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Opening talk 

A.N. Sissakian 
Joint Institute for Nuclear Research, 141980 Dubna, Russia 

The 13th International Conference on Selected Problems of Modern Physics dedicated to 
the 100th anniversary of the birth of the outstanding scientist Professor Dmitrii Ivanovich 
Blokhintsev (1908-1979), the first supervisor and director of the first atomic station in the 
world and the founder of the Joint Institute for Nuclear Research, was held at Dubna on 
June 23-27, 2008. 

This series of conferences was initiated by D.I. Blokhintsev as meetings on fundamental 
problems of quantum field theory. Forty years passed since the first meeting enriched the 
methods of field theory and opened many new areas. The present conference was the 13th 
of this kind organized by the Joint Institute for Nuclear Research. The conference was 
opened by the memorial session. Further work of the conference proceeded in plenary and 
six parallel sections. 

The topic of the conference reflects the current status of many fundamental problems in 
modern physics (Quantum Chromodynamics, Electroweak Theory and Its Extensions, Uni
fication, Particle Astrophysics and Cosmology, Modern Mathematical Physics) and those 
areas of physics to which Blokhintsev has made significant contributions. These Proceedings 
collect the talks presented at the part "Problems of Quantum Field Theory". 

The total number of participants of the conference was the following: thirty five scientists 
came to Dubna from "remote abroad", one hundred and fifty from "neighboring abroad" 
(Community of Independent States and Russia). The program compiles the plenary and 
sectional talks and contains the main part of presented reports. We have twenty three 
plenary talks and seventy-five sectional talks. We hope this will give an idea of the scientific 
content of the conference. 

The organization of the conference would not be possible without the sponsorship of 
the Russian Foundation for Basic Research, Heisenberg - Landau Program (BMBF-JINR), 
Dynasty Foundation, JINR Directorate and on behalf of the Organizing Committee we 
gratefully acknowledge this support. 

Now I would like to give you a short review of D.I. Blokhintsev's research activities. As 
Dmitry Ivanovich recalled himself, his early interest in mechanical engineering and techni
cal drawing was greatly inspired by scientific genius of captain Nemo. Later the general 
interest to all kinds of machines was focused at airplanes and rockets. The first serious 
scientific research dates back to 1925 when Dmitri Ivanovich designed a device measuring 
the jet thrust. The young researcher was especially oppressed by relatively low tempera
tures achieved when burning any possible fuel. In his next work, Rocket, which was in fact 
the first theoretical one, he discusses the application of nuclear energy. When preparing 
himself for studies in the Air Force Engineering Academy he came across the papers of 
about splitting of the atom. The amazing results of Rutherford made Blokhintsev change 
his mind and enter Physics Department of Moscow State University. Since 1926 the life 
of D.I. Blokhintsev is inseparable from Physics Department of Moscow State University. 
The first paper on the work function of metals D.I.Blokhintsev published in 1933 in col
laboration with LE.Tamm, his supervisor. In 1936 he was elected the professor of the 
Theoretical Physics chair. In 1938 D.I. Blohkintsev considered the interaction of an atom 
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with electromagnetic field. Applying the equations of QED and the concept of QED vacuum 
Blokhintsev predicted the Lamb shift and developed the first theory explaining the effect, 
which was discovered ten years later. In his calculation Blokhintsev used what now is called 
high frequency cutt-off. The renormalization of the electron mass was opened in 1947-48. 
In 1940 he introduced the concept of quasi-probability at which P.Dirac arrived much later. 
Principles of Quantum Mechanics (1944) is the first university lecture course on quantum 
mechanics. For the moment, 22 editions of the book were published in 8 languages. During 
the years of the second world war D.I. Blokhintsev almost completely switched his research 
to acoustics and its military applications. Soon he became the leading expert in this field. 
On the basis of the gas-hydrodynamics equations he created the acoustics of inhomogeneous 
and moving media. He explained and calculated diverse acoustic phenomena, solved many 
particular problems. These results formed the basis of the theory of aircraft and submarine 
acoustic location. 1954. Obninsk Nuclear Power Plant became the world's first nuclear 
power plant to generate electricity for a power grid, and produced around 5 megawatts 
electric power. D.I. Blokhintsev was the scientific leader of the project. To him belong the 
physical and design calculations of the reactors of this first Atomic Power Station (APS). In 
the middle of 1954 the first APS gave current. A long-standing successful operation of the 
station confirmed the correctness of choosing the reactor type and basic parameters of the 
first APS. In the subsequent years he calculated and supervised the development of design 
and construction of a new type of reactors the promising, in industrial sense, fast-neutron 
reactors with the liquid-metal heat-transfer agent. Now such-reactors are exploited at other 
APS. Reactors attracted Blokhintsev's attention not only as the basis of power plants, but 
also as an intensive neutron source for diverse scientific studies. He is the author of the 
remarkable invention (1955) the fast pulsed reactors (IBR-1 and IBR-20). After many 
years of work this reactor proved to be a remarkable tool for studies in nuclear physics, 
physics of liquid and solid states and elementary particles physics. 

In 1957, based on the "deuteron peaks" in the reactions of quasielastic high-energy pro
ton scattering on nuclei, discovered by the group of M.G. Meshcheryakov, D.I.Blokhintsev 
proposed and developed the idea of fluctuations of nuclear density, capable as a whole to 
receive a large momentum transfer. The idea of "Blokhintsev's fluctons" best manifested 
itself 20 years latter when in reactions with relativistic nuclei the so-called "cumulative" 
particles were discovered. Later on, D.I. Blokhintsev participated in the development of 
the multi-quark interpretation of fluctons. These studies grew now in the new promising 
direction - relativistic nuclear physics. The remarkable confirmation of the flucton idea was 
obtained in experiments at CERN for deeply inelastic scattering of muons on nuclei and in 
the production of cumulative protons by a neutrino beam at Serpukhov. In the same years 
D.I. Blokhintsev investigated (on the basis of the optical "eikonal" model) the structure 
of nucleons, established its division into the central and peripheral parts and came to the 
conclusion about the dominant role of peripheral interactions. He showed the contradiction 
of the hydrodynamic approach to the multi-particle production processes with the basic 
principles of quantum mechanics (1957). Dmitry Ivanovich investigated the problem of 
anomalously short time of ultra cold neutron (UCN) storage end explained this effect by 
heating of the UCN by the hydrogen adsorbed by surface. A large and important cycle of 
Blokhintsevs works was dedicated to quantum field theory. He was the first to point out 
the possibility of existence of the so-called "unitary limit" in weak interactions (1957) and 
the limit of applicability of quantum electrodynamics. Dmitry Ivanovich proposed the idea 
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of existence of several vacua in quantum field theory and spontaneous transition between 
them (1960). This idea is intensively used in contemporary unified theories of elementary 
particles. Investigating substantially nonlinear fields, Blokhintsev came to the conclusion 
that the concept of point-like coordinates becomes meaningless and requires a change in 
the geometry of microcosm if the mass spectrum of particles is bounded from above. These 
questions found their reflection in the book by D.I. Blokhintsev "Space and Time in the 
Microworld", published in 1970 and in 1982 in our country and repeatedly republished 
abroad. D.I. Blokhintsev proposed a new approach to nonlocal fields based on the hypoth
esis of stochastic fluctuations of the space-time metrics. In the last years he repeatedly 
returned to cosmology. Analyzing Friedman's model he arrived at the conclusion that 
the visible part of our universe could not be formed within the limits of four-dimensional 
space-time and proposed his original hypothesis of the existence of extra space dimensions, 
meta-space, in which meta-bodies and antibodies collide. The conference topics correspond 
to those areas of theoretical physics to which D.I. Blokhintsev has made significant contri
bution and which are extensively developed in the Bogoliubov Laboratory of Theoretical 
Physics at JINR. 
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Blokhintsev & N onlocality & Particles 

G.V.Efimov 
Bogoliubov Labomtory of Theoretical Physics, 

Joint Institute for Nuclear Research, 
141980 Dubna, Russia 

I would like to start my talk with enumeration same general ideas which in opinion of 
D.I. Blokhintsev [1, 2] should be in the background of our understanding of particle physics. 

• Particles can not be point-like objects. 

• The lowest approximation of a theory should describe the main features of a phenom
ena under consideration. 

• Local QFT - an approximation, when small distances are not essential for physical 
phenomena under consideration. 

• Macroscopic conception of space-time and coordinate x, y, z, t in formulas are dif
ferent things. 

• Locality and microcausality are mathematical but not physical requirements. 

• Confinement is defined by a non-trivial QCD vacuum, which is not the Fock vacuum 
containing plane waves only. 

• Quarks and gluons can not be described by plane waves in the confinement region. 

One should be stressed that contemporary non-relativistic and relativistic, classical 
and quantum mechanics are based on the assumptions that time t can be measured AB
SOLUTELY PRECISELY. In the classical mechanics it is the Cauchy problem to solve 
dynamical equation: 

x(t) + U(x(t)) = 0, x(to) = x0 , :ic(to) = vo, 

In the nonrelativistic quantum mechanics it is the Cauchy problem to solve the Schrodinger 
equation: 

in! w(x, t) = H(x)w(x, t), w(x, to) = Wo(x). 

In the relativistic quantum field theory it is the simultaneous canonical commutation rela
tions: 

[cp(x, t), rr(x', t)] = iM(x - x'). 

However in the relativistic quantum field theory the Schrodinger equation is not defined 
on the Fock space :F. Namely according to the Haag theorem (see [3]) the interaction 
Hamiltonian H1 is not well defined operator on the Fock space. 

As consequence we are not able to describe development of a quantum-field system in 
time and are forced to consider the S-matrix (see [4]), as an operator connecting stable 
states Win for the time t = -oo with stable states '¥out for the time t = +oo: 

'¥out= S[g,cp]W;n, 'V;n, '¥out E F 
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According to correspondence principle formally S-matrix can be represented in the pertur

bation form 

S[g, ¢] = I: i~ J. .. J dnx g(xi) ... g(xn)Sn(X1, ... , Xn), {0::; g(x) S 1), 
n=O n. 

Sn(X1, ... , Xn) = T(.C1(x1) · ... · .C1(xn)). 

The T-exponent is not defined in the coinciding points x; = Xj ( i, j 
uncertainty is used to introduce so-called quasi-local terms 

Kn(X1, ... , Xn) ~ IJ i5(m,.;l(x; - Xj) 
i,j 

1, ... , n). This 

to remove all divergences in the perturbation series. Finally we have the construction 

S[g, ¢] = Alim TAe-i J dx g(x).C1(¢(x),A)' 
-oo 

where an interaction Lagrangian .C1(¢(x), A) contains definite counter-terms. In addition a 
regularization procedure TA with a parameter A should be introduced in order to formulate 
a rule to calculate terms of perturbation series. Finally we get the formula 

S[g, ¢] = lim TAe-i J dx g(x).C1(¢(x),A). 
A-oo 

This S-matrix is not a solution of any quantum field wave equation, so that we have to 
prove all properties of the S-matrix including unitary and causality: 

ss+ = 1, 

8 (8S[g, ¢] +[ l) ( )2 d ( )2 !Sg(x) !Sg(y) · S g, <P = 0, for x - y < 0 an x - y > O, xo < Yo• 

We would like to stress that the unitary and microcausality conditions are direct conse
quence of correctly formulated Cauchy problem of the quantum field Schrodinger equation 
if this equation would be mathematically correct formulated. 

LFrom physical point of view, as it was shown by Bohr and Rosenfeld (5], the quantum 
electromagnetic field and other quantum fields can be measurable in a small space-time 

region only 

¢(r) = j dx <P(x), r E R 4
• 

fER4 

It means that the microcausality is NOT a physical requirement because it can not be 

checked in an experiment. 
As a result we can introduce into consideration non-local distributions. Idea is very 

simple. From functional point of view verification of locality requires the space of test 
functions which contains functions with finite support. Thus if we postulate that the strict 
locality is not physical requirement then the space of test functions should not contain 
functions with finite support. Let a space of test functions contains analytical functions 
only. Then we are not able to check microlocal properties of any functional. On the other 
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hand in this case one can introduce more wide class distributions defined on the space of 
analytical functions (6]. As an example let us consider nonlocal distributions of the type 

G(t - t') = e-(lf.)
2

• 8(t - t') = 7 ~: e-iE(t-t')+l2 E2
_ 

-oo 

This object does not exist as a standard function, but it is defined as a distribution 

00 00 ( ) J ( I t J dE -iEt 12 E 2 -lout t = Gt - t Mn(t) = 
2

71" e · e J;n(E), 
-oo -oo 

This integral exists if the test function Jn ( E) decreases as 

iJin{E)I :S Ce:...clEIP, P > 2. 

Then the function J;n(t) can not be concentrated in a point or any finite region, but 

IJ;n(t)I::; ce-bW, 

so that 
e12E2 J;n(E) :S C1e-clEIP, 

'Y = _P~ > l. 
p-l 

=> IJout(t)I '.S C2e-bW_ 

It means if the test function J;n ( t) can be concentrated in a vicinity of the point t = 0 with 
an accuracy. The function lout(t) is concentrated approximately in the same vicinity. 

Using this idea one can describe the confinement phenomenologically in the following 
way. Let an operator Lx is that the solution of the homogeneous equation Lx<P(x) = 0 is 
zero <P(x) = 0, but the solution of the inhomogeneous equation Lx<P(x) = J(x) is not zero 
<P(x) = tJ(x) # 0. For example 

e
1282 

<P(x) = 0 ==;, <P(x) = 0 

but 
1282 e2a2 j dy 2 e <P(x) = J(x) ==;, <P(x) = e- J(x) = 1r

2
e-y J(x + 2Cy). 

It means that a particle which is described by the field ¢(x) can exist as a virtual state only. 
We have an acceptable picture of the analytical confinement. In this picture confinement 
is vacuum fluctuations but not a statical increasing potential between two non-relativistic 
quarks. "The Quark Confinement Model of Hadrons" (7] is based on these ideas (see also 
[8]). 

Let us come to QCD as the theory of strong interactions. The QCD Lagrangian is 

.C = - ~ Tr G!v + ( ij [fi + gA - m] q) 

Gµv(x) = avA,, - aµAv + g[Aµ(x),Av(x)], 

One can extract a classical vacuum self-dual field 

Aµ(x) => Aµ(x) + Bµ(x), 
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where 
Bµ(x) = A2nbµvXv, n = n°ta, nana = 1 

bµv = -bvµ, bµpbpv = -Dµv, lµva(3ba(3 = ±bµv 

This field satisfies the Yang-Mills equations and provides the analytical confinement because 

the equation 
(,µ(8µ - iBµvXv) - m)q(x) = 0 

has no decreasing solutions and therefore q(x) = 0, but the solution of the inhomogeneous 

equation 
(,µ(8

1
, - iBµvXv) - m)S(x) = -8(x), 

is not zero and looks as 

- 1 fl v_2__(1-u)$-{ l=f 15u
2} S±(P)~- due-uu2" -- ip+m---. 

2A2 l+u 1-u2 
0 

(1) 

The quark propagator S±(P) is an entire analytical function, i.e. it does not describe any 
real particle state. Thus the self-dual field Bµ(x) can be considered as a candidate to be 

gluon vacuum field (see (9, 10, 11, 12, 13]). 
One can ask why the self-dual vacuum field Bµ(x) exists in QCD and does not exists 

in QED? One can show [15] that in the quantum electrody_namics of a system of charged 
fermions and bosons the minimum of vacuum energy is realized with zero self-dual photon 
field if the number of fermions exceeds the number of bosons and the lightest charged 

particles are fermions QED 

A4 [ ( 2A
2
) ( 2A

2
)] Evac(A) ~ 127r2 ~ln 1 + MJ, - ~ln 1 + m1J 

Amin= 0. 

Namely, this situation takes place in Nature. 
In the QCD the global stability of the quark-gluon system takes place if the number 

of quarks with different flavors is equal to or more than two. The reason is that gluons in 
QCD play two-fold role: they are carriers of quark-quark interaction and they are massless 
vector particles, the existence of which leads to the QCD vacuum which is realized with 

nonzero self-dual gluon fields. 

A4 [ ( 2A
2
) ( 2A

2 

)] 
Evac(A) ~ 121r2 o/ln 1 + MJ - ln Abcv . 

Amin> 0 

Thus our assumption is that the self-dual homogeneous vacuum gluon field Bµ(x) realizes 

the true QCD vacuum (details see in [15]). 
If these ideas are correct then some general proprties of particles can be explained 

in the framework of this assumption. Exactly from this point of view let us consider 
the meson mass spectrum. Mesons are quark-antiquark bound states which are described 
by currents of the type (ijfQq) where the vertex fQ defines the corresponding quantum 
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numbers of a bound states under consideration. Quark-antiquark states are particulary 
relativistic systems so that the Bethe-Salpeter equation is unique mathematical instrument 
to calculate masses of relativistic bound states also this equation has its own problems (see 
[16]). The Bethe-Salpeter equation which determines the mass M of a bound state with a 
quantum number Q of two constituent quarks with masses m1 and m2 can be reduced to 
diagonalization of the quark-antiquark loop, where the quark propagator is chosen in the 
form (1) induced by a vacuum self-dual gluon field with constant strength. We get 

where 

-1 = :• j dy VJ(y) j dx ei(px)1r [fQS1(x + µ2y)fQS2(x - µ1y)] (2) 

l 
a. r r <=, +22>2 ( ) -;- ll du1du2PQ(u1, u2)e 2A E µ,µ,,µ 2 ,u,,u2 • 

0 

P2 = -M2 
' 

M 
µ= m1 +m2' 

m1 
µ1 = m1 + m2' 

m2 
µ2 = m1 + m2 

The vertex function VQ is determined by the solution of the Bethe-Salpeter equation, but 
with acceptable accuracy it can be approximated at large distances y 2 ~ ;& by 

( ) 

,\2 2 
VQ y ~ D(y):::::: D0 e-,y . (3) 

The function P(u1, u2) = PQ(u1, u2, µ, µ 1, µ2) is a polynomial in parametersµ, µ 1, µ 2 and 
its explicit form is defined by the spin structure of vertices and quark propagators. The 
quantum numbers Q = (JP, n) of bound states are defined by these polynomials. In our 
semi-quantitative approach the explicit form of these polynomials will not be important in 
our arguments. 

In the case M > m1 + m2 the main contribution to the integral (2) comes from the 
function 

E(µ, µ1, µ2, u1, u2) (4) 

= µ2 . u1u2 + 2(µfu1 + µ~u2) _ µf ln (1 + u1) _ µ~ ln (1 + u2). 
U1 + U2 + 2 2 1 - U1 2 1 - U2 

It defines the main features of the meson mass spectrum. This function depends on masses of 
constituent quarks m1 and m2 and does not depend on quantum numbers of bound states, 
so that we can hope that the main features of a set of mesons with the same quantum 
number Q = (JP, n) are defined by masses of constituent quarks only. 

In the case M > m1 + m2) the function E is positive and has a positive maximum at a 
point O < ui

0
> < 1, 0 < u~o) < l. Thus, one can write approximately for (2) 

0: 1 . (m +ffl )2 (m +m )2 
1 = 7rs ff du1du2PQ(U1, u2)e~E(µ,µ,,µ2,u1,u2);::::: CQe~C(M,m1,m2), 

0 

where 

£(M,m1,m2) = E(µ,µ1,µ2) = maxE(µ,µ1,µ2,u1,u2). 
u1,u2 (5) 
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The parameter CQ contains all information about the quantum numbers of states under 
consideration. We suppose that CQ depends weakly on the mass parametersµ, µ1, µ2. 

Calculations of the maximum in (5) give an approximate mass formula 

MQ(m1, m2) ;::o (m1 + m2) [1 + AQ O 625 ] . (6) 
(mr + 1.13m1m2 + m~) . 

The positive constant AQ is the same for all mesons with a given fixed quantum number 
Q = (JP,n). 

This formula was checked for real meson spectrum (see [18)). In the Table Particle Group 
Data [17] there are only five sets of mesons for M > m1 +m2 with the fixed quantum number 
Q = (JP,n) having all four constituent quarks u = d, s, c, b. They are 

v(l-,o), s(o+,o), A(1+,o), D(2+,o), n(2+,1). 

The accuracy of the mass formula (6) is around 

OQ = ( 
M )

2 

L 1--( ·)
1 

:.::::0.05. 
j MJ exp 

All details can be found in [18]. 
In conclusion one can say 

• Description of developmen,t of quantum-field systems in time is absent. 

• Microcausality is not physical requirement. 

• Confinement in the frame of nonlocal approach is not a statical potential between 
two nonrelativistic quarks but confinement is vacuum fluctuations of quark and gluon 
fields in space and time. 

• Hadronization of quarks takes place in confinement region. 

• Self-dual homogeneous vacuum gluon field can realize true QCD vacuum. 

• Semi-phenomenological mass formula (6) describes correctly main features of meson 
mass spectra. 
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1. TWO VERSIONS OF THE NATURE PROBABILITY DESCRIBING IN PYSICS: 
THE BOLTZMANN ASSEMBLY AND THE GIBBS ENSEMBLE 

As well known, in Physics using of probabilities theory mathematical tools received wide 
spread occurrence in the middle of the 19th century [1,2]. However this fact did not mean 
that there was the disavowal of the deterministic comprehension of Nature. It continued 
to be preferable. Of course, its background was confirmed by general admitting of Newton 
dynamics and Maxwell electrodynamics lows. 

In one of his paper such a known specialist in Mathematics as R. fon Mises wrote [3]: 
"First it must be a collective - only then we may speak about probabilities". With another 
words, to use probability theory it is necessary to have a set of elementary events called 
statistical collective. 

Initial statistical ideas were introduced in Physics by Boltzmann in his kinetic theory of 
gases. But he supposed that probability describing was only used due uncertainties of initial 
data. As a result the primary signification saved the dynamical (deterministic) theories. 
Now we can surely say the probability theory came in classical Physics as the secondary 
mathematical describing. In this case the collective called the Boltzmann assembly consists 
of identical objects (for example, of ideal gas atoms) in the same external conditions. As an 
elementary event it is considered the fact that an object (atom) has a definite coordinate 

and momentum. 

• The paper is done by the support of Fundamental Research Russian Fond (project 07-06-00239) 

18 

The origin of non-classical Physics is bounded with papers of Planck, Gibbs and Ein
stein and related to the beginning of 20-th century [4-6]. Under the notion of nonclassical 
Physics we understand now any theory considering the influence of stochastic actions of 
environment. In these situations we suppose physics characteristics of natural objects get 
random qualities. By the non-classical describing a type of statistical collection is princi
pal changed. An object st.ructure becomes non- essential. The main fact is some object 
characteristics fluctuate. These cases induce another collection type, non-classical. 

There are a lot of situations when we have deal with a single object which intrinsic 
structure does not play any important role. But it is very important that the object is not 
isolated, it is always embedded to environment (for example, into thermostat). For these 
cases J.Gibbs supposed [7] a new notion of statistical collective called the Gibbs ensemble. 
It has a sense of the set of elementary events - soft touches of the system with environment. 
As a result the probability theory came in nonclassical Physics as the primary mathematical 
describing. 

But it is interesting that Gibbs himself used simultaneously the both models of statistical 
collectives : the Boltzmann assembly in Statistical mechanics (SM) and the Gibbs ensemble 
in the prolegomena of Statistical thermodynamics (ST) (see ch.9 of his famous book) [8]. 

Comparing SM and ST one can say that they arc different in principle because they 
based on the two absolutely different types of statistical collectives. 

Real ST including the fluctuations theory ofmacroparameters was developed by Einstein 
on the base of the Gibbs ensemble [9]. 

2. BECOMING OF THE NONCLASSICAL VERSION OF NATURE DESCRIB
ING: PLANCK - GIBBS- EINSTEIN 

The notion of the Gibbs ensemble appeared first in the macrotheory was indirectly used 
by Planck in his substantiation of the thermal radiation law. His idea about identity of 
energy quants requires non-standard calculations of states number for obtaining of thermal 
radiation entropy. As a result he intuitively came to a primary version of Gibbs ensemble 
[10-12). 

In his turn, Einstein developing Planck radiation theory introduced the primary proba
bilities and thus- the Gibbs ensemble obviously in the microtheory [9]. But at those times 
(1903-1905) were is not Quantum Mechanics, so the becoming of ensemble non-classical 
concept in its final shape happened too much later and we can connect this process with 
the name of Blokhintsev. He made an enormous contribution into correct comprehension 
of the key role of Gibbs ensemble in non-classical Physics as a whole [13]. 

Foundations of Quantum Mechanics have been formed more than 75 years ago. Its 
creation opened up new horizons for the development of thinking. But the process of the 
new world-outlook familiarization was rather slow and contradictory. In these circumstances 
a great deal has been done by those scientists, who along with the creators of the new theory 
contributed to the propagation and adequate interpretation of fundamental ideas of this 
theory. 

Among those who made a significant contribution to this matter a particular position 
belongs to representatives of the Moscow school, headed by academician L.I. Mandelshtam 
[14]. One of them was K.V.Nikol'skii [15], in his book "Quantum Processes"(1940) there 
have been presented for the first time ideas of this school. Starting from the middle of 1940th 
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it was D.I. Blokhintsev who became the leader of this school, and to whose memory this 
Conference is devoted. The Moscow's interpretation of the Quantum Mechanics, developed 
by him, was in strong opposition to the initial version of the Copenhagen's interpretation 
from the Bohr's school. 

3. SOME METHODOLOGICAL IDEAS OF D.I. BLOKHINTSEV IN QUANTUM 
MECHANICS. 

Discussions about the probability sense of Nature description have been in progress for a 
long time. We are in opinion that the most adequate interpretation of Quantum mechanics 
was reached in the frame of ensemble approach or, better to say, of minimal ensemble 
approach, according to terminology of D. Home and M. Whitaker [16]. Its foundations were 
laid by Moscow school of Mandelshtam - Nikol'skii-Blokhintsev [17,13]. In the middle of 
20th century the ensemble ideas were also successfully used in classical mechanics. But it 
is necessary to emphasis that ensemble approach developed by Moscow school and closed 
to initial Gibbs' point of view does not have any resemblance with the description on the 
base of an particles assembly used in classical statistical mechanics of Boltzmann. 

The ideas of Moscow school were most clearly formulated in the Blokhintsev's books 
"Some principal problems of Quantum Mechanics"(1966) [18) and "Quantum mechanics. 
Lectures on selected problems" (1976) [19]. In the last of them there are the next Blokhint
sev's sayings: "The principal quarrels are concentrated around the understanding of the 
wave function. Does the wave function provides one with the objective and complete de
scription of the physical reality or it is just a "notebook"of an observer ... ? Does the wave 
function describes the state of the particle, or that of the system of particles? 

We restrict ourselves to an explanation of the putted above questions, starting from the 
concept of quantum ensembles ... The concept of quantum ensembles is a very close one to 
the concept of the Gibbs ensemble. 

In the Gibbs ensemble a microsystem is considered in the interaction with a macroscopic 
thermal bath, having the temperature T. The probability of one or another result of the 
measurement ... is related with the ensemble, formed by unlimited reiterations of the system 
at one and the same macroscopic conditions, given by the thermostat. 

In the full analogy with the Gibbs ensemble a quantum ensemble is formed by unlimited 
reiterations of situations, made up by one and the same microsystem, which is imbedded 
into one and the same macroscopic circumstances . 

Macrosituation might be artificially formed at the laboratory ... , as well as to arise by 
itself in natural conditions ... 

The wave function is an objective characteristic of the quantum ensemble and, in prin
ciple, might be found by measurement". 

In the above expressions there are posed several fundamental problems, which would 
be commented in what follows. The main problem, which was under discussion, that is 
whether the probabilistic description of Nature in Quantum Mechanics is the primary, 
fundamental one or it is a secondary one, as it has been traditionally considered in the 
Classical (deterministic) Physics. 

As it is known, in Classical Physics there is initially presupposed the univalent prede
terminance of the course of events. Therefore the impossibility of an univalent prediction 
of all events, which is encountered in practice, one usually refers to an incompleteness of 
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the initial data, that is to consider as a secondary effect. However, 11 ... the real collapse of 
determinism happened along with the development of Quantum Mechanics, starting from 
the Einstein's work (1916) on the radiation theory, were there have been introduced a priori 
probabilities for the first time in physics"(V.A. Fock, 1957) [20]. Now it is possible to affirm, 
that the a priory, a primer character of the probability description in Quantum Mechanics 
is accepted by majority among investigators. 

A substantial progress in this question has been achieved only after elucidation of the 
meaning of probability, as used in physics as a whole.In relation with that Blokhintsev 
wrote in his last work (1977) [21) : "Probability is the numerical measure of the potential 
possibility of that or another event. It happens in a some statistical ensemble of events, 
which should be defined by clearly formulated material conditions .... Probability is not a 
characteristic of an individual mechanical system as itself". 

4. CARDINAL SIGNIFICANCE OF BLOKHINTSEV'S IDEAS FOR NONCLAS
SICAL PHYSICS 

Now we can assume that studying of Blokhintsev heritage has for us not only historical sig
nificance. His ideas are alive because until now they open new verges of our comprehension 
of Reality. 

He thought 

-the deep sense of the Gibbs assembly as a primary description in statistical thermodynam
ics stipulated by the key role of the thermal stochastic influence on the part of environment 
on an object; 

-the deep resemblance between fundamental ideas of quantum mechanics and thermody
namics. He developed the concept of the Gibbs assembly into quantum mechanics by means 
his students books and articles. 

He defended the idea against attack by the orthodox supporters of Copenhagen school 
and primitive followings of dialectical materialism. As a result most serious scientists di
rectly or indirectly were agree with his position 

Due his efforts: 

-the physical sense of wave function became clear as an system objective characteristic 
under conditions of stochastic influence on the object as a whole. This effect is realized in 
Nature without observer; 

- scientific community started to pay more attention to considering of fluctuations and 
their correlation in micro- and macro-world; 

-particularly, the latest discovery in Astrophysics were done on the base of the fluctua
tions analysis of the relict radiation. 

Now Blokhintsev's approach based on the Gibbs assembly allows us [22, 23]: 
- to consider the quantum and thermal stochastic influences together (Thermofield Dynam
ics by Umezava and another versions of Quantum field theory in the presence of tempera
ture); 

-to propagate quantum statements to macro-objects and statistical thermodynamics state
ments to micro-objects; 

- to realize the idea of system entire state and its characteristics independent from charac
teristics of a system. 

It means that we are on the way to the entire description of Nature in the spirit of 
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-

Leibnitz -Planck - Einstein. We are of opinion that the global aim of scientific searching must 
be constructing of the unique state space forming by entire quantum-thermal stochastic 
(non- force) influence but not the searching of Great Unification Theory (GUT). 

More over the conceptual resemblance between quantum and thermal statistical collec
tives on the base of Gibbs ensemble allows us to speak now about similarity of main ideas 
on which the two fundamental non-classical theories (Quantum mechanics and Statistical 
thermodynamics) are building. This fact makes them essentially different from any classical 
theory. Of course, the formalism of Quantum Mechanics does not like as the formalism of 
Statistical mechanics. But they are more closely each other than Statistical Mechanics in 
respect to Statistical thermodynamics. They draw together due the common conception of 
ensemble and the interpretation of fluctuations 

The universality of Gibbs ensemble that Blokhintsev proclaimed together with inde
structibility of stochastic influence allowed us now in a different way to have a glance on 
problem of probability in Nature. Earlier the scientists asked the question whether "did God 
play dice".Today times changed. Almost nobody doubts about positive reply this question. 
If, accordingly to Spinose, God is Nature we are sure that there exists chaos (stochas
tic quantum-thermal influence) in micro-phenomena. And recently the Nobel Prize winner 
G.t'Hooft has restated the problem [24]: "How does God play dice?". 

But His Majesty Chance leads the world not to disorder. It creates II alive sounds". 
D.I.Blokhintsev well understood this fact. He was not only an outstanding physicist and 
thinker but he was a very artistic person. That is why he liked to use beautiful metaphors 
and told about Nature music. Thanks to him we can say that we are able to hear the Nature 
voice to the accompaniment of Gibbs ensemble. 
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Abstract 

A concise survey of the contribution of D.I. Blokhintsev to the quantum physics, 
including solid state physics, physics of metals, surface physics, statistical physics and 
optics is given. These achievements have been considered in the context of modern 
development of these fields of physics. 

The name of Corresponding Member of the Academy of Sciences of the USSR D. I. 
Blokhintsev (January 11, 1908 - January 27, 1979) is widely known in Russia and abroad. 
His books are being republished; information on his biography and his scientific heritage 
can be found in multiple papers and collections of papers. However, for many scientists, 
his name is related mainly to his works in the field of atomic and nuclear physics, applied 
acoustics, participation in the creation of the first nuclear power station in Obninsk, reactor 
construction, and multiple studies in high energy and elementary particle physics. It is not 
so well known that at first he wrote some quite interesting and important works in the 
field of quantum solid state physics and statistical physics. In the beginning of his distin
guished academic career [1, 2), D.I. Blokhintsev has worked in the field of quantum solid 
state physics and statistical physics, as well as in the field of quantum physics [l]. The aim 
of my talk is to recall these quite interesting and important works and correlate them with 
corresponding modern directions in condensed matter physics and quantum physics [3]. 
D.I. Blokhintsev entered the Physics Faculty of Moscow State University in 1926. At that 
time L.I. Mandelstam was the head of the Department of theoretical physics and optics 
and I.E. Tamm was professor of theoretical physics of that Department. Blokhintsev con
sidered L.I. Mandelstam, S.I. Vavilov and I.E. Tamm his teachers. I.E. Tamm become 
his Ph.D. promotor in postgraduate studies. Thus, Blokhintsev's student years brought 
him great and fruitful experience in communicating, at lectures and in laboratories, with 
brilliant and interesting representatives of physical sciences of the time. Blokhintsev waH 
certainly influenced strongly by Mandelstam and learned a lot from him, in particular, hiH 
breadth of views on physics as an indivisible science, lecturing skills, understanding the 
importance of a scientific school, organization of science, etc. As was noted later, "Lectures 
and seminars given by Mandelstam at the university in 1925-1944 were of special impor
tance. They were devoted to a wide field of the most topical problems in physics in which 
the lecturer delivered an extremely deep analysis of the modern state of the art without 
concealing existing difficulties, and he outlined original solutions to very complex problems. 
These lectures attracted a wide audience of physicists of various ages and ranks from all 
parts of Moscow." Mandelstam delivered his famous lectures on the principles of quantum 
mechanics (the theory of indirect measurements) in spring of 1939. He intended to read a 
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series of lectures on the connection of the mathematical tools of quantum mechanics and 
its statistical interpretation, causality, etc., as a continuation of these lectures; the basis 
of this series of lectures was supposed to be the famous book written by J. van Neumann. 
Later, this program was realized by Blokhintsev. 
It was time when quantum mechanics had acquired a certain maturity [4]. In the book by 
Gurney (5), also referred to in Blokhintsev's works, quantum mechanics is characterized as 
a new language of physics and chemistry. "The program of quantum mechanics includes 
no more and no less than the reconsideration of atomic and molecular physics in their en
tirety on the basis of new laws of behavior of particles following from quantum mechanics". 
Blokhintsev joined the realization of a program of reconsideration of atomic and solid state 
physics in their entirety on the basis of new quantum physics with enthusiasm. As he later 
recollected, "During that period (1927-1929), new quantum mechanics originated and great 
capabilities in the application of this new physical concept and new methods of calculation 
of various atomic phenomena were found" [l]. At that time, solid state physics, in par
ticular, the theory of metals, attracted great attention. In 1932, the work "Temperature 
Dependence of the Photoeffect on Pure Metals" of D.I. Blokhintsev was published. The 
next paper was "The Work Function of Electrons from Metals" (1933) (jointly with I.E. 
Tamm). In the monograph [6] this study by Tamm and Blokhintsev was cited together 
with other basic works on the problem. Thus, from the very beginning, his works were 
at the highest level of quality. The early works of D.I. Blokhintsev have manifested also 
his talents of clear vivid presentation of the subject, transparent style, concreteness, the 
ability to point out most significant things and, most important, emphasis on the physical 
meaning. In a large work by Blokhintsev in 1933 "Theory of Electron Motion in a Crys
tal Lattice", the F.Bloch theory of motion of tight binding electrons was generalized for 
the many bands case and for the electron motion in a crystal which is bounded by sur
face. The next work was the paper "Theory of Anomalous Magnetic and Thermoelectric 
Effects in Metals" (1933) coauthored with L.W. Nordheim (1899-1985). In this work, the 
consistent theory of thermoelectric and galvanomagnetic effects in metals was constructed. 
Unlike earlier works, the case of s - p band metals was considered. The authors studied 
the behavior of divalent metals in a magnetic field ( Thompson and Hall effects). To make 
their equations compact, Blokhintsev and Nordheim introduced a new notion, the tensor of 
reciprocal effective masses. In the book of Mott and Jones [6], the priority of Blokhintsev 
and Nordheim in the creation of this fundamental notion was established. The achievement 
made by Blokhintsev and Nordheim was that they showed that the concept of effective mass 
was much more general and workable than had been assumed before and for the first time 
demonstrated the tensor character of the effective mass by considering the behavior of the 
electron in external fields. It turned out that the notion of effective mass is extremely useful 
in the theory of conductivity and other fields of solid state physics, nuclear physics, etc. 
The concept of effective mass became widely applied, especially in semiconductor physics 
and the physics of semiconductor devices, the polaron theory, semiconductor superlattices, 
microelectronics and physics of rnu10structures. 

A few word should be said about I3!okhintsev's coauthor Lotar Wolfgang Nordheim (1899-
1985). Nordheim belonged to the Gettingen school of theoretical physics. He was a PhD 
student with. M. Born, and after defending his PhD thesis in 1923, his assistant and col
league till 1933. All his works arc marked by bright talent and deep insight into a problem. 
In Jammer's book [4], the following fact is given: "In autumn of 1926, Hilbert began sys-
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tematic studies of the mathematical principles of quantum mechanics. Lotar Wolfgang 
Nordheim, Born's former student, and the 23-year-old John von Neumann helped him in 
these studies. Hilbert also gave lectures on the mathematical principles of quantum theory, 
which were published in shorter form in the spring of 1927." Nordheim worked success
fully in the application of quantum mechanics to statistical physics and solid state physics. 
He gave a successful description of the electron work function in metals, thermoelectron 
emission, electron kinetics in metals and alloys, etc. Thanks to a grant from the Rockfeller 
Foundation, Nordheim visited Moscow in 1933 as an invited professor to MSU. His studies 
were quite close to those performed by the Tamm's group. It was during that visit that he 

performed his joint work with Blokhintsev. 
In 1933, Blokhintsev published "Theory of the Stark Effects in a Time-Dependent Field". 
In this paper Blokhintsev showed that the atomic levels move under influence of variable 
electric field (Stark modulation). The picture of light scattering depends nonlinearly on the 
intensity of the incident light. This work was one of the first in the field of physics, which 

was latter called nonlinear optics. 
In 1934, Blokhintsev published paper on the theory of phosphorescence. According to the 
author, "An attempt was made to explain the phenomenon of phosphorescence in the so 
called Lenard phosphors on the basis of quantum mechanical ideas of the electron motion in 
the crystal lattice" [1]. Blokhintsev assumed that duration of the phosphorescence can be 
related with the capability of formation of quasilocalized electronic states in a real crystal 
as a result of the local lattice deformation due to the introduction impurities. Then he es
timated the time of reciprocal recombination of these states. Thus, the theory of localized 
states made it possible to qualitatively ( and, partially, quantitatively) interpret the big 
duration of the phosphorescence. This point of view was included in textbooks on optics. 
This and subsequent works by Blokhintsev, in which the detailed theory of the kinetics of 
phosphorescence in heteropolar crystals and the theory of dyed crystals were constructed, 
contributed considerably to deeper understanding of this problem and showed once more 
that the quantum mechanical approach is indeed the "new language of physics and chem
istry", providing effective description of phenomena considered "mysterious" in classical 
physics. The same approach was used by Blokhintsev in the work "Quantum Mechanical 
Theory of Adsorption" (1934) (co-authored with Sh. Shekhter). This work is a very useful 
and clear survey of the problem as a whole. The paper of the same authors "Lifetime of 
Particles in Adsorbed State" (1934) was devoted to the calculation of the lifetime of parti
cles in the adsorbed state. In that paper it was demonstrated how the quantum mechanics 
provides one with the microscopic picture of phenomenon. The authors obtained the cor
rect qualitative behavior of the average lifetime of the adsorbed molecule on the surface, 
which demonstrated once more the effectiveness of the quantum mechanical approach. In 
1934, Blokhintsev presented his Ph.D. thesis to the Institute of Physics of the Moscow State 
University, entitled Selected Problems of the Solid State Theory, Especially Metals. As a 
result of the high level of the work, he received a degree of Doctor of Science. At the time, 

Blokhintsev was 26 years old. 
In 1935-1936, Blokhintsev continued his work on the theory of light absorption in het-
eropolar crystals, the theory of phosphorescence, and the theory of dyed crystals. It is 
interesting to note that in the paper "Theory of Dyed Crystals" (1936), Blokhintsev, in 
certain sense, anticipated the concept of the polaron, which was formulated later by S.I. 
Pekar (1917-1985). S.I. Pekar wrote this story in his well known monograph [7] in 1951: 
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"In 1936, Blokhintsev attempted to find out iri which crystals autolocalization of electrons 
pointed out by Landau should be expected on the ~asis of the approximation ~f tight
binding electrons ... ". As is well known, S.I. Pekar comed the very term, polaron, m 1946. 
The main idea was that "excess" electron in ionic crystal polarizes the crystal lattice; this 
polarization in turn influences the electron, and this action is equivalent to the action of 
some effective potential well. The depth of this well in some crystals may be sufficiently 
large for discrete energy levels to exist in it. Local polarization caused by the electron is 
related to the displacement of ions from their average equilibrium positions. These states of 
the crystal with the polarization well in which the electron is localized were termed polarons 
by Pekar. The contribution made by Blokhintsev in 1936 to this direction of researches was 
mentioned later by a few other investigators. The main point was the formulation of the 
problem of autolocalized electronic states on the basis of approximation of tight-binding 
electrons. This approximation (LCAO) [3] later become widely used in condensed matter 
physics, especially for the description of localized states of different nature and disordered 
systems. The investigation of localized states in the framework of the tight-binding approx
imation bringed Blokhintsev to the point, namely to the need to describe the interaction 
of the electron with the lattice vibrations accordingly to the spirit of tight-binding approx
imation. This was carried out much later (see for details Ref. [3]). 
In 1938, Blokhintsev prepared his work "The Shift of Spectral Lines Caused by the Inverse 
Action of a Radiation Field" for publication. He presented it at a seminar of the Physical 
Institute of the Academy of Sciences of the USSR, where he was employed; he also sub
mitted it to Zhurnal Experimental'noi i Teoreticheskoi Fiziki [Journal of Experimental and 
Theoretical Physics] (ZhTEF). The work was rejected by the editorial board and published 
only in 1958 in Dubna in a collection of Blokhintsev's scientific works and papers. This work 
was mentioned in the survey report delivered by Ya.A. Smorodinskii [8] in 1949. Later on, 
the following was written [9]: "Already in early works by Blokhintsev, deep understanding 
of the essence of quantum mechanics, fresh and bold ideas, an original way of thinking 
that foreshadowed the further development of physics were evident. Typical in this respect 
was his work on the calculation of the 'shift of spectral lines caused by inverse action of 
a radiation field,' which in essence contained the theory of the Lamb shift, which was the 
beginning of quantum electrodynamics. It was reported at the seminar at the Physics In
stitute of the Academy of Sciences of the USSR and submitted to ZhTEF in 1938. The 
formula for the Lamb shift obtained by Blokhintsev became famous; it differs from the 
Bethe formula only by the numerical factor added in 1948 as a result of ultraviolet cutoff. 
Unfortunately, this important discovery was not published at that time in ZhTEF. There 
were no other outlets for publication". The genesis of the work "The Shift of Spectral Lines 
Caused by the Inverse Action of a Radiation Field" was best described by Blokhintsev 
himself [1]. "I delivered the work that, in essence, contained the theory of the Lamb shift 
discovered ten years later, at a seminar at the Physics Institute. However, my work was 
not published, since the editorial board of ZhETF returned the manuscript because the 
calculations were considered unusual. I kept the manuscript, which was stamped by the 
journal certifying the date of its receipt (February 25, 1938). I found no support from my 
colleagues at the Physics Institute. There were no other outlets. Thus, this important work 
was not published in due time. The main idea of the work followed from my deep belief 
that a physical vacuum existed in reality; however, I refrained from presenting the affair in 
this light...". The Lamb shift is indeed related to quite remarkable and interesting effects 
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of quantum physics [10]. Lamb and his colleagues performed very precise, thorough, and 
elegant experimental studies on the determination of the structure of levels with n = 2 for 
hydrogen, deuterium, and singly ionized helium. Since the energy difference for these levels 
is very small, the probability of spontaneous transitions turns out to be negligible. However, 
if the atom is placed in a rotating ( or oscillating) magnetic field with the corresponding 
frequency, induced transition can be observed. This frequency can be exactly measured; it 
is equal to the difference in energies of the two levels divided by n. The measurement of the 
rotation frequency in Lamb's experiments yielded a value of the energy difference of two 
levels with the same principal quantum number in Rydberg units; it is interesting that this 
docs not require any preliminary data on the Planck constant n. The Lamb shift is mainly 
determined by the variation in the "scale" in wave functions of the atom, which are used 
upon calculation of the mathematical expectation of corresponding expressions. For fine 
splitting, Bethe calculated the energy difference of 2Pi;2 and 2P3; 2 states of hydrogen-like 
atoms. Blokhintsev wrote about his calculations in [l]: "As a result of them, the following 
expression is obtained for the frequency shift: 

e2 z4 ( µc2 ) 
8w0 = k(-)3

3 Rlg -- , nc n flEav 
(1) 

where k is the numerical coefficient,flEav is the average energy, n is the principal number 
of the level, and R is the Rydberg constant. Due to the inaccuracy in cutoff, the coefficient 
k and the values of flEav differ somewhat from exact values obtained using the method of 
electron mass renormalization (note that (1) can be rewritten in the form 8w0 ~ l1/is(O)l2, as 
is usually done now; here, 1/is(O) is the value of the wave function at the point r = 0). The 
ratio 8w0 /w = 2.8 • 10-s calculated using this formula for the He ion is in good agreement 
with respect to its absolute value and sign with the value measured by Paschen (10-6 - 10-7). 

At the time, there were no more precise measurements. This circumstance was of course 
unfavorable for further improvement of an unpublished work. Only after World War II, 
in 1948, did the importance of this work for theoretical physics become clear." The Lamb 
shift in levels in hydrogen, i.e., the energy by which the 2S1; 2 state is higher than the 2P1; 2 

state, is obtained by combining different terms contributing to the theoretical expression 
for the Lamb shift. Experimental investigations of the Lamb shift continue. It was reported 
not long ago that two-loop corrections to the Lamb shift were first measured in strongly 
ionized atoms of heavy elements using the ion trap technique [11]. The history of theoretical 
calculation of the Lamb shift value is quite interesting. It is known from firsthand accounts 
and has been well described in many papers and books [12, 13]. According to V. Weisskopf 
[12], "Since 1936, there have been vague data that the position of observed hydrogen levels 
does not exactly match the predictions following from the Dirac equation, the so-called 
Pasternak effect. Certain considerations existed on possible ways of calculating this effect 
using quantum electrodynamics in the presence of deviations. After the war, I decided to 
investigate this problem together with a very capable PhD student, B. French. We wanted 
to calculate this effect, which was more well known as the Lamb shift, by isolating the 
infinite self-energy of the electron. These were complicated calculations, since the renor
malization technique had not been developed yet. It was necessary to calculate the energy 
difference of the free and bound electrons when both energies were infinite. We had to be 
very accurate, since the calculation of the difference of diverging quantities often results in 
errors. We overcame difficulties slowly, since there were no good experimental results at 
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that time. Then Lamb and Retherford set up a good experiment, and finally, we obtained 
a result that agreed well with experimental data. I informed Julian Schwinger and Dick 
Feynman; they repeated the calculations; however, their results were different from ours, 
and Schwinger and Feynman obtained the same number. We postponed publication to find 
the error, ·spending half a year on it. Meanwhile, Lamb and Kroll published calculation 
result of the same effect, which more or less agreed with our result. Then Feynman called 
me from Ithaca, "You were right; I was wrong!" Thus, if we had had courage to publish 
our results, our paper would have been the first one to explain the experiment performed 
by Lamb and Retherford. What's the moral of this story? You have to believe in what you 
do." 

In 1939, Blokhintsev published his work "Hydrodynamics of an Elecron gas". In this work, 
the hydrodynamic description of the system of many particles (electrons), i.e., description 
in terms of a "reduced" set of variables characterizing the system, the current I(x) and the 
particle density p(x), was considered. Blokhintsev maintained that since a many-particle 
problem could not be solved exactly, an approximate solution should be sought. It is known 
that an efficient way for calculating the energy eigenfunctions and eigenvalues is the self
consistent field method. This method was first developed by Hartree without taking into 
account electron exchange and then by Fack with this exchange taken into account. There 
exist a large number of works on this method both with and without the exchange account. 
Blokhintsev wrote in his work that from the very beginning he used the Hartree- Fack 
approximation, which assigns an individual function 1Pk(x) to each electron n. In this ap
proximation, the system of electrons is described by the density matrix. Considering the 
dynamic equations (equations of motion) for the current, Blokhintsev derived the" hydro
dynamic" equation for a system of many particles (electrons) that contained gas density 
gradients in the stress tensor. To obtain closed expressions, he used approximations char
acteristic of statistical Fermi-Thomas theory. It is known that the statistical model of the 
atom describes the electrons of the atom statistically as an electron gas at a temperature of 
absolute zero. The model yields good approximation only for atoms with a large number of 
electrons, although it had been used for up to ten electrons. For the statistical approach, 
the details of the electronic structure had not been described; therefore, the application of 
a hydrodynamic description was quite relevant. Following the spirit of the statistical model 
of the atom, the total energy of the atom is obtained from the energy of the electron gas in 
separate elementary volumes dv by integrating over the whole volume of the atom. Working 
in this way and using the continuity equation, Blokhintsev derived an expression for the 
gas energy that (in the statistical case) coincided with the expression obtained earlier by 
Weizsacker using a different method. 

It is appropriate to note here that the work "Hydrodynamics of an Electron Gas" contains 
one more aspect that does not seem striking at first sight but is nonetheless of great in
terest. In essence, it was shown in this work that a system in the low-energy limit can be 
characterized by a small set of "collective" ( or hydrodynamic) variables and equations of 
motion corresponding to these variables. Going beyond the framework of the low-energy 
region would require the consideration of plasmon excitations, effects of electron shell recon
structing, etc. The existence of two scales, low-energy and high-energy, in the description 
of physical phenomena is used in physics, explicitly or implicitly. Recently, this topic 
obtained interesting and deep development, connected with the concept of the "quantum 
protectorate." In a work with a remarkable title, "The Theory of Everything" [14], authors 
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R. Laughlin and D. Pines discussed the most fundamental principles of the description 
of matter in a wide sense. The authors put forward the question what the "Theory of 
Everything" should be. In their opinion, "it describes the everyday world of human be
ings - air, water, rocks, fire, people, and so forth". The answer given by the authors was 
that "this theory is nonrelativistic quantum mechanics," or, more precisely, the equation 
of nonrelativistic quantum mechanics, which they wrote in the form 

H1/J=-~~~- (2) 

That was the only formula in their work; they also gave detailed definition of the Hamil
tonian of a system consisting of many interacting particles. The authors agreed, however, 
that "Less immediate things in the universe, such as the planet Jupiter, nuclear fission, the 
sun, or isotopic abundances of elements in space are not described by this equation, because 
important elements such as gravity and nuclear interactions are missing. But except for 
light, which is easily included, and possibly gravity, these missing parts are irrelevant to 
people-scale phenomena. Eq.(2) is, for all practical purposes, the Theory of Everything for 
our everyday world. However, it is obvious glancing through this list that the Theory of Ev
erything is not even remotely a theory of every thing. We know this equation (2) is correct 
because it has been solved accurately for small numbers of particles (isolated atoms and 
small molecules) and found to agree in minute detail with experiment. However, it cannot 
be solved accurately when the number of particles exceeds about 10. No computer existing, 
or that will ever exist, can break this barrier because it is a catastrophe of dimension. If 
the amount of computer memory required to represent the quantum wave function of one 
particle is N then the amount required to represent the wave function of k particles is Nk ." 
According to R. Laughlin and D. Pines, "The emergent physical phenomena regulated by 
higher organizing principles have a property, namely their insensitivity to microscopies, that 
is directly relevant to the broad question of what is knowable in the deepest sense of the 
term. The low energy excitation spectrum of a conventional superconductor, for example, is 
completely generic and is characterized by a handful of parameters that may be determined 
experimentally but cannot, in general, be computed from first principles. An even more 
trivial example is the low-energy excitation spectrum of a conventional crystalline insulator, 
which consists of transverse and longitudinal sound and nothing else, regardless of details. 
It is rather obvious that one does not need to prove the existence of sound in a solid, for 
it follows from the existence of elastic moduli at long length scales, which in turn follows 
from the spontaneous breaking of translational and rotational symmetry characteristic of 
the crystalline state. Conversely, one therefore learns little about the atomic structure of 
a crystalline solid by measuring its acoustics. The crystalline state is the simplest known 
example of a quantum protectorate, a stable state of matter whose generic low-energy prop
erties are determined by a higher organizing principle and nothing else. There are many of 
these, the classic prototype being the Landau fermi liquid, the state of matter represented 
by conventional metals and normal 3 He ... Other important quantum protectorates include 
superfluidity in Bose liquids such as 4 He and the newly discovered atomic condensates, 
superconductivity, band insulation, ferromagnetism, antiferromagnetism, and the quantum 
Hall states. The low-energy excited quantum states of these systems are particles in exactly 
the same sense that the electron in the vacuum of quantum electrodynamics is a particle: 
They carry momentum, energy, spin, and charge, scatter off one another according to sim
ple rules, obey Fermi or Bose statistics depending on their nature, and in some cases are 

30 

even "relativistic," in the sense of being described quantitatively by Dirac or Klein-Gordon 
equations at low energy scales. Yet they are not elementary, and, as in the case of sound, 
simply do not exist outside the context of the stable state of matter in which they live. 
These quantum protectorates, with their associated emergent behavior, provide us with 
explicit demonstrations that the underlying microscopic theory can easily have no mea
surable consequences whatsoever at low energies. The nature of the underlying theory is 
unknowable until one raises the energy scale sufficiently to escape protection." 
The existence of two scales, low-energy and the high-energy, in the description of magnetic 

.phenomena was stressed by Kuzemsky (see Refs. [15, 16, 171) upon comparative investi
gation of localized and itinerant quantum models of magnetism. The concept of quantum 
protectorate was applied to the theory of magnetism in paper [17]. We succeeded in for
mulating the criterion of applicability of quantum models of magnetism to particular sub
stances on the basis of analyzing their low-energy and high-energy spectra. 
In 1940, Blokhintsev's attention was attracted to the problem of statistical description of 
quantum systems. Interest to these problems stemmed from lectures and works on quan
tum mechanics by L. I. Mandelstam and K.V. Nikol'skii. Nikol'skii's book Quantum Pro
cesses [18] is mentioned many times in his papers. In the work "Correlation of a Quantum 
Ensemble with a Classical Gibbs Ensemble" (1940), the limiting transition from quantum 
equations of motion for the density matrix to the equations of motion for the classical 
distribution function was studied. Blokhintsev studied the possibility of correspondence 
between the classical distribution function f(q,p) and the quantum density matrix p from 
the general point of view. For this purpose, the mixed (q,p) representation for the density 
matrix was used. Blokhintsev shown in that paper that there does not exist any distri
bution function depending on (q,p) which could describe the quantum ensemble. In the 
next work on the topic (1940), the problem of the conditions of approximation of quan
tum statistics by classical statistics was considered. It was shown that there is no limiting 
transition (h -+ 0) from a quantum ensemble consisting of similar particles to a classical 
ensemble. The classical description is obtained if the state of the system is characterized 
by the position in the phase cell !1 » Ii. Thus, in these works, a new direction of physics 
was initiated: quantum mechanics in the phase space [19]. 
The title of the next work written by Blokhintsev (jointly with Ya.B. Dashevskii in 1941) 
is "Partition of a System into Quantum and Classical Parts." According to the authors, 
"Among physical problems that should be solved using quantum mechanical methods, there 
are such problems in which the system of interacting particles under study has a property 
that one of its parts during the processes occurring in the system moves as though it obeys 
classical laws of motion, i.e., moving along a trajectory." In this work, they studied the 
possibility of partitioning an interacting system into quantum and classical parts. They 
demonstrated the type of perturbation when the classical part acts on the quantum part. 
This field attracted great interest in subsequent years, especially in many problems of 
physical chemistry. A large number of works are devoted to this topic; some of them are 
considered in detail in survey [20]. 
In 1946, after switching to defense problems, Blokhintsev returned to quantum physics. 
The work performed in 1946 is titled "Calculation of the Natural Width of Spectral Lines 
Using a Stationary Method". This short work demonstrated high flexibility in handling 
tools of quantum mechanics when the result was reached in a simple and elegant way. 
Blokhintsev wrote, "Usually the problem of emission and absorption of light is considered 
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using the method of quantum transitions. However, this problem; similar to the dispersion 
problem, can be solved in an extremely simple way using the method of stationary states". 
Then, the author wrote out the system of equations for state amplitudes of two types: 
(a) when the emitter is in the state m and light photons are absent, and (b) when the 
emitter is in the state n and one light photon has been emitted. Taking into account the 
energy conservation law, the solution for the amplitude was obtained, and on its basis, the 
approximate expression for the level position of the whole system (emitter and radiation). 
"This expression resulted in exactly the same shift and smearing of levels as those obtained 
by Dirac upon calculation of resonance scattering." Then, the spectral distribution within 
the line width was found. The author noted that upon transformation of the amplitude to 
the coordinate representation, , "we obtain a divergent wave with an amplitude that slowly 
increases with increasing distance from the radiation source in the same way as took place 

for a classical decaying oscillator". 
In 1947, Blokhintsev published the work "The Atom under an Electron Microscope". 
Blokhintsev wrote that "this work, devoted to a very special problem, is worth mention
ing due to a somewhat unusual formulation of the problem. The origin is thus. I paid 
attention to the fact that under the action of a scattered electron, the atom receives recoil 
and can be knocked out of its position on the surface of the 'object plate.' If it were not 
knocked out at first scattering, it could be knocked out at subsequent scattering. It should 
be noted that this experiment is unusual from the point of view of the common formulation 
of measurements in a quantum ensemble. Indeed, in this case, we consider the repetition of 
measurements with the same sample of the atom, rather than a set of atoms, as is usually 
done. After each measurement the state of the atom, generally speaking, changes, and it 
becomes a sample of another quantum ensemble. Thus, the series of scattering necessary 
for obtaining an image of the atom consists of a series of scattering related to objects from 
different quantum ensembles. This seems to be a unique case of such a situation." 
Since physicists, chemists, metallurgists, and biologists needed improved microscopes, this 
problem always stirred interest. It should be noted that remarkable works were performed 
by Mandelstam on the theory of the microscope. Mandclstam displayed his inherent the 
strength and depth of thought and his keen understanding of the physical nature in an
alyzing this problem. Blokhintsev's work continued the development of the theory of the 
microscope at the new quantum stage. The interest in this problem not only stemmed 
from the applied value. According to Blokhintsev, "The development of the theory of the 
microscope is of interest from the theoretical point of view, since when observing a sin
gle atom using an electron microscope, the image will emerge as a result of repetition of 
single scattering acts on the same object, while in quantum mechanics, results are usually 
formulated with respect to a set of objects in the same initial state. Due to the action on 
the atom, each new scattering act, generally speaking, will force the atom to be in a new 
initial i;tate. Therefore, it is important to analyze the influence of electron scattering on 
the state of the observed atom". Further development in physics proved that Mandelstam 
and I31okhintscv's interest in problems of the theory of the microscope was justified. This 
direction was developed in subsequent years greatly and is being extensively developed now. 
Blokhintsev's name is closely related to the problem of interpretation of the quantum 
mechanics [21]. I3lokhintsev recollected [1] that "in the 1930s - 1940s, the interest of 
many physicists-theoreticians at the Lebedev Physics Institute and MSU was concentrated 
on the principles of quantum mechanics, which seemed full of paradoxes to many people." 
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A large number of his books (22, 23, 24] and papers (25, 26] were devoted to this problem. 
His views of the problem changed and evolved with deepening and perfection of arguments. 
The most topical problems of interpreting quantum mechanics were the problem of mea
surement and the role of the observer, and the probabilistic interpretation of the wave 
function. The variety of opinions concerning the interpretation of quantum mechanics in
creased with time. Blokhintsev wrote [l]: "Those discussions are reflected in my works; 
the polemical character of my papers devoted to critical analysis of the ideas of the Copen
hagen school and those of Fack gradually brought me to a consistent materialistic concept 
of quantum ensembles and mathematical measurement theory. Only in the 1960s, after 
discussions with the Hungarian physicist L. Janosi, did I manage to formulate a reasonable 
theory of quantum measurements free from inconsistencies in interpreting the role of the ob
server. In this new concept, the measuring device and its interaction with the microobject 
were transformed from the subject of philosophical discussions to the subject of theoretical 
physics". 

As a result of longterm research and reflections, Blokhintsev developed his own ap
proach to interpreting quantum mechanics, which included ideas put forward by J. von 
Neumann, L.I. Mandelstam, and K.V. Nikol'skii. It was called the interpretation of quan
tum mechanics on the basis of quantum ensembles .. He wrote in a summary work [24], 
"The presentation of quantum mechanics undertaken in these lectures is essentially based 
on the ideas of van Neumann, which in their time attracted the attention of the Moscow 
school of theoreticians; in 1930s this school was headed by Academician Mandelstam; also 
Nikol'skii contributed considerably to our understanding of quantum mechanics." Blokhint
sev thought that "this approach to the principles of quantum mechanics had an advantage, 
as compared to traditional interpretations on the basis of the wave function, since it allowed 
one to include the theory of quantum measurements as a chapter of quantum mechanics". 
In Blokhintsev's approach, the statistical operator describing the state of the microsystem 
in a quantum ensemble of the general type plays the primary role. The wave function 
describes a special type of quantum ensemble, the coherent ensemble. Blokhintsev's ap
proach to the interpretation of quantum mechanics became widely known. De Witt and 
Graham (27] in their survey of different approaches to interpreting quantum mechanics 
wrote about Blokhintsev's books: " ... they are both very well written and informative. The 
departure from orthodoxy occurs, in fact, only in certain attitudes and choice of words, 
while the general presentation of quantum mechanics is refreshing ... ; [the second book] con
tains an excellent account of measurement theory". Blokhintsev's approach to interpreting 
quantum mechanics is a constituent part of the scope of ideas of various researchers. One of 
the authoritative historians of quantum mechanics, Hooker (28], noted that " ... Einstein and 
his co-workers Podolsky and Rosen, Blokhintsev, Bopp, de Broglie, Popper, Schrodinger, 
Lande, and most recently Ballentine constitute a small group of physicists and philosophers, 
who are determined to treat quantum theory as a species of statistical mechanics, many of 
them hoping ultimately to reinstate the classical conception of reality." A detailed survey of 
the interpretation of quantum mechanics on the basis of quantum ensembles can be found 
in (29]. The interpretation of quantum mechanics on the basis of quantum ensembles is 
one of many in existence. Thus, the interpretation of quantum mechanics on the basis of 
quantum ensembles occupies a separate (noticeable) place among other possible approaches 
to interpretation of quantum mechanics. Interpretation of quantum mechanics on the basis 
of quantum ensembles was considered in detail by Ya.A. Smorodinskii (1986). The conclu-
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sion he made is quite remarkable (30]: "Discussion showed that if the theory of quantum 
ensembles is used, these ensembles should be assigned unusual properties that could not 
be consistent with common probability theory; these properties are not manifested for one 
particle and can ,be found only in correlated effects; similar to non-Euclidean geometry 
necessary for the description of the velocity space in special relativity, quantum mechanics 
has generated the non-Kolmogorov probability theory; this is probably the deep meaning of 
analysis of the properties of a quantum ensemble" (see also recent book [31]). 
We conclude this paper with the words by Max Born formulated in his lecture "Exper
iment and Theory in Physics" delivered in 1943. "Those who want to master the art of 
scientific prediction should, instead of relying on abstract deduction, try to comprehend the 
secret language of Nature, which is represented by experimental data." Blokhintsev in his 
lectures and talks more than once expressed similar thoughts, may be in slightly different 
words. In these notes and in the extended review [3] we have tried not only to write about 
Blokhintsev's studies, but build them into appropriate lines of the development of quan
tum physics and connect them, directly or indirectly, to the modern development of these 
fields of science. We have tried to show that Blokhintsev's book Quantum Mechanics (22], 
which is justly considered one of the best textbooks in quantum physics, was compiled by 
a witness to and a participant in the formation and development of quantum mechanics. It 
organically includes most of his original works in an integrated description of the subject. 
This, together with the definite literary talent of the author and his gift for presenting 
the subject clearly and lucidly, is the background on which the book Quantum Mechanics 
stands, and it continues to describes the world using the language of a quantum! 
In this work due to the lack of space, not all the topics and problems that I wanted to 
discuss are here. Permit me to refer any reader who wants to reflect on Blokhintsev's works 
to a collection of selected works in two volumes that will be published in 2008 in Moscow. 
A more detailed discussion of modern approaches to interpreting quantum mechanics can 
be found in paper [3]. The full details and precise References are given in paper [3] as well. 
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Abstract 

Outline: 1. Introduction, 2. Confinement, chiral dynamics and light scalar mesons, 
3. Chiral shielding of o-(600), chiral constraints, o-(600), fo(980) and their mixing in 
7m -, 1r1r, 1r1r -, K k, and <p -> ,1r

0
1r

0
, 4. The <p meson radiative decays on light 

scalar resonances, 5. Light scalars in 11 collisions. 
Evidence for four-quark components of light scalars is given. The priority of 

Quantum Field Theory in revealing the light scalar mystery is emphasized. 

-1 Introduction 

The scalar channels in the region up to 1 GeV became a stumbling block of QCD. The point 
is that both perturbation theory and sum rules do not work in these channels because there 
are not solitary resonances in this region. 

At the same time the question on the nature of the light scalar mesons is major for 
understanding the mechanism of the chiral symmetry realization, arising from the confine
ment, and hence for understanding the confinement itself. 

2 Place in QCD 

The QCD Lagrangian is given by 
L=-½Tr (Gµ,_,(x)Gµ"(x)) + q(x)(iD - M)q(x), 

Mis a diagonal matrix of quark masses, D=,µ Dµ, Dµ=8µ+ig 0Gµ(x). M mixes left and right 
spaces. But in chiral limit, Mff-+ 0, these spaces separate realize UL(3) x UR(3) flavour 
symmetry, which, however, is broken by the gluonic anomaly up to Uvec(l) x SUL(3) x 
SUR(3). As experiment suggests, confinement forms colourless observable hadronic fields 
and spontaneous breaking of chiral symmetry with massless pseudoscalar fields. There are 
two possible scenarios for QCD at low energy. 1. Non-linear u model. 2. Linear u model 
(LSM). The experimental nonet of the light scalar mesons, f 0 (600) (or u(600)), 11:(700-900), 
ao(980) and f 0 (980) mesons, suggests the UL(3) x UR(3) LSM. 

3 History 

Hunting the light u and 11: mcsous had begun in the sixties already and a preliminary 
information on the light scalar mesons in PDG Reviews had appeared at that time. But 
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long-standing unsuccessful attempts to prove their existence in a conclusive way entailed 
general disappointment and an information on these states disappeared from PDG Reviews. 
One of principal reasons against the a and 1,, mesons was the fact that both 1r1r and 1r K 
scattering phase shifts do not pass over 90° at putative resonance masses. 

4 SUL(2) X SUR(2) LSM, 1r1r--+ 1r1r [1, 2, 3] 

Situation changes when we showed that in LSM there is a negative background phase which 
hides the a meson in 1r1r -t 1r1r. It has been made clear that shielding wide lightest scalar 
mesons in chiral dynamics is very natural. This idea was picked up and triggered new wave 
of theoretical and experimental searches for the a and 1,, mesons. Our approximation is as 
follows (see Fig.I): 

7r 7r 

7r 7r 

r x. x <I . )<f L: 
7r 7r 

~ 
7r 7r 

+ 

7r 
I 

7r 

Figure 1. The graphical representation of the S wave I = 0 -rr-rr scattering amplitude TJ. 

rg = rg(tree) 

l-iP1r1rTg(tree) 

e2i6g_ 1 e2i(6b9 +6res)_ 1 
2ip,r.,.. =~ 

2(tree) 2i05-l 
2 T. - e~-To = _ r2<tree) - 2ip7r1r 

l-tP1nr O 

5 Results in our approximation [3]. 

Mres = 0.43 GeV, rres(M;e,) = 0.67 GeV, mu= 0.93 GeV, 

r,es(s) = ~i';;✓,P,r,r, 9res(M;e,)/gu,r1\' = 0.33, 

a8=0.18m; 1 , al=-0.04m; 1
, (sA)8=0.45m;, (sA)5=2.02m;. 

6 Chiral shielding in 1r1r --+ 1r1r [3] 

The chiral shielding of the a(600) meson is illustrated in Fig. 2. 
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Figure 2. The a model. Our approximation. 68 = 6,,s + cibg• (a8, "res, ab9 )=32-rr(JTJJ2, JTr,,J 2, Jn
9
J2)/s. 

7 The u pole in 1r1r --+ 1r1r [3] 

rg -t g;/(s - sR), g; = (0.12 + i0.21) GeV2 , 

,/sR. = MR - irR/2 = (0.52- i0.25) GeV. 

Considering the residue of the a pole in Tg as the square of its coupling constant to the 
1r1r channel is not a clear guide to understand the a meson nature for its great obscure 
imaginary part. 

8 The u propagator [3] 

l/Du(s) = 1/[M,2,s - S + ReIIres(M;e,) - II,es(s)]. 

The a meson self-energy IIres ( s) is caused by the intermediate 1r1r states, that is, by the 
four-quark intermediate states if we keep in mind that the SUL(2) x SUR(2) LSM could be 
the low energy realization of the two-flavour QCD. This contribution shifts the Breit-Wigner 
(BW) mass greatly mu - Mres = 0.50 GeV. So, half the BW mass is determined by the 
four-quark contribution at least. The imaginary part dominates the propagator modulus 
in the region 300 Me V < ys < 600 Me V. So, the a field is described by its four-quark 
component at least in this energy region. 

9 Chiral shielding in ,, --+ 1r1r [3] 

Ts(,,-> 1r+1r-) = Tforn(,,-> 7r+7r-) + 8cd,r+,r-Ts(1r+7r- -> 1r+1r-), 

Ts(,,-. 1ro1ro) = 8cxl,r+,r- Ts(1r+1r- -> 1ro1ro)' 

Tforn( 11 -. 1r+1r-) = (8a/ p,r+,r- )Iml,r+rr- l,r+,r- = ~(1r + i In !~~:: )2 - 1, 

Our results are shown in Fig. 3. 
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TBorn(,, _, 7r+7r-), 

r( CT --> 7r+7r- --> "("(, S) = 16;./s \g( CT --> 7r+7r- --> "("(, S )12, 

where g(CT-->7r+7f- -->"("(, s)=(a/27r) Xl1r+1r-9res1r+1r-(s); see Fig. 4. So, the the CT-->"("( 
decay is described by the triangle 7r+7r- loop diagram res --> 7r+7r- --> 'Y'Y· Consequently, 
it is due to the four-quark transition because we imply a low energy realization of the 
two-flavour QCD by means of the the SUL(2) x SUR(2) LSM. 

% 
'=' 
1::: 
1' 

"' +., 
1' 
= e? 
;:::;-

17.5 

15 

12.5 

10 

7.5 

5 

2.5 

.... - - lm(I" .... "-) part contribution 
--- Re(I" ... '"-) part contribution 

.·\ .... 
' ' -~-

0 -
0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 

-Vs (GeV) 

Figure 4. The energy dependent width of the a-> 7r+7r- -> 11 decay. 

As Fig. 4 suggests, the real intermediate 7r+7r- state dominates in g(res --> 7r+7r- --> 
'Y'Y) in the CT region vs < 0.6 GeV. Thus the picture in the physical region is clear and 
informative. But, what about the pole in the complex s plane? Does the pole residue 
reveal the CT indeed? 

10 The u pole in ,, -+ 1r1r [3] 

1i1r~Ts("/"(--> 7fo7ro)--> g-,grr/(s - SR), 
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g..,g,, = (-0.45-i0.19)·10-3 GeV
2

, g..,/g" = (-1.6l+il.21)·I0-3 , I'(CT--> n)=~ ~ 2keV. 

It is hard to believe that anybody could learn the complex but physically clear dynamics 
of the CT --> ,, decay from the residues of the CT pole. 

11 Discussion [3, 4, 5, 6] 

Leutwyler and collaborators obtained ,/sii. = MR-iI' R/2 = ( 44I:'.:J6 - i272:!:J2·5) Me V. Our 
result agrees with the above only qualitatively, ,/sii. = MR - iI'R/2 = (518- i250) MeV. It 
is natural, for our approximation. 

Could the above scenario incorporates the primary lightest scalar Jaffe four-quark state? 
Certainly the direct coupling of this state to "("/ via neutral vector pairs (p0 p0 and ww), 
contained in its wave function, is negligible, I'(q2q2 --> p0p0 + ww--> 'Y'Y) ~ 10-3 keV, as we 
showed in 1982 (6]. But its coupling to 7r7r is strong and leads to I'(q2q2 --, 7r+7r- --, 'Y'Y) 
similar to r( res --> 7r+7r- --> 'Y'Y) in the above Fig. 4. 

Let us add to Ts("/"( --> 7r07r0
) the amplitude for the the direct coupling of CT to 'Y'Y 

conserving unitarity Tdirectb'Y --> 7f07r0
) = sgi~-,9res(s)ei6•• / Dres(s). Fitting the "("( --> 

7ro7fo data gives a negligible value of g~~..,, I'~~-,= IM;es9~~..,\ 2/(16m'\1resL~ 0.0034 keV, in 
astonishing agreement with our prediction [6]. 

12 Phenomenological chiral shielding [7] 

g;,r+,r-/47!"=0.99 GeV
2

, g;K+K-/47r=2·10-4 GeV2
, 9Jo,r+,r-/47r=0.12 GeV2 , 9]oK+K-/47r=l.04 

GeV
2

• The BW masses and width: m 10 =989 MeV, m.,=679 MeV, I'.,=498 MeV. The 
l=l =0 7r7f scattering length ag =0.223 m;;}. Figure 5 illustrates the excellent agreement 
our phenomenological treatment with the experimental and theoretical data. 
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Figure 5. The phenomenological chiral shielding. o8=o1t+ores• The comparison with the CERN-Munich 
data for 08 and inelasticity T/8, with the BNL and NA48 data for 08, respectively. 
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13 Four-quark model [5, 8, 9] 

There are numerous evidences in favour of the q2 tJ.2 structure of f 0 (980) and aa(980). As 
for the nonet as a whole, even a dope's look at PDG Review gives an idea of the four
quark structure of the light scalar meson nonet, a(600), 11:(700-900), a0 (980), and fo(980), 
inverted in comparison with the classical P wave qij tensor meson nonet !2(1270), a2(1320), 
I<:;(1420), and !~(1525). Really, it can be easy understood for the q2q2 nonet, where a(600) 
has no strange quarks, 11:(700-900) has the s quark, a0 (980) and fa(980) have the ss pair. 

14 Radiative decays of ¢ meson [7, 8, 9, 10, 11, 12] 

Twenty years ago we showed [10] that the study of the radiative decays <p -> ,ao -> 17rTJ 
and <p -> 1 Jo -> 1 1r1r can shed light on the problem of aa(980) and fo(980) mesons. Now 
these decays have been studied not only theoretically but also experimentally. Note that 
a0 (980) is produced in the radiative <p meson decay as intensively as TJ'(958) containing 
;::; 66% of ss, responsible for¢;::; ss-> 1ss-> ,T/'(958). It is a clear qualitative argument 
for the presence of the ss pair in the isovector a0 (980) state, i.e., for its four-quark nature. 

15 K+ K- loop mechanism [7, 8, 9, 10, 11, 12] 

When basing the experimental investigations, we suggested [10] one-loop model <p -> 

K+ K- -> 1 [ao(980)/ fo(980)]; see Fig. 6. 
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Figure 6. The K+ K- loop model. 

K+ 

~ 
'I' ~UU/JU 

'Y 

(b) 

'Y 

f~ 
~ 

K-

(c) 

This model is used in the data treatment and is ratified by experiment, see Figs. 7. 
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For dBR(</J-> ,(ao/fo) -> ,(1r0TJ/1r01r0
), m]/dm ~ /g(m)l2w(m), the function /g(m)/ 2 

should be smooth at m':-:; 0.99 GeV. But gauge invariance requires that g(m) is proportional 
to the photon energy w(m). Stopping the function (w(m)) 3 at w(990MeV)=29 MeV is the 
crucial point. The K+ K- loop model solves this problem in the elegant way, see Fig. 8. 
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Figure 8. A new threshold phenomenon in¢-> K+ K- -> ,R decays. The universal in K+ K- loop model 

function lg(m)J
2 

= l9R(m)/9RK+ K-1 2 
is drawn with the solid line. The contributions of the imaginary and 

real parts of g(m) are drawn with the dashed and dotted lines, respectively. 

16 Four-quark transition and OZI rule [9J 

So, we are dealing here with the four-quark transition. A radiative four-quark transition 
between two qq states requires creation and annihilation of an additional qij pair, i.e., is 
forbidden according to OZI rule, while a radiative four-quark transition between qij and 
q

2

ij
2 

states requires only creation of an additional qq pair, i.e., is allowed according to the 
OZI rule. 

17 ao(980) / / 0 (980) ~ ,, & q2ij2 model 

Twenty six years ago we predicted [6] the suppression of a
0
(980)/ fo(980) -> 'Y'Y decays 

basing on q
2
ij

2 
model. Experiment supported this prediction. The ao -> K+ g- -> 'Y'Y 

model [13] describes adequately data and corresponds to the four-quark transition ao -> 

Q

2

iP-> 11. (I'(a0 -. K+ K--. 11) ;::; 0.3 keV. r~!'".:.~
7 

« 0.1. 

18 ,, ~ 7r7r from Belle [14, 15) 

Recently, we analyzed the new high statistics Belle data on the reactions 
11

--+ 1r1r and 
clarified the current situation around the a(600), J0 (980), and !2(1270) resonances in 'Y'Y collisions, see Fig. 9. 

(I'd(a-. 1r+1r--> 'Y'Y)) ;::;0.45keV, (I'(Ja-. K+K--. 11)) ;::;0.2keV, r~~~ « 0.lkeV, r !Teet '' /o-n « 0.lkeV. 

45 



350 175 
Data: ■ Belle, ♦ Mark 11, • CELL (a) I Data: ■ Belle, a Crystal Ball (b) 

300 _ cr=CTo+cr2 ·"' 150 
:0 - era 

!mf --- <Ts 
C: 

:::: 250 ······<T~om 
•••••• c'rt2 "' ·-·-· CT~om ci 

0 ~ 200 ~ 100 <n 
<n ~ ~ ,-.; 150 oi,::- 75 

+" o" t 100 r 50 
b f 

50 
--- 25 

i n 

0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 
VS (GeV) 

0.2 0.4 0.6 0.8 1 1.2 1.4 
VS (GeV) 

Figure 9. (a) Cross section for 'Y'Y----, 1r+1r-. (b) Cross section for 'Y'Y----, 1r0 1r0 . 

19 The lessons of,, collisions. 

The classic P wave qij tensor mesons h(1270), a 2 (1320), and JH1525) are produced by the 
direct transitions ''Y'Y --+ qij in the main, whereas the light scalar mesons a-(600), f

0
(980), 

and a0 (980) are produced by the rescattering 11 --+ 7r+7r-, K+ K- --+ a-, Jo, a
0

. The direct 
transitions 11 --+ a-, Jo, a0 are negligible, as it is expected in four-quark model. 

I thank Heiri Leutwyler very much for communications. This work was supported in part 
by Presidential Grant No. NSh-1027.2008.2 and by RFFI Grant No. 07-02-00093. 
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Abstract 

Supernovae type Ia data and the CMB energy budget is considered in the model 
inspired by the Dirac conformal approach to General Relativity (GR) with a massless 
scalar (dilaton) field which scales all masses. A cosmological model obtained from 
the GR and SM by the average the dilaton 'and other scalar fields over a large finite 
volume that does not commute with a variation calculus in general. This approach 
is in agreement with the dominance of a scalar field kinetic energy density and an 
intensive cosmological creation of primordial W, Z, and Higgs bosons from vacuum. 
Arguments are discussed testifying to that two photon processes of the primordial 
particle annihilations and decays form three peaks in the CMB power spectrum, and 
their values, and positions f = 220, 546, 800 are in agreement with the QED coupling 
constant, the Weinberg angle, and the Higgs particle mass of about 118 GeV. 

Introduction 

Dirac in [1] modified the accepted General Relativity (GR) in spirit of the simplified Weyl's 
geometry [2], which means that "a new action principle was set up, much simpler than 
Weyl's, but requiring a scalar field function" (called here as dilaton) "to describe the grav
itation field, in additional to 9µv"[l]. In this paper we use this Dirac modification in the 
Lichnerowicz gauge lg<3ll = 1 [3]. This gauge is compatible with the Wigner representa
tions of the Poincare group [4] in the tangent space-time distinguished by the Fock simplex 
(tetrades) [5, 6]. 

In this case, the Hubble law is explained by the evolution of masses in the constant 
Universe volume, and the analysis of the supernovae type Ia data [7] is compatible with the 
dominance of the kinetic energy density of the scalar field zeroth harmonic [8, 9, 10]. 

This dominance allows us to set in the theory very important free initial data that do 
not depend on the fundamental parameters of the equations of motion of the type of the 
Planckian mass and the Higgs potential parameters. 

Thus the scale invariance of laws of Nature [2] can be considered as the principle of a 
choice of variables in GR and the Higgs potential free Standard Model (SM) [11] treated 
as a theory of the dynamical scale symmetry (1, 12]. In this theory the dilaton Goldstone 
field compensates all scale transformations of fields including the cosmological scale factor 
describing expansion of the Universe lengths in the Standard Cosmology [13], so that the 

1
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scale-invariant variables remove non-physical geometrical singularities. Nevertheless, the 
dilaton explains redshift by the permanent increase of all masses in the Universe and leads to 
the Conformal Cosmology (CC) (8, 9, 10, 14], where all measurable quantities are identified 
with the conformal ones (conformal time, coordinate distance, and constant conformal 
temperature). This CC identification changes the numerical analysis of supernovae type 
Ia data (7] and shows the dominance of the scalar field kinetic energy p = K + V, K » V 
coinciding with pressure p = K - V, K » V in all epochs of the Universe evolution including 
the chemical evolution, recombination, and the SN explosions. It differs from the accepted 
approach [13] proclaiming the dominance of the potential term Vp1anck » Kp1anck ~ a-6 

at the Planck epoch, when a;1~nck ~ 1061 is valid, in spite of the kinetic term K has a 
huge enhancement factor of a16 ~ 10366 times with respect to the potential one V. Really, 
the accepted New Inflationary scenario [13] is not cleared up yet, because it proposes ''a 
dynamical inflation" V0 =f VPianck and K =f 0, when the inflation equation p = K + V = 
-p = -K +Vis valid only, if K = 0. 

The scale-invariant cosmological model (8, 14, 15] has features different from the ones in 
both the widely accepted ACDM model (13, 16] and the Hoyle - Narlikar model (17]. Recall 
that the ACDM model (13] requires the dominance of the scalar field potential energy and 
explains the Cosmic Microwave Background (CMB) power spectrum (18] by the dynamical 
scalar metric component that is absent in the Wigner classification of relativistic states 
with the vacuum postulate (19] and the Dirac condition of the zero value of the local space 
element velocity (20]. 

