical symmetry has to be extended. A possible way 
is offered by the effective symmetry of Section 4, or the application [25] of pseudo U(3) 
symmetry [26]. 

VII. DYNAMICAL SUPERSYMMETRIES 

Supersymmetric (SUSY) schemes, in general, give a unified treatment of bosonic and 
fermionic degrees of freedom. In a supersymmetry model of nuclear cluster systems the 
bosonic sector of the superalgebra describes the relative motion of the clusters, while 
its fermionic sector is associated with their internal structure. Supersymmetry connects 
similar cluster configurations of different nuclei. 

An example is the core+o configurations. The relative motion is described by the 
vibron model with a UR(4) (dynamical) group-structure, while the dynamical group for 
the fermionic sector, when restricted to the p shell, is Uc-(12). This latter group contains 
the U5T(4) 0 U(3) symmetry-group, mentioned in Section 6. A supersymmetric model 
is obtained by embedding the UR(4) ® Uc(l2) direct-product group into a supergroup: 
U(4jl2). In order to embed the bosonic and fermionic algebras in a superalgebra, one has 
to define generators which create a fermion and annihilate a boson, or vice verse. This 
problem has been discussed in detail in [27]. 

As an application for the cluster supersymmetric model, the a-cluster states of the 
nuclei 20 Ne and 19F were analyzed and correlations between their spectra, electric quadru­
ple transitions, and one-nucleon transfer reactions were interpreted in terms of U(4ll2) 
supersymmetry. 

The relevant classification is 

U(4jl2):) UR(4) x Uc(l2) 
:) SUR(3) x SUc(3) x uJT(4) 
:) SU(3) x SU~(2) x SUb(2) 
:) S0(3) x SU~(2) x SUb(2) 
:) SU(2) x llf.(1), (16) 

which is the group structure of the SACM for core+o cluster systems, embedded in 
U(4jl2). · 

The unified description of the core-plus-alpha-particle states of the two nuclei showed 
the presence of the dynamical supersymmetry with an accuracy, which is comparable 
to the that found in the application of the dynamical supersymmetry of the quadruple 
collectivity to heavy nuclei [28]. 

VIII. MULTICHANNEL DYNAMICAL SYMMETRIES 

Multichannel dynamical symmetry (MUSY) may describe different cluster configu­
rations of the same nucleus in a unified framework [29,30]. The basic concept can be 
formulated as follows. 
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For the sake of simplicity we consider two different binary clusterizations of an atomic 
1111cleus: 

C: c, + C2, d : D, + D2. (17) 

IE. g. the 28Si nucleus may have, and in fact has, some important contributions from the 
11;0+ 12(' and 24 ;1.1g+4 He configurations.) 

Tlw re lat ion of these different binary cluster configurations can be established by 
considering au underlying three-cluster configuration. Then we have two independent 
rl'latin' motions. both of them are described by a vibron model with U( 4) group structure. 

L<>I 11s suppose that the relation of the mass-numbers of the clusters are: 

Ac, 2: Ac2 , An, 2: An2 , An, 2: Ac,, (18) 

what can be <lone without any loss of generality. (In the example of the 28Si nucleus, 
mentioned before, C1:16O, C2 :12C, D1 :24 Mg, D2 :4He.) Let us consider the three-cluster 
config11ration 

(C'i) +(CD)+ (D2), (CD)= (C2 - D2) = (D1 - Ci). 

( In tlw example: 160 + 8 Be + 4 He.) 
We choose the following two sets of Jacobi-coordinates: 

tc = ro, - rcn, Sc= re, - (Mn,rn, + Mcnrcn)/(Mn, + Men), 

tJ = re, - rcn, sd = rn, - (Mc,rc, + Mcnrcn)/(Mc, + Men), 

(19) 

(20) 

1vhere Al is the mass and r is the space vector of the corresponding cluster. Then, 
obviously, the clusterization C1 + C2 , corresponds to the coordinate set c with some 
restriction on tc, ~bile clusterization D1 + D2 corresponds to the coordinate set d with 
some restriction on td· 

Since we are interested in the transformations which connect the different binary con­
figurations ( different Jacobi-coordinates of the three cluster system), instead of applying 
a (\(4) ,0 U2 (4) model. we embed it into the larger group of U(8). 

The transformation from the clusterization C1 + C2 to that of D, + D2 amounts to 
a transformation between the two sets of Jacobi-coordinates: tc, Sc and td, sd, known as 
the Talmi-Moshinsky-Smirnov (TMS) transformation (31,32]. These transformations are 
known to have a Uq(2) group structure (31], where q refers to the quasispin group, which 
acts in the particle index space (33]. 

Thus the multichannel symmetry is described by the group-chain: 

U(S)-::> ['(6):) {['q(2):) SUq(2) => S0q(2)} ® {U(3):) SU(3):) S0(3)} (21) 

and the Hamiltonian of the system is obtained in terms of the invariant operators of these 
algebras (30]. 

The multichannel symmetry establishes a strict correlation between the observables of 
different clusterizations. In this sense it is a very restrictive symmetry, however, because 
of the same feature it has a very strong predictive power as well. For example, the 
Hamiltonian of one cluster configuration may completely determine the energy spectrum 
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of another cluster configuration, without any free parameter (and without any ambiguity 
in the model space, due to its microscopic construction). 

Some applications of this kind have been carried out [29,34). In [29) e.g. the 24 Mg + 
4 He, and 160 + 12C spectra were described with the same Hamiltonian in a wide energy 
range. Furthermore, the density of a-particle (scattering or capture) resonances were 
predicted by this Hamiltonian, without any parameter fitted in the relevant energy region, 
and the result turned out to be in good agreement with the experimental observation. 

IX. ON THE COMPOSITE DYNAMICAL SYMMETRIES 

Both the dynamical supersymmetry and the multichannel dynamical symmetry deal 
with composite systems consisting of two different sectors. Therefore, they are called 
composite symmetries. Their logical structure show remarkable similarities, and it was 
discussed in detail in [35). 

In addition to the similarities, however, one can realize considerable differences as well. 
Here we mention one, which has to do with the physical nature of the transformations 
between the two sectors (supertransformations in SUSY, and TMS transformations in 
MUSY). 

In the case of SUSY the dynamical breaking of the symmetry is (usually) carried out 
in such a way the invariance with respect to the super transformations is not required, 
because already in the first step only classical Lie algebras (not super algebras) appear in 
the algebra-chain. 

In the multichannel symmetry, however, the situation is different. Here the dynamic 
symmetries of the two different cluster configurations are combined with the Uq(2) trans­
formations of the cluster indices. This requires real invariance with respect to some extra 
transformations (i.e. the generator of SOq(2)). 

In this respect the situation is similar to the SUSY models typical in field theory, and 
exceptional in nuclear physics [36). 

X. SUMMARY AND CONCLUSIONS 

Nuclear clusterization offers a rich-laboratory for the study of symmetries. Dynamical 
symmetries of different complexity seem to appear in cluster configurations: 
• simple dynamical symmetry in the relative motion of two clusters, 
• dynamical symmetries in the coupling of the relative motion and internal cluster degrees 
of freedom, 
• effective symmetries in heavy nuclei, 
• spectrum-generating dynamical symmetry in light nuclei, 
• dynamical supersymmetry, connecting odd and even nuclei, 
• multichannel dynamical symmetries, describing different cluster configurations of a nu­
cleus. 

This work was supported by the OTKA Grant (No. T22187). 

74 

(1] L.I. Schiff, Quantum Mechanics (McGraw-Hill, New York, 1968). 

[2] F. Iachello and A. Arima, The interacting boson model (Cambridge University Press, Cam-
bridge, 1987). 

[3] P. Van !sacker, Rep. Prag. Phys. 62, 1661 (1999). 

[4] E. P. Wigner, Phys. Rev. 51, 106 (1937). 

[5] J. P. Elliott, Proc. Roy. Soc. A245, 128 and 562 (1958). 

[6] J. Cseh and \V. Scheid, J. Phys. Gl8, 1419 (1992). 

[7] J. Cseh, ./. Phys. G19, L97 (1993). 

[8] 13. R. Fulton and W. D. M. Rae, J. Phys. G16, 333 (1990). 

[9] A. Lepin-Szily et. al., Phys. Rev. Lett. 82, 3972 (1999). 

[IO] J. Cseh , A. Algora and P. 0. Hess, in preparation. 

[11] D. J. Rowe, P. Rochford and J. Repka, J. Math. Phys. 29,572 (1988). 

[12] P. Rochford and D . .J. Rowe, Phys. Lett. B210, 5 (1988). 

[13] M. Jarrio, J. L. Wood and D. J. Rowe, Nucl. Phys. A528, 409 (1991). 

[14] J. JI. Hamilton et. al., J. Phys. G20, L85 (1994). 

[15] A. Algora, J. Cseh and P. 0. Hess, J. Phys. G24, 2111 (1998). 

[16] A. Algora, J. Cseh and P. 0. Hess, in preparation. 

[17] Yu. F. S111irnov and Yu. M. Tchuvil'sky, Ph·ys. Lett. B134, 25 (1984). 

[18] G. G. Adamian, N. V. Antonenko and Yu. M. Tchuvil'sky, Phys. Lett. B451, 289 (1999). 

[19] B. G. Wyborne, Classical Groups for Physicists, (John Wiley & Sons, New York, 1974). 