Our construction in cosmological aspects is close to the Hoyle-Narlikar model (17], in 
which also the redshift mass dependence is considered. But contrary to that model we try 
to keep a direct relation to the GR and we have quite different phenomenological results. 
In particular, we avoid the problem of the Hoyle-Narlikar model related to negative energy 
contributions. 

In this paper we construct a model where the dilaton zeroth mode lies in the accepted 
class of the relativistic state classification (19] in the theory of dynamical scale symmetry 
compatible with intensive cosmological creation of primordial W, Z, and Higgs particles 
from vacuum in the Early Universe (15]. 

The content of the paper is as follows. In Sect. 2 we remind the construction of the GR in 
conformal variables, defined by separation of the dilaton factors. In Sect. 3, a cosmological 
model obtained from the GR and SM by the average the dilaton and other scalar field over 
a large finite volume in accord with Einstein's cosmological principle (21], where the initial 
data Higgs effect is considered. Sect. 4 is devoted to the Early Universe as a factory of 
primordial particles created from vacuum due to the dilaton interaction. 

2 General Relativity in Conformal Variables 

2.1 Action and variables 

Let us apply the relativistic principles to the theory of General Relativity (GR) supple
mented by the Standard Model together with an additional scalar field Q governing the 
Universe evolution. So we start with the action 

Su[g,J] = j d4x,!=g [- R~g) + .CsMU) + DµQDµQ] , (2.1) 
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and units /j, = c = MPianck✓3/(8rr) = 1 are used throughout the paper. This action depends 
on a set of scalar, spinor, vector, and tensor fields fen) = ¢, s, Vµ, 9µv with their conformal 
weights n = -l, -3/2, 0, 2, respectively. Let us start with all SM particles being massless 
and return to the question of their mass generation later on. 

In the relativistic theory this action is accompanied by a choice of the frame of reference 
of the initial data and a certain gauge fixing in order to determine real physical fields (22, 23] 
compatible with the Wigner classification of fields and their states (19]. So in this article, 
we use just these variables [22] with gauge-invariant initial data. 

The corresponding generating functional is constructed by the Hamiltonian method in 
(14]. The Wigner classification of massless fields leads unambiguously to radiation variables 
well known as photons and gravitons with two transverse components (20, 24]. In particular, 
the transverse metric field components are associated with the tangent Minkowskian space
time and the Dirac-ADM parameterization (20, 25] with 3+1 splitting take the form W(o), 

W(b) 

2 2 2 
ds = w(o) - w(b), W(o) = e-2D Nddx0

, W(b) = e-De(b)j(dxi + Nidx0 ), (2.2) 

where e(b)i are the triads with the unit spatial metric determinant le(b)il = 1, Nd is the 
Dirac lapse function, and Ni are the shift vector components. Following Dirac [1] we call 
the spatial determinant logarithm D[g] = - log lg<3ll/6 the dilaton. It compensates scale 
transformations of fields with the conformal weight (n) 

- nD 
f(n) = e f(n), -:::{g. 3) = e2Dg(3) 

tJ IJ ' 1
-(3) 
gij I= 1, (2.3) 

where the scale-invariant Lichnerowicz-type variables (3] appear on the left hand sides. 
So in this paper we consider GR as a theory of dynamical scale symmetry developed in 
Refs. (1, 11, 12] in terms of the selected variables (2.3) treated as the observable ones. 

In phenomenological applications, one can identify this choice with the CMB co-moving 
reference frame2 • 

These scale-invariant variables (2.3) compatible with relativistic classification of physical 
states can be considered as physical observables in a relativistic theory. This means that 
the theory excludes any cosmological expansion of the Lichnerowicz volume and removes 
any scale factor including the cosmological scale factor from the observable spatial metric 
components. However, these scale-invariant variables (2.3) do not remove the cosmological 
evolution. The evolution is described as the evolution of observable masses due to the 
zeroth dilaton harmonic. 

2.2 Zeroth dilaton harmonic as cosmological evolution parameter 

The 3+1 splitting (2.2) does not fix the coordinate evolution parameter x0 • The Hamil
tonian form of the relativistic theory keeps symmetry with respect to reparameterizations 
x

0 
-> x° =f x 0 (28]. Therefore, the coordinate evolution parameter as an object of repa

rameterizations can not be considered as a measurable quantity [29]. In such a relativistic 
theory one can choose two measurable times: an evolution parameter as one of variables in 
the superspace D, ¢, Q, .. and the proper time-interval in the Minkowskian tangent space 

2Relativistic invariance means the completeness of a set of reference frames [26, 27]. 
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[30). In this paper we show that there is a possibility to choose both these times, in the 
exact theory, so that the initial data of the superspace time-like variable coincide with its 
integrals of motion. It is just the case of the zeroth dilaton harmonic and so called Misner 
time [31). 

Recall that in accord with Einstein's cosmological principle [21) we can average the 
dilaton and other scalar field over a large finite volume V0 = J W(i) /\ w(2) I\ W(J) = J d3

x [14, 
32). The dilaton zeroth harmonics can be defined as 

(D) = v0-
1 f d3xD(x0

, x). 
lvo 

After the separation of the zeroth and nonzero harmonics 

D = (D) + D, rjJ = (¢) + h/,/2, Q = (Q) + q/,/2 

with the strong constraint fvo Dd3x = 0, J hd3x = 0, action (2.1) takes the form 

Su = Sz((D),(¢),(Q))+Su, 

(2.4) 

(2.5) 

(2.6) 

where Su repeats action (2.1) for nonzero harmonics associated with local excitations and 

Sz( (D), (¢), (Q)) = / dx0 [-(80(D) )2 + (80(¢) )2 + (80(Q) )2] / d3xN;;1(x0
, x) (2.7) 

is the zeroth mod.e action, where we can introduce the average of the inverse Dirac lapse 
function· 

I d3xN;;1(x0 ,x) = Vo(N;; 1
) = VoNo

1
, (2.8) 

with a finite volume V0 . In this case it is convenient to introduce the diffeo-invariant time 
interval dr = N 0dx0

. 

The variation of action (2.6) with respect to the lapse function Nct leads to the energy 
constraint 

where 

oSu 
NctONct 

(80(D)) 2 
- [80(¢))2 - [Bo(Q)J

2 
- N/fct = 0, 

O -+ Nct 

_ • oSu Pf ~ -7D/2 6.e-D/2 + 
T, - -- = -- + 3e 

ct - ONct 4 
L e-JD'Ti(F) 

J=0,2,3,4 

is the local energy density, 6. = 8;[e(a)e{
0
)8i) is the Laplace operator, 

PrJ = 2 [(Bo - N 181)D + 81N1/3] /Nct 

(2.9) 

(2.10) 

(2.11) 

is the local dilaton momentum. We emphasize that the local energy density Tct is a sum 
of partial energy densities Ti = (Ti)+ T 1 in terms of the scale-invariant fields (2.3) and 
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provides cosmological regimes of the rigid state of matter J = 0, radiation J = 2, massive 
matter J = 3, and curvature J = 4 (14]. 

Such, the separation of zeroth harmonics in finite space-time does not commutate with 
variations of the Hilbert action. Therefore,_ we obtained energy constraint (2.9) that coin
cided with the accepted Einstein equation Tct = 0 only in the infinite volume limit (D) = O 
[20). Nevertheless, the additional term solves the energy problem of GR in agreement with 
the Universe evolution [14). 

Averaging the energy constraint (2.9) over the volume V0 leads to the global constraint 

[8T(D))2 = [8T(¢)]2 + [8T(Q))2 +\Iii/ 

and determines the diffeo-invariant lapse function 

N = ~: = \ /ii);\/fct 
and the diffeo-invariant interval dr = N0dx0 through the energy density (2.10). 

The dilaton field D = (D) + D is defined by equation 

oSu 2 oD = o - WT(D) (Tn), 

caT -Ncbia,bi)% Tn - (Tn), 

where% is the dilaton momentum (2.11), Ncb) = N1e(b)z/N0 , a(b) = e\b)81, and 

Tn = ~ {7Ne-7Dl26.e-Dl2 + e-Dl2t::,. [Ne-wf2J} +N L Je- 1nri. 
J=0,2,3,4 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

One can see that Eqs. (2.12), (2.14) can be treated as the exact analogy of the Friedman 
equations in the tangent space-time defined by simplex components 

- -2DNd -2DNd W(o) = e r = e TJ, W(b) = e(b)kdxk + .M_b)dTJ. (2.17) 

After the separation of zero modes P(F) = 2V08T(¢), where F = D, rjJ, Q, the action (2.1) 
take the form 

Su 

sz 

Su +Sz 

/{ ~ ~ ~ } P(QJd(Q)+P(</>)d(rjJ)-P(D)d(Q)+ (D) -
4
i~ - (Q) N0 (x0 )dx0 ; 

(2.18) 

(2.19) 

here Su repeats Hamiltonian action (??) given in [14] for nonzero harmonics associated 
with local excitations. In action (2.18), variable (D) plays the role of a evolution parameter 
[14, 32). In this case, its momentum values determined by the energy constraint 

Pln) = Et = P(~) + P(t) + 4 [/ d
3
x~ 

2 

(2.20) 
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are considered as the Universe energy P(Q) = ±Eu in the Wheeler-DeWitt superspace 

[(D)l(<t>), (Q), F] [33). 
The equation P(D) = 2V08r(D) = Eu((D)) leads to the time-interval as a functinn of 

the evolution parameter (D) in the superspace, and the initial data 

j
(D)o 

T[(D)1, (D) 0) = 2V0 d(D)/Eu((D)). 
(D)I 

(2.21) 

This relation is treated as the Universe evolution. Thus, in the model we have two mea
surable times: the zeroth dilaton harmonic (D) as evolution parameter in superspace and 
the proper time-interval T(x0 ) = T(x°), where x0 is the coordinate evolution parameter as 
an object of reparameterizations x0 --+ x° f x0 that can not be considered as a measurable 
quantity [29). 

We emphasize that the reparameterization invariance play the crucial role [28). It leads 
to the energy constraint (2.20). Solutions of this constraint with respect to evolution 
momentum P(v) are treated as energies of the relativistic Hamiltonian system in the su
perspace, and they take positive and negative values. Due to the negative energy this rela
tivistic system is not stable because it has no vacuum. In accord with the QFT experience 
the stable vacuum is constructed by the primary quantization and secondary one [19, 14). 
Quantization of the energy constraint (2.20) leads to a vacuum state with minimal energy 
and the arrow of time-interval [32]. 

In [14), where the Hamiltonian cosmological perturbation theory with respect to D, (N -
1), and N(b) is constructed, it was shown that the conformal flat approximation I5 = 
(N - 1) = 0,N(b) = 0 is valid far from heavy bodies. 

3 Conformal Cosmology 

3.1 Conformal flat space-time 

Action (2.18) in the lowest order of interactions, where the metric components Mb),N 
treated as the Newton like potentials with zero momenta PN,.>.N = 0 are neglected N - l = 
Mb) = 0, takes the form 

si = j dT { [Jd
3
x(I;,v1aJ- "5;,v1J•ar(D))]-e-

2
<v>HsM[(D))}I 

f /" dr=Nodx0 

+] dT[P(Q)ar(Q)+P(q,)8r(</J) - P(v)8r(D) Pih-P(~) -P(t) I , 
T=O 4Vo dr=Nodxo 

(3.1) 

where f = h, q, s, v, fiTT are dynamical degrees of freedom of the initial theory (2.1) treated 
-2 

as the massless and massive particles in the conformal flat space-time ds = (dry) 2 
- (dxk)2; 

here 
dry= a2 No(x0 )dx0 = a2dT, a= e-(D) (3.2) 

a is the cosmological scale factor in the homogeneous background of the zeroth mode 
harmonics (2.7), and HsM is the Standard Model (SM) Hamiltonian, where we distinguish 
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all fields J* = h, q, zll, WII, hTT with the direct interaction with the dilaton described the 
zeroth mode action S. (2.19)3 • This interaction leads to both the cosmological particle 
creation (15, 34, 35, 36, 37), if we quantize the first (particle) action, and the cosmological 
universe creation, if we quantize the second (universe) action (3.1) [32). 

We call an approach as the Universe without particles, if it is filled with only with zeroth 
harmonics of all the scalar fields F = D, ¢, and Q with equations 8;(F) = 0 and the initial 

data (38): 

(</J)(T--+ 0) = (</>)I, 
(Q}(T--+0) = (Q)1, 

These initial data are chosen as follows 

8r(¢)(7--+ 0) = 8r(<P)1; 
8r(Q)(T--+ 0) = 8r(Q)1, 

(¢)I= Mwo/(g,/2,), 8r(</J)I = O; (Q)I = Qo, 8r(Q)I = Ho 

(3.3) 

(3.4) 

(3.5) 

defined so that the mechanism of the spontaneous electroweak symmetry breaking does 
not differ from the one accepted in the SM. Quantities Mwo and Ho are the present day 
values of the W boson mass and the Hubble parameter. Note that in the SM we can 
start with a completely scale invariant Lagrangian, while all the SM particle masses can be 
generated by the standard Higgs mechanism. The only difference of our approach from the 
standard one is the interpretation of the vacuum expectation origin. Namely, in the SM 
we usually say that (¢) # 0 appears because of the presence of tachyon-like mass treated 
as a fundamental parameter in the Lagrangian. In our approach we suggest to consider 
(¢) f O as an external condition or initial data for the equations4 so that the SM potential 
in the form V(¢) ~ (¢t¢ - (¢)2)2 appeared as an effective potential after introduction of 
the initial data, as discussed below in Sect. 3.3. 

There is the approximation used in the accepted cosmological perturbation theory [16), 
where the "gauge" No= 1 is substituted in action (3.1) and reparameterization invariance 
:iP -> x° is removed, so that one obtains the accepted SM action in flat space without the 
constraint bS/bN0 = 0 and all time-intervals become equivalent dry= dx0 . 

If the cosmological dynamics is neglected (D) = (Q) = 0, action (3.1) takes form 

SsM - j dr { [Jd'x~pj½fl- HsM} (3.6) 

The flat space-time action (3.6) loses the energy constraint bS/bN0 = 0, cosmological evolu
tion, and creation of the Universe and its matter content due the direct dilaton interaction 
'f.v1.f*8r(D). 
r 

Thus, the main consequence of the cosmological dynamics (D) = - log a in action (3.1) 
is the energy constraint 

Pi~ga = Et, (3.7) 

Et = P(~) + P(t) + 4Voa2 HsM(a) (3.8) 
--;-;;::-:---------

• 
3
This action does not contain both the dynamical inflation with A1 ,/ Ao and dynamical acoustic waves 

with Po # 0 in accord with the Wigner classification of states with positive energy. 4
Remind analogy of the Higgs mechanism to the classical Ginsburg-Landau potential in the theory of 

superconductivity where the form of the potential leading to symmetry breaking was also provided by 
external conditions but not by a fundamental term in the Lagrangian. 
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obtained by the variation of action (3.1) with respect to the lapse function N0 • This energy 
constraint like its GR analog (2.20) determines the Universe energy as the constraint values 
of the momentum of evolution parameter (D) = - log a in the WDW superspace of events 

da 
.F\oga = ±Eu(a) = ±2Vo-d 

a T 

together with all attributes of relativistic quantum theory (32]: 

l. the proper time relation (2.21) 

1
a0 da 17/o=ro 

r(ao,a1) = 2Vo -E ( ) ~ H0
1 a-2 (TJ)dTJ, 

ar a u a w=ro 

(3.9) 

(3.10) 

treated as the cosmological redshift (1 + z) = a-1 - coordinate distance r = T/o - T/ 
relation, 

2. the primary quantization (P(~oga) - EiJwwdW = 0, 

3. the secondary quantization Wwdw = (1/JEu][A+ + A-], 

4. the Bogoliubov transformations A+ = aB+ + f]B- that diagonalize equations of 
motion O(D)B± = ±iE£B±, where E£ is the Bogoliubov energy, given in (32], 

5. and the vacuum state B-/o >= 0 as the one of minimal energy. 

In this case the low-energy decomposition of the cosmological action (3.1) 

E£dloga ~ Eudloga = 2v0/ HJ+ a2HsM(a)/V0 dloga 

~ 2V0 dloga + dTJHsM(a) 

leads to the standard QFT evolution operator 

(3.11) 

(3.12) 

< <>,I U ( "','»)I <l>o >-< <I> ,IT exp {-'[ d" H;"'} I<>, >- j [ I} df] ~p{ ;s,. (JI'»)) 

(3.13) 
in the interaction representation in the QFT with action (3.6), where masses depend on the 
cosmological scale factor and the states defined as the irreducible unitary representations 
of the Poincare group, Hint = HsM - Ho. 

Eq. (3.8) shows us that the SM particle energy disappears in the Early Universe limit 
a ---> 0, where the initial data are defined. Therefore, we can consider the Early Universe 
neglecting all the SM particle like contribution Su ~ 0 in Eq. (2.6). 

Thus, the quantum cosmological dynamics (D) = - log a gives us a possibility to de
scribe the creation of Universe at the beginning of the proper time T 2'. 0 and the vacuum 
creation of primordial particles distinguished by their direct dilaton interactions in action 
(3.1). In comparison with the Inflationary Model, the Empty Universe in the model under 
consideration is described by the equation of state p = p, instead of inflation p = -p. 
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3.2 The Universe before particle creation 

Let us use as an example the Universe in epoch before particle creation. One can see that 
the Standard Cosmology obser~able quantities are connected with the conformal ones by 
relation (2.3) Fcn)SC = e-n(D) F(n)CC· In the epoch, the dilaton solution of the equation 
of motion 8;. (D) = 0 takes the form (D) = (D)0 + Ho(r - To). In terms of the effective 
cosmological factor a = e-(D) and conformal time dTJ = a2dr this solution becomes 

a(TJ) = ao✓l + 2Ho(TJ - TJo)- (3.14) 

In general case, the dilaton exact equations (2.12) and (2.14) in the approximation w(o) = dT] 
and W(b) · = dx(b) coincide the Friedman equations in terms of standard conformal variables 

where a'= da/dTJ and 

fl(n)(z) 

(aa') 2 = HJflcoi(z), 

2[(aa')2 + a3a"] = HJO(l)(z), 

L (2Jt(l+z) 2-JOJ, flJ=(7i)/HJ, 
J=0,2,3,4,6 

(3.15) 

(3.16) 

(3.17) 

and [lJ=o,2,3,4,6 are partial density of states: rigid, radiation, matter, curvature, A-term, 
respectively; flcoi(O) = 1, and Ho is Hubble parameter. 

The cosmological dynamics of the Conformal Cosmology (CC) differs from the accepted 
Standard Cosmology (SC) including the AC D M model (13] by a constant volume defined 
by Eqs. (2.2), running masses, conformal time, and the CME conformal temperature 
Tee= Tsea(z) = 2.725 K during the cosmological evolution process. The dilaton variables 
(2.3) and (2.2) explain the redshift by a permanent increase of all masses in the Universe (8, 
10, 14, 15]. The corresponding luminosity-distance - redshift relation H0E(z) = z + z2/2 
does not contradict the recent SN data (7]. Thus, Conformal Cosmology describes SN 
Ia data by the dominance of kinetic energy of the scalar field (3.5) and (3.14) instead of 
unknown source of dynamical inflation A0 i- A1 used in the ACDM model (13] 

Calculation of the primordial helium abundance (9, 39] takes into account weak in
teractions, the Boltzmann factor, (n/p) e.6m/T ~ 1/6, where !:::.m is the neutron-proton 
mass difference, which is the same for both SC and CC, !:::.mse/Tse = D.mee/Tee = 
(1 + z)- 1m0 /To, and the square root dependence of the z-factor on the measurable time
interval defined in Eq. (3.14) (1 + z)-1 ~ Jl + 2Ho(TJ - TJo) explained by the dominant 
rigid state. In the SC, where the measurable time-interval is identified with the Friedman 
time, this square root dependence of the z-factor is explained by the radiation dominance. 

3.3 The Initial Data Higgs Effect in the Early Universe 

Recall, that the accepted spontaneous symmetry breaking mechanism is based on the 
Coleman-Weinberg potential equation rfV((¢) 1)/d(¢)1 = 0 defined by Eq. (3.13), 

v.tr(<P1) = i~d log{/ [rr df] exp{iSsM(f/TJo)}}I ' 
Vo T/o f ,P(77,x)=¢r+h(77,x),f d3xh=O 

(3.18) 
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in the perturbation theory restricted by the constraints Br(¢) = 0 and V( (¢) 1) = 0. In 
the perturbation theory (3.5), loop diagrams also lead to an effective potential with the 
same equation <.IV( (¢)1 )/d(¢)I = 0 treated as a constraint that keeps the vacuum equation 
8;(¢) = 0. 

We would like to emphasize that the effective Higgs potential (well known as the Cole
man - Weinberg one) is compatible with both mechanisms of the spontaneous scale sym
metry breaking the kinetic one define by Eqs (3.3), (3.4), and (3.5) and the accepted Higgs 
potential with the tachyon term, and the additional potential Vq(Q) that governs the Uni
verse evolution. 

Recall that the accepted Higgs Effect is based on supposition that both the fields ( ¢, Q) 
are given in the class of the constant fields (¢(t) = ¢c1, Qc1) given by the fundamental 
parameters of the equations of motion. 

4 The Early Universe as Factory of Higgs Particles 

4.1 Cosmological creation 

The next consequence of the scalar field zeroth modes is the cosmological creation of pri
mordial particles from the stable vacuum [15] as the origin of the Universe and its matter· 
that can be associated with the event known as "Big Bang". 

Here we propose that all present-day matter content of.the Universe state 77=,70 < U/ is 
the final decay product of the primordial particles created from the stable vacuum 77=77, < 0/. 
In this case, one can obtain the expectation value '7='7o < U*/H/U >77= 770 of the energy 
constraint (3.8) in the interaction representation using the low-energy decomposition (3.11), 
(3.12) of the cosmological action (3.1) 

a2a,2 

/U >in 

HJD.rigid + a
2out< U*/Ho/U >in \1a- 1

, 

U/0 >,"-Toxp {-i l d• H,-} /0 >;.. 

( 4.1) 

(4.2) 

This density reflects the evolution of the matter content of the Universe during its life-time. 
The factor a2 = e-2(D) in action (3.1) means that at the initial instance TJ = 0, when 

there were no any particle-like excitations, < 0/n7/0 >(77=o)= 0, and hence the temperature 
was equal to zero. 

Really, at the beginning, when T/o '.:::' T/I in accord with the Eq. (4.1), we have the intensive 
creation of vector bosons v = W, Z, Higgs particles h, gravitons h TT, and an additional q
field distinguished by the direct interaction with the dilaton p1){a,,(D) in action (3.1). Due 
to this interaction the field equations in terms of creation and annihilation operators 

ary1{t(TJ) = ±iwhht(TJ) + i8,, [(D) - logwkh/2] hf(TJ) + i[Hint, ht(TJ)], (4.3) 

are not diagonal; here h(TJ, x) = Vrl Lkk2,.0 eikxhk(TJ), 
0 ' 

27r 
Whk = Jk~ + m~, ffih = amoh, k = 1/31. 

Vo 
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1 
hk(TJ) = ~ [ht(TJ) + h=dTJ)], 

y<-Whk 

In order to obtain integrals of motion in the approximation Hint ~ 0, these fi~d equations 
are diagonalized by the Bogoliubov transformation of the operator of particle ht = abt_1 + 

(J
•b- so that the free equations of motion of the Bogoliubov quasi particle become diagonal 

h l> ab±' = ±iwbb±h 
1
, where Wb is the quasiparticle energy (15, 36, 37]. The stable vacuum is 

77 h,l , defined by b;;-,
1
/0 >= 0, where b,;,1 is the operator of annihilation of a quasiparticle. 

Creation of these primordial particles started at the moment a,1 when their wavelengths 

coincided with the horizon length 

--1 [ ]-1 H--1 2 H-1 m,1 = a11m10 ~ JI = aFI o (4.4) 

as it follows from the uncertainty principle. 
In this case, the relativistic gas of primordial particles created at the instance a,1 ac-

quires the Boltzmann - Chernikov distribution function (40, 41] 

B(k, r,) = { exp [ ( ✓k2 + m} - m,) /kBTf] - 1 r 1 

0(log a - log a, 1 ). ( 4.5) 

arising due to interactions and collisions as it was shown in Ref. (42] using as an example 
the scalar field model with >.¢4 interaction (15, 42]. Here the conformal boson temperature 
Tr ~ To is determined by the collision integral kinetic equation 

n(T) = [o'r scatrri-1 (4.6) 

where ur scat is cross section, the free length re is identified with the horizon d(z) = a(z)2 Ha1 

in CC [8] 
re= [n(Tr)o'c scati-1 

'.:::' d(z) = a(z)2 Ha 1
, 

and n(Tc) is the number density: 

r, » m f Tirel (T,) 

r, ~ m f TI Maxwell (T,) 

If /fJJ,k/ 2 '.:::' /.61/ 2, it is naturally to suppose 

N ~(3)T-3 
' 7r2 ; 

N [m 1f 1 ]3/2 
f (27r )3/2 

~(3) ~ 0.1218 
~-

. 1 '""' I 21 d3k -< 0/Ho/0 > V0- = ~ .61/ (21r)3Wf,kB(k, T1 ). 
f=h,q,v,hTT 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

In this case, there is the set of arguments [14, 15] that density the primordial particles 
and their decay products can explain the present day content of the present-day density 
(4.1) and (4.6) and give us all cosmological parameters, if one supposes initial data and the 
dominance of kinetic state Prigid = p for all epochs including the IH'ginning of the Universe 
when primordial vector bosons and Higgs particles were created from vacuum. In particular, 
one can see that there is a remarkable coincidence of the wavelengths of vector bosons at 
the instance when they equal to the horizon length with the Cl\'IB temperature 

1/3 

Mw\ = [aw1Mowi-1 '.:::' Hw\ = a~1(Ho)-1 
--> aw1 = ( Ho ) = 2.68 · 10-

15
. (4.11) 

Mwo 
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with the scale factor a71 at the instance when the initial value of the CMB temperature is 
equal to the Hubble parameter 

( 
T, ) 1/2 

T7 1 = H71---> a7 1 = (1 + z):;l = ~ = 2.56 · 10-15 ~ aw1. (4.12) 

The CMB temperature estimated from standard collision integral (4.8) is close to the CMB 
temperature Tee~ (M?vH0) 1!3 ~ 3 K [42, 43, 44), if n(T) ~ T3

, a~ M;;/. Note that the 
relaxation time is less than the lifetime of the primordial vector bosons by the factor 2ow, 
where ow is the Weinberg constant. 

The lifetime T/L of primordial bosons in the early Universe can be estimated by using 
the equation of state a?vL = a2 (r,L) = a?v1[1 + 2Hwi(T/L - T/1)] and the W-boson lifetime 
within the Standard Model. Specifically, we have 

- 2 Hwi 2 aw1 _ 
a~L = 1 + 2Hwi(T/L - r,1) ~ MwL ow = awL 

0
w' aw1 

(4.13) 

where ow is the Weinberg constant and Mw1 ~ Hw1- From the solution of Eq. (4.13), 
afVL/ alv1 = (2/ ow )2

/
3 ~ 16 it follows that the lifetime of primordial bosons is an order of 

magnitude longer than the Universe relaxation time T/I = (2Hw1)-1 : 

T/L - T/1 ~ l5(2Hw1)-
1

. (4.14) 

Also the present-day data of photon density coincides with the primordial vector boson 
density, Dract ~ Mfv • a:;? = 10-34 1029 ~ 10-5 . The present-day baryon density is calculated 
by the evolution of the baryon density from the early stage, when it was directly related to 
the photon density, nb ~ °'W ~ 0.03 [15]. 

From the ratio of the number of baryons to the number of photons, one can deduce an 
estimate of the superweak-interaction coupling constant: Xcp ~ 10-9_ Thus, the evolution 
of the Universe, primary vector bosons, and the aforementioned superweak interaction (45] 
lead to baryon-antibaryon asymmetry of the Universe 

nb(T/L) ~ Xcp = 10-9_ 

n7 (T/L) 
(4.15) 

Thus, the primordial bosons before their decays polarize the Dirac fermion vacuum and 
give the baryon asymmetry frozen by the CP - violation so that for billion photons there 
is only one baryon (see [15]). 

4.2 Possible CMB data test of two photon decay of Higgs particle 

The Bogoliubov transformation of the operator of particle f: = abi,k + /3*bf,k in the matrix 
element 
out< U*I I:; HolU >in= out< U*I I::wt,kf: l 11U >in leads to three terms 

/,k 

1:1-k (abf,k + /3*b1,k)(a*bf,k + f3bt,-k) 

l/31
2 

b1,1bt,-k + lal
2 bi,kbf,-k + (a/3bi,kbt,-k + a*/3*b1,kb1,k), 
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( 4.16) 

where u is given by Eq. (4.2). Our hypothesis is that the first term is associated 
with the formation of the temperature (15] inherited by the CMB, and the second one 

< U
•j((a/3b+ b+ + a•f3•b1- kb!-k) IU >in, in the next orders of interactions Hint, give ad-

out /,k /,-k , . , 
ditional photons that can explam the CMB power spectrum by the two-gamma processes. 

Really, the arguments ( 4.11) and ( 4.12) considered before mean that the Cl\IB photons 
can inform us about the parameters of electroweak interactions and masses, including the 
Higgs particle mass (46], and a possibility to estimate the magnitude of the Cl\1B anisotropy. 

The collision integral equations (4.7) and (4.9) generalized to anisotropic decays T0 ~ 
To+ LT, a-+ a+ a

77 
gives us the formula !LT/Toi ~ (2/3)la77 /al and a possibility to 

estimate the magnitude of the CMB anisotropy. 
Its observational value about °'iED ~ 10-5 (18] testifies to the dominance of the t\rn 

photon processes. Therefore, the CMB anisotropy revealed in the region of the three pe,1b 
£1 ~ 220, £2 ~ 546, and £3 ~ 800 can reflect parameters of the primordial bosons and their 
decay processes, in particular h---> ,,, w+w--+ 11, and ZZ-+ ,,. 

In this case, two-photonic decays of primordial Higgs particles and annihilation proC'L'~~l'~ 
of primordial W, and Z bosons can explain three clear peaks in the Cl\IB po\\·er spectrnm 
without any acoustic waves with negative energy [13), if the values for mnltipo!P !llOlllL'nt,1 
f,e of their processes are proportional to number of emitters at the horizon length (p = 
H- 1(zp)M(zp) ~ (1 + zp)-3 (in accord with the new CC analysis of supernornc t~·1w L1 
data) and the energy of any photon is proportional to the mean photon em'rg~- in C\lB 
multiplied by the effective scale factor (1 + Zp)- 1 ~ £~3 in accord with the t'xperi,'lll'<' ,,f 
description of the recombination epoch and the primordial helium nbiindanl'L' [!l. :l!l]. 

One can be convinced that first three peaks £1 = 220, £2 = 546 £3 = 800 reflect th,, rnti,i 
· of w·and Z masses ' 

Mz/ Mw = 1.134 ~ (800/546) 113 = 1.136 -+ [ sin2 0w ~ 0.225] 

and the value of Higgs particle mass as 

mh = 2Mw (fi/£2)113 = 2Mw (220/546) 113 ~ 118 GeV. 

(-l.17) 

( 4.18) 

The Higgs boson mass is close to the present fit of the LEP experimental data supporting 
rather low values just above the experimental limit mh > 114.4 GeV. To get a more accurate 
estimate of the Higgs mass and a better description of the CMB power spectrum within the 
model under consideration, one has to perform an involved analysis of the kinetic equations 
for nonequilibrium Universe (44] with primordial particle creation and subsequent decays. 

5 Summary 

In the paper we tried to describe new observational data in the framework of GR and 
potential free SM, where all cosmological observables are identified with conformal variables 
[l, 3, 11, 12] and the expansion of the Universe is replaced by the mass evolution. These 
conformal variables are consistent with relativistic quantum field theory defined in the 
tangent space-time [5]. We claim that the model is compatible with a set of cosmological 
observations: the energy content of the present day Universe, the SN Ia data, the CMB 
temperature, the baryon-antibaryon asymmetry of matter in the Universe, and nb/n7 ratio. 
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It this framework we discussed a possibility to interpret three peaks in the CMB power 
spectrum in terms of the parameters of three electroweak decay processes. 

The key points of our construction are the choice of variables (2.2) and the definition 
of the time interval (2.21). 

The conformal gravitational theory (2.1) in the CMB reference frame with the initial 
data (3.5) does not contradict the following scenario of the evolution of the Universe within 
the conformal cosmology [15]: 
17 ~ 10-12 8, creation of vector bosons from a "vacuum"; 

10-12
8 < 7) < 10-108, formation of baryon-antibaryon asymmetry; 

1) ~ 10-108, decay of vector bosons; 
10-10

8 < 1) < 1011
8, primordial chemical evolution of matter; 

1) ~ 1011 8, recombination or separation of cosmic microwave background radiation; 
1) ~ 1015

8, formation of galaxies; 
1) > 1017 

8, terrestrial experiments and evolution of supernovae. 
Our description is not complete, but it gives us a clear consistent statement of the 

problems in the framework of the well established principles of classification of observational 
and experimental facts in physics and astrophysics. 

Thus, here we propose to consider the conformal gravitation theory [1] with the primary 
and secondary quantizations of its energy constraint as a basis of quantitative description 
of the creation of the Universe from vacuum. 
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ON SOME FEATURES OF COLOR 
CONFINEMENT 

Adriano Di Giacomo 
Pisa University and INFN Sezione di Pisa 

Abstract 

It is argued that a dual symmetry is needed to naturally explain experimental 
limits on color confinement. Since color is an exact symmetry the only possibility 
is that this symmetry be a dual symmetry, related to non trivial spatial homotopy. 
The sphere at infinity of 3-dimensional space being 2-dimensional, the relevant ho
motopy is Ih , the corresponding configurations monopoles, and the mechanism dual 
superconductivity. The consistency of the order-disorder nature of the deconfining 
transition is compared with lattice data . It is also shown that the only dual quantum 
number is magnetic charge and the key quantity is 't Hooft tensor, independent of 
the gauge group. The general form of the 't Hooft tensor is computed. 

1 Introduction 

Experimental upper limits to the observation of free quarks in Nature are very stringent 
(l]. Typically for the abundance of quarks in ordinary matter nq as compared to that of 
protons np the limit is nq/np ::; 10-27 to be compared to the expectation in the Standard 
Cosmological Model in absence of confinement nq/np ~ 10-12 (2]. 

The natural explanation is that nq is exactly zero due to some symmetry . In this case 
the deconfining transition is an order disorder transition and can not be a crossover. A 
crossover indeed means continuity and the theory should explain a factor of 10-15 for nq 
for a continuous transition between the two phases. 

This is similar to what happens in ordinary superconductivity , where a very small 
upper limit is observed for the resistivity Psc in the superconducting phase with respect 
to the normal one . There the transition is from a Higgs broken phase ( superconductor ), 
in which Psc is strictly zero for symmetry reasons, to a Coulomb phase (normal) in which 
electric charge is superselected. 

If this argument is correct two main questions raise naturally, namely : 
1) What symmetry is responsible for confinement ? 
2) Is an order disorder transition compatible with observation? 
No clear observation exists yet of deconfinement in heavy ion experiments. There is a 

clear evidence of it, however, in simulations of the theory on a Lattice from first principles. 
There the deconfining transition can be observed and its order and universality class can 
be determined, at least in principle. 
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2 Symmetry 
Color is believed to be an exact (Wigner) symmetry . Perturbative QC D is based on BRST 
symmetry, which is nothing but th~ statement that vacuum is a color singlet. Therefore 
color can not distinguish the confinmg phase from the deconfined one. \Vhat can then be 
an extra symmetry, besides color, which can do that? 

In quenched SU(N) gauge theory (no dynamical quarks) there is a cheap answer : the 
center of the group , ZN. The Lagrangean of pure gauge theory is indeed blind to ZN, since 
gluons belong to the adjoint representation. Usually, however , the theory is formulated on 
the lattice in terms of parallel transports in the fundamental representation, to allow the 
introduction of static quarks as external sources. ZN is then a symmetry of the particular 
regularization. Static quarks are described by a parallel transport along the time axis, the 

Polyakov line L(x). 
I 

L(x) = Pexp[i for Ao(x, t)dt] (1) 

The lattice is supposed to be extended in the time direction from zero to the inverse of the 
temperature T. The static potential acting between a static qq pair, V(x) , is related to 
Polyakov loop correlators as 

V(x) = -Tln((Lt(x)L(O))) 

Since, by general arguments, the cluster property holds 

(Lt(x)L(O)) ~ 1(£)12 + c exp(-;) 

when (L) = 0 V(x) ~x-oo CTX ( confinement) 
when (L) i- 0 V(x) ~x-➔oo constant (deconfinement). 
(L) is the order parameter and the symmetry is ZN, 

(2) 

(3) 

However in Nature dynamical quarks do exist and their coupling explicitly breaks ZN, 
which then cannot be the symmetry responsible for confinement. 

: In front of this difficulty there exist in the community two different attitudes: 
a) A narrow minded, conservative attitude : the only extra symmetry is a flavor sym

metry, namely the chiral symmetry at zero quark mass. 
b) A more advanced attitude looking for a dual symmetry related to topologically non 

trivial spatial boundary conditions. (3] (4][5][6][7][8]. 
Some comments on the attitude a). If the only relevant degrees of freedom at the 

deconfining transition at mq = 0 N1 = 2 are the chiral ones then a renormalization group 
argument leads tci the conclusion that either the transition is second order and belongs to 
the universality class of 0( 4) in 3-d , and in that case the transition at mq i- 0 around the 
chiral point is a crossover. Or it is first order and then also at small non zero masses it 
is first order[9]. The first possibility is very popular in the literature [10], but nobody has 
~ound consistency of Lattice data with the 0(4) critical indexes. More recent data[11](12], 
mstead, show consistency with a weak first order. Moreover, if chiral degrees of freedom 
Were the only relevant ones, one should expect that also in the analogous system with 2 
flavors of quarks in the adjoint representation, they should dominate. Instead that system 
shows two different transitions [13][14] : a strong first order deconfining transition which is 
detected, e.g. by the Polyakov line ( Z3 is a symmetry for adjoint quarks) and a very weak 
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chiral transition which is consistent with a cross-over. This demonstrates that there exist 
other relevant degrees of freedom than light chiral scalars at the deconfining transition. 

3 Duality 

The key word for the approach b) is duality. The prototype example is the 2-d Ising model. 
It can be viewed as the discretization of a (!+!)-dimensional field theory, the field being 
the variable a= ±1 defined on each site of a two dimensional square lattice. The partition 
function is that of a paramagnetic nearest-neighbours i, j interaction Z = E;,i exp( -f]a;ai ). 
The system has a second order phase transition from an ordered phase (a) ,f. 0 to a 
disordered phase (a) = 0 at a critical value /Jc- The system admits spatial I-dimensional 
configurations with non trivial topology, the kinks (anti-kinks), with a= -1( +1) for x :=:; x0 

and a= +1(-1) for x > x0 . The operatorµ which creates a kink at a given time reverses 
the sign of a for x :::; x 0 and time t. If it acts twice the result is the identity, so that µ 2 = 1 
orµ= ±1 . It is a theorem that[4] 

or beta~ 1/overf]*. 

Z[a, /3] = Z[µ, /3*] 
1 

sinh(2/3) = sinh(2/3*) 

(4) 

(5) 

It follows that below the critical temperature (a) ,f. 0 and (µ) = 0 , above it (a) = 0 and 
(µ) ,f. 0. A topological current jµ can be defined which is identically conserved E>.µjµ = 0 

jµ = fµ,vE>.va (6) 

The corresponding conserved charge is Q = J dxj0 (x, t) = a( +oo) - a(-oo) Is equal to 
the number of kinks minus the number of anti-kinks. In summary the system admits two 
equivalent descriptions [eq(4)]: either in terms of the local fields a, and in this description 
the topological excitations are non local (direct description) , or in terms of the dual vari
ablesµ as local variables, and then the fields u are non local (dual description). The first 
one is convenient at low temperature, the second one at high temperature. Duality maps 
the weak coupling regime of the direct description into the strong coupling of the dual, and 
viceversa. 

In (3+ 1 )dimensional field theories dual configurations have non trivial II2 correspond
ing to a non trivial mapping of the 2-dimensional sphere at infinity on the fields , and 
are monopoles. In (2+1) dimensions the dual configurations have non trivial II1 and are 
vortices. 

4 Monopoles 

Monopole configurations in non abelian gauge theories were first studied in a Higgs model 
with gauge group SU(2) and Higgs field in the adjoint representation [15][16] . Everything 
is in the adjoint representation so that the theory is blind to Z2 and is in fact an S0(3) 
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gauge theory. Monopoles of ref's[15][16] are static classical solutions of the equations of 
motion with finite energy (Solitons). In the "hedgehog" gauge the Higgs field has the form 

ra 
rpa(r) = J(r)-

r (7) 

The orientation of the field in color space coincides with that of the position vector in 
physical space. f(r) -+ 1 as r-+ oo and therefore the solution is a non trivial mapping of 
the two-dimensional sphere at spatial infinity onto the group S0(3)/U(I) , U(l) being the 
invariance group of ¢. From the general formula 

II2(G/H) = ker[II 1(H)-+ II1(G)] (8) 

valid for any breaking of a group G to a subgroup H we get [18] II2[SU(2)/U(l)] = 
IIi[U(l)] = Z and II2[S0(3)/U(l)] = Z/Z2 . In the model of ref.[15](16] configurations 
are labeled by an even integer. This integer is nothing but the magnetic charge in units of 
Dirac units fg with g the gauge coupling constant which plays the role of electric charge. 

Since a monopole is always an abelian configuration [17] ,the magnetic charge has to be 
coupled to the residual U(l) gauge group, i.e. to the abelian field strength 

Fµv = OµA~ - OvA! (9) 

where A! is the projection of the gauge field along the Higgs field <P in the unitary gauge 
in which it is directed along the third axis. 

The tensor Fµv can be given a gauge invariant form[15], which is known as 't Hooft 
tensor. Denoting by¢= <P/l<P/1 the direction of the Higgs field in color space one can show 
that [15] 

We define the current 

-- 1- - -Fµv = ¢.Gµv - -¢.(Dµrf; /\ Dv¢) 
g (10) 

jll = OµF:11 (11) 

with the usual notation for the dual tensor F;11 = ½tµvpaFpa . Normally, with trivial 
boundary conditions oµF;11 = 0 an equality known as Bianchi identity. For jv ,f. 0 one 
always has 

Ovjv = 0 (12) 

This is a topological symmetry, not related to the action via Noether's theorem and is 
our dual symmetry. The corresponding conserved charge is the magnetic charge Q = 
J d3

xj0 (x, t). For the monopole configuration one has 

E; 

ff 

Fo; = 0 
I r 
- 3 + Dirac - string 
gr 

(13) 

(14) 

In a compact formulation like lattice the Dirac string is not visible so that j
0 

= V ff = 
0p(P(r) , a violation of Bianchi identity. The monopole is a configuration of charge 2 in 
agreement with the geometric argument above. The charge Q labels the dual degrees of 
freedom. 
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The presence of the Higgs field is only necessary if one wants the monopole as a soliton and 
a real breaking of the symmetry. In fact the role of <$ can be played by any operator IV in 
the adjoint representation : monopoles will be located at the zeroes of IV , and their number 
and location will depend on the choice of IV , but a conserved current will be always defined 
as in eq(ll). However one can think of a theory defined everywhere in space time, except 
for a discrete but arbitrary number of line like singularities which describe the dual degrees 
of freedom [ Witten's geometric Langland's program[8]]. Creating a new monopole by an 
operator µ means adding a new singularity and this will be true whatever the choice of <I> • 
The vacuum expectation value (µ) will be zero if the magnetic charge is super-selected and 
the vacuum has a definite magnetic charge. If, instead, (µ) c/- 0 magnetic gauge symmetry 
is broken a la Higgs and the vacuum is a dual superconductor. (µ) can be used as an order 
parameter for confinement. 
The above construction can be extended to any gauge group coupled to any matter fields: 
the basic ingredients are indeed gauge symmetry and the fact that physical space is 3-
dimensional. For a generic gauge group there are r independent magnetic currents, with 
r the rank of the group[18]. The corresponding effective Higgs fields are the fundamental 
weights of the group. The 't Hooft tensor corresponding to each of them can be explicitly 
computed[18] and has a more complicated form than that of Eq(lO). The residual symmetry 
can be immediately read from the Dynkin diagram of the Lie algebra, and is the Levy 
subgroup obtained by eliminating the little circle of the simple root corresponding to the 
given fundamental weight [18]. 

5 The order parameter for confinement 

An order parameter for monopole condensation has been developed mainly in Pisa in recent 
years to detect dual superconductivity of QCD vacuum as explained above[19] [20][21][22]. 
The idea is to translate the component of the gauge field along the residual U(l) direction 
by a classical monopole field by use of the conjugate momentum. In formulae 

µa(x, t) = exp[i J d3y; ffa(fj, t)b1_(x - ff)] (15) 

~ is the magnetic charge of the monopole, b1_(z) = ,(;:::zJ is the vector potential of the 

field generated by it in the transverse gauge Vb= 0 V /\ b1_(z) = fa+ Dirac - String along 
the direction ii. 
fa = Tr[<I>a E] with <I>a the a - th fundamental weight is the component of the Chromo
electric field along the residual U(l) symmetry T3 coupled to the magnetic charge. In the 
convolution with b1_ only the transverse part contributes, which is the conjugate momentum 
to the transverse vector potential A'.i.3 so that 

µa(x, t)IAf(z, t)) = IA'.i.3 (z, t) + mb1-(x - z)) 
g 

(16) 

The operator µa simply adds a monopole to the residual abelian projected field. It is easy 
to show that µa depends on /3 = ~ as µa = e~f3AS" so that 

9 

a f[d¢>Je-f3(S+AS") Z(S + flSa) 
(µ ) = J[d¢>]e-f35 = Z(S) 

(17) 
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the ratio of two partition functions, which is 1 at /3 = O. 
If we define[20] [21] pa= ain~t")), we get then 

(µa) = exp(j d/31pa(/31)d/31
) (18) 

If a deconfining transition exists at T = Tc , in the thermodynamical limit V--+ oo[20l[21] 
1) pa--+ if' a finite limit for T :S Tc so that (µa) c/- 0 (confinement) 
2) pa ex -V½--+ -oo for T > Tc so that (µa)= 0 (deconfinement) 
3) At T ~ Tc (µa) drops to zero and therefore pa has a negative peak, which signal the 

transition. Moreover the finite size scaling dependence on the spatial size of the system L, 
(L~ = V) is 

l l 
pa= L,ef>a(rLs) (19) 

where T = 1-f is the reduced temperature, and v the usual critical index of the correlation 
length at the transition. Not only pa (or µa) detects the transition , but it also provides 
information on its order and universality class . 

The behavior described above has been checked in a number of systems, in particular to 
study the phase diagram of Ni = 2 QCD at small quark masses[23]. In the physical case 
where the quarks are in the fundamental representation the deconfining transition coincides 
with the chiral transition: the negative peak of pa seats just at the temperatore where the 
chiral order parameter ('¢¢) drops to zero. The scaling Eq(19) is compatible with a weak 
first order transition. In the case of the quarks in the adjoint representation of the color 
group the deconfining transition takes place at lower temperature than the chiral one, it is 
detected by pa (µa) and is consistent with first order[14]. The chiral restoration is instead 
consistent with a very weak crossover. 

6 Order-disorder and Lattice 

The deconfining transition is popularly believed to be a crossover in a wide region of the 
QCD phase diagram[ See e.g. ref.[10] for a review]. This only means that no evident 
jump of any physical quantity has been detected up to presently available volumes. In 
principle it is not possible to state on the basis of data [ numerical or experimental] that 
a transition is a crossover and not a weak first order: the only correct statement can be " 
this transition is consistent with a crossover up to the presently available volumes". There 
are cases , however, in which theoretical arguments allow to state that there is a crossover. 
For example in N1 = 2 QCD if the chiral transition at mq = 0 is second order then by 
general arguments at small masses in the neighborhood of mq = 0 the transition will be a 
crossover. [ Notice that we are here using a rather improper language by calling transition 
a crossover.] We have already touched this question in Section 2 above. It is therefore very 
important to check if the chiral transition is first order or second order in the universality 
class of 0( 4). In the first case the transition is first order also at mq # 0 , a scenario 
compatible with an order-disorder nature of the deconfinement transition. If, instead the 
chiral transition proves to be second order then it becomes a crossover at mq c/- 0, and 
order-disorder is ruled out. In the second case there is no way to define confinement and 
deconfinement[ll ][12] . This analysis can be done by use of finite size scaling techniques: the 
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behavior of quantities like e.g. the specific heat or the susceptibility of the order parameter 
with increasing volume is governed by the critical indexes which are characteristic of the 
order and universality class of the transition. No consistency has been found of the scaling 
with second order 0(4) [10]. In ref.[11] new tools of investigation were introduced with 
respect to the previous literature: for example the specific heat, which is independent on 
any prejudice on the symmetry, was used besides the chiral susceptibility, and a better 
determination of the reduced temperature including its dependence on the quark mass. 
The scaling law for the specific heat reads 

9. l 
Cv - Co= L;<P0 (TLs,mqL;") (20) 

C0 is a subtraction corresponding to a quadratic divergence, which is ultraviolet and hence 
independent on the volume and on the quark mass. The critical index a is equal to 1 for a 
weak first order transition , whilst for second order 0(4) a = -0.2 , 11 = ½ for weak first 
order, v = .748(14) for second order 0(4), Yh = 3 for weak first order and Yh = 2.48 for 
second order 0(4). In the analysis of Ref[lll[12] first C0 was determined and verified to be 
independent on L, and on mq. Then a number of simulations were made in which one the 
two variables of the scaling function if> of eq(20) was kept fixed in turn assuming either 0(4) 
or weak first order. Keeping the second variable fixed while varying mq and L, with the 
appropriate value of Yh, ;he scaling in the other variable can be tested. In particular at the 
maximum Cv - C0 ex Lf The scaling is compatible with first order and definitely excludes 
0(4) : indeed for 0(4) a is negative, but the peak strongly increases wit L,. Keeping the 
first variable fixed instead, if the transition is first order one expects [12] at large volumes 

Cv - C0 = m;1<1P)(TV) + V¢Pl(TV) (21) 

The first term is non singular in the thermodynamical limit, the second term is singular 
and produces a latent heat . In the case of second order instead there is no singularity and 
only the analog of the first term is present[ll] namely 

~ 1 

Cv - Co= m;"" </>(TL%) (22) 

The importance of the second term increases with the volume and becomes dominant at 
large enough volumes. For very weak first order transitions the first term is dominant up 
to large volumes. The present situation with N1 = 2 QC D is that the first term is still big 
[11][12], and scales with the indexes of weak first order, i.e. as the first term of eq(21): the 
second term is there but is not dominant at present volumes. More work is needed to give 
a final clear answer to the question. 

7 Conclusions 

The only way to have an operative definition of confinement and deconfinement is to have 
a symmetry to distinguish them . This also appears to be the natural explanation of the 
strict upper limits on the observation of free quarks in nature. Color is an exact symmetry, 
and hence the possibility of a symmetry governing confinement relies on duality. This 
means excitations with non trivial IT2 , i. e. monopoles. Dual superconductivity is then 
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the candidate mechanism for confinement. This is independent on the gauge group and on 
the specific matter fields coupled to it. An order parameter can be defined for the dual 
symmetry, which is the expectation value of an operator which carries magnetic charge. 
Lattice data support this scenario in Ni= 2 QCD and seem to exclude 0(4) second order 
chiral transition, which would imply a crossover at mg =J O which is not compatible with 
order-disorder transition. More work is needed to definitely clarify the issue. · 
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Abstract 

Here I give a more detailed account of the part of the conference report that 
was devoted to reinterpreting the Einstein 'unified models of gravity and electromag
netism' (1923) as the unified theory of dark energy (cosmological constant) and dark 
matter (neutral massive vector particle having only gravitational interactions). Af
ter summarizing Einstein's work and related earlier work of Wey! and Eddington, I 
present an approach to finding spherically symmetric solutions of the simplest vari
ant of the Einstein models that was earlier mentioned in Weyl's work as an example 
of his generalization of general relativity. The spherically symmetric static solutions 
and homogeneous isotropic cosmological models are considered in some detail. As the 
theory is not integrable we study approximate solutions. In the static case, we show 
that there may exist two horizons and derive solutions near horizons. In cosmology, 
we show how to find the asymptotic expansions and study in some detail the possible 
solutions near the origin. These solutions satisfy.the Friedmann equations, with the 
energy density and pressure expressed in terms of the cosmological constant and the 
vector field. The structure of the solutions seems to hint at a possibility of an inflation 
mechanism that does not require adding scalar fields. 

Introduction 
In this report I give a new interpretation of the 'unified theory of gravity and electromag
netism' proposed by A.Einstein in 1923 in [1] and briefly summarized in [2]. Einstein gave 
no details of his derivations, presented no exact or approximate solutions, and did not ex
plain why he completely abandoned his theory (I failed to find any reference to his papers 
[1] - [2] in his later work). Apparently these papers were soon forgotten by the scientific 
community and I could not find any reference to these papers in the second half of the 
20-th century except for interesting remarks by Schrodinger [3] and a critical discussion by 
Pauli in addenda to the English translation of his famous book [4]. For these reasons, I 
first give a brief historical introduction summarizing Einstein's ideas and results as well as 

earlier related work of Wey! and Eddington. 

• Alexandre.Filippov@jinr.ru 
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Immediately after the general relativity was formulated in its final form (1915 -1916) 
some attempts to modify it started. Einstein himself added the cosmological constant term 
A to save (unsuccessfully) his static cosmology. After Friedmann's work (1922-1924) this 
modification was becoming more and more dubious. Wey!, after 1918, developed a much 
more serious modification aimed at unifying gravity and electromagnetism (most clearly 
summarized in [5]). Starting from Levy-Civita's ideas on a general (non-Riemannian) con
nection (1917) he developed the theory of a special space in which the connection depends 
both on metric tensor and on a vector field which he tried to identify with the electro
magnetic potential. To get a consistent theory he introduced a general idea of gauge 
invariance which survived although the theory itself failed as he admitted later. In paper 
[6] Einstein discussed Weyl's theory and expressed (like Pauli in [4]) the opinion that the 
theory is mathematically very interesting but probably not physical, at least, in its original 
formulation. 

In 1919 Eddington proposed a more radical modification of general relativity [7], [8]. 
His idea was to start with the pure affine formulation of the gravitation, i.e. using first 
the general symmetric affine connection and only at some later stage introducing a metric 
tensor. Indeed, the curvature tensor can be defined without metric (here we use Einstein's 
notation [1] but denote differentiations by commas): 

•k1m = -rt1,m + r~lrkm + rtm,1 - r~mrk! · (1) 

Then the Ricci-like (but non-symmetric) curvature tensor can be defined by contracting 
the indices i, m. (or, i, l): 

•kl= -rkl,m + r;;irkm + rkm,l - r;;imrkl (2) 

(let us stress once more that r:;i = r;:: but 'kl f= r1k)- Using only these tensors and the anti
symmetric tensor density one can build up a rather rich geometric structure. In particular, 
Eddington discussed different sorts of tensor densities [8]. A notable scalar density is 

.C = ✓-det(rk1) = Fr (3) 

which resembles the fundamental scalar density of the Riemannian geometry, ✓-det(gk1) = 
A. For this and some other reasons Eddington suggested to identify the symmetric part 
of 'kl with the metric tensor. The anti-symmetric part, 

¢kl= ~(rkm,l - rr,:,,k)' r/Jkl,m + r/J1m,k + r/Jmk,l = 0 , (4) 

strongly resembles the electro-magnetic field tensor and it seems natural to identify it with 
this tensor. Eddington tried to write consistent equations of the generalized theory but this 
Problem was solved only by Einstein. 

The starting point of Einstein in his first paper (72 in [1]) was to write the action 
principle and to suppose (3) to be the Lagrangian density depending on 40 connection 
functions fiJ. Varying the action w.r.t. these functions he derived 40 equations that 
allowed him to find the general expression for fjJ (the derivation is similar to that of the 
standard general relativity): 

rm 1 [ mn ( ) •n 1 ( .cm • .cm • )] 
kl = 2 S Skn,l + S1n,k - Skl,n - Skl l + :J Uk ll + Ul lk , (5) 
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Here Skt is a symmetric tensor (smn is the inverse matrix to ski), which Einstein interpreted 
as the metric tensor ( then the first term is the Christoffel symbol for this metric), and in 
is a vector which he tried to connect with the electro-magnetic field. This identification 
apparently follows from the equations 

Tkl = Rkl + i[(ik,l - i1,k) + ikii), 

<Pkl = i(ik,I - i1,k), 

(6) 

(7) 

which can be obtained by inserting the expression (5) into (2), (4); Rkt is the standard Ricci 
curvature tensor for the metric Ski. Einstein's interpretation of <Pkl as the Maxwell field is 
not so natural because of the term ikil in the r.h.s. of Eq.(6) which in fact makes this inter
pretation impossible. First, this term is not gauge invariant (but the gauge invariance was 
not yet discovered, the first clear formulation of the gauge principle was given by V.Fock 
in 1926). For Einstein, the main problem was that the electro-magnetic field in this theory 
could not exist without charges (i.e. there is rio free field). To solve this problem he sug
gested to make this term 'infinitesimally small' by choosing the corresponding dimensional 
constant (above, we omit all dimensional constants that can easily be restored). But we, 
today, cannot be satisfied with this solution because this term violates gauge invariance 
and makes the photon effectively massive (while it is known that there exist no continuous 
transition from the massless to massive photon theory) 1. We return to discussing these 
facts, on which our interpretation of the Einstein theory is based, after considering the final 
proposals of Einstein. 

In his first paper ( 'Zur allgemeinen Relativitiitstheorie '), he considered two limiting 
cases. He showed that, when the in-terms in the connection vanish, the theory is equivalent 
to the standard general relativity with the cosmological term that emerges naturally and 
cannot be removed. In the flat space limit he demonstrated that weak fields <Pkl (linear 
approximation) satisfy the free Maxwell equations provided that the imin-terms can be 
neglected. In the second paper (73 in [l]) he gave the following expression for the effective 
Lagrangian density: 

. ✓ . 1 .C = -2-det(rmn) + R - 6smnimin. (8) 

This should be varied w.r.t. Bk! and Jkl, which are the tensor densities defined with 
the aid of the scalar density J-det(sk1) and corresponding to the tensors in the de
composition, 

Tk/ = Ski + <Pkl ; (9) 

R is the scalar curvature density for the metric ski. The Lagrangian (8) contains a very 
complex term ✓-detrmn which is more general than the so called Born-Infeld Lagrangian 
proposed ten years later (10] (the first attempts to construct nonlinear electro-dynamics 
were undertaken in (11]). Apparently, Einstein did not try to find any particular solution of 
this theory and, instead, in the beautiful third paper' Zur affinen Feldtheorie' (74 in (1]) he 
proposed a significantly simpler effective Lagrangian that is the main subject of this paper. 

1The present best experimental upper bound on the photon mass is m., < 10-51g [9]. Theoretical 
wisdom says that it must be zero. 
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'J ;i 
i As he mentioned in the first two papers the actual form of the Lagrangian is unimportant 

for getting the connection (5), the only important thing is on which. variables it depends. 
The main idea of the third paper is to take for the Lagrangian .C an arbitrary function 

of Ski and ¢kl .
2 

Then he introduces the Legendre transformation and the transformed 
(effective) Lagrangian density .C*: 

{)£ ·kl 
--=g , 
OSk/ 

{)£ = /kl; 
O<Pkl 

{)£* 
Ski= o[/1' 

Introducing the Riemann metric tensor 9kt and the ik-vector, 

{)£,* 
<Pkl = {)jkl (10) 

9klH = [ll, 9kl im = OJ:'; ? = oifkl, (11) 

he claims (without proof) that Eq.(5) is valid with ski replaced by 9kt and thus the affine 
geometry is the same for any .C(sk1, <Pk1). Finally, he uses the freedom in choosing £,*(f/1, jk1) 
and proposes the following effective Lagrangian density: 

• 1 .kl 
C = 2o.Fij- -/3!kif , 

2 (12) 

where a and /3 are some constants not defined by the theory. This Lagrangian incorporates 
main properties of the theory discussed in previous papers but is easier to deal with. 

To further clarify the relation of the new theory to general relativity· Einstein rewrite 
the Lagrangian so that the equations of motion can be obtained by varying it in the metric 
and the vector field tensors, 9kt and fkl. Neglecting dimensions (for example, taking n = 
c =;;, = 1) and changing Einstein's notation we write it as follows: 

f, = Fii[R- 2A- Fktpkl _ m 2AkAk], 
Fkl = Ak,l - Ak,l . (13) 

Now it is absolutely evident that the vector field Ak is not the Maxwell field. 3 Obviously, 
Ak is a neutral massive vector field with coupling to gravity only. We will call it vecton, 
that is an old fashioned but proper term for this 'geometric' particle. This particle has not 
been directly observed but it can be considered as one of the possible candidates for dark 
matter. In view of the fact that the affine theory also predicted the cosmological constant 
term which is one of the best candidates for explaining dark energy, Einstein's theory 
may be considered as the first unified model of dark energy and dark matter. 

Before we turn to further study of this model let us finish our presentation of its history. 
If you compare the Einstein model with the concrete models proposed in Weyl's book [5], 
you will find that Lagrangian similar to Eq.(13) is one of Weyl's examples. Einstein's 
and Wey! motivations and approaches were quite different, and the \Vey! connection does 
not coincide with Eq.(5) (see Addendum). Weyl's approach was mostly geometrical and he 

2

In his previous work Einstein implied that f, depends on rkt • At this point he quoted an unpublished 
work of 'Droste {from Leiden)' who 'two years ago expressed similar views'. The meaning of this rather 
cryptic remark is clarified in paper 75 {in [2]), where he confirms that {Johannes) Droste proposed to use 
a similar effective Lagrangian and, possibly a similar model {maybe, without cosmological constant). 3

Einstein tried to identify Ak with a 'cosmic current' (this explains his notation ik)- A similar identi
fication reappeared much later in quantum field theory (in the vector dominance model) under the name 
'field-current identity'. However, it is meaningless in the classical Maxwell theory. 
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Here Skt is a symmetric tensor (smn is the inverse matrix to ski), which Einstein interpreted 
as the metric tensor (then the first term is the Christoffel symbol for this metric), and in 
is a vector which he tried to connect with the electro-magnetic field. Tins identification 1 

apparently follows from the equations 

Tkl = Rkt + i[(ik,l - i1,k) + ikii), 

<pk/ = i ( ik,l - i1,k) , 

(6) 

(7) 

which can be obtained by inserting the expression (5) into (2), (4); Rkt is the standard Ricci 
curvature tensor for the metric Skt. Einstein's interpretation of ¢kl as the Maxwell field is 
not so natural because of the term iki1 in the r.h.s. of Eq.(6) which in fact makes this inter
pretation impossible. First, this term is not gauge invariant (but the gauge invariance was 
not yet discovered, the first clear formulation of the gauge principle was given by V.Fock 
in 1926). For Einstein, the main problem was that the electro-magnetic field in this theory 
could not exist without charges (i.e. there is no free field). To solve this problem he sug
gested to make this term 'infinitesimally small' by choosing the corresponding dimensional 
constant (above, we omit all dimensional constants that can easily be restored). But we, 
today, cannot be satisfied with this solution because this term violates gauge invariance 
and makes the photon effectively massive (while it is known that there exist no continuous 
transition from the massless to massive photon theory)1. We return to discussing these 
facts, on which our interpretation of the Einstein theory is based, after considering the final 
proposals of Einstein. 

In his first paper ( 'Zur allgemeinen Relativitiitstheorie'), he considered two limiting 
cases. He showed that, when the in-terms in the connection vanish, the theory is equivalent 
to the standard general relativity with the cosmological term that emerges naturally and 
cannot be removed. In the flat space limit he demonstrated that weak fields ¢kl (linear 
approximation) satisfy the free Maxwell equations provided that the imin-terms can be 
neglected. In the second paper (73 in [1]) he gave the following expression for the effective 
Lagrangian density: 

f = -2J-det(rmn) + R- ~smnimin. (8) 

This should be varied w.r.t. Bkt and Jkl, which are the tensor densities defined with 
the aid of the scalar density J-det(sk1) and corresponding to the tensors in the de
composition, 

Tkt = Sk/ + <pk/; (9) 

R is the scalar curvature density for the metric ski· The Lagrangian (8) contains a very 
complex term ✓-detr mn which is more general than the so called Born-Infeld Lagrangian 
proposed ten years later [10] (the first attempts to construct nonlinear electro-dynamics 
were undertaken in [11]). Apparently, Einstein did not try to find any particular solution of 
this theory and, instead, in the beautiful third paper' Zur affinen Feldtheorie' (74 in [1]) he 
proposed a significantly simpler effective Lagrangian that is the main subject of this paper. 

1The present best experimental upper bound on the photon mass is m,, < 10-51g [9]. Theoretical 
wisdom says that it must be zero. 
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As he mentioned in the first two papers the actual form of the Lagrangian is unimportant 
fdr getting the connection (~), the on~y important thing is on which. variables it depends. 

The main idea of the third paper 1s to take for the Lagrangian £ an arbitrary function 
of Ski and ¢kl .2 Then he intr9duces the Legendre transformation and the transformed 

(effective) Lagrangian density£*: 

8£ _ •kl 
- =9' 
8Skl 

af =P1; 
8rpkl 

af• 
Ski= 8gkl' 

Introducing the Riemann metric tensor 9kl and the ik-vector, 

af• 
<pk/= 8jkl 

l 1H = l 1, 9klim = c5',;'; ? = 8ifkl, 

(10) 

(11) 

he claims (without proof) th~t Eq.(5) is valid with Skt replaced by 9kt and thus the affine 
geometry is the same for any £(ski, ¢kt), Finally, he uses the freedom in choosing C*(gk1, fk1) 
and proposes the following effective Lagrangian density: 

·• t-::. l 'kl £ = 2ay-g- ;/Jfktf , (12) 

where a and /3 are some constants not defined by the theory. This Lagrangian incorporates 
main properties of the theory discussed in previous papers but is easier to deal with. 

To further clarify the relation of the new theory to general relativity Einstein rewrite 
the Lagrangian so that the equations of motion can be obtained by varying it in the metric 
and the vector field tensors, 9kl and !kt. Neglecting dimensions (for example, taking 1i = 
c = 1,, = 1) and changing Einstein's notation we write it as follows: 

f = yLg [R - 2A - Fk1Fk1 - m2 AkAk], Fkl = Ak,l - Ak,l . (13) 

Now it is absolutely evident that the vector field Ak is not the Maxwell field. 3 Obviously, 
, Ak is a neutral massive vector field with coupling to gravity only. We will call it vecton, 
. that is an old fashioned but proper term for this 'geometric' particle. This particle has not 
been directly observed but it can be considered as one of the possible candidates for dark 
matter. In view of the fact that the affine theory also predicted the cosmological constant 
term which is one of the best candidates for explaining dark energy, Einstein's theory 
may be considerer) as the first unified model of dark energy and dark matter. 

Before we turn to further study of this model let us finish our presentation of its history. 
If you compare the Einstein model with the concrete models proposed in Weyl's book [5], 
you will find that Lagrangian similar to Eq.(13) is one of Weyl's examples. Einstein's 
and Weyl motivations and approaches were quite different, and the Weyl connection does 
not coincide with Eq.(5) (see Addendum). Weyl's approach was mostly geometrical and he 

2
In his previous work Einstein implied that f_ depends on rk1 . At this point he quoted an unpublished 

work of 'Droste {from Leiden)' who 'two years ago expressed similar views'. The meaning of this rather 
cryptic remark is clarified in paper 75 (in [2]), where he confirms that (Johannes) Droste proposed to use 
a similar effective Lagrangian and, possibly a similar model (maybe, without cosmological constant). 

3
Einstein tried to identify Ak with a 'cosmic current' {this explains his notation ik)- A similar identi

?cation reappeared much later in quantum field theory {in the vector dominance model) under the name 
field-current identity'. However, it is meaningless in the classical Maxwell theory. 
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wrote the Lagrangian as a simplest illustration of possible physical applications, r;sponding 
to criticism by Einstein, Pauli and other physicists. Einstein was most interested in physics 
and, especially, in cosmology. Wey! criticized Einstein for his departure from geometric 
foundations of physics, in particular, for his derivation of geometry from the variational 
(action) principle which, probably, was his main achievement in the third paper. Note 
also that Wey! included the cosmological term only to avoid contradiction to Einstein 
cosmology of that time ('before Friedmann') while in the original Einstein model (3), (7) 
it was unavoidable. I think that, conceptually, the model (13) is a step backwards, in 
comparison with the original theory, (3), (8). There were, probably, two reasons for this 
step. First, Einstein's deep belief in simplicity of fundamental laws (' ... aber boshaft ist 
Er nicht'). Second, his disappointment4 in static cosmology after accepting Friedmann's 
results, [12]. Anyway, in his last papers on affine theory [2] he set the cosmological term to 
zero what is impossible in the original theory and quite unnatural in the framework of the 
affine approach. 

Above, we also mentioned work and ideas of Eddington. The intensive exchange of ideas 
between Einstein, Wey! and Eddington resulted in interrelations in their work (published in 
1918-1923) that are difficult (and, possibly, unnecessary) to disentangle. As the construc
tive ideas of the affine theory were mostly created by Wey!, Eddington, and Einstein, the 
resulting model should probably be called Einstein-Wey I-Eddington unified model of 
dark energy and dark matter. However, as far as I am here discussing the concrete 
Lagrangian (13), I call it Einstein-Wey! model. 

Before turning to new results let us briefly summarize the results and thoughts of Wey!, 
Eddington, and Einstein. 1. Wey! had a very clear and original geometric ideas, but: a) 
his physics was rightly criticized by Einstein, Pauli, and other physicists, b) he considered 
the theory as a unified theory of gravity and electromagnetism but his vector field was 
also not electro-magnetic, c) his discussion of dynamics was incomplete and he himself 
regarded it as preliminary. Nevertheless, it is possible that not all the potential of the 
Wey! ideas is understood and used. 2. Eddington proposed to use, instead of the Weyl's 
non-Riemannian 'metrical spaces', the most general spaces with symmetric affine connection 
(without torsion). He discussed possible invariants that can be used in physics, in particular, 
the square root of the determinant of Rkt . 5 He proposed to consider the symmetric part 
of the curvature matrix as the metric in the general space and the anti-symmetric one as 
the electro-magnetic field tensor. In later works he discussed a possibility to use this as 
a Lagrangian (long before the proposal of Born and Infeld). However, he did not find a 
consistent approach to dynamics. 3. Einstein started with formulating dynamics by use 
of the Hamilton principle similar to one proposed by Pa!atini in general relativity. The 
new (and crucial) idea was not to introduce any metric at the beginning and not to fix any 
special form of the affine connection (apart of the symmetry condition). He soon realized (in 
paper 74), that he does not need to use a concrete form of the Lagrangian that can be just 
any function (tensor density) of ski and ¢k1-matrices (see (9-11)). For any such Lagrangian 

4In 1917 de Sitter discovered a non-static solution of the empty - space Einstein equations with the 
cosmological constant. In 1923 Wey! and Eddington found the effect of recession of test particles in the 
de Sitter universe. Thus A was becoming useless and Einstein finally dismissed it in 1931, after Hubble's 
discovery (1929). 

5In addendum to [8], where he gave a clear and detailed account of the Einstein work [l], he also 
discussed another scalar density that was proposed by R. Weitzenbiick 
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he proved that the affine connection allows one to introduce a symmetric metric and found 
the expression for connection. Both Einstein's and Weyl's expressions are special cases of 
the general formula for the symmetric connection (see Appendix). 

The most important thing is the following: supposing that the equations of motion follow 
from an action· principle with the general Lagrangian fixes the geometry ( connection) and, 
eventually, allows one to fix some metric compatible with this non-Riemannian connection. 
Another important thing is that the action can be (and should be) written without metric. 
Using in paper 74 the Legendre transformation Einstein bypassed difficulties that were met 
on this way and wrote more tractable effective Lagrangian, but some conceptually beautiful 
and important features of his new theory were thus hidden (or even lost). 

Apparently, Einstein was disappointed in the cosmological constant and also gradually 
realized that his interpretation of the anti-symmetric field as the electro-magnetic field was 
not quite satisfactory. Anyway, he completely abandoned this model and left no detailed 
account of his work. He did not mention any static or cosmological solutions even in the 
simplified version of the theory, (13). In this paper we try to fill this gap and establish 
grounds for comparing this model to the present day cosmology. 

2 Spherical reduction - static and cosmological solu-
tions 

2.1 Vecton-dilaton gravity 

At first sight, the theory (13) is very close to the well-understood Einstein-Maxwell the
ory which can be obtained when m = 0. However, we will show that the two theories 
are qualitatively different and it is hardly possible to construct a reasonable perturbation 
theory in the parameter m2 • We start our qualitative analysis without assuming that this 
parameter is small. The natural object for this analysis is the spherically reduced theory. 
When m = 0, the theory automatically reduces to rather simple one-dimensional equations 
that can be explicitly solved. The solution is the Reissner - Nordstrom black hole (when the 
electric charge vanishes it reduces to the Schwarzschild black hole). In general, when grav
ity couples to other (not electro-magnetic) fields the spherically reduced theory is described 
by two-dimensional differential equations which are not integrable except very special cases 
(for many examples and references see, e.g., [13]-[17].). 

Following the approach to dimensional reduction and to resulting 1 + 1 dimensional dila
ton gravity (DG) developed in papers [15]-[19] it is not difficult to derive these equations. 
The general spherically symmetric metric is (i,j = 0, 1; x0 = t,x1 = r): 

ds2 = g;i(t, r) dxidxi + cp(t, r)(sin2 0 d0 + d¢2
). (14) 

Supposing that all other functions also depend on t, r, inserting the metric (14) into the 
action with the Lagrangian (13), and integrating out the angle variables 0, <Pone can derive 

77 



the following effective two-dimensional Lagrangian6
: 

t,(2l = J=g[cpR(2l + 2- 2Acp + (8cp) 2/2cp- cpF;1Fii - cpm2AiAt (15) 

where R(2l is the two-dimensional Ricci curvature depending on the g;1 . It is convenient to 
remove the fourth term by the Wey! rescaling of the metric, 9ii = cp-½ g;J. Below we use 
the transformed Lagrangian, 

t,[;} = J=g [<P R(2) + 2<P-1/2 _ 2Acp1/2 _ <P-3/2 p2 _ <P m2 A2]. (16) 

It is easy to derive the equations of motion which in a generic metric 9ii are equivalent 
to the Einstein equations for the spherically symmetric solutions of the four-dimensional 
theory (13). By varying w.r.t. the diagonal metric functions 9ii we fist write the energy 
and momentum constraints. In the light cone (LC) metric, ds2 = -4f(u, v) du dv, these 
constraints are simple: 

f8i (Diep/!)]+ cpm2A; = 0, i =u,v. (17) 

The constraints (17) should be derived using the general metric 9iJ. The other equations 
of motion may be obtained directly in the LC-metric: 

8,,8v <P + f (2cp-1/2 - 2Acp1/2 - ~<P3/2 r2 F:v) = 0, Fuv = Au,v - Av,u , 

81 ( <P3/21-1 Fii) = <P m2 A1 i,j = u,v. 

(18) 

(19) 

From the last equation immediately follows that Dv(<PAu) + 8,,(cpAv) = 0 . In the original 
four-dimensional theory this is the Dµ(AAµ) = 0 condition eliminating spin 0. Wey!, 
Eddington and Einstein called it the Lorentz condition although we know that its origin 
and meaning are quite different from the gauge fixing condition in the Maxwell theory first 
introduced by L.Lorenz and later popularized by H.A.Lorentz. 

This dilaton gravity coupled to massive vector field (I suggest to call it vecton-dilaton 
gravity, VDG) is more complex than the well studied models of dilaton gravity coupled 
to scalar fields and thus it requires a separate study. The natural first question is: are 
there exact analytical solutions like Schwarzschild or Reissner-Nordstrom black holes? If 
the vector field is constant, we return to exactly soluble DG having explicit solutions with 
horizons. Otherwise, when the vector field is nontrivial, the answer is more difficult to find 
but it is worked out in some detail below. The second question is: what are the simplest 
cosmological solutions in this theory? Thus, the first thing to do is to further r~duce the 
theory to static or cosmological configurations. Consider first the static reduction. 

2.2 Static states and horizons 

The simplest way to derive the corresponding equations is to suppose that all the functions 
in the equations depend on r = u + v . But this is not the most general dimensional 

6Very similar effective Lagrangians can be obtained from the higher-dimensional analogs of the La
grangian (13). On the (1+1)-dimensional level it is not difficult to include other sorts of matter that 
appear in reductions of higher-dimensional supergravity theories (for references see, e.g., [15] - [17]). I hope 
to discuss some of these generalizations in future publications. 
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reduction of the two-dimensional theory. There exist more general ones that allow us to 
simultaneously treat black holes, cosmologies and some waves. These generalized reductions 
were proposed in papers [20], [21 ], [17] devoted to dilaton gravity coupled to scalar fields 
and Abelian gauge fields; here we only discuss in some detail the static and cosmological 
reductions. In both cases it can be seen that the perturbed theory (with a nonvanishing 
mass term) is qualitatively different from the non-perturbed one. Indeed, the non-perturbed 
theory is just dilaton gravity coupled to electromagnetism. This model is equivalent to pure 
dilaton gravity, which is a topological theory. In particular, it automatically reduces to one
dimensional static or cosmological models that can be analytically solved. Static states are 
the Reissner-Nordstrom black holes perturbed by the cosmological constant and having two 
horizons, while the space between horizons may be considered as an unrealistic cosmology. 
This object is known from 1916 times; certainly it was familiar to Einstein in 1923 but 
he did not discuss the static configuration and apparently did not consider black holes or 
horizons as having any relation to physics. 

Let us now write the static equations corresponding to the naive reduction to one spatial 
dimension. To obtain them one can reduce either the equations or the Lagrangian. Follow
ing [19], [22], we write the equations of motion in a somewhat unusual form. Let us define 
two additional functions, X and B, by the equations (the prime denotes differentiations 
w.r.t. r) 

cp'(r) = x(r), A'(r) = f(r)cp- 312(r)B(r), (20) 

where, as follows from Eq.(19), Av(r) = -A,,(r) = -A(r). Then the other equations are 

x' = -JU, 1 
B' = --cpm2A, 

2 

where we defined the potential 

f' = (f Ix)[-JU+ cpm2 A2], 

U = 2(cp-1/2 _ Acpl/2 _ <P-3/2B2) 
1 

(21) 

(22) 

These equations are not integrable and cannot be solved analytically. To get numerical 
solutions we first have to study the analytic and asymptotic properties of their solutions. 

Here we only consider solutions near possible horizons that are defined as zeroes of 
the metric, f --+ 0 for finite values of cp --+ <Po. It is not difficult to understand that we also 
should require that A is finite near the horizon. To study the behaviour of the solutions for 
small values of (p = cp - <Po it is most convenient to consider the solutions as functions 
of cp. Further analysis shows that the solutions can be expanded in power series of (p and 
that the functions F = f /x and A= A/x should be finite. Thus we have: 

F'(cp) = cpF(cp) m2A.2(cp), x'(cp) = -F(cp) U(cp), 

A'(cp)x(<P) = F(cp) [cp-312 B(cp) + U(cp)A(cp)], 
1 2 -B'(cp) = - 2cpm A(cp), 

(23) 

(24) 

where now the prime denotes differentiation in the new variable cp. It is not very difficult to 
show that <Po, Ao, B0 , F0 can be taken arbitrary up to one relation that should be satisfied 
due to the second equation (24): 

- -3/2 
Ao Uo + <Po Bo = 0 , Uo = U(cpo, Bo). (25) 
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This equation can be solved w.r.t any parameter. It is interesting to see that it has two 
solutions for <po which means that there may exist two horizons7 as distinct from the 
Schwarzschild black hole. Note that the solutions with different F0 are equivalent because 
the equations are invariant under the scale transformation F ⇒ CF, x ⇒ Cx. 

Now, following the method of [22], one can find several terms in the expansion of the 
solution. Unfortunately, it is not clear how to construct the complete expansion and there
fore our derivations do not allow us to study global properties of the solutions. They say 
nothing about asymptotic properties and singularities which should be the subject of sep
arate investigations. 8 When the qualitative properties of the black hole type solutions will 
be understood, the static solutions and their formation can be studied by numerical sim
ulations. As far as I know, the coupling of massive neutral vector particles to gravity did 
not attract much attention (see, however, numerical simulations of the critical collapse of 
a massive vector field in [24]). 

2.3 Cosmology 

Let us turn to cosmological reductions. The simplest cosmology can be obtained by the 
same naive reductions as was used for static states. However, this cosmology does not 
coincide with the homogeneous isotropic Friedmann type cosmology. In addition, it can 
be shown that cosmologies derived by such a naive reduction are closed. If we wish to 
to get Friedmann type cosmologies from the vecton dilaton gravity corresponding to the 
spherically symmetric world, we must employ a more complex procedure of dimensional 
reduction to 1+0 dimension, which was described in [21]. If we only wish to write a 
Friedmann type cosmology, we can simply use the standard approach and directly obtain 
the effective ( 1 +0 )-dimensional Lagrangian 9 

Cc= 6kea+-y - 6c'l:2e3"-'Y - 2Ae3"+'Y + 1i2e0
- 7 - m2 A 2e0 +-Y, 

where the effective (1+1)-dimensional metric is 

ds2 = e20dr2 - e27dt2 

(26) 

and a, ,, A depend on t. 10 The equations for this cosmological model are simpler than 
the static ones. In particular, we immediately see that , is the Lagrange multiplier, the 
variation in which gives the Hamiltonian that must be zero. Denoting J = e0 and taking 
the gauge fixing condition,= 0 (the 'standard' gauge) we have11 

Hg= J[-6j2 - 6k + 2AJ2 + A2 + m2 A2] = 0. (27) 

7This is similar to the charged Reissuer-Nordstrom black hole or to black holes in higher - dimensional 
theories, [23], although in the present model there is no conserved electric charge. 

8 The asymptotic expansions for r --> 0 and r --> oo can be obtained by following the approach proposed 
below for the cosmological solutions. 

9 Above we completely neglected the dimensions of all the variables and omitted the gravitational con
stant. Here we only restore one of the dimensions supposing that [t-2] = [k] = [A] = [m2

] = [L- 2). 

Recall that 6k is the curvature of the three-dimensional 'sphere'; k > 0 for the real sphere, k < 0 for the 
pseudo-sphere and k = 0 for the flat space. In (15) one should similarly write 2k for the curvature of the 
two-dimensional 'sphere'. 

10Note that when Ao, A 1 depend only on t, we have Ao = 0, as follows from the (1+1)-dimensional 
equations of motion; we thus denote A1 = A. 

11 In this paper we treat cosmological solutions independently of the static states and our notation in this 
section is also independent of the previous one 
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Another useful gauge (the LC gauge) is a=,. In this gauge the effective Hamiltonian 

is: · · . · 
1ti = -6P - 6kf2 + 2AJ4 + A2 + J

2
m

2 
A

2 = 0. (28) 

Both forms of the constraint tell us that for A> 0 the static cosmology (when j =A= O) 
is possible only if k > 0, i.e. when the universe is closed; if k :S O the constraint can be 

satisfied only if j2 f= 0. 
Let us first write the equations of motion in the LC gauge a = ,. In analogy to 

the static case we write them in the first order form (the first equation is the definition of 

F), 

j=JF, F+F2 + k = ~AJ2 + !m2A2 
3 6 ' 

A=B, iJ = -m2f2A, 

and the Hamiltonian constraint is a simple polynomial function off, F, A, B: 

1ti = -6f2F2 - 6kf2 + B2 + 2AJ4+m212 A2 = 0. 

(29) 

(30) 

Similarly to our previous consideration of the static equations, we better change the inde
pendent variable to a= Inf. It is convenient to introduce two new functions, 'lj;(a) and 

G(a), 

¢'(a)= F'(a)/ F(a), 
1 

G(a) = F 2 (a) + k - -Ae2
", 

3 
and use the following equations (the prime denotes differentiation w.r.t. a): 

1 
G' + 2G = -m2A2 

3 ' 
A"+ 1//A' + m2e2

" p-2A = 0. 

(31) 

(32) 

Of course, instead of the first equation we can use the equivalent equation for F 2 that 
directly follows from (29): 

4 1 
(F2

)' + 2F2 = -2k + -Ae2" + -m2A2. 
3 3 

(33) 

Together with the constraint (30), rewritten as 

7-li = -e2"(F2(6 - e-2" A'2) + 6k - 2Ae2" - m2 A2] = 0, (34) 

equations (32) form the complete system describing cosmology in the LC gauge. Note 
that the constraint (30) is the integral of motion and thus it is sufficient to require that 
it vanishes just at one point, say, at t = O or a = -oo. To derive possible asymptotic 
behaviour of the solutions for !al -> oo it is natural to expand A in powers of e" and to 
self consistently use the general solution of the first equation, 

G(a) = ~m2e-2
" j daA2(a)e2

", (35) 

with the relations for the expansion coefficients obtained from the second equation. 
In this way we can find, step by step, the asymptotic expansion. In the asymptotic 

region a -> -oo we can then find the following possible asymptotic behaviour: 

00 

A= LAne"n, 
n=D 

p2 = e-20 [coo+ f: FJ2Jean] , 
n=2 
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00 

'lj;' = -1 + L n¢nena , (36) 
n=2 



where C00 , Ao, A1 are arbitrary constants12 ; Am F~2) for n 2: 2 are derived recursively from 
(32), (35), and 1Pn from definition (31). The first coefficients are: 

- - - 1 [1 2 2 ] - m2 . A1 - ±J6, A2 - 0, A3 - - Ai Coo 6m A 0 - k , A4 - 4C
00 

Ao, 

F. (2) _ ! 2A2 _ k 
2 - 6m a , F(2l = ~m2A A · 3 

9 
a 1, 

1P2 = ~l_p_(2) 
2Coo 2 

'lj;3 = - _l_p(2) 
2Coo 3 

Thus we find the differential equation for the metric function f (t) ('scale factor'): 

d O _ • r;::;-[ 2 3 ]l dt ( e ) = f = y Coo 1 + 2'1j;d + 2'1j;3f + ... 2 , 

(37) 

(38) 

(39) 

and if we solve it we can find the vector field A(t) by usiµg (36), (37). Neglecting the third 
term in the r.h.s. it is easy to solve this equation finding the dependence of f on t: 

1 -½ 1 ½ 
f(t) = VC:(6m2 A6 - k) sinh[ ( 6m2 A6 - k) (t - ta)]. 

The exponential growth of f (t) suggests a possibility of an inflation character of this 
solution. However, this is only the first approximation and we should take into account 
higher order terms to get a more solid conclusion13 . Moreover, we see that the qualitative 
character of the solutions essentially depends on the physical parameters A0 , m2 on which 
at the moment we have no reliable information14 . 

The discussed solution is not unique. Using the above equati,ons we can derive 
another one, for which both A and F are finite for a ---> -oo. To get it we take 

1 1" -G(a) = -m2e-20 daA2 (a)e2
", 

3 -oo 

and then apply the above procedure. Then, using the expansions 

00 00 00 

A=~ A e2nn £_, n , 
n=O 

F = L Fne2na, 
n=O 

p2 = L pJ2) e2na 
n=O 

we can find that 

p_(2J = F.2 = [!m2 A2 _ k] a - a 6 a , (2) - [1 1 2 ] F1 = 2F0Fi = 3A + 6m AoA1 , 

A1 = -m2 Ao/4F5, A2 = -A1(m2 + 5pf2l)/l6F5, 

(40) 

( 41) 

(42) 

(43) 

where now A0 is the unique arbitrary constant (in the above solution we have one more 
constant C00 ). Instead of Eq.(39) we now have the equation: 

. - de" 2 . -1 2 l f = dt = [F0 + 2F1F0 f (t) + ... ]2, (44) 

12 A1 is defined by the constraint (30): putting the first terms of the expansion {36) into {30) or {34) we 
get A1 = v'6, which is sufficient for satisfying the constraint. 

13 An interesting exercise could be to keep four terms in the r.h.s. of {39) and express the solution in 
terms of the elliptic functions. The behaviour of J(t) in this approximation essentially depends on all the 
parameters. 

14The dependence on A only occurs in the omitted fourth-order terms. 
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which can easily be solved in this approximation: 

f = e" = 2eFot(l - 2F1Fo-1e2Fot)-1. (45) 

The scale factor vanishes if t---> -oo (LC-gauge!). The parameter FiF0-
1 strongly depends 

on Ao, A, m2 and k. It may be positive or negative, small or large; for example, if k = 0 

F1F0-
1 = ( A- ~m2

) ( m2A6)-l (46) 

We see that for the negative values of F1F01 the scale factor f can grow with t up to the 
maximum value IFaF11I and then decrease to zero. For positive FiF0-

1 it blows up when 
the expression in the brackets vanishes (for a finite value oft). However, we must be very 
cautious in making definite conclusions basing on this simple result. The approximation 
(44) can only be reasonable when JF12llf2 :s; FJ. As F0 and F1 strongly depend on A, on 
the absolutely unknown mass m and on the arbitrary constant A0 , it is not possible (at the 
moment) to make conclusive statements on the general properties of this solution though it 
depends on less parameters than the first one. Note only that both solutions are compatible 
with existence of a period of fast growing of the scale factor. 

To really discuss cosmological applications of the above asymptotic solutions15 we have 
first to study possible solutions for -oo < a < +oo, to glue the asymptotic solutions and, 
finally, to confront them to known cosmological _data. The easiest part of this program is 
to find the asymptotic solution for a ---> +oo. This can be done either in the gauge a = 1 
or, more naturally, in the standard gauge 1 = 0. In the last case, one may use, instead of 
equations (28), (31) - (33), the constraint (27) and the somewhat different equations for 
F 2(a) and A(a), 

(F2
)' + 4F2 =;A+ Gm2A2 

- 2k )e-2
", A"+ (1 + 'lj;')A' + m 2e-2

"' A= 0, (47) 

where F and 'lj; are defined as above. It is not very difficult to derive the asymptotic 
solutions in both gauges but this will be not very useful ( even if we forget about the 
problem of 'ordinary' matter). The asymptotic behaviour at a---> +oo strongly depends on 
the unknown mass m and on the other arbitrary parameters. In view of the fact that our 
model defined by the Hamiltonians (27), (28) is, most probably, not integrable16 we would 
expect chaotic behaviour in some domains of the parameters and, correspondingly, strong 
instabilities in the gluing procedure. 

3 Discussion 

In this paper we briefly summarized the main ideas of the Einstein - Weyl model and 
presented its new interpretation, as well as some results obtained investigating its simplest 

15We should not forget that it is absolutely necessary to include into consideration 'ordinary' 
matter before one can really discuss physical picture of the cosmological evolution. 

16The Hamiltonian (28) resembles the well known non-integrable Henon - Heiles Hamiltonian [25]. The 
only difference is that we have the additional condition that 1i~ = 0, which probably does not make the 
system integrable. Another argument in favor of non-integrability is that our system of four first-order 
equations {29) is certainly not integrable and one condition (28) reduces it to a third-order system that is 
also not integrable. 

83 



.J 

solutions. We only considered the static, spherically symmetric solutions and, in cosmology, 
only the homogeneous, isotropic model. As we noted in (21), even small deviations from 
the spherical symmetry may result in a qualitatively different theory. In particular, if 
we consider axially symmetric configurations infinitesimally deviating from the spherically 
symmetric ones, we will find additional scalar fields in the .lrecton gravity, which may be 
very important in cosmological considerations and in analysing black holes. We did not 
touch these problems here. Moreover, even in the spherically symmetric case our study 
is incomplete. In the static case, we have only proven that there may exist two horizons 
and derived the solutions close to the horizons. In cosmology, we have studied only the 
asymptotic behavior of the solutions. 

As we mentioned above, we expect that the complete solutions should reveal some sort 
of chaotic behavior. To study these phenomena we must first carefully discuss the physical 
parameters of the theory. In the original formulation these are: the gravitational constant, 
the cosmological constant and the vecton mass. In addition, the asymptotic boundary 
conditions introduce other parameters, the dependence on which is highly nontrivial. This 
does not allow us to make sound conclusions (or, even guesses) about the global behavior 
of the solutions derived in our essentially local approach. For example, if we try to glue 
together the left and the right asymptotic approximations, we will find that the gluing 
procedure is strongly dependent on the parameters that characterize the influence of the 
nonlinear terms in the equations, up to producing chaotic effects. This requires a very 
careful qualitative and numerical study of the equations. Of course, the most important 
task is taking into account the 'ordinary' matter. 

Finally, we must admit that the vecton field is a rather unusual feature of the Einstein
Weyl model. I have found just a few papers in which a massive vector field is introduced 
(ad hoc) as a candidate for dark energy (26], (27]. In this case its mass should be extremely 
small. Thus the unified model of dark energy and vecton dark matter considered here looks 
as fresh and new as it was in 1923. In addition, I wish to stress that the original Einstein 
Lagrangian (3) or (8) is more interesting and exciting than the simplified theory (12) (in 
particular, one may expect that in the original formulation there exists a relation among 
dimensional parameters that are arbitrary in the theory (12)). Unfortunately, the original 
theory is much more difficult to deal with and thus the prime goal must be the study of 
the simplified theory. In this paper I only give a sketch of how to begin such a study. 

A preliminary draft (.ppt file) of this report can be found at the address: 
http://atfilippov.googlepages.com/presentations2 

4 Appendix I 

The connection (5) is a special case of the general expression for the connection in affine 
spaces. The most general symmetric affine connection has the form (see, e.g., (28]): 

rkl = ~[smn(snk,l + 8/n,k - Sk[,n) + smn(Snkl + 8/nk - Sktn)], (48) 

where ski is an arbitrary symmetric tensor, smn is the inverse matrix to Skt, and skin is an 
arbitrary tensor that is symmetric in k and l. Both the Wey! and Einstein connections 
belong to the subclass for which skin can be presented in the form: 

Skin = a Bk! in + /J( Snk it + Szn ik) . (49) 
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We may call it the Weyl-Einstein connection (defining the Weyl-Einstein spaces). 

Inserting (49) into (48), we find: 

fkl = ~[smn(Snk,l + Szn,k - Skt,n) + a(Ok iz + o;" ik) - (a - 2/J)skl im]. (50) 

Now it is easy to find that the Einstein connection (5) corresponds to a = -/3 = ½
The Weyl connection introduced in [5] corresponds to a = 1, /3 = 0. I could not find a 
discussion of the geometry of spaces with the Einstein connection in accessible literature. 
The geometry of the Weyl spaces is considered in [8] (D = 4, Lorentzian signature), and in 
[28) (D = 2, 3, 4, Euclidean signature). 

5 Appendix II 

Here we write the Friedmann equations for the Einstein - Weyl model. To have the 
standard equations we use the gauge 1 = 0. Then from the Lagrangian equations of motion 
and the constraint (27) it is not difficult to find that 

ci2 + ke-2" =!A+ !(.A.2 + m2 A2) 
3 6 ' 

.. k -2a - lA•2 1 2A2) a- e - -- - -m . 
3 6 

This can be compared to the Friedmann equations: 

1 
ci2 + ke-20 = -p, 

3 

1 
ii - ke-20 = - 2(P + p), 

(51) 

(52) 

where P is the pressure and p - the energy density (in a convenient normalization). These 
parameters in the E - W model are expressed in terms of the dark energy and dark matter: 

p =A+ ~(.A.2 + m2A2), 

where A(t) satisfies the equation of motion: 

1 . 2 2 2 P = -A+ 6(A - m A ), 

A- a.A+ m2A = o. 

(53) 

(54) 

From these formulas it is not difficult to obtain convenient expressions for the Hubble 
parameter H2 = ci2 and the deceleration parameter q = -(1 + ii/ci2) as well as to derive 
them in the asymptotic regions. 
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Abstract 

Finite Unified Theories (FUTs) are N = 1 supersymmetric Grand Unified Theories 
(GUTs) which can be made finite to all-loop orders, leading to a drastic reduction 
in the number of free parameters. By confronting the predictions of SU(5) FUTs 
with the top and bottom quark masses we are able to discriminate among different 
models. Including further low-energy phenomenology constraints, such as B physics 
observables, the bound on the SM Higgs mass and the cold dark matter density, we 
derive predictions for the lightest Higgs boson mass and the sparticle spectrum. 

1 Introduction 

Finite Unified Theories (FUTs) are N = l supersymmetric Grand Unified Theories (GUTs) 
which can be made finite to all-loop orders, including the soft supersymmetry breaking 
sector. FUTs have always attracted interest for their intriguing mathematical properties 
and their predictive power. To construct GUTs with reduced independent parameters [1, 2] 
one has to search for renormalization group invariant (RGI) relations holding below the 
Planck scale, which in turn are preserved down to the GUT scale. This programme, called 
Gauge-Yukawa unification scheme, applied in the dimensionless couplings of supersym
metric GUTs, such as gauge and Yukawa couplings, had already noticeable successes by 
predicting correctly, among others, the top quark mass in the finite SU(5) GUTs [3,4]. An 
impressive aspect of the RGI relations is that one can guarantee their validity to all-orders 
in perturbation theory by studying the uniqueness of the resulting relations at one-loop, as 
was proven in the early days of the programme of reduction of couplings [2]. Even more re
markable is the fact that it is possible to fin0 RGI relations among couplings that guarantee 
finiteness to all-orders in perturbation theory [5, 6]. 

The search for RGI relations and finiteness has been extended to the soft supersymme
try breaking sector (SSB) of these theories [7-11] which involves parameters of dimension 
one and two. An interesting observation at the time was that in N = l Gauge-Yukawa 
unified theories there exists a RGI sum rule for the soft scalar masses at lower orders; at 
one-loop for the non-finite case (9] and at two-loops for the finite case [4]. The sum rule, 
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although introducing more parameters in the theory, manages to overcome the problems 
that the universality condition for the soft scalar masses in FUTs had: that the lightest 
supersymmetric particle is charged, namely, the stau f- (although this is not necessarily a 
problem, as we will see), that it is difficult to comply with the attractive radiative elec
troweak symmetry breaking, and, worst of all, that the universal soft scalar masses can lead 
to charge and/or colour breaking minima deeper than the standard vacuum. Moreover, it 
was proven (10] that the sum rule for the soft scalar massses is RGI to all-orders for both 
the general as well as for the finite case. Finally the exact ,6-function for the soft scalar 
masses in the Novikov-Shifman-Vainstein-Zakharov (NSVZ) scheme (12] for the softly bro
ken supersymmetric QCD has been obtained [10]. Eventually, the full theories can be made 
all-loop finite and, with use of the sum rule, their predictive power is extended to the Higgs 
sector and the SUSY spectrum. Thus, we are now in a position to study the spectrum of the 
full finite SU(5) models in terms of few free parameters with emphasis on the predictions 
for the masses of the lightest Higgs and LSP and on the constraints imposed by low-energy 
phenomenology observables. 

2 FINITE UNIFIED THEORIES 

Finiteness can be understood by considering a chiral, anomaly free, N = l globally su
persymmetric gauge theory based on a group G with gauge coupling constant g. The 
superpotential of the theory is given by 

1 .. 1 ··k 
W = -m'3 <I>· <I>-+ -C'3 <I>-<I>-<I>k 

2 ' 3 6 ' 3 
' 

(1) 

where mii (the mass terms) and Ciik (the Yukawa couplings) are gauge invariant tensors 
and the matter field <I>; transforms according to the irreducible representation R; of the 
gauge group G. All the one-loop ,6-functions of the theory vanish if the ,6-function of the 
gauge coupling ,af>, and the anomalous dimensions of the Yukawa couplings -y[C1>, vanish, 
i.e. 

Et(R;) = 3C2(G), ~CipqCjpq = 2c5fg2C2(R;)' 
i 

(2) 

where f(R;) is the Dynkin index of R;, and C2(G) is the quadratic Casimir invariant of the 
adjoint representation of G. 

The conditions for finiteness for N = l field theories with SU(N) gauge symmetry are 
discussed in [13], and the analysis of the anomaly-freedom and no-charge renormalization 
requirements for these theories can be found in (14]. A very interesting result is that the 
conditions (2) are necessary and sufficient for finiteness at the two-loop level (15]. 

A powerful theorem (5] guarantees the vanishing of the ,6-functions to all-orders in 
perturbation theory. This requires that, in addition to the one-loop finiteness conditions 
(2), the Yukawa couplings are reduced in favour of the gauge coupling. Alternatively, 
similar results can be obtained (6, 16) using an analysis of the all-loop NSVZ gauge beta
function [12]. 

In the soft breaking sector, it was found that RGI SSB scalar masses in Gauge-Yukawa 
unified models satisfy a universal sum rule at one-loop (9). This result was generalized to 
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two-loops for finite theories (4], and then to all-loops for general Gauge-Yukawa and finite 
unified theories (10]. Then the following soft scalar-mass sum rule is found (4] 

( m; + m; + mi ) = 1 + _g_:__ Cl (2) + 0( 4) 
MMt l61r2 9 (3) 

for i, j, k with P!i~ =f 0, where [l(2
) is the two-loop correction 

[lC2l = -2)((my/MMl)- (1/3)] £(Rt), 
,/,J..J 

(4) 

Cl <2) vanishes for the universal choice, i.e. when all the soft scalar masses are the same at 
the unification point. 

A realistic two-loop finite SU(5) model was presented in [17], and shortly afterwards 
the conditions for finiteness in the soft susy breaking sector at one-loop (18] were given. 
Since these finite models have usually an extended Higgs sector, in order to make them 
viable a rotation of the Higgs sector was proposed (19]. The first all-loop finite theory was 
studied in [3], without taking into account the soft breaking terms. Naturally, the concept 
of finiteness was extended to the soft breaking sector, where also one-loop finiteness implies 
two-loop finiteness (7], and then finiteness to all-loops in the soft sector of realistic models 
was studied [20, 21], although the universality of the soft breaking terms lead to a charged 
LSP. This fact was also noticed in (22], where the inclusion of an 'extra parameter in the 
Higgs sector was introduced to alleviate it. With the derivation of the sum-rule in the 
soft supersymmetry breaking sector and the proof that it can be made all-loop finite the 
construction of all-loop phenomenologically viable finite models was made possible (4, 10]. 

Here we will examine such all-loop Finite Unified theories with SU(5) gauge group, 
where the reduction of couplings has been applied to the third generation of quarks and 
leptons. An extension to three families, and the generation of quark mixing angles and 
masses in Finite Unified Theories has been addressed in (23], where several examples are 
given. These extensions are not considered here. Realistic Finite Unified Theories based on 
product gauge groups, where the finiteness implies three generations of matter, have also 
been studied (24]. 

The particle content of the models we will study consists of the following supermultiplets: 
three (5 + 10), needed for each of the three generations of quarks and leptons, four (5 + 5) 
and one 24 considered as Higgs supermultiplets. When the gauge group of the finite GUT 
is broken the theory is no longer finite, and we will assume that we arc left with the MSSM. 

Thus, a predictive Gauge-Yukawa unified SU(5) model which is finite to all orders, in 
addition to the requirements mentioned already, should also have the following properties: 

1. One-loop anomalous dimensions are diagonal, i.e., ,?li ex o{. 

2. Thtec fermion generations, in the irreducible representations 5;, 10; (i = 1, 2, 3), 
which obviously should not couple to the adjoint 24. · 

3. The two Higgs doublets of the MSSM should mostly be made out of a pair of Higgs 
quintet and anti-quintet, which couple to the third generation. 

In the following we discuss two versions of the all-order finite model. The model of 
ref. [3], which will be labeled A, and a slight variation of this model (labeled B), which can 
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also be obtained from the class of the models suggested in ref. (20) with a modification to 
suppress non-diagonal anomalous dimensions. 

·------·-The superpotential which describes the two models takes the form (3,4) 

w 
3 

'°'[lu d --] {;;:_ 29; lO;lO;H; + 9; 10;5; H; 

+ 91.fa l0210aH4 + 9g3 l025a H4+9f210362 H4 
4 A 

'°'1 - 9 3 + L..J9aHa24Ha+ 3 (24), 
a=I 

(5) 

where Ha and Ha (a= l, ... , 4) stand for the Higgs quintets and anti-quintets. 
The non-degenerate and isolated solutions to ,J1> = 0 for the models {A, B} are: 

(9f)2 {8 8} 2 d)2 {6 6} 2 
5' 5 9 ' (9, = 5' 5 9 ' 

(9;)2 u)2 { 8 4} 2 
(93 = 5' 5 9 , (6) 

(9g)2 d)2 { 6 3} 2 
(93 = 5' 5 9 , 

{O, ~}92, (9g3)2 = (9f2)2 = {0, ~}92' 

15 2 1)2 _ ( 1)2 _ { 1} 2 
7 9 , (92 - 9a - 0, 2 9 , 

0 , (g{)2 = {l, 0}92 • 

(9~3)2 

(9A)2 

(g{)2 

According to the theorem of ref. (5] these models are finite to all orders. After the reduction 
of couplings the symmetry of Wis enhanced (3,4). 

The main difference of the models A and B is that two pairs of Higgs quintets and 
anti-quintets couple to the 24 for B so that it is not necessary to mix them with H

4 
and 

H4 in order to achieve the triplet-doublet splitting after the symmetry breaking of SU(5). 
In the dimensionful sector, the sum rule gives us the following boundary conditions at 

the GUT scale [4]: 

m1u +2mi0 = 

mif. +2mi0 

2 3 2 ms+ m10 

m2 +m~+m2 - M 2 for A· Hd 5 10 - , (7) 
2 2 2 M2 

M , mHd - 2m10 = -3 ' 
4M2 

- 3- for B, (8) 

where we use as free parameters ms = ms3 and m10 = m103 for the model A, and m10 = 
m103 for B, in addition to M. 

3 PREDICTIONS OF LOW ENERGY PARAMETERS 

Since the gauge symmetry is spontaneously broken below McUT, the finiteness conditions do 
not restrict the renormalization properties at low energies, and all it remains are boundary 
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conditions on the gauge and Yukawa couplings (6), the h = -MC relation, and the soft 
scalar-mass sum rule (3) at McuT, as applied in the two models. Thus we examine the 
evolution of these parameters according to their RGEs up to two-loops for dimensionless -
parameters and at one-loop for dimensionful ones with the relevant boundary conditions. 
Below McuT their evolution is assumed to be governed by the MSSM. We further assume 
a unique supersymmetry breaking scale M, (which we define as the geometric mean of the 
stop masses) and therefore below that scale the effective theory is just the SM. 

We now present the comparison of the predictions of the two models (FUTA, FUTB) 
with the experimental data, starting with the heavy quark masses see ref. [25] for more 
details. For the top quark pole mass we used the experimental value Mt;: = (170.9 ± 
1.8) GeV [26]. For the bottom quark mass we used the running mass evaluated at Mz 
mbot(Mz) = 2.82 ± 0.07 [27] to avoid the uncertainties from the running of Mz to the mb 

pole mass, which are not related to the predictions of the FUT models. 
In fig.I we show the FUTA and FUTB predictions for M10p and mbot(Mz) as a function 

of the unified gaugino mass M, for the two cases µ < 0 and µ > 0. In the value of the 
bottom mass mbot, we have included the corrections coming from bottom squark-gluino 
loops and top squark-chargino loops [28], known usually as the llb effects. The bounds on 
the mbot(Mz) and the M10P mass clearly single out FUTB withµ< 0, as the solution most 
compatible with this experimental constraints. Although µ < 0 is already challenged by 
present data of the anomalous magnetic moment of the muon aµ, a heavy SUSY spectrum 
as the one we have here gives results for aµ very close to the SM result, and thus cannot be 
excluded on this fact alone. 

In addition the value of tan/3 is found to be tan/3 ~ 54 and ~ 48 for models A and B, 
respectively. Thus the comparison of the model predictions with the experimental data is 
survived only by FUTB with µ < 0. 

We now analyze the impact of further low-energy observables on the model FUTB with 
µ < 0. As additional constraints we consider the following observables: the rare b decays 
I3R(b--, s1) and BR(Bs-+ µ+µ-), the lightest Higgs boson mass as well as a loose CDM 
constraint, assuming it consists mainly of neutralinos. More details and a complete set of 
references can be found in ref. [25]. 

For the branching ratio BR(b-+ s1), we take the present experimental value estimated 
by the Heavy Flavour Averaging Group (HFAG) is [29] 

BR(b-> S1) = (3.55 ± 0.24~g:~6 ± 0.03) X 10-4
_ (9) 

For the branching ratio BR(B,-+ µ+µ-), the SM prediction is at the level of 10-9, while 
the present experimental upper limit from the Tevatron is 5.8 x 10-s at the 95% C.L. [30), 
providing the possibility for the MSSM to dominate the SM contribution. 

Concerning the lightest Higgs boson mass, Mh, the SM bound of 114.4 GeV [31] can be 
used. For the prediction we use the code FeynHiggs [32]. 

The lightest supersymmetric particle (LSP) is an excellent candidate for cold dark mat
ter (CDM) [35], with a density that falls naturally within the range 

0.094 < DcoMh2 < 0.129 (10) 

favoured by a joint analysis of WMAP and other astrophysical and cosmological data [36]. 
Assuming that the cold dark matter is composed predominantly of LSPs, the determination 
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Figure 1: The bottom quark mass at the Z boson scale (upper) and top quark pole mass 
(lower plot) are shown as function of M for both models. 

of !1coMh
2 

imposes very strong constraints on the MSSM parameter space, and we find 
that no FUT model points fulfill the strict bound of 10. On the other hand, many model 
parameters would yield a very large value of OcoM- It should be kept in mind that somewhat 
larger values might be allowed due to possible uncertainties in the determination of the 
SUSY spectrum (as they might arise at large tan/3, see below). Therefore, in order to get 
an impression of the possible impact of the CDM abundance on the collider phenomenology 
in our model, we will analyze the case that the LSP does contribute to the CDM density, 
and apply a more loose bound of 

!1coMh2 < 0.3 . (11) 

Notice that lower values than the ones permitted by (10) are naturally allowed if another 
particle than the lightest neutralino constitutes CDM. For our evaluation we have used the 
code MicroMegas [37]. 

The prediction for Mh of FUTB with µ < 0 is shown in Fig. 2. The constraints from 
the two B physics observables are taken into account. In addition the CDM constraint 
(evaluated with Micromegas [371) is fulfilled for the darker (red) points in the plot, see 
ref. [25] for details. The lightest Higgs mass ranges in 

Mh ~ 121 - 126 GeV, (12) 

where the uncertainty comes from variations of the soft scalar masses, and from finite 
(i.e. not logarithmically divergent) corrections in changing renormalization scheme. To this 
value one has to add ±3 GeV coming from unkonwn higher order corrections [33]. We have 
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Figure 2: The lightest Higgs mass, ·Mh, as function of M for the model FUTB with µ < 0, 
see text. 
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Figure 3: The lightest Higgs mass, Mh, plotted against M and the LSP, which can be the 
neutralino x0 (red crosses) or the stau f (blue squares), for the model FUTB with µ < 0, 
see text. 

also included a small variation, due to threshold corrections at the GUT scale, of up to 5% 
of the FUT boundary conditions. Thus, taking into account the B physics constraints (and 
possibly the CDM constraints) results naturally in a light Higgs boson that fulfills the LEP 
bounds [31). 

In Fig. 3 we present the Higgs mass for FUTB for the case when the LSP is the 
neutralino x0 (red crosses) and when it is the stau f (blue squares), for the range of values 
of the gaugino mass M where the loose CDM constraint is fulfilled (left part of Fig. 2). 
From Fig. 3 it is clear that the prediction for the Higgs mass lies in the same range for 
both cases. Notice that in case the LSP is the s-tau it can decay by introducing bilinear 
R-parity violating terms, which respect the finiteness conditions. R-parity violation would 
have a small impact on the collider phenomenology presented here, but would remove the 
CDM bound (10) completely and the LSP would not be the CDM candidate. 

In the same way the whole SUSY particle spectrum can be derived. The resulting SUSY 
masses for FUTB with µ < 0 are rather large. The lightest SUSY particle starts around 
500 GeV, with the rest of the spectrum being very heavy. The observation of SUSY particles 
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at the LHC or the ILC will only be possible in very favorable parts of the parameter space. 
For most parameter combinations only a SM-like light Higgs boson in the range of eq. (12) 

can be observed. 
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Abstract 

We report on a recent progress in studying superextensions of the Landau problem of 
a quantum particle on the two-sphere S2

• These are the superspherical and superflag 
Landau models describing the motion of non-relativistic particle on the supermani
folds SU(2Jl)/U(1Jl) and SU(2Jl)/[U(l) x U(l)]. For both models the Hilbert space 
norm can be made positive-definite, so they are unitary. The superflag model is 
parametrized by an integer 2N' and a real number M. At M = 0 it is quantum
equivalent to the supersphere Landau model with the U(l) charge 2N = 2N' + 1. 
In the generic case the SU(2Jl) symmetry is dynamically enhanced to SU(2J2). We 
also address the planar limit of the superspherical model, in which an analog of the 
dynamical SU(2J2) is the hidden world-line N = 2 supersymmetry. 

Talk at the International Conference "Selected Problems of Modern Theoretical Physics", 
Dubna, June 23 - 27, 2008 

1 Introduction 

The Landau model [1] describes a charged particle moving on a plane with a constant 
uniform magnetic flux passing through the plane. A spherical Landau model [2) describes 
a charged particle on a 2-sphere 8 2 ~ 8U(2)/U(l) in the Dirac monopole background. 

The aim of the present talk is to sketch the salient features of two minimal superex
tensions of the 8 2 model: (i) Landau problem on the (2 + 2)-dimensional supersphere 
8U(2ll)/U(lll) [3, 4]; (ii) Landau problem on the (2 + 4)-dimensional superflag 
8U(2ll)/[U(l) x U(l)] [5, 4]. The large 8 2 radius limits of these problems (planar super 
Landau models) were considered in [6]-[8] (see also [9]). One of these planar models is 
briefly addressed in Sect. 5. 
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2 Preliminaries 

2.1 Planar bosonic Landau model 

• Lagrangian and Hamiltonian: 

Lb= 1.w - iK- (zz - zz) = lzl2 + (Azz + A{z) , Az = -iK-Z, A,= iK-z, (2.1) 

Hb = ata +"',a= i(8, + 1,,z), at= i(az - K-Z), [a, at]= 2K-. (2.2) 

The second term in (2.1) is the simplest example of d = l Wess-Zumino (WZ) term. 

• Invariances: 'magnetic translations' and 2D target rotations: 

Pz = -i(8z + 1,,z), P, = -i(a, - 1,,z), Fb = zaz - zaz, 

[Pz, P,] = 21,,, [H, Pz] = [H, P2] = [H, Fb] = 0. 

2.2 Wave functions 

• Lowest Landau level (LLL), HIJ!coJ = K-Wcoi= 

alJ!co)(Z, z) = 0 ¢'? (az + 1,,z)IJ!(o) = 0 -> IJ!co) = e-Klzl21P(o)(z) 

• £-th LL, HIJ!(l) = 1,,(2£ + l)IJ!(lJ: 

IJ!(l)(z,z) = [i(8z - 1,,z}]fe-11:lzl
2
1j;(l)(z). 

Each LL is infinitely degenerate due to the (Pz, P,) invariance. 

2.3 Generalization to S2 ~ SU(2)/U(I) 

• An S2 analog of the planar Lagrangian Lb is 

Lb= ( ~I 12)2 lzl2 + is \ 12 (zz - zz). (2.3) l+rz l+rz 

The 2-nd term is the SU(2)/U(l) WZ term, r being the 'inverse' radius of S 2
. 

• The LL w.f. are finite-dimensional SU(2) irreps, with the "spins" s, s + l, s + 2, .... 

2.4 Toy fermionic "Landau model" 

• Lagrangian and Hamiltonian: 

L1 = (( - i1,, ( (( + ((), H1 = -aJa: - "'• a:= a, - 1,,(, a:t = a, - 1,,(. 

Invariances: 

(2.4) 

n, =a,+"''· n, = ac. + ,,,(, F1 = (a, - ca<, [H1 , ITd = [H1, ni:J = [H1, F1] = o. 
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• Ground state and single excited state: 

1/;(oJ = e-"(( 1Po (()' '1/J(IJ = e"'< 'I/J1 (()' a:'1/J(oJ = a:t'I/J(I) = 0, 

'I/Jo= Ao+ (Bo, 'I/J1 = A1 + ( Bi H'l/}(O) = -1,,'I/J(oJ, H'l/}(l) = 1,,¢C1J. (2.5) 

• The natural supertranslation invariant choice of the inner product is 

< ¢j'I/J >= J d(d( cp ((, ()'1/J ((, ()' < '1/J(O)l'I/J(l) >= 0, 

< '1/J(o) j¢C0J >= 2K-AoAo + BoBo, < '1/J(l) j¢(ll >= -2K-.41A1 - B1B1. (2.6) 

The unwanted negative norms can be removed by redefining the inner product: 

<< ¢j'I/J >>:=< Gcpj'I/J >' G ('1/J(O) + 'Ip(!)) = '1/J(O) - 'Ip(!)' G = _,,,-1 H1. 

With respect to the new product all norms are positive. 

• Symmetry generators commute with the metric G, so the new inner product is still 
invariant. However, the hermitian conjugation properties of the operators which do 
not commute with G, change. Let O be some operator, such that (H, OJ = 0. Then 
ot = GOtG = ot +GOb, Oa = [G, O], and [H, Oa] = 0. The symmetry generators 
that do not commute with G thus can generate "hidden" symmetries. 

3 Superspherical Landau model 

3.1 Definitions 

• The supergroup SU(2/1) is the minimal rank 2 semi-simple supergroup extending 
U(2) ~ (F,J(ik)) by the U(2) doublet offermionic charges (Q;,Qk): 

{Q;, Qk} = f;kF + J;k, {Q;, Qk} = {Q;, Qk} = 0. (3.1) 

• The Riemann supersphere Qp(IIIJ ~ SU(2/l)/U(l/l) where U(lll) ~ (J3 , F, Q2 , Q2 ) 

is a complex supermanifold 

zA = (zo, zl) = (z, () ' Z8 = (Z0
, Z 1

) = (z, () , 
where z is a complex coordinate of CP1 ~ SU(2)/U(l) and ( is its anti-commuting 
partner. Their SU(2/l) transformations are analytic 

6z = i,\z + i:: + tz2 
- (l2 + zl1) (, 6( =; (>.. + µ) ( + f 1 

- f
2z + ez(, 

,\, i::, e, µ being infinitesimal U(2) parameters and fi Grassmann parameters. 

• The supersphere is a Kahler supermanifold, with Kahler 2-form 

:F = 2idZA A dZ8 asaAx:, = dA, 

where K, = log (1 + zz + (() is the Kahler potential and 

A= -i ( dzAaA - dZ888) x:, = dZAAA + dZ8 As 

is the Kahler connection. 
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L 
! 

3.2 Model 

• The invariant Lagrangian reads: 

L = zAzB9f3A + N ( zA AA+ zl3 As), (3.3) 

1 + (( z( z( 1 
9zz = (1 + zz + (()2' 9z( = (I+ zz)2' 9{.z = (1 + zz)2' 9{.( = 1 + zz. 

• The quantum Hamiltonian is 

H __ (-l)a(a+b) gABn(N).;-,(N) gACg_ _ ,5A 
- VA V El ' CB - B ' 

(N) ( ) (N) v A = aA - N a AK , vs = a[3 + N (8t3JC). 

Here a, bare Grassmann parities associated with the indices A and B. 

• The C = 0 (i.e. LLL) wave function 'VbN\z, Z) is covariantly analytic: 

vflw~N) = 0 => wt) = e-NK[Ao(z) + (1/io(z)], Hwt) = 0. 

• For any other C ~ 1: 

'V(N) _ 'V(N) + 'V(N) 
l - (+)l (-)l' 

'V(N) = v7(N+I) ... v7(N+2t-i) q>(+) 
(+)l z z l , 

,y,(N) = [~ n(N+i) n(N+2p-i) n(N+2t-i)] ;..(-) 
'J.' (-)l L..., V Z ••• V ( ... V z "'l ' 

p=i 

(3.4) 

vfl<I>~±) = 0 ⇒ <I>t) = e-NK<p1±)(z, ()' Hw1N) = C(C + 2N)w1N). (3.5) 

• The natural definition of the SU(2\1) invariant inner product is 

< !1\'V >= / dµoe-Ko•w =>- il'llii 2 = / dµoe-Kw•w, dµo = dzdz8,8t.. 

'V~N) for different C are orthogonal to each other. The norm at fixed C is expressed 

through fields in <p~-l = Ae + (1/ie and <p1+) = Xe+ (Fe as 

(Nl 2 / dzdz [ ( ) I 12 -ll'lle II ~ _ 2(N+t)+i - C 2N + C Ae - C¢e1Pt 
(1 + zz) 

_ 2 (N + C) + 1 2] 
- C (xe + z1/ie) (Xe+ zv,,) + 1 + zz xexe + IFel • (3.6) 

The "natural" norm is not positive definite (like in the fermionic Landau model), 
so the associated quantum theory is not unitary. However, there is an alternative 
SU(2ll) invariant norm that is positive-definite. We shall show this in the context of 

the more general superflag model. 
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4 Superflag Landau model 

4.1 Geometry 
• The superflag is the coset superspace SU(2ll)/[U(l) x U(l)): 

- - - i 2 
zM=(z,(,c;), ZM=(z,(,c;), Oc;=-2(A-µ)c;+f -f(+(li(-tz)c;. 

• The superflag is also a Kahler supermanifold: 

4.2 

Fi = 2idZ A dZ 88 log Ki = dB, F2 = -2idZ A dZ 88 log K 2 = dA, 

8 = i (dzMaM - dZMaM) log Ki= dZMBM + dZMBM, 

A= -i ( dZMaM - dzMaM) log K2 = dZM AM+ dzt.l A,\{. 

Here Ki= I+ (( + zE) (( + zc;) + (c;. 

Superflag. model 

• The invariant Lagrangian is 

L = lw+j2 + [zM (N'A,\f + MBM) + c.c.], (4.1) 

w+ = K2i K;½ { z [1 - zc;( - K2c;~ - ( [z( + K2~}. 

Here N' and M are two real numbers. In the quantum theory, M remains arbitrary 
(it specifies the invariant norm) but 2N' must be an integer. 

• There are two conjugate pairs of primary constraints in the model: 

<p, = P, + i((K2 + (z)P,, <pf.= Pc. - i(c;K2 + (z)A, 

<p{ = 1r{ - iMB{, ({)( = 11'( - iMB(, 

where 
P, = 11'( - iN'A, - iMB,, P, = Pz - N'A, - MBz. 

The quantum Hamiltonian is expressed as 

HN, = -KJKi (v~N') -c;v'~N'}) (vt') -(vt'l) = -v--v++, 

'"""(N') - a - z'N'A n(N') - a~ - z'N'A-v A - A A, v A - A A· 

• The quantization is accomplished by the Gupta-Bleuler method: 

-w<N',MJ _ -w<N',MJ _ 0 _._ wCN',MJ _ KMK-N' ,.,_ ( _ ( t:) <p( ph - <p{ ph - -,,- ph - i 2 '±' z, Zsh, , \, , 

Zsh = z - c;( - Z (( + zc;) (. 

These conditions amount to the covariant chirality constraints: 

t,+w(N',M) = v-w(N',M) = 0 
ph ph ' 

{v±, t,±} = ±v±±, [v--, v++] = 2N', {tJ+, t,-} = {v-, v+} = o, 

(4.2) 

where v±±, v±, t,± are the proper covariant derivatives on SU(2ll)/[U(l) x U(l)]. 
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• The model spectrum is defined by 

wt',M) = (v--fp(N'+f,M-!) 

f>±<I>(N'+t,M-!) = v++<I>(N'+f,M-!) = 0 =} <l\(N'+l,M-!) ~ <l\(f)(z C C) an , ''-:t ' 

HN,W~N',M) = -(v--v++)wr',M) = [£(£ + 1) + 2N'£]'1f~N',M). (4.3) 

The spectrum is the same as in the bosonic Landau model on S 2 ~ SU(2)/U(l). 

• The inner product is defined as (illll) = J dzdz a,a,a(a{ K:;2 Y*W. Then, expanding 
(l) ( ) <I>an over (, ~ : 

<I>i~ = A(l) + C [vP> + (2N' + 2£ + 1)-1 azx<f)] + ~x(l) + c~ p(f), 

where (A<1>,vi<t>,x<e>,F(t)) are four analytic functions, we obtain 

(f) 2 _ / dzdz 
lllllN,11 = ('111'11) ~ (l+zz)2<N'+t+1) x 

{ (2M - £) (2M + 2N' + e + 1) A<1> A<1> + p<1> p<e> 

+ (N' + C + 1) (2N' + 2M + £ + 1) ;x<t>x(l) + (2M _ £) (1 + zz) iji(l),,f)l)}. 
(2N' + 2£ + 1) (1 + zz) 

There are ghosts for any M = ±IMI, How to cure the norm? 

• Redefne << illll >>=< YIG'I/J > ⇒ 111'111112 = ('11IG'11), where, 
for -2N' - 1 < 2M < O, 

Gan= -1 + 2~D( + 
2

N, /
2
£ + l CBzB(, [HN,, Gan]= 0, G~n = 1, 

and, for 2M < -2N' - 1, 

Gan = 1 - 8 (F - 2M - N') + 8 (F - 2M - N')
2 

• 

All states in these ranges possess non-negative norms 1. 

4.3 Quantum equivalence of the SS and SF models 

• The covariant conditions singling out SS superfields among the SF ones read: 

v+w(N',M) = f:,-1p(N',M) = 0 {cc} 8(.(W(N',M) = 0 =} 1p(N',M) = 1p(N',M)(z, z, C, C). 

They are consistent only at M = 0 . 

1The same can be accomplished for M > 0. 
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• The SS and SF wave superfunctions are related as 

W~N) = v+ir-½,O) = v+ [(v--)lJi(N+t-½,-!)]' 

t:,-ir-½,O) = fJ+'1J}N-½,O) = 0 ¢? v+wiN) = t,-w}N) = 0. (4.4) 

The SS model at N is thus equivalent to the M = 0 SF model at N' = N - ½-

• One can define the "master" Hamiltonian which yields both the SS and SF Hamilto
nians as its two different limits: 

H = _! (v++v-- + v--v++) + ![v- f>+] + ![v+ t:,-J mast 2 2 , 2 , , 

Hmast ⇒ -v--v++ - 2M = HsF - 2M On chiral SF superfields 
Hmast ⇒ Hss = -(-1t<a+b) gABv<:>v<;:> On ss superfields. 

5 Planar super-Landau: superplane model 

(4.5) 

Planar limit of the SS and SF models is achieved by making explicit the S 2 radius R, 
properly rescaling Hamiltonians and taking R -+ oo at fixed 1,, = N / R 2 • Here we present 
some salient features of the superplane model following from the SS one. 

• It is a hybrid of the bosonic and fermionic Landau models 

L = L1 +Lb= 1±1 2 + (( - i1,, ( zz - zz + (C + (C), (5.1) 

H = ata - ata = a,a, - aza, +,,, (z8, + ca, - zaz - CB<)+ 1,,
2 (zz + C(). 

The invariances are generated by Pz, P,, rr,, rr, and the new generators 

Q = za, - CB,, Qt= za, + (Bz, C = zaz + ca, - za, - ca,. 

They generate ISU(lll), contraction of SU(2ll): 

{Q, Qt}= C' [Q, Pz] = m,' {Qt, IId = iPz. 

• The natural ISU(lll)-invariant inner product given by 

< <i>l'I/J >= j dµ </> (z, z; C, C) •/J (z, z; C, (), dµ = dzdzdCdC, 

leads to negative norms, like in other examples. All norms become positive after 
introducing the metric · 

1 1 [ 2- -G = _,,,- H1 = - a,a, +,,,cc+,,, (ca, - ca,)]. 
K, 

G commutes with all generators, except Q, Qt, whence 

Qt= Qt - is, s = i (aza,+ 1,,2zC- 1,,z8,-1,,C8z). 
K, 
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• According to Sect. 2.4, S, st define a symmetry: (H, S] = [H, SI] = 0. Also, 

S = ata, st= aat, {S, S1} = 2,-;,H, {S, S} = 0 = {S1, S1} (5.2) 

i.e. S, st, H form N = 2, d = 1 superalgebra. The LLL ground state is annihilated 
by s,s1 

s¢<o> = st¢<o> = o, 

and so it is N = 2 SUSY singlet. Hence N = 2 SUSY is unbroken and all higher 
LL form irreps of this SUSY (10]. One can find the realization of this SUSY on the 
involved d = 1 fields (7, 8]. 

• Whether analogous hidden (super)symmetries exist in the SS and SF Landau models 
where also non-trivial metric operators appear? The answer is YES [4]! After passing 
to the positive norms one finds the dynamical enhancement of the initial SU(2ll) 
symmetry to SU(212) symmetry. The supergroup SU(212) involves two independent 
SU(2) doublets of spinor generators and has SU(2) x SU(2) x U(l) as the bosonic 
subgroup, the U(l) generator being central. 

6 Summary and outlook 

• Self-consistent superextensions of the bosonic Landau models can be constructed and 
they are WZW type sigma models on the appropriate graded extensions of the "mag
netic translation" group and SU(2) group. 

• The appearance of negative norms can be evaded by redefining the inner products. 

• An intriguing common feature of the planar super Landau models is the appearance 
of the hidden dynamical N = 2 SUSY. Its analog in the superflag Landau models is 
the enhancement of the SU(2ll) symmetry to SU(212). 

• Possible physical applications: supersymmetric versions of the Quantum Hall Effect 
(11]? Relations to integrable structures in N = 4 SYM and string theory? 
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Figure 1: Ghost form factor d(k) (left) and gluon energy w(k) from the variational solutions 
presented in [2). 

3 Variational solution 

We wish to solve the Schriidinger equation 

H'lj;=E'lj; (11) 

by the variational principle 
(¢IHI¢) -> min (12) 

with suitable ansiitze for the wave functional 'lj;(A..L ). This approach has been studied 
resently in Refs. [3, 4). Inspired by the wave functional of a massless particle moving 
in a spherically symmetric potential in an s-state 'lj; = <jJ(r)/r, where r = J 112(r) is the 
Jacobian of the transformation from the cartesian to the spherical coordinates for zero 
angular momentum we choose the following ansatz [4) 

'lj;(A.1) = Wl exp(-~ jd3 d3 A..La( ) ) J(A..L) 2 x Yi xw(x,y)Afa(y), (13) 

where the kernel w(x, y) is determined from the variational principle (12). In practice the 
so resulting equation for w(x, y) is converted into a set of Dyson-Schwinger equations for 
the gluon propagator 

1 
(Afa(x)Afb(y)) = c5abt;j(x)2w-l(x, y) ' 

with t;i(x) = c5;j - ~ being the transverse projector, and the ghost propagator 

G(x,y) = ( (-b. ar 1
) = (xld(-~)(-~)-1IY). 

(14) 

(15) 

Here we have introduced the ghost form factor d(-~), which describes the deviation of 
the QCD ghost propagator from the QED case, where d(-~) = 1. The resulting Dyson
Schwinger equations need renormalisation, which is well under control. Fig. 1 shows the 
solution of the Dyson-Schwinger equation for the gluon energy w(k) and the ghost form 
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Figure 2: Left: Heavy quark potential given by eq. (18). Right: Running coupling constant. 

factor d(k), as shown in Ref. (2). An analytic infrared and ultraviolet analysis of the 
Dyson-Schwinger equation shows the following asymptotic behaviour [4, 5) 

IR(k-> O) 

UV (k-> oo) 

1 
w(k) ~ -

k 
w(k) ~ k 

1 
d(k) ~ -

k 
d(k) ~ k0

• (16) 

At large momenta the gluon behaves like a photon, which is in agreement with asymptotic 
freedom, while at small momenta the gluon energy diverges, which implies the absence 
of gluon states in the physical spectrum. This is nothing but a manifestation of gluon 
confinement. The infrared divergence of the ghost form factor is a consequence of the 
horizon condition 

d- 1(k = 0) = 0, (17) 

which has been used as input in the renormalisation of the ghost Dyson-Schwinger equation. 
This is a necessary condition for the Gribov-Zwanziger confinement scenario. In fact, one 
can show there is a sum rule relating the infrared exponents of the ghost and the gluon 
propagator and an infrared divergent gluon energy requires also an infrared divergent ghost 
form factor, i.e. the horizon condition (17), see Ref. (5). Fig. 2 shows the non-Abelian 
Coulomb potential 

V(lx - YI)= g2 ( (xl(-D. a)-1(-82)(-D. a)-1ly))-> ere Ix - YI' (18) 

which for large distance indeed increases linearly (2] as the infrared analysis reveals. The 
Coulomb string tension ere sets the scale of our approach. Also shown in Fig. 2 is the 
running coupling constant which is infrared finite, for details see Ref. (5). Fig. 3 shows the 
continuum results for the gluon energy and the ghost form factor in D = 2 + 1 dimensions 
[6] together with the corresponding lattice results, Ref. (7). The agreement is not perfect 
but, given the approximation involved, quite satisfactory. 

In D = 3 + 1 dimensions, previous lattice calculations performed in Coulomb gauge in 
Ref. [8, 9) showed an anomalous UV behaviour of the gluon propagator - IR : w(k) ~ 
k

0
, UV : w(k) ~ k312 - which is in strong conflict with the continuum result. However, 

one should mention that these lattice calculations assumed multiplicative renormalisability 
of the 4-dimensional gluon propagator, which give rise to scaling violations in the static 
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Figure 3: Results for the ghost form factor d(k) (left) and the gluon energy w(k) in 2 + 1 
dimensions, as shown in [6]. 

propagator. Furthermore, these calculations did not fix the gauge completely, i.e. the 
residual time-dependent gauge invariance left after Coulomb gauge fixing was left unfixed. 
Furthermore, the Coulomb gauge fixing was done on a single time-slice, which is sufficient for 
the calculation of static (time-independent) propagators. However, one should keep in mind 
that in Coulomb gauge topologically non-trivial gauge configurations, which presumably are 
responsible for confinement, are discontinuous in time [10] and as a consequence on a small 
lattice different results are obtained from different time slices. 

Recently, we have done improved lattice calculations with a complete gauge fixing [11]. 
In these studies, the energy dependence of the 4-dimensional gluon propagator could be 
explicitly extracted and it was found that the static gluon propagator is multiplicatively 
renormalisable and shows a perfect scaling. Fig. 4 (left panel) shows the results for the 
gluon propagator of these calculations together with the continuum results. It is assumed 
here that the Coulomb string tension ere is identical to the string tension er from the Wilson 
loop. There is a very good agreement, in particular the ultraviolet and infrared behaviour 
matches perfect for lattice and continuum. What is also remarkable that the lattice result 
can be very well fitted by Gribov's original formula for the gluon energy 

Cw 
w(k) = v,c• -1- k}i" 

with M = 0.88(1) GeV. 

4 The colour dielectric constant 

Consider the electric field generated by a charge density p in electrodynamics 

E=-8¢, rp=(-~)- 1p. 

(19) 

(20) 

The longitudinal electric field resulting from the resolution of Gauss' law in the Yang-Mills 
case is given by a similar expression 

E = (II)= -8¢ 
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Figure 4: Left: Lattice data for w(k), compared to the solution of the Dyson-Schwinger 
equations. Right: Dielectric function t(k). 

r/J = { (-D · ar1) p = d(-~)(-~)-lp (21) 

except that the Green's function of the Laplacian is replaced by the ghost propagator (15). 
The last expression has the form of the scalar potential in the presence of a dia-electric 
medium 

!p = E-1(-~)-lp (22) 

and the inverse of the ghost form factor d( k) can thus be identified as the dielectric function 
of the Yang-Mills vacuum ,. 

t(k) = d- 1(k). (23) 

Fig. 4 (right panel) shows the so defined dielectric function. It satisfies 0 < t(k) < l, which 
is a manifestation of anti-screening while in QED we have t(k) > l, which corresponds to 
ordinary Debye screening. Furthermore, at zero momentum the dielectric function vanishes, 
showing that in the infrared the Yang-Mills vacuum behaves like a perfect colour dia-electric 
medium. The vanishing of the dielectric function in the infrared is not an artifact of our 
solutions of the Dyson-Schwinger equations but is guaranteed by the horizon condition, 
which is a necessary condition for the Gribov-Zwanziger confinement scenario. A perfect 
colour dia-electric medium E = 0 is nothing but a dual superconductor. (Here, "dual" 
refers to an interchange of electric and magnetic fields and charges.) Recall in an ordinary 
superconductor the magnetic permeability vanishes µ = 0. This shows that the Gribov
Zwanziger confinement scenario implies the dual Meissner effect [12]. 

5 Topological susceptibility 

As first shown by Adler [13] and Bell and Jackiw [14], the UA(l) symmetry is anomalously 
broken which gives rise to an extra mass term to the r/, which by the Witten-Veneziano 
formula 

2 2 2 - 2N1 m , + m 11 - 2mK - p
2 

X 
1/ ,r 

(24) 

111 



Coulomb gauge Yang-Mills theory 
in the Hamiltonian approach1 

H. Reinhardt, D. Campagnari, D. Epple, M. Leder, M. Pak and W. Schleifenbaum 
University of Tubingen 

Institute of Theoretical Physics 
Auf der Moryenstelle 14 

D-72076 Tubingen 

Abstract 
Within the Hamiltonian approach in Coulomb gauge the ghost and gluon propa

gators are determined from a variational solution of the Yang-Mills Schriidinger equa
tion showing both gluon and heavy quark confinement. The continuum results are in 
good agreement with lattice data. The ghost form factor is identified as the dielectric 
function of the Yang-Mills vacuum and a connection between the Gribov-Zwanziger 
scenario and the dual Meissner effect is established. The topological susceptibility is 
calculated. 

1 Introduction 

The aim of the talk is the microscopic description of infrared properties of QCD like confine
ment. We would like to see, for example, the emergence of the colour flux string between 
static colour charges. For this purpose, I will use the Hamiltonian approach to Yang
Mills theory in Coulomb gauge. The organisation of my talk is as follows: In section 2, I 
will briefly summarise the essential ingredients of the Hamiltonian approach to Yang-Mills 
theory in Coulomb gauge. Then I will present a variational solution of the Yang-Mills 
Schrodinger equation in section 3, which will result in a set of coupled Dyson-Schwinger 
equations. I will present the analytic solutions to these equations in the infrared and ultravi
olet and the numerical solution for the full mpmentum range. The resulting propagators will 
then be compared to the available lattice data. Then I will focus on two non-perturbative 
properties of the Yang-Mills vacuum: the dielectric constant in section 4 and the topological 
susceptibility in section 5. Finally, a summary is provided. 

2 Canonical quantisation of Yang-Mills theory 

In the canonical quantisation approach the gauge fields A~(x) are considered as the (carte
sian) coordinates and the corresponding conjugate momenta are defined by 

IT~(x) = o8a~~(x) ' (l) 

1 Invited talk given by H. Reinhardt at the international conference on "Selected Problems in Theoretical 
Physics, Dubna 23-27 June 2008". Supported in part by the Deutsche Forschungsgemeinschaft (DFG) under 
contract no. Re856/6-l,2. 
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where S is the action of the Yang-Mills field. The explicit calculation yields 

Ilf(x) = Ef(x), II0{x) = 0, (2) 

where Ef(x) is the colour electric field. To avoid the problems arising from the vanishing 
temporal component of the canonical momentum, one imposes Wey! gauge A0(x) = 0. The 
Yang-Mills Hamiltonian is then given by 

H = ~ j d3x (II2(x) + B2(x)) . (3) 

The canonical quantisation is carried out in the standard fashion by imposing the canonical 
commutation relation [Af(x), II~(y)] = O;ioabo3(x - y), which promotes the canonical mo
mentum to the operator Ilf(x) = o/ioAf(x). By imposing Wey! gauge one loses Gauss' law 
from the Heisenberg equation of motion and Gauss' law has to be imposed as a constraint 
on the wave functional 

f> • IT(x)'lj!(x) = -gpm(x)'lj!(x), (4) 

where Pm(x) is the colour charge density of the matter fields and Dfb = oabai + gAfb 
(A_ab = rcb Ac) is the covariant derivative in the adjoint representation of the gauge field 
with rbc being the structure constant of the gauge group. The operator on the left hand side 
of Gauss' law is nothing but the generator of time-independent gauge transformations and 
in the absence of external colour charges, Pm(x) = 0, Gauss' law expresses the invariance of 
the wave functional under space-dependent but time-independent gauge transformations. 

Instead of working with explicit gauge invariant wave functionals it is more convenient to 
explicitly resolve Gauss' law by fixing the gauge. Coulomb gauge is a particular convenient 
choice for this purpose. We implement the Coulomb gauge, 8 · A = 0, in the standard 
fashion into the scalar product of the wave functionals by means of the Faddeev-Popov 
method 

(1/JIOlefl) = / DA.LJ(A.L)'lj!*(A.t)O[A.tjip(A.L), (5) 

where 
J = Det(-b. 8) (6) 

is the Faddeev-Popov determinant. While in Coulomb gauge the gauge field is transversal 
the momentum operator II= rrll + II.L contains both longitudinal rrll and transversal II.L 
parts. Resolving Gauss' law for the longitudinal part of the momentum operator yields 

rrll'lp = g8(-b · a)- 1p1/J, p =Pu+ Pm, (7) 

where 
Pg= A.L. rr.L (8) 

is the colour charge density of the gauge field. With this result the Hamiltonian in Coulomb 
gauge is found to be 

H = ~ J ( r 1rr.L JIT.L + B 2
) +He, (9) 

where 

He = ~J r 1rrllJrrll = ~
2 J J- 1p(-b-a)-1(-8 2)(-b-a)-1Jp (10) 

is the so-called Coulomb Hamiltonian, which arises from the longitudinal part of the kinetic 
energy after resolving Gauss' law. The Hamiltonian {9) was first derived in Ref. [l]. 
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Figure 5: Topological susceptibility x as a function of the ratio O'c/0'. 

is expressed by the topological susceptibility 

X = -i j d4x(0lq(x)q(0)I0) , 

which is the correlation function of the topological charge density 
2 

q(x) = 
3

~7r
2

F:,,(x)Faµv(x). 

(25) 

(26) 

Furthermore, in eq. (24) N1 denotes the number of flavours and F,, ~ 93 MeV is the 
pion decay constant. x vanishes in all orders of perturbation theory and is thus an ideal 
observable to test the non-perturbative content of our vacuum wave functional. In the 
Hamiltonian approach one finds the following expression for the topological susceptibility 
[15] 

Vx = ( ::
2

) 

2 

[(ol / B 2(x)I0) _ 2 I: l(nl J B · IIIO)l
2

] . 
n En 

(27) 

Here /n) denotes the exact excited states of the Yang-Mills Hamiltonian with energies En. 
These eigenstates are of course not known. We work out the matrix elements in eq. (27) to 
two-loop order. In this order only two and three quasi gluon states 

t bl t bl ) I af (x)ai (y)I0), af (x)ai (y ak (z)I0) (28) 

contribute where our vacuum state is annihilated by the operators af(x), i.e. af(x)I0) = 0. 
The resulting expression for the topological susceptibility is ultraviolet divergent and needs 
renormalisation. For this aim we exploit the fact that x vanishes to all order perturbation 
theory and renormalise the expression (27) for x by subtracting each propagator by its 
perturbative expression. This renders x (27) finite. Furthermore, since the momentum 
integrals in this expression are dominated by the infrared part we replace the coupling 
constant, which, in principle, should be the running one, by its infrared value. The results 
obtained in this way for the topological susceptibility are shown in Fig. 5 (right panel) as a 
function of the ratio O'c/0'. Choosing O'c = 1.50' which is the value favoured by the lattice 
calculation [8] we find with y0 = 440 Me V 

X = (240 MeV) 4
• (29) 

This value is somewhat larger than the lattice prediction x = (200 - 230 MeV) 4
. 
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6 Summary and Conclusions 

I have presented a variational solution of the Yang-Mills Schrodinger equation in Coulomb 
gauge using a ~aussian t~pe of ansat_z f~r the va~uum _wave functional. We find a gluon 
energy which is mfrared divergent, which 1s a mamfestat10n of gluon confinement. Further
more, we have found a static colour charge potential which at large distances rises linearly, 
as one expects for a confining theory. The propagators calculated within this approach are 
all in satisfactory agreement with the lattice data. I have then shown that the inverse of the 
ghost form factor can be interpreted as the colour dielectric function of the QCD vacuum. 
The horizon condition, a necessary condition for the Gribov-Zwanziger confinement sce
nario to work, implies that in the infrared the QCD vacuum is a perfect colour dia-electric 
medium, which is nothing but a dual superconductor. In this way the Gribov-Zwanziger 
confinement scenario implies the dual Meissner effect. Finally I have presented results for 
the topological susceptibility calculated in the Hamiltonian approach with our vacuum wave 
functional. For reasonable values of the Coulomb string tension we find results close to but 
somewhat larger than the lattice data. The results obtained so far in this approach are 
quite encouraging for further investigations. A natural next step would be the inclusion of 
dynamical quarks. 
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Abstract 

The new JINR project on construction of accelerator complex NICA provide the 
unique possibilities for study of various spin effects in different reactions. Among 
them the study of Drell-Yan (DY) processes in collisions of transversely polarized 
protons and deutrons are of extreme importance since they allow to extract the such 
important transverse-momentum dependent distribuions as transversity, Sivers and 
Boer-Mulders functions. Here we estimate the size and the feasibility of single-spin 
asymmetries (SSA) which provide the access to transversity as well as to Boer-Mulders 
and Sivers PDFs. The feasibility is studied with the new generator of polarized DY 
events. The performed estimations demonstrate that there exist the such kinematical 
regions where SSA are presumably measurable. 

At present JINR launched the new NICA/MPD project based on the development of 
the existing Nuclotron accelerator for the new facility creation: the heavy and light nucleus 
collider NICA [1]. In particular, the possibility is now considered to study the collisions 
of the polarized proton and deutron beams at the second interaction point (IP) at NICA. 
That allows to study the DY processes in collisions of transversely polarized protons and 
deutrons, providing us an access to the very important and still poorly known sea and 
valence transversity, Boer-Mulders and Sivers PDFs in proton. It is argued [1] that the 
design of the collider allows to reach the energy of colliding proton beams up to 10 GeV 
at luminosity up to 1030 cm2 s-1 • At the same time the respective numbers for the deutron 
collisions are also quite considerable: collision energy per nucleon up to ,/(s) ~ l2GeV 
with the average luminosity up to 1029cm2s-1. It is of great importance that both proton 
and deutron beams can be effectively polarized, with the polarization degree not less than 
50% [1]. 

The such unique possibilities gives the great opportunities to extract from Drell-Yan 
processes the such important PDFs as transversity, Sivers and Boer-Mulders PDFs. At 
present the Boer-Mulders PDF is still not measured, while the Sivers [3, 4] and transversity 
[5] PDFs were preliminarily extracted from the SIDIS data collected by HERMES [6] and 
COMPASS [7] collaborations. 

It is well known that the double transversely polarized DY process allows to directly 
extract the transversity distributions [2]. However, in the case of pp, pD and DD collisions 
these asymmetries are much smaller than the single spin asymmetries. Besides, namely 
unpolarized and single-polarized DY processes give us also an access to Boers-Mulders and 
Sivers PDFs, which are very intriguing and interesting objects in themselves. On the other 
hand, in the single-polarized DY processes the access to PDFs we are interesting in is rather 
difficult since they enter the respective cross-sections [8] in the complex convolution with 
each other, so that at first sight it is impossible to avoid some models on the kr dependence 
of PDFs. To solve this problem the QT weighting approach [9] was recently applied in Ref. 
[3] to Sivers effect in the single-polarized DY processes, and in Refs. [10, 11] with respect 
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to transversity and Boer-Mulders PDF. Here we will estimate both types of single-spin 
asymmetries (SSA) for proton-proton and proton-deutron collisions. 

Transversity and T-odd PDFs via Drell-Yan processes with pp collisions 

The procedure proposed in Refs. [10, 11] allows to extract from the single-polarized DY 

processes the transversity h1 and the first moment ht(l)(x) == J d2kr ( ~) hfq(xp, k.}) of 

Boer-Mulders hf {l) PDF directly, without any model assumptions about kr-dependence 
of hf (x, k}). Applied to unpolarized DY process with pp collisions this general procedure 
gives 

2[-.L(l)( ) .l(l)( ( _)] ic/ = 8 I;qeq h1q x1 h1q x2) + Q--> Q 
w-1+1-x Lqe~[f1q(x1)Jiq(x2) + (Q--> ii)] ' (1) 

where k is the coefficient at cos 2¢ dependent part of the properly Qr weighted ratio of 
unpolarized cross-sections [10, 11]: 

A 3 2 A 

R= 
167

Jy(l+cos B)+kcos2¢sin2 0). (2} 

At the same time, in the case of single-polarized DY process, operating just as in Ref. [10], 
one gets 

/4h 
l Lq e~[lif?'(xp)h1q(Xp1) + (Q--> ii)] 

-2 Lq e~[fiq(xp)f1q(xp1) + (Q--> ii)] ' (3) 

where the sin(¢+ ¢>s)- and Qr-weighted single spin asymmetry (SSA) Ah is defined just 
• sin(¢-¢s)-/:l-

as in Refs. [10, 11]. SSA Ah is analogous to asymmetry Aur N applied in Ref. (3] 
with respect to the Sivers effect investigation in the single-polarized DY processes. For DY 

sin( ¢-¢s )-/:l-
process pp'--> t+r-x we study here the expressions for Aur N look as (see Eqs. (14), 
(15) in Ref. [3] ) 

Asin(¢-¢s)~ _ 
2

I:q e~[f#
1
)q(xp1 )J1q(xp) + (Q--> ii)] 

UT - Lqe~[fiq(xpr)fiq(xp)+(Q-->ii)] ' (4) 

where J#l)q(x) == J d2kr ( ~) J#(x, k}) is the first moment of the Sivers function 

f;;j!(x, k}). Notice that factor 2 in Eq. ( 4) (see also Eq. (7) in Ref. [12]) was intro
duced in Ref. [3] for consistence with the respective semi-inclusive SSA studied by the 
HERMES. Since within this paper we also will study SSA given by Eqs. (4) and (4), for 

sin(¢+¢s)-/:l- • comparison purposes it is convenient to introduce, by analogy, SSA Aur N = 2Ah. 

Estimations on SSA in pp collisions 

L sin(¢-¢s)-/:l-l 
et us first estimate SSA Aur N 

1 
given by Eq. (4) in the NICA kinematical 

w -1+1-x 
conditions. We perform the calculations for Q2 values below and above J /iI! threshold 
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Q2 = 9.5 GeV2 • For the estimations we use three different fits for the Sivers function: fits 
I and II from Ref. (3) and also the latest fit from Ref. (4), which we denote as fit III. 
For the first moments () of the sea Sivers PDFs entering Eq. (4) we use the model (with·
the positive sign) proposed in Ref. (12) (see Eqs. (10) and (11) in Ref. [12)). For the 
unpolarized PDFs entering Eq. (4) we use GRV94 [13] parametrization. The results of 
estimations for the different Q2 values are presented in Fig. 1. Looking at Fig. 1 one can 
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Figure 1: Estimation of SSA Aur N for NICA, s=400Ge V2

, with Q2 = 4 Ge V2 

pp! 

(left) and Q2 = 15 GeV2 (right). Rome numbers I, I I denote respectively fits I and II from 
Ref. [3] and II I denotes the fit from Ref. [4]. 

see that the asymmetry takes the largest values near zero value of Xp - Xpt and when this 
difference becomes positive. 

sin(</>+</>s)tf-
Let us now estimate SSA Aur N. Since neither the Boer-Mulders function nor its 

first moment are still not measured, we will use in our calculation the Boer's model (Eq. 
(50) in Ref. [8)) which produces the good fit for the NAlO [14) and E615 [15] data. We also 
apply the following assumption for the first moment of the sea Boer-Mulders PDF 

hfPl(x)/hf?l(x) = /iq(x)//iq(x). (5) 

Recently, for the fist time, the transversity PDF was extracted [5] from the combined 
data of HERMES, COMPASS and BELLE collaborations. However, because of the rather 
poor quality of data the errors surrounding the fit on h1 is very large, and, besides, the 
authors of Ref. [5] were compelled to apply the large number of approximations. In 
particular, the approximation of zero sea transversity PDF was applied. However, as it 
was stressed before, in the case of proton-proton collisions namely the sea PDFs play the 
crucial role. That is why here we will apply two versions of evolution model for transversity 
instead of the fit from Ref. (5]. First is the model where the Soffer inequality is saturated: 
h1q(x, Q5) = ½(q(x, Q5) + .6.q(x, Q5)], h1q(x, Q5) = ½ [q(x, Q5) + .6.q(x, Q5)], at low initial 
scale (Q5 = 0.23GeV2), and then h1q, h1q are evolved with DGLAP. In the second version of 
evolution model (see [2, 16) and references therein) we use the assumptions h1q(q)(x, Q5) = 
.6.q(q)(x, Q5) at the same initial scale. This model is much more realistic one because at 
the model initial scale a lot of models predict [2] that h1 = .6.q. Besides, we found that the 
curve corresponding to this version of evolution model is in very good agreement with the 

fit of Ref. [5). 
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Figure 2: Estimation of SSA Aur N ppr for NICA, s = 400 GeV2

, with Q2 = 4 GeV2 

(left) and Q2 = 15 GeV2 (right). The solid and dotted curves correspond to the two 
different input ansatzes for h1u which are used in evolution model. These are h1q,il = .6.q, q 
and h1q = (.6.q + q)/2 h1q = (.6.q + q)/2, respectively. Here GRV94 [13) parametrization for 
q(x) and GRSV95 [17] parametrization for .6.q(x) are used. 

sin(</>+</>s) tf-
We present here (Fig. 2) the estimations of SSA Aur N below and above J/1.j; 

resonance for NICA kinematical conditions. Looking at Fig. 2 one can see that the asym-
sin(</>+</>sl-lf;; • 1· "bl d · "t "d bl I th" metry Aur 1s neg 1g1 eat Xp > xpr an 1s qm e cons1 era e at Xp < xpr- n 1s 

sin(</>+</>s)tf- . . 
second case SSA Aur N takes its maximal values (about 5-10%) when Xp - Xpr takes 
the large negative values. 

SSA in pD and DD collisions 

As usual, the inclusion of the deutron beam/target can allow us to find PDFs of u and 
d quark, in separation. Applying SU1(2) symmetry to the results for SSA in for pp case, 
one immediately gets the respective results on SSA for Drell-Yan processes in pD and DD 
collisions. As it was mentioned above there exist the strong theoretical arguments [18] 
based on 1/ Ne expansion that the sum of the u and d quark Sivers first moments J;_;;1)u 

and Jt:).1
ld is very small quantity. Besides, the QCD evolution predicts small values of the 

sea transversity distributions even at small x values [16]. Thus, in the case of polarized 
deutron in initial state, the respective SSA presumably should be very small quantity (and 
our calculations confirm it), compatible with zero. It is the great task for NICA to check 
wether this SSA is zero or not. The only SSA which could take considerable value is SSA 
containing the sum h1,,(xnt )+h1d(xvr ). The point is that the analysis [5) of the COMPASS 
data obtained on the deutron target produced the possibility of nonzero sum h1,, + hid• In 
accordance with this analysis h1,, and hld are of opposite sign but differ in their absolute 
values (see Fig. 7 in Ref. [5)). However, the uncertainties on h1u and h1d are too large 
(see the error bands in Fig. 7) to realize is the quantity h1,, + h1d zero or not. Thus, the 
respective measurements of SSA in DY processes with polarized deutron could shed the 
light on this problem. 

On the contrary to the case of polarized deutron, in the case of polarized proton 
all SSA could take the considerable values. Our calculations show that they are of the 
same order of magnitude as the respective SSA in the case of pp1 collisions: ratio R = 
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Figure 3: Estimation of asymmetries AuT N for NICA, s = 400GeV

2
. Here fit 

ppT 

from Ref. [4] is used. The points with errors bars are obtained by using simulations with 
event generator at the applied statistics 100K (left) and 50K (right) pure Drell-Yan events. 

(Q2) ~ 3.5 GeV2 for both plots. 

sin(,j,-¢s)tf--1 sin(,j,-¢s)tf--1 sin(,j,+¢s)-i\L 1 

AuT N /AuT N changes from 0.4 to 0.8, while the asymmetries AuT N,, 

Dp1 pp1 

sin(¢Hs)tf--l and AuT N arc almost coi_ncide. 
pp1 

Thus, one can conclude that in the case of Dpi collisions both, weighted with sin(</>-</>s) 
and weighted with sin(</>+ </>s), SSA are presumably measurable in the same x regions as 
the respective SSA in the case of ppi collisions. 

Estimations on the SSA feasibility with the new generator of polarized DY 
events 

Until recently there was no in the free access any generator of Drell-Yan events except 
for the only PYTHIA generator. However, regretfully, in PYTHIA there are only unpolar
ized Drell-Yan processes and, besides, they are implemented in PYTHIA without correct qr 
and cos 2¢> dependence, which is absolutely necessary to study Boer-Mulders effect. Thus, 
we wrote the new generator of polarized DY events (the details will be published else
where). The scheme of generator is quite simple and very similar to the event generator 
GMC_TRANS [19] which was successfully used by HERMES collaboration for simulation 
of the Sivers effect in semi-inclusive DIS processes [6]. 
. To perform the comprehensive feasibility estimations one needs to take into account 

the all peculiarities of the concrete experimental setup. This is the subject of our future 
investigations. Here we present the estimations at the generator level. 

We prepared two samples with applied statistics 100K and 50K of pure Drell-Yan events 
for each of two Q2 ranges: 2 < Q2 < 8.5GeV2 and Q2 > llGeV

2
• Cut 2 < Q

2 
< 

8.5 GeV2 is applied to avoid misidentification of lepton pairs due to numerous background 
processes ( combinatorial background from Dalitz-decays and gamma conversions, etc - see, 
for instance, section F.4.2 in Ref. [20]) below Q2 = 2 GeV2 and to exclude lepton pairs 
coming from J/1/J region. Cut Q2 > 11 GeV2 is also applied to avoid the lepton pairs 
coming from J /1/J region. The results are presented in Fig. 3. The results in the region 
Q2 > 11 GeV2 are very similar to results in 2 < Q2 < 8.5 GeV2 region, so that we omit 
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Figure 4: Estimation of asymmetries AuT N ppT for NICA, s = 400GeV2

• Here the 

evolution model with the input ansatz h1q,ii = D.q, ij at Q6 = 0.23 GeV2 is used. GRV94 [13] 
parametrization for q(x) and GRSV95 [17] parametrization for D.q(x) are used. The points 
with errors bars are obtained with the developed generator of polarized DY events at the 
applied statistics 100K (left) and 50K (right) pure Drell-Yan events. (Q2

) ~ 3.5 GeV2 for 
both plots. 

them. For the simulations with the developed generator we use the latest parametrization, 
fit III (solid line in Fig. 3), from the set [3, 4]. Looking at Fig. 3 one can see that even 
at relatively low applied statistics 50K pure Drell-Yan events there are three presumably 

sin(,j,-¢s)tf--
measurable points for AuT N in the kinematical region Xp - xpr > 0, where this SSA 
is about 4-6%. Moreover, at applied statistics 100K pure Drell-Yan events one can hope 

sin(¢-¢s)if--
to reconstruct the functional form of SSA AuT N in the kinematical region Xp > XpT· 

sin(¢-¢s)if--
In the region Xp < XpT SSA AuT N is smaller (less than 4%), but still visible within 
the errors (even at applied statistics 50K events one can see at least one measurable point). 

sin(¢+¢s)if--
Let us now estimate the feasibility of SSA AuT N • The results are presented in 
Fig. 4 . For the simulations we again use Boer model for hf and the evolution model 
for h1 with hrq(ii) = b.q(b.ij) ansatz at initial scale Q6 = 0.23 GeV2

• Looking at Fig. 4 
one can see that in the region Xp < xpr even at statistics 50K pure Drell-Yan events one 

h . h' h 1 h . r Asin(¢Hsl.?,;, · h k' · 1 can ope to see wit m t e errors at east t ree pomts ,or UT m t e mematrca 
region Xp - xpr < 0. At the same time, at the statistics 100K events one can hope also to 
reconstruct the functional form of this SSA in the kinematical region Xp < XpT. 

sin(¢Hs)if--
Let us note that due to the close values of AuT N in the cases of ppl and Dpi 

coll' . 11 1 · . f 'b'l' f Asin(¢Hsl.?,;, . h f i 11· . 1s1ons a cone us1ons concernmg eas1 1 1ty o UT m t e case o pp co 1s1ons 
are valid in Dpi case too. 

We estimated also the DY event rates at NICA assuming that the achieved luminosity 
will be about 1030cm-2s-1 and using cut Q > 2 GeV to reduce the background. The results 
are presented in Table 1 in comparison with the results for PAX experiment. From this 
table it is seen that the required statistics 50K events could be achieved with only 1 year 
?f data taking while 100K events could be collected within 2 years of data taking. It is of 
importance that for these estimations we use the strong cut Q > 2 GeV. However, if one 
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Table 1: DY event rate estimates per mof!JJ! for NICA and PAX 
CJ DY total, nb L, cm-2s-1 K events 

PAX, vs= 14.6GeV ~2 ~ 103u ~10 
NICA, vs= 20GeV ~l ~ 1030 ~5 
NICA, vs= 26GeV ~ 1.3 ~ 1030 ~7 

Table 2: DY event rate estimates per month for NICA and PAX with different cuts in Q 
cut on Q, GeV .I 1.5 I 1.6 I 1.7 I 1.8 I 1.9 I 2.0 I 

NICA, vs = 20 G~f 
CJny total,nb 2.54 1.94 1.5911.3211.1 I 0.9 

N events for a month, K 14.1 10.5 8.8 7.3 6.1 5 
NICA, vs= 26 GeV 

CJny total,nb I 3.3 I 2. 7 I 2.3 11.9 11.6 11.3 
N events for a month, K 18 15 13 10 9 7 

PAX, vs= 14.6 GeV 

CJny total,nb I 5.1 14.331 3.5 I 2.9 12.4612.09 
N events for a month, K 24.4 20.7 16.7 13.9 11.8 10 

use more soft cuts (see Table 2), the rates per month could be sufficiently increased. As it 
is stated in PAX proposal [20], this could be done if one carefully study the background in 
the region Q < 2 Ge V and tune the trigger appropriately. 

In summary, the Drell-Yan processes with the colliding protons and deutrons available 
sin(</>-</>s)i!f-

to NICA were considered. We estimated the single-spin asymmetries Aur N and 
sin(</>+<Ps)i!f-

Aur N, which give us an access to Sivers and to Boer-Mulders and transversity PDFs, . 
sin(</>-</>s).!JX._ 

respectively. The preliminary estimations demonstrate that SSA Aur MN can reach 
quite considerable values (5-10%) in both Xp > Xpt and xP < Xpt regions. On other hand, 

h . . f d f SSA Asin(<P+<Ps)-Nj:; h h h" . 1· "bl . t e est1mat10ns per orme or UT s ow t at t 1s asymmetry 1s neg 1g1 e m 
the region Xp > Xpt and takes considerable values (also about 5-10%) in the region Xp < Xpt• 

The estimations performed for SSA in the case of Dp and DD collisions demonstrate that 
the asymmetries for DY processes with pDi collisions are compatible with zero except for 
perhaps one, containing sum h 1u + hid- On the contrary to DY processes with pDi and 
DDi collisions,·SSA for Dpi collisions are close in their values to the respective SSA for. 
ppi collisions and, thus, presumably could be feasible in the same kinematical regions. 

The new generator of polarized DY events was developed which allowed us to estimate 
the feasibility of both weighted with sin(¢ - ¢is) and sin(¢+ ¢is) single-spin asymmetries. 
These estimations performed for proton-proton collisions demonstrate that both SSA are 
presumably measurable even at the applied statistics 50K pure Drell-Yan events. While 

sin(</>-</>s).!JX._ 
Aur MN is presumably measurable in both kinematical regions Xp > Xpt and Xp < Xpt, 

sin(</>+</>s)i!f-
the asymmetry Aur N could be measured only in the region Xp < Xpt, where it takes 
quite considerable values. 
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NUCLOTRON-BASED ION COLLIDER FACILITY (NICA) AT JINR: 
NEW PROSPECT FOR HEAVY ION COLLISIONS AND SPIN PHYSICS 

A.N. Sissakian, AS.Sorin (for the NICA collaboration) 
Bogoliubov Laboratory of Theoretical Physics, 

Veksler and Ba/din Laboratory of High Energy Physics, J/NR ~~·~.~---··-
~ti. ~ii-~.l~ffl~-. : . 
i.i'ii•=-'lf 

I w=~r.1- ______ >k __ _ 

The Joint Institute for Nuclear Research (JINR) in Dubna is an international research organization 
established in accordance with the intergovernmental agreement of 11 countries in 1956. At the present 
time, eighteen countries are the JINR Member States and five countries, having an Observer status. The 
JINR basic facility for high-energy physics research is represented by the 6 A Ge V Nuclotron. It has 
replaced the old weak focusing 10 GeV proton accelerator Synchrophasotron, which delivered the first 
nuclear beams of the relativistic energy of 4.2 AGeV in 1971. Since that time the study of relativistic 
heavy ion physics became one of the main directions of the JINR research program. The new flagship 
of the JINR is the NICNMPD project [1,2]. The main goal of the project is to start in the coming years 
experimental study of hot and dense strongly interacting matter at the new JINR facility. This goal will 
be reached by: 1) development of the existing Nuclotron accelerator facility as a basis for generation of 
intense beams over atomic mass range from protons to uranium and light polarized ions; 2) design and 

construction of the heavy ion collider having maximum collision energy of ,.;;-;;;; = 9 GeV and 

averaged luminosity of 1027 cm·2-s·1 and 3) design and construction of Multipurpose Particle Detector 
(MPD) at colliding beams. Realization of the project will provide unique conditions for the world• 
community research activity. The NICA energy region is of major interest because the highest nuclear 
(baryonic) density under laboratory conditions can be reached there. Generation of intense polarized 
light nuclear beams aimed at investigation of polarization phenomena is foreseen as well. 

~ 
~ 
I-

NICA/MPD Goals and Physics Problems 

~ 

1100 1· \· 
~ ~J .A <§> 

J 
4=>"'~ ,.. ~~~c, Nuclv"'~~ 

0 -----
Barvon Density (in units of nuclear density) 

Fig. 1. Phase diagram of nuclear matter (artist's view) 

The investigations are 
Relevant to understan
ding of the evolution of 
the Early Universe after 
Big Bang, formation of' 
neutron stars, and the 
physics of heavy ion 
collisions. The new JINR 
facility will make · it 
possible to study in
medium properties of 
hadrons and nuclear 

- matter equation of state, 
including a search for 

possible signature of deconfinement and/or chiral symmetry restoration phase transition and 

critical endpoint in the region of .Js NN = 3 - 9 GeV by means of careful scanning in beam 

energy and centrality of excitation functions The first stage measurements include: 
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multiplicity and global characteristics of identified hadrons including multi-strange particles; 
fluctuations in multiplicity and transverse momenta; directed and elliptic flows for various 
hadrons; HBT and particle correlations. Electromagnetic probes (photons and dileptons) are 
supposed to be added at the second stage of the project. 

The beam energy of the NICA is very much lower than the region of the RHIC (BNL) 
and the LHC (CERN) but it sits right on the top of the region where the baryon density is 
expected to be the highest. In this energy range the system occupies a maximal space-time 
volume in the mixed quark-hadron phase (the phase of coexistence of hadron and quark
qluon matter similar to the water-vapor coexistence-phase). The net baryon density at LHC 
energies is predicted to be lower. The energy region of NICA will allow analyzing the 
highest baryonic density under laboratory conditions. 