[20] F. lachello, Phys. Rev. C23, 2778 (1981); 
F. Iachello and R.D. Levine, J. Chem. Phys. 77, 3046 (1982). 

[21] D. Janssen, R. V. Jolos and F. Diinau, Nucl. Phys. A224, 93 (1974). 

[22] J. Cseh, Phys. Lett. B281, 173 (1992); 
J. Cseh and G. Levai, Ann. Phys. (N. Y.) 230, 165 (1994). 

[23) G. Levai, J. Cseh and W. Scheid, Phys. Rev. C46, 548 (1992); 
J. Cseh, G. Levai and W. Scheid, Phys. Rev. C48, 1724 (1993); 
Zs. Fiiliip et. al., Nucl. Phys. A604, 286 (1996); 
G. Levai and J. Cseh, Phys. Lett. B381, 1 (1996); 
J. Cseh, G. Levai, P. 0. Hess and W. Scheid, Few-Body Systems 29, 61 (2000); 
L. Hernandez de la Pena, P.O. Hess, G. Levai and A. Algora, J. Phys. G27, 2019 (2001). 

[24] T. M. Schneidman, G. G. Adamian, N. V. Antonenko, R. V. Jolos and W. Scheid, Proc. Int. 
Symp. Nucl. Struct. Phys., Gottingen, 2001, eds: R. Casten et. al. (World Sci., SingaporP, 
2001) p.225. 

75 



[25] J. Cseh, R. K. Gupta and W. Scheid, Phys. Lett. B299, 205 (1993). 

[26] J.P. Draayer, Nucl. Phys. A520, 259c (1990). 

[27] G. Levai, J. Cseh and P. Van !sacker, Eur. Phys. J., in press. 

[28] F. Iachello and P. Van !sacker, The interacting boson-fermion model, (Cambridge University 
Press, Cambridge, 1991). 

(29] J. Cseh, Phys. Rev. C50, 2240 (1994). 

[30] J. Cseh, Proc. XXIV. Symp. Nucl. Phys. Taxco, Mexico, 2001, in press; and to be published. 

[31] A. Gal, Ann. Phys. (N. Y.) 49, 341 (1968). 

[32] H. Horiuchi, Prog. Theor. Phys. 58, 204 (1977). 

(33] V. Bargmann and M, Moshinsky, Nucl. Phys. 18, 697 (1960). 

[34] J. Cseh, G. Levai, A. Ventura and L. Zuffi, Phys. Rev. C58, 2144 (1998). 

(35] J. Cseh, Proc. Int. lt'orkshop on Symmetries and Spin, Praha, 2001, in press. 

(36] R. V. Jolos and P. van Brentano, Phys. Rev. C60, 064318 (2000). 

76 

Finite rank approximation for Skyrme interactions and 
quasiparticle RPA · 

A.P. Severyukhin1, Ch. Stoyanov2, V.V. Voronov1 and N.V. Giai3 

1 - Bogoliubov Laboratory of Theoretical Physics, JINR, 141980 Dubna,Russia 
2 - Institute for Nuclear Research and Nuclear Energy, Boulevard Tzarigradsko 
Chausee 72, 1784 Sofia, Bulgaria 
3 - Institut de Physique Nucleaire, F-91406 Orsay Cedex, France 

Abstract 

A finite rank separable approximation for the particle-hole RPA calculations with 
Skyrme interactions is extended to take into account the pairing. As an illustration 
of the method energies and transition probabilities for the quadrupole excitations 
in some nuclei are calculated. The values calculated within our approaclt are very 
close to ones that were calculated within QRPA with the total Skyrme interactions. 
They are in a reasonable agreement with experimental data. 

1 Introduction 

Many properties of the nuclear states can be described within the random phase approx­
imation (RPA)[l, 2, 3, 4]. The most consistent models employ an effective interaction, 
which can describe, throughout the periodic table, the ground states in the framework 
of the Hartree-Fock (HF) approximation and the excited states in time-dependent HF, 
or the random phase approximation (RPA). The Gogny's interaction[5] and the Skyrme­
type interactions[6] are very popular now. Such models are quite successful not only for 
predicting accurately nuclear ground state properties[7, 8] but also for calculating the 
main features of giant resonances in closed-shell nuclei[9, 10]. Taking into account of the 
pairing effects enables one to reproduce many properties of collective states in open-shell 
nuclei too[ll, 12, 13, 14]. 

It is well known that due to the anharmonicity of vibrations there is a coupling between 
one-phonon and more complex states [2, 4]. The main difficulty is that the complexity 
of calculations beyond standard RPA increases rapidly with the size of the configuration 
space and one has to work within limited spaces. From another point of view more phe­
nomenological models that assume some simple separable form for the residual nucleon­
nucleon interaction while the mean field is modelized by an empirical potential well allow 
one to calculate nuclear excitations in very large configuration spaces since there is no 
need to diagonalize matrices whose dimensions grow with the size of a configuration space. 
The well-known quasiparticle-phonon model (QPM) of Soloviev et al.[4] belongs to such 
a model. Very detailed predictions can be made by QPM for nuclei away from closed 
shells[15]. 

A possibility to solve easily the RPA problem when the residual particle-hole (p-h) 
interaction is separable in considerably smaller configuration space than one for a non­
separable interaction was the motivation for proposing in our previous work [16] a finite 
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rank approximation for the p-h interaction resulting from Skyrme-type forces. Thus 
the self-consistent mean field can be calculated in the standard way with the origin~ 
Skyrme interaction whereas the RPA solutions would be obtained with the finite rank 
approximation to the p-h matrix elements. 

In the present work, we extend a finite rank approximation for p-h interactions of 
Skyrme type to take into account pairing paying a special attention for the quadrupole 
excitations in nuclei with very different mass numbers. As an application we present 
results of calculations for low-lying 2+ states in some 0, Ar, Sn and Pb isotopes. 

2 Hamiltonian of the model and QRP A 

We start from the effective Skyrme interaction[6] and use the notation of Ref.[17] contain­
ing explicit density dependence and all spin-exchange terms rather than the original form 
ofRef[6] where density dependence at the HF level was introduced by a three-body contact 
force and where some spin-exchange terms were dropped. The exact p-h residual interac­
tion V,.,, corresponding to the Skyrme force and including both direct and exchange terms 
can be obtained as the second derivative of the energy density functional with respect to 
the density[18]. Following our previous paper[16] we simplify V,.,. by approximating it by 
its Landau-Migdal form in the momentum space: 

-1 -0 [ ' , l k1k2 V,.,,(k1, k2) = N0 ~ F1 + Gic,1a2 + (F1 + G1a1a2)T1T2 P1( 7 ), 
~ F 

(1) 

where k;, a; and T; are the nucleon momentum, spin and isospin operators, and N0 = 
2kpm* /rr2t-,,2 with kp and m* standing for the Fermi momentum and nucleon effective 
mass. For Skyrme interactions all Landau parameters with l > 1 are zero. Here, we keep 
only the l = 0 terms in v;.,, and in the coordinate representation one can write it in the 
following form: 

V,.,,(r1,r2) = N0-
1 [Fo(ri) + Go(r1)a1a2 + (F~(r1) + G~(rt)a1a2)r1r2] 8(r1 - r2) (2) 

The expressions for F0 , G0 , F~, G'0 in terms of the Skyrme force parameters can be found 
in Ref.[17). Because of density dependence of the interaction the Landau parameters of 
Eq.(2) are functions of the coordinate r. In what follows we use the second quantized 
representation and v;.,. can be written as: 

A 1 
v;.,, = 2 L V1234: at afa4a3: 

1234 
(3) 

where at (ai) is the particle creation (annihilation) operator and 1 denotes the quantum 
numbers (n1ld1mi). 

Vi234 = J </ii:(r1)r/>;(r2)V..,.(r1, r2)efi3(r1)efi4(r2)dr1dr2, (4) 

78 

V1234 = L J-2(-)K (j1m1j3 - m3 I J - M)(j2m2j4 - m4 I JM)V1~4, (5) 
JM 

where K = J + j3 + j1 - M - m3 - m4 and 

vl~31 = Uil!Y1lli3)(j2!IY1lli4)/u(i1MJj4) -
L (i1!!Tnllj3)(j2!IT1i!IJ1)Is(id2j3j1), (6) 

L=J,J±l 

where (jil!Y1lli3) is the reduced matrix element of the spherical harmonics Y1 µ, J = 
J2J + 1, TJ[(f,a) = [Yr, x a]Y and h1(i,j2j3j1), Is(itJ2J3j4) are the radial integrals: 

l
oo dr 

lu(jd2J3J1) = N0-
1 (Fo(r) + F~(r)Ttr2) u;i (r)ui,(r)ui,(r)ui,(r) 2 , 

o r 
(7) 

l
oo dr 

Is(iti2J3j4) = No 1 (Go(r) + G~(r)Tir2) Uj, (r)uj,(r)ui,(r)uj,(r)2, 
o r 

(8) 

where radial wave functions u(r) are related with the HF single-particle wave functions: 

,1. ( ) u;(ri)ym (' ) 
'l'i,m r1 = -~ l·J·· r1,<l1 • 

T1 • • 
(9) 

As it is shown in [16) the radial integrals can be calculated accurately by choosing a 
large enough cutoff radius Rand using an-point integration Gauss formula with abscissas 
and weights rk, Wk- Thus the residual interaction can be presented as a sum of n separable 
terms. 