The conditions similar to NICA are expected to be reproduced at FAIR facility (GSI) 
after put the synchrotron SIS300 into operation in 2016. Two different approaches - fixed 
target experiment CBM at FAIR and collider experiment MPD at NICA will allow a wide 
variety of methods to be used in these studies. Therefore both facilities, FAIR and 
NICNMPD, can be considered as two complementary basic facilities aimed at the study of 
relevant physics of Hot and Dense Baryonic Matter. GSI and JINR have already a long-term 
experience of successful cooperation. 

NICA General Layout 
The NICA (Fig. 2) will consist of a cascade of accelerators. The multicharged ions will ~e 
generated in the unique ion source "KRION" developed at JINR, and accelerated in linear 
accelerator up to 6 MeV per nucleon. Then they are injected in the Booster-Synchrotron - a 
new machine to be built, accelerated in there, extracted and stripped on a carbon foil into 
"bare state". Transferred to the Nuclotron they are accelerated up to experiment energy. 
Before extraction the ion bunch is compressed and becomes of 30 cm length. Such ion 
bunches are injected, cycle by cycle, into collider rings and provide in collisions the required 
luminosity. Construction of the new facility is based on the existing buildings and 
infrastructure of the Synchrophasotron and Nuclotron of JINR. 

Fig. 2. NICA General Layout. The 
accelerator chain includes: heavy ion 
source - RFQ injector - linac - booster 
ring - Nuclotron - Superconduc-
ting collider rings. The peak design 
kinetic energy of 92U+ ions in the colli
der is 3.5 AGeV. Beam cooling and 
bunching systems are foreseen. The 
collider magnetic system is fitted to 
the existing building. The project 
design presumes realization some of 
fixed target experiments. Collider ope
ration with polarized deuteron and light 
ion beams is foreseen as the second 
stae:e of the oroiect develooment. 

MPD for Mixed Phase experiments 
!he proposed MPD (Fig. 3) has to detect the high multiplicity events and perform particle 
identification. The tracking system includes Inner Tracker (IT) - silicon strip detector, Time 
Projection Chamber (TPC) - the main tracker, Outer Tracker (straw barrel detector) and End 
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Cap Tracker (straw wheels). This system is immersed into homogeneous magnetic field of 
0,5T of superconducting solenoid with the axis parallel to the beam direction. The detector 
provides reconstruction and momentum measurement of charged particles in the region b1I< 
1. In the extended region of '111 >1 the accuracy of momenta measurement is lower. For the 
particles identification Time of Flight (TOF) System based on the RPC is proposed. This 
system allows pion, kaon and proton identification in the momentum range of0.2- 2 GeV/c. 
The TPC option of the tracker could provide also particle identification by measuring its 
ionization energy loss. For the electron/positron and gamma detection in the central region 
the crystal Electromagnetic Calorimeter (ECal) is considered. Two counter systems (Beam
Beam Counters) are located symmetrically at the edges of the detector along the beam axis 
to provide the trigger infonnation and for precise definition of interaction point.Two Zero 
Degree Calorimeters (ZDC) provide the ·energy measurement of spectators and 
determination of "centrality" in the ion-ion collision. 

Some basic parameters are: Interaction rate of U+U events at luminosity of 10
27 

cm·
2
·s· 

1 is of 10 kHz (interaction rate of central events is of - 500 Hz); the accuracy of vertex 
reconstruction by means of IT is better then 0.2 mm; the TPC produces ~ 50 hits on track 
and provides momentum measurement accuracy of - 1 % in the range of 0.2 - 2 GeV/c; 
TOFsystem has resolution of - 100 ps and provides pion and kaon separation with 
probability of 5% below 2 GeV/c. 

Yoke 

L'~· =vj 

•az~~--/' /BBC /ECT 

SC Coil Cryost,..t 

IT \_~ OT 

Fig. 3. The MPD schematics. IT 
- inner tracker (silicon strip 
detector), TPC -Time Projection 
Chamber (main tracker), OT 
(Outer Tracker, straw), ECT 
(End-Cap Tracker, straw), TOF 
(Time of Flight, RPC chambers), 
BBC - beam-beam counters, 
ZDC - Zero Degree 
Calorimeters, ECT - End Cap 
Tracker (straw chambers). 

Summary and Outlook 
The new facility at JINR in Dubna will allow to study very important unsolved problems of 
strongly interacting matter. The NICNMPD commissioning is scheduled in 2014. The 
design and organization work has been started. The first issue of the NICA/MPD Conceptual 
Design Report is completed. We suppose a wide world cooperation with many Laboratories 
both at R&D and construction stages of work. Important innovation aspects of the activity 
are supposed. 
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Landau Gauge QCD: Functional Methods versus 
Lattice Simulations 
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Abstract 

The infrared behaviour of QCD Green's functions in Landau gauge has been focus 
of intense study. Different non-perturbative approaches lead to a prediction in line 
with the conditions for confinement in local quantum field theory as spelled out in the 
Kugo-Ojima criterion. Detailed comparisons with lattice studies have revealed small 
but significant differences, however. But aren't we comparing apples with oranges 
when contrasting lattice Landau gauge simulations with these continuum results? 
The answer is yes, and we need to change that. We therefore propose a reformulation 
of Landau gauge on the lattice which will allow us to perform gauge-fixed Monte
Carlo simulations matching the continuum methods of local field theory which will 
thereby be elevated to a truly non-perturbative level at the same time. 

Introduction 

The Green's functions of QCD are the fundamental building blocks of hadron phenomenol
ogy [l]. Their infrared behaviour is also known to contain essential information about the 
realisation of confinement in the covariant formulation of QCD, in terms of local quark 
and gluon field systems. The Landau gauge Dyson-Schwinger equation (DSE) studies of 
Refs. [2, 3] established that the gluon propagator alone does not provide long-range interac
tions of a strength sufficient to confine quarks. This dismissed a widespread conjecture from 
the 1970's going back to the work of Marciano, Pagels, Mandelstam and others. The idea 
was revisited that the infrared dominant correlations are instead mediated by the Faddeev
Popov ghosts of this formulation, whose propagator was found to be infrared enhanced. 
This infrared behaviour is now completely understood in terms of confinement in QCD 
[1, 4, 5], it is a consequence of the celebrated Kugo-Ojima (KO) confinement criterion. 

This criterion is based on the realization of the unfixed global gauge symmetries of the 
covariant continuum formulation. In short, two conditions are required by the KO criterion 
to distinguish confinement from Coulomb and Higgs phases: (a) The massless single particle 
singularity in the transverse gluon correlations of perturbation theory must be screened 
non-perturbatively to avoid long-range fields and charged superselection sectors as in QED. 
(b) The global gauge charges must remain well-defined and unbroken to avoid the Higgs 
mechanism. In Landau gauge, in which the (Euclidean) gluon and ghost propagators, 

D:-}:,(p) = <5ab (bµv _ PµPv) Z(p
2

) 
p2 p2 , and DcJ'(p) = _0ab G(p

2
) 

p2 ' (1) 

125 



are parametrised by the two invariant functions Z and G, respectively, this criterion requires 
Comparing the infrared scaling behaviour of DSE and FRGE solutions of the form of 
Eqs. (3), it has in fact been shown that in presence of a single scale, the QCD scale Aqco, 

(2) ,~-the solution with the infrared behaviour (4) and (6), with a positive exponent K, is unique 
(a): lim Z(p2)/p2 < oo; (b): lim c-1 (p2) = 0. 

p2--+0 ' [10]. Because of its uniqueness, it is nowadays being called the scaling solution. P2-o 

The translation of (b) into the infrared enhancement of the ghost propagator (2b) thereby 
rests on the ghost/ anti-ghost symmetry of the Landau gauge or the symmetric Curci-Ferrari 
gauges. In particular, this equivalence does not hold in linear covariant gauges with non
zero gauge parameter such as the Feynman gauge. 

As pointed out in [5], the infrared enhancement of the ghost propagator (2b) represents 
an additional boundary condition on DSE solutions which then lead to the prediction of a 
conformal infrared behaviour for the gluonic correlations in Landau gauge QCD consistent 
with the conditions for confinement in local quantum field theory. In fact, this behaviour is 
directly tied to the validity and applicability of the framework of local quantum field theory 
for non-Abelian gauge theories beyond perturbation theory. The subsequent verification of 
this infrared behaviour with a variety of different functional methods in the continuum 
meant a remarkable success. These methods which all lead to the same prediction include 
studies of their Dyson-Schwinger Equations (DSEs) [5], Stochastic Quantisation [6], and of 
the Functional Renormalisation Group Equations (FRGEs) [7). This prediction amounts 
to infrared asymptotic forms 

Z(p2) ~ (p2 / A;c0 )2''z , and G(p2) ~ (p2 / A;c0 )-"
0 

, (3) 

for p2 ---> 0, which are both determined by a unique critical infrared exponent 

Kz =Kc= K, (4) 

with 0.5 < K < l. Under a mild regularity assumption on the ghost-gluon vertex [5], the 
value of this exponent is furthermore obtained as [5, 6) 

K = (93 - ✓1201)/98 ,::, 0.595. (5) 

The conformal nature of this infrared behaviour in the pure Yang-Mills sector of Landau 
gauge QCD is evident in the generalisation to arbitrary gluonic correlations [8): a uniform 
infrared limit of one-particle irreducible vertex functions rm,n with m external gluon legs 
and n pairs of ghost/anti-ghost legs of the form 

rm,n ~ (p2 I A;CD)(n-m)K' (6) 

when all Pl ix p2 ---> 0, i = 1, ... 2n + m. In particular, the ghost-gluon vertex is then 
infrared finite (with n = m = 1) as it must (9], and the non-perturbative running coupling 
introduced in (2, 3) via the definition 

2 

as(P2) = !!_z(p2)G2(p2) 
471" 

(7) 

approaches an infrared fixed-point, as ---> ac for p2 ---> 0. If the ghost-gluon vertex is regular 
at p2 = 0, its value is maximised and given by (5) 

871" f 2 (K - l)f(4 - 2K) 
Ne f2(-K)f(2K - 1) ,::, 

9 
N x 0.99. 

C 

(8) Dtc -
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This uniqueness proof does not rule out, however, the possibility of a solution with an 
infrared finite gluon propagator, as arising from a transverse gluon mass M, which then 
leads to an essentially free ghost propagator, with the free massless-particle singularity at 

pz = 0, i.e., 
Z(p2) ~ p2 / M2 , and G(p2) ~ const. (9) 

for p2 _. 0. The constant contribution to the zero-momentum gluon propagator, D(O) = 
3/(4M2), thereby necessarily leads to an infrared constant ghost renormalisation function 
G. This solution corresponds to Kz = 1/2 and Kc = 0. It does not satisfy the scaling 
relations (4) or (6). This is because in this case the transverse gluons decouple for momenta 
p2 « M2, below the independent second scale given by their mass M. It is thus not within 
the class of scaling solutions considered above, and it is termed the decoupling solution in 
contradistinction (ll]. The interpretation of the renormalisation group invariant (7) as a 
running coupling does not make sense in the infrared in this case, in which there is no 
infrared fixed-point and no conformal infrared behaviour. 

Without infrared enhancement of the ghosts in Landau gauge, the global gauge charges 
of covariant gauge theory are spontaneously broken. Within the language of local quantum 
field theory the decoupling solution can thus only be realised if and only if it comes along 
with a Higgs mechanism and massive physical gauge bosons. The Schwinger mechanism can 
in fact be described in this way, and it can furthermore be shown that a non-vanishing gauge
boson mass, by whatever mechanism it is generated, necessarily implies the spontaneous 
breakdown of global symmetries [12). 

Landau Gauge QCD in the Continuum and on the Lattice 

Early lattice studies of the gluon and ghost propagators supported their predicted infrared 
behaviour qualitatively well. Because of the inevitable finite-volume effects, however, these 
results could have been consistent with both, the scaling solution as well as the decoupling 
solution. Recently, the finite-volume effects have been analysed carefully in the Dyson
Schwinger equations to demonstrate how the scaling solution is approached in the infinite 
volume limit there (13). Comparing these finite volume DSE results with latest SU(2) 
lattice data on impressively large lattices (14, 15], corresponding to physical lengths of up 
to 20 fm in each direction, finite-volume effects appear to be ruled out as the dominant cause 
of the observed discrepancies with the scaling solution. The lattice results are much more 
consistent with the decoupling solution which poses the obvious question whether there 
is something wrong with our general understanding of covariant gauge theory or whether 
We are perhaps comparing apples with oranges when applying inferences drawn from the 
infrared behaviour of the lattice Landau gauge correlations on local quantum field theory? 

The latter language is based on a cohomology construction of a physical Hilbert space 
over the indefinite metric spaces of covariant gauge theory from the representations of 
the Becchi-Rouet-Stora-Tyutin (BRST) symmetry. But do we have a non-perturbative 
definition of a BRST charge? The obstacle is the existence of the so-called Gribov copies 
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which satisfy the same gauge-fixing condition, i.e., the Lorenz condition in Landau gauge, 
but are related by gauge transformations, and are thus physically equivalent. In fact, in the 
direct translation of BRST symmetry on the lattice, there is a perfect cancellation among __ _ 
these gauge copies which gives rise to the famous Neuberger 0/0 problem. It asserts that 
the expectation value of any gauge invariant (and thus physical) observable in a lattice 
BRST formulation will always be of the indefinite form 0/0 [16] and therefore prevented 
such formulations for more than 20 years now. 

In present lattice implementations of the Landau gauge this problem is avoided because 
the numerical procedures are based on minimisations of a gauge fixing potential w.r.t. gauge 
transformations. To find absolute minima is not feasable on large lattices as this is a non
polynomially hard computational problem. One therefore settles for local minima which in 
one way or another, depending on the algorithm, samples gauge copies of the first Gribov 
region among which there is no cancellation. For the same reason, however, this is not 
a BRST formulation. The emergence of the decoupling solution can thus not be used to 
dismiss the KO criterion of covariant gauge theory in the continuum. 

Strong Coupling Limit of Lattice Landau Gauge 

lF'rom the finite-volume DSE solutions of (13] it follows that a wide separation of scales 
is necessary before one can even hope to observe the onset of an at least approximate 
conformal behaviour of the correlation functions in a finite volume of length L. What is 
needed is a reasonably large number of modes with momenta p sufficiently far below the 
QCD scale AQco whose corresponding wavelengths are all at the same time much shorter 
than the finite size L, 

1r/L « p « AQCD. (10) 

It was estimated that this requires sizes L of about 15 fm, especially for a power law of the 
ghost propagator of the form in (3) to emerge in a momentum range with (10). A reliable 
quantitative determination of the exponents and a verification of their scaling relation ( 4) 
on the other hand might even require up to L = 40 fm [13]. 

As an alternative to the brute-force method of using ever larger lattice sizes for the. 
simulations might therefore be to ask what one observes when the formal limit AQco -. oo 
is implemented by hand. This should then allow to assess whether the predicted conformal 
behaviour can be seen for the larger lattice momenta p, after the upper bound in (10) has 
been removed, in a range where the dynamics due to the gauge action would otherwise 
dominate and cover it up completely. Therefore, the ghost and gluon propagators of pure 
SU(2) lattice Landau gauge were studied in the strong coupling limit /3-> 0 in (17, 18]. 

In this limit, the gluon and ghost dressing functions tend towards the decoupling solution 
at small momenta and towards the scaling solution at large momenta (in units of the lattice 
spacing a) as seen in Figure 1. The transition from decoupling to scaling occurs at around 
a2p2 ;::::: 1, independent of the size of the lattice. The observed deviation from scaling at 
a2p2 < 1 is thus not a finite-size effect. The high momentum branch can be used to attempt 
fits of Kz and Ka in (3) and the data is consistent with the scaling relation (4). With some 
dependence on the model used to fit the data, good global fits are generally obtained for 
"' = 0.57(3), with very little dependence on the lattice size. 

128 

" ~ 
0.1 

0.01 

0.01 0.1 

~ 
c:, 

10 

X S'S a2p2 

10 

ex const. 
-ee--&.r&-,..,. 

L/a = 12 1-e-l 
24 f--·•···{ 

32 ~--<>--➔ 
56 1--+-i -... •• 

'4b,+ \\ -0.595 
♦ \OC X ... \ 

"'""'-\ ~, 
1 '----'--'-'-'-'-'-'-"---'--'--'--LI-'.LU..--'---'--~~-~ 

0.01 0.1 10 

X S'S a2p2 

Figure 1: The gluon (left) and ghost (right) dressing functions at /3 = 0 compared to the 
decoupling solution (solid) and the scaling solution (dashed) with 1,, from (5) (not fitted). 

For the scaling solution one would expect the running coupling defined by (7) to ap
proach its constant fixed-point value in the strong-coupling limit, and this is indeed being 
observed for the scaling branch [17]: The numerical data for the product (7) levels at ac;::::: 4 
for large a2p2• As expected for an exponent K slightly smaller than the value in (5), see [5], 
this is just below the upper bound given by (8), ac;::::: 4.45 for SU(2). 

When comparing various definitions of gauge fields on the lattice, all equivalent in the 
continuum limit, one furthermore observes that neither the estimate of the critical exponent 
K nor the corresponding value of ac are sensitive to the definition used [17]. This is in 
contrast to the decoupling branch for a2p2 < 1, which is very sensitive to that definition. 
Different definitions, at order a2 and beyond, lead to different Jacobian factors. This is well 
known from lattice perturbation theory where, however, the lattice Slavnov-Taylor identities 
guarantee that the gluon remains massless at every order by cancellation of all quadratically 
divergent contributions to its self-energy. The strong-coupling limit, where the effective 
mass in (9) behaves as M 2 ex 1/ a2 , therefore shows that such a contribution survives non
perturbatively in minimal lattice Landau gauge. This contribution furthermore depends 
on the measure for gauge fields whose definition from minimal lattice Landau is therefore 
ambiguous. One might still hope that this ambiguity will go away at non-zero /3, in the 
scaling limit. While this is true at large momenta, it is not the case in the infrared, at least 
not for commonly used values of the lattice coupling such as /3 = 2.5 or /3 = 2.3 in SU(2), 
as demonstrated in [17]. 

Lattice BRST and the Neuberger 0/0 Problem 

It would obviously be desirable to have a BRST symmetry on the lattice which could then 
provide lattice Slavnov-Taylor identities beyond perturbation theory. In principle, this 
could be achieved by inserting the partition function of a topological model with BRST 
exact action into the gauge invariant lattice measure. Because of its topological nature, this 
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gauge-fixing partition function ZaF will be independent of gauge orbit and gauge parameter. 
The problem is that in the standard formulation this partition function calculates the Euler
characteristic x of the lattice gauge group which vanishes [19], 

ZaF = x(SU(N)#sites) = x(SU(N))#sites = o#sites . (11) 

Neuberger's 0/0 problem of lattice BRST arises because we have then inserted zero instead 
of unity (according to the Faddeev-Popov prescription) into the measure of lattice gauge 
theory. On a finite lattice, such a topological model is equivalent to a problem of supersym
metric quantum mechanics with \Vitten index W = ZaF• Unlike the case of primary interest 
in supersymmetric quantum mechanics, here we need a model with non-vanishing Witten 
index to avoid the Neuberger 0/0 problem. Then however, just as the supersymmetry of 
the corresponding quantum mechanical model, such a lattice BRST cannot break. 

In Landau gauge, with gauge parameter ~ = 0, the Neuberger zero, ZaF = 0, arises 
from the perfect cancellation of Gribov copies via the Poincare-Hopf theorem. The gauge
fixing potential Vu[g] for a generic link configuration {U} thereby plays the role of a Morse 
potential for gauge transformations g and the Gribov copies are its critical points (th~ 
global gauge transformations need to remain unfixed so that there are strictly speaking only 
(#sites-I) factors of x(SU(N)) = 0 in (11)). The Morse inequalities then immediately 
imply that there are at least 2(N-I){#sites-l) such copies in SU(N) on the lattice, or 2#sites-l 
in compact U(l), and equally many with either sign of the Faddeev-Popov determinant 
(i.e., that of the Hessian of Vu[g]). 

The topological origin of the zero originally observed by Neuberger in a certain parame
ter limit due to uncompensated Grassmann ghost integrations in standard Faddeev-Popov 
theory [lG] becomes particularly evident in the ghost/anti-ghost symmetric Curci-Ferrari 
gauge with its quartic ghost self-interactions [20]. Due to its Riemannian geometry with 
symmetric connection and curvature tensor Rijkl = ¼rijrkl for SU(N), in this gauge the 
same parameter limit leads to computing the zero in (11) from a product of independent 
Gauss-Bonnet integral expressions, 

x(SU(N)) = -( l ){N'-1)/2 f dg Jdcdc exp{iRabcdc"c?cccd} = 0, (12) 
21r lsu(N) 

for each site of the lattice. This corresponds to the Gauss-Bonnet limit of the equivalent 
supersymmetric quantum mechanics model in which only constant paths contribute [21]. 

The indeterminate form of physical observables as a consequence of (12) is regulated 
by a Curci-Ferrari mass term. While such a mass m decontracts the double BRST/anti
BRST algebra, which is well-known to result in a loss of unitarity, observables can then be 
meaningfully defined in the limit m-> 0 via !'Hospital's rule [20]. 

Lattice Landau Gauge from Stereographic Projection 

The 0/0 problem due to the vanishing Euler characteristic of SU(N) is avoided when 
fixing the gauge only up to the maximal Abelian subgroup U(l)N-I because the Euler 
characteristic of the coset manifold is non-zero. The corresponding lattice BRST has 
been explicitly constructed for SU(2) [19], where the coset manifold is the 2-sphere and 
x(SU(2)/U(l)) = x(S2) = 2. This indicates that the Neuberger problem might be solved 
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when that of compact U(l) is, where the same cancellation of lattice Gribov copies arises 
because x(S1) = 0. A surprisingly simple solution to this problem is possible, however, by 

--··· stereographically projecting the circle S1 
-> R which can be achieved by a simple modifi

cation of the minimising potential [22]. The resulting potential is convex to the above and 
leads to a positive definite Faddeev-Popov operator for compact U(l) where there is thus 
no cancellation of Gribov copies, but zgp) = Nae, for Nae Gribov copies. 

As compared to the standard lattice Landau gauge for compact U(l) their number is 
furthermore exponentially reduced. This is easily verified explicitly in low dimensional 
models. While Nae grows exponentially with the number of sites in the standard case as 
expected, the stereographically projected version has only Nae = Nx copies on a periodic 
chain of length Nx and In Nae ~ Ni In Nx on a 2D lattice of size N1Nx in Coulomb gauge, 
for example, and in both cases their number is verified to be independent of the gauge orbit. 

The general proof of zgpl = Nae with stereographic projection which avoids the Neu
berger zero in compact U(l) [22] follows from a simple example of a Nicolai map [21]. 

Applying the same techniques to the maximal Abelian subgroup U(l)N-I, the generali
sation to SU(N) lattice gauge theories is possible when the odd-dimensional spheres s2n+1, 

n =I, ... N-1, of its parameter space are stereographically projected to Rx RP(2n). In 
absence of the cancellation of the lattice artifact Gribov copies along the U(l) circles, the 
remaining cancellations between copies of either sign in SU(N), which will persist in the 
continuum limit, are then necessarily incomplete, however, because x(RP(2n)) = 1. 

For SU(2) this program is straightforward. One replaces the standard gauge-fixing 
potential Vu[g] of lattice Landau gauge by Vu[g], via gauge-transformed links UJµ, where 

Vu[g] = 4 L ( 1 - ½ Tr UJµ) 
x,µ 

and Vu[g] = -8 Lin G + ~1ru:,µ) . 
x,µ 

(13) 

The standard and stereographically projected gauge fields on the lattice are defined as 

- _ 1 (- -t ) . - _ 2Uxµ and Axµ - -
2

. Uxµ - Uxµ , with Uxµ = 1 .,.,_U 
ia 1 + 2 u xµ 

1 
A - -(U -ut) xµ - 2· xµ xµ 

ia 

The gauge-fixing conditions F = 0 and F' = 0 are their respective lattice divergences, in 
the language of lattice cohomology, F = 8A and F = 8.A. A particular advantage of the 
non-compact A is that they allow to resolve the modified lattice Landau gauge condition 
F = 0 by Hodge decomposition. This provides a framework for gauge-fixed Monte-Carlo 
simulations which is currently being developed for the particularly simple case of SU(2) in 2 
dimensions. In the low-dimensional models mentioned above it can furthermore be verified 
explicitly that the corresponding topological gauge-fixing partition function is indeed given 

by zif<2> = zf Pl # o, (14) 

as expected from x(RP(2)) = 1. The proof of this will be given elsewhere. 

Conclusions and Outlook 

Comparisons of the infrared behaviour of QCD Green's functions as obtained from lattice 
Landau gauge implementations based on minimisations of a gauge-fixing potential and 
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from continuum studies based on BRST symmetry have to be taken with a grain of salt. 
Evidence of the asymptotic conformal behaviour predicted by the latter is seen in the 
strong coupling limit of lattice Landau gauge where such a behaviour can be observed at 
large lattice momenta a2p2 » 1. There the strong coupling data is consistent with the 
predicted critical exponent and coupling from the functional approaches. The deviations 
from scaling at a2p2 < 1 are not finite-volume effects, but discretisation dependent and 
hint at a breakdown of BRST symmetry arguments beyond perturbation theory in this 
approach. Non-perturbative lattice BRST has been plagued by the Neuberger 0/0 problem, 
but its improved topological understanding provides ways to overcome this problem. The 
most promising one at this point rests on stereographic projection to define gauge fields 
on the lattice together with a modified lattice Landau gauge. This new definition has the 
appealing feature that it will allow gauge-fixed Monte-Carlo simulations in close analogy 
to the continuum BRST methods which it will thereby elevate to a 11011-perturbative level. 
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Abstract 

We discuss the renormalization of gauge-invariant transverse-momentum depen
dent (TMD), i.e., unintegrated, parton distribution functions (PDFs) and carry out 
the calculation of their anomalous dimension at one loop. We show that in the 
light-cone gauge, TMD PDFs contain UV divergences that may be attributed to the 
renormalization effect on a cusp-like junction point of the gauge contours at infinity. 
In order to eliminate the anomalous dimension ensuing from this cusp, we propose to 
use in the definition of the TMD PDFs, a soft counter term in terms of a path-ordered 
phase factor along a particular cusped contour extending to transverse light-cone in
finity and comprising light-like and transverse segments. We argue that this additional 
factor is analogous to the "intrinsic" Coulomb phase factor found before in QED. 

1 Introduction 

Parton distribution functions encode the nonperturbative hadronization dynamics at the 
amplitude level and are, therefore, of fundamental importance in QCD calculations and 
phenomenological applications (see [1) for a review). While integrated PDFs can be given an 
unambiguous gauge-invariant definition in terms of Wilson-line operators (gauge links) [2], 
the analogous definition for unintegrated, i.e., transverse-momentum dependent, PDFs may 
depend more critically on the details of the gauge contour. As a result, the renormalization 
of TMD PDFs is a more demanding task to which the present report is devoted. 

Indeed, in order to satisfy factorization, one cannot restore gauge invariance in TMD 
PDFs by inserting a purely light-like Wilson line joining the quark and antiquark field 
points directly (3]. The reason is that the gluons emitted from the struck quark along the 
x- direction have rapidities that cannot match those of the spectator quarks moving along 
the x+ direction. Consequently, one is forced to employ a gauge contour that comprises 
segments going off the light cone and joins the quark field points through infinity. Recall 
in this context that the gauge link resums the contributions due to collinear and transverse 
gluons between the struck quark and the spectator remnants (see, e.g., (4)). 

Quite recently, Belitsky, Ji, and Yuan (5) (see also (6, 7, 8)) have shown that in the light
cone gauge A+= 0, one has to include in the definition ofTMD PDFs transverse gauge links 
at light-cone infinity-as illustrated in Fig. 1. These transverse gauge links cancel when 
the integration over k1. is performed, so that one recovers the correct integrated PDF. 
Moreover, it was advocated in (5) that adopting the advanced boundary condition (sPt' 
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below), the transverse field A.1 vanishes at (- = oo reducing the transverse gauge link to 
unity. For that particular boundary condition, the light-cone gauge (one-loop) calculation 
reproduces the Feynman-gauge PDF. 

____ X (oo-, 00.1) 

(0-,O.1) (oo-,01.) 

(~-, e1.) 
(oo-, e1.) 

p p 

Figure 1: TMD PDF (shaded oval) in coordinate space. Double lines denote lightlike 
and transverse gauge links, connecting the quark field points (o-, 0.1) and (€-, e.1.), via a 
composite contour through light-cone infinity (oo-, 00.1.)-

In these investigations it was tacitly assumed that the lightlike-transverse composite 
contour going through infinity, illustrated in Fig. 1, is everywhere smooth. However, we 
have shown in [9, 10] by carrying out a one-loop calculation of the gluon radiative corrections 
to the unpolarized TMD PDF of a quark in a quark in the light-cone gauge that there are 
UV divergences which are neither related to the quark self energy nor are they caused 
by the endpoints of the line integral along the gauge contour-as one finds for the direct 
contour (the "connector" [11, 12]). Instead, the origin of these extra UV divergences can 
be attributed to a cusp obstruction (denoted by the symbol x in Fig. 1) in the split 
gauge contour at transverse light-cone infinity. The concomitant anomalous dimension 
after renormalization is a local footprint of the cusp and peculiar to the split ·contour. It 
turns out to coincide with the leading-order (LO) cusp anomalous dimension [13]. 1 The 
appearance of this extra anomalous dimension necessitates a modification of the definition 
of theTMD PDF in order to dispense with it. As pointed out in [9], and further outlined in 
full detail in [10], this can be achieved by including a path-ordered soft factor, in the sense 
of Collins and Hautmann [14], to be evaluated along a specific gauge contour off-the-light 
cone (see next section). Having described the cornerstones of our approach, let us now have 
a closer look to its mathematical details. 

1 It remains to be proved that this coincidence persists at the two-loop order and beyond. 
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2 . One-loop radiative corrections to gauge-invariant 
_______ -_TMD PDFs 

Taking into account the findings of [5], the strictly gauge-invariant operator definition of the 
TMD distribution of a quark with momentum kµ = ( k+, k-, k.1) in a quark with momentum 
Pµ = (p+,p-,0.1), with non-lightlike Wilson lines to light-cone infinity included, reads 

) lf d€-d2e.1. ( ·k+ - . ) ( - - - - t 
fq/q(x, k.1. = 2 21r(21r )2 exp -i € +ik.1. . e.1. q(p) I'¢(€ '€.1)[€ 'e.1.; 00 'e.1] 

X [oo-, e.1.; 00-, 00.1.Jt,+[oo-, 00.1.; 00-, 0.1.l[oo-, 0.1.; 0-, 0.1.] 

x '¢(0-,0.1.)lq(p)) l{+=o • 

(1) 

Here.the gauge links, in the lightlike and the transverse direction, respectively, are defined 
by the following path-ordered exponentials 

[oo-, z.1; z-, z.1.] = P exp [ig 100 

dr n; A~ta(z + n-r)] 

[00-,00.1.;oo-,e.1.] = Pexp [ig 100 

dr l • Aata(e.1. +lr)] , 
(2) 

where the two-dimensional vector 1 is arbitrary with no influence on the (local) anomalous 
dimensions we are interested in. 

l1. 
n 

PD tl:7 t Ft t 
+ (h.c.) 

(a) (b) (c) (d) 

Figure 2: One-loop radiative corrections (curly lines) contributing UV-divergences to 
/qJq(x, k.1) in a general covariant gauge. Double lines denote lightlike and transverse gauge 
links. Diagrams (b) and (c) are absent in the light-cone gauge, while the Hermitian conju
gate ("mirror") diagrams (not shown) are abbreviated by (h.c). 

Employing the light-cone gauge A+ = (A• n-) = 0 , (n-)2 = 0, we calculated in [9, 10] 
gluon radiative corrections to /qJq(x, k.1.) at the one-loop level and identified its UV di
vergences (see Fig. 2). We found that those contributions stemming from the interactions 
with the gluon field of the transverse gauge link cancel all terms that bear· a dependence 
on the pole prescription applied to regularize the light-cone singularities of the gluon prop
agator. In the intermediate steps of the calculation the light-cone singularities of the gluon 
propagator 

DLC( ) - -i ( q,,n-;; + q,,n;) 
µv q - q2 - ).2 + iO 9µv - [q+] (3) 
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are taken into account by means of the term 1/[q+] subject to boundary conditions on the 
gauge potential. In the present work we apply the following regularization prescriptions to 
the pole at q+ [5]: 

1 I 1 
[q+J = q+ ±i77 ' 

Ret/Adv 

11 1[ 1 1 ] 
[q+] = 2 q+ + i77 + q+ - i77 

PV 

(4) 

where 77 is a mass-scale parameter kept small but finite. The total UV-divergent contribution 
is obtained by including also the Hermitian conjugate contributions of diagrams (a) and 
(d) in Fig. 2. Then, we obtain 

(a+d} a. 1 [1 -y+p ( 77 i1r . . )] I:uv (p, µ, a.; E) = --;- CF-;_ 4 - 2p+ 1 + In p+ - 2 - Z7r C00 + i1rC00 

a. 1 [ -y+p ( 77 i1r)] -- CF- 1 - - 1 + In - - - , (5) 1r f 2p+ p+ 2 

where CF = (N; - 1)/(2Nc) = 4/3 and the parameter C00 encodes the adopted pole 
prescription (cf. Eq. (4)). This expression can be further simplified using 

-y+p7+ 
--=-y+ 

2p+ 

and recalling that the mirror counterparts of the evaluated diagrams yield complex-conju
gated contributions. As a result, the imaginary terms in Eq. (5) mutually cancel and one 
is left with 

(a+d)( ) u., , [ 1 (3 77 ) I ] I:uv as,f =2-GF - -+In- -'YE+ n41r . 1r f 4 p+ 
(6) 

The key contribution here is the term ~ In ffe which gives rise to the one-loop anomalous 

dimension in the light-cone (LC) gauge ( 'Y = ~½~ J;,) : 

LC Us (3 77) "11-loop = -;-CF 4 + In p+ = 'Ysmooth - O"f • (7) 

Here 'Ysmooth is the anomalous dimension one would obtain in a covariant gauge, or, equiva
lently, the anomalous dimension associated with a direct smooth contour between the quark 
fields (i.e., with the connector correction). The term o-y is the anomalous-dimensions defect 
entail~d by the cusp, we have to compensate in order to recover the same expression as in a 
covariant gauge according to the factorization proof. Consistent with this finding, one has 
to modify the multiplication rule for gauge links (or, equivalently, the way of decomposing 
gauge contours) [10]: 

'Ye = 'Ycj"'ucro + 'Ycusp <=> [2, llC] = [2, oo!Cfjf [oo, llCf]ei~cu,p. (8) 

The graphics at right of Fig. 3 helps the eye catch the key features of the situation involving 
two non-lightlike contours C1 and C,i. For comparison, the smooth decomposition of a purely 
lightlike contour is shown in the left panel. In that case the junction point. 3 crmt.<,s 110 

anomalous dimension and the standard multiplication rule for gauge links appliPs. 
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·~ ~ C2 

3 

• 
c, 

(b) (a) 

Figure 3: Renormalization effect on the junction point due to gluon corrections (illustrated 
by a shaded oval with gluon lines attached to it) for (a) two smoothly joined gauge contours 
C1 and C2 at point 3 and (b) the same for two contours joined by a cusp (indicated by the 
symbol®) at infinite transverse distance (marked by the earth symbol) off the light cone. 
All contours shown are assumed to be arbitrary non-lightlike paths in Minkowski space. 

In the above expression, <I>cusp contains a phase entanglement ensuing from the renor
malization effect on the cusp-like junction point at infinity. One may associate this phase 
with final (or initial) state interactions, as proposed by Ji and Yuan in [7], and also by 
Belitsky, Ji, and Yuan in [5]. However, these authors (and also others) did not recognize 
that the junction point in the split contour (the latter stretching to light-cone infinity) is no 
more a simple point, but a cusp obstruction that entails an anomalous dimension~ lnp+. 
More precisely, we have 

'Ycusp(a.,x) = a.CF (xcothx-1), 
7r 

d O r d ( ) a. 
dinp+ "f=x.:.~dx"lcuspUs,X =-;,CF, 

(9) 

which makes it apparent that the defect of the anomalous dimension is related to the 
universal cusp anomalous dimension [13]. To derive this expression, we have used the fact 
that p+ = (p·n-) ~ coshx defines an angle x between the direction of the quark momentum 
Pµ and the lightlike vector n-. Then, in the large x limit, one has In p+ --+ X· It is worth 
recalling in this context that the cusp anomalous dimension of Wilson lines controls the 
Sudakov factor resulting from gluon resummation and is known to the three-loop order [15]. 
The Sudakov exponent in next-to-leading logarithmic approximation has been calculated 
in [16] and expressed as an expansion in inverse powers of the first beta-function coefficient. 

3 How to avert the defect of the anomalous dimension 

In this section we will show in more depth how to get rid of the cusp anomalous dimension 
and refurbish the definition of the TMD PDF. The defect of the anomalous dimension, 
ensuing from the cusp-like junction point of the non-lightlike gauge contours, represents 
a distortion of the gauge-invariant formulation of the TMD PDF in the light-cone gauge. 
This is best appreciated by inspecting the composite non-smooth contour Ccusp, visualized 

137 



(o-, -oo•, 0-'-) 

Figure 4: Integration contour associated with the additional soft counter term. 

in Fig. 4, and defined by 

Ccusp: (µ = {[p!s, -oo < s < 0] U [n;s', 0 < s' < oo] U [l.1.T, 0 < T < oo]} , (10) 

with n;; being the minus light-cone vector. This contour is obviously cusped: at the ori
gin, the four-velocity P!, which is parallel to the plus light-cone ray, is replaced-non
smoothly-by the four-velocity n;;, which is parallel to the minus light-cone ray, This 
means that exactly at this point the contour has a cusp, that is characterized by the angle 
x ~ Inp+ = ln(p, n-), and will generate an anomalous dimension with the opposite sign 
relative to c51-cf. Eq. (7). This contour can be used to define a soft counter term in the 
sense of Collins.and Hautmann [14], namely, 

R=<l>(p+,n-lO)<I>t(p+,n-1~), 

where the eikonal factors are given by 

<I>(p+,n-10) = (o!PexP(ig lu,/(µtaA:(oJ!o) 

q,t(p+,n-1O - (olPexp[-ig lu,/(µtaA:(~+oJ!o) 

and have to be evaluated along the integration contour Ccusp· 

(11) 

(12) 

(13) 

Next, we consider the one-loop gluon radiative corrections, contributing to the UV 
divergences of Rand displayed in Fig. 5. Diagrams (a) and (d) give rise to an anomalous 
dimension that will finally compensate the anomalous-dimensions defect generated by the 
cusp-like junction point of the contours. On the other hand, by virtue of the light cone 
gauge A+ = 0, we are employing, diagrams (b) and (c) vanish. The UV parts of diagrams 
(a) and (d) yield, respectively, 

(a) ( ) a 8 l ( T/ . '7l' . ) <l>uv T/ = --Gp- In+ - i- - rnC00 
1r c p 2 

(14) 

and 
(d) . ( µ2)' <l>uv(T/) = -a8 CprnC00r(c) -41r ,\2 • (1 fJ) 

Combining these UV terms, we find 

F (a+d) ( ) lls 1 ( T/ . '7l' • • C ) l¥8 l ( T/ . '7!') v T/ = --Gp- ln - - i- - rnC00 + rn 00 = --Gp- In - - i-
u 7l' E p+ 2 7l' E p+ 2 

(16) 
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Figure 5: Gluon radiative corrections giving rise to UV-divergences contributing to the soft 
counter term R. The designations are as in Fig. 2. 

Taking into account the Hermitian conjugate ("mirror") terms, we obtain the total UV
divergent part of the soft factor R in one-loop order: 

<I>ff~loop'(T/) = - o,Cp~ln!!.... (17) 
7l' t p+ 

One notices that this expression bears no dependence on the pole prescription, since all C00-

dependent terms have mutually canceled. Indeed, only the cusp-dependent term ~ In fo 
survives that will ultimately yield -')'cusp• 

The above considerations make it apparent that one may use R and redefine the TMD 
PDF as follows 

f',:'J~d (x, k.1.; µ, T/) = ~ j ~~~~:~; exp (-ik+C + ik.1. · {.1.) \ q(p)J~(C, {.1.) 

x [C, {.1.; oo-, {.1.]t[oo-, {.1.; oo-, 00.1.Jt,+[oo-, 00.1,; oo-, 0.1.] 

X [oo-, 0.1,; o-, 0.1.]¢(0_, 0.1.)Jq(p)) 

X [<I>(p+,n-J0-,0.1.)<l>t(p+,n-1C,{.1.)]. (18) 

Before we conclude, let us mention that integrating the above expression over the transverse 
momenta, we obtain an integrated PDF that coincides with the standard one, containing no 
artifacts of the cusped contour, and satisfying the DGLAP evolution equation. Moreover, 
f',:'J~d (x, k.1,; µ, Tl) satisfies the simple renormalization-group equation 

~µ d: In J',:'Jgd(x, k.1.; µ, Tl) = ~:-CF+ O(a;) . (19) 

Note that without the soft counter term, R, extra contributions to the anomalous dimension 
on the right-hand side would appear. In [10] we have outlined the correspondence between 
the evolution with respect to the scale parameter T/ in our approach and the Collins-Soper 
evolution equation with respect to the rapidity parameter (, establishing the absence of 
UV singularities entailed by the light-cone gauge. 

4 Conclusions 

To summarize the results of this report on the renormalization of gauge-invariant Tl\ID 
PDFs, the following may be said. First, we have elaborately discussed the one-loop calcu
lation of the UV divergences of a typical TMD PDF which contains lightlike and trnnsverse 
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gauge links in order to fully restore gauge invariance. \Ne found that an extra UV divergence 
appears, not noticed before in the literature, which is unrelated to the quark self energy 
and the end-point singularities of the contours. Second, we showed that these divergences -
give rise to an anomalous dimension, which can be regarded as originating from the renor
malization effect on a cusp-like junction point of the integration contours in the gauge links 
at light-cone infinity. At the considered one-loop order, this anomalous dimension coincides 
with the universal cusp anomalous dimension of \Vilson-line operators and is an ingrained 
property of the split contours. Third, in order to dispense with this anomalous-dimensions 
defect and recover the well-known results in a covariant gauge (say, in the Feynman gauge) 
in which A.1 vanishes at infinity, we have proposed a modified definition of the TMD PDF. 
This definition includes a Collins-Hautmann soft counter term by means of path-ordered 
eikonal factors that are evaluated along a specific non-smooth contour off the light cone. 
This cusped contour suffices to neutralize the cusp artifact encountered in the standard 
definition of the TMD PDF. Finally, as we outlined in (10), the soft counter term can be 
given an interpretation akin to the "intrinsic" Coulomb phase found by Jakob and Stefanis 
[17] in QED. In both cases, a phase entanglement appears, ensuing either from the charged 
"particle behind the moon" (QED) or from the cusp-like junction point at light-cone infinity 
(QCD). Recently, Collins [18] has considered possible refinements and modifications in the 
definition of unintegrated parton densities that deserve further examination. An improved 
definition of TMD PDFs will have tangible consequences in several areas of QCD. 
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Abstract 

The existence of dark mattt,r (DM) at scales of few pc down to :::: 10-5 pc around 
the centers of galaxies and in particular in the Galactic Center region has been con
sidered in the literature. Under the assumption that such a DM clump, principally 
constituted by non-baryonic matter (like WIMPs) does exist at the center of our 
galaxy, the study of the -y-ray emission from the Galactic Center region allows us to 
constrain both the mass and the size of this DM sphere. Further constraints on the 
DM distribution parameters may be derived by observations of bright infrared stars 
around the Galactic Center. Here, we discuss the constraints that can be obtained 
with the orbit analysis of stars (as S2 and S16) moving inside the DM concentration 
with present and next generations of large telescopes. In particular, consideration of 
the S2 star apoastron shift may allow improving limits on the DM mass and size. 

For the black hole in the Galactic Center, Hall and Gondolo [1] used estimates of the 
enclosed mass obtained in various ways and tabulated by Chez et al. [2, 3]. The black 
hole, stellar cluster and DM could contribute in the mass inside stellar orbits. Moreover, if 
a DM cusp does exist around the Galactic Center it could modify the trajectories of stars 
moving around it in a sensible way depending on the DM mass distribution. 

In the last years intensive searches for dark matter (DM), especially its non-baryonic 
component, both in galactic halos and at galaxy centers have been undertaken (see for ex
ample (4, 5] for recent results). It is generally accepted that the most promising candidate 
for the DM non-baryonic component is neutralino. In this case, the ,-flux from galactic ha
los (and from our Galactic halo in particular) could be explained by neutralino annihilation 
[6, 7, 8, 9, 10, 11, 12, 13]. Since ,-rays are detected not only from high galactic latitude, but 
also from the Galactic Center, there is a wide spread hypothesis (see [14] for a discussion) 
that a DM concentration might be present at the Galactic Center. In this case the Galactic 
Center could be a strong source of ,-rays and neutrinos [4, 7, 15, 16, 17, 18, 19, 20, 21, 22] 
due to DM annihilation. Since it is also expected that DM forms spikes at galaxy centers 
[23, 24, 25] the ,-ray flux from the Galactic Center should increase significantly in that 
case. 

At the same time, progress in monitoring bright stars near the Galactic Center have been 
reached recently [2, 3, 26]. The astrometric limit for bright stellar sources near the Galactic 
Center with 10 meter telescopes is today 8010 ~ 1 mas and the Next Generation Large 
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Telescope (NGLT) will be able to improve this number at least down to 0030 ~ 0.5 mas 
[28, 29] or even to 0030 ~ 0.1 mas [27, 28, 29] in the K-band. Therefore, it will be possible 
to measure the proper motion for about ~ 100 stars with astrometric errors several times 
smaller than errors in current observations. 

Recently it was shown (30, 31] that it is possible to constrain the parameters of the DM 
distribution possible present around the Galactic Center by considering the induced apoas
tron shift due to the presence of this DM sphere and either available data obtained with 
the present generation of telescopes (the so called conservative limit) and also expectations 
from future NGLT observations or with other advanced observational facilities. 

Recent advancements in infrared astronomy are allowing to test the scale of the mass 
profile at the center of our galaxy down to tens of AU. With the Keck 10 m telescope, the 
proper motion of several stars orbiting the Galactic Center black hole have been monitored 
and almost entire orbits, as for example that of the S2 star, have been measured allowing 
an unprecedent description of the Galactic Center region. Measurements of the amount 
of mass M( < r) contained within a distance r from the Galactic Center are continuously 
improved as more precise data are collected. Recent observations [2] extend down to the 
periastron distance (::= 3 x 10-4 pc) of the Sl6 star and they correspond to a value of the 
enclosed mass within ::= 3 x 10-4 pc of ::= 3.67 x 106 M0 . Several authors have used these 
observations to model the Galactic Center mass concentration. Here and in the following, 
we use the three component model for the central region of our galaxy based on estimates 
of enclosed mass given by Ghez et al (2, 3] recently proposed [l]. This model is constituted 
by the central black hole, the central stellar cluster and the DM sphere (made of WIMPs), 
i.e. 

M(< r) = MBu + M.(< r) + MnM(< r), (1) 

where Jv[ BIi is the mass of the central black hole Sagittarius A*. For the central stellar 
cluster, the empirical mass profile is 

{

M(r)1.6 
M. ( < T) = * R, ' 

M. (..L)1.o 
R, ' 

T ~ R. 

T > R. 

(2) 

with a total stellar mass M. = 0.88 x 106 M0 and a size R. = 0.3878 pc. 
As far as the mass profile of the DM concentration is concerned, Hall and Gondola [l] 

have assumed a mass distribution of the form 

{ 

M ( )3-a 
MnM( < r) = DM R~M ' 

MnM, 

r~ RnM 

r> RnM 

(3) 

Mm,1 and RnM being the total amount of DM in the form of WIMPs and the radius of the 
spherical mass distribution, respectively. 

Hall and Gondola (l] discussed limits on DM mass around the black hole at the Galactic 
Center. It is clear that present observations of stars around the Galactic Center do not 
exclude the existence of a DM sphere with mass ::= 4 x 106 M0 , well contained within the 
orbits of the known stars, if its radius RnM is ;S 2 x 10-4 pc (the periastron distance of 
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the S16 star in the more recent analysis [3]). However, if one considers a DM sphere with 
______ larger radius, the corresponding upper value for MnM decreases (although it tends again to 

increase for extremely extended DM configurations with RnM » 10 pc). In the following, 
we will assume for definiteness a DM mass MnM ~ 2 x 105 M0 , that is the upper value for 
the DM sphere in [1] within an acceptable confidence level in the range 10-3 

- 10-2 pc for 
RnM· As it will be clear in the following, we emphasize that even a such small value for 
the DM mass (that is about only 5% of the standard estimate 3.67 ± 0.19 x 106 M0 for the 
dark mass at the Galactic Center [3]) may give some observational signatures. 

Evaluating the S2 apoastron shift 2 as a function of RnM, one can further constrain 
the DM sphere radius since even now we can say that there is no evidence for negative 
apoastron shift for the S2 star orbit at the level of about 10 mas. In addition, since at 
present the precision of the S2 orbit reconstruction is about 1 mas, we can say that even 
without future upgrades of the observational facilities and simply monitoring the S2 orbit, 
it will be possible within about 15 years to get much more severe constraints on RnM. 

Moreover, observational facilities will allow in the next future to monitor faint infrared 
objects at the astrometric precision of about 10 µas (32] and, in this case, previous estimates 
will be sensibly improved since it is naturally expected to monitor eccentric orbits for faint 
infrared stars closer to the Galactic Center with respect to the S2 star. 

In the following section, we study the motion of stars as a consequence of the gravi
tational potential <I>(r) due the mass profile given in Eq. (1). As usual, the gravitational 
potential can be evaluated as 

<I>(r) = -al"" M(r') r ~ dr'. (4) 

According to GR, the motion of a test particle can be fully described by solving the 
geodesic equations. Under the assumption that the matter distribution is static and pres
sureless, the equations of motion in the PN-approximation become (see, for example, [33]) 

dv ( 2 ) 2 dt ::::= -'v <I>N + 2<I>N + 4v(v · 'v)<I>N - v 'v<I>N. (5) 

We note that the PN-approximation is the first relativistic correction from which the apoas
tron advance phenomenon arises. In the case of the S2 star, the apoastron shift as seen 
from Earth (from Eq. (7)) due to the presence of a central black hole is about 1 mas, 
therefore not directly detectable at present since the available precision in the apoastron 
shift is about 10 mas (but it will become about 1 mas in 10-15 years even without consid
ering possible technological improvements). It is also evident that higher order relativistic 
corrections to the S2 apoastron shift are even smaller and therefore may be neglected at 
present, although they may become important in the future. 

As it will be discussed below, the Newtonian effect due to the existence of a sufficiently 
extended DM sphere around the black hole may cause an apoastron shift in the opposite 
direction with respect to the relativistic advance due to the black hole. Therefore, we have 
considered the two effects comparing only the leading terms. 

2We want to note that the periastron and apoastron shifts ~<I> as seen from the orbit center have the 
same value whereas they have different values as seen from Earth (see Eq. (7)). When we are comparing 
our results with orbit reconstruction from observations we refer to the apoastron shift as seen from Earth. 
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For the DM distribution at the Galactic Center we follow Eq. (3) as done in [l]. Clearly, 
if in the future faint infrared stars (or spots) closer to the black hole with respect to the 
S2 star will be monitored [32], this simplified model might well not hold and higher order 
relativistic corrections may become necessary. 

For a spherically symmetric mass distribution (such as that described above) and for 
a gravitational potential given by Eq. (4), Eq. (5) may be rewritten in the form (see for 
details [34]) 

dv ~ _ GM(r) [(l + 4<PN + v2
) r _ 4v(v • r)] , 

dt r3 c2 c2 c2 
(6) 

r and v being the vector radius of the test particle with respect to the center of the stellar 
cluster and the velocity vector, respectively. Once the initial conditions for the star distance 
and velocity are given, the rosetta shaped orbit followed by a test particle can be found by 
numerically solving the set of ordinary differential equations in eq. (6). 

We note that the expected apoastron (or, equivalently, periastron) shifts (mas/revolution), 
il<l> (as seen from the center) and the corresponding values !.::i.¢~ as seen from Earth (at the 
distance Ro ~ 8 kpc from the GC) are related by 

" ± _ d(l ± e) ";r.. u</Js - -'-----'-u'±', 
Ro 

(7) 

where with the sign ± are indicated the shift angles of the apoastron ( +) and periastron 
(-), respectively. The S2 star semi-major axis and eccentricity are d = 919 AU and e = 0.87 
[3]. 

In Fig. 1, the S2 apoastron shift as a function of the DM distribution size RvM is given 
for a: = 0 and MvM ~ 2 x 105 M0 . Taking into account that the present day precision for 
the apoastron shift measurements is of about 10 mas, one can say that the S2 apoastron 
shift cannot be larger than 10 mas. Therefore, any DM configuration that gives a total 
S2 apoastron shift larger than 10 mas (in the opposite direction due to the DM sphere) is 
excluded. The same analysis is done for two different values of the DM mass distribution 
slope, i.e. a: = 1 and a: = 2. In any case, we have calculated the apoastron shift for the 
S2 star orbit assuming a total DM mass MvM ~ 2 x 105 M0 . As one can see, the upper 
limit of about 10 mas on the S2 apoastron shift may allow to conclude that DM radii in the 
range about 10-3 - 10-2 pc are excluded by present observations for DM mass distribution 
slopes. 

We notice that the results of the present analysis allows to further constrain the results 
of the Hall and Gondola [1] who have concluded that if the DM sphere radius is in the 
range 10-3 - 1 pc, configurations with DM mass up to MvM = 2 x 105 M 0 are acceptable. 
The present analysis shows that DM configurations of the same mass are acceptable only 
for RvM out the range between 10-3 - 10-2 pc, almost irrespectively of the a: value. 

In this paper we have considered the constraints that the upper limit (presently of about 
10 mas) of the S2 apoastron shift may put on the DM configurations at the galactic center 
considered by Hall and Gondolo [l]. 

When (in about 10-15 years, even without considering improvements in observational 
facilities) the precision of S2 apoastron shift will be about 1 mas (that is equal to the 
present accuracy in the S2 orbit reconstruction) our analysis will allow to further constrain 
the DM distribution parameters. In particular, the asymmetric shape of the curves in Fig. 
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Figure 1: Apoastron shift as a function of the DM radius RvM for a: = 0 and MvM ~ 2 x 10
5 

M0
. Taking into account present day precision for the apoastron shift measurements (about 

10 mas) one can say that DM radii RvM in the range 8 x 10-4 - 10-2 pc are not acceptable. 

1 imply that any improvement in the apoastron shift measurements will allow to extend the 
forbidden region especially for the upper limit for RvM. Quantitatively, we have a similar 
behavior curves for other choices of slope parameters a: for DM concentrations. 

In this context, future facilities for astrometric measurements at a level 10 µas of faint 
infrared stars will be extremely useful [32] and they give an opportunity to put even more 
severe constraints on DM distribution. In addition, it is also expected to detect faint 
infrared stars or even hot spots [36] orbiting the Galactic Center. In this case, consideration 
of higher order relativistic corrections for an adequate analysis of the stellar orbital motion 
have to be taken into account. Due to a great progress in precision of measurements, one 
could not exclude a possibility that matter density will be so low that alternative scenarios 
(to DM annihilation model) will be needed to explain ,-flux from the Galactic Center. 
Electromagnetic processes in plasma with a presence of a strong gravitational field near 
the Galactic Center may be important components of such alternative scenarios for the detected ,-flux. 

In our considerations we adopted simple analytical expression and reliable values for 
RnM and MvM parameters following [1] just to illustrate the relevance of the apoastron 
shift phenomenon in constraining the DM mass distribution at the Galactic Center. If other 
models for the DM distributions are considered (see, for instance [37] and references therein) 
the qualitative aspects of the problem are preserved although, of course, quantitative results 
on apoastron shifts may be different. 

AFZ is grateful to Dipartimento di Fisica Universita di Lecce and INFN, Sezione di 
Lecce where a part of this work was carried out and profs. B.M. Barbashov for his kind 
attention to our contribution. 
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Abstract 
The status of the Higgs effect in Cosmology is discussed. A model with simple 

conditions on the Higgs field dynamics is suggested. Non-trivial cosmological initial 
data for the Higgs field provide the source of its non-zero vacuum expectation value. 
Application of the conditions to the first terms in loop expansion of the effective 
Higgs potential leads to a Gell-Mann-Oakes-Renner type relation between the Higgs 
vacuum expectation and the condensates of vector bosons and fermions. 

1 Introduction 

The Standard Model (SM) is a very successful physical theory describing practically all 
phenomena in high energy physics. But for many reasons we suppose that it is only an 
effective theory appropriate for a certain energy range. Very soon at the Large Hadron 
Collider (LHC) at CERN we hope to access both the limit of the SM applicability and the 
mechanism of EW symmetry breaking. 

The Higgs-Kibble mechanism [l] gives masses for gauge bosons and certain problems 
for the theory: scale invariance breaking by a tachyon mass term, the presence of monopole 
solutions, a non-zero imaginary part of the effective potential, a large Higgs self-coupling, 
a tremendous contribution to the vacuum energy, the naturalness (or fine-tuning) problem 
etc, see e.g. Ref. [2]. On the other hand, the SM Higgs potential looks as an artificial 
product of the correspondence principle to the Landau-Ginzburg potential in the theory 
of superconductivity. Moreover the the status of the Higgs field and of its potential in 
Cosmology is still under discussion. 

Let us remind the treatment of scalar fields in Cosmology [3]. We start with the La
grangian for the scalar field 

.c = aµ<I>taµ<I> - V.JJ(l<I>I), 
h 

l<I>I = (<I>) + ../2' (1) 

where in accord with the Einstein's cosmological principle [4] we separate the zeroth har
monics (<I>) from the particle like excitations h of the Higgs field. The mean value of the 
field can in this approach depend on time: (<I>) = (<I>)(t). The equation of motion for the 
zeroth harmonics then reads 

a~(<I>) + 8V.JJ( (<I>)) 
8(<I>) = 0. (2) 

It is known that the SM potential of the Higgs field is not appropriate to provide the proper 
Universe evolution in time. So in Cosmology it was suggested to introduce an additional 
scalar field ( infiaton) with a different potential [3]. While the status and possible dynamics 
of the SM Higgs field in Cosmology is still under discussion. 
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2 Model 

Let us consider a simple model assuming the following conditions on the effective potential . 
of the Higgs field: 

av.,JJ((<I>)) = o 
a(<I>) ⇒ 

In this case we can choose the partial solution 

Mw 
(<I>) = i<> = Const, 

gwv2 

aJ(<I>) = o. 

oa(<I>) = 0, 

which can be treated as cosmological initial data for the scalar field. 

(3) 

Note that in any case at the beginning of the Universe evolution, the potential term 
is suppressed by a high power of the cosmological factor: Ye11((<I>))--> 0/

1
-

0
. We assume 

also that the effective potential takes into account all loop corrections so that the potential 
minimum position remains always in the same point <I>= (<I>). Note that the static value 
of the Higgs vacuum expectation directly corresponds to the SM case. 

It is important that the cosmological principle is applied by averaging of all scalar 
components over the space: 

Vo<oo ⇒ ~ j /<Pjd3x = (<P), :, jhd3x = o 0 , 

where we assume that the volume Vo is finite. 
The effective potential in a general case can be written as 

V.,JJ((<I>)) = io~o [111 j [I dF eiS,JJ(F,to>J, 
F-h, ... 

(to=I/Ho 
Seff = Jo dt£eff, 

where Lagrangian Lef I takes into account all the SM interactions. 
We suggest to apply assumption (3) for each order in the loop expansion. Let us consider 

a Lagrangian describing scalar field /<Pl and its interactions with fermions (s) and vector 
bosons (V) 

Lmggs = a,,/<I>IDµl<I>I - l<I>I L J.ss + 1~ 12 L g;V2 - >./<I>/4 • 

8 V 

The idea is to start from a scale invariant Lagrangian and to generate masses by initial 
data for the Bogoliubov condensates 

(<I>)= tJi3x/<I>/, (A)= tfa3x L J.ss, (B) = 4~Jct3x Lg;V2
• 

Q O S V 

We again separate the scalar field zeroth harmonics /<I>/ = (<I>)+ h/\!2, and the Lagrangian 
takes the form 

1 m 2 

£mggs = oa(<I>)oa(<I>) - V0 ((<I>)) + 2oµhoµh - h2-f + h3>.v2(<I>) + ... , 

where 
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Assuming that V0 ( (<I>)) 
condensates giving 

Vo( (<I>)) 

2 
mh 

(<I>)(A) - (<I>)2(B) + >.(<I>)4, 

d
2
Vo( (<I>)) = 6,\(1>) 2 _ (B) 

2d(<I>) 2 . 

O and /JV0 ((<I>))/o(<I>) = 0 we get a set of equations for the 

m~ = (B) = 3.\(¢>)2, (A) = 2.\(¢>) 3
• 

In this way we get a non-trivial relation between the condensates. 

3 Outlook 

Separation of zeroth modes is not Lorentz-invariant, so for cosmological considerations 
we choose the distinguished CMB reference frame assuming the final size of the Universe 
volume: Vo < oo. 

LFrom the beginning we did not take the classical Higgs potential in the standard form 
with a tachion mass term. But we can keep the electroweak sector of the SM unchanged 
as discussed in (5]. The key point of our approach is just the origin of the scale symmetry 
breaking. 

Assuming the same condition for all terms in further loop expansion of v.,11 we get 
non-trivial conditions to be evaluated. At each order of calculation we can find the Higgs 
mass as 

2 d2V.,JJ((<I>)) 
mh = 2d(<I>)2 

The difficulties of the SM related to the Higgs sector are not immediately resolved 
withing the suggested approach, but the latter allows to look, at them from other side. 

One of us (A.A.) is grateful to the grant of the President RF Scientific Schools 3312.2008. 
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Abstract 

We consider the spherically symmetric self-gravitating thin dust shell. The direct 
("naive") quantization of the proper time Hamiltonian leads to the one-dimensional 
Schroedinger equation in finite differences. We solved this equation and obtained the 
discrete mass spectrum for bound states. \V'hile using the Lorentzian time, we found 
the canonical transformation performing the well-known square-root differential oper
ator into the exponential one and, again, obtained the finite differences Schroedinger 
equation and corresponding discrete mass spectrum which appeared to be the famous 
Sommerfeld spectrum for the Klein-Gordon equation. 

1 The model. Naive quantization. 

Our model is the self-gravitating spherically symmetric thin dust shell. Such a shell is 
a direct generalization of a point particle. The Einstein equations for the shell (Israel 
equations) are reduced in this case to only one equation 

Jp2 + 1-/p2 + 1 _ 2Gm = GM 
p p ' 

(1) 

where p is the shell radius as a function of the proper time T, dot denotes the time derivative, 
G is the Newtonian gravitational constant, m is the total mass of the shell measured by 
a distant observer, and l'vf is its bare mass (the sum of masses of constituent particles). 
Squaring Eqn.(1), we easily obtain 

GM2 

m = MJp2 + l - 2p' (2) 

where m is the total mass of the system, the first term on the right hand side is the kinetic 
energy (the square root is nothing more but the famous Lorentz factor written using the 
proper time derivatives), and the second one is the (negative) gravitational energy. We 
are interested in the bound motion only. We will consider the right hand side of it as a 
pre-Hamiltonian E which on the equations of motion takes the value of the total mass 
E= m: 

E=MJpz+l- GM
2 

2p . (3) 

Having the pre-Hamiltonian we obtain rather easy the conjugate momentum p to the radius 
p, the Lagrangian Land the Hamiltonian H, using the following prescriptions: 

oL 
P = op' 
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The result is 

p 

L 

E 

L 

. L .oL L 
pp- =Pop - , 

·JEdp = ·JoEdp -E 
P P2 P op P . 

.M ln(p + ✓ p2 + 1) - F(p), 

M(pln(p+ Jp2 + 1)- Jp2 + 1) + pF(p), 

(4) 

(5) 

where F(p) is an "integration constant" which does not influence the equation of motion, 
we put it zero, F(p) = 0. Thus, for the proper time velocity p and the Hamiltonian H we 

obtain 

p 

H 

sinh J?... 
M' 

M cosh J?... G M
2 

M-2p. (6) 

Making the canonical transformation to the dimensionless variables x = Mp, II = 'Kl we 

get finally 

( 
GM

2
) H=M coshII-~ . (7) 

The quantization procedure consists in considering II and x as operators acting on the 
wave function III, and and imposing on them the quantum mechanical commutation relation 

[II, x] = -i. 

In the coordinate representation x acts as a multiplication, II= -ifx, and 

e-ilxw(x) = w(x - i), 

(8) 

(9) 

and for the stationary Schroedinger equation Hw(x) = E(= m)w(x) we obtain (c: = 

w(x + i) + w(x - i) = (2c: + ~) w(x). 

iJ, a= GM2
): 

(10) 

This is the finite differences equation, unlike a differential equation we are used to. Note, 
that the shifts in the argument are along the imaginary axes, so the "good" solution has to 
have special analytical properties in the complex plane. And one more very important prop
erty: given some solution we can multiply it by any periodic function with pure imaginary 
period i and obtain, again, a solution. 

At the end of this Section let us examine the non-relativistic limit of our equation. After 
restoring the dimensional constants Ii and c the shifted arguments (x ± i) become 

x±i--, M (p± ~i)--> p± ;ci, (11) 
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so, the non-relativistic limit corresponds to the inequality p » h/ Mc. Expanding Eqn.(10) 
in series up to the second order in small parameter "':cp « 1 we get 

- 1 d2iJ! GM2 
2Mh2 dp2 - 2piJ! = (E- Mc

2
)iJ!, 

(12) 

which is just the non-relativistic Schroedinger equation for the radial (s-wave) function, 
(E - M c2 ) being the non-relativistic energy of the system. The "good" solutions for the 
bound states exist only for the discrete energy spectrum (Rydberg's formula): 

(E - Mc2)n = -h2G2M5 8n2 , n = 1, 2, .... (13) 

2 Solution to the Schroedinger equation in finite dif
ferences and discrete mass spectrum 

It is convenient to introduce new parameters c = cos.\ a = GM
2 = 2/3 sin,\. We choose 

,\ > 0 and, therefore, /3 > 0. Then our equation becomes 

. . ( /3 sin,\) iJ!(x + i) + iJ!(x - i) = 2 cos,\+ -x- iJ!(x). (14) 

We start to construct a solution with transition to the momentum representation. After 
some simple manipulations we arrive at the following equation 

a . 
i Bp ( (coshp - cos ,\)iJ!p) = f3 sin,\ iJ!p, (15) 

With a new variable z = eP it reads as follows: 

_Q_lniJ! =~- /3+1 + /3-1 
Dz P z z - z0 z - zo' 

(16) 

where z
0 

= ei>., z
0 

= e-i>. . In this form our equation is very easy to solve, the result is 

iJ!P = C z (z - zo)/3 
(z-zo)(z-zo) z-zo ' 

Z = eP, (17) 

this solution is periodic with the period 2rri . It means that in the coordinate representation 

obtaining by the inverse Fourier transform, 

w(x) - 1 /00 . - r,c e'PxiJ! d 
V 2rr P P, 

-00 

(18) 

the general solution can be written as 

W9encra1(x) = Ct
0

/ke-2"kx) iJ!o(x). 
(19) 
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The expression in brackets is nothing more but the Fourier series of some periodic function 
with the pure imaginary period i, and this shows how the main feature of the equations in 
finite differences emerges from their Fourier images. Since we have only one solution (up 
to the multiplicative constant) in the momentum representation there is, essentially, only 
one fundamental solution w0(x) in the coordinate representation which deserves the name 
"super-fundamental". 

Our solution w p, Eqn. ( 17), has a countable number of branching points in the com
plex momentum plane which can be combined in pairs (i.>. + 27rki, -i>. + 21r(k + l)i), k = 
0, ±1, ±2,. . . . Connecting them we construct the complex plane with countable number 
of cuts. The specific form of the super-fundamental solution W0 (x) in the coordinate repre
sentation depends on the choice of the contour of integration. Using the above-mentioned 
periodicity of the solution WP in the momentum representation we are able to build the 
following closed contour: the integration goes first along the real axes in the positive direc
tion, then back to the left infinity along the line p = 21ri for x > 0 (p = -21ri for x < 0), 
these two straight lines being connected by curves at infinities with zero contributions to 
the contour integral. Such contour can be distorted to become a contour around a cut. 
After doing all this we get for w0 (x): 

(20) 

where F(a, b; c; y) is the famous Gauss's hypergeometric function, and our primordial equa
tion, Eqn.(14), reduces to the one of its recurrent relations. 

Our aim is to find the "good" solutions and obtain the discrete mass spectrum for the 
quantum shell bound states. For this we need to know the asymptotic behavior of the 
solutions in two suspicious points, x = 0 and x = oo. At x = 0 the asymptotics are 

xr, r=l,2, ... , (21) 

and at x -> oo 

Wo(x) ~ 21ri/3e-i>.f3ei,rf3 

{ 
(2 sin .>.)f1 f3 ->.x (2 sin >.)f3 -f3 >.x} ( 1) 

X f(l + /3) X e - r(l - /3) X e <I> ;; , (22) 

where r( • • •) is the Euler's function. Thus, we see, that the "good" solution at the origin 
(x -> O) results in the linear combination of the "good" (xf1c>-x) and "bad" (x-f1e>-x) 
asymptotics at infinity (remember that x > 0 and we chose /3 > 0). To get rid of the "bad" 
part we have to put 

/3 = n, n = 1, 2, .... (23) 

Remembering now that /3 = 2 sfn >., cos A = fj, a = G M2, we get for the discrete mass 
spectrum 

✓ G2M4 
m = Ml - ~- (24) 

It is easy to see that for large enough values of quantum number n (namely, for G!;.2 « 1) 
this spectrum is reduced to the non-relativistic Rydberg's formula, Eqn.(13), as it should 
be. Moreover, it is a part of the Dirac's spectrum (with a suitable change of notations) 
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when the so-called radial quantum number n, is zero (the latter corresponds to the case 
of critical angular momentum in classical relativistic Coulomb problem), what is rather 
unexpected because from the very beginning we have no angular momentum at all. It is 
interesting to note that the same Schroedinger equation in finite differences was studied by 
V.Kadyshevsky and R.Mir-Kasimov more than 30 years ago. They have quite a different 
motivation but proposed the same energy spectrum for bound states! 

3 Relativistic Kepler's problem. Square-root quanti
zation. 

Till now we used the proper time quantization which is unique in the framework of General 
Relativity in the sense that the proper time does not depend on the choice of time coordinate 
both inside and outside the shell. The situation is quite different in Special Relativity where 
the clocks of any inertial observer can most naturally be used for defining the time units. 
In this case our pre-Hamiltonian becomes (vis the Lorentz time velocity): 

M 
E = ✓1 -v2 

GM2 

2p 
(25) 

Introducing now a conjugate momentum II corresponding to the velocity v, we arrive at 
the famous square-root Hamiltonian for the radial motion of our shell: 

H= ✓1I2+M2 -!:.... 
2p 

(26) 

In quantum mechanics such a Hamiltonian is a nonlocal operator in the coordinate rep
resentation. To reveal this non-locality more explicitly we make the following canonical 
transformation before quantization procedure: 

II= Msinhp, 

The Hamiltonian, Eqn.(26) now becomes 

y 
p= Mcoshp 

H(p,y) = M (1 - ;) coshp. 

(27) 

(28) 

The expression for the quantum counterpart depends on the chosen operator ordering. We 
write the corresponding Schroedinger equation in the form 

(y-i) (<I>(y+i) + <I>(y- i)) = 2c:y<I>(y), <I>= (1 - ;) w, c: = ;. (29) 

If we were to choose the reverse ordering of momentum and coordinate functions we would 
get the same equation for w(y) instead of <I>(y). 

The solution to the Eqn.(29) in the momentum representation is 

zI+i'½ (z - zo)f3 
<Pp = C------ -- ' 

(z - zo)(z - z0 ) z - zo 
z 

€ 

eP, z 0 = ei\ z0 = e-i\ 
Q 

cos,\, a = G M 2
, /3 = 2 cot ,\. 
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This expression differs from the Eqn.(17) only by factor zia/2 • But if we shift the argument 
in the corresponding solution in coordinate representation y-+ (y - a/2), then the Fourier 
transform of such a shifted function 1>p will be exactly the same as WP in Section III. This 
means that the discrete spectrum in the case of square-root quantization is determined by 
f3 = n, n = 1,2, ... , and we get 

(31) 

This is the so-called Sommerfeld spectrum that can be obtained for the same classical model 
but using the Klein-Gordon Hamiltonian, local and quadratic in conjugate momenta. 

The author is indebted to the Russian Foundation for Fundamental Researches for 
financial support (Grant N 06-02-16-342 a). 
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Abstract 

In the present paper we have developed a concept of parallel ordinary (0) and 
mirror (M) worlds, and shown that in the case of the broken mirror parity (MP), the 
evolutions of fine structure constants in the 0- and M-worlds are not identical. It is 
assumed that E5-unification inspired by superstring theory restores the broken MP 
at the scale ~ 1018 GeV. Cosmological consequences of this theory is discussed. 

Superstring theory is a paramount candidate for the unification of all fundamental 
gauge interactions with gravity [1]. Superstrings are free of gravitational and Yang-Mills 
anomalies if a gauge group of symmetry is S0(32) or Es x Es. The 'heterotic' superstring 
theory Es x E~ [1, 2] was suggested as a more realistic model for unification. This ten
dimensional Yang-Mills theory can undergo spontaneous compactification: the integration 
over 6 compactificd dimensions of the Es superstring theory leads to the effective theory with 
the E5-unification in four-dimensional space [1]. In the present investigation [3] we consider 
the old concept: there exists in Nature a 'mirror' (M) world (hidden sector) [4, 5] parallel to 
our ordinary ( 0) world. This M-world is a mirror copy of the 0-world and contains the same 
particles and their interactions as our visible world. Observable elementary particles of our 
0-world have left-handed (V-A) weak interactions which violate P-parity, and the mirror 
particles participate in the right-handed (V+A) weak interactions and have an opposite 
chirality. The idea of the existence of visible and mirror worlds became very attractive in 
connection with a superstring theory described by Es x E~. We have discussed cosmological 
implications of the parallel ordinary and mirror worlds with the broken mirror parity MP 
[6]. We have considered the parameter characterizing the breaking of MP, which is ( = v' /v, 
where v' and v are the VEVs of the Higgs bosons - Electroweak scales - in the M- and 
0-worlds, respectively. During our numerical calculations, we have used the result [6]: 
( ~ 30. We have assumed in this investigation that at the very small distances there 
exists E6-unification predicted by Superstring theory [l]. It was shown that, as a result 
of the MP-breaking, the evolutions of fine structure constants in 0- and M-worlds arc not 
identical, and the extensions of the Standard Model (SM) in the ordinary and mirror worlds 
arc quite different. We have assumed that the E5-unification, being the same in the 0- and 
M-worlds, restores the broken mirror parity MP. We have considered the following chain of 
symmetry groups in the ordinary world: 

SU(3)c x SU(2)L x U(l)y --> SU(3)c x SU(2)L x SU(2)R x U(l)x x U(l)z 

--> SU(4)c x SU(2)L x SU(2)R x U(l)z--> S0(10) x U(l)z--> E5. 

158 



A simple logic leads to the following chain in the mirror world: 

SU(3)c x SU(2)~ x SU(2)~ x U(l)~-+ SU(3)c x SU(2)~ x SU(2)~ x U(l)'.x- x U(l)~ 

-+ SU(4)0 x SU(2)~ x SU(2)~ x U(l)~-+ SU(6)' x SU(2)~-+ E~. 

The comparison of both evolutions in the ordinary and mirror worlds is given in Figure 1, 
where we have presented the running of all fine structure constants. Here the SM (SM') is 
extended by MSSM (MSSM'), and we see different evolutions. Figure 1 corresponds to the 
SUSY breaking scales 

MsusY = 10 TeV, Msusy ~ 300 TeV, 

according to the MP-breaking parameter ( ~ 30. We have considered the value of seesaw 
scale in the O-world Mn ~ 1014 GeV, and in the M-world: M11 ~ 1017 GeV. 

It was shown that the (super)grand unification E~ in the mirror world is based on the 
group 

E~ :) SU(6)' x SU(2)~. 

The existence of a new gauge group SU(2)'z in the M-world gives significant consequences 
for cosmology: it explains the 'quintessence' model of our accelerating Universe. 

The reason of our choice of the gauge group SU(2)'z was to obtain the correct-running 
of (a')~_i(µ), which: • leads to the new scale Az ~ 10-3 eV at extremely low energies [7); 
• and is consistent with the running of all inverse gauge coupling constants in the 0- and 
M-worlds with broken mirror parity, considered in [3). The predicted particle content of 
SU(2)'z is as follows: 

1. two doublets of fermions 1/J?l and two doublets of the 'messenger' scalar fields cf>;z> 
with i = 1, 2, and 

2. a complex singlet scalar field: <pz = (1, 1, 0, 1) under the symmetry group 

G' = [SU(3)0 x SU(2)~ x U(l)~) x SU(2)~. 

The existence of the dark matter DM (non-luminous and non-absorbing matter) in 
the Universe is now well established in astrophysics. We assume that the best candidate 
for DM is the mirror M-world (mirror quarks, mirror leptons, mirror bosons and their 
super-partners). This M-world interacts with the ordinary O-world only by gravity, or by 
another unknown very weak interaction. Here we want to emphasize that the fermions 1/Jfl 
belonging to the group SU(2)'z can be considered as candidates for the Hot Dark Matter 
(HDM), but the bound states - "hadrons" of the group SU(2)'z - can be good candidates 
for the Cold Dark Matter (CDM). 

We have discussed the 'quintessence' model of our Universe [7): at the scale Az ~.10-3 

eV the instantons of the group SU(2)'z induce a potential for an axion-like scalar boson az, 
which can be called "acceleron". The acceleron gives the value w = - l and leads to the 
acceleration of our Universe. The existence of the scale Az ~ 10-3 eV explains the value of 
cosmological constant CC~ (3 x 10-3 eV)4, which is given by astrophysical measurements. 
Also recent measurements in cosmology fit the equation of state for DE: w = p/ p (p is thl' 
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pressure, p is the density) with a constant w ~ -1. Following [7], we have assumed that 
at present time our Universe exists in the 'false' vacuum given by the axion potential. The 
Universe will live there for a long time and its CC (measured in cosmology) is tiny, but 
nonzero. However, at the end the Universe will jump into the 'true' vacuum and will get 
a zero CC. I3ut this problem is not trivially solved, and at present time we have only a 
hypothesis. 
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Figure 1: The running of the inverse coupling constants a;1(x) in both ordinary and mirror 
worlds with broken MP from the SM up to the E6 unification. 
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Abstract 
In the framework of an extended Nambu-Jona-Lasinio model we study the forma

tion of quark, diquark and pion condensates in quark matter in a gravitational field 
of the static Einstein universe at finite temperature, chemical potential and with an 
asymmetric isospin composition. The phase portraits of the system are constructed. 
\Ve demonstrate the effect of oscillations of the thermodynamic quantities as func
tions of the curvature and also refer to a certain similarity between the behavior of 
these quantities as functions of curvature and temperature. 

1 Introduction 

Effective field theories with four-fermion interaction of the Nambu - Jona-Lasinio type 
(NJL) [1] are quite useful in describing the physics of light mesons and diquarks. It was 
proposed more than twenty years ago [2, 3, 4] that at high baryon densities a colored diquark 
condensate (qq) might appear. In analogy with ordinary superconductivity, this effect was 
called color superconductivity (CSC). The possibility for the existence of the CSC phase 
in the region of moderate densities was recently proved (see, e.g., papers [5, 6]). Another 
interesting phenomenon, the condensation of charged pions, which may appear in dense 
hadronic matter due to an asymmetry of its isospin composition, has been investigated in 
the framework of QCD-like effective models, including the NJL model, as well [7]. Note 
that all these phenomena might be inherent to physics of compact stars, where strong 
gravitational fields are present. 

In several papers, in the framework of the NJL model, the influence of a gravitational 
field on the dynamical chiral symmetry breaking has been investigated at zero values of 
temperature and chemical potential (see review [8] and references therein). The dynamical 
breaking of chiral symmetry at finite temperature and chemical potential in the static 
Einstein universe was recently considered in [9]. 

In this talk we discuss the dynamical breaking of chiral, color and isospin symmetries 
in a constant curvature gravitational field. First, we consider the formation of quark and 
diquark condensates in dense isotopically symmetric matter and secondly we consider the 
pion condensation in quark matter with flavor asymmetry. As the simplest model of curved 
space we have taken the static Einstein universe. This allows us to derive a nonperturbative 
expression for the thermodynamical potential and to construct the phase portraits of our 
system (for more details see [10, 11]). 
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2 The extended N JL model in curved spacetime 

The NJL model [1] extended so that it includes up- and down-quarks with (ijq) and (qq) 
interactions in the color group SUc(N) can be used to describe formation of the color 
superconducting phase. This model can be considered as the low energy limit of QCD. For 
the color group SUc(3) its Lagrangian takes the form [10]: 

£, = ij [hµv'µ + wr°] q + 2~c [(ijq)
2 + (qi-y5f'q)

2
] + ~: [iiicEtb·lq] [iqsi-y5qc]. (1) 

Here, v' µ is a covariant derivative with respect to the curved spacetime, Ne = 3 is the 
number of colors, G1 and G2 are coupling constants, µ is the quark chemical potential. 
The quark field q = q;0 is a doublet of flavors and triplet of colors, and qc is a charge
conjugated field. Moreover, f' = ( T 1, T 2 , T 3) denote Pauli matrices in the flavor space; 
(s)ik = sik, (tb)a.B = t".Bb are the totally antisymmetric tensors in the flavor and color 
spaces, respectively. 

Next, by applying the usual bosonization procedure, we obtain the linearized version of 
the Lagrangian (1) with collective boson fields u, if and .6., 

3 
C ij [hµv' µ + wr°] q - ij (u + i--/f'if) q -

2
G

1 
(u 2 + if2

) 

3 
G2 ,6.•b,6.b - .6.•b [ilCstb-ysq] - .6.b [iqst:6-ysCiit]. (2) 

The Lagrangians (1) and (2) are equivalent, as can be seen by using the Euler-Lagrange 
equations for bosonic fields, from which it follows that 

.6.b ~ iq1Cst6-y5 q, u ~ ijq, if~ iij-y5 f'q. (3) 

The fields u and if are color singlets, and ,6.b is a color anti-triplet and flavor singlet. 
In what follows, it is convenient to consider the effective action for boson fields, which 

is expressed through the integral over quark fields 

exp { iSetr(u,if,.6.b,.6.•b)} = N' j[dq][dij]exp{ i J d4xF9C }, (4) 

where 

I - [3(u2 + if2) 3,6.b,6_•b] 
s.tr(u,if,.6.b,.6.•b)=- d4xF9 2G1 +a;- +Sq, (5) 

where Sq is the quark contribution. 
In the mean field approximation, the fields u, if, .6.b, .6. •b can be replaced by their ground 

state averages: (u), (if), (.6.b) and (.6.•b), respectively. Let us choose the following ground 
state of our model: 

If (u) # 0, the chiral symmetry is broken dynamically, and if (.6.b) ,j= 0, the color 
symmetry is broken. Evidently, this choice breaks the color symmetry down to the residual 
group SUc(2). Let us denote (u), (.6.3) # 0, by letters u, .6.. 

The effective potential, the global minimum point of which determines the quantities u 
and .6., follows from the definition: Self = -¼tr f d4xFg, where 

3u2 3.6..6. • - - Sq j 
V.tr = - + -- + V.tr; V.tr = --, v = d4xF9. 