So we employ the hamiltonian including an average nuclear HF field, pairing inter­
actions, the isoscalar and isovector particle -hole (p-h) residual forces in a finite rank 
separable form: 

H = L (Lr (Ej - .-'r)a}maim - ~G~o): PJ (r)Po (r): -
T Jm 

~ f, LL [(K~M,k) +qK\M,k)): Ml~+(r)Ml~l(qr): + 
k=lq=±l >,.µ 

L (K~s,k) + qK\S,kl) : si~::(r)Si~µ(qr) =]) (10) 
l,=>,.,>.±1 

We sum over the proton(p) and neutron(n) indexes and the notation {r = (n,p)} is used 
and a change T +-+ -r means a change p +-+ n; k is a rank. The single-particle states 
are specified by the quantum numbers (jm); Ei are the single-particle energies; Ar is the 
chemical potential; G~0l is the strength in the p-p channel; K(Mk) (K(Sk)) are the multipole 
(spin-multipole) strengths in the p-h channel and they can be expressed via the Landau 
parameters as: 
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( 

(M,k) ) "' ( ) Ko ro Tk 
KiM,k) _ -N.-1 Rwk ( F~(rk) ) 
K&S,k) - 0 2r~ Go(rk) 
KiS,k) G~(rk) 

(11) 

The monopole pair creation, the multipole and spin-multipole operators entering the 
normal products in (10) are defined as follows: 

P,+ ( ) - "'T ( l)j-m + + o T - L - ajmaj-m, 
jm 

Mi:)+ (T) = j.-l L r (-l)i+m(jmj' - m' I >.µ)f)~k)(T)ajmaj'm', 
jj'mm' 

(k)+ ' T · ' ' (.~Lk) s>.Lµ (T) = >,.-I L (-1)1+m(jmj - m I >.µ)Jj'j (T)ajmaj'm', 
.,J I 

JJ mm 

where fi'i are the single particle radial matrix elements of the multipole and spin­
multipole operators: 

Jj;i~) = uii(rk)ui,(rk)i>.(jil!Y>-IIJ2) 

Jj;i~k) = uii(rk)ui,(rk)iL(jillT>.LIIJ2) 

One can see that the hamiltonian (10) has the same form as the QPM hamiltonian with 
N separable terms, but in contrast to the QPM all parameters of this hamiltonian are 
expressed through parameters of the Skyrme forces. 

In what follows we work in the quasiparticle representation, defined by the canonical 
Bogoliubov transformation: 

ajm = UjCTJm + (-l)j-mVjCTj-m• (12) 

The hamiltonian (10) can be represented in terms of bifermion quasiparticle operators 
(and their conjugate ones) [4]: 

B(jj'; >.µ) = L (-1/+m' (jm/m' I >.µ)atmai'-m', 
mm' 

, "'( . ., , I ) + + A+(jj; >.µ) = L JmJ m >.µ ajmaj'm'. 
mm' 

We introduce the phonon creation operators 

Qfµi = ~L(1JifJ,A+(jj';>.µ)-(-1)>-- 1•rp;j,A(jj';>.-µ)). 
jj' 

(13) 
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where the index >. denotes multipolarity and µ is its z-projection in the laboratory system. 
One assumes that the ground state is the QRPA phonon vacuum J 0), i.e. Q>.µ; J 0) = 0. 
We define the excited states for this approximation by Qfµi I 0). For the QRPA the 
following relation is valid: 

(OJ [Q>.µ,;,Q}µ,,i'] JO) =O>,>,•Oµµ'~L(V'1}1Ji;;: - rp;J,<p;f) 
jj' 

The quasiparticle energies (cj), the chemical potentials (>.r), the energy gap and the 
coefficients u,v of the Bogoliubov transformations (12) are determined from the BCS 
equations with the single particle spectrum that is calculated within HF method with the 
effective Skyrme interactions [6). Making use the linearized equation of motion approach 
[l]: 

(OJ [oQ>.µi, [H, Qtµi]] J 0) = w>.,(OI [oQ>.µi, Qtµ;] I 0), 
with the constrained condition: 

(o I [Q>.µi, Qtµi' l Io) = 6;;', 

one can derive the QRPA equations [3, 4]. 

( ~B ~A ) ( ~ ) = w ( ~ ) 

(14) 

(15) 

(16) 

In QRPA problems there appear two types ofinteraction matrix elements, the A[;!i;JT(M,).T 

matrix related to forward-going graphs and the Bt!i;JTCi2io)•T matrix related to backward­
going graphs. For our case we get the following expressions: 

(>.) - ·-2 ( )-1 Au,2:;;i,ch2:i,J.T - cM; oM, o;,;; c5q1 - >. 1 + c5M, x 
N 
"' [( (M,k) + (M,k)) (+) f(>.k)( ) (+) f(>.k)( )+ 
L Ko QK1 UM; M; T uM, i•i2 QT 
k=l 

( (S,k) + (S,k)) (-) f(>.>.k)( ) (-) f(>.>.k)( )] 
_ Ko QK1 Uiti; M; T U;.;2 Mo QT , (17) 

(>.) • -2 ( )-1 
Bu>-'J c·>-'J = ->. 1+81·•1·• x 1 _JJ 1" ]2_J2 qT 2 

N 
"' [( (M,k) + (M,k)) (+) f(>.k)( ) (+) f(>.k)( ) 
L Ko QK1 UM; iii; T uM, M2 QT -
k=l 

(K(S,k) + QK(S,k))u(-!, J!>-~k)(T)u~-!, j\>.~k)(QT)] 
0 1 1t11 1t11 J2J2 J2J2 ' 

(18) 

where f;;' = c; + f;• and u}}) = u;vj' ± v;uj'. 
One can find a prescription how to solve this system and to find the eigenenergies and 

phonon amplitudes in [16]. The matrix problems never exceed the dimensions 4N x 4N. 
The derived equations have the same form as the QRPA equations in the QPM [4, 19], but 
the single particle spectrum and parameters of the p-h residual interaction are calculated 
making use the Skyrme forces. 
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3 Details of calculations 

In this work we use the standard parameterization SIii [20] for the Skyrme force. Spher­
ical symmetry is assumed for the HF ground states. The pairing constants G~ are fixed 
to reproduce the odd-even mass difference of neighboring nuclei. As a result constant 
pairing gaps have values that are very close to .6. = 12.A-1l2 besides a case of semimagic 
nuclei. It is well known [11, 13] that the constant gap approximation leads to an overes­
timation of occupation probabilities for subshells that are far from the Fermi level and it 
is necessary to introduce a cut-off in the single-particle space. Above this cutoff subshells 
don't participate in the pairing effect. In our calculations we choose the BCS subspace 
to include all subshells lying below 5 MeV. In order to perform RPA calculations, the 
single-particle continuum is discretized [21] by diagonalizing the HF hamiltonian on a 
basis of twelve harmonic oscillator shells and cutting of the single-particle spectra at the 
energy 190 MeV. This is sufficient to exhaust practically all the energy-weighted sum rule 
(EWSR). As it was shown in our previous calculations [16] we have adopted the value 
N =24 for the finite rank approximation for the dipole and quadrupole excitations in Ar 
isotopes. An increasing of a mass number and a multipolarity of excitations demands of 
an increasing of a rank to keep an accuracy in calculations. Our investigations enable us 
to conclude that N=45 is enough for a multipolarity >. ~ 3 in nuclei with A ~ 208. In­
creasing N, for example, up to N=60 in 208Pb changes results for energies and transition 
probabilities not more than by 1 %, so all calculations in what follows have been done 
with N=45. Our calculations show that for the normal parity states one can neglect by 
the spin-multipole parts of interactions as a rule and this leads to the double reduction of 
the total matrix dimension. For example, for the quadrupole excitations in 206Pb we need 
to diagonalize a matrix having a dimension 2N=90 instead of 1086 as it takes place for 
the exact diagonalization case. In our calculations for light nuclei a reduction of matrix 
dimensions due to the separable approximation is 3 or 4. So for heavy nuclei our approach 
gives a visible gain in comparison with an exact diagonalization. It is worth to point out 
that after solving the RPA problem with a separable interaction taking into account of 
the coupling with two-phonon configurations demands to diagonalize a matrix having a 
size that does not exceed 40 for the giant resonance calculations in heavy nuclei whereas 
one needs to diagonalize a matrix with a rank of an order of a few thousands at least for 
a nonseparable case. 