2G1 G2 V 
(6) 
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3 Thermodynamic potential 

We will use the static D-dimensional Einstein universe as a simple example of curved space. 
The line element 

ds2 = dt2 
- a2 (d0 2 + sin2 0dDD-2) (7) 

gives the global topology IR ® §D-l of the universe, where a is the radius of the universe, 
related to the scalar curvature by the relation R = (D - l)(D - 2)a-2

• The volume of the 
universe is V(a) = 2"Dl2a0

-
1 /r( ~). 

One can introduce the one-particle Hamiltonian if = -in"\7 + r:ry0
, where a = ,y01, 

Using this operator the quark contribution to the effective action can be written in the 
following form: 

Sq=-~ { ln Det[ if2 
- (fJo + µ) 2

] + 21n Det [41LW + (if - µ) 2 -fi~]}, (8) 

where Po = ioo, 
The eigenvalues of the operator if may be found exactly for the case of the static D

dimensional Einstein universe. They are expressed through the corresponding eigenvalues 
of the Dirac operator on the sphere §D-l [12]: 

_ ✓ 1 ( D-1) 2 

H 1/J1 = ± E11/Ji, E1 = a2 l + -
2
- + a 2

, l = 0, 1, 2... . (9) 

The degeneracy of E1 is equal to 

2l(D+1)/2lr(D + l - 1) 
di= l!f(D - 1) (10) 

where [x] is the integer part of x. 
After going over to Euclidean spacetime and summing over Matsubara frequencies we 

obtain the thermodynamic potential 

D(a, t.) = ( 
a

2 lt.1
2

) N 
00 [E ] 3 

2
c

1 
+ c

2 
- ✓ (Ne - 2) ~ {~ d1 i + Tln (1 + e-/3(Ei-{µl) 

N oo - ✓ L d1 [ J(E1 -f,µ) 2 + 4lt.l2 + 2Tln ( 1 + e-/3J(Ei-{µ)'+4lll1')] }· (11) 
l=O 

In the following Section, we illustrate the numerical calculation of the points of the 
global minimum of the thermodynamic potential and, with the use of them, consider phase 
transitions in the Einstein universe. 

3.1 Phase transitions 

We have fixed the constant G2, similarly to what has been done in the flat case [6], by using 
the relation G2 = iG1. For numerical estimates, the constant G1 = 10 has been chosen in 
such a way that the chiral and/or color symmetries were completely broken. Moreover, we 
have limited ourselves to the investigation of the case D = 4 only. 
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Figure 1: The phase portrait at T=0 for G1 = 10. Dashed (solid) lines denote first (second) 
order phase transitions. The bold point denotes a tricritical point [10]. 

In Fig. 1, the µ - R-phase portrait of the system at zero temperature is depicted. For 
points in the symmetric phase 1, the global minimum of the thermodynamic potential is 
at a = 0, D. = 0 (chiral and color symmetries are unbroken). In the region of phase 2, 
only chiral symmetry is broken and a =f 0, D. = 0. The points in phase 3 correspond to 
the formation of the diquark condensate (color superconductivity) and the minimum takes 
place at a = 0, D. =f 0. 

Notice that the oscillation effect, clearly visible in the phase curves of Fig. 1, may be 
explained by the discreteness of the fermion energy levels (9) in the compact space. This 
effect may be compared to the similar effect in the magnetic field H, where fermion levels 
are also discrete ( the Landau levels). 

µ µ 
3.5 5 

3 
4 

2.5 
3 3 2 3 

1.5 2 
2 

0.5 2 

R ~---------~-T 
4 6 8 10 12 14 16 0.2 0.4 0.6 0.8 1.2 1.4 1.6 

Figure 2: The phase portraits at T=0.35 (left picture) and at R=3 (right picture), G1 = 10. 

In addition, we considered also phase transitions at finite temperatures. In Fig. 2, 
R - µ- and T - µ- phase portraits are depicted. It is clear from Fig.2 that with growing 
temperature both the chiral and color symmetries are restored. The similarity of plots in 
R - µ and T - µ axes leads one to the conclusion that the parameters of curvature R and 
temperature T play similar roles in restoring the symmetries of the system. 
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4 Pion condensation 

Suppose that dense, isotopically asymmetric quark matter (in this case the densities of u 
and d quarks arc different) in curved spacetime is described by an extended NJL model 
with the following Lagrangian [ll]: 

.Cq = q[i,v'v v + µ,o + OµT31o] q + G [(qq)2 + (qi,5i'q)2], (12) 

where IL is the quark chemical potential and oµ is the isospin chemical potential. At oµ = O 
the Lagrangian (12) is invariant under chiral SUL(2) x SUn(2) transformations. However, 
at oµ cf O this symmetry is reduced to the subgroup U13 (l) x UAI,(l), where U13(l) and 
UAI3 (1) are the isospin and axial isospin subgroup of the chiral SUL(2) x SUn(2) group. 

As in the previous part, we introduce composite meson fields 

a(x) = -2G(qq); nk(x) = -2G(qi1
5Tkq). (13) 

In the mean field approximation the fields a and 7Tk do not depend on coordinates and may 
be replaced by their vacuum expectation values. 

If (a) cf 0, the axial (chiral) isospin symmetry UAI3(l) is dynamically broken, and if 
(n3 ) cf 0, the isospin symmetry U13 (l) is broken. (For simplicity, we chose (n1) = (n2 ) = 0.) 
For convenience, we denote (a), (n3) cf Oby letters a and 6.. 

From now on, we will consider only the case of nonzero isospin chemical potential 
OIL cf 0, whereas the baryon chemical potential is set equal to zero, µ = 0. (Its presence is 
not of principle importance for us.) So, using the same technic as previously, we obtain the 
expression for the thermodynamic potential: 

\l(a, 6.) = a

2 
:G 6.

2 
- i ~ ~ d1{ J(E1 - ~0µ) 2 + 416.12 

+2Tln ( 1 + e-/JJ(E1-{81,)'+4lt>i') }· 

4.1 Numerical calculations 

(14) 

In the following we consider only the case of zero temperature. The detailed numerical 
investigation of the global minimum point of thermodynamic potential (14) shows that in 
the wide range of parameters only the pion condensate 6. is nonzero. The behavior of 
the pion condensate 6. as function of curvature and isospin chemical potential is shown in 
Fig.3 [11]. 

As in the case of quark and diquark condensation, the oscillating behavior of the pion 
condensate may be explained by the discreteness of fermion energy levels (9) in the compact 
space. 

5 Conclusion 

We have considered the chiral, CSC and pion condensate phase transitions of quark matter 
in the static Einstein universe at finite temperature, curvature, chemical potential and 
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Figure 3: The behavior of the pion condensate 6.. Left picture: T = 0, oµ = 4.5. Right 
picture: R = 15, T = 0. G = 1 [11]. 

isospin chemical potential. In spite of the model-theoretical character of this work, we hope 
that such kind of studies may be applicable to the physics of compact stars or the evolution 
of the universe. 

One of us (D.E.) thanks the colleagues of the Bogoliubov Laboratory for Theoretical 
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Abstract 

Relativistic equation describing the motion of classical spin in curved spacetimes 
is obtained. Classical and quantum equations of motion of spin in the Lense-Thirring 
(LT) metric are derived. 

1 Introduction 

The first relativistic equations of motion of spin in curved spacetimes have been obtained 
by Mathisson [l]. Another approach to the description of dynamics of spin has been devel
oped by Pomeransky and Khriplovich [2]. These two approaches agree in the pole-dipole 
approximation [3] but differ in the general case [2, 4]. 

In Ref. [2], the exact relativistic equation defining dynamics of three-component spin 
in curved spacetimes has. been obtained. This equation perfectly describes the dynamics 
of spin in static spacetimes. However, the Pomeransky-Khriplovich (PK) equation [2] can 
be used for nonstatic spacetimes only with tetrads satisfying the condition [3] ef = 0 (hats 
denote tetrad indices). The symmetric tetrad utilized in Ref. [2] does not satisfy this 
condition. All calculations of the angular velocity of spin precession carried our in Refs. 
[2, 4] should be corrected on the Thomas precession [3]. 

We derive the term to be added to the PK equation in order to make it useful for 
arbitrary tetrads. We obtain classical and quantum relativistic formulae describing the LT 
effect [5] which is one of the most exiting predictions of the general relativity. 

2 Spin effects in classical and quantum gravity 

The correspondence principle formulated by Niels Bohr predicts a similarity between the 
description of spin effects in classical and quantum gravity. An important property of 
spin interactions with curved spacetimes is the absence of the anomalous gravitomagnetic 
moment (AGM) and the gravitoelectric dipole moment [6]. The relations obtained by 
Kobzarev and Okun [6] lead to equal frequencies of precession of classical and quantum spins 
in curved spacetimes. As a result, the behavior of classical and quantum sµins in curved 
spacetimes is the same and any quantum effects cannot appear. This is a manifestation 
of the equivalence principle [7]. In Ref. [8], the earlier experimental data [9] have been 
reconsidered and the first experimental bound on the AGM have been stated. The fact 
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that dynamics of classical and quantum spins in curved spasetimes is identical has also 
been proved in Refs. (8, 10]. The full agreement between classical equations of motion of 
momentum and spin and corresponding quantum equations obtained from solution of the 
Dirac equation has been established for static gravitational fields and noninertial frames. 

Another manifestation of the equivalence principle is the helicity evolution. While the 
motion of momentum and spin differs in static gravitational fields and uniformly accelerated 
frames, the helicity evolution is the same [10]. 

An important problem is dynamics of particles and their spins in nonstatic spacetimes. 
A similarity of classical and quantum formulae has been shown for rotating frames [8]. A 
rotation of a central body defining a difference between stationary and static spacetimes 
leads to an appearance of specific gravitational effects. One of the most important effect 
has been predicted by Lense and Thirring [5]. This effect consists in frame dragging around 
rotating bodies and manifests in a precession of satellite orbits and gyroscopes ( e.g. classical 
spins). The nonrelativistic formula for the latter effect has been derived by Schiff [11]. 

In the present work, we use the weak-field approximation when all components of the 
metric tensor 9µv are close to the corresponding components of the Minkowski tensor T/µv 
(lhµvl = l9µv - T/µvl « 1). The classical equation of motion of spin in the LT metric differs 
from the previous result [11] by an extension to the relativistic problem. The corresponding 
quantum equation deduced from the Dirac one is obtained for the first time. 

3 Classical equation of motion of spin 

The three-component spin is defined in a flat spacetime corresponding to the particle at 
rest. As a result, the three-component spin S is a tetrad vector. In Ref. [2], an analogy 
between the motion of spin in electromagnetic and gravitational fields has~ been used. The 
derivation has implicitly been based on the admission that the condition u; = 0 defines the 
particle rest frame. This admission is not correct in the general case [3]. The corrected 
equation of motion of spin obtained in the weak field approximation is given by 

dS 
dt = 0 XS, (1) 

where e~ is the vierbein, eikl is the antisymmetric tensor, and 'Yabc = eaµ;vete~ = -,bac are 
the Ricci rotation coefficients. We reserve first Latin letters for tetrad indices and denote 
spatial indices by Latin letters. Spatial and zero tetrad indices are distinguished by hats 
omitted for the antisymmetric tensor and the Ricci rotation coefficients. When a tetrad 
satisfies the condition ef = 0, Eq. (1) is exact and coincides with the PK equation [2]. 

4 Classical and quantum description of motion of spin 
in the Lense-Thirring metric 

The motion of spin in the LT metric [5] characterizing a gravitational field of a rotating 
spherical source has previously been calculated in Ref. [2] with the PK equation. The use 
of Eq. (1) leads to the different equation for the angular velocity of the spin precession: 

n = n<1> + n<2>, (2) 
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where n<1
) is the angular velocity of spin rotation in the static gravitational field found in 

Refs. [10] [Eq. (36)]. The newly obtained contribution from the LT effect reads 

(2) _ G [3(r · J)r ] 3G D - 23 2 - J - 5 ( 2 ) [l(l · J) + (r · p)(p x (r x J))], 
c r r r cc+ me 

(3) 

where J is the intrinsic angular moment of the source, l = r x p, and c = J m 2c4 + c2p2. 
The quantum description is based on the solution of the Dirac equation. We derive 

the Dirac Hamiltonian and perform the Foldy-Wouthuysen (FW) transformation by the 
method developed in Ref. [12]. In the weak field approximation 

1t = 1t<l) + 1t<2) 7t<2) = :!!.!__J • l + fiG [3(r · J)(r. :E) _ J. :E] 
FW FW• FW c2r3 2c2r3 r2 . 

_3fiG{ 1 ,[2{(J•l;,(:E•l)}+~{(:E•(pxl)-:E•(lxp)),(r•J)} (4) 
8 c(c+mc2J r5 2 r5 

{ 
1 }] } 3fi

2
c
2
G { 2 2 2c

2 
+ cmc2 + m2c

4 (J • l)} 
+ :E. (p X (p X J)), r3 - -8- (5Pr - p ) E4(E + mc2)2 '---;:s ' 

where p = -iri"v. The operator H~{v has been calculated in Ref. [10] [Eq. (28)]. The 
equation of spin rotation obtained via commuting the FW Hamiltonian with the spin op
erator is in full agreement with Eq. (3) and significantly differs from the corresponding PK 
equation. 

This work was supported in part by the BRFFR, Deutsche Forschungsgemeinschaft, 
RFBR, and Russian Federation Ministry of Education and Science. 

References 

[1] M. Mathisson, Acta Phys. Polan. 6, 163 (1937). 
[2] A.A. Pomeransky and LB. Khriplovich, Zh. Eksp. Tear. Fiz. 113, 1537 (1998) [J. Exp. 

Theor. Phys. 86, 839 (1998)]. 
[3] A.J. Silenko, Acta Phys. Polan. B Proc. Suppl. 1 87 (2008). 
[4] A. A. Pomeransky, R. A. Senkov, and I. B. Khriplovich, Usp. Fiz. Nauk 43, 1129 

(2000) [Phys. Usp. 43, 1055 (2000)]. 
[5] H. Thirring, Phys. Z. 19, 33 (1918) [Gen. Rel. Grav. 16, 712 (1984)]; Phys. Z. 22, 29 

(1921) [Gen. Rel. Grav. 16, 725 (1984)]; J. Lense and H. Thirring, Phys. Z. 19, 156 
(1918) [Gen. Rel. Grav. 16, 727 (1984)]. 

[6] I.Yu. Kobzarev, L.B. Okun, Zh. Eksp. Teor. Fiz. 43, 1904 (1962) [Sov. Phys. JETP 
16, 1343 (1963)]. 

[7] O.V. Teryaev, Spin structure of nucleon and equivalence principle, arXiv:hep
ph/9904376 (1999). 

[8] A.J. Silenko and O.V. Teryaev, Phys. Rev. D 76, 061101(R) (2007). 
[9) B.J. Venema et al., Phys. Rev. Lett. 68, 135 (1992). 

[10] A.J. Silenko and O.V. Teryaev, Phys. Rev. D 71, 064016 (2005). 
[11] L.I. Schiff, Am. J. Phys. 28, 340 1960; Proc. Nat. Acad. Sci. 46, 871 (1960); Phys. 

Rev. Lett. 4, 215 (1960). 
[12] A.J. Silenko, J. Math. Phys. 44, 2952 (2003). 

170 



Born-Infeld Theory as low-energy limit of String 
Theory: from cosmology to hadron physics 

Oleg V. Pavlovskya b 

a ITPM MSU, Moscow, Russia 
b /TEP, Moscow, Russia 

Abstract 

Resent developments in the Random Matrix and Random Lattice Theories give a 
possibility to find low-energy theorems for many physical models from cosmology to 
hadron physics in the Born-Infeld form. In our approach that based on the Random 
Lattice regularization of QCD we try to used the similar ideas in the low-energy baryon 
physics for finding of the low-energy theory for the chiral fields in the strong-coupling 
regime. 

The aim of this paper is to derive the effective lagrangian from QCD on the lattice at 
the strong coupling limit. We find that this theory looks like a Born-Infeld theory for the 
prototype chiral lagrangian. Such form of the effective lagrangian is expected. From the 
methodological point of view our consideration is very similar with the low-energy theorem 
in string theory that lead to the Born-Infeld action [1]. Moreover, in (2], it was shown that 
Chiral Born-Infeld Theory (without logarithmic corrections) has very interesting "bag"-like 
solution for chiral fields. It was additional motivation of our work. 

Why we need in the Random Lattice? The attempts to obtain a chiral effective la
grangian from field theory on the lattice had been performed iµany times a long ago. Using 
of the well-known Brezin&Gross trick (4] it could be possible to perform the link's matrix 
integration in strong coupling regime and obtain the various first order effective theories 
(5]. 

In spite of first great success this approach had not been very popular and origin of 
this stems from the fact that this approach is a very general method for different branches 
of theoretical physics. For example, modifications of this method is a very popular in 
cosmology now because it give some theoretical predictions for forms of cosmological actions 
that result from String theory. 

In other hand, there is a some problem in direct realization such ideas in QCD. The 
lattice regularization of QCD breaks a rotational symmetry of the initial theory from the 
continues rotation group to a discrete group of rotations on fixed angles. And the lattice 
regularization approach gives the correct results only such tensors which are invariant by 
respect to this discrete group. In particular using the ordinary Hyper-Cubical (HC) lattice 
one can obtains the only first order effective theory and for corrections this method generates 
non-rotational (non-lorentz) invariant terms. For generating of the high-order effective field 
theories more symmetrical lattice must be considered. Fortunately this conception is known 
for a long time and is called the Random Lattice Approach (6]. 

A general steps of the algorithm of the chiral lagrangian derivation from the lattice QCD 
that was proposed in (7]. The starting point of our analysis is a standard lattice action 
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~ 

with Willson fermions 

Z = j[DG][D1jil[D1J,]exp{-Sp1(G)- Sq(G,1/1,1µ)-S1} 

where Spl - plaquette gauge field term; link fermions t_erm is Sq = I:x,,, Tr(Aµ(x)Gµ(x) + 
G!(x)A1,(x)) and source term is S1 = I:x 1$(x)Mg(x), Mg= ~c 1j,a,f3(x)1J!a,a(x). 

In order to realize the strong-coupling regime on the lattice let us consider the limit of 
the large coupling constant g (g --> oo ). Main result is that in such limit integral over the 
gauge field can be performed. Let us consider the leading order contribution in this strong
coupling expansion. The integrals over the gauge degrees of freedom can be calculated into 
the large N limit by using of the standard procedure [5] and result of these calculations is 
following 

Z = j [D1J!l[D1J,] exp{-N L Tr[F(,\(x, v))] - S1} 
x,v 

(1) 

where Av= -M(x)P;; M(x + v)P;; and F(,\) = Tr[(l - vT=A)] - Tr[log(l - ½~)]. 
Now it would be very interesting to point out that the function F(,\) has the typical 

form of the Born-Infeld action with first logarithmic correction. 
Our next step is the integration over the fermion degrees of freedom in (1). Using the 

source technics it was shown [7] that integral (1) can be re-written into the form of the 
integral over the unitary bosons matrix Mx 

Z = j DM exp Seff(M). (2) 

As a matter of principle, we already perform the transformation from the color lattice 
degrees of freedom ( G and 1j,) to the boson lattice degrees of freedom ( M). Now our task 
is to realize the continuum limit of expression (2). 

The nest step of our analysis correspond with the studying of the stationary points of the 
lattice action Seff· Fortunately this is very well studied task [8]. This problem is connected 
with well-known investigations of the critical behavior of the chiral field on the lattice and 
with the problem of the phase transformation on the lattice (for references see the issue 
[9]). In [7], it was shown that for our task the stationary point is M0 = u0 l, u 0(mq = O,r = 
1) = 1/4. Now one can expressed M(x) in terms of the pseudoscalar Goldstone bosons 

1 + /5 + 1- 15 
M = u0exp(irr;Ti'Y5/f,,) = uo[U(x)-

2
- + U (x)-

2
-] 

and the effective action is given in the form of the Taylor expansion around this stationary 
point 

oo p(kl(,\) 
Seff(U) =-NL k! 

0 L Tr[(,\v(x) - Ao)k] 
k=l x,v 

(3) 

Let us consider the expansion of the chiral field U = exp( irr;T;/ f") on the lattice around 
point x (by respect to the small step of the lattice a), U(x + v) = U(x) + a(8vU(x)) + 
~ (8~U(x)) + .... 

Expressions (3) are very essential because these arc a simplest illustration of all aspects 
of the violation of the rotational symmetry on the lattice. For this moment we specially 
say nothing about the structure of our lattice. 
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The basic idea of the RL is the averaging over the big ensemble of various lattices 
with random distributions of sites and it possible to show that such averaging leads to 
the restoration of the rotational invariance. The basis of vectors in the CFL method is 
following v = viJ = ets;)l;j where S;j is a volume of the corresponding 3-dimensional 
boundary surface of the Voronoi cells and l;i = ITi - fjl is the length of link. Using the 
summation formulas from [6] one get that after the averaging only pairs are survive 

(4) 
a pairings pairs 

At other hand, the result (4) could be obtained by means of the following trick. For 
beginning let us consider a lattice with fixed position (for simplicity it possible to use the 
trivial HC lattice) in a flat space. Now let us consider small deformations of the geometry 
of this space ('Yii -> g;j), Using of this idea one can rewrite the problem of the random 
lattice averaging in the terms of the random surface. This is the standard quantum gravity 
task and using the methods of the Matrix Theory one can show that our result ( 4) is just 
the direct consequence of well-known Wick's Theorem about the pairings. 

Substituting (4) into the (3) and collecting of all terms which depend on the power of 
the prototype lagrangian one obtain following expression for the effective chiral lagrangian 

where · · · are all another terms (in particular the Skyrme term) and /3 is a effective coupling 
constant that depend on the value of our stationary point u0 • 

This work is partially supported by the Russian Federation President's Grant 195.2008.2. 
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Abstract 

The finite temperature chiral and deconfinement phase transitions are studied 
within a nonlocal chiral quark model coupled to the Polyakov loop. In contrast to 
previous investigations which were mainly restricted to the mean-field approxima
tion, mesonic correlations are self-consistently included using a strict 1/Nc expansion 
scheme. The quark model parameters are refitted in vacuum taking into account 
mesonic corrections. 

In the present contribution we want to discuss an effective model of low-energy QCD, 
capable of describing the chiral as well as the deconfinement transitions. In the spirit of 
the PNJL model [1] which generalizes the well-known Nambu-Jona-Lasinio (NJL) model 
for the chiral quark dynamics (for an early review see, e.g., Ref. [2]) by coupling it to the 
Polyakov loop, being an order parameter of the deconfinement transition, we generalize 
here a nonlocal chiral quark quark model by coupling it to the Polyakov loop [3]. To a large 
extent, this removes one of the most disturbing features of the NJL-type models, namely 
the peculiarities due to pressure contributions of unconfined quarks in the hadronic phase. 
After successfully removing the unphysical quark degrees of freedom from the confined 
phase, the PNJL model treated in mean-field approximation as in [1] does not contain any 
degree of freedom in this regime. Obviously, this is a rather poor description of the hadronic 
phase at finite temperature T where mesons are expected to become relevant. We suggest 
a 1/Nc improvement of the PNJL model [3] which is necessary to disentangle hadronic 
contributions in the vicinity of and below the chiral/deconfinement phase transition. 

In our calculations we use a <l>-deriveable approach together with the 1/ Ne expansion. 
The central quantity for our analysis is the thermodynamic potential per volume, which is 
related to the pressure of the system 

(1) 

where the new element U(<l>PL, <l>PL) is the Polyakov loop potential, for which we adopt the 
logarithmic form of [4]. where s-1 = S;1 + E represents the full quark propagator, and 
quark self-energy is E = o<l>/o(S). The symbol Tr denotes a trace over all internal (Dirac-, 
flavor-, and color-) degrees of freedom as well as momentum and Matsubara frequencies. 
As usual, we have introduced a constant 0 0 , which is chosen such that 0(0) = 0. 

1Work supported by the Heisenberg-Landau programme (M.B., A.E.R., M.K.V), by the grant 
of Russian President (A.E.R.), by BMBF (A.E.R) and by the Polish Ministry of Science and 
Higher Education (D.B.). 

177 



1,0 I I a......:::::• ...... 'T' I ITd I 

0,8 

8• o,6 

I~ 

... ~ 0,4 ·~ 0,2 

\ .•...... 

o,ot ~\· ..... \ j 
0 50 100 150 200 250 300 350 400 

T(MeV) 

Figure 1: Quark condensate(thick) and Polyakov loop(thin) in the nonlocal model in mean 
field(dashed) and next order of 1/Nc expansion(solid). The chiral perturbation theory 
(ChPT) prediction for the quark condensate is shown as the dotted line. 

The nonlocal four-point interaction is chosen in a separable form motivated by the 
instanton liquid model (ILM) where it results from the internal nonlocal structure of the 
nonperturbative QCD vacuum. In the ILM, the nonlocality is represented by the profile 
function of the quark zero-mode in the instanton field and depends on the gauge. 

The mean-field NJL model can be obtained using "glasses" form of the <I> potential 
which takes the form 

<I>gla.sses = - L ~ [Tr(I'MS)]2, 
M=1r,a 

(2) 

where C,. = f(q1)f(q2) and r.,.. = hsTaf(q1)f(q2) and q1, q2 are fermion momenta. 
We use a Gaussian ansatz for the nonlocal profile functions, f2(p2

) = exp(-p2 
/ A 2) in 

Euclidean momentum space, as one of the simplest functional forms of the nonlocality which 
has a similar behavior as the zero-mode profile obtained in a gauge invariant manner. This 
choice guarantees convergence at all orders without an additional regularization procedure. 

The mean-field potential leads to a dynamical quark self-energy Em1(p2
) = -M(p2). 

The dynamical quark mass function is M(p2
) = me+ mdf2(p2

), where the amplitude 
md = -amr is an order parameter for dynamical chiral symmetry breaking. 

The next step in the 1/ Ne expansion is to additionally take into account the "ring sum", 

"'""' dM <Pring - - L 2 Trln[l-GIIM], 
lvf=tr,a 

(3) 

where dM is the mesonic degeneracy factor, ITM are the meson polarization operators, which 
in the 1/Nc expansion scheme are composed of the mean-field quark propagators. 

Beyond the mean-field there are corrections to the dynamical quark mass (B) and the 
wave function renormalization (A) functions, ENc(p2) = pA(p2) + B(p2). 

In Fig. 1 we show the resulting temperature dependence of the quark condensate (qq)T 
(normalized to its vacuum value) and of the Polyakov loop expectation value at mean-field 
level together with the strict 1/ Ne scheme results. In the pure quark model the critical tem
perature for chiral restoration is Tc= 90 MeV, whereas the pure gauge sector has a critical 
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Figure 2: Scaled pressure p/psB as a function of T /Tc: non-local PNJL model with physical 
pion mass (solid line) and with mc/T = 0.4 (dotted line). Dashed line: Lattice data for 
two-flavor QCD with staggered quarks (5]. The shaded region is an estimated continuum 
extrapolation of these data for massless QCD (5]. Points: Lattice data for two-flavor QCD 
with Wilson-type quarks (6] for N1 = 6 (open symbols) and N 1 = 4 (filled symbols). The 
data for the pressure [6] have been divided by the Stefan-Boltzmann limit for N1 = 6 and 
N1 = 4, respectively, as given in (6]. 

temperature for deconfinement Td = 270 MeV, fixed from lattice data for the Polyakov 
loop. When the quark and gluon sectors are coupled at mean-field these temperatures get 
synchronized so that Tc~ Td ~ 200 MeV. Beyond mean field the temperature of the chiral 
phase transition is slightly lowered, whereas the deconfinement temperature is increased. 
At low temperatures T < 100 MeV our results coincide with ChPT results. The dip near 
200 MeV is connected with a breakdown of the 1/Nc expansion near the phase transition. 

Our model predictions for the the pressure p(T) = -O(T), divided by the Stefan
Boltzmann limit, are displayed in Fig. 2. For comparison with the full result we also show 
the mean-field result and the mean-field plus pion contribution as well as the result for an 
ideal pion and sigma gas with the masses fixed at their vacuum values. We find that at low 
temperatures the mean-field (i.e., quark) contribution is suppressed and the pressure can 
be well described by a free pion gas. Near the critical temperature the u meson gives an 
additional, visible contribution whereas already for T > 1.5 Tc the mesonic contributions 
are negligible and the quark-gluon mean-field dominates the pressure. 
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On Finite Width of Quark Gluon Plasma Bags 
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Bogolyubov Institute for Theoretical Physics, Kiev, Ukraine 

Abstract 

Within an exactly solvable model I discuss an influence of the medium dependent 
finite width of QGP bags on their equation of state. It is shown that inclusion of such 
a width allows one to naturally resolve two conceptual problems of the QGP statistical 
description. On the basis of the proposed simple kinetic model for a sequential decay 
of heavy QGP bags formed in high energy elementary particle collisions it is argued 
that by measuring the energy dependence of life time of these bags it is possible to 
distinguish the case of critical point existence from the case of tricritical point. 

1. Introduction. - A lot of experimental and theoretical efforts is aimed to determine the 
equation of state (EoS) of the strongly interacting matter. Despite the great achievements 
of these efforts [l] even the bulk properties of the quark-gluon plasma (QGP) EoS are not 
well known. Thus, such important characteristics as the mean volume and life time of QGP 
bags formed in heavy ion collisions have not caught a necessary attention yet. It is clear, 
however, that right these quantities may put some new bounds on the spacial and temporal 
properties of the QGP created in high energy collisions. As shown in [2] it is possible to 
naturally resolve the HBT puzzles at RHIC energies, if one assumes that the QGP consists 
of droplets of finite (mean) size. On the other hand the short life time of heavy QGP 
bags found recently within the Hagedorn-Mott resonance model [3] and within the finite 
width model (FWM) [4, 5] may not only play an important role in all thermodynamic and 
hydrodynarhic phenomena of the strongly coupled QGP matter, but may also explain the 
absence of strangelets [6] or, more generally, why the finite QGP bags cannot be observed 
at energy densities typical for hadronic phase [4] (see below). Therefore, an investigation 
of the mass and volume distributions along with the life time of the QGP bags and the 
corresponding consequences for both the experimental observables and theoretical studies is 
vitally necessary for heavy ion phenomenology. The present paper is devoted to a discussion 
of these problems in the framework of the FWM. 

2. The Finite Width Model. - The FWM employs the most convenient way to study 
the phase structure of any statistical model by analyzing its isobaric partition [7, 8, 9, 10] 
and to find the rightmost singularities of this partition. Hence, I assume that after the 
Laplace transform the FWM grand canonical partition Z(V, T) generates the following 
isobaric partition: 

A 

00 
1 

Z(>., T) = [ dV exp(->. V) Z(V, T) = [>. _ F(>., T)] , 

where the function F(>., T) is a generalized partition 
00 00 00 

F(>.,T) = j dvj dsj dm p(m,v,s)exp(->.v)¢(T,m) 
0 0 0 
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(1) 

(2) 



of bags of mass m, volume v and surface s defined by their mass-volume-surface spectrum 
p(m, v, s). The partition (2) is a generalization of the statistical ensembles with fluctuating 
extensive quantities discussed recently in [11]. Note that one could also introduce in (2) the 
perimeter fluctuations, which may play an important role for small hadronic bubbles [12] 
or for cosmological phase transition [13], but we neglect it because the curvature term has 
not been seen in such well established models like the Fisher droplet model (FDM) [14, 15], 
the statistical multifragmentation model (SMM) [16, 17] and many other cluster systems 
discussed in [8, 9, 10, 15]. A special analysis of the free energy of 2- and 3-dimensional Ising 
clusters, using the Complement method [18], did not find any traces of the curvature term 
(see a detailed discussion in [9]). Such a result is directly related to the QGP bags because 
quantum chromodynamics (QCD) is expected to be in the same universality class [19] as 
the 3-dimensional Ising model whose clusters were analyzed in [18]. 

The thermal density of bags of mass m and a unit degeneracy is given by 

oo 2T 
,1,(T ) = _l J 2d [- (p2 + m2)112] = !!!:.__ K (!!!) 
'I' ' m - 21r2 p P exp T 21r2 2 T . (3) 

0 

It is convenient to divide the mass-volume-surface spectrum into the discrete mass-volume 
spectrum of light hadrons and the continuum contribution of heavy resonances p( m, v) 

Jm 

p(m, v, s) = L 9i o(m-mi)o(v-vi) o(s)+8(v-V0 )8(m-M0 )o(s-a.v"')p(m, v)p1(s), (4) 
j=l 

The first term on the right hand side (r.h.s.) of (4) represents the contribution of a finite 
number of low-lying hadron states up to mass M0 :::::: 2 GeV [4]. This function has no 
>.-singularities at any temperature T and can generate only a simple pole of the isobaric 
partition, whereas the mass-volume spectrum of the bags p(m, v) on the r.h.s of (4) is chosen 
to generate an essential singularity >.Q(T) = PQ(T)/T which defines the QGP pressure 
PQ(T). For simplicity here I consider the matter with zero baryonic charge. 

The continuous part of the spectrum p(m, v, s) introduced in [4] is parameterized as 

p(m,v) = r(vt~•+, exp[~ - (';'~21:}'], and P1 (f,-) = tg:i exp [-~v"']. (5) 

As it is seen from (5) the mass spectrum p(m,v) has a Hagedorn like parameterization 
and the Gaussian attenuation around the bag mass Ev (B is the mass density of a bag 
of a vanishing width) with the volume dependent Gaussian width r(v) or width hereafter. 
I will distinguish it from the true width defined as r R = a r( v) ( a = 2✓21n 2 ) . It is 
necessary to stress that the Breit-Wigner attenuation of a resonance mass cannot be used 
in the spectrum (5) because in case of finite width it would lead to a divergency of the mass 
integral in (2) above TH [4, 5]. 

Th 1. · f b h d 1 
00 

dm [ (m-
2
Bv)2

] e norma 1zat10n actor o eys t e con ition Nr /4 r(v) exp - 2r (v) . The 

constants a> 0 and b > 0 define the Fisher exponent r =a+ b [4, 5] (also see later). 
3. Important Features of the FWM Spectrum. - The spectrum in (5) contains the 

surface free energy (K- = 2/3) with the T-dependent surface tension which is parameterized 

as u(T) = uo · £ (l = 0, 1, 2, ... ) (9, 20], where u0 > 0 can be a smooth function [
T. Tri+! 

of temperature. For not above the tricritical temperature Tc such a parameterization is 
justified by the usual cluster models like the FDM (14, 15] and SMM (16, 17], whereas the 
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general case for any T can be derived from the surface partitions of the Hills and Dales 
model [20]. Note that the Hills and Dales model [20] explicitly accounts for all possible 
surface deformations which correspond to the same cluster volume and, therefore, it is 
another example of the statistical partition with fluctuating extensive quantity, which in 
this case is cluster surface. 

In Ref. [9] it was rigorously proven that at low baryonic densities the first order de
confinement phase transition degenerates into a cross-over just because of negative surface 
tension coefficient for T > Tc. The other consequences of the present surface tension pa
rameterization and the discussion of the absence of the curvature free energy in (5) can be 
found in Refs. [9, 18, 21]. 

The power ,-,, < 1 which describes the bag's effective surface is a constant that, in 
principle, can differ from the typical FDM and SMM value ,-,, = j for which the coefficient 

a8 is a8 = (36 ?T) ½. This is so because near the deconfinement phase transition region the 
QGP has low density and, hence, like in the low density nuclear matter [22], the non
spherical bags (spaghetti-like or lasagna-like [22]) can be favorable (sec also [12, 13] for the 
bubbles of complicated shapes). A similar idea of "polymerization" of gluonic quasiparticles 
was introduced recently [23]. 

Note that in contrast to the continuous part of the spectrum (4) its discrete part does 
not contain the surface free energy because according to the present days status of the 
statistical model of hadron gas this is not necessary [24]. 

The spectrum (5) has a simple form, but is rather general since both the width r(v) 
and the bag's mass density B can be medium dependent. In [4] it is shown that the FWM 
has no contradiction, if r(v) = r 1 = ,v½ only (,=canst of v). 

For large bag volumes ( v » Mo/ B > 0) the normalization factor Nr can be found to 
be Nr ~ 1/-/2-ir. Similarly, one can show that for heavy free bags (m » BVo, Vo~ 1 fm3 

[4], ignoring the hard core repulsion and thermostat) 

p(m) = J dv p(~, v) ~ Pi('Jr)~ exp [rm]. (6) 
Vo B m 4 + H 

It originates in the fact that for heavy bags the Gaussian in (5) acts like a Dirac a-function 
for r 1 . Thus, the Hagedorn form of (6) has a clear physical meaning and, hence, it gives 
an additional argument in favor of the FWM. 

Similarly to (6), it is possible to estimate the width of heavy free bags averaged over 

bag volumes and get r(v) ~ f 1(m/B) = ,✓m/B. Thus, the mass spectrum of heavy free 
QGP bags must be the Hagedorn-like one with the property that heavy resonances should 
have the large mean width because of which they would be hard to be observed. 

The FWM allows one to express the pressure of large bags in terms of their most probable 
mass and width. Comparing the high and low temperature FWM pressures [4, 5] with the 
lattice QCD data [25, 26, 27], it was possible to estimate the minimal resonance width at 
zero temperature rR(V0 , T = 0) ~ 600 MeV and the width at the Hagedorn temperature 
rR(Vo, T =TH)= y'I2rR(Vo, T = 0) ~ 2000 MeV. It was also found that these values of 
the width are almost independent of the number of the lattice QCD elementary degrees of 
freedom [5]. Clearly, so large widths can naturally explain the huge deficit of the heavy 
hadronic resonances in the Particle Data Group compared to the exponential mass spectrum 
used to describe the QGP EoS. Applying the same line of arguments to the strangelets, 
I conclude that, if their mean volume is a few cubic fermis or larger, they should survive 

182 



for a very short time. Such a conclusion is similar to the results of Ref. [6] predicting an 
instability of the strangelets. 

Also it is remarkable that at the temperatures below the half of the Hagedorn one 
the QGP bag pressure of the FWM acquires the linear T dependence, i.e. p-(T < 
0.5TH) = -T-/$, which is clearly seen in the recent lattice QCD data [27] in the range 
TE [202.5; 419.09] MeV [5]. 

As shown in [5] the relation between the resonance width and the mean mass of the 
FWM bags at high temperatures obeys the upper bound for the Regge trajectory asymptotic 
behavior found in [28], whereas a similar relation at low temperatures exactly corresponds 
to lower bound for the Regge trajectory asymptotic form [28). 

4. The Life Time of a Protofireball. - The found FWM width values allow one to get 
the rough estimates of the life time of the protofireball suggested in [29] to explain the 
hadron multiplicities measured in the elementary particle collisions at high energies. The 
microcanoncal analysis of the thermostatic properties of heavy resonances with exponential 
mass spectrum [30, 21] teaches us two principal facts: first, even a single heavy resonance 
with the exponential mass spectrum imparts the Hagedorn temperature to any other hadron 
being in a thermal contact with it, and, second, the splitting of a single heavy resonance into 
several heavy pieces with mass above M0 practically does not alter the latter conclusion. 
These two facts allow us to greatly simplify a treatment of the sequential decay of the heavy 
QGP bags formed in the elementary particle collisions at high energies. Indeed, the first fact 
allows one to consider the decay products with the mean kinetic energy which corresponds 
to the Hagedorn temperature (i.e. 3 TH for pions and 3/2 TH for heavier particles), and 
the second fact enables us to study the decay of several QGP bags independently of each 
other. Moreover, these both facts combined with the low particle densities formed in the 
elementary particle collisions allow one to neglect the treatment of daughter hadrons which 
may absorb on the decaying bags. 

To simplify the problem I study the two particle decays only and consider the evolution 
of the heaviest QGP bag. The assumption of two particle decay is not too restrictive because 
it is possible to effectively account for three, four and more particle decays by representing 
them as the two particle sequential decays with shorter life-time. Therefore, in the rest 
frame of decaying bag of mass M the mean change of mass of the heaviest of two daughter 
particles of energies E1 and E2 is !:::.M ~ M - max(E1, E2)M = min(E1, E2)M, where the 
bar means the averaging over all possible combinations which obey the energy conservation. 
Then the mass evolution equation for the heaviest QGP bag can be cast as 

I:::. M ---:--. --;-:=--,=-c--

!:::. t ~ -qfMmm(E1,E2)M, (7) 

where I:::. tis the time change, rM = rR(Vo, T = o)j! =raj!~ 600 · fJj£ MeV is an 

average resonance width in the vacuum. Here the constant q = 1
1~~ accounts for the mean 

number of daughter particles N > 2 in a decay. 
The mass distribution of the heaviest bag can be constructed from the auxiliary function 

M 

/ ( 
E1 + E2) OM(Ei) = Nn p(E1) dE2 p(E2) 8 1 - M , (8) 

Emtn 

where the density of states of hadrons of energy E is denoted as p(E), the Dirac delta 
function accounts for the energy conservation, and the normalization factor Nn is given by 
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M M 

1 = / dE1 G(E1 - M/2) OM(E1) + j dE2 8(E2 - M/2) OM(E2). (9) 
Emin Emin 

Here the first (second) term corresponds to the fact that the fragment of energy E1 (E2) 
is the heaviest one, and Emin ~ 3 Tu is the minimal energy of the lightest fragment. Using 
(9), one finds an averaged minimal mass of the daughter fragment as 

min(E1, E2)M :

1

1m~"e1 p(E1) [M - E1] p(M - E1) [MJm;E1 p(E1) p(M - E1)]-.

1 

(10) 

M~ M~ 

In principle the density of states should be defined from the convolution of the spectrum 
(4) and Boltzmann density (3) with T = Tu. However, to get a simple analytic expression 
I employ just the Hagedorn mass spectrum and consider all particles nonrelativistically. 
This can be done because the experimental mass spectrum p,(m) for m ::; M0 is well 

[ l 
r+3/2 

approximated by p,(m) ~ C ~ exp( 1~) [31]. The energy conservation E = m + 
~ TH + 8-0 m" relates the mean energy of daughter hadron and its mass. Neglecting the 
surface energy, I get the resulting energy spectrum of the daughter hadron as p(E) ~ 

C [ !:ff-] r [ ~] i. As one can see, the leading exponentials cancelled each other and, 

[ 12-T [ ( )] 2r-3 thus, min(E1, E2)M ~ Emin E~,n ln E~,n for T 2'. 1. Hence the life time of the 
protofireball of mass MF created m the high energy collision of elementary particles is 

r-1 ~ [ E3/2-T E3/.2-r] r-I [M ] 
tr1~(MF) ~ ( ~ ;i) E 

O 
".;i;-r - ~i;-r , and tr=i(MF) ~ - 0

-ln ; . (11) 
q T 2 mm MF M0 q o 

Since for ~ < T ::; 2 at nonzero baryonic chemical potentials the deconfinement transition 
is of the first order and for ! < T ::; ~ it degenerates to the second. order and in either case 
there exists the tricritical point [9], whereas there are some arguments that for T > 2 there 
should exist the critical point with the first order deconfinement [8]. Therefore, I conclude 
that the measurements of the energy dependence of the life time (hadronization time) of 
the protofireballs created in the elementary particle collisions may allow us to distinguish 
the critical point existence from the tricritical point. 

5. Conclusions. - Here I discuss some new ideas on the basic properties of the QGP 
EoS. The main attention is paid to the role of the medium dependent width of heavy QGP 
bags. Their large width explains a huge deficit of experimental mass spectrum of heavy 
hadronic resonances and enlightens some important thermodynamic aspects of the color 
confinement in finite systems. The proposed simple kinetic model for a sequential decay 
of heavy QGP bags formed in the elementary particle collisions at high energies allows 
one to distinguish the case of critical point existence from the tricritical one by measuring 
the energy dependence of the life time of these bags. Of course, the freeze-out process 
[32] may some what change these conclusions, but the simple kinetic arguments for the 
nucleus-nucleus collisions [33, 34] teach us that such changes are just a few per cent only 
and, hence, they cannot affect the result obtained. 
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Abstract 

The spectrum of meson and diquark excitations of the color-flavor locked (CFL) 
phase of dense quark matter is considered in the framework of the Nambu - Jona
Lasinio model. We have found that in this phase all Nambu-Goldstone bosons are 
realized as scalar and pseudoscalar diquarks. Other diquark excitations are resonances 
with mass value around 230 MeV. Mesons are stable particles in the CFL phase. Their 
masses vs chemical potential lie in the interval 300-c-500 MeV. 

It is well-known that at asymptotically high baryon densities the ground state of massless 
three-flavor QCD corresponds to the so-called color - flavor locked (CFL) phase [l]. One of 
the most noticeable differences between color superconductivity phenomena with three and 
two quark species is that the CFL effect is characterized by a hierarchy of energy scales. 
Indeed, at the lowest scale of this phase lie NG bosons, which dominate in all physical 
processes with energies smaller than the superconducting gap 6.. Evident contributors 
at higher energy scales are quark quasiparticles, which in the CFL phase have an energy 
greater than 6.. However, up to now we know much less about other excitations, whose 
energy and mass are of the order of 6. in magnitude. Among these particles are ordinary 
scalar and pseudoscalar mesons, massive diquarks etc, i.e. particles which might play an 
essencial role in dynamical processes of the CFL phase. Here we are going to discuss just 
this type of excitations of the CFL ground state, i.e. mesons and massive diquarks, in the 
framework of the massless three-flavor NJL model with Lagrangian 

8 

£ = ii[,,viav + wr°]q + G1 L [(ilTaq) 2 + (qi·lTaq) 2
] + 

a=O 

G2 I: L {[iz°i')'5TAAA•ql[iji''hA.XA,q0
] + [iz°TAAA'q][qTAAA'qc]}. (1) 

A=2,5,7 A'=2,5,7 

In (1), µ 2: 0 is the quark number chemical potential which is the same for all quark 
flavors, qc = Cqt, ii° = qtC are charge-conjugated spinors, and C = i')'2')'0 is the charge 
conjugation matrix (the symbol t denotes the transposition operation). The quark field 
q is a flavor and color triplet as well as a four-component Dirac spinor. Furthermore, we 
use the notations Ta, Aa for Gell-Mann matrices in the flavor and color space, respectively 
(a= 1, ... , 8); To=~- lr is proportional to the unit matrix in the flavor space. Clearly, the 
Lagrangian (1) as a whole is invariant under transformations from the color group SU(3)c. 
In addition, it is symmetric under the chiral group SU(3)L x SU(3)R as well as under the 
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baryon-number conservation group U(1)8 and the axial group U(l)A, 1 In all numerical 
calculations below, we used the following values of the model parameters: A = 602.3 Me V, 
G1A2 = 2.319 and G2 = 3Gi/4, where A is an ultraviolet cutoff parameter in the three
dimensional momentum space. 

Introducing collective scalar aa(x), Ll~u,(x) and pseudoscalar 7ra(x), Ll'.:iA,(x) fields, 

aa(x) = -2G1(QTaq), LlAA'(x) = -2G2(rfi-y5TAAA'q), 
7ra(x) = -2Gi(qi-y5Taq), Ll'.:iA,(x) = -2G2(rfTAAA'q), (2) 

(a= 0, 1, .. , 8; A, A'= 2, 5, 7) and then integrating out quark fields from the theory, it is pos
sible to obtain the following generating functional of the two-point one-particle irreducible 
(lPI) Green functions of the mesons and diquarks in the CFL phase 

c ( A•,P A•,P*)- jd4 [a~+n~ Ll~A,LlAA'+Ll'.:iA,Ll'.:i~,] 
'-'elf aa,?ra,uAA'•uAA' - - X ~ + 4Q

2 
+ 

{n{so(;;, ~)so(;;,~)}, (3) 

where 

~ = Taaa + i-y5?raTa, 
~t = T!aa + i-y51raT!, 

K = (Ll'.:iA' + iLlAA''y5)TAAA', 
K* = (Ll'.:i*A, + it.AA''y5)TAAA', 

So is the Nambu - Gorkov representation for the quark propagator in this phase, 

(4) 

and Ll is the gap parameter. Using the expression (3), one can find the lPI Green functions 
for mesons and diquarks in the CFL phase, namely 

(6) 

where X(x), Y(x) = aa(x), 7rb(x), LlA'.:i,(x), t.~1;,(x). In total, the Green functions (6) form 
a 54x54 matrix which is, fortunately, a reducible one. It is well known that in the rest 
frame of the momentum space representation, i.e. at p = (p0 , 0, 0, 0), the meson and diquark 
masses are the zeros of the determinant of this matrix. So, after tedious both analytical 
and numerical calculations (the details are presented in (2)) we have obtained the following 
results on the mass spectrum of the bosonic excitations of the CFL phase. 

In the Figs 1,2 the mass behavior for the scalar and pseudoscalar mesons is presented 
in the CFL phase. It is easily seen that i) there is a mass splitting between octet and 
singlet of mesons, ii) the singlet mass is smaller than octet one for scalar mesons, but for 
pseudoscalar mesons the situation is inverse, iii) in the CFL phase the meson masses are 
greater than 300 Me V. 

1 In a more realistic case, the additional 't Hooft six-quark interaction term should be taken into account 
in order to break the axial U(l)A symmetry. 
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Figure 2: The behavior of the pseu
doscalar meson masses in the CFL phase. 

In the diquark sector we have found 18 Nambu-Goldstone bosons. Moreover, there arc 
a scalar octet and singlet as well as pseudoscalar octet and singlet of nontrivial diquark 
excitations of the CFL phase. The diquarks from scalar and pseudoscalar octets are reso
nances with mass around 230 MeV. The properties of diquarks in the CFL phase were also 
considered earlier in the papers [2, 3]. 

For comparison, let us mention the existence of nontrivial excitations of the color super
conducting (2SC) phase of quark matter with two quark flavors. In this phase the masses 
of u and 7r mesons lie in the same interval 300-,-500 Me V as the meson masses in the CFL 
phase. But the scalar diquark is a very heavy resonance with mass~ 1100 MeV [4]. If the 
electric charge neutrality constraint is imposed, then in the 2SC phase diquark is a stable 
particle with mass ~200 MeV [5]. 

We thank V.L. Yudichev for the fruitful cooperation over many years. One of us (D.E.) 
thanks A.E. Dorokhov and M.K. Volkov for useful discussions and the Bogoliubov Labora
tory of Theoretical Physics for kind hospitality. 
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Abstract 

In this talk attention is drawn to thermal properties due to the addition of eight 
quark interactions in the standard SU(3) x SU(3) chiral Nambu-Jona-Lasinio model 
(NJL) with 't Hooft interaction (NJLH). The schematic SU(3) flavor limit with mass
less current quarks as well as the realistic case mu = md f, m, are discussed. 

The extension of the NJLH model [l]-(4] to include 8q (quark) interactions (5] finds its 
main motivation in the fact that it stabilizes the scalar effective potential of the theory. 
fhis has been discussed at length in [6],(7]. We show here that they play an important role 
n the physics of chiral transitions at finite temperature [8]. Before discussing the thermal 
Jroperties, we give a summary of essential features of the model at T = 0, relevant for the 
>resent discussion. One of the most attractive features of chiral multiquark interactions 
s the possibility of analyzing patterns of dynamical breakdown of chiral symmetry. In 
he original NJL model the symmetry is broken in the massless limit from a critical value 
1f the 4q interaction strength on, G > Ger, The same happens if the UA(l) breaking 6q 
agrangian of 't Hooft is added with strength 11:; a realistic fit to the pseudoscalar and scalar 
11ass spectra restricts 11: to the role of a perturbative effect pn the spontaneously broken 
,hase. This changes radically if the 8q interactions are added, for which the most general 
pin O non-derivative combination consists of a sum of two terms ( with strengths 91 , 92), one 
f them ( ~ 91) violating the OZI-rule. Now, besides the former scenario, it is also possible to 
ave the Wigner-Wey! phase (i.e. for G < Ger value) in coexistence with another minimum, 
1duced by the higher multi-quark interactions. Realistic fits to low energy characteristics 
f the mesons show that the second minimum is induced by the strength 11:. To these 
1vo possible symmetry breaking patterns one can assign the same meson mass spectra, 
ixcept for the O' meson), due to an interplay of the 4q and Sq strengths. Turning now to 
1e finite temperature case: if symmetry breakdown is induced by the 't Hooft interaction 
:rm, a substantial decrease of the transition temperature is achieved, bringing the model 
:edictions closer to lattice results (9]. This can be easily understood with help of fig. 1. 
n the left side the effective potential at T = 0 shows coexistence of the Wigner-Wey! 
1ase and symmetry broken phase, different curves correspond to different strength of 11:. 

n the right the several curves of the effective potential represent different temperatures, 
lculated with model parameters fixed at T = 0 (dashed curve, G > Ger), Increasing the 
mperature the effective potential runs through configurations of the type shown on the 
't, changing curvature at origin. Thus starting already at T = 0 from a configuration 
own on the left will obviously reduce the transition temperature of the chiral transition. 
e discuss now the effect of realistic current quark masses. The gap equations at T = O in 
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Figure 1: Left: Effective potential at T = 0 for different values of r;,, axis through origin. 
Right: Effective potential at different T values, with model parameters fixed at T = O -
dashed line. See also text. Figs. taken from [7],[S] respectively. 

the isospin limit mu = md =f ms are 

hu + ~c2 Mu (3Io - f':::.usf1) = 0, hs + Nc
2 

M, (3Io + 2!':::.u,fi) = 0. 
frrr 

This system must be solved selfconsistently with the stationary phase equations 

1 
Ch,,+ f':::.u + ~ huhs+ ~ hu(2h~ + h;) + 9; h~ = 0, 

r;, 2 91 h ( I 2 h2) 92 h3 Ghs + f':::.s + lfi hu + 4 s 2 iu + s + 2 s = 0. 

(1) 

(2) 

with f':::.,, 8 = M~ - M;, !:::.1 = M1 - mz, h1 ~ condensates, l = u, s for constituent quark 
masses M1, I; = [2J;(M~) + J;(M;)]/3, i = 0, 1, .... The one-quark-loop integrals 

J;(M2) = l t~~ip(tA2)e-tM2, 
0 

p(tA2) = 1 - (1 + tA2) exp(-tA2), (3) 

where p(tA 2) denotes the Pauli-Villars regularization kernel with two subtractions and A is 
an ultra-violet cutoff. 

To generalize to finite temperatures, the quark loop integrals J 0 , J 1 are modified, intro
ducing the Matsubara frequencies 

oo d3 oo 
Jo(M2)---> Jo(M2, T) = 167!'2Tnfoo j (2~3 / ds p(sA2)e-•l(2n+l)2,,.2r2+r+M2]_ (4) 

Using the Poisson formula I:~=-ooF(n) = I:~=-ooJ~;:dxF(x)ei2
,rmx, where F(n) = 

exp[-s(2n + 1)2
7l'

2T 2], and after integration over 3-momentum pone obtains 

00 

ds 2 
[ 

00 (-n 2 ) ] J 0 (M2,T) = / -;ip(sA2
)e-sM 1+2:;(-ltexp 

48
T 2 , (5) 

and J 1(M2 , T) = - 0! 2 Jo(M2
, T). At T = 0 the mode n = 0 decouples from T =f O modes 

n > 0. One recovers the covariant expression at T = 0 and limr-oo Jo,1(M2, T) = 0. 
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In Fig. 2 we display solutions M1(T), l = u, s of (1)-(2) to the gap equations for the 
m,, =ma=/. m 8 case, for the parameter sets of [8]. Depending on the strength 91 of the 8q 
interactions we obtain either a crossover transition (left) or a first order transition (middle); 
units MeV. The three sets of M,,, M. are shown as solid line, dotted line, dashed line, and 
start at T = 0 as minima, maxima and saddle points of the effective potential, respectively. 
On the right side (units GeV) we show the low pseudoscalar and scalar meson spectra for 
the crossover case obtained with parameters G, K, 91, 92 , m1, A independent on temperature. 

0 •-- M',!'_so __ ,.,.._100 

-.., 
~ - - / o&oo 0.05 O.IO 0.15 o.li 

Figure 2: solutions to the gap equations for the light M,, and strange quarks M.; left: 
crossover case ( only one set of solutions is always positive valued), middle: 1st order transi
tion (all sets of solutions are positive valued); right: pseudoscalar and scalar mass spectrum 
for the crossover case (1r, a, T/, K, r/, Ki, a0 ,J0 (980), bottom to top). Details: text and [8]. 

In conclusion, the chiral eight quark interactions, which cure the global instability of 
the 4q + 6q vacuum, play also a relevant role at finite T, acting as a chiral thermometer 
for chiral transitions. Temperature, slope and nature of transition are regulated by their 
strength 91, which can be adjusted in consonance with G, with all other parameters frozen 
and leaving meson mass spectra at T = 0 unaffected, except for m 17 • Finally, they allow to 
start from configurations which at T = 0 have dynamical chiral symmetry breaking induced 
by the strength of K of the 't Hooft 6q terms, which turn out to be more favorable to a 
reduction of the transition temperature, compared to the conventual 4q strength G. 

This work has been supported in part by grants provided by FCT: POCI/2010, FEDER, 
POCI/FP /63930/2005, POCI/FP /81926/2007 and SFRH/BD/13528/2003. 
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Abstract 

Spin correlations for the AA and AA pairs, generated in relativistic heavy ion col
lisions, and related angular correlations at the joint registration of hadronic decays 
of two hyperons with nonconservation of space parity are analyzed. Within the con
ventional model of one-particle sources, correlations vanish at enough large relative 
momenta. However, under these conditions, in the case of two non-identical particles 
(AA) a noticeable role is played by two-particle annihilation ( two-quark, two-gluon) 
sources, which lead to the difference of the correlation tensor from zero. In particular, 
such a situation may arise when the system passes through the "mixed phase" . 

Spin correlations for AA and AA pairs, generated in relativistic heavy ion collisions, and 
respective angular correlations at joint registration of hadronic decays of two hyperons, in 
which space parity is not conserved, give important information on the character of multiple 
processes . 

The spin density matrix of the AA and AA pairs, just as the spin density matrix of two 
spin-1/2 particles in general, can be presented in the following form [1,2,3]: 

f}l,2) = ~ [j(l) Q9 j(2) + (u(l)pi) Q9 j(2) + j(l) Q9 (u(2)P2) + t t T;ka-}1) Q9 a-12)] ; (1) 

in doing so, tr(1,2)iP•2) = 1. 

Here i is the two~row unit matrix, u = ( &x ay, O"z ) is the vector Pauli operator 
(x, y, z---> l, 2, 3 ), P 1 and P 2 are the polarization vectors of first and second particle 
( P 1 = (&(1l), P 2 = (u(2l) ), T;k = (a-?l i8J a?)) are the correlation tensor components . In 
the general case T;k # Pli Ak- The tensor with components C;k = T;k - PliP2k describes 
the spin correlations of two particles . 

It is essential that any decay of an unstable particle may serve as an analyzer of its spin 
state . 

The normalized angular distribution at the decay A ---> p + 71'- takes the form: 

dw(n) = 2._(l+aAPAn) 
drln 4 rr 

(2) 

Here PA is the polarization vector of the A particle, n is the unit vector along the 
direction of proton momentum in the rest frame of the A particle, aA is the coefficient of 
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P-odd angular asymmetry ( aA = 0.642 ). The decay A--+ p+1r- selects the projections of 
spin of the A particle onto the direction of proton momentum; the analyzing power equals 
.; = Cl:,\Il , 

Now let us consider the double angular distribution of flight directions for protons formed 
in the decays of two A particles into the channel A --+ p + 1r-, normalized by unity ( the 
analyzing powers are e1 = Cl:,\Ilt, e2 = Cl:,\Il2 ). It is described by the following formula [2,3]: 

(3) 

where P 1 and P 2 are polarization vectors of the first and second A particle, T;k are the 
correlation tensor components, n1 and n2 are unit vectors in the respective rest frames of 
the first and second A particle, defined in the common ( unified ) coordinate axes of the 
c.m. frame of the pair ( i, k = {1, 2, 3} = {x, y, z} ) . 

The polarization parameters can be determined from the angular distribution of decay 
products by the method of moments [2,3] . 

The angular correlation, integrated over all angles except the angle between the vectors 
n1 and n2 and described by the formula [2,3,4,5] 

is determined only by the "trace" of the correlation tensor T = Wt - 3W, ( W, and Wt 
are relative fractions of the singlet state and triplet states, respectively ), and it does not 
depend on the polarization vectors ( single-particle states may be unpolarized ). 

Due to CP invariance, the coefficients of P-odd angular asymmetry for the decays 
A -> p + 1r- and A -+ p + 1r+ have equal absolute values and·opposite signs: ax = -aA = 
- 0.642 . The double angular distribution for this case is as follows [2,3]: 

d
2

w(n1,n2) 1 [ 2 ~~ ] 
d !1 d !1 = 16 7r2 1 + a:AP A n1 - a:AP A n2 - a:A L,,, L,,, T;knlin2k , 

n1 n2 i=l k=I 
(5) 

(here -a:A = +aA and -a~ = +aAax ) . 
Thus, the angular correlation between the proton and antiproton momenta in the rest 

frames of the A and A particles is described by the expression: 

) 1( 1 2 . 1 2 Wt 
dw(cos0 = 2 1- 3aATcos0)sm0d0= 2[1+aA(W,- 3 )cos0)sin0d0, (6) 

where 0 is the angle between the proton and antiproton momenta . 

Further we will use the model of one-particle sources [6], which is the most adequate 
Jne in the case of collisions of relativistic ions . 

Two A particles are identical particles. Spin and angular correlations at their decays, 
;a.king into account Fermi statistics and final-state interaction, were considered previously 
n the works [2, 7]. 
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We will be interested in spin correlations at the decays of A.A pairs . In the framework of 
the model of independent one-particle sources, spin correlations in the A.A system arise only 
on account of the difference between the interaction in the final triplet state ( S = l ) and 
the interaction in the final singlet state . At small relative momenta, the s-wave interaction 
plays the dominant role as before, but, contrary to the case of identical particles ( A.A ), 
in the case of non-identical particles (A.A) the total spin may take both the values S = l 
and S = 0 at the orbital momentum L = 0 . In doing so, the interference effect, connected 
with quantum statistics, is absent . 

If the sources emit unpolarized particles, then, in the case under consideration, the 
correlation function describing momentum-energy correlations has the following structure 
( in the c.m. frame of the A.A pair ): 

R(k v) = 1 + ~ B{Al-.. )(k v) + ! B(AA)(k v) , 4 t , 4 s , • (7) 

The spin density matrix of the A.A pair is given by the formula : 

(AA) ( ) (AA) ( ) 
-(AA) = j{l) '°' j{2) + Bt k, V - B, k, V , (1) '°' a-(2) 
P 'CY 4R(k, v) u 'CY ' 

(8) 

and the components of the correlation tensor are as follows: 

T _ B;"A\k, v) - BtA)(k, v) 
0 

. 

ik - 4 + 3 B;"A)(k, v) + B~AA)(k, v) ik, 
(9) 

here the contributions of final-state triplet and singlet A.A interaction are determined 
by the expression obtained in the works [2, 7] . 

At sufficiently large values of !kl, one should expect that [7]: 

Bl AA) (k v) = 0 s , , B;"A\k, v) = 0. 

In this case the angular correlations in the decays A ---> p + 1r-, A ---> p + 7r+, connected 
with the final-state interaction, are absent : 

T;k = 0, T=O. 

Thus, at sufficiently large relative momenta (for example, !kl ;:: m" ) one should expect 
that the angular correlations in the decays A ---> p + 1r- and A ---> p + 7r+ , connected with 
the interaction of the A and A hyperons in the final state (i.e. with one-particle sources ) 
are absent . But, if at the considered energy the dynamical trajectory of the system passes 
through the so-called "mixed phase", then the two-particle sources, consisting of the free 
quark and antiquark , start playing a noticeable role . For example, the process s s --> A.A 
may be discussed . 

In this process, the charge parity of the pairs ss and A.A is equal to C = (-l)L+s, 
where L is the orbital momentum and S is the total spin of the fermion and antifermion . 
Meantime, the C P parity of the fermion-antifermion pair is C P = (- l )8 +1 . 

In the case of one-gluon exchange, GP= l, and then S = l, i.e. the A.A pair is generated 
in the triplet state; in doing so, the "trace" of the correlation tensor T = l . 
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Even if the frames of one-gluon exchange are overstepped, the quarks s and s, being 
ultrarelativistic, interact in the triplet state ( S = l ) . In so doing, the primary GP parity 
GP= 1, and, due to the GP parity conservation, the AA pair is also produced in the triplet 
state. Let us denote the contribution of two-quark sources by x . Then at large relative 
momenta T = x > 0 . 

Apart from the two-quark sources, there are also two-gluon sources being able to play 
a comparable role. Analogously with the annihilation process 11 --> AA, in this case the 
trace of the correlation tensor is described by the formula ( the process g g --> AA is 
implied): 

T = l - 4 (1 - /J2) 
1 + 2/32 sin2 0 -/34 - /34 sin4 0' 

(10) 

where /3 is the velocity of A ( and A in the c.m. frame of the AA pair, 0 is the angle between 
the momenta of one of the gluons and A in the c.m. frame ( see [8] ). At small /3 
( /3 « l ) the AA pair is produced in the singlet state ( total spin S = 0, T = -3 ), whereas 
at /3 ::::; 1 - in the triplet state ( S = 1, T = l ). Let us remark that at ultrarelativistic 
velocities /3 ( i.e. at extremely large relative momenta of A and A ) both the two-quark and 
two-gluon mechanisms lead to the triplet state of the AA pair ( T = l ). 

In the general case, the appearance of angular correlations in the decays A --> p + 1r

and A --> p + 7r+ with the nonzero values of the "trace" of the correlation tensor T at large 
relative momenta of the A and A particles may testify to the passage of the system through 
the "mixed phase" . 

So, it is advisable to investigate the spin correlations of AA and AA pairs produced in 
relativistic heavy ion collisions . 

The spin correlations are studied by the method of angular correlations - method of 
moments. 

The spin correlations, as well as the momentum-energy ones, make it possible to deter
mine the space-time characteristics of the generation region and, besides, the parameters 
of low-energy scattering of A on A and A on A. They should be investigated jointly with 
the momentum-energy correlations . 
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Abstract 

In-medium effects for distributions of quarks and gluons in central A+A collisions 
are considered. We suggest a duality principle, which means similarity of thermal 
spectra of hadrons produced in heaVY-ion collisions and inclusive spectra which can 
be obtained within the dynamic quantum scattering theory. Within the suggested 
approach we show that the mean square of the transverse momentum for these partons 
grows and then saturates- when the initial energy increases. It leads to the energy 
dependence of hadron transverse mass spectra which is similar to that observed in 
heavy ion collisions. 

1 Introduction 

Searching for a new physics in heavy-ion collisions at AGS, SPS and RHIC energies has led 
to intense theoretical and experimental activities in this field of research [1]. In this respect 
the search for signals of a possible transition of hadrons into the QCD predicted phase of 
deconfined quarks and gluons, quark-gluon plasma (QGP), is of particular interest. One of 
these signals can be the recent experimental observation of the transverse-mass spectra of 
kaons and pions from central Au+ Au and Pb+ Pb collisions which revealed "anomalous" 
dependence on the incident energy. The inverse slope parameter of the transverse mass 
distribution (the so called effective transverse temperature) at the mid-rapidity rather fast 
increases with incident energy in the AGS domain [2], then saturates at the SPS [3] and 
RHIC energies [4]. 

In this paper we would like to discuss the physical meaning of the so-called thermal 
spectra of hadrons produced in heavy-ion collisions, see for example [5, 6], and try to 
understand the dynamic reason of such inclusive spectra. Then we focus on a possible the
oretical interpretation of the nontrivial energy dependence for the inverse slope parameter 
of the transverse mass spectra of mesons produced in central heavy-ion collisions. 

2 Duality principle 

According to many experimental data, inclusive spectra of hadrons produced in heavy-ion 
collisions can be fitted by the Fermi-Dirac distribution, corresponding to the thermody
namic equilibrium (TE) for the system of final hadrons, see for example [5, 6] 

ff: = C# {exp((ch - µh)/T) ± 1}-1
, 
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where + is for fermions and - is for bosons, lh and µh are the kinetic energy and the 
chemical potential of the hadron h, T is the temperature, Cf E is the normalization coef
ficient depending on T. Actually, the parameter T depends on the incident energy vs in 
the N - N c.m.s. For mesons simplifying this case we can assume that µh ~ 0, (in fact, it 
generally cannot be strictly zero [7]); then Eq.(1) is usually presented in the form 

(2) 

On the other hand, according to the Regge theory and the 1/N expansion in QCD, the 
inclusive spectrum of hadrons produced, for example in N - N collisions at high energies, 
has the scaling form, e.g., it depends only on M}/s, where Mx is the missing mass of 
produced hadrons, s is the initial energy squared in the N - N c.m.s., and Ml/ s = 1 - x,, 
where Xr = 2Ei.J vs is the radial Feynman variable, Ei. is the energy of the hadron h in the 
N - N c.m.s. For example, the quantum scattering theory and the fit of the experimental 
data for inclusive meson spectra at low Xr results in 

If Xr << 1, Eq.(3) can be presented in the exponential form 

pt;:,N ~ CNexp(-dNXr) 

(3) 

(4) 

Inserting the form for Xr in Eq.(4), we get the inclusive spectrum of mesons in the form 
similar to that of the thermal spectrum given by Eq.(2) 

(5) 

where T;' = vs/2dN. However, in contrast to Eq.(2), the form of the inclusive spectrum of 
mesons produced in N - N collisions given by Eq.(5) does not assume introduction of any 
temperature of mesons like T. Figure 1 illustrates the approximate equivalence between 
p':,N given by Eq.(3) and p':,N given by Eq.(5). One can see from Fig.I that at high energies 
these two forms for the meson spectrum are very similar to each other to the meson energies 
about a few GeV. Therefore, p':,N can be presented in the exponential form at low and 
even moderate energies Ei.. 

Now, let us assume that in heavy-ion reactions at high energies the q - q pairs like 
mesons produced in the first N - N collision mainly in the central rapidity region, have the 
energy distribution like that in the N - N reaction given by Eq.(5), e.g., 

(6) 

where T,A = vs/2dA. In the general case, the parameter dA is not the same as dN which can 
be found from the quantum scattering theory or fitting the experimental data on inclusive 
spectra of mesons produced in N - N collisions. Let us call the assumption corresponding 
to Eq.(6) the Dynamic ansatz (DA). One can suggest the duality principle which is 
the similarity of thermal spectra given by Eq.(2) and the dynamical spectra given by Eq.(6). 
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Figure 1: Ji (x,) = exp( -dx,) and h (x,) = (1 - Xr )d as functions of Eh. 

3 Parton distribution in medium 

~, 

Recently the parton distribution in a medium was analyzed on the assumption of the local 
thermodynamic equilibrium for quark objects like hadrons produced in heavy ion central 
collisions [S]. It was shown that, for example, the valence quark distribution in the quark 
object like the hadron h, which is in local thermodynamic equilibrium with surrounding 
nuclear matter, can be calculated by the following equation: 

f~ (x, Pi) = f dx1 f dxh j d2p1td2phtq~(x, Pt)q~(x1, P1t) x 

ff;(xh, Pht) X o(x + X1 - xh)o(2
) (Pt+ Pit - Pht) , 

(7) 

where Jt(xh, Pht) is the distribution of quark objects like hadrons locally equilibrated in 
a medium (LE); q~, q~ are the probabilities to find the valance quark and other partons 
(valence, sea quarks (antiquarks) and gluons) in h; xi, Xh, x are the Feynman variables, 
Pt, P1t, Pht are the transverse momenta. The thermodynamic distribution like Eq.(2) was 
assumed in [S] for Jt(xh, Pht)- The same form for J:V can be obtained suggesting the dy
namic distribution (DA) for ft given by Eq.(6) instead of Eq.(2). Assuming the factorized 
form for Ji'(x,pt) = fq(x)gq(Pt) we have approximately [S] the following form for the mean 
transverse momentum squared of the valence quark in a medium: 

l+TJm~+s/4/(2<p;>~)' 
< P~,t(x ~ 0) >tappr ~ 

< p; >~ +TJ_m~ + s/4 
(S) 

where T = T for Eq.(2) (LE) and T = T. = vs/2dA for Eq.(6) (DA). As is seen from Eq.(S) 
< P~,t >:,appr. grows when vs increases and then saturates, its more careful calculation is 
presented in [S]. Note that in the LE case vs is some scale energy which cannot be equal 
to the initial energy /sMM [8], whereas in the DA case it is the same as /BNN- For mesons 
produced in central A - A collisions we have similar broadening for the hadron Pi-spectrum 
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Figure 2: The mean transverse momentum squared of the K+-meson produced in the 
central A-A collision. 

[8] 

(9) 

where < Ptt > is the mean value for the transverse momentum squared of the meson h1 

produced in the central heavy-ion collision, < p: >; is the same quantity for a quark in a 
medium, r = 'Ychq, T = T (LE) or T = vs/2dA, Here 1q and 'Ye are the slopes in the Gauss 
form of the Pt dependence for the quark distribution in the hadron h and its fragmentation 
function, see details in [8]. As is seen from Eqs.(8,9), the saturation properties for< P~,t >: 
and < Pti >AA at high vs do not depend on the values of T, whereas the growth of these 
quantities at vs ~ 20 - 30(GeV) is very sensitive to the value of dA, To describe the 
experimental data on the transverse momentum squared of K-mesons produced in central 
A -A collisions at vs~ 20 - 30(GeV) [2, 3] we took dA = (5 - 6) * dN, 

In Fig.2 we present our estimation for the mean transverse momentum squared of the 
K+ -meson produced in the A-A collision. One can see from Fig.2 tat this quantity increases 
when the incident energy increases to the AGS energies and then saturates at higher ener
gies. Note that this calculation is very approximate and we need to improve it including 
standard nuclear effects like rescattering and others. The suggested approach results in the 
saturation of the effective slope Te/ 1 for the transverse mass spectrum of mesons produced 
in central heavy-ion collisions that is directly related to the quantity presented in Fig.2. 
In contrast to this the thermodynamic models predict the increase in Teff when ,.fsNii 
increases even to very high energies [9]. Therefore, the presented results can be verified by 
more careful measurements at the SPS energy and future experiments at the LHC. 

4 Conclusion 

We suggest the duality principle. Thermal spectra of hadrons produced in central A-A 
collisions can have a dynamical nature. Similar spectra can be obtained within the quantum 

199 



scattering theory without introducing the temperature. One can assume that hadron jets 
consisting of colorless quark objects are produced in central A-A collisions. Then we get 
broadening for the mean transverse momentum squared of quarks in a medium respective 
to the incident energy. Similar effects can be obtained for transverse momentum spectra of 
mesons produced in central A - A collisions. The mean transverse momentum squared of 
these mesons as a function of the incident energy grows and then saturates at high energies. 
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Abstract 
A study of collective behavior in heavy ion collisions provides one of the most 

sensitive and promising probes for investigation of possible formation of new ex
treme state of strong interacting matter and elucidating its properties. Systematic 
of experimental results for final state azimuthal anisotropy is presented for heavy ion 
interactions at RHIC. Experimental data for azimuthal anisotropy indicate that the 
final state strongly interacting matter under extreme conditions behaves as near-ideal 
liquid rather, than ideal gas of quarks and gluons. The strong quenching of jets and 
the dramatic modification of jet-like azimuthal correlations, observed in Au+Au col
lisions, are evidences of the extreme energy loss of partons traversing matter which 
contains a large density of color charges. For the first time, dependence of the jet 
suppression on orientation of a jet with respect to the reaction plane is found at RHIC 
experimentally. The model of compound collective flow and corresponding analytic 
approach are discussed. The possible violations of P and CP symmetries of strong 
interactions in heavy ion collisions at different initial energies are considered. Thus, 
now the fact is established firmly, that extremely hot and dense matter created in rel
ativistic heavy ion collisions at RHIC differs dramatically from everything that was 
observed and investigated before. 

Research a heavy ion interactions at high energies and search of a new state of strongly 
interacting matter at extremely high density and temperatures has essential interdisci
plinary significance. Study of collective and correlation characteristics of interactions allows 
to obtain new and unique information concerning various stages of space-time evolution of 
collision process, to establish fundamental relation between geometry of collision and dy-

. namics of final state formation. In heavy ion collisions, metastable vacuum domains may 
be formed in the QCD vacuum in the vicinity of the deconfinement phase transition in 
which fundamental symmetries (P and/or CP) are spontaneously broken. Thus the study 
of nuclear collisions allows to investigate one of the most important problem of strong inter
action theory. Relativistic Heavy Ion Collider (RHIC) of Brookhaven National Laboratory 
has started to run for physics 2000. RHIC is the world accelerating complex specially 
designed and intended entirely for researches in the field of the physics of strong interac
tions. The experimental base of RHIC facility consists of four detectors: small - BRAHMS, 
PHOBOS and large - PHENIX, STAR for physics programm with heavy ion beams. Now 
there are huge bases of experimental data with high statistics for Au+Au(Cu+Cu) at 
•,fsim = 19.6(22.4) - 200 GeV, for d+Au and p+p at ,/sim = 200 GeV. Also runs have 
been executed with small integrated luminosity for Au+Au at ,/sim = 55.8 GeV, for p+p 
at ,/sim = 409.8 GeV, and at low energies: v8NN = 22/9.2 GeV - for p+p/Au+Au
interactions. Now experimental data are collected on the large RHIC detectors only. 
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1 Azimuthal anisotropy 

One of the most essential features of non-central AA collisions is the violation of azimuthal 
symmetry of secondary particle distributions, caused by spatial asymmetry of area of over
lapping of colliding heavy ions. The collective behaviour of secondary particles manifests 
itself both in one-particle pr-spectra and in asymmetry of azimuthal particle distribution 
with respect to the reaction plane. The first effect is due to radial azimuthally symmetric 
expansion, the second effect is characterized by flow parameters Vn = (cos[n(¢-WRp)]). 

The directed flow carries the information about very early stages of evolution of collision 
process. The systematic study of the directed flow Vt has been executed in experiments at 
RHIC at various ~ values [1 - 4]. Dependence Vt (ry(y) - Yb) is presented at Fig.la at 
initial energy range~= 8.8- 200 GeV for semi-central heavy ion collisions, where Yb -
rapidity of beam particles. The results obtained at various RHIC energies agree with SPS 
data [5] in the region of fragmentation of a beam particle. The most of transport models 
underestimates of flow Vt for central rapidity region and agrees with experimental results 
at the large values of lr,I more reasonably. The correlation between the first and second 
harmonics indicates on the development of elliptic flow in plane of event [1]. The recent 
results show that the directed flow depends on initial energy but not on the type of colliding 
nuclei (4]. 

It was observed, that the dependences v2 (PT), integrated V2 and differential v2 (pr) 
parameters on particle mass (type) are described by phenomenological calculations on 
the basis of hydrodynamics up to PT ~ 2 GeV /c well enough for different particles (6, 
7]. The indicated above range of PT contains ~ 99% of secondary particles. Thus, 
the global dynamic feature of the created matter is the collective behaviour described 
in the framework of relativistic hydrodynamical model at qualitative level. The increas
ing of v2 and systematic decreasing of v2 (Pr) with growth of particle masses is the ad
ditional and essential indication on presence of the common velocity fields. Dependence 
v2 ( ,,fsiiii) is presented on the Fig.lb based on (8, 9]. One can see the v2 ( ,./siiN) in
creases smoothly at v'siiti > 5 GeV. The flow energy dependence was fitted by function 

ao + at [Fol (,,fsiiii- 2mp)r
2 

+ a3Aa4 + a5Aa6 + a7 [ln>-r (>- = BNN/So, So= 1GeV2
, 

mp - proton mass) which is similar to that for uf,ft approximation [10]. This function 
agrees with all available data reasonably, but the approximation with best statistical qual
ity (x2 /ndf = 3.83) shows the decreasing in TeV energy range (Fig.lb, curve 1). There is 
some poor quality (x2 /ndf = 4.83) for curve 2 (Fig.lb) which shows a reasonable behaviour 
for all energy domain understudy. One can see the experimental data for both ultra-high 
energy range (LHC) and for intermediate energies ,.fsiiN = 5 - 50 GeV (FAIR, NICA) are 

essential for more unambiguous approximation of V2 ( ,,fsiiii). As seen, the PHOBOS point 
at ,,fsiiii = 19.6 GeV agrees well with the results observed at close SPS energies. It is im
portant to note, that at high RHIC energies the hydrodynamical limit for elliptic collective 
flow parameter is reached for the first time. The dependence of V2 on centrality emphasizes 
additionally of importance of more exact knowledge for initial state in a nuclei-nuclear col
lisions for the correct description of final state matter evolution. Essential nonzero value 
and the basic dependences for v2 are observed for various types of colliding (symmetric) 
heavy ion beams [11, 12]. Dependence v2 (r,) has been obtained at RHIC for various ini
tial energies both for Au+Au, and for Cu+Cu collisions. The different phenomenological 
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Figure 1: (a) Parameter v1 for the charged particles at SPS (Pb+Pb) and RHIC (Au+Au) 
energies. Collision centralities are specified. (b) Energy dependence of v2 parameter for 
midrapidity domain in heavy ion collisions. A thick solid curve corresponds to the hydro
dynamical calculations for strongly interacting matter EOS with phase transition, a dashed 
curve - for the EOS of hadron gas without phase transition. Inner picture shows predictions 
up to the ultra-high energies (see text for more detail). Statistical errors are indicated only. 

models describe the v2 (71) at qualitative level. Essential excess for partonic cross-sections 
used in such models above pQCD predictions can indicates on significant non-perturbative . 
effects in the partonic matter formed on the RHIC. 

Experimental v2 results, obtained both for charged hadrons and for the identified par
ticles of various types, allow to make a choice in favour of the equation-of-state (EOS) of 
strongly interacting matter with presence a quark-gluon phase at early stages of space-time 
evolution of the formed medium with the subsequent transition in hadronic phase (Fig.lb). 
Moreover the hybrid model with jet quencliing, unlike hydrodynamics, predicts saturation 
of V2 in the intermediate PT domain with the subsequent decreasing at higher transverse 
momentum and describes dependence v2 (PT) for PT > 2 Ge V / c at large density of gluons 
dNg/dy ~ 103 qualitatively [6). This experimental result (together with other ones) is 
the direct evidence of hot and dense matter formation in which there are partonic hard 
scattering and finite energy loses of partons and products of their fragmentation at travers
ing of this medium. The comparative analysis of p+p, d+Au and Au+Au collisions at 
energy ftNN == 200 GeV has demonstrated that there is a significant contribution from 
anisotropic ( elliptic) fl.ow namely in non-central nuclei-nuclear collisions up to, at least, 
PT ~ 10 GeV /c [13). The large elliptic flow signal indicates on the one hand on the fast 
achieving of thermodynamic equilibrium at RHIC energies, and on the other hand - the 
medium contituents should interact with each other intensively enough at the early stages 
of space-time evolution of matter already, that more corresponds to conditions of a liquid, 
than gas. 

At RHIC experimental results have been obtained for parameter of a collective elliptic 
flow for identified 1r0-mesons and inclusive I in Au+Au collisions at y1siiii = 200 GeV. The 
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obtained experimental indication on small v2 values for direct photons makes preferable the 
naive scenario of direct photon production in processes of the hard scattering, which occurs 
at the earliest stages of space-time evolution of the created matter (14). The universal 
dependence of parameter vdnq on normalized kinematic variables (Prlnq, Ekrlnq, nq -
constituent quark number) is observed for a wide set of secondary mesons and baryons (12, 
15). This scale behaviour is the experimental evidence of presence of an essential collective 
partonic flow and similar character of s-quark flow with elliptic flow of light u, d-quarks. 