4 Results of calculations 

As a first example of calculations within our approach we demonstrate our results and 
experimental data [22] for the 2t state energies and transition probabilities B(E2). They 
are shown in the table 1. One can see that there is a satisfactory agreement with experi­
mental data. Results of our calculations for isotopes of O and Ar are close to ones within 
QRPA with the Skyrme forces [11, 23] and calculations fail to reproduce the B(E2)-value 
in 180. Making use of the SGII interaction[l 7] improves a description for the O isotopes 
and gives practically the same results for the Ar isotopes, but for Sn and Pb isotopes a 
description becomes much worse. Calculations with Ski4 forces don't change conclusion 
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Table 1: Energies and B(E2)-values for up-transitions to the first 2+ states 

Nucleus Energy B(E2t) 
(MeV) (e2fm4

) 

Exp. Theory Exp. Theory 
180 1.98 4.75 45±2 14 
200 1.67 4.17 28±2 20 
36Ar 1.97 1.91 300±30 310 
38Ar 2.17 2.51 130±10 110 
10Ar 1.46 2.17 330±40 290 
112sn 1.26 1.49 2400±140 2600 
ll4Sn 1.30 1.51 2400±500 2100 
206pb 0.80 0.96 1000±20 1700 
20spb 4.09 5.35 3000±300 2000 

mentioned above. A behaviour of the B(E2)-values in the Ar isotopes demonstrates clear 
effects of the pairing. The experimental and calculated B(E2)-value for 38 Ar is three 
times less than ones in 36•40 Ar. A closer of the neutron shell leads to the vanishing of 
the neutron pairing and a reduction of the proton gap. As a result there is a remarkable 
reduction of the E2 transition probability in 38 Ar. Some exceeding of calculated energies 
over experimental values indicates that there is a room for the two-phonon terms effects. 
As it was found in calculations that were performed within the QPM for 208Pb [24] taking 
into account of the two-phonon configurations can shift down the 2t energy by more than 
1 MeV. The B(E2)-value reduction is about 10% in this case. The study of an influence of 
the two-phonon configurations on properties of the low lying states within our approach 
is in progress now. 

An additional information about a structure of the first 2+ states can be extracted 
from an investigation of the ratio of the multi pole transition matrix elements Mn/ Mp 
that depends on the relative contribution of the proton and neutron configurations. In 
the framework of the collective model for the isoscalar excitations this ratio is equal to 
Mn/ Mp = N / Z and any deviation from this value can indicate on an isovector character of 
a state. The M,./Mp ratio can be determined experimentally by using different external 
probes [25, 26, 27]. Recently [12, 23] the QRPA calculations with Skyrme forces for 
the Mn/ Mp ratios for the 2t states in some O and Ar isotopes have been done. The 
microscopic calculations are in a good agreement with experimental data [23]. Our results 
support conclusions of papers [12, 23] about the isovector character of the 2t states in 
18•200 and 38 Ar. This conclusion is valid for any set of the Skyrme forces parameters 
discussed in this work. 
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5 Conclusion 

A finite rank separable approximation for the particle-hole RPA calculations with Skyrme 
interactions that was proposed in our previous work is extended to take into account the 
pairing. The QRPA equations are derived for this case. These equations are used to study 
quadrupole excitations in nuclei with very different mass numbers. It is shown that the 
suggested approach enables one to reduce remarkably a rank of matrixes that must be 
diagonalized to perform structure calculations in very large spaces. 

As an illustration of the method we have used the finite rank p-h interaction derived 
from the Skyrme force Sill to calculate the energies and transition probabilities for the 2t 
states in some 0, Ar, Sn and Pb isotopes. The values calculated within our approach are 
very close to ones that were calculated in a framework of QRPA with the total Skyrme 
interactions. They are in a reasonable agreement with experimental data mostly. A 
developed approach can be generalized to take into account the coupling between the 
one- and two-phonon terms and such investigations are in progress now. 
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EFFECT OF STRUCTURAL FORBIDDENNESS IN FUSION 

OF HEAVY NUCLEI 
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With a microscopic approach based on the formalism of irreducible 
representations of the SU(3) group the influence of structural forbiddenness 
on the fusion of heavy nuclei and the dinuclear system phenomenon are 
investigated for different symmetric and asymmetric reactions used in the 
synthesis of heavy and super heavy nuclei. A large hindrance is obtained for 
the motion to smaller elongations of dinuclear systems. The comparison of 
the calculated energy thresholds for the complete fusion in different relevant 
collective variables shows that the dinuclear system prefers to evolve in the 
mass asymmetry coordinate by nucleon transfer to the compound nucleus. 

With an algebraic description [1,2] we try to study the structural forbiddenness effect 
on the fusion of heavy nuclei and the factors decreasing forbiddenness, and the competition 
between two possible fusion channels. The first one (R-channel) is the transition of the 
dinuclear system (DNS) into the compound nucleus with increasing neck and decreasing 
relative distance R between the centers of interacting nuclei at fixed mass asymmetry 
rJ = (A2 - A 1)/ A (Ai and A2 are the mass numbers of the DNS nuclei and A = Ai+ A2). 

The second channel (ri-channel) is the evolution of the DNS to the compound nucleus 
in mass asymmetry by nucleon transfer from a light nucleus to a heavy one [3-6] (DNS 
concept). 

The concept of structural forbiddenness [1] is based on the difference created by action 
of the Pauli principle between the compound state and the heavy cluster state. If the wave 
functions of colliding ions are described with the oscillator quanta numbers NA, and NA., 

the difference n = NA - NA1 - NA2 determines the minimal number of oscillator quanta 
for the wave function of relative motion characterizing by the number of nodes (n - l)/2 
(l is the angular momentum of relative motion). This is referred to the Talmi-Moshinsky 
rule which holds good for light cluster channels. For heavy cluster channels the problem 
is essentially more complicated. For the fusion channel Ai + A2 -t A, with the wave 
function 

WA1+A2 = .A.{\JI Ai \JI A2c/>(R)}, (1) 

where \JI A, are the cluster wave functions which have the lowest numbers NA, allowed by 
Pauli principle, </J(R) is the function of their relative motion along collision axis z and A 
is operator of antisymmetrization, the minimal oscillator quanta NAi+A2 is determined 
by application of the SU(3) group theory [1,2]. The fact is that \JI Ai+A, and \JI A belong 
to different SU(3) (or Sp(2,R) for deformed nuclei Ai and A2 ) representations. We have 
to construct the U(3) irreducible representation Uzfyfx] for \JI Ai+A2 which possesses by 
minimal sum f x + Jy + fz and does not vanish with antisymmetrization. The proper 
procedure for the construction of the vector of highest weight of this representation is the 
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use of the vector of highest weight for the wave function of the relative motion and the 
vectors of lowest weights for the wave functions of the fragments which possess by the 
maximal value of the sum JJ1l + Jfl + JJ2l + J!2l (upper index denotes the fragment). 
The resulting NA, +A

2 
value turns out to be essentially large than NA if the mass of 

the lighter fragment is rather large. Therefore, in heavy ion physics we obtained the 
generalization of the Talmi-Moshinsky rule. The minimal difference q = NA,+A 2 - NA is 
referred to the degree of structural forbiddenness for fusion channel A1 + A2 -t A. The 
wave function \JI A,+A, of the DNS has nonvanishing overlap integral with wave function 
\JI A of the compound nucleus if NA,+A,:::: NA+ q. 
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FIG. 1. The degree of structural forbiddenness q as a function of mass asymmetry T/ (solid 

line) in the DNS corresponding to 216Fm compound nucleus (upper part). The contributions to 
q from protons and neutrons are presented by dotted and dashed lines, respectively. Potential 
energy of the DNS corresponding to 216Fm compound nucleus as a function of mass asymmetry 
T/ at zero angular momentum (low part). Solid and dashed lines present the results obtained 
with realistic and liquid drop binding energies in (2), respectively. The spherical nuclei were 
taken in the DNS 
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The forbiddenness effect is model independent and the SU{3) approach is only the 
simple method to determine it. The numbers NA, may be larger than lowest ones allowed 
by the Pauli principle due to the same reasons as in the compound nucleus. As the 
result, the order of structural forbiddenness q slightly decreases. With the pole-to-pole 
orientation in the DNS consisting of the deformed nuclei the values of q are larger than 
ones for the DNS with the spherical nuclei. Since in the collisions near the Coulomb 
barrier this orientation effect is more important than other effects leading to the decrease 
of q, in our calculations with spherical nuclei we obtain the minimal value of q. 

The quantity BR= 1iwq (1iw = 41Mev A- 1l3
) is a qualitative estimation of the minimal 

energy thresholds for the fusion in relative distance R degree of freedom at fixed mass 
asymmetry rJ. If the excitation energy of system is much smaller than the value of En, 
the fusion process in the R-channel is strongly forbidden. 

One can see in Fig. 1 that the dependence of q on TJ is not monotonic, the q-value 
is maximal for almost symmetric combinations and it decreases with increasing T/· The 
neutron subsystem mainly contributes to the q-value for small mass asymmetry. Since 
the absolute values of q (or En) are large for not very asymmetric DNS, there is a strong 
hindrance for the evolution of these DNS to smaller R due to the large energy barrier 
between the initial DNS and compound shapes. The reason is likely that the shape 
change must proceed via intermediate shapes that have higher energy. 
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FIG. 2. The degree of structural forbiddenness q for different Pb- and Bi-based reactions as 

a function of mass asymmetry of the entrance DNS. The contributions to q from protons and 
neutrons are presented by dotted and dashed Jines, respectively 

The potential energy [4,5] 

U(TJ) = Bi + B2 + V(R,,., TJ) - B12 (2) 

of the DNS leading to the same 246Fm compound nucleus as function of mass asymmetry 
T/ is presented in Fig. 1. In Eq. (2) Bi, B2, and B 12 are the realistic (for small excitation 
energy) or liquid drop {for large excitation energy) binding energies of the fragments and 
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the compound nucleus, respectively. The DNS are localized in the minimum of the pocket 
of the nucleus-nucleus potential V(R, TJ) at R = Rm ~ Ri + R2 + 0.5 fm ( R1 and R2 
are the radii of the DNS nuclei). In the DNS concept [3-5] the complete fusion occurs 
through the TJ channel. It is in opposite to the macroscopic models in which the fusion 
is mainly considered as the motion in R-channel. The complete fusion in the TJ-channel 
is assumed to occur when the DNS overcomes the maximum of U(TJ) (Businaro-Gallone 
point) at TJ = T/BG [4] (Fig. 1). The value of BT/= U(TJBa) - U(TJ;) (TJ; is TJ for the initial 
DNS) supplies the hindrance of complete fusion in the DNS concept. The energy required 
to overcome the fusion barrier BT/ is contained in the DNS excitation energy. Starting 
with hypothesis that DNS configurations do not dissolve in the R-channel, the DNS fusion 
model gives impressive agreement with the experiment [4,5]. 