The experimental RHIC data for elliptic flow v2 for light flavour particles assume that 
final state matter is characterized by small free path length of constituents in comparison 
with the sizes of system and value of T/sls ~ 0.l (Tis - shear viscosity, s - entropy density) 
is close to the bottom quantum limit for strong coupling systems in the energy domain 
,fsim ~ 100 GeV. The elliptic anisotropy of the particles with heavy flavour quarks has 
been investigated in Au+Au collisions at ,fsim = 200 GeV. This result together with results 
for nuclear modification parameter RAA (Pr) is strong evidence in favour of the conclusion 
about strong coupling of heavy quarks with the final state matter [16]. Experimental values 
of vf Fare larger essentially of model predictions based on pQCD. The Langevin transport 
model with small relaxation times and I or small diffusion coefficients of heavy quarks K;/Q 
allows to obtain a reasonable agreement at a qualitative level between experimental and 
calculated flow values. Estimations for Tisi s, obtained in such way, are close to the bottom 
quantum limit also and these estimations agree with results for sector of light quarks. 
Thus, interpretation of experimental RHIC results for azimuthal anisotropy on the basis 
of hypothesis about creation at early stage (quasi)ideal partonic liquid is the most proved 
at present. The alternative approach to explanation of small Tisi s value is based on the 
presence of anomaly shear viscosity r,f, arising due to turbulence of the color magnetic and 
electric fields generated by expanding quark-gluon system [17]. 

The higher order even harmonics have been obtained in STAR experiment for charged 
particles in Au+Au collisions at initial energy ,fsim = 200 GeV. Values of even harmonics 
for charged particles, averaged over Pr and r, (lr,I < 1.2) for minimum bias events, are equal 
(%): V2 = 5.180 ± 0.005; V4 = 0.440 ± 0.099; V5 = 0.043 ± 0.037; Vs = -0.06 ± 0.14 (18]. 

Identification of jets in relativistic heavy ion interactions was carried out on a statisti
cal basis so far. Two peaks are observed in experimental correlation functions C2 (!::i.rp) ex 
J dl::i.r,N (t:i.rp, l::i.r,) for AA collisions, which correspond two-jet event structure. The sig
nificant suppression of peak at large relative azimuthal angles (l::i.¢ -::= 7r) was observed 
in azimuthal correlations of two particles with high Pr for central Au+Au in comparison 
with p+p. Moreover, this effect increases with centrality increasing in nuclei-nuclear in
teractions. The experimental observations have been interpreted as the critical evidences 
of large losses of parton energy in dense deconfinement matter, predicted by pQCD as a 
state of quark-gluon plasma. Control experiments with d+Au collisions have shown that 
the back-to-back peak is present in this case and its characteristics are close to ones which 
are observed in p+p interactions. Therefore, experimental RHIC results on two-hadron 
azimuthal correlations are one of the most obvious and important evidences in favour of 
creation of new state of strongly interacting matter at final stage of central nuclei-nuclear 
collisions. This final state matter is characterized by large energy losses and by opacity for 
partons with high Pr and for products of their fragmentation. The subsequent study at 
higher Pr both for trigger particles and for associated ones have allowed to find clear two 
peaks in C2 (!::i.¢), corresponding two-jet event structure both in semicentral and even cen-
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tral Au+Au collisions as well as in d+Au. As expected, the back-to-back peak is suppressed 
essentially in central Au+Au events (as well as at smaller Pr) [19]. This is the first direct 
experimental observation of two-jet event structure in central AA collisions, corresponding 
to pQCD predictions at qualitative level. Researches of back-to-back peak characteristics 
have been executed for collisions with various ion types and initial energies [20]. These 
experimental results indicate on the essential response of medium on energy deposition of 
hard parton traversed it. At present there are a several scenarios for medium response 
on hard jet traversing. It seems the experimental results agree with shock wave model at 
qualitative level only [20, 21]. Thus, additional experimental data and theoretical study 
are necessary for more unambiguous observation and explanation of cone topology in two 
dimensions. 

Fig.2 shows experimental results for investigations of hadron jet correlations with respect 
to the reaction plane at SPS energy (22] and RHIC one [13] in Pb+Au and Au+Au collisions, 
accordingly. The jet was considered as directed in reaction plane, if 1(/ < 7r / 4 U /(/ > 31r / 4, 

(b) 

0.1 
0 STAR + + ., .. ",.,,,,. tt 
• CER!!S 

• STAR 

_, -0.5 0 o.s 1 2 2.5 3 3.5 4 
"q, (rad) "q, (rad) 

Figure 2: Azimuthal two-particle correlation functions at SPS and RHIC energies in the 
ranges of small (a) and large (b) relative azimuthal angles. The open symbols correspond 
to emission of trigger particles in-plane, solid symbols - out of plane direction for AA 
interactions. Statistical errors are presented only. 

and directed out of reaction plane, if 7r / 4 < /(/ < 31r / 4, where ( = ¢tr - \fl 2 - relative 
azimuthal angle between a reaction plane estimated by angle of second order event plane 
(\f!2), and a trigger particle. Experimental data obtained at various initial energies, for 
small and large relative azimuthal angles domain are compared on Fig.2a, 2b, accordingly. 
As seen, excess over a level of elliptic flow is much weaker at SPS energy ,JsiiN = 17.3 
GeV, than for RHIC energy in the 6.¢ ~ 0 domain (Fig.2a). At 6.¢ ~ 1r the values of SPS 
correlation functions are close to zero level (Fig.2b). One can see correlation functions for 
various directions of a trigger particle agree with each other well at SPS energy for both 
cases 6.¢ ~ 0 (Fig.2a) and for 6.¢ ~ 7r (Fig.2b), that essentially differs from behaviour 
of jet-like correlations on RHIC in case of hadron jets passed inside medium with various 
directions with respect to the reaction plane. Therefore, suppression effect at RHIC is 
stronger significantly for hadron jet traversing of hot and dense matter on direction out 
of reaction plane, and suppression is weaker in the case of jet passing inside a matter on 
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direction in-plane. This RHIC result is the first experimental evidence of strong correlation 
of suppression strength of hard hadron jets traversing the volume of hot and dense strongly 
interacting matter, with path lengths which are passed by jets inside of this matter. 

The model of (multi)component collective elliptic flow has been suggested in [23 - 25] 
based on the experimental RHIC data for azimuthal anisotropy. In the framework of this 
model the correlations with respect to the reaction plane are supposed both for soft particles, 
and for hard particles (hadronic jets). The model of compound flow takes into account 
the number of jets per event, average multiplicity per jet, dependence of jet yield on the 
orientation with respect to the reaction plane, and independent "soft" particle production. 
The generalized formulas were derived for two-particle distribution on a relative azimuthal 
angle and for two-particle distributions in / out with respect to the reaction plane [23 
- 25]. These analytic calculations provide the framework for a consistent description of 
the elliptic flow measured via the single-particle distribution with respect to the reaction 
plane, jet yield per event, and the amplitude of flow-like modulation in the two-particle 
distribution in the relative azimuthal angle. It seems, the difference between soft particle 
flow and parameter of jet correlations with respect to the reaction plane is (very) close to 
zero at RHIC energies. But jet production will give a more significant contribution at higher 
(LHC) energies and this difference may be more visible. The model of compound flow agree 
with expectations, that energy losses of partons are sensitive to energy-momentum tensor 
Tµv = ( e + p )uµuv - pgµv, described the global properties of created matter. Hence, partons 
and products of their fragmentation can be sensitive not only to the equation-of-state, but 
to the common velocity fields of collective flow uµ also, i.e. hard jets appear "enclosed" in 
collective expansion of surrounding medium at all. 

2 Fundamental symmetries in QCD-matter 

The possible P and/or CP violation in strong interactions requires the deconfinement state 
of matter with restored chiral symmetry [26, 27]. Thus the positive and reliable exper
imental results for P and/or CP violation in the strong interactions would be prove the 
clear evidence of deconfinement and chirally symmetric phase creation and establish exper
imentally the presence of topological configurations of gluon fields and their role in chiral 
symmetry breaking [27]. The lattice calculations show the non-trivial topological struc
ture of gluon fields which can be characterized by topological charge (winding number) 
Qw = r, J d4xG~J;~v, r, = g;/327T2

• The gauge (color) fields with non-zero Qw induce dif
ference between number of left-and right-handed fermions. The topological charge changing 
transitions are exponentially suppressed at zero temperature (instanton modes). But the 
such transitions unsuppressed at finite temperature (sphaleron modes). In chiral limit the 
charge difference will be created between two sides of a plane perpendicular to the chromo
magnetic field. Thus one can define chiral magnetic effect as a charge separation by gauge 
field configurations with non-zero Qw in the presence of background (electric) magnetic 
field. The clear equation for effect strength was derived in [28]. One needs to emphasize 
two features which are essential for experimental investigations namely. First of all chi
ral magnetic effect corresponds the early collision stages because of magnetic field falls off 
rapidly. Secondly, electrical charge is conserved in hadronization. Thus charge separation 
for quarks implies charge separation with respect to the reaction plane for hadron states 
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observed experimentally. 
The presence of non-zero angular momentum in non-central AA collisions is equal of 

the external magnetic field. Thus the experimental investigation of electrical charge sepa
ration of produced particles in non-central heavy ion collisions makes it possible to study 
P and/or CP-odd domains. A correlator, directly sensitive to P-event quantitative param
eter is ( cos ( ef>n + ¢13 - 21¥ RP)) [29]. The three-particle correlations allow to use a following 
characteristic: ( cos ( ¢,°' + ¢,13 - 2¢-r)) = ( cos ( ef>n + ¢13 - 21¥ RP) )v], which is more useful for 
experimental applications (18]. The preliminary experimental results were obtained by 
STAR experiment at RHIC for Cu+Cu and for Au+Au collisions at initial energies 62.4 
and 200 GeV (30]. The signal of charge separation in Cu+Cu collisions is some larger 
than that for Au+Au for the same centralities and the experimental signal has a typical 
hadronic "width" (30]. This feature agrees qualitatively with scenario of stronger suppres
sion of the back-to-back correlations in heavier (Au+Au) collisions. Thus the preliminary 
STAR experimental results agree at qualitative level with the magnitude and main features 
of the theoretical predictions for P violation in nuclear collisions at RHIC (30]. At present 
there is no indication on the some other effects which could be imitate the experimental 
signal and the fundamental symmetry violation in heavy ion collisions. But one need more 
rigorous study of such possible imitation effects for more unambiguous conclusion. The en
ergy dependence of strength of parity violation effect is not trivial. It seems the necessary 
conditions can be reached in nuclei-nuclear collisions in sufficiently wide energy range. The 
some important medium properties are very sensitive to the vicinity of phase transition 
boundary. Therefore, perhaps, the effect of hypothetic fundamental symmetry violation in 
strong interaction might be more clear at lower energies [27]. 

3 Summary 

The main RHIC results and corresponding phenomenological models are presented for two
particle azimuthal correlations. Investigation of azimuthal anisotropy has allowed to obtain 
a set of the important experimental results for the first time. Fast space-time evolution 
is observed for volume of the final state matter. This evolution is described by significant 
gradients of pressure at early stages. Azimuthal anisotropy agrees well enough with calcu
lations in the framework of hydrodynamical models with phase transition and very small 
viscosity for the small transverse momentum domain. The manifestation of scale properties 
predicted by model of quark coalescence, significant values of elliptic flow for multistrange 
baryons and heavy flavour quarks allow to assume, that the collective behaviour on par
tonic stages is observed. The final state matter is opaque for partons and products of their 
fragmentation passed inside of it, and the degree of suppression depends on thickness of a 
layer of a traversed matter significantly. The generalized formulas have been derived for az
imuthal correlation functions with taking into account various components (soft and hard) 
of elliptic collective flow and for different (in/out) orientations with respect to the reaction 
plane. These equations are based on experimental RHIC results for azimuthal asymmetry 
for botr• soft and hard particles. Thus, the matter created in a final state of nuclei-nuclear 
collisions at high RHIC energies, differs qualitatively from all matter state created and in
vestigated in laboratory conditions early, and color degrees of freedom namely are adequate 
ones for the description of the early stages of space-time evolution of the RHIC matter. 
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The created matter is rather similar on (quasi)ideal liquid of color constituents (partons), 
than on (quasi)ideal quark-gluon gas, as expected earlier. The preliminary experimental 
results indicate the possible 'P-violations in nuclear collisions at RHIC. This observation 
qualitatively agree with theoretical expectations for fundamental symmetry violations in 
QCD-matter under extreme conditions. At present the new direction of investigations is 
formed intensively which can be designated as "relativistic nuclear physics of condensed / 
continuous matter". 

References 

[1] STAR Collab. (J. Adams et al.), Phys. Rev. C 72, 014904 (2005). 
[2] STAR Collab. (J. Adams et al.), Phys. Rev. C 73, 034903 (2006). 
[3] PHOBOS Collab. (B. B. Back et al.), Phys. Rev. Lett. 97, 012301 (2006). 
[4] STAR Collab. (B. I. Abelev et al.), 0807.1518[nucl-ex] (2008). 
[5] NA49 Collab. (C. Alt et al.), Phys. Rev. C 68, 034903 (2003). 
[6] STAR Collab. (J. Adams et al.), Nucl. Phys. A 757, 102 (2005). 
[7] PHENIX Collab. (K. Adcox et al.), Nucl. Phys. A 757, 184 (2005). 
[8] R. Stock, J. Phys. G: Nucl. Part. Phys. 30, S633 (2004). 
[9] P. F. Kolb, J. Sollfrank, and U. Heinz, Phys. Rev. C 62, 054909 (2000). 

[10] S. B. Nurushev, V. A. Okorokov, 0711.2231[hep-ph] (2007). 
[11] PHOBOS Collab. (B. Alver et al.), Phys. Rev. L~tt. 98, 242302 (2007). 
[12] PHENIX Collab. (A. Adare et al.), Phys. Rev. Lett. 98, 162301 (2007). 
[13] STAR Collab. (J. Adams et al.), Phys. Rev. Lett. 93, 252301 (2004). 
[14] PHENIX Collab. (S. S. Adler et al.), Phys. Rev. Lett. 96, 032302 (2006). 
[15] STAR Collab. (J. Adams et al.), Phys. Rev. Lett. 95, 112301 (2005). 
[16] PHENIX Collab. (A. Adare et al.), Phys. Rev. Lett. 98, 172301 (2007). 
[17] M. Asakawa et al., Phys. Rev. Lett. 96, 252301 (2006). 
[18] STAR Collab. (J. Adams et al.), Phys. Rev. Lett. 92, 062301 (2004). 
[19] STAR Collab. (J. Adams et al.), Phys. Rev. Lett. 97, 162301 (2006). 
[20] PHENIX Collab. (A. Adare et al.), Phys. Rev. Lett. 98, 232302 (2007). 
[21] STAR Collab. (B. I. Adare et al.), 0805.0622[nucl-ex] (2008). 
[22] CERES Collab. (G. Agakichiev et al.), Phys. Rev. Lett. 92, 032301 (2004). 
[23] V. A. Okorokov and K. V. Filimonov, in Proceedings of the VIII International workshop 

"Relativistic nuclear physics: from hundreds Me V to Te V". Dubna, JINR, 2006, p. 165. 
[24] V. A. Okorokov, in Proceedings of the XXXIII International Conference of High Energy 

Physics {ICHEP 2006}. World Scientific 1, 389 (2007); nucl-th/0611005 (2006). 
[25] V. A. Okorokov, Yad. Fiz. 72, 2009 (in press). 
[26] D. Kharzeev, R. D. Pisarski, M. H. G. Tytgat, Phys. Rev. Lett. 81, 512 (1998). 
[27] D. Kharzeev, private communications. 
[28] D. Kharzeev, L. D. McLerran, H. J. Warringa, Nucl. Phys. A 803, 227 (2008). 
[29] S. Voloshin, Phys. Rev. C 70, 057901 (2004); hep-ph/0406125 (2004). 
[30] S. Voloshin, 0806.0029 [nucl-ex] (2008). 

208 



Dynamics of a phase transition in nuclear matter 
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Abstract 

A 1+1 dimensional hydrodynamic model is used for describing evolution of a 
system, produced in heavy-ion central collisions. We consider dynamics of a phase 
transition taking into account a thermal nonequilibrium effect in the system. Hydro
dynamic equations are solved numerically within the Bjorken scaling hypothesis. An 
effective equation of state is discussed. 

Hydrodynamics applied to heavy-ion collisions opens a possibility for extracting in
formation about global properties of compressed and hot nuclear matter. We consider a 
hydrodynamic approach for describing evolution of a system produced in heavy-ion central 
collisions, assuming hadron, quark-gluon and mixed phases in nuclear matter. To take into 
account thermal nonequilibrium, the relaxation time approximation for the first order phase 
transition is applied here to the system with zero chemical potential. 

Hydrodynamic equations can be derived from energy-momentum and charge conserva-
tion laws. In our simple model we consider the energy-momentum conservation 

orµv 
--=0 
8xµ ' 

(1) 

but do not take into account baryon, strange and electric charge conservation. For the 
perfect fluid case the energy-momentum tensor Tµ" is given by 

(2) 

where uµ, P and c are collective velocity, pressure and energy density, respectively. Assum
ing that both phases have the same collective velocity uµ, we can write expression like (2) 
for the energy-momentum tensor of each phase, defined by index i = h, q 

(3) 

If Vh and Vq are mean volumes containing hadron and quark-gluon phases, the total energy
momentum tensor Tµ" may be also expressed through T/:" and Tl/": 

where the relative volume >. = V, Vh V, is considered as an order parameter. 
h + q 

(4) 

Assuming mechanical equilibrium for the mixed phase, Ph = Pq = P, for our system 
with zero baryon chemical potential the conservation law (4) may be presented in the 
following way: 
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where >..c:,. + (1 - >..)cq = c is the total energy density, expressed through energy densities 
of hadron and quark-gluon phases. Hydrodynamic equations, obtained by substitution of 
(5) into the conservation law (1), look as follows: 

uv Dv(A€h + (1 - >..)cq) + (>..ch+ (1 - >..)cq + P) Dvuv = 0, 

(>..c1i + (1 - >..)cq + P) u1'8µuv + UvuµDµP - DvP = 0. 

(6) 

(7) 

Obviously, in the mixed phase >.. changes in the interval from O to 1, for pure hadron 
(quark-gluon) phase one has>..= 1 (>.. = 0). 

To simulate thermal nonequilibrium between two phases (Th f Tq) in the system, we 
define >.. in the relaxation time approximation: 

ra>.. = Aeq - >.., at (8) 

where r is the characteristic time of the equilibration processes. The relative equilibrium 
volume Aeq is defined for the system satisfying the Gibbs conditions: 

Th = Tq, Ph = Pq, (9) 

In the case of pure phase behavior, the fluid is described by the set of equations (6), 
(7) supplemented with hadron or quark-gluon Equation of State (EoS). In the mixed phase 
we should include the relaxation time approximation (8) into the set of equations. It is 
supposed, that phase transition begins when the system satisfies the Gibbs conditions (9). 
The phase transition ends if >.. = 0 or >.. = 1. 

To find the EoS, the hadron phase is approximated by an ideal massless pion gas model. 
The quark phase is treated as an ideal massless gas of 2-flavor quarks and gluons confined 
in a bag with the bag constant B = 0.41 GeV /fm3

• For this system we get the critical 
temperature Tc ~170 MeV and the latent heat about 1.6 GeV /fm3

• 

Then the equilibrium value of the order parameter Aeq is defined as: 

)... _ (1r 2/30)G9q + gg) T; + B-€ 
eq - 4B ' (10) 

where 9q and g9 are degeneracy factors for quarks and gluons, respectively. 
To investigate the influence of a phase transition on the evolution of expanding fireball, 

we apply the described relaxation time approximation to the a simple one-dimensional 
hydrodynamic model with the Bjorken scaling hypothesis [l]. In this case hydrodynamic 
equations (6), (7) can be reduced to: 

de c+ P 
-+--=0 
dr T ' 

(ll) 

where T = ✓x,,xµ is the proper time. It is assumed that main characteristics of the system 
such as € and P depend on a single space-time variable T only. It seems reasonable to 
suppose, that the order parameter >.. is a function of T as well. For the mixed phase region 
we use the relaxation equation (8) rewritten in the proper time representation 

d>.. ' ->... r- = l\eq 
dT 

(12) 

210 



The set of equations (11), (12) should be supplemented by our EoS. It is solved by the 
Runge-Kutta method of fourth order for following initial conditions: 

To= lfm/c, e{ro) = 2.75GeV/fm3
, (13) 

where the value of e(ro) corresponds to incident energies E1ab ::::: 158 A GeV for central 
Au-Au collisions [2]. 

The solution obtained for various values of the relaxation time r is shown in Fig.I. 
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Figure 1: Energy density d~pendence of pressure and P / e for various relaxation times r. 

One can see that in the case of r - 0 the system evolution started at e(r0 ) really 
repeats the behavior of EoS with distinct flattening of P(e) corresponding to the Gibbs 
mixed phase. The entrance point into the mixed phase from the high-e side roughly meets 
the 'softest point', i.e. a minimum in the P/e ratio. In ultrarelativistic case this ratio is 
the sound velocity squared. · Thus, the system evolves slowly near the softest point €s.p. ::::: 

1. 7 Ge V /fm3 • Inclusion 'of the nonequilibrium effect results in somewhat like supercooling, 
shifts the softest point towards lower energy density and still more decreases the sound 
velocity of the system at this point. If the r parameter increases above ~ 0.1 fm/c, the 
pressure is getting negative resulting in mechanical instability of the system [3]. 

We are thankful to D.N. Voskresensky for useful discussions. This work was supported 
in part by the Russian Foundation for Basic Research (08-02-01003) and special program of 
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Abstract 

Results for penetrating probes treated within a hybrid hydro-kinetic model are pro
jected onto the energy range covered by the NICA and FAIR projects. A new source 
of dileptons emitted from a mixed quark-hadron phase, quark-hadron bremsstrahlung, 
is proposed. An estimate for the 1r1r --> u --> 'Y'Y process in nuclear collisions is given. 

D.I. Blokhintsev, whose centennial anniversary of the birthday this conference is de
voted to, has contributed to various fields of physics and its applications, particularly, to 
hydrodynamics. Sixteen years ago, at the dawn of hydrodynamics he made an important 
remark [1] concerning possible violation of the uncertainty principle in initial conditions of 
the Landau hydrodynamic theory. From up-to-date view, this Blokhintsev's estimate looks 
slightly naive but in principle it is correct until now and should be taken into account in 
modern development of a relativistic hydrodynamic approach. Here we present a hybrid 
model which combines kinetic and hydrodynamic descriptions. To certain extent it can be 
considered as a possible solution of the problem put by D.I. Blokhintsev. 

In the hybrid model [2], the initial stage of heavy ion collisions is treated kinetically 
within the transport Quark Gluon String Model (QGSM) [3] whereas the subsequent stage 
is considered as an isentropic expansion of a formed dense and hot system (fireball). The 
transition from one stage to another is solved by considering the entropy evolution. 

In Fig.I, the ratio between entropy Sand baryon charge Qs of participants is shown 
for In+In collisions at the impact parameter b = 4 fm and bombarding energy 158 AGeV. 
Being calculated on a large 3D grid, this ratio is less sensitive to particle fluctuation as 
compared to the entropy itself. Small values of the baryon charge Qs at the very beginning 
of collision result in large values of the S/Qs ratio. It is clearly seen that for tkin ~ 1.3 fm/c 
this ratio is practically constant and this stage may be considered as isentropic expansion. 

To proceed from kinetics to hydrodynamics, we evaluate conserved components of the 
energy-momentum tensor T00 , T01 , T02, T03 and baryon density ns (the zero component of 
the baryon current) within QGSM at the moment tkin = 1.3 fm/c in every cell on the 3D 
grid. This state is treated as an initial state for subsequent hydrodynamic evolution of a 
fireball. The time dependence of average thermodynamic quantities is presented in the left 
panel of Fig. l. 

The latter stage is evaluated within the relativistic 3D hydrodynamics [2]. The key 
quantity is the equation of state. In this work, the mixed phase Equation of State (EoS) is 
applied [5] which allows for coexistence of hadrons and quarks/gluons. This thermodynam
ically consistent EoS uses the modified Zimanyi mean-field interaction for hadrons and also 
includes interaction between hadron and quark-gluon phases, which results in a crossover 
deconfinement phase transition. In addition to [5], the hard thermal loop term was self
consistently added to the interaction of quarks and gluons to get the correct asymptotics 
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Figure 1: Temporal dependence of entropy S per baryon charge Qs of participants (left 
panel) for a semi-central In+In collision at Eiab =158 AGeV. In the right panel the average 
energy (solid line) and baryon (dashed) densities of an expanding fireball formed in this 
collision. Dotted line shows a contribution of quarks and gluons to the energy density. 

at T >> Tc and reasonable agreement of the model results with lattice QCD calculations 
at finite temperature T and chemical potential µ 8 [6]. This agreement is demonstrated 
in Fig.2 where the reduced pressure !:,.p/T4 = (P(tts) - p(µs = O))/T4 is compared with 
recent lattice QCD data. 

The fraction of unbound quarks/gluons defined as ppif p = (nq + nq + n9)/(nq + nii + 
n9 + n8 + nM) is presented for the mixed phase EoS in the right panel of Fig.2. It is seen 
that even at a moderate temperature T ~ 50 -;-100 MeV the quark/gluon fraction sharply 
increases at the baryon density ns/n0 ~ 6 and dominates thereafter. At T = 200 MeV the 
admixture of hadrons is, naturally, quite small. 

Consider now penetrating probes. To find observable dilepton characteristics, one should 
integrate the emission rate over the whole time-space x = (t, x) evolution, add the contribu
tion from the freeze-out surface ('hadron cocktail'), and take into account the experimental 
acceptance. To simplify our task, we consider only the main channel 1r1r ---> p ---> z+ z-. In 
this case the dilepton emission rate is 

d4R1+1- 4 °'2 
-d-4 - = -j d x C(M) 32 fs(qo, T(x)) ImIIem(q, T(x), /lb(x)) , 

q 1T q 
(1) 

where the integration is carried out over the whole space grid and time from t = 0 till the 
local freeze-out moment. Here q2 = M2 = q6-q2, f s(q0 , T(x)) is the I3ose distribution func
tion, and C(M) is the lepton kinematic factor. The imaginary part of the electro-magnetic 
current correlation function ImIIem(q, T(x), µb(x) includes in-medium effects which may be 
calculated in different scenarios. The recent precise measurements of muon pairs [7] allowed 
one to discriminate two main scenarios, in particular those based on the Brown-Rho (BR) 
scaling hypothesis [8] assuming a dropping p mass and on a strong broadening of p-meson 
spectral function as found in the many-body approach by Rapp and Wambach [9). It was 
shown [7) that the measured excess of muons is nicely described by the strong broaden
ing of the p-meson spectral function. In contrary, the I3R scaling hypothesis predicts a 
large shift of the p-meson maximum towards lower invariant mass M in contradiction with 
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Figure 2: Temperature dependence of the reduced pressure (left panel) at the baryon 
chemical potential µn = 210, 330, 410 and 530 MeV (from the bottom) and fraction of 
unbound quarks (right panel) within the mixed phase EoS. Points are lattice QCD data for 
the 2+ 1 flavor system (6]. 

experimental data [7]. 
This result looks quite disappointing. First, one sees no signal of a partial restoration 

of the chiral symmetry for the sake of which dilepton measurements were originally un
dertaken. Second, to be consistent with the QCD sum rules both collision broadening and 
p-mass dropping should be taken into account (10]. Generally, the exact relation between 
the p mass and quark condensate is not fixed by the QCD sum rules in contrast with the 
BR scaling, so it is questionable whether to prescribe some T dependence to the BR mass 
shift. This shortcomings of the analysis in [7] are commented by Brown and Rho [11]. In 
this respect, for the pion annihilation 7r7r -> p -> µ+ µ- we estimated (2] the imaginary 
part of the p-meson self-energy in the one-loop approximation assuming the Hatsuda-Lee 
relation for the modified p mass: m*(x) = mp(l -0.15-n8 (x)/n0 ). The calculated result is 
presented in Fig.3 by the solid line [2]. Indeed, the shift of the p-meson spectral function is 
not so drastic as in [7]. In addition, one should note that dileptons carry direct information 
on the p meson spectral function only if the vector dominance is valid [11]. It is not the 
case in the Harada-Yamawaki vector manifestation of hidden local symmetry [12]. 

As seen from Fig.3, the muon yield is underestimated at both low and high values of 
theµ+µ- invariant mass M. In the broadening scenario a low M component is explained 
by particle-hole excitations but not a partial chiral symmetry restoration. However, the 
existence of the mixed quark-hadron phase, those study is the main aim of the Nuclotron
based Ion Collider fAcility (NICA) project [13], may give rise to a new dilepton source, 
quark(antiquark)-hadron bremsstrahlung. Similarly to the np bremsstrahlung, the process 
for an antiquark-hadron collision may roughly be estimated in the soft-photon approxima-
tion as 

~( M) ~ K ~ ~ l s - mN - mq dN1+1- 2 -( ) [ 1/2 ] 

dM2 s, 37r2 M2 n M . (2) 

Here the averaged cross section u(s) = a~[' [s/(mN + mq)2 - 1] and the elastic qN cross 
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Figure 3: Invariant mass distribution of dimuons (left panel) from semi-central In+In col
lisions at the beam energy 158 AGeV. Experimental points are from [7]. The solid line 
corresponds to the T-independent dropping mass [2] and the dashed one is the contribution 
of the quark-hadron bremsstrahlung channel. In the right panel one compares dynamical 
trajectories projected onto the T- n8 plane for central In+In(158 AGeV) and Au+Au( 40 
AGeV). The shaded region roughly corresponds to the hadronic phase. 

section is approximated by the quark scaled N N cross section [14] 

(3) 

So the production rate will be 

dN1+1- dak J da N dN1+1-
d1;2 = j d

4
x j (2rr{3 f(kq, T(x)) (2rr);f(kN, T(x)) d; (s, M) v,el , (4) 

where Vrel is the relative velocity of colliding qN particles and the integration in ( 4) should 
be carried out over the whole space-time available for the mixed phase. The free mass 
is used for a nucleon and mq = 150 MeV for an antiquark. In a real case one should 
also add contributions from all other baryons, as well as that from quark-antibaryou and 
quark(antiquark)-meson interactions with proper cross sections. All these uncertainities 
are effectively introduced in (2) by an arbitrary factor K. 

As follows from the dashed line in Fig.3, at rather reasonable value of I< = 10 the 
qN bremsstrahlung source improves agreement with experiment. It is of interest. that the 
contribution of this new source decreases when the bombarding energy goes dmrn till the 
NICA energy range (::; 40 AGeV) while the contribution from particle-lwk cxcil :ii iou is 
expected to grow since the baryon density in this range is higher (sec IH'low) ,dl"'rin~. 
in prindple, disentangling of these two sources. The underestimatl'd yil'ld at hif>;h JI. 
intermediate mass dileptons, can mainly be described by Drcll-Yau J>rOC<'Hs in lh1' quark 
phase [15]. The mixed quark-hadron phase should also contribute to thl' iult'l"l!lcdi:111• .\/ 
region. Its contribution can be taken into account in the way as the Dn,11-Ynu pn1c1·ss 
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with an additional hadron form factor. Effectively, it will increase the Drell-Yan lepton 
yield [15]. 

The phase distribution of all space cells at the early evolution moment t = 0.3 fm/c 
projected on the T - n8 plane is presented in Fig.3. It is seen that at the maximal NICA 
energy the baryon density in the hadronic phase for central Au+Au collisions is noticeably 
higher than that at the SPS energy in In+In collisions. It means that the difference between 
the BR scaling and broadening scenarios is expected to be more pronounced at the NICA 
energy. 

I~ ~ 1t y 

1t y 

<•> (b) ('-'} 

Figure 4: Quark diagrams for the 2'Y production in the Born approximation (a), (b) and 
through the a resonance ( c). 

Annihilation of two pions into two photons is of particular interest since its cross sec
tion is sensitive to changes of the a-meson properties which occur in the vicinity of chiral 
restoration phase transition. With increasing temperature and density the a meson changes 
its character from a broad resonance with a large decay width into two pions to a bound 
state below the two-pion threshold me1(T, µ8 ) ~ 2m1r(T, µ8 ). The calculation of the pho
ton pair production rate at the given T as a function of the invariant mass shows a strong 
enhancement and narrowing of the a resonance at the threshold due to chiral symmetry 
restoration [16]. We make the first estimate of this channel for a particular nuclear collision. 
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Figure 5: T-dependence of a and 1r masses (left panel) and total (dashed line) and resonance 
(solid line) invariant mass distributions of two photon pairs created in the central Au+Au 
collision at 40 AGeV (right panel). 

In-medium 1r1r -+ 'Y'Y process is evaluated within the NJL model [16]. Besides the 
resonance diagram, the dominating Born terms are considered, see Fig.4. So the total 
rate has the Born term, resonance term and interference between them: dNZ,; / dM2 

dN'f?orn/dM2 + dN7Zs/dM2 + dN!nierf/ dM2 which should be substituted in eq.(4). 
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The temperature dependence of CT and 1r masses for this model is shown in Fig.5. The 
regime rnu(T,Jtu) < 2mrr(T,µB) starts at T ~ 165 MeV. The photon yield as a function of 
photon pair invariant mass is presented in Fig.5 for central Au+Au collisions at 40 AGeV. 
The total number of photon pairs sharply increases above the threshold 2m" and then 
flattens on the level of~ 10-2

• The resonance channel of interest is lower by about the 
order of magnitude as compared to the total yield and exhibits a spread weak maximum. 
The maximum predicted in (16) for the fixed T is washed out, as seen from Fig.5. It is not 
an easy but promising experimental problem to select out this maximum from the total 
distribution. Note that such an analysis should be carried out on a huge background of 1 
decays of 'hadron cocktail'. 

One of the authors (V.T.) is deeply indebted to D.I. Blokhintsev who many years ago 
brought him into physics of high-energy interactions. We are thankful to E. Kolomeitsev 
for valuable remarks. This work wi:.s supported in part by the Deutsche Forschungsgemein
schaft (DFG project 436 RUS 113/558/0-3), the Russian Foundation for Basic Research 
(RFBR grants 06-02-04001 and 08-02-01003), special program of the Ministry of Education 
and Science of the Russian Federation (grant RNP.2.1.1.5409). 
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We discuss some differences in the properties of both even and odd Fedosov 
and Riemannian supermanifolds. 

A Fedosov supermanifold (M, w, r) is defined as a symplectic supermanifold (M, w) 
equipped with a symmetric connection r (or covariant derivative 'v) compatible with a 
given symplectic structure w: wv' = 0. 1 In local coordinates {xi}, c(xi) = c;, on the super
manifold M the symplectic structure is w = W;jdxj /\dxi, W;j = -(-l)'''Jwji (Grassmann 
parity of the symplectic structure, c(w), is equal to O for even structure and 1 for odd 
structure) and the compatibility condition is w;jv'k = w;j,k - rijk + rjik(-l)'"i = 0 where 
riJ'k = W;nr~k, c(rijk) = c(w) + Cj + Cj + Ck and rijk are components of the connection 
r. Notice that for a given symplectic structure w there exists a large family of connections 
satisfying the compatibility condition. 

The curvature tensor field Rimjk is defined in terms of the commutator of covari
ant derivatives, [v';, Vi] = v';v'j - (-l)'''iv'jv';, whose action on a vector field Ti is 
Ti["\7j, v'k] = -(-l)<m(<,+l)TmRimjk· 

It is convenient to describe the basic properties of Fedosov supermanifolds in terms of 
the symplectic curvature tensor Rijkl = W;nRnjkl, c(RiJkt) = c(w) + c; + Ej +Ek+ Et,· This 
tensor obeys the symmetry properties 

and satisfies the Jacobi identity 
(I) 

1
We use conventior,s and definitions adopted in fl, 2, 3]. 

(2) 
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the Bianchi identity 

(-l)'kfm R;jkl;m + (-l)<i<m R;jmk;l + (-l)'k'1 R;jlm;k = 0' 

and the special symplectic identity 

(3) 

R;jkl + (-1)'1(<,+<k+<;) Rlijk + (-l)(<k+<,)(<;+<;) Rklij + (-1)<,(<;+<i+<k) Rjkli = 0. (4) 

We see that there are no formal differences in the properties of even and odd Fedosov 
supermanifolds on the level of symplectic curvature tensor. With the curvature tensor, 
R;ikl, and the inverse tensor field wii (w•i = -(-l)<(w)+<,<;wii) of the symplectic structure 
W;j, one can construct the only tensor field of type (0, 2), 

K;j = WknR,.,ikj(-l)'<'k+(<(w)+l)(<k+<n) = R\kj (-l)'k(<;+l), f(K;j) = f; + fj· (5) 

This tensor satisfies the relations [1] 

[1 + (-l)'(wl](K;i - (-1)'''; Kj,) = 0, (6) 

and is called the Ricci tensor. In the even case this tensor is symmetric whereas in the 
odd case there are not restrictions on its (generalized) symmetry properties. The scalar 
curvature tensor K is defined by the formula K = wii K;i ( -1 )••+•;. From the symmetry 
properties of R;jkl, it follows that 

[1 + (-l)'(wl]K = 0. (7) 

Therefore as in the case of Fedosov manifolds [4], even Fedosov supermanifolds have van
ishing scalar curvature K. However, for odd Fedosov supermanifolds this curvature is, in 
general, not vanishing. This fact was quite recently used in Ref. [5] to generalize the BV 
formalism [6]. 

A Riemannian supermanifold (M, g, r) is defined as a metric supermanifold (M, g) 
equipped with a symmetric connection r (or covariant derivative v') compatible with a 
given metric structure g: gv' = 0. In local coordinates on the supermanifold M the metric 
structure is g = g;idxidxi, g;i = (-l)'•'J 9ii (Grassmann parity of the metric structure, 
f(g ), is equal to 0 for even structure and 1 for odd structure) and the compatibility condition 
is 9ij y' k = 9ij,k - fijk - fjik(-1)'•'! = 0 where fijk = 9inf'jk, f(fijk) = f(g) +ft+ fj + fk 
and fiik are components of the connection r. Notice that for a given metric structure g 
there exists the unique symmetric connection f'ik which is compatible with a given metric 
structure, 

I 1 I"( r ki = 2.g J 9;j,k(-1r•· + 9jk,;(-1)'•'! - 9ki,j(-l)'k<j) (-1)<;<,+<;+<(g}(<;+<i)' (8) 

where gii is the inverse tensor field of the metric 9ii (gii = (-1)•(9)+<,<;gii, f(gii) = 
f(g) + f; + fj)-

The curvature tensor Rijkl = 9;nRJkl (f(Riikl) = f(g) + f; + fj + fk + ft), obeys the 
symmetry properties 

nijkl = -(-1)'k'1R;11k, nijkl = -(-1)•••;njik1, n;jkl = nklij(-1)<-•+•;H•k+<i> (9) 
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and satisfies the Jacobi identity (2) and the Bianchi identity (3). Again we find that on 
the level of the curvature tensor there are no differences in the basic properties of even and 
odd Riemannian supermanifolds. 

i,From the curvature tensor Rijkl and the inverse tensor field li of the metric 9ii one 
can define the only tensor field of type (0, 2): 

-n .. _ -nk (-1)'.(,,+I) _ gkn-n . ·(-l)(<•+<n)(<(g)+I)+<;<k 
l'\.-1,3 - 1'-- ikj - 1'-'ntkJ , 

It is the generalized Ricci tensor with the following symmetry properties 

R;i = (-1)'(9)+,,<;Rii (11) 

depending on Riemannian supermanifolds to be even or odd. A further contraction defines 
the scalar curvature 

(12) 

which, in general, is not equal to zero. Notice that for an odd metric structure the scalar 
curvature tensor squared is identically equal to zero, R 2 = 0. 

i,From the Bianchi identity one can deduce the following relation between the scalar 
curvature and the Ricci tensor 

(13) 

which in the even case is nothing but R,; = 2Ri ;;j{-l)';(<;+I) , i.e. the supersymmetric 
generalization of known relation in Riemannian geometry (7]. In the odd case R,; = 0. 
Therefore odd Riemann supermanifolds have constant scalar curvature, R = canst. 
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Abstract 

Continuous symmetries generated with observables of a quantum theory in the 
Minkowski spacetime are discussed. An example of an originated in this way algebra 
of observables is the algebra of observables of the canonical quantum theory, that 
is contained the Lorentz group algebra and the Heisenberg algebra of phase space 
operators. In the general case commutation relations between observables depend on 
c, h and additional fundamental constants. Free field equations are considered, which 
are invariant with respect to generalized kinematical symmetries of the quantum phase 
space. 

For development of a general theory of fundamental interactions it would be desired to 
examine in greater detail besides of properties of interactions the properties of a space-time 
as well [l]. Investigations along these lines have been carried out in the context of both the 
canonical quantum field theory [2], and various modifications of the canonical theory (e.g. 
papers submitted to conferences and seminars on nonlocal and nonlinear field theories and 
selected problems of modern theoretical physics).There are theories with new fundamental 
constants other than the well known ones, cand h, among these modifications. Starting with 
the work {3], a theory with a fundamental length has been elaborated [4, 5]. A possible 
generalization of the Standard Model has been proposed in the framework of the theory with 
the minimal length or the maximal mass [6]. Let us consider the problem more generally, 
when coordinates and momenta are on equal terms and form an operator phase space. In 
the phase space we investigate admissible symmetries generated with observables of some 
quantum theory depending on extra fundamental constants other than the well known ones, 
c and h [3, 7, 8]. In order to restrict a considerable list of such symmetries we require the 
following natural constraints [9]: a) The generalized algebra (GA) of observables must be 
a Lie algebra; b) The GA dimension must coincide with the dimension of the algebra of 
observables for the canonical quantum theory in the Minkowski spacetime; c) The physical 
dimensions of observables, which are GA generators, should be the same as canonical ones; 
d) The GA must contain the Lorentz algebra (LA) as its subalgebra and commutation 
relations of the LA generators with other generators should be identical with canonical 
ones. 

In the papers [3, 7, 8] (see also [9]) the most general algebra under the conditions a) -
d) has been found and the new constants with the dimensions of length [3], mass [7] and 
action [8] have been introduced. The algebra of observables, which satisfy the conditions 
a)-d), can be presented as 

[Fij, Fkt] = if(gjkFil - 9ikFjt + 9itFjk - 9jlF;k), 
[F;j,Pk] = if(9jkPi - 9ikPj), [F;j,Xk] = if(9jkXi - 9ikX;), (]) 
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(F;j,J] = 0, [Pi,PJ] = (if/ L2)F;J, [x;, xJ] = (if/ M 2 )F;J, 
[Pi, xJ] = if (9ijl + F;J/ H), [p;, I] = if(x;j L2 

- p;j H), [xi, I] = if (x;/ H - p;f M 2
) 

Among relations of the system (1) Eq.l specifies the LA, while Eqs. 2-4 specify the tensor 
properties for the well-known physical quantities, Eqs. 5-6 lead to the noncommutativity of 
p and x, Eqs. 7-9 are the generalization of the Heisenberg relation. The system of relations 
(1) is written in the units with c = 1 (c is the velocity oflight), it contains four dimensional 
parameters: f, M, L, and H. But in the limiting case, when M-+ oo, L-+ oo, H -+ oo, 
the system (1) should transform to the system of relations for observables of the canonical 
quantum theory, so f = h. From mathematical point of view, the generalized algebra (1) 
contains, as special cases, a great number of algebras of different symmetry groups. If 
one evaluate the Killing - Cartan form the following condition for the algebra (1) being a 
semisimple algebra can be written: 

f2(M2L2 -H2)/M2L2H2 =/- o (2) 
When the condition (2) is fulfilled the GA(l) is isomorphic to a pseudoorthogonal alge

bra for one of the 0(3, 3), 0(4, 2), 0(5, 1) groups. In other cases it is isomorphic to some 
direct or semidirect product of a pseudoorthogonal algebra and an Abelian or an integrable 
algebra. 

Table 1. Domains of H 2, M 2and L2parameters corresponding to the 0(2,4), 0(1,5) 
and 0(3, 3) groups. 

Domains of H 2, .M2and L2parameters Group 
H 2 < M 2L2,M2 > 0,£2 > 0 0(2,4) 
H 2 < M 2L2,M2 < 0,£2 < 0 0(2,4) 
M 2 > 0,£2 < OorM2 < 0,£2 > 0 0(2,4) 
H 2 > M 2L2,M2 > 0,£2 > 0 0(1,5) 
H 2 > M 2L2,M2 < O,L2 < 0 0(3,3) 

For the pseudoorthogonal algebras irreducible representations are determined with the 
help of eigenvalues of the three Casimir operators: 

K1 = EijklmnFiJpklpmn,K2 = F;jFiJ,K3 = (Eijklmnpklpmn) 2 (3) 
The second-order invariant operator K2 in terms of I, p, x and F can be represented in 

the form: 
C2 = 'E,i<JF;JFii (l/ M2 £2 - 1/ H2) + 12 + (x;pi + p;xi)/ H - x;xi / L2 - p;pi / M2 ( 4) 
Apart from mathematical properties which have been presented in the Refs. [9, 10] the 

generalized algebra (1) is the object of interest to the modern physical applications as well. 
For instance, in paper [11] a suggestion is made to apply the GA(l) in classical physics 
at the astronomical scales. We consider possible applications of the GA (1) to quantum 
phenomena at microscales [12, 13]. In this case it is convenient to use the quantum constants 
K = h / H, ,\ = h /M, µ = h /Land to write the algebra (1) in the natural units with c =h 
= 1. 

[Fij, Fkl] = if(gjkF;l - 9ikFjl + 9ilF'jk - 9JlF;k), 
[F;J,Pk] = i(gJkPi - 9ikPJ), [F;j, Xk] = i(gjkXi - 9ikXj), 
[F;J, I]= 0, (p;,Pj] = iµ2F;J, [x;, XJ] = i,\2 F;J, (5) 
(p;,Xj] = i(g;jl + KF;j), (p;, I]= i(µ2x; - KP;), [x;, I]= i(KX; - ,\2p;) 
In the general case one may classify generalized quantum fields (GQF) as the fields 

which form a space for irreducible representation of GA (5). For the pS('11doortl10gonal 
algebra GQF should obey the following equation among others: 

[Ei<JF;jFiJ(,\2 112 _ 1,,2) + 12 + 1,,(x;pi + p;xi) _ µ2x;xi _ ,\2PiPi]<I> = 0 (u) 
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The Eq. (6) is the modification of the Klein-Gordon-Fock equation of the canonical field 
theory. 

Let us apply the GA (5) for description of color particles such as quarks or gluons. 
Then additional constraints should be required for the form of GA (5). On account of CP
invariance of strong interactions the constraint 1,, = 0 holds [12]. Moreover, the presence of 
a nonzero A value causes some inconsistencies in the quark descriptions inside hadrons and 
is superfluous [13]. Thus we put 1,, = A = 0. In this case denoting µ as µ, the following 
nonzero commutation relations (besides of the standard commutation relations with the 
Lorentz group generators) take place: 

[p;, Pi] = iµ;F;1, [pi, x1] = igijl, [p;, I] = iµ;x; (7) 
LFrom these relations it immediately follows nonzero uncertainties for results of si

multaneous measurements of quark momentum components. For instance, let '1f;1; 2 is a 
quark state with a definite value of its spin component along the third axis.Consequently, 
[p1, P2] = iµ;/2, thus l::;.p1/::;.p2 ;;'.; µ;/ 4 and if /::;.p1 -1::;.p2, one gets /::;.p1 ;;'.; µ,/2, /::;.p2 ;;'.; µ,/2, 
i.e. the transversal quark momentum components are not measurable simultaneously. In 
the framework of the quark model a rough estimation indicates that the µ. value lies in the 
neighborhood of the 0.5GeV. To find more precise number one can use a quark equation 
of Dirac-Gursey-Lee type [14, 15, 13]. 

[,,;(ph + dp~Li + iµ.yi/2) + 2iµ8 S;1(£ii + Sii)]'1jJ = m'lj;, (8) 
where p0 +dp0 L = PF is the space-time total momentum [16], d = µ./mo, Po and L have 

forms of the usual generators of translations and Lorentz transformations in the Minkowski 
spacetime respectively, and P6 = ml, m0 is a current quark mass, m is a constituent quark 
mass. 

To estimate a value ofµ. on the basis of mand m0 values we use a ground quark state 'lj;0 

in a meson so the £ii'lj;0 contribution can be neglected. By this means using the Eq. (9) one 
obtains the approximate relation: m ~ m0 + 2iµ •. To account for the well-known inequality 
m > m0 µ. should be pure imaginary negative. It follows from the correspondence for ranges 
of paramet~rs and pseudoorthogonal groups written above (Table 1) that the algebra under 
consideration is isomorphic to the algebra of the AdS group 0(2,3). Now m values can be 
served, which have been obtained in the independent quark model (IQM) with the hadron 
spectroscopy data [17]. Moreover the same mass values of constituent quarks have been used 
for an evaluation of neutrino mixing angles consistent with experimental data [18]. Then if 
we pick out from the high energy physics data m0 ~ 2MeV for current u-quark mass and 
with the help of IQM m ~ 316M eV we obtain !µ.! f,;! 157 M eV. Thus we can evaluate mass 
values of the d-, s-, c-and b-current quarks on the scale~ lGeV, which agree with the 
values obtained in the QCD framework [19]. In conclusion it may be noted that further 
investigations of Generalized Algebra (5) and properties of solutions of the equations (6) 
and (8) are important objectives for an achievement of a mathematical completeness of this 
approach as well as other physical applications. 

The work is supported with the grant # 33 for fundamental research of the Kurchatov 
Institute in 2008 year. 
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Abstract 

We present results for the universal anomalous dimension 'Yuni(j) of Wilson twist-
2 operators in the N = 4 Supersymmetric Yang-Mills theory in the first four orders 
of perturbation theory. 

1 Introduction 

The anomalous dimensions (AD) of the twist-2 Wilson operators govern the Bjorken scaling 
violation for parton distributions in a framework of Quantum Chromodynamics (QCD). 
In QCD they are known up to the next-to-next-to-leading order (NNLO=N2LO) of the 
perturbation theory (see [1] and references therein). 

The QCD expressions for AD can be transformed to the case of the N-extended Super
symmetric Yang-Mills theories (SYM) if one will use for the Casimir operators CA, CF, T1 
the following values CA= CF= Ne, T1n1 = NNc/2. For N=2 and N=4-extended SYM 
the AD get also additional contributions coming from scalar particles. 

However, it turns out, that the expressions for eigenvalues of the AD matrix in theN = 4 
SYM can be derived directly from the QCD AD without tedious calculations by using a 
number of plausible arguments. The method elaborated in Ref. [2] for this purpose is based 
on special properties of the integral kernel for the Balitsky-Fadin-Kuraev-Lipatov (BFKL) 
equation [3]-[5] in this model and a new relation (see [2]) between the BFKL and Dokshitzer
Gribov-Lipat'ov-Altarelli-Parisi (DGLAP) [6] equations. In the NLO approximation this 
method gives the correct results for AD eigenvalues, which was checked by direct calculations 
in Ref. [7]. Using the results for the NNLO corrections to QCD AD [1] and the method 
of Ref. [2] we derive the eigenvalues of the AD matrix for the N = 4 SYM in the N2LO 
approximation [8]. Moreover, the method of [2] together with long-range asymptotic Bethe
ansatz [9, 10] allows to predict the next-to-next-to-next-to-leading order (NNNLO=N3LO) 
AD in [11]. 

2 Leading order AD matrix in N = 4 SYM 

In the N = 4 SYM theory [12] one can introduce the fol)owing colour and SU(4) singlet 
local Wilson twist-2 operators [2, 7] (the simbol- is used for spin-dependent case): 

ot,, ... ,µj = sc;µ, 'Dµ 2 'Dµ, ... 'Dµ;-, c;µj , ct, ... ,µj = sc;µ, 'Dµ 2 'Dµ, ... 'Dµ;-, a~µ,. , 
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0-' µ1, ... ,/1,j 

()¢ 
µ1, .. ,,µj 

f{5..f"'fµ, Vµ, ... Vµ/,a i' 

S¢;~V1,, Vµ,···Vµj<P~, (1) 

where Vµ are covariant derivatives. The spinors Ai and field tensor Gpµ describe gluinos 
and gluons, respectively, and <Pr are the complex scalar fields. For all operators in Eq. (1) 
the symmetrization of the tensors in the Lorentz indices µ 1, ... ,µj and a subtraction of 
their traces is assumed. Due to the fact that all twist-2 operators belong to the same 
supermultiplet the eigenvalues of AD matrix can be expressed through one universal AD 
"'funi(j) with a shifted argument. 

Indeed, after transform of the above Wilson operators (1) to ones with a multiplicative 
renormalization (i.e. after diagonalization), the diagonal leading order AD have the form 
(see [13, 2]): 

1i0\J) = -4S1 (J =t= 2), 16°) (J) = -4S1 (J), if\J) = -4S1 (j =f 1), 

which means, that the evolution equations for the matrix elements of quasi-partonic op
erators in the multicolour limit Ne --> oo are equivalent to the Schrodinger equation for 
an integrable Heisenberg spin model (14, 13]. In QCD the integrability remains only in a 
small sector of these operators [15] In the case of N = 4 SYM the equations for other sets 
of operators are also integrable (16]-(19]. Similar results related to the integrabiHty of the 
multi-colour QCD were obtained earlier in the Regge limit [20]. 

3 Universal AD for N = 4 SYM 

The final three-loop result 1 for the universal AD "Yuni(j) for N = 4 SYM is [8] 

where 

( ·)- (") _, (0)(.) -2 (1)(.) ,3 (2)(.) "'( J = "'funi J - a"Yuni J + a "Yuni J + a "Yuni J + ···, 

1 (0) . ) 4 "YunJJ + 2 -S1, 

1 (1) . ) ( ) ( ) 8 "YunJJ + 2 S3 + 8_3 - 28-2,1 + 2 S1 S2 + 8_2 ' 

1 (2) . ) -
32 "Yuni(J + 2 2 S_3 S2 - Ss - 2 8_2 S3 - 3 8_5 + 24 8-2,1,1,1 

+6(8-4,1 + 8-3,2 + 8-2,3)- 12(5-3,1,1 + 8-2,1,2 + 8-2,2,1) 

-( S2 + 2Sn (38_3 + S3 - 28-2,1)- S1(88_4 + 8~
2 

(2) 

(3) 

(4) 

(5) +4S28-2 + 2S? + 3S4 -128-3,1 -108-2,2 + 168-2,1,1) 
1 
Note, that in an accordance with Ref. [4] our normalization of 1 (j) contains the extra factor -1/2 in 

comparison with the standard normalization and differs by sign in comparison with one from Ref. [1]. 
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and Sa = Sa(j), Sa,b = Sa,b(j), Sa,b,c = Sa,b,c(j) are harmonic sums 

i l i l 
Sa(j) = L -, Sa b c ... (j) = L - Sb c ... (m), 

m=l ma I 1 ' m::.:l ma I I 

(6) 

. j (-l)m . j (-l)m 
s_a(J) = L --, S-abc .. ,(J) = L --Sbc .. ,(m), 

m=l ma I ' l m=l ma I I 

B-a,b,c, .. ,(j) = (-l)j S-a,b,c, .. ,(j) + S-a,b,c, .. ,( oo) ( 1 - (-l)i). (7) 

The expression (7) is defined for all integer values of arguments (see [21, 2, 22]) but can 
be easily analytically continued to real and complex j by the method of Refs. [21, 23, 22]. 

4 The N 3LO universal AD from Bethe Ansatz 

The long-range asymptotic Bethe equations for twist-two operators read (9, 10] (M = j + 2 
hereafter 'in this Section) 

(x+) 2 
M x--x+ (l-g2/x+x-) 

~ = II t '.'..' (l 2/ ~ :) exp(2i0(uk,uj)), 
xk m=l,m,fk Xk - Xm - g Xk Xm 

These are M equations fork= l, ... , M Bethe roots Uk, with 

M + 
II Xk --=- = 1. 
k=l Xk 

xt = x(ut), 
i 

u± = u± 2, x(u)=~ (1+J1-4
92

) 2 u2 ' 

(8) 

(9) 

and where the dressing phase in three loops 0 ~ ((3) is a rather intricate function conjec
tured in (10]. 

Once the M Bethe roots are determined from above equations for the state of interest, 
its asymptotic all-loop AD is given by 

M ( i i ) 
'YABA(g) = 2g2 L x+ - x; . 

k=l k 

(10) 

The above equations (8) can be solved recursively order by order in g at arbitrary values 
of M once the one-loop solution for a given state is known. 

Assuming the maximum transcendentality principle [2] at four-loop order one can derive 
the corresponding expression for the universal AD by making an appropriate ansatz with 
unknown coefficients multiplying the nested harmonic sums, and subsequently fixing these 
constants. The latter is done by fitting to the exact anomalous dimension for a sufficiently 
large list of specific values of M as calculated from the Bethe ansatz. 

After much effort the expression was found. It has the form [11] 

1 ABA( • ) _ 
256 'Yuni J + 2 -

4 8_7 + 6 87 + 2 (8-3,1,3 + 8-3,2,2 + 8-3,3,1 + 8-2,4,1) + 3 (.-8-2,s 

+ 8-2,3,-2) + 4 (8-2,1,4 + -8-2,-2,-2,1 - 8-2,1,2,-2 - 8-2,2,1,-2 - 81,-2,1,3 

81,-2,2,2 - 81,-2,3,1) + 5 (-8-3,4 + 8-2,-2,-3) + 6 (-8s,-2 
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+ 81,-2,4 - 8-2,-2,1,-2 - 81,-2,-2,-2) + 7 (-8-2,-5 + 8-3,-2,-2 

+ 8-2,-3,-2 + 8-2,-2,3) + 8 (8-4,1,2 + 8-4,2,1 - 8-5,-2 - 8-4,3 

- 8-2,1,-2,-2 + 81,-2,1,1,-2) + 9 83,-2,-2 - 10 81,-2,2,-2 + 118-3,2,-2 

+ 12 (-8-a,1 + 8-2,2,-3 + 81,4,-2 +84,-2,1 +84,1,-2 -8-3,1,1,-2 -8-2,2,-2,1 

81,1,2,3 -81,1,3,-2 -81,1,3,2 -81,2,1,3 - 81,2,2,-2 - 81,2,2,2 - 81,2,3,1 - 81,3,1,-2 

81,3,1,2 - 81,3,2,1 - 82,-2,1,2 - 82,-2,2,1 - 82,1,1,3 - 82,1,2,-2 - 82,1,2,2 

82,1,3,1 - 82,2,1,-2 - 82,2,1,2 - 82,2,2,1 - 82,3,1,1 - 83,1,1,-2 - 83,1,1,2 - 83,1,2,1 

- 83,2,1,1) + 13 82,-2,3 - 14 82,-2,1,-2 + 15 (82,3,-2 + 83,2,-2) 

+ 15 (8-4,1,-2 + 8-2,1,-4 -8-2,-2,1,2 -8-2,-2,2,1 -8-2,1,-2,2 -8-2,1,1,-3 

81,-3,1,2 -81,-3,2,l -81,-2,-2,2 - 82,-2,-2,1 + 8-2,1,1,-2,1 + 81,1,-2,1,-2 

+ 81,1,-2,1,2 + 81,1,-2,2,i) - 17 8-5,2 + 18 (-84,-3 - 86,1 + 81,-3,3) 

+ 20 (-81,-6 - 81,a - 84,3 + 8-5,1,1 + 8-4,-2,1 + 8-3,-2,2 + 8-2,-4,1 

+ 8-2,-3,2 + 81,3,3 + 83,1,3 + 83,3,1 - 81,1,-2,3 - 81,2,-2,-2 - 82,1,-2,-2) 

- 2183,4 + 22 (81,-2,-4 + 82,2,3 + 82,3,2 + 83,-2,2 + 83,2,2) + 23 (-8-3,-4 

85,2 + 82,-2,-3) + 24 (-8-4,-3 + 81,-4,-2 - 81,-3,1,-2 - 81,1,1,4 - 81,1,4,1 

81,3,-2,1 - 81,4,1,1 - 83,-2,1,1 - 83,1,-2,1 - 84,1,1,1 + 8-2,-2,1,1,1 + 8-2,1,-2,1,1 

+ 81,-2,-2,1,1 + 81,-2,1,-2,1 + 81,1,-2,-2,1 + 81,1,1,-2,-2 + 81,1,2,-2,1 + 81,2,1,-2,1. 

+ 82,1,1,-2,il + 25 82,-3,-2 + 26 (-82,5 + 81,4,2 + 82,4,1 + 84,1,2 + 84,2,i) 

+ 28 (81,2,4 + 82,1,4 - 8-3,1,-2,1 - 8-2,1,-3,1 - 81,-2,1,-3) + 30 8-3,1,-3 

+ 32 (81,5,1 + 85,1,1 - 8-3,-2,1,1 - 8-2,-3,1,1 - 81,-3,-2,1 - 81,-2,-3,1 

82,2,-2,1 + 81,2,-2,1,1 + 82,1,-2,1,1 - 81,1,1,-2,1,1) + 36 (81, 1,5 + 81,3,-3 

+ 83,1,-3 - 81,1,-3,-2 -81,1,-2,-3 -81,1,2,-3 -81,2,-2,2 -81,2,1,-3 -82,1,-2,2 

82,1,1,-3) +38 8-3,-3,1 + 40 (-81,-4,1,1 - 82,-3,1,1 + 81,1,1,-2,2) 

- 4183,-4 + 42 (-82,-5 + 81,-4,2 + 81,-3,-3) + 44 (81,-5,1 + 82,-3,2 + 83,-3,1) 

+ 46 82,2,-3 + 48 81,1,-3,1,1 + 60 (81,1,-5 - 81,1,-3,2) + 62 82,-4,1+6481,1,l,-3,l 

+ 68 (81,2,-4 + 82,1,-4 - 81,2,-3,1 - 82,1,-3,1) - 72 81,1,1,-4 - 80 81,1,-4,l 

((3)81(83 - 8_3 + 28-2,1). (11) 

The degree of an harmonic sum is defined to be /a1 / + ... /an/- Notice that the total 
egree of each term is seven in accordance with the maximal transcendentality principle. 
/e have highlighted the terms in the last line, containing the number ((3) induced by the 
,essing factor [10]. 

Now one is ready to analytically continue this expression to the vicinity of the pomeron 
lle at M = -1 + w. Harmonic sums of degree seven may lead to poles no higher than 
venth order in w. In fact, it is known that none of the sums can produce such a high-order 
>le except for the two sums S1 and 8_7, which we have highlighted at the beginning of 
e table. Their residues at 1/w 

7 are of opposite sign. Thus, one immediately sees that the 
m of the two residues does not cancel. However, the BFKL approach predicts only an 
istence of the singularity~ 1/w

4 (see [ll]). So, the results (ll) is not complete and, for .. 
ample, the contributions of the wrapping effects should be taken in consideration., 
An attempt to phenomenologically improve the erroneous four-loop. result (ll) was 

tained in [ll] by the dressed asymptotic Bethe ansatz such that all BFKL and double-
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logarithm constraints are satisfied. Obviously this has to be done in a way which does not 
ruin the correct features of the expression in (11). In particular, the improvement should 
not modify the large spin limit nor violate the transcendentality principle. A seemingly 
natural way to ensure this is to replace the explicit ((3) stemming from the dressing factor 
by an appropriate linear combination of ((3) and finite harmonic sums of degree three. We 
found that there is indeed an attractive choice, namely replacing in the last line of the 
expression in (11) by 

47 1 3 3 3 1 17 
((3) -> 

24 
((3) - 48-3 + 4 8_2 81 + 8 81 82 + 8 83 + 6 8-2,1 -

24 
82,1. (12) 

This alteration clearly preserves transcendentality, and it is easy to check that the large 
spin limit is not modified. In addition, the catastrophic behavior ~ 1/w7 is now replaced 
by the correct one~ 1/w4. 

It is nevertheless interesting to work out the four-loop AD of the operator of lowest 
twist M = 2, i.e. the Konishi field, by using the eq. (11) with the replacement (12). One 
finds 

(
5307 ) 

1 = 12g2 - 48g4 + 336g6- -
2
- + 564((3) g8 + .... (13) 

In is necessary to note, however, that (13) is a result based on some reasonable but 
presumably not unique assumptions and we do not dare calling it a conjecture. 

Indeed, very recenly, some investigations (24) have been done for Konishi field and it 
was shown that the result (13) is not correct. After some checking, now the correct results 
has the following form [24) 

1 = 12g2- 4894 + 33696 
- (2496- 576((3) + 1440((5)) g8 +.... (14) 

So, some modification of our predictions (12) for contributions of the wrapping effects is 
needed.· 

5 Conclusion 

We demonstrated the results for the universal AD at the first four orders of perturbation 
theory and also the methods which were applied to extract them. The result (11) with the 
replacement (12) for the N3LO anomalous dimension is not correct or is not complete and 
it needs some modifications. We hope to return to study the N3LO anomalous dimension 
in our future investigations. 

This work was supported by RFBR grant 07-02-00902-a. A.V.K. thanks the Organizing 
Committee of the XIII International Workshop "Selected Problems of Modern Theoretical 
Physics" for invitation. 
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BRST approach to Lagrangian Construction for 
Massive Higher Spin Fields 

V. A. Krykhtin 
Tomsk State Pedagogical University, Tomsk, 634041, Russia 

Abstract 

We review the recently developed general gauge invariant approach to Lagrangian 
construction for massive higher spin fields in Minkowski and AdS spaces of arbitrary 
dimension. Higher spin Lagrangian, describing the dynamics of the fields with any 
spin, is formulated with help of BRST-BFV operator in auxiliary Fock space. No off
shell constraints on the fields and gauge parameters are imposed. The construction 
is also applied to tensor higher spin fields with index symmetry corresponding to a 
multirow Young tableau. 

Higher spin field problem attracts much attention during a long time. At present, there 
exist the various approaches to this problem although the many aspects are still far to be 
completely clarified (see e.g. (1] for recent reviews of massless higher spin field theory). 
This talk is a brief survey of recent state of gauge invariant approach to massive higher 
spin field theory. 

The standard BFV or BRST-BFV construction (see the reviews [2]) arose at operator 
quantization of dynamical systems with first class constraints. The systems under consid
eration are characterized by first class constraints in phase space Ta, [Ta, n] = fibre, Then 
BRST-BFV charge is introduced according to the rule 

Q = rJ°Ta + ~rl11° Jib Pc, Q2 = 0, (1) 

where rJ° and Pa are canonically conjugate ghost variables (we consider here the case 
gh(T) = 0, then gh(17a) = 1, gh(Pa) = -1) satisfying the relations {17°, A}= t5g. After 
quantization the BRST-BFV charge becomes a Hermitian operator acting in extended space 
of states including ghost operators, the physical states in the extended space are defined 
by the equation QJw) = 0. Due to the nilpotency of the BRST-BFV operator, Q2 = 0, the 
physical states are defined up to transformation Jw') = Jw) + QJA) which is treated as a 
gauge transformation. 

Application of BRST-BFV construction in the higher spin field theory [3] is inverse to 
above quantization problem. The initial point are equations, defining the irreducible repre
sentations of Poincare or AdS groups with definite spin and mass, the BRST-BFV operator 
is constructed on the base of these constraints and finally the higher spin Lagrangian is 
found on the base of BRST-BFV operator. Generic procedure looks as follows. The equa
tions defining the representations are treated as the operators of first class constraints in 
some auxiliary Fack space. However, in the higher spin field theory a part of these con
straints are non-Hermitian operators and in order to construct a Hermitian BRST-BFV 

234 



operator we have to involve the operators which are Hermitian conjugate to the initial con
straints and which are not the constraints. Then for closing the algebra to the complete set 
of operators we must add some more operators which are not constraints as well. Because 
of presence of such operators the standard BRST-BFV construction can not be applied it 
its literal form. However this problem can be solved. 

This approach to Lagrangian construction was applied for free massive bosonic and 
fermionic fields in Minkowski space-time in [4) and [5) respecively. Then we generalize 
the method for constructing Lagrangians in AdS space, where the algebra underlying the 
I3RST operator is nonlinear. Construction of Lagrangians for massive bosonic and fermionic 
fields in AdS space-time is realized in (6) and (7] respectively. Finally it is possible apply 
the method for constructing Lagrangian for fields with mixed index symmetry [8). In the 
cited above papers a reader can find full procedure of Lagrangian construction and detailed 
explanation of the I3RST method. It is interesting to point out that the Lagrangians 
obtained possess a reducible gauge invariance and for the fermionic fields the order of 
reducibility grows with value of the spin. Recent applications of I3RST-BFV approach to 
interaction higher spin theories are discussed in [9]. 
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project INTAS-05-7928, the RFBR grant, project No. 06-02-16346 and grant for LRSS, 
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Abstract 

We review how the surprising relation between two seemingly unrelated subjects, 
gauged supergravities and Kac-Moody algebra.~, is demonstrated on a kinematic level. 
Particularly, focus is placed on the connection between Eu and gauged maximal 
supergravity. 

I Introduction 

Maximal supergravity in D = 11 dimensions displays a remarkable hidden symmetry upon 
dimension reduction. Namely, over a torus rn the resulting scalars transform in cosets 
G/K(G), with G being an exceptional group (see table 1). For D = 3 the global symmetry 
group, E8 , is still finite, but it has been conjectured and partially proven that for D = 2 
and below infinite-dimensional Kac-Moody algebras play a role (1, 2, 3]. 

In this contribution we will review how the correct bosonic field content of all maximnl 
supergravities are embedded within En, Furthermore, and more strikingly, we will ~ho"· 
the same for all the possible gauge deformations of those supergravities (4, 5]. 

D 11 IIA 9 8 7 6 5 4 3 2 

G 1 JR+ SL(2) x JR+ SL(3) x SL(2) SL(5) Ds E6 E1 E~ E!, 

Table 1: The hidden symmetries G of 3 ~ D ~ 11 maximal supergravitie~ upon reduction o\'l'r 
a torus. 

2 Kac-Moody algebras 

We begin with reviewing some basic facts of Kac-Moody algebras (6], and in partirnlar of 
Eu. It is defined in terms of a 11 x 11 Cartan matrix, which can be read off from the 
Dynkin diagram (figure 1) as follows: 

{

2 if i = j, 
A;i = -1 if there is a line between nodes i and j, 

0 otherwise. 

237 



Figure 1: The Dynkin diagram of En. 

The Lie algebra is then generated by multiple commutators of the basic triples of gen
erators {hi, ei, J;}. The h; are elements of the Cartan subalgebra, satisfying [h;, hi] = O. 
The ei and Ji are the positive and negative step operators, respectively. Their commutation 
relations read 

[hi, ei] = Aiiei , [h;, Ji] = -Aid1 , [ei, Ji] = o;ihi , (2) 

with no summation on the repeated indices. The multiple commutators are constrained by 
the Serre relations 

(ade.)1-A,;ei = 0, (ad,,)1-A,; Ji = 0. (3) 

In order to extract useful information from the thusly generated Lie algebra, one can employ 
a so-called level decomposition [7, 5]. Given the fact that this a rather cumbersome task, 
we have written a fully automatic computer program to do the job [8]. With the help 
of this program, the only manual labor required is specifying the Dynkin diagram, and 
its decomposition into finite-dimensional subgroups corresponding to the symmetries of 
the supergravity of interest (see table 1). The resulting branching of the En generators 
gives then exactly the field content of the that supergravity. And, what's more, it also gives 
(D-1)- and D-form potentials (see table 2). These can, as we will see next, be interpreted 
as possible gauge deformations. 

D II IIA I IIB I 9 8 7 6 5 4 3 
p=D-1 1 2 6 15 144 351 912 1 

3 12 40 3875 
p=D 2xl 2 2x2 2x3 5 10 27 133 248 

4 4 9 45 126 1728 8645 3875 
15 70 320 147250 

Table 2: En predictions for (D - 1)-forms and D-forms in all 3 :5 D :5 10 maximal supergravi
ties. These are representations of the duality groups G given in table 1. 

3 Gauged supergravities 

In gauged supergravity, a part of the global symmetry group G is promoted to a local gauge 
symmetry by means of coupling it to the vector fields of the theory. The gauge group is 
defined by specifying how its generators XM are embedded into the generators t0 of the 
global symmetry group G: 

238 



(4) 

Here 0 is known as the embedding tensor [9). In order for 8 to describe a consistent gauging, 
it must satisfy two constraints: one ensuring the gauge generators XM close under commu
tation, and another safeguarding unbroken supersymmetry. These two constraints can be 
enforced by means of Lagrange multipliers [10, 11), which can be written schematically as 

(5) 

where the Lagrange multipliers A are respectively a (D - 1)-form and a D-form. Quite 
surprisingly, it turns out that when calculating the representations of these Lagrange mul
tipliers, they are in exactly the same representation as predicted by E11 [12). 

4 Summary 

Given the fact that E 11 not only contains the correct bosonic field content of the maximal 
supergravities, but also somehow knows of all their possible gaugings, seems to suggest a 
deep connection between the two. This connection does not only hold for the maximal 
supergravities, as shown here, but can also be extended other cases [10, 13]. However, the 
analysis presented here goes only as far as the kinematical level. It will be interesting to 
see if the connection can be enlarged as to include dynamics as well. 
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Abstract 

The subject of this work is to apply the modified Feynman disentangling approach 
to a problem of transitions in a non-quadratic quantum-mechanical system: a singular 
oscillator with a time-dependent frequency. 

The method of disentangling expressions, containing non-commuting operators (FDM), 
suggested by Feynman in [1], gave an elegant solution of the harmonic oscillator excitation 
under the arbitrary time-dependent external force. In further developments the FDM was 
applied to some other non-stationary quantum mechanical problems, see [2, 3] and [4] for 
review. And it was shown that the transition matrix elements calculation became much 
simpler if the FDM was supplied by some considerations from the representation theory of 
SU(2) or SU(l, 1) groups. 

In this paper we apply the FDM to a non-quadratic system - singular oscillator with a 
variable frequency w(t). We obtain the self-contained analytic expressions for the transition 
amplitudes between states with definite quantum numbers ( at t -+ ±oo) and calculate the 
generating functions for transition probabilities. The important role of representation group 
theory is discussed in this context. 

The problems considered in [1, 3] can be generalized to a model of a singular oscillator 
with variable frequency: 

' 1 2 1 ( )2 2 9 H = -p + -w t X + -
2 2 8x2 ' (1) 

0 < x < +oo, g = const, g > -1, n = m = 1. 

The frequency w(t) is an arbitrary real time function. As usual, we propose the boundary 
conditions: 

w(t) -+ W± at t -+ ±oo 

which allows one to define the final and initial states of the oscillator. 
It is well known that at a fixed t the instantaneous spectrum of the Hamiltonian (1) is 

equidistant (see, e.g., [5]): 

En=;, 2w(n + j), 
. 1 1 
J=-+- If'+= 2 4 V ~ T g, 

We note further that the operators 

J 1 ( 2 2 2) 9 
1 = 4w+ -w+x + p + 16x2 ' 

1 
J2 = 4(px + xp), 
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n = 0, 1, 2, .... (2) 

J3 = 4~+ (w!x2 + p2) + 1ix2' (3) 



satisfy the standard commutation relations of the su(l, 1) algebra: 

(4) 

and the Hamiltonian ( 1) is a linear combination of operators J1 and J3: 

(5) 

The instantaneous eigenfunctions of the Hamiltonian (1) realize the irreducible unitary 
infinite-dimensional representation of the non-compact su(l, 1) algebra. The correspond
ing Casimir operator ( "angular momentum" squared) proves to be a constant and can be 
calculated directly: 

32 - J2 - J2 - J2 - g - 3 - '(. - 1) 
- 3 1 2 - 16 - J J (6) 

so the weight of this representation is j. 
For the simplest case W+ = w_ = 1 the initial and the final states are the eigenfunctions 

of the h operator: 
J31/Jn = An'I/Jn, An= n + j. 

According to Ref. [3], the transition probability between initial Im) and final In) states can 
be expressed in terms of the generalized Wigner function for the irreducible representation 
of the su(l, 1) algebra with weight j: 

- I (j) 1
2 

Wmn - f n+j,m+j , n, m = 0, 1, 2, .... (7) 

The latter can be obtained by an analytic continuation of a standard Wigner function for 
the compact su(2) algebra; the details of this technique were described in the Appendix 
A in [6]. In group theory such a method is known as the "Wey! unitary trick" . The 
probability proves to depend on the only real parameter p, 0::; p < l, which has the same 
sense as in the well-known problem of transitions in a regular oscillator (see, e.g., [8, 9]) 
and can be calculated from the classical oscillator equation of motion. 

A generalization of this approach to the case of unequal initial and final frequencies 
W+ i- w_ is quite obvious, as, according to (5), the transformation from the initial state 
basis to the final state one is simply a unitary rotation around the axis 2, i.e., an element 
of the quasi-unitary group SU(l, 1). Omitting intermediate calculations (all details can be 
found in [7]), we derive the following expression for the transition probabilities between 
states Im, w_) and In, w+) (see Eq. (13) from Ref. [3], for comparison): 

L! r(L + 2j) L-S - 2j - ·. . 2 
Wmn= ((L-S)!)2S!f(S+Zjl (1 P) [2F1( S,L+2J,L-S+l,p)], (8) 

where j is defined in (2) and 

L = max(m,n), S = min(m, n), L-S= lm-nl. 

The formula (8) furnishes the ultimate answer to the problem given. 
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lj 
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The Gauss hypergeometric function 2Fi in (8) has its first argument being integer and 
negative (or zero), so it reduces to the Jacobi polynomial. Making necessary transforma
tions, we obtain from (8): 

_ m! r(n + 2j) n-m(l _ p)2j [p(n-m,2j-1)(1- 2p)] 2 , n 2: m, 
Wmn - n! f(m + 2j)p m 

- ±nm+ 2j) m-n(l - p)2j [p(m-n,2j-1)(1 - 2p)j2' m 2: n, 
Wmn - m! f(n + 2j) p n 

(9) 

which coincides with the standard quantum-mechanical result for the transitions in the 
time-dependent singular oscillator obtained by means of the Schriidinger equation solution 
(see [10] and references therein). 

The last point to discuss is the generating functions for the transition probabilities of 
the singular oscillator. Using the expressions (9), one can derive the following relation (see 
[7] for details): 

v2i 
G(u,v) = "'"'WmnUmVn = l 

2
, \u\,lv\ < 1 

~ -UV• I/ 
(10) 

m,n 

where 
2(1 - p) 

!/=-------=========== 
1 - p(u + v) + uv + ✓[l....,. p(u + v) + uv]2 

- 4uv(l - p)2 
(11) 

For the limiting case of a regular oscillator (g = 0, i.e. j = 3/4) the expression (10) 
corresponds to the formulas from [11] for generating functions of odd transitions. 

The formulas (10) and (11) are quite convenient to compute various operator mean
values over the transition probability distributions. In particular, for the adiabatic invariant 
I = (H) /2w one obtains 

I+ (n + j) 1 + p 
L = m+j =1-p 

for transitions from an arbitrary initial level m . 

(12) 

To summarize, we note that in our paper. the transition probabilities of the singular 
oscillator have been calculated for an arbitrary frequency w(t). To solve the problem, the 
modified FDM was applied and the representation theory for non-compact su(l, 1) algebra 
has been used. The final result for the transition amplitudes has been presented in a self
contained form, which is rather convenient for further applications. The expressions for 
the generating functions for transition probabilities have been derived and the adiabatic 
invariant variation at the oscillator evolution has been calculated. 
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Abstract 
The key aspects of a gauge-invariant Lagrangian description of massive and mass

less half-integer higher-spin fields in AdS spaces subject to two-rows Young tableaux 
Y(s1, s2) are presented both in unconstrained and with off-shell algebraic constraints 
formulations on a basis of BFV-BRST operators for nonlinear superalgebras. 

Problems of an unified description of known interactions and variety of elementary par
ticles are revealed at high energies (partially accessible in LHC), therefore providing the 
actual development of higher-spin (HS) field theory due to its close relation to superstring 
theory on constant curvature spaces, which operates with an infinite set of bosonic and 
fermionic HS fields subject to multi-row Young tableaux (YT) Y(s1, ... , sk), k 2: 1 (for a re
view, see [l]). The article considers the last results of constructing Lagrangian formulations 
(LFs) for free fermionic HS fields on AdSd-space with Y(s 1 , s2) in metric-like formalism 
within BFV-BRST approach (4] as a starting tool for an interacting HS field theory in the 
framework of Quantum Field Theory, and in part based on the results presented in [2, 3]. 

This method of constructing an LF for HS fields, developed originally to apply to Hamil
tonian quantization of gauge theories with a given LF, consists in a solution of the problem 
inverse to that of the method [4] (as in the case of string field theory and first papers on HS 
fields [5]) in the sense of constructing a gauge LF w.r.t. a nilpotent BFV-BRSToperator Q. 
Q is constructed from a system 0 0 of 1-class constraints, including in special non-linear ope
rator superalgebra { 01 }:{ 01} :::) { 0 0 }, defined on an auxiliary Fock space and encoding the 
relations extracting the fields with a fixed ( m, s) from the AdS group representation spaces. 

A massive spins= (s1, s2), s; = n; + ½, n1 2: n2, representation of AdS group in AdSd 
space are characterized by Y(s1 , s2) and realized in space of mixed-symmetry spin-tensors 

~ = ~ X -I µl I µ2
1 • I . I . I • I . I • I • lµn, I l (µ)n,,(v)n2 - µ,.,.µn,,V1, .. Vn2A( ) V1 V2 • • • • • Vn2 ( ) 

subject to the equations, (for (3 = (2; 3) ~ (n1 > n2; n1 = n2), r being the inverse squared 
AdSd radius, with suppressed Dirac's index A and matrices: {'Yµ,'Yv} = 2gµv(x)): 

([i,µ"v µ - r½ (n1 + ~ - (3) - m], "/µl > "/Vl) ~(µ)n 1, (v)n2 = ~{(µ)n 1 ,V1}v2 .. ,Vn2 = 0, (2) 

To simultaneous describe of all fermionic HS fields, one introduce a Fock space 1t = 1t1©1t2 

generated by 2 pairs of creation at(x) and annihilation al+(x) operators, i, j = 1, 2, µ, v = 
0, 1..., d-1: [at, a[+] = -gµv8;1; and a set of constraints for an arbitrary string-like vector\~): 

t~\~) = [-ii'µ Dµ + .:Y(m + Jr(g6 - (]))]\~) = 0, (ti, t)\~) = (iµa~, a~+a2µ)\~) = 0, (3) 

\~) = I:~=O I:~~=O ~(µ)n 1 ,(v)n2 (x) a{µ 1 •" a{µn, atv, , .. atn2 \0), \~) E 1t, (4) 
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equivalent to Eqs. (2) for alls and given in terms of an operator Dµ being equivalent to 'v µ, 
in its action in 7-i. Fermionic operators l~, ti are defined with help of a set of Grassmann-odd 
gamma-matrix-like objects 1'µ,1' ({iµ,i"} = 2gµ", {iµ,-y} = 0, -y2 = -1 [2]), related to 
conventional gamma-matrices by odd non-degenerate transformation: 'Yµ = 'Yµ'Y· 

To derive a Hermitian BFV-BRST charge Q on a total Hilbert space 7i101=7i07i'07igh 
we need to deduce a set of 1-class quantities 01: { Oa} C { 01 }, closed under the Hermitian 
conjugation w.r.t. an odd scalar product (ij,l<I>) [3] with a measure ddx✓-detg and super
commutator multiplication [, } . As a result, the massive half-integer HS symmetry superal
gebra in AdSd space with Y(s1, s2): A(Y(2),AdSd)={ 01 }={tb, t;, tt, t, t+, l;, lt, l;j, lij, gb,tb}, 

(ti+; gh; t+; li, l+i; l;j) = (iµa/; -<+aµi + ~; aµ 1a~+; -i(aµi, a+µi)Dµ; ½ar a1,j), i::; j (5) 

l~ = g1"'(D,.,D1, - r~,.,Dcr) -r(I°:/96 +ti+ti) + d(d_;
5l) + (m+ fi(g~ -(3))2, (6) 

contains a central charge m = (m - (3.jr), a subset of ( 4+12) differential {l;, lt} C { oa} 
and algebraic { t;, tt, t, t+, l;j, lij} C { oa} 2-class constraints, number particles operators gb, 
composing, together with m, an invertible supermatrix l\[oa, ob}II = l\b.ab(9b, m)ll+l\O(01 )\\. 

From 2 variants of additive conversion for non-linear superalgebras [6] of { o1 } into the 1-
class system {Oa}: 1) for {oa} resulting to the unconstrained LF; 2) for differential and part 
of algebraic constraints: I;, lt, t, t+ restricting A(Y(2), AdSd) to the surface { o;} = { oa} \ { l;, 
lt, t, t+} on all stages of the construction resulting to the LF with off-shell -y-traceless and 
traceless conditions, we consider in detail the first case. To find additional parts o~: 01--+ 01 

= o1+d1, [o1, o~} = 0 such that [01, OJ}~ Ox we need: a) following to (2, 6] pass to another 
basis of the constraints o1 --+ 81 = ufoJ, sdet\\uf\l =/= 0 (-y r/c {81}), such that only lb,tb are 
changed, t0 = -iiµ Dµ, la= -t5, having obtained the modified HS symmetry superalgebra 
Amad(Y(2), AdSd); b) construct its auxiliary representation, the Verma module, with use 
of Cartan-like decomposition, enlarged from one for Lie superalgebra { o'1} \ { l;, l;+, tb, lb}: 

Amod(Y(2),AdSd) = {{t;+,l'ii+,t'+;l'i+} EB {g~;t~, l~} EB {t:, l'ii, t';l'i} = &- EB HEB£+; (7) 

c) realize the Verma module as formal power series, I:n~o Jr"Pn[(a, a+)al, in a Fock space 7-{' 

generated by the same numbers of creation and annihilation operators as ones of the con
verted 2-class constraints { of;l}: (a, a+)f;l = f;, Nbij, bij, (b;, bt, b, b+) (for constrained LF). 

The solution of the item a) follows from the above requirement on 61 to be in involution 
and compactly written multiplication table for {8;} in Am00 (Y(2),AdSd) as follows (2, 6]: 

(8) 

with Grassmann parity c(o1) = 0, 1 respectively for bosonic and fermionic o1 . In its turn, 
the solution of items b), c) is more complicated than one made for A'(Y(l), AdSd) [2, 6] and 
A'(Y(2),R1•d-I) [3], due to nontrivial entanglement of a triple (l~+t'+z~+) being effectively 
solved iteratively, therefore extending the known results of Verma module construction [7] 
and its Fock space realization in 7-{'. Note, that within the conversion M = iii+ m' = 0, 
whereas new constants mo, hi and o~ explicitly in terms of (a, a+)a are found as in [2, 7]. 

A nilpotent BFV-BRST charge Q' for open superalgebraAconv(Y(2),AdSd) of 01 , in case 
of the Wey! ordering for quadratic combinations of 61 in the r.h.s. of[01, OJ }=F/)(0, o')OK 
and for the (CP)-ordering for the ghost coordinates and momenta C1 , P1 [3] has the form, 

245 



I 
:I 

\: 

with completely definite functions Ffa21~~
1 
(0, o') resolving the Jacobi identity for 01. Note, 

that Q' is more complicated than one in [2]) and coincides to one in [3] for r = 0. 
A covariant extraction of G& = 96 + gi(hi) from { 01 }, to pass to BFV-BRST charge Q 

for I-class constraints { 0 0 } only, is based on the condition of independence of 1itot of 1/b 
and on the elimination from Q' the terms proportional to Pb, 1/b : l(,i = (ai + hi) as in [3]: 

Q' = Q + 11b1C; + B;Pb; /Ci= G~ + (qtp; + 11tP; + Lj(l + O;j)1/JPii + (-I)i17+p + h.c.);(10) 

the same applies to the physical vector Ix) E 1itot, Ix)= l<I>) + l<I>A), l<I>A){(a,a+)a=C=1'=0} = 
0, with the use of the BFV-BRST equation Q'lx) = 0 determining the physical states: 

Qlx) = o, (a;+ h;)lx) = o, ~(Ix))= 1, (11) 

where the 2nd equations determine the spectrum of generalized spin values for Ix). 
The presence of a redundant gauge ambiguity in the definition of an LF permits to 

expand Q an_d Ix) in powers of the zero-mode pairs q0,p0, 1/o, Po as follows [2, 3]: 

(Q; Ix))= ( qoTo +110Lo + (11tq; -17;qt)po + (qJ-11t11;)Po + 6.Q; E~o q~(lx~) +11olxn) ). (12) 

As a result, the 1st equation in (11) is Lagrangian and take the form together with action 

6.Qlxg) + ½{To, 11t11;}lxb) = o, Tolx8) + 6.Qlxb) = o, (13) 

s = (;xglKTolxg) + ½ (xblK {To, 1/i1/1}lxb) + (x81K 6.Qlxb) + (xilK 6.Qlx8), (14) 

where we have used an operator K = i ® K' ® i9,. providing the Hermiticity of Q w.r.t. 
( I ) in 1itot and reality of S. The corresponding LF of a HS field with a given value of spin 
s = (n1 + ½, n2 + ½) is a reducible gauge theory of L = (n1 + n2 )-th stage of reducibility, 
whereas the above constrained LF has reduced field spectrum and L :S 3 for any spin. 
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Abstract 

Abstract: This talk presents a study of massless relativistic Dirac fields in three 
Euclidean dimensions, at finite temperature and density, in the presence of a uniform 
electromagnetic background. Apart from explaining the behavior of Hall's conduc
tivity for graphene, our results show a direct relationship between the selection of a 
phase for the Dirac determinant and the generation ( or lack thereof) of Berry's phases 
and Chern-Simons terms. 

1 Introduction 

Graphene is a bidimensional array of carbon atoms, packed in a honeycomb crystal struc
ture. Even though its theoretical properties were studied decades ago [1], it was only in 
2005 that stable monolayer samples of such material were obtained. Among other proper
ties, the Hall conductivity was measured in such samples, independently, by two groups [2]. 
Later on, a different behavior of the Hall conductivity was reported [3] for bilayer samples. 
The main difference between the behavior of the Hall conductivity of mono- and bilayer 
samples lies in the height of the jump around zero carrier density (or, equivalently, around 
zero chemical potential). 

From a theoretical point of view, the most remarkable feature of graphene is that, in a 
small momentum approximation, the charge carriers or quasi-particles behave as two "fla
vors" (to account for the spin of the elementary constituents) of massless relativistic Dirac 
particles in the two non-equivalent representations of the Clifford algebra ( corresponding 
to the two non-equivalent vertices in the first Brillouin zone), with an effective "speed of 
light" about two orders of magnitude smaller than c [l). 

In [4], we showed that a field theoretic calculation at finite temperature and density, 
based upon ( -function regularization of the Dirac determinant leads, in the zero temper
iture limit, to a sequence of plateaux in the Hall conductivity consistent with the ones 
neasured each time the chemical potential goes through a nonzero Landau level. More
iver, it was shown in (5] that two of the three possible combinations of phases of the Dirac 
ieterminant in both nonequivalent Clifford representations predict a behavior around zero 
iliemical potential consistent with the ones measured in mono- and bilayer graphene. 

This paper presents, in section 2, a brief review of our previous results on the subject, 
vith emphasis on the role of the phase of the determinant in giving rise to different behaviors 
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of the Hall conductivity around zero chemical potential. In section 3, we allow for complex 
chemical potentials, and concentrate on the contribution due to the lowest Landau level, in 
order to study the invariance of the effective action under large gauge transformations, i.e., 
under statistics-preserving transformations. We also discuss the connection among phases 
of the determinant, Berry's phases and Chern-Simons terms. 

2 The Hall conductivity and its dependence on the 
phase of the determinant 

As shown in our previous work on the subject [4, 5], the Hall conductivity can be determined 
by first evaluating the partition function (equivalently, the effective action) for massless 
Dirac fermions at finite temperature and density, in two spacial dimensions, in the presence 
of an external magnetic field perpendicular to the plane, and then performing a boost to a 
reference frame with orthogonal electric and magnetic fields. In this section, we merely list 
our main results in those references, with emphasis on the role played by the phase of the 
Dirac determinant, which appears when treating the infinite tower of states associated to 
the lowest Landau level. We first consider a single flavor, and one of the two nonequivalent 
representations of the Clifford algebra. 

In order to take into account the effects due to finite temperature and density, we study 
the theory in Euclidean three-dimensional space, with a compact Euclidean "time" 0 :;:: 
x0 :;:: (3, where (3 = k~T (here, k8 is the Boltzmann constant and Tis the temperature). We 
introduce the (real) chemical potential and the magnetic field through a minimal coupling 
of the theory to an electromagnetic potential Aµ= (-i;, 0, Bx1). Natural units (c = /l, = 1) 
will be used, unless otherwise stated. 

In this scenario, the Euclidean effective action is given by log Z = log det(i/J- efo)AP, 
where the_ subindex AP indicates that antiperiodic boundary conditions must be imposed 
in the x0 direction, in order to ensure Fermi statistics. Now, this is a formal expression, 
which we will define through a zeta-function regularization, i.e., 

S,11 = logZ = -- ((s, ---) = -- L - , d J (i/J- efo)AP d J (w)-s 
ds s=O a ds s=O w a 

( 1) 

where w represents the eigenvalues of the Dirac operator acting on antiperiodic, square
integrable functions, and a is a parameter introduced to render the zeta function dimen
sionless (as expected on physical grounds, our final predictions will be a-independent). 

So, in order order to evaluate the partition function, we first determine the eigenfunc
tions, and the corresponding eigenvalues, of the Dirac operator. We propose 

ei>,1xoeikx2 ( I.{) (x ) ) 7r 
wk,l(xo, X1, X2) = y'2ir/J k,l( I) Al= (2l + l)-(3. 

27r Xk,l X1 

Note that, in the last expression, Al, l = -oo, ... , oo are the Matsubara frequencies 
adequate to the required antiperiodic conditions, while the continuous index k represents 
an infinite degeneracy in the x2 direction. 

The resulting spectrum has two pieces: An asymmetric piece, associated to the lowest 
Landau level of the Hamiltonian: 

- - 'Ir 
w1 = Al, with Al = (2l + 1)/3 + iµ and l = -oo, ... , oo, 
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and a symmetric piece 

Wz,n = ±J>.1 +2neB with n = l, ... , oo l = -oo, ... , oo, 

corresponding to eigenfunctions with both components different from zero. In all cases, the 
degeneracy per unit area is given by the well known Landau factor, t:,.L = ;! . 

The asymmetric part of the spectrum is quite particular. In fact, the corresponding 
eigenfunction is an eigenfunction of the Pauli matrix cr3 , with eigenvalue +l. The eigen
function with the opposite "chirality" was eliminated by the square integrability condition 
in x1. As we will discuss in what follows, this part of the spectrum is the one which requires 
the consideration of a phase of the determinant when evaluating the effective action. Be
fore going to such evaluation, it is interesting to note the invariance of the whole spectrum 
under µ --. µ + 2i3". This invariance is a natural one, since such transformations preserve 
the antiperiodicity of the eigenfunctions and, thus, the Dirac statistics. They are nothing 
but the so-called large gauge transformations. We will discuss this point in more detail in 
section 3. 

As is clear from {l), in evaluating the effective action, one must perform the analytic 
extension of the contributions to the zeta function coming from the nonsymmetric piece of 
the spectrum, ( 1{s, µ), and the one due to the symmetric piece, ( 2{s, µ, eB). 

The analytic extension of (2{s, µ, eB) is quite standard, and it relies mainly on per
forming a Mellin transform and making use o.f the inversion properties of the Jacobi theta 
functions. A detailed presentation can be found in [4]. 

As said before, the extension of ( 1 ( s, µ, eB) requires a careful consideration of the phase 
of the determinant. In fact, ( 1 can be written as 

(2) 

and the definition of the overall minus sign in the second sum depends on the selection of the 
cut in the complex plane of eigenvalues. As discussed in detail in [5], the usual prescription is 
to choose the cut such that one does not go through vanishing arguments when continuously 
transforming eigenvalues with positive real part into eigenvalues with negative real part [6]. 
This prescription then gives rise to what will be called in the following the standard phase 
of the determinant ( characterized from now on by K = -1). One could certainly choose the 
opposite prescription, which we will call the nonstandard phase (K = +l). Once one of the 
phases is selected, the contribution of ( 1 to the effective action can be evaluated by making 
use of the well-known properties of the Hurwitz zeta function, to obtain 

SJ! 1(K) = t:,.L { log [ 2 cash(µ:)] + K /µ~/]} . 

When this last contribution is added to the one coming from ( 2{s, µ, eB), one gets for 
the effective action 

{ [ 
µ/3 ] /µ//3 r,:;--;:; ( 1) Seff(K) =C:,.L log 2cosh{ 2 ) + K-

2
- + /3v2eB(R - 2 

+~log [ ( l + e-(J2neB-µ)f3) ( l + e-(J2neB+µ)f3)]} 
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'1: 

e@tkjt@ 
Figure 1: Hall conductivity for different selections of the phase of the determinant. Left 
to right: K = 1, K = 2, K = 0. In all cases, the horizontal axis represents ve = 
sgn(µ) µ2 /2eBlic2 and the vertical one, Uxy h/4e2 . 

From this last expression, the finite-temperature charge density can be obtained as 
j 0

(,-.,) = ~• f,,Seff(1,,). In the zero-temperature limit ((3 -> oo ), and recovering physical 
units, it reduces to 

-(n+lli)ce2B 
j°(2ec21iBn < µ2 < 2eBc21i(n + 1)) = ; sign(µ), 

where n = [2e'11ic], and [x] is the integer part of x. 
In order to obtain the Hall conductivity, one must perform a boost to a reference 

frame with crossed electric and magnetic fields. The final contribution to the Hall con
ductivity from each fermion species and one irreducible representation is given by [5] 

-(n+~)e2 
• 

O'xy = h sign(µ). 
Now, the phases of the determinant in both irreducible representations can be selected 

with the same or with opposite criteria. When this is taken into account, and an overall 
factor of 2 is included, to take both fermion species into account, on obtains for the total 
zero-temperature Hall conductivity 

-4(n + f)e2 
. 

O'xy = h sign(µ), 

where K = 0 corresponds to selecting the standard phase of the determinant in both 
irreducible representations, K = 1 corresponds to choosing opposite criteria for the phases, 
and K = 2, to ·choosing both phases in the nonstandard way. The dependence of the 
Hall conductivity on the classical filling factor (ve) is presented in figure 1, for the three 
values of K. From that figure, it is clear that the behavior of monolayer graphene, as 
reported in [2], corresponds to K = 1, i.e., to choosing opposite phases of the determinant 
in both representations. In fact, in this case the (rescaled) Hall conductivity shows a jump 
of height 1 for ve = 0, and further jumps of the same magnitude for ve = ±1, ±2, .... In 
turn, the behavior of bilayer graphene, as reported in [3] is exactly reproduced by K = 2 
(nonstandard selection of the phase in both representations). 

3 Phases of the determinant as geometric phases 

To analyze the physical meaning of the invariance of the effective action under large gauge 
transformations in this context, we go back to the zeta function associated to the asymmet
ric part of the spectrum, for one fermion species and one representation, this time allowing 
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for an imaginary part in the chemical potential, µ = µ + i "I, while always keepingµ c/- 0. 
In this case, one must be careful when splitting the infinite sum as in (2). In fact, such 
splitting must be different for different "(-ranges, to make sure that all the eigenvalues in 
each infinite sum have a real part with the same sign, which is crucial in defining. the phase. 
For example, for -½ < ~ < ½, one has 

1 l "!/3 1 
8 11(--<-<-) 

e 2 2rr 2 -6.L :s J.,=0 {~ [ (2l + l)rr / /3 + iµ - "/ r· 
+ ~ e-i• 0 

[ (2l + l)rr//3 + i(µ + h) e-i0r•} 
Now, the values of O such that the second term in the RHS does vanish are those ones 

for which, simultaneously, (2l + l)ir / /3 + /t sin O - "I cos O = 0 =µcos O + "I sin 0. 
As before, we consider here two different definitions of the phase of the determinant, 

which correspond to the standard definition for the phase ,-;, = -1 , and to the nonstandard 
one ,-;, = + 1. With each one of these prescriptions, the contribution of the asymmetric 
spectrum to the effective a action in this range is given by 

1 l "(/3 1 {(,-,,+1)/3 
s,ff(-2 < 2rr < 2) = 6.L 2 sgn1t(µ+h) 

+ Jog (e-1Cl'+i-r)(!+sgnµ) + e1(µ+i-y)(l-sgnµ))}. (3) 

Things are entirely different for ~ = ±½. In this case, one mode in the infinite sum 
defining the zeta function has a vanishing real part. A careful treatment shows that, at 
such points, S!!f is discontinuous. For instance, S!ff(~ =+½)coincides with}im¥;!-½-

)f (3). An equally carefully treatment of the case ~ = -½ shows that S!ff(~ = -½) = 
S!ff(~ = ½). This analysis can be extended to other ranges of variation of 1/;, to obtain 

1 {(,-;,+l)/3 2krr 
~ (k+ 2))=6.L 

2 
sgnµ[µ+i('Y--:e-)) 

+ log (e-1(µ+i(-y-2~ff))(!+sgnµ) + e1(µ+i(-y-2~ff))(l-sgnµ))}, (4) 

or k = -oo, ... , oo. 
This expression shows that the contribution to the effective action of the nonsymmetric 

,art of the spectrum, in this representation of the gamma matrices, is invariant under large 
;auge transformations, no matter which phase of the determinant is selected. As already 
aid, such transformations must constitute an invariance. In fact, an increase of i"( in the 
hemical potential corresponds to the multiplication of the eigenfWlctions with a phase, 
e., 1Pk,1(x)--> ei"Yxo1Pk,1(x). So, an increase -i"( = 2

~" is a pure gauge transformation which, 
1oreover, preserves the antiperiodicity in x0 • 

Due to the fact that these eigenfunctions are eigenfunctions of a3 , one can equivalently 
rrite gauge transformations in the form 1Pk,1(x) --> ei;f 21x0 1/)k,l(x). This last expression 
hows that, as x0 grows from O to /3, spinors are rotated by 2"(/3, since ~ is the generator 
f rotations in the plane x 1x 2. In particular, 'Y = l corresponds to a 4rr-rotation around 
'1e magnetic field. On the other hand, 'Y = ! corresponds to a 2rr-rotation. At finite 
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temperature, such transformation changes the statistics to a bosonic one. For "' = +1, 
it also gives rise to an overall phase of rr per unit degeneracy in the partition function. 
Such phase is the contribution which survives in the zero temperature limit. Always in the 
zero temperature limit, "' = + 1 gives rise to a Chern-Simons term in the effective action. 
Invariance of the partition function under rotations of 2rr requires the reduced flux (llL) to 
be an integer, which fixes the coefficient in front of the Chern-Simons term. Such term is 
not present for "' = 0. 

To summarize, in each representation, the effective action per unit degeneracy is invari
ant under large gauge transformations, with any of the two possible selections of phase. 
As a result, the invariance persists no matter which of the three possible combinations of 
phases is selected. Moreover, each of the two selections of phase in each representation 
corresponds to a different geometric phase under the rotation of spinors along a closed path 
around the magnetic field ("- = -1: no geometric phase; "'= +l: geometric phase of rr). 
So, the three possible combinations of phases of the determinant then give a total llPasc 
in the partition function of rr (I< = 1, monolayer), 2rr (K = 2, bilayer), or O (K = 0), 
to be compared with the Berry phases studied, for instance, in [7]. Finally, we note that 
these three values of K also correspond to the three nonequivalent unitary representations 
of the generator of the cyclic group C3 , which is the relevant symmetry in the case of free 
graphene. 
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Abstract 

It has been proven that the reconstruction theorem is valid also in NC QFT. Given 
set of Wightman functions determines quantum field operators and the corresponding 
vector space. 

1 Introduction 

The Wightman reconstruction theorem in QFT determines the equivalence between two 
formulations of QFT in the axiomatic approach. One way is to start with the definition of 
quantum field operator 'PJ, where f is some sufficiently smooth function. 

Let us recall that a quantum field operator can not be defined in a point. Only smeared 
operators, symbolically written down as 

'Pf= j i.p(x)J(x)dx, 

are well defined. In QFT the standard assumption is that f (x) are test functions of 
tempered distributions. 

The axiom of cyclicity of vacuum states plays a central role in formulation of QFT. 
This axiom means that the theory is fully defined by the set of vectors: vacuum vector 

Wo, <I>1 = 'Ph Wo, ... <I>k ='Ph ... 'Ph Wo, that is any vector, which belongs to the space under 
consideration, can be approximated by some finite linear combination of these vectors with 
arbitrary accuracy. 

The scalar product between vectors <I>k = 'PI. ... 'Ph Wo and \Jin = 'P!k+i ... 'P!n W0 is determined by Wightman functions 

( <I>k, Wn) = / d X1 .•. d Xn 

where 
W (x1, ... ,xn) Ji (x1) · · · fk (xk) fk+1 (xk+1) · · · fn (xn), (1) 

As vacuum vector is a cyclic one, the scalar product between two arbitrary vectors in the 
space in question is determined by some linear combination of Wightman functions with 
arbitrary accuracy. 

253 



In accordance with the reconstruction theorem, if the set of Wightman functions is 
given, we can construct the underlying space and quantum field operators [1] - [3]. 

The aim of this report is to extend this construction on noncommutative quantum field 
theory (NC QFT). 

NC QFT being one of the generalizations of standard QFT is intensively developed 
during the last years. The idea of such a generalization of QFT ascends still to Heisenberg. 

The present development in this direction is connected with the construction of non
commutative geometry and new physical arguments in favour of such a generalization of 
QFT. Essential interest in NC QFT is also connected with the fact that in some cases it is 
obtained as a low-energy limit from the string theory (for a review see [4]). 

The simplest and at the same time the most studied version of noncommutative theory 
is based on the following Heisenberg-like commutation relations between coordinates: 

[xµ, xv] = i 0µv, (2) 

where 0µ 11 is a constant antisymmetric matrix. 
NC QFT can be formulated also in commutative space by replacing the usual product 

by the star (Moyal-type) product: 

( · a a) 
cp(x) * cp(x) = exp i 0µ" axµ ay" cp(x)cp(y)lx=y• (3) 

This product can be extended to the corresponding product in different points: 

cp(x1) * .. ·*cp(xn) = IT exp (-
2
i 0µ" aaµ aa") cp(xd ... cp(xn)- (4) 

a<b:5n Xa Xb 

Wightman approach in NC QFT was formulated in [5], [6] and [7]. 
Formally the Wightman functions can be written down as follows: 

W (x1, ... , Xn) = (lllo, cp (xi) * · · · * cp (xn)Wo), (5) 

where '110 is a vacuum vector. The formal expression (5) actually means that the scalar 
product of the vectors <I>k = 'Pik • • • 'P!i Wo and Wn = 'Pik+i · · · 'P!n Wo is the following: 

(<I>k,Wn) = j dx1 ... dxnW(x1, ... ,xn)· 

Ji (xi) * ... * !k (xk) * fk+l (Xk+1) * ... * fn (xn), 

W (xi, ... , Xn) = (lllo, cp(xi) · · · cp(xn)Wo). (6) 

This choice of the Wightman functions reflects the natural physical assumption, that non
commutativity should change the product of operators not only in coinciding points, but 
also in different ones. 

In this report we give a rigorous definition of quantum field operator in NC QFT. We 
extend the axiomatic construction of field operators on NC QFT and construct the space 
on the dense domain of which quantum field operator is well defined. 

It has been proven that the *-multiplication is well defined for the functions f; (x;), if 
f; (x;) E S13, f3 < 1/2. Sf1 is a Gel'fand-Shilov space [8], [9]. 

Moreover after the *-multiplication we obtain functions which belong to the space S13 

with the same f3 as f; (x;) [8]. 
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2 Definition of Quantum Field Operators in NC QFT 

Let us define rigorously quantum field operator 'Pt· To this end we construct a closed and 
uondegenerate space J such that operators rp1 be well defined on dense domain of J. 

The difference of noncommutative case from commutative one is that action of the 
operator rp1 is defined by the *-product. 

Construction of space J we shall begin with introduction of set M of breaking sequences 
of the following kind 

where go EC, 

k depends on g. 

9 = {go,91, · ··9k}, 

91 = gt (x1), X1 E JR4, 

g; = g;1 (x1) *· ·· *g:(x;), xi E JR4, 1:::; j:::; i; 

(7) 

Addition and multiplication by complex numbers of the above mentioned sequences are 
defined component by component. 

The every possible finite sums of the sequences belonging M form space Jb on which 
action of the operator 'PJ, f = f (x), x E 1R4 will be determined. 

The operator rp I is defined as follows 

(8) 
where f * 9i = f (x) * g;1 (x1) * · · · * 9t (x;). 
As f * (g; + fj;) = f * g; + f * §;, and any vector of space Jb is the sum of the vectors belonging 
to set M, the operator 'Pf is determined on any vector of space Jb and rp/f> E Jb, I;/ 1> E Jb. 

Scalar product of vectors in Jb we shall define with the help of Wightman functions 
IV (x1, ... , Xn) = (Wo, rp (xi) ... rp (xn) Wo). We shall consider firstly a chain of vectors: 
.acuum vector Wo = {l, 0, ... O}, 1>1 = 'Ph Wo, ... <I>k ='Pt. ... 'Ph w0, Ji= f; (xi), x; E 1R4. 
~vidently, 'Pk = {O, ... A* ... * Ji, 0 ... O} and 

Wn = 'Pfk+1 ···'Pin Wo = {O, • • · fk+1 * • • • * fn, 0 • •. O}. 

t is obvious, that Jb is a span of the vectors of such type. Scalar product of vectors 1>k 
end Wn is 

( 1>k, Wn > = ( Wo, 'PJ1 • • · 'PJ. 'Pt.+1 • • • 'Pin Wo) = 

j dx1 ... dxn W (xi, ... ,xn)· 

!1 (xi) * · · · * fk (xk) * fk+1 (xk+J) * · · · * fn (xn)-

'he adjoined operator rpj is defined by the standard formula. If operator rp
1 

is Hermitian 
l1en rpj = 'Pf· Here we consider only Hermitian (real) operators, but the construction can 
e easily extended to complex fields. 

(9) 

Let us point out that a condition 

fulfilled, if (as well as in commutative case), 

W (xi, ... , Xn) = W (xn, ... , xi). (11) 
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The required condition is satisfied, owing to antisymmetry of 0 µv. 

As any vector of space J/i is a finite sum of the vectors belonging to the set M, we can 
directly define scalar product of any vectors of space J/i . 

Let us stress that if the *-product acts only in coinciding points and is substituted by 
usual one in different points then given construction can also be fulfilled, only in the different 
points we have to put 0;3 = 0. But in this case the function f (x, y) = f (x)f (y), x # 
y, f (x, x) = f (x) * f (x) is not continuous when x = y, and we have to consider some 
regularization. 

As well as in commutative case, we need to pass from J/i to nondegenerate and closed 
space J. 

The space Jb can contain isotropic, i.e. orthogonal to Jb vectors which, as is known, 
form subspace. Designating isotropic space as J0 and passing to factor-space J0 = JM J0 , 

we obtain nondegenerate space, i.e. a space which does not contain isotropic vectors. 
For closure of space J0 we assume, as well as in commutative case, that J0 is normalized 
space. If the metrics of J0 is positive, norm <I> = ll<I>II can be defined by the formula 
ll<I>II = ((<I>, <I>))i12-
Jo (a closure of J0 ) is carried out with the help of standard procedure - closure to the 
introduced norm. This space, in turn, can contain isotropic subspace J. 

Factor-space J = J0 / J, obviously, will be nondegenerate space. 
Thus, we constructed closed and nondegenerate space J such that operators 'PJ are 

obviously determined on dense domain J0• Hence, every vector of J can be approximated 
with arbitrary accuracy by the vectors of the type 

'P!i · · · 'Pin Wo, (12) 

where iJ:10 is a vacuum vector. In other words the vacuum vector iJ:10 is cyclic, i.e. the axiom 
of cyclici_ty of vacuum is fulfilled. 

Let us point out that in commutative case construction of space J begins with intro
duction of sequences g determined by the formula 

g = {go,9i,,, ,gk}, (13) 

in which, however, g; = g; (xi, ... x;) are smooth functions of variables xi E lR4
. We shall 

note that in the commutative case, starting with J/i, we shall come to the same space J. 
Really, as space of functions of a type g} (xi) g; (x2) ••• gf (x;) is dense in space of functions 
g; (xi, ... x; ), we can complete Jb up to space of the above mentioned sequences and then 
carry out the standard construction of space J. 

3 Test Functions Space 

Let us consider the spaces in which the *-multiplication is well-defined. Gel'fand and Shilov • 
proved [10] that if f (x) E 5/3 (see ineq. (14)) then the series of derivatives of infinite order · 
can be well-defined in such a space. Thus we assume that f (x) E 5/3 and prove that the . 
*-product is well-defined only if each f; belongs to the Gel'fand-Shilov space 8/3, {3 < 1/2 .. 
The *-product can be also well-defined if {3 = 1/2, but only for functions which satisfy · 
inequality (14) with sufficiently small B. 
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Let us recall the definition and basic properties of Gel'fand-Shilov spaces SfJ. In the 
case of one variable f (x), x E 1R1 belongs to the space SfJ, if the following condition is 
satisfied: 

(14) 

where the constants Ck and B depend on the function f (x). Below we use the inequality 
(14) only at k = 0, C0 = C. As our results do not depend on constant C, in what follows 
we put C = 1. In the case of a function of several variables, inequality (14) holds for any 
partial derivative. 

In accordance with eq. (3) 

f (x) * f (y) = L 1 '!... 0µ",;, -,,, f (x) f (y) = L -f · 
00 

1 ( · a a )n 00 
D 

n=O n. 2 OX oy n=O n. 
(15) 

We have to find the conditions under which the series (15) converges. After some calcula
tions we come to the inequality (8]: 

,~~l<B"n-2 "-Y, B=4e0B2
, 1 =1-2/3. (16) 

For any B the series 

(17) 

converges if 1 > 0, i.e. /3 < 1/2, and diverges if /3 > 1/2. If /3 = 1/2 the series converges 
if B < 1. Thus we come to the conclusion that the series (15) for arbitrary B and C is 
a convergent one if /3 < 1/2 and divergent if /3 > 1/2. If /3 = 1/2 the series converges at 
sufficiently small B. 

4 Space-space Noncommutativity 

It is known that the construction of NC QFT in a general case (0°i f 0) meets serious 
difficulties with unitarity and causality. For this reason the version with 0°i = 0 (space-space 
noncommutativity) draws special attention. Then always there is a system of coordinates, 
in which only 0 12 = -0 21 f 0. Thus, when 0°i = 0, without loss of generality it is 
possible to choose coordinates x0 and x3 as commutative and coordinates x1 and x2 as 
noncommutative. 

Let us point out that in this case the main axiomatic results: CPT and spin-statistics 
theorems, Haag's theorem remain valid [5] - [7], [11]. 

Herc we consider the condition of local commutativity in NC QFT. We remind that the 
class of test functions in the ordinary QFT contains functions with compact support. In 
the case of noncommutative Wightman functions, however, the set of test functions consists 
of functions only with non-compact support in the NC coordinates. 

Note, however, that in the case of space-space noncommutativity, i.e. 0°; = 0, the test 
functions can still have finite support in the commutative directions x0 , x3 • As a result, the 
local commutativity condition can be formulated in these directions as 

{18) 
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jli 
(1, 

where the test functions Ji (x) and h (x') are zero everywhere except on space-like separated 
finite domains 0 and 0' in the commutative coordinates, i.e. for each pair of points x E 0 
and x' E 0' (x0 - x0')

2 -(x3 - x3')
2 < 0, but without any restriction in the noncommutative 

directions x1 and x 2• 

This condition is equivalent to the following condition for Wightman functions: 

W (x1, ... , X;, X;+1, ... , Xn) = W (x1, ... 1 X;+l, X;, ... , Xn), (19) 

if supp f, E 0; x R2
, supp fi+l' E 0;+1 x R2 , 0, ~ 0,+1, which means that the above 

mentioned condition is fulfilled for any points x, E 0; x R2 X;+i E Oi+1 x R2 . 

5 Conclusions 

We have rigorously constructed field operators in NC QFT and have proven that for the 
given set of Wihtman functions we can reconstruct QFT. 

The carried out construction of the closed and nondegenerate space, such that operators 
cp f are determined on its dense domain, is important for any rigorous treatment of the 
axiomatic approach to NC QFT via NC Wightman functions and the derivation of rigorous 
results such as CPT and spin-statistics theorems. 
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Abstract 
Higher order symmetries corresponding to Killing tensors are investigated. The 

intimate relation between Killing-Yano tensors and non-standard supersymmetries is 
pointed out. In the Dirac theory on curved spaces, Killing-Yano tensors generate 
Dirac type operators involved in interesting algebraic structures. 

1 INTRODUCTION 

One of the key concepts in physics is that of symmetries. Noether's theorem gives a cor
respondence between symmetries and conserved quantities. For the geodesic motlons on 
a space-time the usual conserved quantities are correlated with the isometries which cor
respond to Killing vectors. Sometimes a space-time could admit higher order symmetries 
corresponding to Killing tensors. These are known' as hidden symmetries and the typical 
example is the Runge-Lenz vector in the Kepler-Coulomb problem. The corresponding 
conserved quantities are quadratic, or, more general, polynomial in momenta. 

In the case of the gravitational interactions, a consistent perturbative quantization is not 
available, even if there are no fermions. The implementation of fermions on curved space
times represents an additional difficulty. Fermions are essentially quantum objects while 
;he space-time backgrounds are classical. Sometimes it can appear anomalies representing 
:liscrepancies between the conservation laws at the classical level and the corresponding 
mes at the quantum level. 

The above two problems are correlated. The Killing tensors could be symmetric or 
mtisymmetric. The symmetric ones are used to construct the conserved quantities, poly-
10mials in momenta, while the antisymmetric ones are the appropriate geometrical objects 
,o be coupled with the fermionic degrees of freedom. 

~ KILLING TENSORS 

,et ( M, g) be an n-dimensional Riemauuian manifold, the covariant derivative in the tensor 
~rmalism is defined using the Levi-Civita connection and the indicesµ, v, ... will be raised 
nd lowered with the metric gµ,_, or its inverse gµ". 

)efinition 1 A symmetric tensor of K 1,, ... µr of rank r > 1 satisfying a generalized Killing 
quation 

K(µ, ... µr;>.) = 0. 
; called a Stiickel-Killing (S-K) tensor. 
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The relevance in physics of the S-K tensors is given by the following proposition which 
could be easily proved: 

Proposition 1 A symmetric tensor K on M is a S-K tensor if and only if the quantity 

K = Kµ, ... µrsµ• , , . sµr (2) 

is constant along every geodesics in M. 

Definition 2 A differential p-form f is called a K- Y tensor if its covariant derivative 
f µ, ... µ,;>-. is totally antisymmetric. 

Equivalently, a tensor is called a K-Y tensor of rank p if it is totally antisymmetric and 
satisfy the equation 

f µ, ... (µ,;>-.) = 0. (3) 

These two generalizations (1) and (3) of the Killing vector equation could be related. 
Let fµ, ... µ, be a K-Y tensor, then the tensor field 

Kµv = f µµ2 ... µ.f µ2 
... µp v (4) 

is a S-K tensor and it sometimes refers to this S-K tensor as the associated tensor to f. 
However, the converse statement is not true in general: not all S-K tensors of rank 2 are 
associated to a K-Y tensor. 

3 DIRAC-TYPE OPERATORS 

To describe spin-1/2 particles on a curved space-time we use the standard Dirac operator 
D, 

D, = i··t'v µ (5) 

where 'v µ are the spin covariant derivatives including spin-connection, while "t are the 
standard Dirac matrices carrying natural indices. 

Each K-Y tensor fµv produces a non-standard Dirac operator of the form [1] 

DJ= i"•t(J/'vv -i••(')'Pfµv;p) (6) 

which anticommutes with the standard Dirac operator D, and can be involved in new types 
of genuine or hidden (super)symmetries. 

3.1 COVARIANTLY CONSTANT K-Y TENSORS 

Remarkable superalgebras of Dirac-type operators can be produced by special second-order 
K-Y tensors that represent square roots of the metric tensor. 

Definition 3 The non-singular real or complex-valued K- Y tensor f of rank 2 defined on 
M which satisfies 

rafµf3 = gc,{3, (7) 

is called an unit root of the metric tensor of M, or simply an unit root of M. 
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Let us observe that (7) is a particular case of equation ( 4) with the metric tensor as 
an ordinary S-K tensor. It was shown that any K-Y tensor that satisfy equation (7) is 
covariantly constant [2, 3, 4], i. e. f µv;u = 0. 

The covariantly constant K-Y tensor gives rise to Dirac-type operators of the form (6) 
connected with the standard Dirac operators as follows: 

Theorem 1 The Dirac-type operator D1 produced by the K-Y tensor f satisfies the condi
tion 

(8) 

if and only if f is an unit root. 

Proof: The arguments of Ref. [2] show that the condition (8) is equivalent with equation 
(7) f being a covariantly constant K-Y tensor. ■ 

3.2 COVARIANTLY NON-CONSTANT K-Y TENSORS 

The covariantly non-constant K-Y tensors do not represent "square roots" of the metric 
tensor, but generate non-trivial S-K tensor ( 4). Consequently, Dirac-type operator (6) 
associated with a covariantly non-constant K-Y tensor does not close to D;, but to different 
other conserved operators of the Dirac theory. In general the algebra of the corresponding 
conserved operators does not close as a finite Lie algebra. For example, in the case of the 4-
dimensional Euclidean Taub-NUT space, the dynamical algebra of the conserved operators 
can be organized as a graded loop superalgebra of the Kac-Moody type [5, 6, 7]. 
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Abstract 

We investigate how a large baryon density may induce spontaneous parity violation 
in the meson sector of QCD. The analysis is done for an idealized homogeneous and 
infinite nuclear matter when the influence of density can be examined with the help 
of constant chemical potential. We elaborate a novel mechanism of parity breaking 
based on interplay between lightest and heavy meson condensates which cannot be 
reali?.ed in the pion sector solely. The analysis at intermediate energy scales is done by 
uHing a11 dfl'l't.ive Lagrangian that includes two scalar and pseudoscalar multiplets. 
\VP scan nll possible sectors of meson physics and argue that the parity breaking . 
phl'110111('1l(lll is rat.her typical than exotic when chemical potentials are large enough. 

Introduction 

1t· .ipJH'arance of P- violation for sufficiently large values of temperature and/or the 
·111irnl potential has been attracting much interest during last decades to search it both 
dl'IIS<) unclear matter (in neutron/quark stars and heavy ion collisions at intermediate 
.·rgics) and in strongly interacting quark-gluon matter ( "quark-gluon plasma" in heavy 
1 collisions at very high energies) . In particular, at finite baryon density it is a possibility 
1jcctured by A.B.Migdal in [1] in nuclear physics long ago (and reviewed in [2], see also 
i recent development in [3)-[6]). One has also to mention a phenomenon of (C)P~parity 
iaking in meta-stable nuclear bubbles created in hot nuclear matter [7] and/or in the 
isence of a strong background magnetic field (8] which however theoretically is quite 
ferent in its origin and will not be linked to in the present paper. 
In fact, some time ago it was proved quite rigorously in [9] that parity, P, and vector 

ror symmetry could not undergo spontaneous symmetry breaking in a vector like theory 
:h as QCD. This is thus a well established result in strong interactions at zero chemical 
;ential. Finite baryon density however results in a manifest breaking of GP- invariance. 
e presence of a finite chemical potential leads to the presence of a constant imaginary 

1 andrianov@ecm.ub.es 
1v.andriano@rambler.ru 
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zeroth-component of a vector field and the partition function of QCD is not anymore i 
variant under a GP- transformation. The conditions under which the results of [9) we 
proven (positivity of the measure) then do not hold anymore. 

In this work we shall attempt to explore the interesting issue of ?-parity breakil 
employing effective lagrangian techniques in the range of nuclear densities for which hadn 
phase persists and quark percolation does not occur yet. 

A novel mechanism proposed in our papers [10, 11) is essentially based on interpli 
between lightest and heavy meson states and cannot be realized solely in the Goldst01 
boson (pion) sector.The analysis is done for an idealized homogeneous and infinite nucle: 
matter when the influence of density can be examined with the help of constant chemic 
potential. 

2 Generalized sigma model 

Let us consider a model with two multiplets of scalar/pseudoscalar fields HJ = O"Jl 
rnJ, j = 1, 2 with irJ = nJra with Ta being a set of Pauli matrices. We shall deal wit 
a scalar system globally symmetric in respect to SU(2)L x SU(2)R rotations in the exa< 
chiral limit. We should think of these two chiral multiplets as representing the two !owes· 
lying radial states for a given JPC. Let us define the effective potential of this generalize 
O"- model. First we write the most general Hermitian potential at zero µ using the chin 
parameterization 

H1(x) = 0"1(x)U(x) = 0"1(x)e(x); H2(x) = ~(x)h(x) + iir2(x))~(x). (l 

This kind of parameterization preserves the parities of 0"2(x) and ir2 to be even and od 
respectively (in the absence of SPB). It takes the following form 

2 2 

Veff = - L O"j,6.jkO"k - ,6.22(1r'.!J2 + A2 ( (1r~)2) + (1r~)2 ( (A3 - A4)0"i + A60"10"2 + 2A20"?: 
j,k=l 

+A10"{ + A20"i + (A3 + A4)0"i0"? + A50"l0"2 + A50"1<75, (2 

with 9 real constants ,6.Jk, AA . QCD bosonization rules indicate that ,6.Jk ~ AA ~ N, 
The neglected terms will be suppressed by inverse power of the chiral symmetry breakin. 
(CSE) scale A::,:, 1.2GeV. If we assume the v.e,v. of HJ to be of the order of the constituen 
mass 0.2 + 0.3 GeV, it is reasonable to neglect these terms, Let us now investigate th 
hypothetical appearance of a non-zero v.e.v. of pseudoscalar fields. In order not to breai 
the charge conservation, we must expect, if at all, only a neutral condensate represente< 
by a solution with 1r2 = ,5ao p. The conditions to have an extrcmum are derived from th 
first variation of the effective potential (2), 

2(,6.11u1 + ,6.120"2) - 4A10"f + 3A50"i0"2 + 2(A3 + A4)0"w? + A50"i 

+/(2(A3 - A4)u1 + A50"2), 

2(,6.120"1 + ,6.220"2) = A50"f + 2(A3 + A4)Ui0"2 + 3A50"JO"~ + 4A20"i + p2 ( A50"1 + 4A20"2), 

0 = 21r~ ( - ,6.22 + (A3 - A4)u; + A5u10"2 + 2A20"~ + 2A2/). (3: 
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To avoid spontaneous parity breaking in normal vacuum phase of QCD, it is necessary 
and sufficient to impose 

(4) 

Since QCD in normal conditions does not lead to parity breaking, the low-energy model 
must necessarily fulfill ( 4). 

The sufficient conditions follow from the positivity of the second variation y(2
) for a 

non-trivial solution of the two first equations (3) at p = 0. 
The required conditions are given by tr { y(2)} > 0 and DetV<2) > 0. For positive 

matrices it means that v/f)a > 0; ½~)o- > 0; Va~)rr > 0. The last relation determines 
the mass squared ofn' meson and thereby must be positive according to the inequality (4). 

The two set of conditions, namely those presented in eq. (4) represent restrictions that 
the symmetry breaking pattern of QCD imposes on its low-energy effective realization. At 
vanishing chemical potential, of course. 

3 Finite chemical potential 

Finite density is transmitted to the boson sector via t:,,,C = -(fJRH1qL + fJLHfon), where 
qL,R are assumed to be constituent quarks. Then the one-loop contribution to Verr is 

t:,,V.,rr(µ) = 

where µ is the chemical potential. The higher-order contributions of chiral expansion in 
1/ A 2 are not considered. This effective potential is normalized to reproduce the baryon 
density for quark matter PB = -½8µ!:,,11;,rr(µ) = N;,;;1p} = ~c,;;t(p,2 - l(H1}12)312 , where 

the quark Fermi momentum is PF= Jµ 2 - l(H1)1 2 , Normal nuclear density is PB~ 0.17 
fm- 3 ~ (1.8 fm)- 3 that corresponds to the average distance 1.8 fm between nucleons in 
nuclear matter. 

The conditions for a minimum of the effective potential are thus modified. For instance 
(3) is modified to 

2(!:,,110"1 + t:,,120"2) = 4)qO"f + 3.\sO"iCJ2 + 2(.\3 + .\4)0"10"~ + AGCJJ (6) 

+p2 ( 2(.\3 - .\4)0"1 + AG0"2) + 2N0(tt - 0"1) [/10"1 ✓ µ 2 - O"f - CJ: ln 
11 + ~] . 

The possibility of SPB is controlled by the inequality ( 4); in order to approach a SPB 
phase transition we have to diminish the l.h.s. of inequality ( 4) and therefore we need to have 

(assuming that the inequality indeed holds atµ = 0), 8µ [ (.\3 -.\4)0"f + A50"10"2 + 2.\20"~] < 0. 

This inequality is a necessary condition that has to be satisfied by the model at zero chemical 
potential for it to be potentially capable of yielding SPB. Thus P-violation is not exceptional 
but rather typical for admissible values of low-energy parameters of our model. 
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Let us now leave the case µ c::e O and examine the possible existence of a critical point 
where the strict inequality ( 4) does not hold and instead for µ > µcrit 

(.>-3 - .>-4)0-f + >-60-10-2 + 2>-2(0-J + i) = ~22-

After substituting (7) into the second Eq.(3) one finds that 

(7) 

A50-f + 4.>-40-10-2 + AG ( O-i + p2) = 2~12, (8) 

where we have taken into account that o-1 # 0. Together with (7) it completely fixes the 
v.e.v. 's of the scalar fields o-1,2 . 

Let us now try to determine the critical value of the chemical potential, namely the 
value where p(µc) = 0. Combining our equations one gets 

(4>-2~12 - A6~22)r2 + (2.>-6~12 - 4A4~22)r + 2(.>-3 - .>-4)~12 - A5~22 = 0; = 0"2 (9) r_ . 
0"1 

In order for a SPB phase to exist this equation has to possess real solutions. If 4.>-2~ 12 -
.>-6~ 22 # 0 the SPB phase is bounded by two critical points corresponding to second order 
transitions. If, on the contrary, 4.>-2~12 - .>-6~22 = 0 there is only one solution corresponding 
to a second order transition. 

4 The physical spectrum in the SPB phase 

Once a condensate for 7!'8 appears spontaneously the vector SU(2) symmetry is broken to 
U(l) and two charged 1!'

1 mesons are expected to possess zero masses (in the chiral limit). 
Calculations of the matrix of second variation of the effective potential gives positive masses 
for two scalar and four pseudoscalar mesons, whereas the doublet of charged of 7r mesons 
remain massless. Quantitatively the mass spectrum can be obtained only after kinetic terms 
are normalized. We take the general kinetic term symmetric under SU(2)L x SU(2)R global 

rotations to be Lkin = ¾ t Ajktr { 8µH}8" Hk} · After selecting out the v.e.v. (H1) = 
J,k=l 

(o-1) = iJ1 one can separate the bare Goldstone boson action with the chiral parameterization 
(1) and expansion around a vacuum configuration U = l+irr/ Fo+· • •, ~ = l+irr/2Fo+· • • 
and use the v.e. v. 's O"j = O'j + Ej , rr = r3p + fi. Then the quadratic part looks as follows 

Lk~~ = ~ t Ajk [8µEj8"Ek + }zO'jO'k8µ1l'a8µ1l'a] (10) 
j,k=l 0 

+ ;o t Aj2 [-p8µEj8µ1l'O + O'j8µ1l'a8µW] + ~A22 [ ;~8µ1l'08µ1l'O + 8µITaaµrra]' 

which shows the mixture between light and heavy pseudoscalar states and, in the SPB 
phase, also between scalar and pseudoscalar states. 

2 2 
Let us define F;f = I: AjkO'jO'k, ( = ¾ I: AjzO'j. In the symmetric phase p = 0 one 

j,k=l o j=l 

diagonalizes the Lagrangian by shifting the pion field 

e,(2l = ~8 ira8µira + ~(A - i 2 )8 rra8"I1a 
km,11: 2 µ 2 22 '> µ , 
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wherefrom, taking into account the second variation of the effective potential , one finds the 
masses of the pion triplets. The physical spectrum of the pseudoscalar mesons in the normal 

phase is, m; = 0, m;, = (A
2
~~ ( 2), where F1 = -~22 + (.\3 - .\4)ur + .\5u1u2 + 2.\2u~, . 

In the SPB phase the situation is more involved: pseudoscalar states mix with scalar 
ones. In particular, diagonalization is different for neutral and charged pions because the 
vector isospin symmetry is broken: SU(2)v -> U(l). Namely ir± = ?T± + (II±, ii-0 = 

?To + F' ;/ , ((rr0 
- f t AJ28µBJ). In this way SPB induces mixing of both massless 

0 + 22P o j=l 

and heavy neutral pions with scalars. The (partially) diagonalized kinetic term has the 
following form 

d 2l = a n±aµir'f + ~ (1 + A22 p2 )a n°EJ"ir0 + (A - ( 2)a rr±aµrr'f km µ 2 F,2 µ 22 µ 
0 

(12) 

+~(A - F5 i2)a rroaµrro 
2 

22 
F5 + A22p2' µ 

~ ~ AJkF5 + p2detAb1J01k O B a'"B _ Fop 1 a rro ~ A aµB 
+2 L....., F,2+A p2 µ J k F.2+A p2' µ L....., J2 J· 

j,k=l O 22 0 22 j=l 

We sec that even in the massless pion sector the isospin breaking SU(2)v -> U(l) occurs: 
neutral pions become less stable with a larger decay constant. Another observation is that 
in the charged meson sector the relationship between massless ?T and ?T

1 remain the same 
as in the symmetric phase. Further diagonalization II0

, B 1, I:2 fields leads to mixes neutral 
pseudoscalar and scalar states fi:0 , i\, I:2 . Therefore genuine mass states do not possess a 
definite parity in decays. 

5 Conclusions 

Thus our main results. Using an effective quark-meson lagrangian for low-energy QCD that 
retains the two lowest lying states in the scalar and pseudoscalar sectors parity breaking 
seems to be quite a realistic possibility in nuclear matter at moderate densities.We have 
found the necessary and sufficient conditions for a phase where parity is spontaneously 
broken to exist. Salient characteristics of this phase would be the spontaneous breaking 
)f the vector isospin symmetry SU(2)v down to U(l) and the generation two additional 
nassless charged pseudoscalar mesons. We also find a strong mixing between scalar and 
)seudoscalar states that translate spontaneous parity breaking into meson decays. The 
nass eigenstates will decay both in odd and even number of pions simultaneously. Isospin 
lreaking can also be visible in decay constants. 
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Monopoles in lattice Electroweak theory 
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Abstract 

There exist several types of monopole - like topological defects in Electroweak 
theory. We investigate properties of these objects using lattice numerical methods. 
The intimate connection between them and the dynamics of the theory is established. 
We find that the density of Nambu monopoles cannot be predicted by the choice of the 
initial parameters of Electroweak theory and should be considered as the new external 
parameter of the theory. We also investigate the difference between the versions of 
Electroweak theory with the gauge groups SU(2) 0 U(l) and SU(2) 0 U(l)/Z2. We 
do not detect any difference at a~ 1~8 . However, such a difference appears in the 
unphysical region of large coupling constant a> 0.1. 

In both cases we use the following lattice variables: 1. The gauge field U = (U, 0), where 
U E SU(2), ei0 E U(l) realized as link variables. 2. A scalar doublet <I>,,, a= l, 2. The 
potential for the scalar field is considered in its simplest form in the London limit, i.e., in the 
limit of infinite bare Higgs mass. From the very beginning we fix the unitary gauge <1> 1 = fi, 
<I>2 = 0. For the case of the SU(2) x U(l)/Z2 symmetric model we chose the action of the 
form (A) S9 = PLp!aquetteW-½ Tr Up cos 0p)+½(l-cos 20p))+")' L:ry(l-Re(ugeiOxy )) , where 
the plaquette variables are defined as Up = UxyUy,U:V,U;w, and 0p = 0xy + 0y, - 0w, - 0xw 
for the plaquette composed of the vertices x, y, z, w. For the case of the conventional 
SU(2) x U(l) symmetric model we use the action (B) S9 = PLplaquetteHl-½TrUp)+3(1-
cos0p)) + 'YLxy(l - Re(U;~ei0x•)). The following variables are considered as creating a Z 
boson and a W boson, respectively: Zxy = Zt = sin [ArgU;i+0xy], Wxy = Wf = U;;e-i0xu. 
Here, µ represents the direction (xy). In the unitary gauge there is also a U(l) lattice 
gauge field, which is defined as Axy = A~ = [-ArgUJ; +0xy] mod21r. The phase diagrams 
of the two models under consideration are presented in figure 1. The dashed vertical 
line represents the phase transition in the SU(2) ® U(l)-symmetric model. This is the 
confincment-deconfinement phase transition corresponding to the U(l) constituents of the 
model. The same transition for t.hc SU(2) ® U(l)/Zrsymmetric model is represented by 
the solid vertical line. The dash<'d horizontal line corresponds to the transition between the 
broken and symmetric phases of model A. The continuous horizontal line represents the 
same transition in model 13. l11t<•n•st.ingly, in the SU(2) ® U(l)/Z2 model both transition 
lines meet, forming a triple point.. Heal physics is commonly believed to be achieved within 
the phases of the two models situated in the right upper corner of Fig. l. The double
dotted-r.!ashed vertical line on the right-hand side of the diagram represents the line, where 
the renormalized n is constant and equal to 1/128. All simulations were performed on 
lattices of sizes 81 and 1G1 . Several points were checked using a lattice 244 . In general we 
found no significant difference between the mentioned lattice sizes. 
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Figure 1: The phase diagrams of the models in the (,6, -y)-plane. 

We perform the calculation of renormalized fine structure constant an using the poten
tial for infinitely heavy external fermions. We consider Wilson loops for the right-handed 
external leptons: W1!pt (l) = (Re II(xy)eie2

i
9
•~). Here l denotes a closed contour on the lat

tice. We consider the following quantity constructed from the rectangular Wilson loop of 
size r x t: V( r) = limt-,00 log w~£(:~>1)). Due to exchange by virtual photons at large enough 
distances we expect the appearance of the Coulomb interaction V(r) =-~+canst. 

The worldlines of the quantum Nambu monopoles could be extracted from the field 
configurations as follows: jz = oE = ~•d([dZ']mod21r) (The notations of differential forms 

on the lattice are used here.) The monopole density is defined as p = \ LHa;rYUnkl) , where 

L is the lattice size. In order to investigate the condensation of monopoles we use the 
percolation probability II(A). It is the probability that two infinitely distant points are 
connected. by a monopole cluster. We show Nambu monopole density and percolation 
probability as a function of -y along the line of constant renormalized an = 1/128. It is 
clear that the percolation probability is the order parameter of the transition from the 
symmetric to the broken (both SU(2) and 
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Figure 2: Nambu monopole density and percolation probability as a function of I along 
the line of constant 1/an = 128. 

U(l)), which is carried by Nambu monopoles. The behavior of D.Sp shows that a quantum 
Nambu monopole may indeed be considered as a physical object. 
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In order to evaluate the mass of the Z-boson we use the zero - momentum correlator: 
Lx,y(Lµ Z~' Zt) ~ e-Mzlxo-Yol + e-Mz(L-lxo-yo/). Here the summation Lx,y is over the three 
"space" components of the four - vectors x and y while x0 , y0 denote their "time" compo
nents. L is the lattice length in the "time" direction. The physical scale is given in our 
lattice theory by the value of the Z-boson mass Mf/Y' ~ 91 GeV. Therefore the lattice 
spacing is evaluated to be a ~ (91GevJ-1 Mz, where Mz is the Z boson mass in lattice 
units. The real continuum physics should be approached along the the line of constant 
<xR = 1; 8 , i.e. along the line of constant physics. We investigated the dependence of the 
ultraviolet cutoff A = a- 1 = (91 GeV)/Mz on 'Y along the line of constant physics. It 
occurs that A is increasing slowly along this line with decreasing 'Y and achieves the value 
430 ± 40 GeV at the transition point between the physical Higgs phase and the symmetric 
phase. According to our results this value does not depend on the lattice size. This means 
that the largest achievable value cf the ultraviolet cutoff is equal to 430 ± 40 GeV if the 
potential for the Higgs field is considered in the London limit. 

Our lattice study also demonstrates another peculiar feature of Electroweak theory. If 
we are moving along the line of constant a = 1/128, then the Nambu-monopole density 
decreases with increasing 'Y (for 'Y > 1). Its behavior is approximated with a nice accuracy 
by the simple formula: p ~ e2·08- 4·6-Y. This means that the density of N ambu monopoles 
in the continuum theory cannot be predicted by the choice of the usual parameters of the 
Electroweak theory and should be considered as a new external parameter of the theory. 

We found that the two definitions of the theory (with the gauge groups SU(2) 0U(l)/ Z2 

and SU(2)0U(l), respectively) do not lead to different predictions at the values of a around 
1/128. However, the corresponding models behave differently at unphysically large values 
of a > 0.1. The main difference is in the behavior of the so-called hypercharge monopoles. 

This work was partly supported by RFBR grants 08-02-00661, and 07-02-00237, RFBR
DFG grant 06-02-04010, by Grant for leading scientific schools 679.2008.2, by Federal Pro
gram of the Russian Ministry of Industry, Science and Technology No 40.052.1.1.1112. 
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Mechanics of Quark Exchange in High-Energy 
Hadron Reactions at Forward Angles 

M.V. Bondarenco 
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Abstract 
The 2-quark back-angle scattering mechanism is shown to reproduce main features 

of high-energy hh flavor-exchange reactions. Prospects for reduction of the reaction 
matrix element to a form of convolution of hadron wave functions with the hard 
scattering kernel are discussed. Wave function models suitable for convolution with 
the kernel, which is singular at small x, and the emerging form-factor types, are 
discussed. 

Reactions of one unit of flavor exchange between two hadrons scattering through small 
angles at high energy can occur, to LO in Mandelstam s, due to exchange of a single pair of 
quarks, which enter into a hard collision and completely interchange their large longitudinal 
momenta (scatter to 180° in c.m.s.). With no rapidity gap between the hadron remnants 
and their new comoving quarks created, they should with high probability recombine into 
a new pair of hadrons. In the binary reaction channel the differential cross-section, indeed, 
exhibits a forward peak of typical P1. ~ 300 MeV width. The peak decreases with the 
energy rather slowly, as s-1+-2 - approximately as does the Born-level 2-quark back angle 
scattering differential cross-section ( ex: s-2

); the rest of the energy dependence must be 
attributed to reggeization effects. 

The Born diagram of the head-on relativistic quark collision is closely similar to that 
of real photon scattering on a quark, owing to the simiiarity between hard gluon and hard 
quark propagators on the light cone. Yet, high energy hadron reactions are much easier to 
measure then hard forward real Compton scattering is, given the coupling constant factor 
a:~ in the cross-section instead of 0:7,M, and no radiative or diffractive background involved. 
On the theory side, it brings complications, since eikonal (gauge link, Wilson line) phases in 
hadron remnant interactions emerge, which spoil factorization in terms of GPDs. However, 
that may actually happen in photon-hadron interactions as well, and the A+ = 0 gauge 
condition does not help [l]. As those links are to be dealt with anyway, it would be better 
to constrain them using cross-checks from different processes. 

Forward Compton scattering is, also, not the best playground for studying hadron spin 
effects, since quark SSA for it cancel in the sum of two LO diagrams. As for 2-quark 
scattering in flavor exchange, there is only one LO diagram, so transverse polarization may 
be open, provided soft contributions supply necessary phase shifts. Generally, soft effects 
can stem from eikonal links, and also from initial and final state wave functions sandwiching 
the complex hard scattering kernel. Both eikonal and initial/final state contributions are 
proportional to the interaction strength, but still, it is not excluded that some of them may 
happen to be more significant. To make a sensible decision, it is instructive first to develop 
qualitative understanding of the dynamics. 
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1 Finite Longitudinal Shift + LS-Coupling 

Consider the act of the head-on quark collision in the rest frame of one of the hadrons. 
Instead of backscattering, then, we have braking of a fast quark and knockout of a resting 
one. The mediating hard gluon, being shed from a fast particle, must propagate along 
the same direction. Its range (Joffe time (2]) appears to be collision energy independent 
and thereby, despite high virtuality of the gluon, finite: lz ~ (MtargXtarg)-

1 ~ RJl, So, 
the stop point of the incident quark on average is shifted with respect to the centre of 
the well by a distance commensurable with the hadron radius, and with the simultaneous 
finite transverse momentum transfer in the head-on collision, the captured quark acquires 
an orbital angular momentum in the normal direction. 

Of course, if by definition the final state, as well as the initial one, must have zero orbital 
angular momentum (s-state), the quark would be forbidden to orbit. But relativistically, 
the single-quark s-state is the one having upper Dirac bispinor components multiplied by 
spatial wave functions with L = 0, but the lower ones, by parity reasons, must have L = 1, 
composing it with the spin S = ½ to yield the same total momentum J = ½- Now, to flip 
the spin of the s-state bound quark in a head-on collision, it obviously suffices to change 
projection of L for its lower Dirac bispinor components. 

i,From the emerging spatial picture it seems clear that the effect is, basically, bulk, not 
due some fine local interference. So, the implementation of real eikonal phases is unlikely 
to modify the picture drastically. Opacity effects can be of consequence, but their 3d 
distribution is rather uncertain. Therefore, a reasonable strategy would be to begin with 
the neglect of eikonal factors, and ultimately look for deriving constraints on them when 
a nonremovable discrepancy with the data arises1 . Thus we arrive at the representation of 
hh-collision amplitudes in terms of wave function overlaps2

. 

A popular model of light-front WF with LS-interaction is that of [3]. However, it is 
of perturbative origin, thence inheriting support x E [O, 1) and vanishing at the endpoints. 
Therefore, no imaginary part can result in convolution of such wave functions with the 
hard kernel __L_+·o· An alternative class of models which tend to give wave functions non-

x1x2 i 

vanishing and continuous at x = 0 (with support in x ranging, in principle, from -oo to 
+oo, and x normalization being to the single-constituent rest energy, not to that of the 
whole composite system) assume non-interacting constituents moving in a self-consistent 
field, static in their c.m.s.3 The static well is unable to accommodate for recoil effects which 
must be crucial at -t > M 2

, but there is no experimental data in that far region anyway. 
With wave functions continuous at x = 0, the imaginary part of the matrix element, in 
fact, logarithmically diverges in the hard approximation, so it is not purely hard, but that 
introduces only a weak dependence on the cutoff parameter. 

The results obtained with a gaussian WF model were partially presented at the confer
ence, but prior to embarking at model assumptions, it is desirable to exhaust all model
independent means. To this end, one can admit that in general, x-dependence of H and E 

1 Essentially, this is the same attitude as in DGLAP, where, by the way, the role of eikonal factors, to 
date, still has not become tangible, at typical x. 

2Note that for elastic scattering that is impossible in principle, because it is caused by soft exchanges. 
The minimum number of gluons exchanged in the t-channel is two, and generally they need not be all 
attached to the same parton line(though, conditions for the opposite are sought in 'heavy Pomeron' models). 

3 At that, GPDs near x = 0 are not to be interpreted as quark densities at x > 0 and minus antiquark 
densities at x < 0, at any rate not as those extracted from DIS data using the parton model. 
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GPDs strongly differ4
, and analyze consequences of factorization in their terms. 

2 Factorization With Imaginary Contributions 

The factorization of the matrix element proceeds through decomposition of the hard kernel 

1 11 .1 . 1 ---. = P-P- - i1r-o(x2) - mo(x1)-, 
X1X2 + i0 x1 X2 Jx1J Jx2I 

and leads, for a representative reaction np -+ pn, to the matrix element 

M1; ex 1+ ( ( ) iP ( ) N) 1+ ( ( ) iP ( ) N) Wn H_ t + 
2
M E_ ta WpWp H_ t + 

2
M E_ ta Wn 

· 1+ (H ( ) iPE ( ) N) 1+ ( ( ) iP ( ) N) iwn + t + 2M + ta WpWp Ho t + 2M Ea ta Wn 

· 1+ ( ( ) iP ( ) N) 1+ ( ( ) iP ( ) N) iwn Ho t + 2M Ea t a WpWp H+ t + 
2

M E+ t a Wn 

+ (ff:(t) - 2iH+(t)H0 (t)) w~+aLwpw~+aLwn 

with 

H_(t) = P j dx H;(x, 0, t), H+(t, Ax) = ( di xi H;(x, 0, t) ~ H+(t), H0(t) = 1r H;(o, 0, t), 
X Jlxl>>-z X 

and similarly for E and ff. Formally, this structure resembles the sum oft-channel pole 
exchanges, but 2 of them having imaginary coupling constants. Polarization emerges due 
to interference between the "-" exchange and "0+" and "+0" exchanges. 

Note that t-dependences of"-" form-factors dominated by typical x and of "0" and "+" 
form-factors. fed by x ~ 0 may be of quite different width. Presence of several t-slopes 
is typically observed in flavor exchange reactions, the· pre-QCD interpretation being the 
difference in masses of the exchanged mesons and onset of central absorption [5]. The quark 
backscattering theory, however, does not contain correlated qij transverse propagation. 

Phenomenological consequences of u-channel gluon reggeization, and of possible contri
butions involving extra t-channel color exchanges will be discussed elsewhere. 

Acknowledgement. The author is grateful to organizers of the conference for local 
hospitality during the meeting. 
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Abstract 

For SU(2) lattice gauge theory we study numerically the infrared behavior of the 
Landau gauge ghost and gluon propagators with the special accent on the Gribov copy 
dependence. We find that the Gribov copy effect for both propagators is essential in 
the infrared. In particular, our best copy dressing function of the ghost propagator 
approaches a plateau in the infrared, while for the random first copy it still grows. 
Our best copy zero-momentum gluon propagator shows a tendency to decrease with 
growing lattice size which excludes singular solutions. The running coupling constant 
tends to zero. 

1 Introduction 

In recent years the interest to the lattice results for the field propagators in the IR region has 
been revived. This interest was stimulated also by the practical progress achieved over the 
years within the Dyson-Schwinger (DS) approach (for an intermediate review sec [l]), and 
more recently with the help of functional renormalization group (FRG) equations [2, 3]. 
Infrared QCD has been also investigated using the stochastic quantization method [4, 5], 
as well as with effective actions [6, 7]. 

The main motivation for numerical study is triggered by the puzzle posed by the above 
mentioned continuum approaches. Different kinds of solutions with a quite different IR 
behavior of the gluon and ghost propagators have been reported by different groups. The 
power-like solution with relation between gluon "'D and ghost Kc> 0 exponents KD = -2Kc 
was called recently a scaling solution [8]. This solution [9, 10, 11, 4, 3, 12] allows the 
gluon propagator to vanish and the ghost dressing function diverge in the IR limit in 
one-to-one correspondence with both the Gribov-Zwanziger scenario [13, 14] and the Kugo
Ojima criterion [15, 16] for confinement. On the contrary, the so-called decoupling solutions 
[17, 7, 18, 19] provide an IR finite or weakly divergent gluon propagator and a finite ghost 
dressing function leading to a running coupling vanishing in the infrared. The lattice 
approach based on the first-principle path integral quantization should be able to resolve 
the issue. 

One of the main goals of lattice studies was to clarify the infrared (IR) asymptotics 
of the propagators and of the running coupling which can be determined through these 
propagators. At the same time it has been found that the lattice approach has its own 
difficulties when applied to such studies. One of them is that to reach small momenta 
necessary to study the IR limit one has to go to huge lattices which makes the numerical 
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simulations formidable. Another, less apparent, but not less difficult problem is the problem 
of Gribov copies 1

. Although for many years it was believed that the effect of Gribov copies 
on both gluon and ghost propagators was weak and could be considered just as a noise in 
the scaling region (see, e.g., [20]) it has been found first for the ghost propagator [21] and 
quite recently for the gluon propagator [22] that these effects are in fact quite strong. The 
presence of these effects makes the task of lattice computations of the field propagators in 
the IR region even more difficult. 

In this paper we continue our lattice study of the influence of Gribov copies on the 
(minimal) Landau gauge SU(2) gluon and ghost propagators in the IR region by applying 
global Z(2) flip transformations in combination with an effective optimization algorithm, 
the so-called simulated annealing (SA). The flip transformation was introduced in [22]. Its 
influence on the gluon propagator was thoroughly studied lateron [23, 24]. We find the 
Gribov copy dependence to be very strong. Our results look rather as an argument in favor 
of the decoupling solution with a non-singular gluon propagator. However, we do not yet 
consider the problem of Gribov copies and, correspondingly, the infrared asymptotics of the 
gluon propagator to be finally resolved. 

2 Gluon and ghost propagators: the definitions 

For the Monte Carlo generation of ensembles of non-gauge-fixed gauge field configurations 
we use the standard Wilson action, which for the case of an SU(2) gauge group is written 

S = /3 LL [ 1 - ~ Tr(UxµUx+µ;vUJ+v;µUJv)] ; 
X µ>v 

/3 = 4/gr (1) 

Here g0 is a bare coupling constant and Uxµ E SU(2) are the link variables. The latter 
transform as follows under gauge transformations gx : Uxµ .-!?-. UJµ = glUxµgx+µ where 
gx E SU(2). The standard definition of the dimensionless lattice gauge vector potential is 
Ax+µ/2,µ = (Uxµ - UJµ)/2i = A~+µ/ 2,µaa/2. In lattice gauge theory the usual choice of the 

Landau gauge condition is (oA)x = E!=l (Ax+µ/2;µ - Ax-µ/2;µ) = 0, which is equivalent 
to finding an extremum of the gauge functional 

Fu(g) = 4~ L ~ Tr u:µ, 
xµ 

(2) 

where V = L4 is the lattice volume, with respect to gauge transformations gx . The 
manifold consisting of Gribov copies providing local maxima of the functional (2) and a 
semi-positive Faddeev-Popov operator (see below) is called Gribov region !1, while that of 
the global maxima is called the fundamental modular domain A c !1. Our gauge fixing 
procedure is aimed to approach this domain. 

The gluon propagator D and its dressing function Z arc then defined (for p =/ 0) by 

n:~(p) = ;; (A:(k)A~(-k)) = (8µv - p~;v) i5ab D(p); Z(p) = D(p) p2, (3) 

1 It is worthwhile to note that the DS approach introduced originally as a method for resummation of 
the perturbative series is not sensible to different gauge copies. 
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where A(k) represents the Fourier transform ofthe gauge potentials after having fixed the 
gauge. The momentum pis given by Pµ = (2/a) sin (1rkµ/ L), kµ E (-L/2, L/2]. For pc/- 0, 
one gets from Eq. (3) D(p) = ½ I::~=l I::!=i D~:(p), whereas at p = 0 the "zero momentum 
propagator" D(O) is defined as D(O) = f2 L~=l I::!=i D~:(p = 0). The lattice expression 
for the Landau gauge Faddeev-Popov operator Mab = -[!1,D~b (w_here D~b denotes the 
covariant derivative in the adjoint representation) for SU(2) is given by 

M:i[U] = L { ( s:t + s;b_µ;1,) Ox;y - ( s:t - A~~) Oy;x+µ - ( s;b_µ;µ + A~b_µ;µ) Oy;x-µ} (4) 
µ 

where s~t = c5ab ½ Tr Uxµ and A~t = -½ Cabe A;+µ/2;µ ,. From the expression ( 4) it follows 
that a trivial zero eigenvalue is always present, such that at the Gribov horizon 80 the first 
non-trivial zero-eigenvalue appears. Thus, if the Landau gauge is properly implemented, 
M[U] is a symmetric and semi-positive matrix. 

The ghost propagator Gab ( x, y) is defined in a standard way 

Gab(x,y) = c5ab G(x -y) = :2( ( Ji.rl ):: [U]). (5) 

The ghost propagator G(p) in momentum space and its dressing function J(p) are 

G(p) = !!!_ L e-2t k(x-y)( ( M-1 ):a [U]); 
3V x,y,a y 

J(p) = G(p) P2' (6) 

where the coefficient 
3
t is taken for a full normalization, including the indicated color 

average over a= l, 2, 3. 
For the gauge fixing procedure we employ the so-called FSA algorithm described in our 

papers [23, 24]. 

3 Results 

In this section we present the data for the gluon and ghost propagator. In Fig. 1 we show 
the new data for the gluon propagator D(p) in physical units obtained on the 404 lattice at 
/3 = 2.20. We compare the be FSA result with the Jc SA result (the latter without flips). 
We clearly see the Gribov copy effect for the lowest accessible momenta moving the data 
points to lower values for better copies (with the larger gauge functional). The different 
points at p ~ 300MeV belong to different realizations of p2 and seem to indicate some 
violation of the hypercubic symmetry. 

In Fig. 2 we present these new data together with the ones obtained on smaller lattice 
sizes always for the FSA be case. We see that the data are nicely consistent with each other 
and indicate a turnover to decreasing values towards vanishing momentum. A smooth 
extrapolation to D(O) becomes visible. I3ut still there is no indication for a vanishing 
gluon propagator at zero momentum for increasing volume. This behavior demonstrates 
a (slight) tendency to decrease, and looks hardly consistent with D(O) = 0 limit. One 
could consider it rather like an argument in favor of the decoupling solution with a finite 
gluon propagator in the infrared. However, one still cannot exclude that there are even 
more efficient gauge· fixing inethods, superior to the one we use, which could make this 
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Figure 2: The momentum dependence of 
the gluon propagator D(p) on various lat
tice size. be results are shown throughout. 

decreasing more drastic. However, our results for D(O) are in clear disagreement even with 
a weak divergence advocated in [17, 19]. 

Analogously to Fig. 1 in Fig. 3 we show the ghost dressing function J(p) obtained on 
the 404 lattice. There is a very clear Gribov copy effect changing J(p) even qualitativly. 
Whereas the Jc SA results seem to support a weakly singular behavior, the be FSA data 
provide a plateau pointing to a finite IR value of the ghost dressing function, i.e. a tree-level 
behavior of the ghost propagator. Our data indicate that the plateau starts at p~200 MeV. 

In Fig. 4 the ghost dressing function is shown for lattice sizes from 164 to 404
• We show 

always be FSA results, except for 244, where we compare also with Jc data obtained with 
the conventional OR algorithm. The latter show an even stronger IR singular behavior 
than those data obtained with the Jc SA algorithm. There is a clear weakening of the 
singularity visible additionally to a finite-size effect which seems to lead to an IR plateau 
behavior. Such a plateau would be consistent with the different decoupling solutions and 
in contradiction with the Kugo-Ojima confinement criterion. 

In Fig. 5 for the be FSA results obtained on lattice sizes from 164 up to 404 we draw 
the behavior of the running coupling related to the ghost-ghost-gluon vertex 

2 

a,(p) = f;1 2(p) Z(p) (7) 

under the assumption that the vertex function is constant as seen in perturbation theory 
[25] and approximately also in lattice simulations [26, 27]. The decrease towards p2 = 0 
is obvious. With the improved gauge fixing the effect is even strengthened, such that an 
approach to an IR fixed point as expected from the scaling DS and FRG solution seems to 
be excluded. 

4 Conclusions 

1) For the gluon propagator our new data for the 404 lattice agree with data on the smaller 
lattices (up to 324). We confirm our conclusion [23] about the appearance of the local 
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maximum at a non-zero value of the momentum p2 (this local maximum was absent for 
lattice sizes :S 244

). The zero-momentum gluon propagator D(0) has a tendency to decrease 
with growing lattice size L. This observation is in clear contradiction with the infrared 
divergent gluon propagator obtained on the basis of Ward-Slavnov-Taylor identities. At 
the time being, this behavior looks hardly consistent with a D(0) = 0 limit at infinite L, 
and could be considered rather like an argument in favor of the decoupling solution with a 
non-singular gluon propagator. However, we do not yet consider the problem of the infrared 
asymptotics of the gluon propagator as a finally resolved. 

2) We calculated the ghost propagator for lattices up to 404
• Our be dressing function 

J(p) of the ghost propagator demonstrates the approach to a plateau in the infrared, while 
the Jc dressing ftmction still grows (as it was in earlier calculations). 

This is a fir:.;t, clear indication of the lack of the IR-enhancement of the ghost propaga
tor. This plat.can hdmvior is in a clear contradiction with the Kugo-Ogima confinement 
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criterion. The fate of this confinement criterion still needs a further clarification. 

3) We have found that the effect of Gribov copies for both the propagators and in the 
consequence for the running coupling is essential in the infrared range p < 1 GeV. Therefore, 
the quality of the gauge fixing procedure in the study of gauge dependent observables 
remains important. 

We cannot say that we have reached the fundamental modular region when fixing the 
Landau gauge on larger lattices. One cannot exclude that there is another method superior 
to our FSA algorithm. We believe that the Gribov problem deserves even more thorough 
studies. 

This investigation has been partly supported by the Heisenberg-Landau program and 
partly by the joint DFG-RFBR grant 436 RUS 113/866/0-1 and the RFBR-DFG grant 
06-02-04014 and by the grant NSh-679.2008.2. 
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Solutions of DGLAP evolution equations for the gluon 
and structure function exponents and determination 

of the Reduced Cross Section 

G.R.Boroun 
Physics Department, Razi University, Kermanshah 67149, Iran 

Abstract 

A set of formulae using the solution of the QCD Dokshitzer-Gribov-Lipatov
Altarelli-parisi (DGLAP) evolution equation to the extract of the exponent Ag gluon 
distribution and AS structure function from the Regge- like behavior at low x is 
presented. So, the reduced cross section based on Regge-like behavior of the gluon 
distribution and structure function is determined. The detailed analysis compared 
with the HERA experiment Hl data. All results can be consistently described within 
the framework of perturbative QCD. 

Neglecting the quark singlet part, the DGLAP equation for the gluon evolution in the 
NLO can be written as [l]: 

2 8G a, 11
[ 1 ( ) a, 2 ( )] (x 2) Q aQ2 = 27!' "' Pgg z + 27!' Pgg z G ~• Q dz, (1) 

where PJg(z) and P;g(z) are the LO and NLO Altarelli- Parisi splitting kernels and a,(Q2
) 

is the running coupling in NLO: To find an analytic solution, we set the splitting kernels 
at the small x limit. The small- x region of DIS offerees a unique possibility to explore the 
Regge limit of PQCD [2]. The rapid rise in Q2 of the structure functions was considered as a 
sign of departure from the standard Regge behavior. The reason was that the HERA data, 
when fitted by a single "Regge-- pomeron" term ~ x--\s, where As is the pomeron intercept 
minus one, show that As = dln~~~l'.Q

2
) definitely rises with Q2 • The HERA data should 

determine the small x behavior of gluon and sea quark distribution. Roughly speaking the 
data on F2 constrain the sea Sand the data on the slope dF2/dlnQ2 determine the gluon 
g. The exponent Ag is given as the derivative: 

that is 

A _ 8InG(x, t) I 
g - 8lnl t=cte• 

X 

(2) 

(3) 

where Ag is a constant and Ag is the intercept. Using these equations and carrying out the 
integration, we found [4]: 

In Ago = t(3a _ 61a
2
)1-x,\• dt 

A - x-\•f,t x--\,(;!Q - 6102 )dt ft, 7l' 97!'2 A · 
g to " 9,,2 o g 

(4) 
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This equation obtain an approximation expression for >..9 • Where >..90 = 8Inffiiito) is the 

exponent at the starting scale t0 while G(x, t0 ) is the input gluon distribution (~o=ln( ~) 
andA is the QCD cut- off parameter). Also with neglecting the quark, the DG LAP evolution 
equation for the singlet structure function has the form: 

dFf a. 11 ( 1 a, 2 (x 2 -d = -
2 

dz 2NtPq9 (z) + -
2 

Pq9 (z))G -, Q ). 
t 11'x 11' Z 

(5) 

The small- x limit of the next- to- leading order splitting function for the evolution of the 
singlet quark is then (3]: 

P;
9
(x)---> a, 40CANtTR 

271' 9x 
(6) 

Now, let us consider the Regge- like behavior of the gluon distribution and carrying out the 
integration, so the exponent >..s being directly calculate. Finally we obtain (4]: 

>..sF2(x, t) - >-s0 F2(x, to) = 0.5551t 2>.. >.. -- a8 G(x, t)[(--9-(1 - x3+A•) + --9 -(1 - x1+A•) 
71' to 3 + >..9 1 + >..9 

-~(1 - x2H•)) + (2x3H• + x1H• - 2x2H•)]dt 
2+>..g 
1.85211 2 +-2- a,G(x, t)dt 

71' to 
(7) 

which defines the solution for >..8 . To solve this, we use of >..s0 = mn:~~1·10
> at the starting 

scale t0 and from F2(x, t0 ) as the input structure function . On the basis of the gluon and 
structure function exponents we can be evaluated of the reduced cross section as defined 
(5,6]: 

2 

Ur = F2(x, Q2
) - f+ .FL(x, Q2) (8) 

and Y+ = 1 + (1 - y) 2• Here Q2 is the squared four-momentum transfer, x denotes the 
Bjorken scaling variable, y = Q2 / sx is the inelasticity, with s the electron-proton center 
of mass energy squared, and a is the fine structure constant. Based on the gluon and 
structure function Regge like behavior, the strong rise of F2(x, Q2) and xg(x, Q2) at small 
x is corresponding to a rising longitudinal structure function. At low x, using the fact that 
the nonsinglet contribution Ff 8 can be ignored safely. So we can write the longitudinal 
structure function by an integral over the quark and gluon distributions as: 

FL(x,Q2) = 4a, 11 dy(!:-)2F2(y,Q2) + 20as 11 dy (::)2(1- ::)G(y,Q2). (9) 
371' X Y Y 911' X Y Y Y 

With respect to the Regge- like behavior of the gluon and structure function at small x and 
. substitution in Eq.9 and carrying out of the integration, we found: 

FL(x, Q2) = riF2(x, Q2) + (G(x, Q2
), (10) 
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where 
4crs 1 - x 2+.xs 

71 = ~ (2 + As) ' 
(11) 

and 
20cr. (2 + A9 )x3+A9 - (3 + A9 )x2+.x9 + 1 

( = % (2 + A
9
)(3 + Ag) . (12) 

So the reduced cross section c,, based on and As & Ag exponents is obtained as: 

Q2 A /nx y2 y2 Q2 A /nx 

c,,(x, Q2) = F2(x, Q5)( Q~) S· ln(Q2/A2J [1 - Y+ 71] - Y+ (G(x, Q5)(Q~) 9• ln(Q2/A'J, (13) 

where F2(x, Q5) and G(x, Q5) are the input structure function and gluon distribution func
tion. Fig.1 shows the reduced cross section obtained and compared with the experimental 
results from Hl collaboration [7]. In Fig.l a comparison is made between our obtained 
values and the existing data, indicating the fact that the reduced cross section c,, can be 
determined with reasonable precision. As can be seen, there is some rate of increment as 
observed in the Hl data, but with a somewhat smaller rate. For Q2 constant, there is a 
cross-over point for both of curves whose prediction is numerically equal. To conclude, in 

,o . ThlsworK . H1 data 

i 
,, 

+· : 
~ .. : 
" 

,.o : 
I ,; ,· I I 

o., 

0.0 , ... ··~ 0.01 

Figure 1: Determination of the reduced DIS scattering cross section (closed points). Trian
gles represent data from the Hl Collab. [7] with the total errors include the experimental 
and model uncertainly of the QCD fit. 

this paper we have obtained a solution of the DGLAP equation for the exponent As(x, Q2 ) 

and Ag(x, Q2) in the next- to- leading order (NLO) at low x. The behavior of F2 at low x 
is consistent with a dependence F2(x, Q2

) = Asx-.Xs throughout that region. Based upon 
this behavior an approximate method for the calculation c,, is presented. In this method 
the c,, for low-x values at Q2 constant value using the DGLAP evolution equation without 
knowledge of the longitudinal structure function FL(x, Q2 ) determined. There is however a 
region, a Q2 interval, where the two regimes, Regge and perturbative QCD, are compatible. 
We have seen that we can use Regge-like theory with constrain the initial parton densities 
at Q2 = Q5 and obtain the distributions at higher virtualities with the DGLAP evolution 
equation. These comparisons indicate that the form of obtained the reduced cross sections 
are similar to the one predicted from experimental data. 