Table 1. Calculated with the DNS model [th.] [5] and experimental [exp.] [9] evaporation 
residue cross sections for several ln Pb-based reactions. Calculated [th.] values of excitation 
energy Ec,'N of the compound nucleus are compared with the experimental [exp.] ones. The 
values of q, Bn and BT/ are explained in the text. 

Reactions EcN [th.] EcN [exp.] BT/ q En O"tn O"tn 

(MeV) (MeV) (MeV) (MeV) [th.] [exp.] 
-

5UTi+208pb ➔258 104 16.1 16 4.7 20 129 14.3 nb 10 nb 
54Cr+208pb ➔252 106 16.0 15.5 5.5 22 141 0.4 nb 0.5 nb 
58Fe+208pb ➔266 108 15.5 14.8 7.2 24 153 48 pb 70 pb 
64Ni+208pb ➔212 110 10.7 10.5 7.2 30 190 17 pb 15 pb 
1ozn+208pb ➔218 112 9.8 10.0 8.8 40 251 1.8 pb 0.5 pb 
1ozn+209Bi ➔279 113 10.6 9.3 40 250 0.2 pb 

It is seen in Fig. 1 that the fusion barrier BT/ for the initial DNS increases with 
decreasing TJ (TJ < T/Ba)- The decrease of the fusion cross section with T/ was experimentally 
confirmed [7]. The comparison of calculated energy thresholds for complete fusion in 
the R- and TJ- channels demonstrates the preference of the TJ-channel considered in the 
DNS concept. For ITJI > IT/Bal, the very asymmetric systems can fuse in the TJ-channel 
as well as in the R-channel. As follows from our analysis, in the R-channel as well 
as in the TJ-channel the complete fusion in symmetric reactions (TJ; = 0) yields smaller 
cross sections in comparison with asymmetric combinations. With the large q-values the 
nuclei of the DNS keep their individuality during the evolution to compound nucleus 
in TJ. The effect of structural forbiddenness is the one of reasons for the stability of 
the DNS against the dissolution into the R-channel. In addition, within the microscopical 
treatment [8] we obtained the large inertia and friction coefficients for the neck coordinate 
which supply the long lifetime for the DNS-type configuration and the applicability of our 
algebraic approach to calculate the energy threshold in the R-channel. There is strong 
correlation between large mass inertia and large degree of structural forbiddenness for 
the heavy DNS. Since the q-values are very large for heavy DNS and the fusion is quite 
fast process, the system has no time for destroying the "nuclear memory" about the 
structural forbiddenness [2,6]. This time, which is necessary to reorganize the densities of 
the system for the transition from frozen density to the adiabatic potential, is related to 
the characteristic time T for the deformation (neck) degrees of freedom. The value of T is 
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comparable with the fusion time and correspondingly the fusion process is mainly ruled 
by the frozen density potential. 

For the reactions 123Sn+123Sn, 124Sn+124Sn, 132Sn+132Sn, 130Xe+130Xe, 136Xe+136Xe, 
136Xe+142Ce, 136Xe+170Er and 128Te+138Ba we obtained q=46, 44, 40, 40, 40, 42, 44 and-
40, respectively. Since the fusion probabilities in symmetric reactions with heavy nuclei 
are very small in the Rand 77-channels (B,, > 20 MeV), one can not expect large yields of 
evaporation residues in these reactions. In the reactions 209Bi + 136Xe and 208Pb + 197 Au 
the dominance of the binary reaction channel at bombarding energy till 30 MeV /nucleon 
[11] is supported by large q-values 40 and 96, respectively. 

For symmetric and Pb-, Bi-based reactions in Fig. 2 the obtained q-values are large 
enough for keeping the DNS configurations and their evolution in 77 or decay in R. The 
barrier in R-channel is much larger than one in 77-channel but the trends of these barriers 
on the charge number ZcN of compound nucleus are similar. The experimental [9] evap­
oration residues cross sections aEn are in agreement with the data calculated with the 
fusion in 77 [5] (see Table 1). 
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FIG. 3. Calculated values of q for actinide-based reactions 48Ca+232Th, 244Pu, 243 Am, 
248Cm, 249Cf (solid line), 40 Ar+232Th, 244Pu,243 Am,248 Cm, 249Cf (dashed line) and 32S+243 Am, 
248Cm,249Cf (dotted line) as a function of atomic number ZcN of the compound nucleus 

The results of Fig. 3 show that q-value decreases with increasing atomic num­
ber of target-nucleus for actinide-based fusion reactions [10]. For the reaction 
48Ca+249Cf-t297118, the q-value is the smallest one and Bn=25 MeV. The fusion barriers 
Br, in mass asymmetry are 7, 9, 11 and 15 MeV for the reactions 48Ca+232Th-t280no, 
48Ca+238U-t286112, 48Ca+244Pu-t292114 and 48Ca+249Cf-t297114, respectively. For the 
reactions 238U+50Ti, 54 Cr, 58Fe, 64 Ni, 70Zn we obtained q=12, 10, 8, 8, 14, respectively. 
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For these reactions, the fusion barriers B,, are large (in comparison to the ones in reac­
tions with 18Ca) but much smaller than Bn. For very asymmetric actinide-based fusion 
reactions with A. 1 '.S;l2, Bn=B,,=0. 

\\'ith the concept of structural forbiddenness we demonstrated large energy hindrance 
for the motion to smaller R in the initial DNS. Therefore, the internal fusion barrier in R 
seems to be much larger than the barrier in TJ. The actinide-based reactions with 48Ca and 
lighter projectiles are seemed to be useful for producing superheavies beyond Z = 114. 

This work was partly supported by RFBR, grant 00-02-16683. 
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Octupole deformation in the actinides 

and the Interacting Boson Model 

N.V. Zamfir 

WNSL, Yale University, New Haven, CT 06520, USA 

The occurrence of nuclear octupole deformation in the framework of the Interacting 

Boson Model and the SU,pdf(3) dynamical symmetry are discussed. The predictions 

of spdf calculations in the actinides that at medium spin there is an onset of octupole 

deformation are in agreement with phenomenological staggering index results. 

I. INTRODUCTION 

Octupole deformation in atomic nuclei have attracted over the years a widespread inter­

est. The question of the existence of octupole deformation is still open and the evolution of 

octupole correlation is not yet very well understood. There is yet no definite answer which 

nuclei are octupole deformed, if any, or in which conditions strong octupole correlations 

occur. The difficulty arises from the fact that there ·are no specific established phenomeno­

logical criteria for the degree of octupole collectivity. 

Experimentally, one of the most unique features of the presence of octupole modes is 

the appearance of alternating parity rotational bands in the form o+, 1 - , 2+, 3-, .. [1]. If the 

octupole degree of freedom is a vibration built on the ground state, as is typical in quadrupole 

deformed nuclei, the negative parity states appear at rather high excitation energies, well 

separated from the positive parity even members of the ground state band. If significant 

octupole deformation is present, the negative parity states lie much lower and can form an 

alternating parity sequence with the positive parity levels. Jolos and Brentano [2] related 

the observed parity splitting to the barrier height of the potential and the tunnelling effect, 

as a main source of the parity splitting, was calculated in the quasiclassical approximation 

[3]. It was shown by Jolos et al. [3] that there is a strong spin dependence of the parity 

splitting and a phenomenological unified staggering index can be introduced (see for ex. Ref. 

[2, 4]). 

In this article, dedicated to Slava Jolos on the occasion of his 60th birthday, a rotational 

dynamical symmetry of the spd/-Interacting Boson Model related to the onset of octupole 

deformation will be discussed and the results for actinide nuclei will be presented. 
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II. ROTATIONAL DYNAMICAL SYMMETRY SUspctr(3) 

Dynamical symmetries of the Interacting Boson Model (IBA) [5], as idealized limits 

I of nuclear collectivity, play a major role in the study of positive parity states in nuclei. 

Although, the negative parity states were also successfully described in the framework of 

the II3A, none of the dynamical symmetries of the spdf model have been yet fully exploited. 

The dynamical symmetries of the associated group, U(16), were studied [6] and completely 

constructed and classified [7]. 

An interesting dynamical symmetry is the rotational limit defined by the group chain: 

u,pdf(16) => u,d(6) ® Up1(10) => SU,d(3) ® SUp1(3) ::) su,pdf(3) ::) O,pdf(3) 

NB N+ N_ (.\+µ+) (.\_µ_) (.\µ) J 

This subalgebra separately conserves the number of s,d(N+) and p,f(N_) bosons. 

A simple dynamical symmetry Hamiltonian for this rotational limit is: 

H = cN_ - ,-,,{Jspdf · Q,pdf 

(1) 

(2) 

where c = Ep = Ef is the boson energy, N_ = np + n1 is the boson number operator, and 

Q,pdf = Q,d + Qpf is the quadrupole operator of SUspdf(3). 

The spectrum is given by: 

K, 3 
E = cN_ - 2[-\2 + µ2 + .\µ + 3(-\ + µ)] + 8,-,,J(J + 1) (3) 

Figure 1 shows a typical spectrum corresponding to this symmetry. The ground state 

and the first excited negative parity band are not dipole-octupole deformed, since N_ = 0 

and 1, respectively. Rather, this deformation (N_ = 2 and 3, respectively) sets in at higher 

excitation energy (the right-most and left-most bands). If c/,-,,(2NB + 4) = 1 these two 

bands will form a rotational band of alternating parity states (o+, 1 - , 2+, 3-, ... ) . 
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FIG. 1: Spectrum of the SU,pdf(3) dynamical symmetry (Eq. (3)] for Ns(total number of 

bosons)=9, c=0.4 MeV, 11:=0.014 MeV. The number of negative parity bosons, N_, and the 

rotational quantum numbers ( >., µ), are indicated for each band 

94 

III. IBA-SPDF CALCULATIONS FOR ACTINIDE NUCLEI 

An extensive study of transitional and rotational actinides in the framework of the IBA­

spdf model shows that. while the properties of the low-lying states can be understood with­

out stable octupole deformation, higher spin states in some of these nuclei have properties 

which suggest that octupole deformation develops with increasing spin [8]. 

An Hamiltonian containing the essential degrees of freedom of the evolution from vibra­

tional to rotational structure is: 

H = tdTid + Epftp + EfTif - r;,Q,pdJ · Q,pdj (4) 

The numerical diagonalizations were done using the computer code OCTUPOLE [10]. 

The IBA calculations were performed for Rn, Ra, Th, U, and Pu nuclei and some of the 

results were previously reported in Refs. [8, 9]. The energy of the d boson was Ed= 0.3 Mev 

and the strength of the quadrupole-quadrupole interaction K = 0.014 MeV. The presence 

of all terms iu the Hamiltonian prevents the appearance of a pure dynamical symmetry. 

However, in some cases (224
•
226 Ra, 228Th), as can be seen in Fig. 2, Ep = Ef, and, except for 

the non zero Ed, it is precisely the Hamiltonian [Eq. (2)] for the above mentioned.dynamical 

symmetry. 
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FIG. 2: The energy of the p and f bosons used in the IBA-spdf calculations 

An important effect of the term tdfid is that the bands do not have now the same moment 

of inertia. The dipole-octupole deformed bands (the K" = o+ band with N_=2 and the 

K" = o- band with N_=3) have a larger moment of inertia than the yrast positive and 
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negative parity bands. Consequently, at a medium spin the dipole-octupole states become 

yrast states. The content of pf bosons in yrast states for positive parity is 0 (at low spin) or 

2 (at high spin) and, similarly, for negative parity states is 1 or 3 since the above Hamiltonia11 . 

conserves separately the number of sd and pf bosons. An additional dipole-dipole interaction 

mixes the states with different pf components. If the interaction is very small the energies 

are only slightly affected. However, the pf content, due to the increasing with spin of the 

mutual interaction, is changed, especially at higher spin. The content of pf bosons in yrast 

states will increase with spin. 

Figure 3 shows a comparison of the experimental spectra of 226 Ra and 228Th with the IBA 

calculations. The positive parity band, labelled "a" contains almost no pf bosons at low 

spin and the band labelled "c" is primarily composed at low spin of (pf)2 bosons. However, 

at higher spin (J ~ 141t for 226Ra and J ~ 201i for 228Th), the states in bands "a" and 

"c" mix strongly and the (pf)2 character of the wave functions now appear in band "a". 

Similarly, the content of pf bosons in the negative parity yrast band K" = o- is increasing 

with spin from mainly (pf)1 at low spin to (pf) 3 at high spin. Figure 4 shows that the 

amount of negative parity bosons in yrast states, i.e., the dipole-octupole deformation is 

increasing with spin with a sudden increase at spin J ~ 141i for 226Ra and, although less 

evident, at J ~ 201i for 228Th. 

This behavior is mirrored by the data. Figure 5 shows the empirical spin-dependent 

signature splitting index S(J) [2, 4] for 226Ra and 228Th. The critical spin where S(J) ~ 0, 

i.e., where there is the onset of strong octupole correlations, is indeed J ~ 141i for 226Ra 

and J ~ 201i for 228Th. 

IV. CONCLUSION 

A systematic study of the transitional actinides in the framework of the Interacting 

Boson Model with s,p, d, and f bosons shows that some of these nuclei are very close to 

the rotational dynamical symmetry SUspdr(3). Although, in the ground state these nuclei 

are not octupole deformed, the octupole correlations increase with spin and at medium spin 

there is an onset of octupole deformation, in agreement with phenomenological analysis. 
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··FIG. 3: Comparison of the experimental spectra of 226Ra [11,12] and 228Th [13-15] with IBA-spdf 

calculation with the Hamiltonian in Eq. (4) with the base containing up to 3 negative parity 

I bosons) and a very small dipole-dipole interaction (0.0005 MeV). The other parameters are Nn=9, i 

Ed= 0.3 MeV, fp =ff= 0.63 MeV, 1,, = 0.014 MeV for 226Ra and Nn=lO, fd = 0.3 MeV, fp = ff 

"' 0.74 MeV, 1,, = 0.014 MeV for 228Th. At low spin, the pf composition in the bands is mainly 

npf=O(for band "a"), l("b"), 2("c"), 3("d"), 0("e"), and 0("f'') 
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A soft mode in a finite Fermi-system: 

anharmonic effects near the instability point 

Vladimir Zelevinsky1•2 and Alexander Volya2 

1 Department of Physics and Astronomy and 
2 National Superconducting Cyclotron Laboratory, 

Michigan State University, East Lansing, Michigan 48824-1321 USA 

We consider a finite Fermi-system where the residual interactions create 
a soft mode of the excitation spectrum. Because of the large vibrational 
amplitude, the standard random phase approximation does not work in this 
situation. We develop a regular method for constructing the anharmonic 
potential and illustrate the application of the formalism by a simple model. 

I. INTRODUCTION 

The appearance of a soft collective mode of vibrational nature is quite common in nu­
clei and in other mesoscopic quantum systems, such as atomic clusters. The conventional 
theoretical way to handle this situation [1-4) goes along the standard line: mean field (MF) 
- residual interactions - random phase approximation (RPA). The MF determines the 
symmetry of the system around the ground state and corresponding elementary excita­
tions, fermionic quasiparticles. The residual interactions include both coherent effects and 
collision-like processes responsible for the chaotization of motion and lead from a Fermi­
gas to Fermi-liquid. The formation of coherent modes is described within the framework 
of the RPA where the quanta of those modes are treated as independent quasibosonic 
excitations [2,4). In the low-lying states, kinematic corrections due to the fact that the 
quanta are built of fermions, as well as high order dynamic effects, can be accounted for 
perturbatively [2,5). 

The RP A-type theories become insufficient when, in some region of the parameters, the 
vibrational frequency w approaches zero. The vibrational amplitude then grows oc 1/ ../w 
revealing the instability of the MF. In a finite system, this is not necessarily a vestige of 
a phase transition or sharp restructuring of the system. Rather it might be a signature of 
the failure of the theoretical consideration based on the picture of harmonic vibrations. 
For instance, a low energy of the first excited quadrupole state does not mean that the 
nucleus becomes deformed. In the regime of large amplitude collective motion, we need to 

i reject the harmonic approximation and find a way of calculating the anharmonic effects 
I which cannot be here treated as small corrections. 
1 

The estimates [6), as well as more detailed unrestricted MF calculations, show that 
in the quadrupole case the effective potential is close to the ,-unstable [7) quartic one, 
~ /34

, and the spherical symmetry of the MF still holds but only on average. The popular 
interacting boson model [SJ with the phonon number fixed by a number of fermion pairs 
cannot describe the soft vibrational bands which stretch to very high spins. In this sense 
the phenomenological models [9-12) based on a specific form of the collective quadrupole 
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Hamiltonian are more successful. The onset of deformation occurs beyond the point of 
the RPA instability when some previously unoccupied configurations sharply lower their 
energy as a function of deformation and thereby select the equilibrium static value of,, 
usually 1 = 0. The macroscopic analog of this scenario would be the first order phase -
transition. 

Below we consider a typical collective soft mode and show a way of constructing 
the effective nonperturbative anharmonic potential for large-amplitude collective motion 
starting with the full microscopic many-body Hamiltonian. We present only the skeleton 
of the formalism and apply it to the Lipkin model known as a testing ground of various 
theoretical approximations (the first version of this approach was published in [13]). 

II. GENERALIZED DENSITY MATRIX 

It is convenient to use the operator language with the generalized density matrix 
(GDM) as the main tool [14-17]. We consider a truncated single-particle space of orbitals 
II) of full dimension f!. The GDM is the set of the operators 

R12 = a!a1, (1) 

where a and at are fermionic operators in the second quantization (in a similar way, one 
can consider Bose-systems), the subscripts 1,2 form a matrix in single-particle space f!, 
and each element R1 2 is an operator in the many-body Hilbert space. These operators 
generate a closed SU(f!) Lie algebra given by the commutation relations 

[R12, R34] = 014 R32 - 023 R14; (2) 

the trace of the GDM in single-particle indices (tr) gives a number operator, tr(R) = N. 
The GDM is Hermitian in the combined space of single-particle and many-body variables, 
Rt2 = R21-

The dynamics of the system are governed by a standard Hamiltonian which contains 
one-body and two-body terms, 

'°' t l '°' tt H = L.., f12a1a2 + 4 L.., Vi 2;34 a1a2a3a4, 
I, 2 1,2,3,4 

(3) 

where f12 = C:i 1 , V1 2;34 = V4*3;21 , and we assume the antisymmetrized form of the two­
body interaction. We define a self-consistent field W (similarly to R, an operator in the. 
combined space) as a linear functional of the GDM, 

l'°' l'°' t W14{R} = 2 L.., Vi2;34R32 = 2 L.., Vi2;34ll2ll3. 
2,3 2,3 

(4) 

The hamiltonian in eq. (3) can· also be written in terms of the GDM. 
The equations of motion for the creation and annihilation fermionic operators are 

[a1, H] = I;(f12 + Wn)a2, [a!, H] = -I: a!(f21 + W2i), (5) 
2 2 

whereas the total GDM (1) satisfies the nonlinear operator equation 
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[R, H] = [f + W{R}, R]. (6) 

These equations are still exact. Here the commutators are understood to act in the 
combined space, for example, 

[W, R]i2 = I;(ll-'13ll32 - R13W32); 
3 

all elements are many-body operators. 

III. MAPPING ONTO COLLECTIVE SPACE 

(7) 

Now we make two crucial assumptions: (i) there exists a "collective band" as a set of 
stationary st.ates which are coupled by strong intraband transition amplitudes while the 
transitions to the states of a different nature are weak and can be ignored, or be taken 
into account perturbatively later; (ii) the nomenclature (quantum numbers) of the band 
states can be built with the aid of the operators of collective coordinates a and conjugate 
momenta rr. These assumptions are fulfilled accurately [18] for low-lying quadrupole 
vibrations in medium and heavy spherical nuclei where it is known that the quadrupole 
transitions from the ground state are nearly saturated by the first excited 2+ state, which 
in turn gives rise to transitions to the "two-phonon" triplet of states o+, 2+ and 4+, and 
so 011. This means that there is a good correspondence between the ideal quadrupole 
phonon space and realistic spectra in spite of the fact that the predictions of the naive 
model of harmonic quadrupole vibrations are badly violated. If so, the observed states 
can be generated by the quadrupole coordinate and momentum operators a 2,. and rr

21
, 

although the collective Hamiltonian H(a,rr) might be very far from the harmonic one. 
According to our assumptions, the collective subspace is spanned by the operators a 

and 1r with normal commutation relations 

[a, rr] = i, (8) 

and their high order products. For simplicity we take here scalar quantities; the rotational 
' tensor character can be introduced in a straightforward way. The general form of the 

effective Hermitian collective Hamiltonian acting within this subspace is 

A(mn) 

1{ = L -- [am, rrnJ+-
m,n 2mn 

(9) 

Our goal is to derive the unknown c-number coefficients A (mn) from the microscopic Hamil­
tonian H, eq. (3). This can be done by the corresponding mapping of the exact operator 
equations of motion (6). 

We are interested in the matrix elements of the equations of motion between collective 
states. Since the dynamics are saturated in the collective space, we leave as the intermP­
diate states in those equations only the states within the band. Then operators Rand Jr 
can be effectively represented by the functions of a and 1r similarly to (9), 

l'(mn) 

n = I: -.,--!am, rr"l+, 
m,n ... nut 

w(mn) 

W = L -2- [am' rr"J+. 
m,n nin 

(10) 
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The question of mapping is now formulated as a problem of finding a set of numbers A (m n) 

and quantities r(m n), w(m nJ (matrices in single-particle space) which express the contribu­
tions of specific elementary excitations to a given collective operator. The corresponding 
parts of r(m n) and w(m n) are interrelated by the self-consistency conditions ( 4 ). 

Physical arguments of time-reversal (T) invariance and the possibility of canonical 
transformations in the collective space, such as shifts and rescalings of collective variables, 
allow us to consider only A(mn) with even n and start the sum with the harmonic terms, 
(mn) = (02) and (20), so that eq. (9) becomes (A(02J = 1/ B, A(2o) = C give the mass 
and force parameters of the harmonic part) 

1 C A(3o) A(12) A(4o) A(o4J A<22J 
1{_ = 2B1r2 + ia2 + -3-03 + -4-[a,1r2J+ + -4-04 + _4_7r4 + -8-[a2, rr2J+ + .... 

(11) 

Under our assumptions, the full operator equations of motion (6) should be satisfied 
inside the band. Therefore we require that in this space 

[R, 1f. + € + W{R}] = 0. (12) 

Commutators involving 1f. and € in the above expression are simple since 1f. does not 
contain single-particle variables, whereas € is a c-number matrix in the Hilbert space. 
The commutator of W with the GDM is more complex as both operators act in the 
combined space. 

Below we show the lowest order equations. As seen from (12), it is convenient to 
introduce a self-consistent MF Hamiltonian as · 

h = € + W{p}, (13) 

and a self-consistent RPA operator L defined [15,16] by its action on ·an arbitrary single­
particle matrix r, 

Lr= [h,r] + [W{r}, p]. (14) 

In eqs. (13) and (14) we used the ground state single-particle density matrix p = r<00l. 
The lowest static part, (nm) = (00), produces a set of the MF equations 

0 = [h, p] + iJ(OO), (15) 

where J(OoJ is a correction to the usual Hartree-Fock approximation from higher orders 
which changes the average MF single-particle occupancies ( eigenvalues of p) due to the 
fluctuation effects coming from the soft mode [17]. The next set of equations corresponds 
to the parts linear in a and 1r operators (T-even and T-odd terms, respectively), 

-iA(2o)r(o1J = Lr(IOJ + iJ(IOJ, (16) 

iA(o2Jr(10) = Lr<o1J + iJ(OIJ. (17) 

These terms are analogous to the RPA although it is not assumed that the occupation 
numbers are 0 and 1. The following three equations in quadratic order are 
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-iA (20Jr(11J _ iA {30Jr(o 1J = ~ Lr(20J + [w<1 oJ, r<1 o)] + iJ(20J, 
2 

(18) 

-iA (20)r(02) + iA (02Jr(20) + iA (12Jr(l oJ = Lr<11J + [w<10J, r<o1)] + [w(o1J, r(10)] + iJ{llJ, 

(19) 

iA(o2)r(11J _ iA(12)r(o1) = ~ Lr{02) + [w(o1),r(o1)] + iJ(o2J. 
2 

(20) 

We limit ourselves here to the fourth order of anharmonicities, i.e. cubic operators in 
equations of motion. The four corresponding equations are 

_ ~A (20)r(2 I) _ iA (30)r(ll) _ iA {40)r{Ol) = ~ £r(30J + ~ [w(20) r(IOJJ + ~ [wl10) r(20)] 
2 3 2 ' 2 ' 

+iJ(30J, 

-iA (20Jr(12J + iA (02Jr(30J _ iA {30Jr(o2J -h iA (12Jr(20) + ~A (22)r(l o) 
I 2 

= ~ Lr(21) + ~ [w(20J, r<o 1)] + [w(I 1), r(I o)] + ~ [w(o 1), r(2D)j + [w(I o), r(I 1)] + iJ(2 I), 

-iA {20)r(o3) + iA (02)r(21) + ~A (12)r(11) _ ~ A (22)r(o1) 
2 2 

= ~ Lr<12J + ~ [w(o2), r(l o)] + [w(ll), r<o I)j + [w<o 1), r(I l)j + ~ [w<1 o), r(o2Jj + iJ(12J, 

~A (02Jr(12) _ ~A (12)r(o2J + iA (04)r(10J = ~ Lr(o3) + ~ [w<o2) r<o I)j + ~ [w(o1) r(02)j 
2 2 3 2' 2' 

+iJ(03) . (21) 

The higher order corrections J(i,j) arise from the commutators [R, W] and [R, 1-f.j , 

c5(00) = ~ ([w<10), r(O!Jt _ [w(Ol), r(lO)t + ... ) , 

_ (~A(2o)r(13) _ ~A(02)r(31) + ~A!3D)r(o3) _ ~A(12)r(21) + ... ) . (22) 
2 2 3 4 

Each next term denoted by dots is four orders higher than the previous one. Furthermore, 
the lowest correction due to [R, W] is always two orders higher, while the terms from 
[R, 1-f.] are four orders higher, than the similar terms in the left hand side of (21). Their 
contributions become less important [6] because there the small statistical weight ex 1/v'O, 
of the collective mode is not sufficiently compensated by the inverse powers of the low 
frequency w. We can note parenthetically that this compensation can occur only in finite 
systems so that the whole approach is tailored for mesoscopic physics. Since the typical 
estimates for the realistic soft modes show the dominance of the quartic anharmonicity, 
we keep the main corrections to the RP A terms 

c5(10) = ~ ([w(20), r(OI)t _ [w<o1J, r(2o)J+ + [w<10J, r(II)J+ _ [w<11), r<10Jt), (23) 
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0101) = ~ ([w<11J, r{OI)]+ _ [w<o1J, r{11)L + [w<10), r{02)L _ [w(o2), r(IO)L) . (24) 

Let us stress here that the method suggested above differs from numerous attempts at 
boson expansion, see [5] and references therein. We do not map the wave functions 
from the microscopic space to a bosonic one. We also do not map directly the operators 
of observables. We map the equations of motion explicitly truncating the intermediate 
states. This method is regular, does not violate general principles, and, being in fact 
variational, allows for the further improvements by including other intermediate states. 

IV. LIPKIN-MESHKOV-GLICK MODEL 

Using the commonly accepted procedure of testing the validity of many-body approx­
imation techniques, we apply the method to the two-level Lipkin-Meshkov-Glick (LMG) 
model [19]. The space contains two single-particle levels of energies ±f/2 with a large 
degeneracy 0/2 of each of them. We label the O fermionic states-by quantum numbers 
(ul), where u = ±1 denotes one of the two single-particle levels and l = 1, 2, ... , 0/2 
distinguishes the degenerate states on each orbital. The many-body Hamiltonian of the 
system is 

f" t 1 '°' t t H= 26 ua",,a", 1 + 2V 6 a",,a", 1,a_", 1,a_"·'· 
u,l a,l,l' 

(25) 

The special feature of the problem is that the collective dynamics are expressed in terms 
of the quasimomentum operators J±, J,, 

J+ = J! = Jx + iJy = I:at1,1 a-1,1, 
I 

The Hamiltonian (25) can be expressed as 

J, = ~ I:ua!,,a"•'· 

"·' 

H =fl,+ iV(JJ_ + f:) = lJ, + V(J,; - J;). 

(26) 

(27) 

The LGM model is ideally suited to our approximate mapping procedure. The SU(2) 
symmetry of the problem can be also combined with particle-hole symmetry, which allows 
us to limit the consideration to the cases with the particle number N :S 0/2, and discrete 
symmetries (we can take V > 0 without loss of generality). For the unperturbed system, 
V = 0, the ground state with all N particles on the lower level belongs to the largest 
representation J = J, = N/2 with J 2 = [(N/2) + l](N/2), and then J+ is an operator 
that creates a collective state. In this model the collective degrees of freedom are decoupled 
exactly, and we need to reproduce the equations of motion 

!Jx, HJ = -ifJy - iV(Jy, J,J+, [Jy, HJ = ilJx - iV[J,,, J,J+' (28) 

[J,, HJ = 2iV[J,,, JyJ+, (29) 

in the mapped space of collective variables a, 1r, with a collective anharmonic Hamiltonian 
(11). The kinematic constraints, analogous to eq. (2, arise from the mapping of the 
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quasimomentum algebra onto a Heisenberg algebra of a and 'Ir. These constraints can be 
accounted for by the Holstein-Primakoff transformation 

J+ = J! = AtJv -AtA = Jv + 1 -AtA At, J, = -J + At A, (30) 

where operators A and At are bosonic annihilation and creation operators, [A, At]= 1. 
The RPA corresponds to keeping only quadratic terms in A and At which leads to 

the RPA Hamiltonian 

Hf\PA = -( (1 +~)+~(At A+ AAt) + f ✓16J2 - 1 ((At)2 + A 2
) • (31) 

The diagonalization of (31) results in the harmonic approximation with an RPA frequency 
[20] 

2 2 ·2 ( 2 1) WHPA = f - \1 4J - 4 . (32) 

The instability point, \/ 2 ~ f2 
/( 4J2), exists in all ]-subspaces emerging first for the largest 

J with a greater degree of collectivity. 
The collective coordinate and momentum can be introduced with the aid of the canon-

ical transformation 

A= ~(iua+v1r), At= ~(-iua+v1r), uv= -1. (33) 

The LMG model has only even order anharmonicities, and in our choice of expansion 
the correction to the n-th order will come from the (n + 2)-th order in a and rr. An 
expansion up to the sixth order retaining only quadratic and quartic terms is necessary 
for determining the effective quartic Hamiltonian. The appropriate choice of u and v as 

u = (l + Vl6J2 +SJ_ 1)1/2 
2✓16J2-l 

1 
v=--, 

u 
(34) 

sets a scale of the collective Hamiltonian at B = 1 and the parameters in eq. (11) as 

w2 = C = l2 - v2 ( l 6J2 + SJ - 1) 2 
4(16J2-l) ~(2_4V2J2, (35) 

A{4o) = 2V (32J3 - 2J - 1) 4 
(16J2 _ 1)3/2 u ~ V u4, J\(04) = -2\/ (32J3- 2J -1) 

(16J2-1)3/2 v4~-\/v4. 

(36) 

At the instability point of w ➔ 0, assuming that J » 1, c » V, we obtain an approximate 
collective Hamiltonian (\I > O) 

7r2 

H = 2 + 4f4 V a 4
. (37) 

The negative rr4 term in the collective Hamiltonian is very small in the vicinity of th<> 
instability point in contrast to the quartic potential a 4 which has large matrix elements 
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because of the large amplitude of collective motion. This is a typical situation which 
emerges with a suitable choice of collective coordinates (T-even) and collective momenta 
(T-odd). The next order terms and, in general, coupling to non-collective space, will 
correct the behavior of the rr4 term but this is not important for low-lying states. 
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FIG. 1. Parameters of the collective Hamiltonian (harmonic frequency and quartic parame­

ters) for the LGM model with N = 20 particles in the largest representation J = 10 as a function 

of the interaction strength V (E = 1), upper panel (note the logarithmic scale with the strong 

growth of A (4
o) at the point of the RPA instability); excitation energies of the first five states for 

the same case of the LMG, exact solution, solid lines; RPA solution, dotted lines; anharmonic 

oscillator solution with the rr4 term ignored, dashed lines, lower panel 

In Fig. 1 we show the behavior of the harmonic term (w) and quartic corrections A<40l 
and A {0

4
) in the dimensionless normalization, upper panel, and present a comparison of the 

exact LMG model spectrum (solid lines), RPA solution (dotted lines), and an improved 
anharmonic oscillator solution with the ignored divergent ,r4 part (at large V it should 
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be included along with the high order coordinate terms), lower panel. The anharmonic 
effects produce a dramatic improvement as compared to the RPA. At the point of the 
RPA instability, the contribution from the large quartic potential restores the stability. 
As the interaction strength V increases, the effective potential 

1 1 
U(a) = -w2a2 + -A<40la4 

2 4 
(38) 

evolves, Fig. 2, from the harmonic oscillator to a pure quartic oscillator at the instability 
point, and to the "Mexican hat" potential with two minima. In the last limit the lowest 
states of opposite parities located in the minima become degenerate as clearly seen in 
Fig. 2 ("chiral symmetry"). Contrary to the macroscopic second order phase transition, 
the higher states are located above the barrier and feel only the main quartic potential. 
A similar phenomenon should exist in soft nuclei beyond the RPA instability point when 
only the lowest states are influenced by the presence of the minima in the /3 coordinate; 
however, there the minima are connected along the -y coordinate which is absent in the 
LGM. 

6 

'SI' 

"; 4 
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\ 2 
N .. -;_; 

,.8 0 
II 
'8' 
i5 -2 

-2 0 2 

(b) V=0.05 (c) V=0.08 

-2 0 2 -2 0 2 

a 

FIG. 2. The spectrum of the lowest levels in the model of Fig. 1, dashe~ lines, and the shape 

of the effective potential U(a) for (a) V = 0, the harmonic limit; (b) V = 0.05, pure quartic 

potential at the RPA instability point; (c) V = 0.08, beyond the instability point, the splitting 

of the levels of opposite parity (symmetry in J, in the limit of V J2 ~ E) below the barrier 

decreases as V increases 

V. CONCLUSION 

We have suggested an alternative approach to the construction of a collective Hamil­
tonian for large amplitude collective motion in a finite Fermi system in the presence of 
a soft vibrational mode. In such a situation, the RPA is insufficient as near the RPA 
instability the anharmonic effects dominate. The advantages compared to conventional 
techniques, such as the generator coordinate method, are related to a fully quantum con­

. sideration which does not require the derivation of an approximate classical Hamiltonian 
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with the subsequent ill-defined procedure of requantization. It differs from the approaches 
utilizing various versions of the boson expansion in the variational character of the for­
malism. We can vary the collective space assuming the saturation of the exact operator 
equations of motion within a part of total Hilbert space. With our techniques we also 
avoid the slow convergence problem of the naive boson expansion. 

Of course, the illustrative example of the Lipkin model is perfectly suited to onr 
goal since the collective modes of this model are fully decoupled. However it emphasizes 
the predominance of the quartic anharmonicity near the RPA instability. Because of 
the convenient operator distinction between the coordinate and momentum parts, we 
concentrate the most important anharmonic effects in the quartic potential which has. 
large matrix elements in the dangerous region of interest. 

In realistic cases, the collective space is not decoupled completely. The effects of 
coupling to noncollective states lead to the spreading of the collective strength and the 
chaotization of motion in the region of high level density. To treat this situation as well, 
we can include the matrix elements of the GDM connecting the collective band with in­
coherent states. One promising approach would be to consider these states on average, 
making the random phase assumption on a new level of treatment. This would introduce 
an effective background for the collective mode to describe its spreading and damping. 

The authors are thankful to D. Mulhall for assistance and criticism; they acknowledge sup­
port from the USA National Science Foundation. 
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