285 



References 

(l] Yu.L.Dokshitzer, Sov.Phys.JETP 46, 641(1977); G.Altarelli and G.Parisi, Nucl.Phys.B 
126, 298(1977); V.N.Gribov and L.N.Lipatov, Sov.J.Nucl.Phys. 15, 438(1972). 

(2] R.K.Ellis, W.J.Stirling and B.R.Webber, QCD and Collider Physics(Cambridge Uni
versity Press)l996. 

(3] P.D.Collins, An introduction to Regge theory an high-energy physics(Cambridge Uni-
versity Press, Cambridge 1997)Cambridge. 

(4] G.R.Boroun and B.Rezaie, Phys.Atom.Nucl. 71, No.6,1077(2008) 
(5] R.G.Roberts,The structure of the proton,(Cambridge university press 1990). 
(6] N.Ghahramany and G.R.Boroun, phys.Lett. B528, 239(2002). 
[7] C.Adloff et al., Hl collab.Eur.Phys.J.C21, 33-61(2001). 

286 



Radiative Decays of Pseudoscalar (P) and Vector (V) 
Mesons and the Process e+ e- --1- r,' p 

Yu. M. Bystritskiya, E. A. Kuraeva, M. Secanskyb and M. K. Volkova 
a Joint Institute for Nuclear Research, Dubna, Russia 

b Institute of Physics, Slovak Academy of Sciences, Bratislava, Slovakia 

Abstract 

Radiative decays of pseudoscalar and vector mesons are calculated in the frame
work of the chiral Nambu-Jona-Lasinio (NJL) model. We use the amplitude for 
triangle quark loops of anomalous type. The process of the electron-positron annihi
lation with production of r/ and p mesons in the center of mass energy range from 
1.6 to 3.5 GeV is considered. 

1 Radiative decays of vector and pseudoscalar mesons 

For the description of interaction of mesons with quarks we use the NJL model lagrangian 
[1, 2]: 

(1) 

where q = ( u, d, ,g) where u, d, s are the quark fields, Q = diag (2/3, -1/3, -1/3) is 

the quark charge matrix, Au = ( v12Ao +As) / v'3, A8 = (-Ao+ v12As) / v'3 where Ai are 

the Gell-Mann matrices and Ao = {iJ3 diag (1, 1, 1). 9u = mu/ f1r, 9s = m./ fs are the 
meson-quark coupling constants which are evaluated by Goldberger-Treiman relation ( mu = 
263 MeV, m 8 = 407 MeV are quark masses [4], and f1r = 92.4 MeV is the pion decay 
constant and fs = l.3f" ). gp = 5.94 is the p----> 271' coupling constant. 

Physical states of ry and ry' mesons are obtained after taking into account of singlet-octet 
mixing of 'r/u and 'r/s with the angle 0 = 51.3° [1, 5]: 

TJ = -ryusin0+ry8 cos0, ry' = 'r/u cos 0 + 'r/s sin 0. (2) 

The vector meson decay V(p1) ----> -y(p2 ) + P(p3 ) is described by the amplitude of one loop 
with quark: 

(3) 

where ( abed) = Ea1310a"lf3 c1 d0
, 9v = gp/2, gp = 9u if light quarks go through the loop and 

gp = 9s if strange quarks are involved; Cpv is the flavour-color multiplier corresponding 
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Decay Experiment Approximation I (5) Approximation II (4) 
p-+ 'rrY 39,47 65 33.72 
w-+ T/'Y 4.07 7,83 4.16 
71'-+ Pr 59.68 76.18 41.09 
71' -+ W"f 6.15 7.59 4.04 
cp-+ T/'Y 55.59 71.01 117.9 
cp-+ 71', 0.265 0.497 0.294 

Table 1: The table of radiative decays. The values of the widths are in KeV. Approximation 
I - neglect of the external momentum dependence (5). Approximation II - the real part of 
exact loop integrals is taken into account (4). 

to quark-meson interaction, CT/w = 2sin0, CT/P = 6sin0, CT/'w = 2cos0, CT/'P = 6cos0, 
CT/rp = 4 cos 0, CT/'1' = 4 sin 0; Mq is the loop quark mass and 

2 2 2 (!al lal-x 1 ) J(p1,P2,Pa) = Re dx dy M2 2 2 2 ·o • 
a a q - XYP1 - YZP2 - xzp3 - i 

(4) 

where z = 1 - x - y. In the heavy quark approximation (Approximation I) we obtain 

J(ptp~,PD = 1/ (2M;). (5) 

The matrix element square can be written in the form: 

2 2 2 02 [1 2] 
IM 1

2 _ e 9P 9v PV (M J(M2 0 M2)) 2 _ (M2 _ M2) (6) V-P-y - (27!')4 q v, , P 2 V P · 

The phase volume of the final state is: 

d<f:, _ d3p2 d3p3 _ _!... Mi - Mfo 
P-y - 2E2 2E3 - 81r Mi 

(7) 

And then the decay width reads as: 

1 a ( Mi - Mfo) 
3 

[ 2 2 )] 2 fv-P7 = 3 277!"4 Mv gp 9v Cpv Mq J(Mv, 0, Mp . (8) 

In Table 1 we present the theoretical results for both the methods - Approximation I (5) 
and Approximation II (4) - and compare them with the relevant experimental data. 

2 Associative production of pseudoscalar and vector 
mesons in electron-positron annihilation 

The matrix elements of the processes of associative production of pseudoscalar and vector 
mesons e+(P+) + e-(p_) -+ V(p1) + P(p3), where s = (P+ + p_)2, Pi = m2, p~ = Mi, 
p5 = Mfo, in the lowest order of the QED coupling constant a have the form : 

MPV= i41ra 1em1Aµ 
s µ ) 

(9) 
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Figure 1: The comparison of our result for the e+e- -> r,11r+1r- with the BABAR
collaboration results for the e+e- -> r(,r+1r- channel [3]. 

where the QED lepton current is J!m = v(p+),µu(p_) and the anomalous current has the 
form 

Aµ gp 9v Cpv ( ) M J( 2 2) J = (
2

1r)2 e1µP1P2 q, P1,s,p3 , 

where P+ + P- = P2 = Pi + p3 and e1 is the polarization vector of the vector meson (i.e. 
(e1p1) = 0). The total cross section built by general rules is 

(11) 

where ,\(a, b, c) = a2 + b2 + c2 
- 2ab - 2ac - 2bc is the well-known triangle function. The 

cross section of the concrete process ee-> r,'(950)p is drawn on Fig. 1. One can conclude 
that satisfactory agreement within the experimental errors is observed. 
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Abstract 
The infrared behavior of gluon and ghost propagators offers a crucial test of con

finement scenarios in Yang-Mills theories. A nonperturbative study of these propa
gators from first principles is possible in lattice simulations, but one must consider 
significantly large lattice sizes in order to approach the infrared limit. We propose 
constraints based on general properties of the propagators to gain control over the 
extrapolation of data to the infinite-volume limit. These bounds also provide a way to 
relate the propagators to simpler, more intuitive quantities. We apply our analysis to 
the case of pure SU(2) gauge theory in Landau gauge, using the largest lattice sizes 
to date. Our results seem to contradict commonly accepted confinement scenarios. 
We argue that it is not so. 

1 The Gribov-Zwanziger Confinement Scenario 

About thirty years ago, Gribov proposed an interesting confinement mechanism for color 
charges in Landau (and Coulomb) gauge [l]. His idea was based on the restriction of the 
physical configuration space to the region n of transverse configurations, delimited by the 
so-called first Gribov horizon, where the smallest (non-trivial) eigenvalue of the Faddeev
Popov (FP) operator M = -Dµ8µ is zero. The limitation of the functional integration 
to the (first Gribov) region n was an attempt to fix the gauge completely, getting rid of 
spurious gauge copies, known thereafter as Gribov copies. Since the ghost propagator G(p) 
is given by (plM-1 lp) and M is semi-positive definite for gluon fields A En, one cannot 
have a singularity for G(p) at a finite momentum p. Using perturbation theory up to second 
order, Gribov wrote (for Landau gauge) the no-pole condition [1, 2] 

(0)= Ne J d4
q (A1(q)A1(-q)) <l. 

u 4 (N; - 1) (21r)4 q2 (1) 

Here Ne refers to the gauge group SU(Ne), an average over the Lorentz indices,\ has been 
considered and the quantity u(p) enters the ghost propagator as G(p)::::: p-2 [1 - u(p)r1• 

The above inequality tells us that, in the infrared (IR) limit, the Landau gluon propagator 
Dit(P) = (Ai(p)At(-p)) is less singular than 1/p2 (in the 4d case). Moreover, by using 
the above no-pole condition as a characterization of the first Gribov region, one can show 
that the tree-level gluon propagator becomes 

D(p) = g5p2/(p4+,-y4)' 
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where the (Gribov) mass parameter 'Y is fixed by the gap equation J d4q(2n-)-4 (q4 +-y4)-1 = 
4/(3Ncg2). Then, by using (2) and the gap equation, one can study the IR limit of a(p), 
obtaining an IR-enhanced ghost propagator G(p) ex 1/p4 • As stressed by Gribov (1], this 
enhancement is an indication of a long-range effect in the theory that may explain color 
confinement. In Coulomb gauge, this enhancement of G(p) can be directly related to a 
color-Coulomb potential linearly rising with distance. 

It is interesting that a bound similar to the one above has also been obtained in Ref. (3] 
by considering a variational method applied to the FP operator M. This bound, known as 
the ellipsoidal bound, can be written (in the continuum) as 

(3) 

where C depends on the dimensionality d of the space-time and on the gauge group. One 
should stress that the ellipsoid£, defined by the ellipsoidal bound, is a region of transverse 
configurations that includes the first Gribov region 0. A similar bound can also be obtained 
on the lattice (4]. Moreover, it is convenient to define on the lattice a region 8, included in 
the ellipsoid[, and including the first Gribov region 0, i.e. 0 c 8 C £. For all configurations 
belonging to 8, one can prove (5] 

(4) 

where Vis the lattice volume and At(O) = v- 1 Lx At,(x) is the gluon field at zero momen
tum. This quantity may be viewed as a magnetization M. Thus, in the infinite-volume limit 
one can show that IMI is zero. By adding an external color "magnetic" field H coupled to A 
in the action and using the above inequality, one also obtains that the free energy per unit 
volume is null when V goes to infinity (5]. If His spatially modulated, then the susceptibil
ity X at zero external field coincides with the usual gluon propagator D(p). The inequalities 
valid in the region 8 would then suggest that limp-o x(H = O,p) = limp-o D(p) = 0 (4]. 

In order to restrict the functional integration to the first Gribov region n, Zwanziger 
added to the usual Yang-Mills action a non-local term proportional to M-1 (6]. This term 
clearly suppresses the probability of configurations near the boundary 8!1 of the region 
n. After localizing the action, zeroth-order perturbation theory allows one to obtain again 
the propagator in Eq. (2). The purely imaginary poles p2 = ±i"(2 of this propagator 
make it incompatible with a Kallen-Lehmann representation [6]. These singularities at an 
unphysical location suggest that gluons are indeed not physical excitations. One should 
also note [4, 5] that D(O) = J ddx D(x) = 0 means a gluon propagator in position space 
D(x) that is positive and negative in equal measure. This represents a maximal violation 
of reflection positivity. In Refs. [4, 5] the violation of reflection positivity for the gluon 
propagator has been proposed as a confinement mechanism for gluons. 

The restriction of the functional integration to n has also been discussed in Ref. [7]. 
The non-local term --y47-l is added to the Yang-Mills action, where 7-{ is the so-called 
horizon function, containing an M-1 factor. At the same time, the Gribov mass 'Y is 
fixed implicitly by the horizon condition (h) = (NJ - l)d, where h is the horizon function 
per unit volume. It is interesting that the horizon condition implies a ghost propagator 
enhanced in the IR limit [8], i.e. limp-o[p2G(p)J-1 = 0. Clearly, the enhancement of the 
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ghost propagator at p = 0 should indicate that G(p) feels the singularity of M-1 on an. 
Indeed, since the configuration space has very large dimensionality one expects that in the 
infinite-volume limit, due to entropy considerations, the Boltzmann weight be concentrated 
on an [7]. This implies that the smallest nonzero eigenvalue Amin of M should go to zero 
in the infinite-volume limit. (This has been verified numerically in Landau gauge [9].) 

The IR behavior of propagators and vertices in Landau gauge has also been studied 
in Ref. (10] by considering the sets of coupled Dyson-Schwinger equations (DSE) for the 
basic propagators and vertices of Yang-Mills theory (in the 4d case). By using a simple 
power counting for the solutions in the IR limit and constraints obtained using a skeleton 
expansion, the authors found a consistent solution characterized by an IR-enhanced ghost 
propagator G(p) ~ p-2<1+") and by an IR-finite gluon propagator D(p) ~ p2<21t-l} with 
K E [1/2, 3/4]. Note that D(0) = 0 for K > 1/2. On the other hand, the analysis carried 
out in [10] allows also for a solution with a tree-level-like ghost propagator at small momenta 
G(p) ~ p-2 and a finite nonzero gluon propagator D(0) > 0. These two consistent solutions 
have also been obtained by several studies of DSE using specific approximations (11]. 

Recently it was shown (12, 13] that using the Gribov-Zwanziger approach, i.e. by re
stricting the functional integration to the Gribov region 0, one can also obtain in 3d and 
4d a finite nonzero gluon propagator D(0) and a tree-level-like ghost propagator in the IR 
limit. Here the dynamical mechanism is related to a suitable mass term that may be added 
to the action while preserving its renormalizability. As a consequence, one can show that 
the restriction to O induces a soft breaking of the BRST symmetry [13]. It is interesting 
that the same approach cannot be extended to the 2d case [14], because the new mass term 
produces IR singularities that make the restriction to O impossible. 

An IR-enhanced Landau ghost propagator is also obtained as a consequence of the so
called confinement criterion of Kugo-Ojima [15]. At the same time, this criterion suggests 
that the perturbative massless pole in the transverse gluon propagator should disappear 
(16]. In this sense, an IR-suppressed gluon propagator (not necessarily vanishing) can 
be accommodated in this confinement scenario [17]. Finally, even though the Gribov
Zwanziger and the Kugo-Ojima confinement scenarios seem to predict similar IR behavior 
for the propagators, it is not clear how to relate the (Euclidean) cutoff at the Gribov horizon 
to the (Minkowskian) approach of Kugo-Ojima [18]. 

2 Bounds for the Gluon and the Ghost Propagators 

Recently we have introduced [19] rigorous upper and lower bounds for the gluon propagator 
at zero momentum D(0) by considering the quantity 

M(0) = d(N} _ 1) L JAt(o)J ' 
C b,µ, 

(5) 

with At(O) defined in the previous section. Indeed, by straightforward calculations one 
finds that 

V (M(0)) 2 
::; D(0) ::; Vd(N; - l) (M(0)2

). (6) 

Thus, if M(0) goes to zero as v-a we obtain that D(0) -+ 0, 0 < D(0) < +oo, or 
D(0) -+ +oo, respectively if a is larger than, equal to or smaller than 1/2. Recall that 
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M(0) should go to zero at least as v-i/d in the d-dimensional case [see Eq. (4)]. At the 
same time, a necessary condition to find D(0) = 0 is that M(0) 2 goes to zero faster than 
l/V. We note that the above bounds apply to any gauge and that they can be immediately 
extended to the case D(p) with p ,j= 0. 

We investigated the bounds (6) for pure SU(2) gauge theory in Landau gauge consid
ering several lattice volumes in 2d, in 3d and in 4d with the largest lattice correspond
ing (respectively) to a2V ~ (70fm) 2

, a3V ~ (85fm)3 and to a4 V ~ (27fm)4
. By us

ing the Ansatz Bu/ Lu for a2 ( M(0) 2 ) we obtain u = 2.72(1) in the 2d case, implying 
D(0) = 0. A similar analysis in 3d and in 4d for the lower and the upper bounds gives 
0.4(1) Gev-2 s a2 D(0) s 4(1) Gev-2 in 3d and 2.2(3) Gev-2 s a2 D(0) s 29(5) Gev-2 in 
4d. Recently, a study for the 4d SU(3) case [20] also finds a value for a very close to 1/2. 
Although the authors conclude that D(0) = 0 in the infinite-volume limit, one should ob
serve that in this case the lattice volumes considered are relatively small and the statistics 
is rather low. Thus, a more detailed analysis in the SU(3) case should be carried out in 
order to verify if the IR behavior of the gluon propagator agrees [21] or not with the SU(2) 
case. 

One can also obtain lower and upper bounds for the ghost propagator [22]. In Landau 
gauge, for any nonzero momentum p, one finds 

1 1 " - 2 1 
N 2 _ l ~ ~ l1Pmin(a,p)I S G(p) S -, - , 

c Amin a Amin 
(7) 

where Amin is the smallest nonzero eigenvalue of the FP operator M and -0min(a,p) is the 
corresponding eigenvector. If we assume Amin ~ N-6 and G(p) ~ p-2

-
2

" at small p, we 
should find 2 + 2K- s c5, i.e. c5 > 2 is a necessary condition for the IR enhancement of 
G(p). Note that a similar analysis can be carried out [23] for any generic gauge condition 
F[A] = 0 imposed on the lattice by minimizing a functional E[U], where U is the (gauge) 
link variable. Indeed, from the second variation of E[U] one can obtain the corresponding 
FP matrix M and the set of local minima of E[U] defines the Gribov region n, where all 
eigenvalues of M are positive. In the infinite-volume limit, entropy favors configurations 
near an (where Amin goes to zero). Thus, inequalities of the type (7) can tell us if one 
should expect an enhancement of the ghost propagator G(p) when the Boltzmann weight 
gets concentrated on an .1 

A study in the SU(2) Landau case [22] suggests that c5 > 2 in 2d, implying IR enhance
ment of G(p), while c5 < 2 in 4d. These results are confirmed if one considers the dressing 
function p2G(p2

) for very large lattice volumes [22]. Indeed, the data in the 2d case can be 
fitted by ~ p-2

"', with "'between 0,1 and 0.2. On the contrary, in 3d and in 4d the data 
are well described by a - blog(l + cp2

), supporting"'= 0. 
Let us note that our data for the gluon and ghost propagators are in good agreement 

with results obtained by other groups using very large lattice volumes [25]. Of course, one 
should also recall that the region n is actually not free of Gribov copies [3, 5, 26] and that 
the configuration space should be identified with the so-called fundamental modular region 
(FMR) A. On the other hand, the restriction of the configuration space to the FMR should 
not make any difference on the numerical verification of the Gribov-Zwanziger scenario. 

1 For example, in 4d Maximally Abelian gauge one sees that Amin goes to zero at large volume but the 
ghost propagator stays finite at zero momentum (24]. 
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Indeed, as we have seen in the previous section, this scenario is based on the restriction of 
the configuration space to the region !1, which includes A. Actually, the bounds obtained 
for the gluon fields (see again Section 1) apply to regions, such as 0 and£, that are even 
larger than the region !1. Finally, as explained in [27], the restriction to the FMR can only 
make the ghost propagator. less singular, as confirmed by recent lattice data [28]. 

3 Conclusions 

We have presented simple properties of gluon and ghost propagators that constrain (by 
upper and lower bounds) their IR behavior. For the gluon case we define a magnetization
like quantity, while for the ghost case we relate the propagator to Amin of the FP matrix. 
We propose the study of these quantities, as a function of the lattice volume, in order to 
gain better control of the infinite-volume limit for the propagators in the IR regime. 2 

Our data support a Landau-gauge gluon propagator that is IR finite in 3d and 4d. 
This result can be interpreted (19] as a consequence of "self-averaging" of a magnetization
like quantity, i.e. M(O) without the absolute value. In particular, one may think of D(O) 
as a response function (susceptibility) of this magnetization. In this case it is natural 
to expect D(O) > 0 in the infinite-volume limit.3 In the 2d case the magnetization is 
"over self-averaging" and the susceptibility is zero. These results are in agreement with the 
suppression of the IR components of the gluon field A due to the limitation of the functional 
space to the first Gribov region !1. At the same time the gluon propagator displays a clear 
violation of reflection positivity in Landau gauge (31], i.e. the confinement mechanism for 
gluons proposed in [4, 5] is confirmed by lattice data. 

For the ghost propagator we find that in 3d and 4d the behavior at small momenta is 
essentially tree-level like, while in 2d this propagator seems to be clearly enhanced compared 
to the perturbative behavior p-2 • As described in Section 1, these results are not necessarily 
in contradiction with the Gribov-Zwanziger approach [12, 13, 14]. 
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Abstract 

Experimental and theoretical progress concerning the rare decay rr0 -, e+e- is 
briefly reviewed. It includes the latest data from KTeV and a new model independent 
estimate of the decay branching which show the deviation between experiment and 
theory ·at the level of 3.3a. 

1 Introduction 

Astrophysics observables tell us that 95% of the matter in the Universe is not described 
in terms of the Standard Model (SM) matter. Thus, the search for the traces of New 
Physics is a fundamental problem of particle physics. There are two strategies to look for 
the effects of New Physics: experiments at high energy and experiments at low energy. In 
high-energy experiments it is considered that due to a huge amount of energy the heavy 
degrees of freedom presumably characteristic of the SM extension sector are possible to 
excite. In low-energy experiments it is huge statistics that compensates the lack of energy 
by measuring the rare processes characteristic of such extensions. At present, there is no 
any evidence for deviation of SM predictions from the results of high-energy experiments 
and we are waiting for the LHC epoch. On the other hand, in low-energy experiments 
there are rough edges indicating such deviations. The most famous example is the muon 
(g - 2). Below it will be shown that due to recent experimental and theoretical progress 
the rare process 'lfo -> e+ e- became a good SM test process and that at the moment there 
is a discrepancy between the SM prediction and experiment at the level of 3.3a deviation. 

2 KTeV data 

In 2007, the KTeV collaboration published the result [1] for the branching ratio of the pion 
decay into an electron-positron pair 

B~~~ ( 'lfo -> e+ e-) = (7.48 ± 0.38) • 10-s. (1) 

The result is based on observation of 794 candidate n° -> e+e- events using KL -> 37r0 as 
a source of tagged 7r0s. Due to a complicated chain of the process and a good technique for 
final state resolution used by KTe V this is a process with low background. 

296 



3 Classical theory of 1r0 ----+ e+ e- decay 

The rare decay 1r0 -t e+e- has been studied theoretically over the years, starting with 
the first prediction of the rate by Drell [2]. Since no spinless current coupling of quarks to 
leptons exists, the decay is described in the lowest order of QED as a one-loop process via the 
two-photon intermediate state, as shown in Fig. 1. A factor of 2 (me/m" )2 corresponding 
to the approximate helicity conservation of the interaction and two orders of a suppress the 
decay with respect to the 1r0 -t 11 decay, leading to an expected branching ratio of about 
10-1 . In the Standard Model contributions from the weak interaction to this process are 
many orders of magnitude smaller and can be neglected. 

Figure 1: Triangle diagram for the 1r0 
-t e+e- process with a pion 1r0 

-t 1 *1 * form factor 
in the vertex. 

To the lowest order in QED the normalized branching ratio is given by 

(2) 

where f3e (q2
) = J1 - 4~, B (1r

0
-> 11) = 0.988. The amplitude A can be written as 

where q2 = m;,p2 = m;. F1r-,•-,• is the form factor of the transition 1r0 -t ,•,• with off-shell 
photons. 

The imaginary part of A is defined uniquely as 

(4) 

It comes from the contribution of real photons in the intermediate state and is model 
independent since F1r-,•-,• (0, 0) = 1. Using inequality IAl2 2: (ImA) 2 one can get the well
known unitary bound for the branching ratio [3] 
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One can attempt to reconstruct the full amplitude by using a once-subtracted dispersion 
relation [5] 

A ( q2) = A ( q2 = 0) + q2 (oo ds ImA ( s) 
1r lo s (s - q2)" 

(6) 

If one assumes that Eq. (4) is valid for any q2, then one arrives for q2 ~ 4m; at [6, 7, 8] 

1 [ 1 -rr
2 

] ReA (q2
) = A (q2 = o) + f3e (q2) • 4 In

2 
(Ye (q2)) + 12 + Lh (-Ye (q2)) , (7) 

where Li2 (z) = - ft (dt/t) In (1 - t) is the dilogarithm function. The second term in Eq. (7) 
takes into account a strong q2 dependence of the amplitude around the point q2 = O 
occurring due to the branch cut coming from the two-photon intermediate state. In the 
leading order in (m./m1r)2

, Eq. (7) reduces to 

(m) 1r2 ReA(m;)=A(q2 =0)+ln2 m: + 12 - (8) 

Thus, the amplitude is fully reconstructed up to a subtraction constant. Usually, this 
constant containing the nontrivial dynamics of the process is calculated within different 
models describing the form factor F1r(k2, q2 ) [4, 5, 7, 9, 10]. However, it has recently been 
shown in [10] that this constant may be expressed in terms of the inverse moment of the 
pion transition form factor given in symmetric kinematics of spacelike photons 

A(q2 =0) =3ln(:e)-~-; [f2 

dtF1r-y•-y•~,t)-l + i~ dtF"-y•-y/t,t)]. (9) 

Here, µ is an arbitrary (factorization) scale. One has to note that the logarithmic depen
dence of the first term on µ is compensated by the scale dependence of the integrals in the 
brackets. In this way two independent processes becomes related. 

4 Importance of CLEO data on F1r1 •1 

In order to estimate the integral in Eq. (9), one needs to define the pion transition form 
factor in symmetric kinematics for spacelike photon momenta. Since it is unknown from the 
first principles, we will adapt the available experimental data to perform such estimates. 
Let us first use the fact that F1r-y•-y• (t, t) < F1r-y•-y• (t, 0) for t > 0 in order to obtain the 
lower bound of the integral in Eq. (9). For this purpose, we take the experimental results 
from the CELLO [11] and CLEO [12] Collaborations for the pion transition form factor in 
asymmetric kinematics for spacelike photon momentum which is well parametrized by the 
monopole form [12] 

F:"f~~? (t, O) = 1 + t)s~LEO, 

s~LEO = (776 ± 22 MeV)2
• 

For this type of the form factor one finds from Eq. (9) that 

A(q2=0)>--ln-½-- --=-23.2±0.1. 3 ( 8CLEO) 5 
2 me 4 
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Figure 2: Evolution of model predictions and comparison with the latest KTeV result. 

Thus, for the branching ratio we are able to establish the important lower bound which 
considerably improves the unitary bound given by Eq. (5) 

(12) 

It is natural to assume that the monopole form is also a good parametrization for the 
form factor in symmetric kinematics 

1 
F,r-y•-y• (t, t) = I 

1 + t S1 
(13) 

The scale s1 can be fixed from the relation for the slopes of the form factors in symmetric 
and asymmetric kinematics at low t [13], 

_ 8F,r-y•-y• (t, t) I = -2 8F,r-y•-y• (t, 0) I 
at t=O at t=O ' 

(14) 

that gives s1 = s0 /2. Note that a similar reduction of the scale is also predicted by OPE 
QCD from the large momentum behavior of the form factors: sf PE= s~PE /3 [14]. Thus, 
the estimate for A (0) can be obtained from Eq. (11) by shifting the lower bound by a 
positive number which belongs to the interval [3 ln(2) /2, 3 ln(3) /2] 

A ( q2 = 0) = - ~ In ( 
81

2
) - ~ = - 21. 9 ± 0. 3. 

2 me 4 
(15) 

With this result the branching ratio becomes 

(16) 

This is 3.3 standard deviations lower than the KTeV result given by Eq. (1). 

299 



5 Possible explanations of the effect 

Therefore, it is extremely important to trace possible sources of the discrepancy between 
the KTeV experiment and theory. There are a few possibilities: (1) problems with (statis
tic) experiment procession, (2) inclusion of QED radiation corrections by KTeV is wrong, 
(3) unaccounted mass corrections are important, and ( 4) effects of new physics. At the mo
ment, the last possibilities were reinvestigated. In [15], the contribution of QED radiative 
corrections to the 1r0 -+ e+c decay, which must be taken into account when comparing 
the theoretical prediction (16) with the experimental result (1), was revised. Compar
ing with earlier calculations [16], the main progress is in the detailed consideration of the 
-y•-y• -+ e+e- subprocess and revealing of dynamics of large and small distances. Occa
sionally, this number agrees well with the earlier prediction based on calculations [16] and, 
thus, the KTe V analysis of radiative corrections is confirmed. In [17] it was shown that the 
mass corrections are under control and do not resolve the problem. So our main conclusion 
is that the inclusion of radiative and mass corrections is unable to reduce the discrepancy 
between the theoretical prediction for the decay rate (16) and experimental result (1). 

6 1r0 -+ e+ e- decay as a filtering process for low mass 
dark matter 

If one thinks about an extension of the Standard Model in terms of heavy, of an order of 100 
GeV or higher, particles, then the contribution of this sort of particles to the pion decay is 
negligible. However, there is a class of models for description of Dark Matter with a mass 
spectrum of particles of an order of 10 Me V [18]. This model postulates a neutral scalar dark 
matter particle x which annihilates to produce electron/positron pairs: XX -+ e+e-. The 
excess positrons produced in this annihilation reaction could be responsible for the bright 
511 keV line emanating from the center of the galaxy [19]. The effects of low mass vector 
boson U appearing in such model of dark matter (Fig. 3) were considered in [20] where the 
excess of KTeV data over theory put the constraint on coupling which is consistent with 
that coming from the muon anomalous magnetic moment and relic radiation [21]. Thus, 
the pion decay might be a filtering process for light dark matter particles. 

~

u,d + 

0 __ ]J __ _ 

ii,d 

Figure 3: Loop diagram for 1r0 -+ e+e- process induced by the low mass exotic U* boson. 

Further independent experiments at KLOE, NA48, WASAatCOSY, BES III and other 
facilities will be crucial for resolution of the problem. Also important is to get more precise 
data on the pion transition form factor in asymmetric as well in symmetric kinematics. 
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Abstract 

The masses of the ground and excited heavy tetraquarks with hidden charm are 
calculated within the relativistic diquark-antidiquark picture. It is argued that re
cently observed charmonium-like states X(3872), Y(4260), Y(4360), Z(4248), Z(4433) 
and Y(4660) could be tetraquark states with hidden charm. 

Recently, significant experimental progress has been achieved in charmonium spec- , 
troscopy, Several new charmonium-like states, such as X(3872), Y( 4260), Y(4360), Y(4660), 
Z(4248), Z(4430), etc., were observed (1) which cannot be simply accommodated in the 
quark-antiquark (cc) picture. These states and especially the charged ones can be consid
ered as indications of the possible existence of exotic multiquark states [2, 3). In our papers 
[4, 5] we calculated masses of the ground state heavy tetraquarks in the framework of the 
relativistic quark model based on the quasipotential approach in quantum chromodynamics. 
Here we extend this analysis to the consideration of the excited tetraquark states with hid
den charm. As previously, we use the diquark-antidiquark picture to reduce a complicated 
relativistic four-body problem to the subsequent two more simple two-body problems. The 
first step consists in the calculation of the masses, wave functions and form. factors of the 
diquarks, composed from light and heavy quarks. At the second step, a heavy tetraquark is 
considered to be a bound diquark-antidiquark system. It is important to emphasize that we 
do not consider the diquark as a point particle but explicitly take into account its structure 
by calculating the form factor of the diquark-gluon interaction in terms of the diquark wave 
functions. 

In the quasipotential approach the two-particle bound state with the mass Mand masses 
of the constituents m 1,2 in momentum representation is described by the wave function w(p) 
satisfying the quasipotential equation of the Schrodinger type [6, 7] 

(
b2(M) P2 ) J d3q 
2µR -2µR wd,T(P)= (21r)3vd,T(P,q;M)wd,T(q), 

where the relativistic reduced mass is 

M 4 
- (m~ - m~) 2 

µR = 4M3 , 

and the on-mass-shell relative momentum squared 

b2(M) = [M2 - (m1 + m2)2)[M2 
- (m1 - m2 )

2
). 

4M2 
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Table 1: Masses M and form factor parameters of charmed diquarks. S and A denote 
scalar and axial vector diquarks which are antisymmetric [· • •] and symmetric {· • •} in 
flavour, respectively. 

Quark Diquark M ( ( 
content type (MeV) (GeV) (GeV2

) 

[c, q] s 1973 2.55 0.63 
{c,q} A 2036 2.51 0.45 
[c, s] s 2091 2.15 1.05 
{c,s} A 2158 2.12 0.99 

The subscript d refers to the diquark and T refers to the tetraquark composed of a di
quark and antidiquark. The explicit expressions for the corresponding quasipotentials 
Vd,T(P, q; M) can be found in Ref. [5]. 

At the first step, we cak:ulate the masses and form factors of the light and heavy 
diquark. As it is well known, the light quarks are highly relativistic, which makes the 
v/c expansion inapplicable and thus, a completely relativistic treatment of the light quark 
dynamics is required. To achieve this goal we closely follow our consideration of the spectra 
of light mesons [8] and adopt the same procedure to make the relativistic potential local 

by replacing c1,2(P) = ✓mr,2 + p 2 --> E1,2 = (M2 
- m~, 1 + mi_2)/2M. Solving numerically 

the quasipotential equation (1) with the complete relativistic potential, which depends on 
the diquark mass in a complicated highly nonlinear way [9], we get the diquark masses and 
wave functions. In order to determine the diquark interaction with the gluon field, which 
takes into account the diquark structure, we calculate the corresponding matrix element of 
the quark current between diquark states. Such calculation leads to the emergence of the 
form factor F(r) entering the vertex of the diquark-gluon interaction [9]. This form factor 
is expressed through the overlap integral of the di quark wave functions. Our estimates show 
that this form factor can be approximated with a high accuracy by the expression 

(2) 

The values of the masses and parameters ( and ( for heavy-light scalar diquark [c, q] and 
axial vector diquark { c, q} ground states are given in Table 1. 

At the second step, we calculate the masses of heavy tetraquarks considered as the bound 
states of a heavy-light diquark and antidiquark. Masses of both ground and excited states 
of tetraquarks with hidden charm are obtained. Excitations only of the diquark-antidiquark 
system are considered. 

In the diquark-antidiquark picture of heavy tetraquarks both scalar S (antisymmetric 
in flavour (Qq)s=o = [Qq]) and axial vector A (symmetric in flavour (Qq)s=I = {Qq}) 
diquarks are considered. Therefore we get the following structure of the· ( Qq) ( Qq') ground 
(1S) states ( C is defined only for q = q'): 

• Tv:o states with JPC = o++: 

X(o++) = (Qq)s=o(Qr/)s=o 

X(o++') = (Qq)s=1(Qr/)s=1 
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Table 2: Masses of charm diquark-antidiquark ground (1S) states (in MeV) calculated in 
[4]. Sand A denote scalar and axial vector diquarks. 

State Diquark 
JPC content 
o++ 
1+± 
o++ 
1+-
2++ 

• Three states with J = l: 

ss 
(SA± SA)/v2 

AA 
AA 
AA 

Mass 
cqciJ. cscs cqcs 
3812 4051 3922 
3871 4113 3982 
3852 4110 3967 
3890 4143 4004 
3968 4209 4080 

X(l++) = Jz[(Qq)s=1(Qq)s=o + (Qq)s=o(Qq)s=1] 

+ 1 -.,,, -.,,, 
X(l -) = y2[(Qq)s=o(Qq )s=1 - (Qq)s=1(Qq )s=o] 

X(l+-t) = (Qq)s=1(Qq)S=l 

• One state with JPC = 2++: 

X(2++) = (Qq)s=1(Qq)S=l· 

The orbitally excited (lP, lD .. . ) states are constructed analogously. As we find, a very 
rich spectrum of tetraquarks emerges. However the number of states in the considered 
diquark-antidiquark picture is significantly less than in the genuine four-quark approach. 

The diquark-antidiquark model of heavy tetraquarks predicts the existence of a flavour 
SU(3) nonet of states with hidden charm or beauty (Q = c, b): four tetraquarks [(Qq)(Qq), 
q = u, d] with neither open or hidden strangeness, which have electric charges O or ±1 and 
isospin O or 1; four tetraquarks [(Qs)(Qq) and (Qq)(Qs), q = u, d] with open strangeness 
(S = ±1), which have electric charges O or ±1 and isospin ½; one tetraquark (Qs)(Qs) 
with hidden strangeness and zero electric charge. Since we neglect in our model the mass 
difference of u and d quarks and electromagnetic interactions, the corresponding tetraquarks 
will be degenerate in mass. A more detailed analysis [10] predicts that the tetraquark mass 
differences can be of a few MeV so that the isospin invariance is broken for the (Qq)(Qq) 
mass eigenstates and thus in their strong decays. The (non)observation of such states will 
be a crucial test of the tetraquark model. 

The calculated masses of the heavy tetraquark ground (1S) states are shown in Table 2. 
In Table 3 we compare our results (EFG) for the masses of the ground and excited charm 
diquark-antidiquark bound states with the predictions of Refs. [10, 11, 12, 13] and with 
the masses of the observed highly-excited charmonium-like states [1, 14, 15, 16, 17, 18, 19, 
20, 21, 22, 23]. We assume that the excitations occur only between the bound diquark 
and antidiquark. Possible excitations of diquarks are not considered. Our calculation of 
the heavy baryon masses supports such a scheme [9]. In this table we give our predictions 
only for some of the masses of the orbitally and radially excited states for which possible 
experimental candidates are observed. The differences in some of the presented theoretical 
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Table 3: Comparison of theoretical predictions for the masses of the ground and excited 
charm diquark-antidiquark states (in MeV) and possible experimental candidates. 

State Diquark Theory Experiment 
jPC content EFG [10)-[13) state mass 
IS 

o++ ss 3812 3723 

1++ (SA+ SA)/,/2 3871 3372t { X(3872) 
X(3876) 

{ 3871.4 ± 0.6 [1] 
3875.2 ± 0.7:'.:~:~ [1) 

1+- (SA - SA)/,/2 3871 3754 
o++ AA 3852 3832 
1+- AA 3890 3882 

2++ AA 3968 3952 Y(3943) { 3943 ± 11 ± 13 (14) 
3914.3:'.:U (15J 

IP 
1-- ss 4244 

4330 ± 70 
Y(4260) { 4259 ± 8:'.:i [16) 

(cscs) 4247 ± 12:'.:g (17] 
1- ss 4244} Z(4248) 4248:'.:~i=½~0 [18) o- (SA± SA)/,/2 4267 

1-- (SA - SA)/,/2 4284} Y(4260) 4284=}l±4 (19J 1-- AA 4277 

1-- AA 4350 Y(4360) { 4361 ± 9 ± 9 (20] 
4324 ± 24 [21) 

2S 
1+ (SA± SA)/,/2 4431} Z(4430) 4433±4±2 (22) o+ AA 4434 
1+ AA 4461 ~ 4470 
2P 

1-- ss 4666 
Y(4660) 4664 ± 11 ± 5 [20) 
X(4630) 4634:'.:~=~ [23] 

t input 

~ 

mass values can be attributed to the substantial distinctions in the used approaches. We 
describe the diquarks dynamically as quark-quark bound systems and calculate their masses 
and form factors, while i.n Refs.(10, 11, 12, 13] they are treated only phenomenologically. 
Then we consider the tetraquark as purely the diquark-antidiquark bound system. In dis
tinction, Maini et al. consider a hyperfine interaction between all quarks which, e.g., causes 
the splitting of 1 ++ and 1 +- states arising from the SA diquark-antidiquark compositions. 
l,From Table 3 we see that our dynamical calculation supports the assumption [10) that 
X (3872) can be the axial vector 1 ++ tetraquark state composed from the scalar and axial 
vector diquark and antidiquark in the relative lS state. Recent Belle and BaBar results 
indicate the existence of a second X(3875) particle a few MeV above X(3872). This state 
could be naturally identified with the second neutral particle predicted by the tetraquark 
model (11). On the other hand, in our model the lightest scalar o++ tetraquark is pre-
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dieted to be above the open charm threshold DD and thus to be broad, while in the model 
(10] it lies a few MeV below this threshold, and thus is predicted to be narrow. Our 2++ 
tetraquark also lies higher than the one in Ref.(10], thus making the interpretation of this • 
state as Y(3943) less probable, especially if one averages the original Belle result with the : 
recent BaBar value which is somewhat lower. 

The discovery in the initial state radiation at B-factories of the Y(4260), Y(4360) and 
Y( 4660) indicates an overpopulation of the expected charmonium 1-- states (1, 16, 17, 19, 
20, 21]. Maini et al. (13] argue that Y(4260) is the 1-- lP state of the charm-strange 
diquark-antidiquark tetraquark. We find that Y( 4260) cannot be interpreted in this way, 
since the mass of such ([cs]s=o[cs]s=o) tetraquark is found to be~ 200 MeV higher. A more 
natural tetraquark interpretation could be the 1-- lP state ([cq]s=o[ciJ]s=o) (SS) which 
mass is predicted in our model to be close to the mass of Y(4260) (see Table 3). Then 
the Y(4260) would decay dominantly into DD pairs. The other possible interpretations 
of Y(4260) are the 1-- lP states of (S.A- SA)/'15, and AA tetraquarks which predicted 
masses have close values. These additional tetraquark states could be responsible for the 
mass difference of Y( 4260) observed in different decay channels. As we see from Table 3, the 
recently discovered resonances Y( 4360) and Y( 4660) in the e+e- -+ 1r+1r-1// cross section 
can be interpreted as the excited 1-- lP (AA) and 2P (SS) tetraquark states, respectively. 
The peak X ( 4630) very recently observed by Belle in e+ C -+ At A;; (23] is consistent with 
a 1-- resonance Y( 4660) and therefore has the same interpretation in our model. 

Recently the Belle Collaboration reported the observation of a relatively narrow en
hancement in the 1r+'l/J1 invariant mass distribution in the B-+ K1r+'l/J1 decay (1, 22]. This 
new resonance, z+(4430), is unique among other exotic meson candidates, since it is the 
first state which has a non-zero electric charge. Different theoretical interpretations were 
suggested (1]. Maiani et al. [12] gave qualitative arguments that the z+(4430) could be 
the first radial excitation (2S) of a diquark-antidiquark X,;i1+-; lS) state (AA) with mass 
3882 MeV. Our calculations indicate that the z+(4430) can indeed be the 1+ 2S [cu][cd] 
tetraquark state. It could be the first radial excitation of the ground state (SA- SA)/'15,, 
which has the same mass as X(3872). The other possible interpretation is the o+ 2S [cu][cd] 
tetraquark state (AA) which has a very close mass. Measurement of the z+(4430) spin will 
discriminate between these possibilities. 

Encouraged by this discovery, the Belle Collaboration performed a study of tJ0 -+ 

K-1r+xc1 and observed a double peaked structure in the 1r+xci invariant mass distribution 
[18]. These two charged hidden charm peaks, Z(4051) and Z(4248), are explicitly exotic. 
We find no tetraquark candidates for the former, Z(4051), structure. On the other hand, 
we see from Table 3 that Z(4248) can be interpreted in our model as the charged partner 
of the 1- lP state SS or as the o- lP state of the (SA± SA)/ '15, tetraquark. 

In summary, we calculated the masses of excited heavy tetraquarks with hidden charm 
in the diquark-antidiquark picture. In contrast to previous phenomenological treatments, 
we used the dynamical approach based on the relativistic quark model. Both diquark 
and tetraquark masses were obtained by numerical solution of the quasipotential wave 
equation with the corresponding relativistic potentials. The diquark structure was taken 
into account in terms of diquark wave functions. It is important to emphasize that, in our 
analysis, we did not introduce any free adjustable parameters but used their values fixed 
from our previous considerations of heavy and light hadron properties. It was found that 
the X(3872), Z(4248), Y(4260), Y(4360), Z(4430) and Y(4660) exotic meson candidates 
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can be tetraquark states with hidden charm. 
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Abstract 

The mass spectra of the ground state and excited heavy baryons consisting of 
two light ( u, d, s) and one heavy ( c, b) quarks are calculated in the heavy-quark-Jight
diquark picture within the relativistic quark model. 

During last few years a significant experimental progress has been achieved in studying 
heavy baryons with one heavy quark. At present masses of all ground states of charmed 
baryons as well as of their excitations are known experimentally with rather good precision 
[l]. A half of the ground state bottom baryon masses are also known now. Here we briefly 
review our studies of masses of the ground state and excited heavy baryons containing one 
heavy quark. All calculations (2, 3] are performed in the framework of the relativistic quark 
model based on the quasipotential approach in QCD. We use the heavy-quark-light-diquark 
approximation to reduce a complicated relativistic three-body problem to the subsequent 
solution of two more simple two-body problems. The first step is the calculation of the 
masses, wave functions and form factors of the diquarks, composed from two light quarks. 
Next, at the second step, a heavy baryon is treated as a relativistic bound system of a 
light diquark and heavy quark. It is important to emphasize that we do not consider 
a diquark as a point particle but explicitly take into account its structure through the 
diquark-gluon vertex expressed in terms of the diquark wave functions. The calculated 
values of the ground state and excited baryon masses are given in Tables 1-4 in comparison 
with available experimental data (l]. 

Table 1: Masses of the AQ (Q = c, b) heavy baryons (in MeV). 
Q=c Q=b 

J(JP) Qd state M Mexp [1] M Mexp (1] Mexp CDF 

o(r) IS 2297 2286.46(14) 5622 5624(9) 5619.7(2.4) 

O(½-) lP 2598 2595.4(6) 5930 

o(r) lP 2628 2628.1(6) 5947 

o(t) 2S 2772 2766.6(2.4)? 6086 

o(t) lD 2874 6189 

o(t) lD 2883 2882.5(2.2)? 6197 

The mass spectra of the AQ and EQ baryons are presented in Tables 1, 2. Masses of the 
ground states are measured both for charmed and bottom AQ and EQ baryons. For charmed 
baryons the masses of several excited states are also known. It is important to emphasize 
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Table 2: Masses of the EQ (Q = c, b) heavy baryons (in MeV). 
Q=c Q=b 

](JP) Qd state M Mexp [1] Mexp BaBar Mexp Belle M Mexp CDF 

l(½ +) 1S 2439 2453.76(18) 5805 5807.5(2.6) 

l(t) 1S 2518 2518.0(5) 5834 5829.0(2.4) 

l(f) lP 2805 6122 

l(f) lP 2795 6108 

1(r) lP 2799 2802(~) 6106 

1(r) lP 2761 2766.6(2.4)? 6076 

l(r) lP 2790 6083 

l(V) 2S 2864 6202 
1u+) 2S 2912 2939.8(2.3)? 2938(~)? 6222 

Table 3: Masses of the SQ (Q = c, b) heavy baryons with scalar diquark (in MeV). 

Qd state 

lP 
lP 
2S 

Q=c Q=b 
M Mexp (1] Mexp BaBar M Mexp CDF 

2481 2471.0(4) 5812 5792.9(3.0) 

2801 2791.9(3.3) 6119 

2820 2818.2(2.1) 6130 

2923 

3030 

3042 3054.2(1.5) 

6264 

6359 

6365 

;hat the JP quantum numbers for most excited heavy baryons have not been determined 
~xperimentally, but are assigned by PDG on the basis of quark model predictions. For some 
~xcited charm baryons such as the Ac(2765), Ac(2880) and Ac(2940) it is even not known if 
,hey are excitations of the Ac or Ee. Our calculations show that the Ac(2765) can be either 
;he first radial (2S) excitation of the Ac with JP = ½ + containing the light scalar diquark 

x the first orbital excitation (lP) of the Ee with JP = r containing the light axial vector 
:iiquark. The Ac(2880) baryon in our model is well described by the second orbital (lD) 
~xcitation of the Ac with JP = t in agreement with the recent spin assignment by Belle 
:iased on the analysis of angular distributions in the decays Ac(2880)+ ---+ Ec(2455)0•++7r+,-. 
8ur model suggests that the charmed baryon Ac(2940), recently discovered by BaBar and 
:hen also confirmed by Belle, could be the first radial (2S) excitation of the Ee with JP = r 
which mass is predicted slightly below the experimental value. The Ec(2800) baryon can be 
identified in our model with one of the orbital (lP) excitations of the Ee with JP = ½-, r 
x r which predicted mass differences are less than 15 MeV. Thus masses of all these states 
ire compatible with the experimental values within errors. 

Mass spectra of the BQ baryons with the scalar and axial vector light (qs) diquarks 
ire given in Tables 3, 4. Our model prediction for the M2, is in a reasonable agreement 
with recently obtained data. In the excited charmed baryon sector we can identify the 
:'.c(2790) and Bc(2815) with the first orbital (lP) excitations of the Be with JP = ½- and 
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Table 4: Masses of the BQ (Q = c, b) heavy baryons with axial vector diquark (in MeV). 
Q=c Q=b 

J(JP) Qd state M Mexp (1] M•xp Belle M•xp BaBar M 

Hr) lS 2578 2578.0(2.9) 5937 
½(t) lS 2654 2646.1(1.2) 5963 
½(½-) IP 2934 6249 

Hr) lP 2928 6238 

½(r) IP 2931 6237 

½(r) lP 2900 6212 

½(r) lP 2921 6218 

Ht) 2S 2984 2978.5(4.1) 2967.1(2.9) 6327 

½(t) 2S 3035 6341 

Ht) lD 3132 6420 

Ht) lD 3127 6410 

½(t) lD 3131 6412 

½(t) lD 3123 3122.9(1.4) 6403 

½(t) lD 3087 3082.8(3.3) 3076.4(1.0) 6377 
l(t) ID 3136 6390 

JP = r, respectively, containing the light scalar diquark, which .is in agreement with 
the PDG [1] assignment. Recently Belle observed two baryons Bex(2980) and Bex(3077), 
which existence was also confirmed by BaBar. The Bex(2980) can be interpreted in our 
model as the first radial (2S) excitation of the Be with JP = ½ + containing the light axial 
vector diquark. On the other hand the Bcx(3077) corresponds to the second orbital (lD) 
excitation in this system with JP = r. Very recently BaBar observed two new charmed 
baryons Be(3055) and Be(3123). These states can be interpreted in our model as the second 
orbital (lD) excitations of the Be with JP= r containing scalar and axial vector diquarks, 
respectively. 

We find that all presently available experimental data for the masses of the ground state 
and excited heavy baryons can be accommodated in the picture treating a heavy baryon as 
the composite system of the light diquark and heavy quark, experiencing orbital and radial 
excitations only between these constituents. 
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Pion polarizabilities in ChPT at two-loops 

M.A. Ivanov (Dubna, JINR) 

Abstract 

We present the two-loop expressions for the 'Y'Y --+ 1r1r amplitude in the framework 
of chiral perturbation theory (ChPT). We find for the dipole polarizabilities 
(a1 - {31),,± = (5.7 ± 1.0) x 10-4 fm3, which is in conflict with the experimental result 
recently reported by the MAM! Collaboration. 

1 Kinematics 

We evaluate the amplitude for 'Y'Y --+ 7r+7r- in the framework of chiral perturbation theory 
(ChPT ) [1, 2, 3] at two-loop order [4], and compare the result with the only previous 
calculation performed at this accuracy [5]. 

The amplitude describing the process 'Y'Y --> 1r+1r- may be extracted from the matrix 
element 

where 

= e2f.µlv w·n-rr+,r-
1 2 µv 

i j dxe-i(qix+q2 y) ( 1r+(p1)1r-(p2) out I Tjµ(x)j,,(y) IO)• 

(1) 

(2) 

Here jµ denotes the electromagnetic current and a = e2 /41r '.::'. 1/137 is the electromag
netic coupling. It is convenient to change the pion coordinates according to ( 1r±, 1r0) --> 

( 1r1, 1r2
, 1r3

) and instead of 1r+1r--production, we consider in the following the process 
'Y'Y --+ 1r11r1, with 

(3) 

where the relative minus sign stems from the Condon-Shortly phase convention. [We use 
the same sign convention as Ref. [5].] The decomposition of the correlator Vµ,, into Lorentz 
invariant amplitudes on mass-shell reads 

A(s, t, u)T1µv + B(s, t, u)T2µv, 

(4) 

where !::.µ = (p1 - P2)µ and 

s = (q1+q2) 2, t=(p1-q1)2, u=(p2-q1)2, v=t-u (5) 
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are the standard Mandelstam variables. 
It is useful to introduce in addition the helicity amplitudes 

fl++ = A+2(4M;-s)B, fl+-= 8 (M; - tu) B. 
s 

(6) 

The helicity components fl++ and fl+- correspond to photon helicity differences >. = 
0, 2, respectively. With our normalization of states (p1 IP2 ) = 2 (21r )3 P? <5(3) (p1 - p2 ), the 
differential cross section for unpolarized photons in the centre-of-mass system is 

dun-.-+.-- 2 
- Ct s dfl. = 32J3(s) H(s, t), H(s, t) = lfl++l2 + lfl+-12

, (7) 

with j3(s) = ✓1 - 4M;fs. The relation between the helicity amplitudes M+± in Ref. [6] 
and the amplitudes used here is 

M++(s, t) = 21rafl++(s, t), M+-(s, t) = l61raB(s, t). (8) 

In the centre-of-mass system, iii+ ih = 0, one has iii· P1 = lilii1P1I cos 0, where 0 is the 
scattering angle. Then the Mandelstam variables are given by 

s = 4i<J12, t = M;- (s/2) (1-j3(s)cos0). (9) 

For comparison with experimental data, it is convenient to present also the total cross 
section for the case having I cos Bl less than some fixed value Z, 

Ct27r ft+ 
a(s; I cos Bl< Z) = 8 dtH(s, t) (10) 

t_ 

with t± = M; - (s/2) (1 =f j3(s)Z). 

2 The effective Lagrangian and its low-energy con
stants 

The effective Lagrangian consists of a string of terms. Here, we consider QCD with two 
flavours, in the isospin symmetry limit mu = md = m. At next-to-next-to-leading order 
(NNLO), one has [2] 

.Ceff = .C2 + .C,4 + .C5 • (11) 

The subscripts refer to the chiral order. The expression for .C2 is 

.C 2 = :
2 

(D,,U D"Ut + M 2 (U + ut)), 

D,,U = 8,,U - i(QU - UQ)A,,, Q = idiag(l, -1), (12) 
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where e is the electric charge, and Aµ denotes the electromagnetic field. The quantity F 
denotes the pion decay constant in the chiral limit, and M 2 is the leading term in the 
quark mass expansion of the pion (mass)2, M; = M 2 (1 + O(m)). Further, the brackets 
( ... ) denote a trace in flavour space. In Eq. (12), we have retained only the terms relevant 
for the present application, i.e., we have dropped additional external fields. We choose the 
unitary 2 x 2 matrix U in the form 

(13) 
7!"2 

2 - 1 c, + F 2 - 2x2, 

The Lagrangian at NLO has the structure [2] 

(14) 

where li, hi denote low-energy couplings, not fixed by chiral symmetry. At NNLO, one has 
[7, 8, 9] 

57 

£6 = ~ciP;. (15) 
i=l 

For the explicit expressions of the polynomials Ki, K; and P;, we refer the reader to Refs. [2, 
7, 8, 9]. The vertices relevant for ''(Y -> 1r+1r- involve Ii, ... , l6 from £ 4 and several c;'s 
from £ 6 , see below. 

The couplings l; and ci absorb the divergences at order p4 and p6 , respectively, 

li (µc)d- 4 {l[(µ, d) + ii A} , 

c; = (µ c ~:d-
4
) { c[ (µ, d) - 1}2> A 2 - ('Yf 1> + 1?> (µ, d)) A} , 

A = 16 1r2 (~ _ 4), Inc=-~ {ln41r + f'(l) + 1}. (16) 

The physical couplings are l'[(µ, 4) and er(µ, 4), denoted by l[, ci in the following. The 
coefficients 1; are given in [2], and 1}1

•
2
·£) are tabulated in [8]. In order to compare the 

present calculation with the result of [5], we shall use the scale independent quantities l; 
introduced in [2], 

r 'Yi -
li = 

32
1r2 (l; + l), 

where the chiral logarithm is l = ln(M;/ µ 2
). We shall use [10] 

11 = -0.4 ± 0.6, r.i = 4.3 ± 0.1, /3 = 2.9 ± 2.4, ~ = 4.4 ± 0.2, 

and 

obtained from radiative pion decay to two loop accuracy [11, 12]. 

313 

(17) 

(18) 

(19) 



The constants c;- occur in the combinations 

aI = -409frrr4 ( 6 c~ + c;9 - c;0 - 3 c;4 + c;5 + 2 c46 - 4 c47 + c;0 ) , 

a; = 256rr4(8c;9 -8c;0 +c;1 +c;2 -2c;3 +4c44 +8c;0 -4c;1), 

b' = -128rr4 (c;1 + c;2 - 2c;3 - 4c44). 

Their values have been estimated by resonance exchange e.g. in Ref. [5]. We have repeated 
that analysis. Taking into account p, a 1 and b1 exchange which contribute with a definite 
sign, we obtain 

( ai, a;, b') = ( - 3.2, 0.7, 0.4) [ present work]. (20) 

Unless stated otherwise, we will use these estimates at the scale µ = Mp, In Ref. [13], a 
large Ne framework and the ENJL model were used to pin down these constants, with the 
result 

(a;-,a;,b') = (-8.7,5.9,0.38) Ref. [13]. 

Only br agrees in the two approaches. So, in the case of br, we shall use 

br = 0.4 ± 0.4. 

(21) 

(22) 

As far as the polarizabilities are concerned, ( a 1 - (31),,± is independent of a2 and determined 
precisely by the chiral expansion to two loops, once aI is fixed. We will then simply display 
this quantity as a function of aI - the result turns out to be rather independent of its exact 
value. 

The lowest-order contributions to the scattering amplitude are described by tree- and 
one-loop diagrams. We plot the total cross section in Fig. 1, using the LECs from Eqs. (18) 
- (20). The data are taken from [17]. It is seen that the two-loop corrections are tiny in 
this kinematical region. 

The dipole and quadrupole polarizabilities are defined [14, 15] through the expansion of 
the helicity amplitudes at fixed t = M;, 

a 2 , s 2 
M,, Hn(s, t = M,,) = (a1 ± /31),,+ + 12 (a2 ± /32),,+ + O(s ) , (23) 

where H+i' denote the helicity amplitudes ff +1' with Born-term subtracted. Because we 
have at our disposal the helicity amplitudes at two-loop order, we can work out the polar
izabilities to the same accuracy. It turns out that all relevant integrals can be performed 
in closed form. Using the same notation as in [5], we find for the dipole polarizabilities 

where 

C1+ 

) a · { M;d1± 4 } 
(a1 ± /31 ,,+ = 16 7r2 F; M,, C1± + 16 7r2 F; + O(M,,) ' 

0, 
2-

C1- = 3 lt;.' 
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Figure 1: The TY -> 7r+7r- cross section a(s; I cos 01 ~ Z = 0.6) as a function of VS· The 
experimental data are taken from [17]. 

(25) 

with 

b. _ 8105 _ 135 2 

+ - 576 64 7l" ' 
b. = ~ - 53 7!"2. 

- 432 64 
(26) 

The uncertainty in the prediction for the polarizability has two sources. First, the low
energy constants are not known precisely. Second, we are dealing here with an expansion 
in powers of the momenta and of the quark masses. 

We now discuss the second source of uncertainties, the truncation of the chiral expansion 
itself. It is dear that, to have an idea of higher order te_rms, one needs at least the first 
two terms in the expansion. This makes it already clear that it is difficult to make reliable 
predictions for the polarizabilities connected with the helicity flip amplitude, from which 
we have determined here the leading order contribution only. So, let us concentrate first 
on the helicity non-flip case H++· 

The Born-term subtracted hclicity amplitude H++ does not have branch points at the 
Compton threshold. This is why it can be expanded there into an ordinary Taylor series e.g. 
in the variable s and v = (t - u). One then expects that the amplitude at the Compton 
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Figure 2: The helicity non-flip amplitude H++ in units of M; as a function of s, at t = u, with 
Born term subtracted. For s $ 4M; the quantity shown is 102 M;H++, and for s 2:: 4M; we 
display 102M;IH++I- The solid (dashed) line is the expression to two loops (to one loop). The 
Compton threshold in -y1r± -> -y1r± and the threshold in ')'')' -> 7r+7r- are denoted by the encircled 
letters C and A, respectively. It is clearly seen that two-loop corrections are suppressed at the 
Compton threshold. 

threshold is less affected by chiral logarithms than its counterparts at the threshold for 

11 -+ 1r1r, where unitarity cusps do occur. This is illustrated in Fig. 2, where we display 
the quantity 102M;H++(s, t = u) as a function of sat t = u. Above the thresholds= 4M;, 
the modulus is shown. The solid (dashed) line is the expression to two loops (to one loop). 
It is clearly seen that the corrections at the Compton threshold are much smaller than the 
ones at the threshold for 11 -+ 1r1r. 

The further details of discussion of_the uncertainties may be found in [4). Let us note 
that the two-loop prediction differs only slightly fr9m the_ one-loop calculation. This again 
shows that the value for the dipole polarizability is rather reliable - there is no sign of any 
large, uncontrolled correction to the two-loop result. We use the maximum deviation 1.0 
from the central value 5. 7 as the final theoretical uncertainty for the dipole polarizability, 
and obtain 

(0:1 - /Ji),r± = (5.7 ± 1.0) X 10-4 fm3
. (27) 

According to our analysis, the two-loop result Eq. (27) for the dipole polarizability 
(a1 - /31)"± is particularly reliable. It is in conflict with the recent experimental result 
obtained at MAMI [16), or with the dispersive analysis performed in [6). 
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Table 1: Experimental information on ( OiJ - /31 ),r±, in units of 10-4 fm3. We indicate the reaction 
and the data used. In [18] and [19], a 1 was determined, using as a constraint 0<1 = -/31. To obtain 
(a1 - /31),r±, we multiplied the results by a factor of 2. 

Experiments (a1 - /J1)1r± 

"'IP_, "'f'll'+n Mainz (2005) [16] 11.6 ± l.5stat ± 3,0syst ± 0,5mod 

L. Fil'kov, V. Kashevarov (2005) [6] 13.o:::U 
"Y"Y-> 'll'+'ll'- MARK II [17], 

TPC/2"'1 [20], CELLO [21], 

VENUS [22] , ALEPH [23] , BELLE [24] 

A. Kaloshin, V. Serebryakov (1994) [25] 5.25 ± 0.95 
"Y"Y-> 'll'+'ll'- MARK II (17] 

Crystal Ball Coll. [26] 

J.F. Donoghue, B. Holstein (1993) [18] 5.4 
"'f"'f-> 'll'+'ll'- MARK II[17] 

D. Babusci et al. (1992) [19] 

"'f"'f-> 'll'+'ll'- PLUTO [27] 38.2 ± 9.6 ± 11.4 

DM 1 [28] 34.4 ± 9.2 

DM 2 [29] 52.6 ± 14.8 

MARK II [17] 4.4 ± 3.2 

"'fp---> "'f'll'+n Lebedev Inst. (1984) [30] 40±24 
1!'-z _, "'f'll'-z Serpukhov (1983) [31] 15.6 ± 6,4stat ± 4.4syst 
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Hadron multiplicity from the top 

A.V. Kisselev and V.A. Petrov 
Institute for High Energy Physics, Protvino, Russia 

Abstract 

The average multiplicity of charged hadrons from the top, as well as average hadron 
multiplicities in e+e- events induced by primary tl-pair at the collision energy 500 
GeV are calculated in perturbative QCD. 

As it was revealed by experiments at e+ C colliders, the mechanism of multiple pro
duction of hadrons depends on a type of the primary quark-antiquark pair. An interesting 
phenomenon was observed that the difference of hadron multiplicities in light (u, d or s) 
and heavy (c or b) quark-induced events becomes energy-independent. The calculations in 
perturbative QCD do describe this phenomenon quite well [1]-[2]. In the present paper we 
will consider the average multiplicity of charged hadrons in e+c event induced by t-quarks, 
which is mainly defined by the hadron multiplicity from the top. 

It is assumed that the square of the matrix element of the process e+ e- -> t•[• -> X 
has the form [4]: 

IM(e+e--> t•[•-> hadrons)l2 = IM(e+e--> t*[*-> tt + hadrons)\ 2 

x IM(t-> hadrons)l2 IM(t-> hadrons)l2 , (1) 

where t• denotes the virtual top quark. Correspondingly, the hadron multiplicity is given 
by 

(2) 

Here Ni(W, mi) describes the average number of hadrons produced in association with the 
tt-primary pair, except for the decay products of the top and antitop. 

The other term, the hadron multiplicity of the t-quark (antiquark) fragments ni, is given 
by 

(3) 

The quantity nw describes the average number of the W boson decay products (Fig. 1). 
The hadron multiplicity nib comes from the emission by t and b quarks (Fig. 2). Finally, the 
phenomenological quantity nb = 5.55 ± 0.09 is the average multiplicity of hadrons produced 
in the decay of the on-shell bottom quark [3]. 

The multiplicity from the W boson is given by the following expression [4]: 

1 
nw = N1r(mw) + 4 c5c1, (4) 

where Na(mw) is the average hadron multiplicity in the light quark event taken at the 
energy W = mw, and c5c1 = 1.03 ± 0.34 is the multiplicity difference in e+e- events with 
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fa··· A·· 
Figure 1: The emission of the massive gluon jets (spiral lines) by the quark pair resulting 
from the decay of the w+ boson. The w+ boson is produced in the weak decay of the top. 
In their turn, the gluon jets decay into hadrons. 

;e< w 

2 

+ fa . 
w 

Figure 2: The emission of the massive gluon jets by the on-shell top and off-shell b-quark. 
The emissions take place before and after the weak decay of the top, respectively. 

light and charm primary quarks [3]. The numerical computations of nw and ntb were made 
in [4]: 

nw = 19.34 ± 0.10, 

ntb = 16.14 ± 0.24. 

(5) 
(6) 

As a result, we predict the values of the average multiplicities of charged hadrons from the 
top: 

nt(t -> hadrons) = 41.03 ± 0.54 , 

ni(t -> liJ1 + hadrons) = 21.69 ± 0.53 . 

By estimating quantity Nt in (2) at W = 500 GeV and mt= 170.9 GeV, 

Ni(W = 500 GeV) = 4.61 ± 0.11 , 

we also obtain the average hadron multiplicity in e+e- with the primary tf-pair [4]: 

Ntt(e+e--> tf-> hadrons)= 86.67 ± 1.11. 

In the case when W bosons decay into leptons, the average hadron multiplicity is 

Nir(e+e--> tf-> w+w- + hadrons)= 47.99 ± 0 .. 59. 

Finally, if b-jets are detected in the final state, we get: 

Ntt(e+c-> tf _. bb w+w- + hadrons)= 36.89 ± 0.56. 

All three estimations (10)-(12) correspond to the collision energy 500 GeV. 
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Light-cone expansion of heavy-to-light form factors 
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Abstract 
We present the results of our recent systematic study of the light-cone expansion of 

heavy-to-light transition form factors in a model with scalar constituents [1]. We show 
that the higher-twist contributions (represented in this model by off-light-cone effects) 
all have the same behaviour in the 1/mQ expansion. The suppression parameter of the 
higher-twist contributions compared to the lower-twist contributions is, in general, the 
inverse Borel parameter /3. The only exception here is the case of the leading and the 
subleading twists: they are of the same order in 1//3 because of an extra suppression of 
the leading-twist contribution to the form factor. 

Light-cone (LC) sum rules [2] belong to the most widely used approaches for calculating 
hadron form factors in QCD. The form factor of an individual bound state obtained from a 
LC sum rule depends on two ingredients: (i) the field-theoretic calculation of the relevant 
correlator by constructing its LC expansion in terms of hadron distribution amplitudes (DA) 
of increasing twist, and (ii) the technical "extraction procedure" (cutting the correlator and 
determining the effective continuum threshold), which introduces a systematic error into the 
extracted form factor ( for a recent study of the serious issue of the systematic errors, see [3]).' 

In QCD one can calculate only a few terms of the LC expansion of the correlator; it is. 
impossible to study the full series and to estimate the typical size of the omitted higher-twist 
effects. Therefore, we have systematically analysed the LC expansion in a model with scalar 
constituents: a heavy "quark" field Q ( of mass mQ) and a light "quark" field cp ( of mass m) 
interacting by exchange of a massless boson in ladder approximation [1]. The basic object 
here is the heavy-to-light correlator 

f(p2
, q2

) = i j d4x exp(ipx)(M(p')IT (cp(x)Q(x)Q(O)cp(O)) ID). (1) 

One should (i) obtain the dispersion representation in p2
, 

2 2 J ds ( 2) r(p , q ) = 2 ·o~ s, q , s-p -i 
(2) 

and (ii) perform the Borel transform 1/(s - p2
) --> exp [-s/(2mQ,B)] (,B « mQ) and relate 

the cut Borel image to the form factor of interest: 

( 2 ) •o ( M2) 2 MQ 2 _ s - Q 2 
!MQ FMQ-M(q ) = exp 2mQ,B r(,B, q , so)= j ds exp - 2mQ,B ~(s, q ). 

(mQ+m)2 

(3) 

Here, s0 = (mQ+Zetr) 2 is the effective continuum threshold to be fixed by some criterion. For 
our analysis it is essential that Zeff is a constant which remains finite in the limit mQ -> oo. 

322 



Upon performing the factorization, the spectral density ll(s, q2
) may be found via the LC 

expansion of the soft Bethe-Salpeter (BS) amplitude of the light-quark bound state M(p'). 
The LC expansion of the soft BS amplitude at the factorization scale,\ may be written in the 
form1 

oo I 

Wsofi(x,p'I>-) = (M(p')ITcp(x)rp(0)I0)>. = I:(x2t J d~exp(-ip'x~)<Pn(~, .\). (4) 
n=O o 

Here <Pn(~, ,\) = Cn(>-)(m2t~(l-~), n = 0, l, 2, ... , are the DAs of increasing twist involving 
calculable functions Cn(>-) of the factorization scale,\. The end-point behaviour of the DAs 
¢n ( ~, ,\) depends on the inter- "quark" interaction. 

The LC expansion of the BS amplitude ( 4) generates the LC expansion of the correlator. 
Below, we give the corresponding expressions for q2 = 0. For the uncut correlator ( s0 -> oo), 
which is not related to the contribution of the individual bound state and accordingly not to 
the form factor of interest, neglecting terms of order O(M2) one obtains 

( 2 1 J 4 4 exp[i(p - k)x] ~ 2)n JI ( . , ( ) 
fpl.\) = (21r)4 dkdxmb-k2-iO;;:'o(x 

O 

d~exp-ipx~)<Pn~,A 

I I 

J 
d~¢o(~,>-) -8m2J d~</>1(~,,\) +···=fo+r1+···. (5) 

o mb - p2(1 - ~) Q o [mb - p2(1 - ~)}3 . 
The Borelized uncut correlator takes the following form: 

JI d~ [ ¢1(~, .\) ] ( mq~ ) 
r(,BI.X) :::: exp (-mq/2,8) 1 _ ~ </Jo(~,.\) - ,82(l _ ff + · · · exp 2,B(l _ ~) • 

0 

Obviously, the main contribution to the integral arises from the end-point region~:::: ,B/mq. 
For this uncut correlator the behaviour of the contributions of increasing twist is found to be 

fo(.B) ~exp(-;;)!~, r 1(,B) ~exp(-;;):;, 

fn+1(.B)~rn(,B)(;:r, n=0,1,2, .... 

Consequently, in the uncut correlator contributions of higher twist are suppressed by powers 
of m 2 

/ ,82 compared to those of lower twist. 
For the cut correlator, which is related to the form factor of interest, one should take care 

when applying the cut in the dispersion representation, which leads to surface terms [1]. The 
surface terms modify the leading behaviour of r O while leaving the leading behaviour of the 
higher-twist contributions unchanged: 

fo(,8, Zeff)~ exp (-;; ) ~i, 
f n+I (,8, Zeff) ~ f n(,8, Zeff) ( ;: ) n, n = l, 2,3, .... 

1 In the ladder-approximation model with scalar constituents, one may oht ain t !,,, correlator r via the BS 
amplitude without performing the factorization; also the LC contribution to tilt' corrdntor r 0 ran be found. 
However, any proper treatment of the full LC expansion of th<' c-orrl'lator still 1n111in•s factorization. 

323 



Note that the parameter Zeff here is a fixed parameter (in our model~ m, in QCD ~ AQco) 
dictated by dynamics. Thus, the leading and the subleading twists are of the same order of 
magnitude. For higher twists, the twist hierarchy is preserved in the cut correlator related to 
the form factor, similar to the case of the uncut correlator. 

In [1] we have calculated, without invoking the LC expansion, the full correlator by use of 
the known solution for the BS amplitude in ladder approximation and, separately, the LC 
contribution to the correlator. We found that numerically the leading twist provides about 
70% of the full correlator. The contributions of the higher twists (mainly, of the subleading 
twist), however, stay at the order of 30% for all values of the parameter /3 and of the mass mQ 

of the heavy "quark." 
In summary, in the LC sum-rule approach to heavy-to-light form factors near q2 = 0 the 

contributions of all twists exhibit the same behaviour in the 1/mQ expansion. Higher-twist 
contributions are suppressed by powers of the parameter AQco/ /3, with the exception of the 
leading- and .the subleading-twist contributions, which exhibit the same behaviour in 1/ /3. 
However, since the ground-state contribution is enhanced for small /3, one would like to know 
the correlator for the smallest possible values of /3, where the inclusion of higher-twist effects 
is mandatory. The off-LC and other higher-twist effects in weak decays of heavy mesons in 
QCD deserve a detailed investigation: for the LC sum-rule method the corresponding DAs 
are just external objects, which should be provided by other nonperturbative approaches. In 
particular, the combination of LC sum rules with techniques based on bound-state equations 
and the constituent quark picture [4] (which successfully describe heavy-meson decays) may 
prove to be promising. 
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Abstract 

The pion-nucleon bremsstrahlung 7l' + N ==> 1
1 + 7!'

1 + N' is studied in a new form 
of current conservation for the on shell amplitudes [1]. It is shown that the double 
~ exchange diagram with the /J. - ,' ~, vertex cancel exactly against the appropriate 
longitudinal part of the external particle radiation diagrams. Consequently, a model 
independent relation between the magnetic dipole moments of the ~ resonances and 
the anomalous magnetic moment of the proton µP and neutron µn is obtained, where 
µt,+ = ¥f;µp, µt,o = ¾f:tµP and µt,++ = !µt,+, µt,- = !µt,o. This result is gener
alized within the field theoretical formulation with the quark degrees of freedom [3], 
where pions and nucleons are treated as the bound systems of quarks. It is shown 
that relations generated by current conservation for the on shell 7l' N bremsstrahlung 
amplitude with composite nucleons and pions have the same form as in the usual 
quantum field theory without quark degrees of freedom. Consequently, the model 
independent relations for the magnetic dipole moments of the fl resonances remain 
be the same in the quantum field theory with the quark degrees of freedom [2]. 

The general form of the current conservation for the on shell radiative 7f N scattering 
,mplitude is obtained based on the modified Ward-Takahashi identity [l]. This identity 
educes four-divergence of the on mass shell and on energy shell amplitude of the 7f N -; 
(7r'N' reaction k~A~',,-'N'-irN to the sum of the four-divergence of the external particle 
adiation amplitude in Fig. 1 k~[~,,,-, N'-irN and the sum of the off shell elastic 7f N scattering 
,mplitude B,,-'N'-irN, i.e. k~A~'ir'N'-irN = k~[~'ir'N'-irN+B,,-,N'-irN = 0, where k~ is the four
nomentum of the emitted photon. This form of the current conservation represents the 
nodel-independent generalization of the low energy photon theorem (Low theorem) for any 
,nergy of an emitted photon. 

The present Ward-Takahashi identity allows to connect the internal I~'',,-'N'-irN and 
xternal [~ir'N'-irN particle radiation parts of the on shell 1rN radiation amplitude, be
ause k~[~ir'N'-irN = -k~T~'ir'N'-irN = -B,,-'N'-irN· Moreover, according to this relation 
;~[~'ir'N'-irN and k~T~'ir'N'-irN have the opposite sign and thereby they contain the parts 
,hich must cancel each other. Thus the current conservation generates a screening of the 
orrcsponding internal and internal particle radiation parts of the 7l' N rndiation amplitudes. 

In particular it is shown, that the internal double fl. excha.ugl' diagram with the fl. -
i fl.' vertex (Fig. 2) cancel exactly against the longitudinal part of t hl' external particle 
adiation diagrams depicted in Fig. 1. This canceling enabll's to obtain a model independent 
stimation of the dipole magnetic moment of the fl. resonant'l'H /1.:,,. t.lmmgh the anomalous 
aagnetic moment of the proton µP and the anomalous 
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7r 

N 

Model This SU(6) Poten. & Skyrme Low en. pht. Eff. 1rN 
work & Bag K-matr. theorem Lagran. quark 

2.79 [10, 11] 3.49[16} 
µA+ 3.66 2.13[12} 2.0-3.0[19] 2.85[17] 

2.20-2.45[13] 2.3-2. 7[18] 
3.27[15] 2.79[21] 
5.5[10, 11] 6.9-9.7[14]· 3.6±2.0[7]· 6.98[16] 

µA++ 5.49 4.25[12] 4.52±0.95[6]· 4.2-7.4[19] 5.6±2.1[8]• 6.1±0.5[20]· 5.33[17] 
4.41-4.89[13] 5.6-7.5[5]' 4.7-6.9[4]' 5.1-5.4[18] 
6.54[15] 3.7-4.9[9]' 6.17(21] 
0. [10, 11] 0.[16] 

µA• -2.504 0.[12] -1.33-0.19[19] 0.375[17] 
0.[13} -0.3-0. [18] 
0.[15] 
-2. 79 [10, 11] -3.49[16] 

µA- -3.759 -2.13(12] -5.62-2.38[19] -2.1[17] 
-2.20-2.45(13] -2. 72-3.06[18] 

,, ,, 11 

-3.27(15] 

,r' 7r 
\\ 1r' 

7r .. -y' 
\\ 

\\ 

~ 
11 ; 

11 
11 

\\ ,, 

\\ ' ' ,, 

~, 
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N' N N' N -y' N N' 

A B C D 

Figure 1: The external particle radiation diagrams of the 1rN bremsstrahlung amplitude. 

magnetic moment of the neutron µn as 

MA 
µA+= --µp; 

mp 

3 
µA++= 2µA+; 

MA 
µA•= --µn; 

mp 

3 
µA-= 2µA• (1) 

The corresponding numerical values of the magnetic moments of the I:!,. resonances and 
the results of other authors [4]-[21] are collected in Table 1. In a number of approaches the 
magnetic moment of I:!,. is treated as an adjustable parameter. The corresponding results 
obtained from the experimental cross sections of the 1r+p·--. 'Y7r+p reaction are indicated in 
Table 1 with the upper index •. 

The generalization of the present model independent relation (1) is given in [2]. 
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N ~ 

Figure 2: The double on mass shell ,l exchange diagram with the intermediate ,l radiation vertex. The 

,l - -y ,l vertex contains the dipole magnetic moment of the '1. 
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Abstract 

We present a model for odd-C (negative charge parity) glueballs with three con
stituent gluons. The model is an extension of a previous study of two-gluon glueballs. 
We show that, even if spin-1 gluons seem to reproduce properly the lattice QCD 
spectrum for C = + states, the extension for C = - cannot match with the lattice 
results. Resorting to the helicity formalism, we show how transverse gluons fit in 
better agreement the lattice QCD spectrum. 

1 Constituent models for two-gluon glueballs 

Quantum Chromodynamics (QCD) allows the self-coupling of the gauge bosons, the gluons. 
Therefore, states with no valence quarks, the glueballs, are a beautiful consequence and 
prediction of QCD. 

Their. observation, however, remains difficult. Probably because the lightest glue ball, 
the scalar o++, should mix with mesons [1]. Some experimental glueball candidates are 
currently known, such as the f0 (980), f0 (1500), fo(l 710), ... but no definitive conclusions 
can be drawn concerning the nature of these states. 

On the other hand, pure gauge QCD has been investigated by lattice QCD for many 
years, leading to a well established glueball spectrum below 4 GeV (2, 3, 4]. Our aim is 
to reproduce this hierarchy with the most simple models with constituent gluons. Since 
two gluons can only bind into positive-C, we have to consider three-gluon glueballs for the 
existence of negative-C states. 

In ref. [5], the authors provide a relevant model of two-gluon glueballs. Assuming 
Casimir scaling for the string tension of the flux tube, the Hamiltonian, endowed with 
one-gluon exchange (OGE) potentials, reads 

9 
H99 = 2✓p2 + m 2 + 4crr + V09.(r; as,µ; S, L). (1) 

Although they use a bare mass m = 0 in the kinetic term, their gluons have longitudi
nal components and are spin-1 particles. Therefore, many states are degenerate and the 
authors resorted to spin-dependent potentials coming from the OGE to lift these degen
eracies. The corrections are of order µ-2, where µ = (p2) is an effective constituent mass. 
The parameters were fitted on the low-lying states and the final spectrum is displayed in 
Fig. 1 (left). 
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All states (squares) fall into lattice error bars. However, we noticed some spurious states 
(circles) not found by any lattice study. J = l states are forbidden by Yang's theorem 
and should not be present. The appearance of such states is induced by the longitudinal 
components of gluons and should disappear when considering transverse gluons. 

2 Odd-C glueballs 

Let us forget about the spurious states for the moment and let us generalize the model 
for three-gluon glueballs. We used a generalisation of the flux tube for the confinement. 
In heavy baryons, the confinement has a Y-shape, but in our case, we replaced it by a 
center-of-mass junction. The Hamiltonian is supplemented by the potential coming from 
the OGE and reads 

(2) 

We refer the reader to the ref. [6] for further details concerning the Hamiltonian. 
We impose the symmetric colour function dabcA~A~A~, which ensures a negative C

parity, then the spin symmetry determines the symmetry of the space. Since 1 @ 1 @ 1 = 
3, EB 2m EB 1, EB Oa, 2-- has a mixed symmetry and cannot lie in the same mass range as 
1 -- and 3--, as was already noticed in ref. [7]. Moreover, a positive parity requires an· odd 
angular momentum. Then, all (0, 1, 2, 3)+- are degenerate with a large component L = l in 
the wave function. But the lattice QCD exhibits a gap around 2 GeV between the highest 
o+- and the lowest 1+-. The spectrum, shown in Fig. 1 (right), is nearly in complete 
disagreement with lattice QCD. The symmetry arguments are Hamiltonian-independent 
and we can therefore conclude that models with longitudinal gluons are not appropriate to 
reproduce the lattice pure gauge spectrum. 

,., 
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cigure 1: Left: Spectrum of Hamiltonian (1) with longitudinal gluons. Right: Spectrum of 
Iamiltonian (2) with longitudinal gluons. 
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3 Transverse gluons 

In order to solve the problems encountered 
(spurious states, hierarchy in the PC = +- sec- ,., ~-------------, 
tor), we implemented a formalism developed by ,, 
Jacob and Wick [8]. This formalism allows us to ,., 
handle transverse particles. When applying it to 
two-gluon glueballs, we remarked that the Bose .., 
symmetry (and the parity) implies selection rules. '·' 
Three families were identified [9]: (2k)++, (2k + '' 
3)++, (2k + 2)-+ with k E N. One easily checks '·' 

{ 
<! 

i 
l J I 1 

a 

'i 
'I i 

L:....::::: 

that no spurious J = 1 states appear. Moreover, ,.. .. 
with this special construction, all states are now ,., I 0

, V I -• 3.. 4.. 6 .. I\-+ .,.. ., 

expressed through a given linear combination of 
spectroscopic states j28+1£J). The degeneracies 
occurring in Ref. [5] are naturally split by the wave Figure 2: Spectrum of Hamiltonian (3) 
function. One does not need to use complicated with transverse gluons. 
spin-dependent potentials. 

We tested the wave functions with a simple Hamiltonian: 

c;;. 9 as 
H99 = 2yp- + -ur - 3-. 

4 r 
(3) 

The resulting spectrum, displayed in Fig. 2 is in good agreement with the lattice QCD data 
without the inclusion of spin-dependent potentials. But instanton-induced interactions were 
needed for J = 0 states. In addition, all states are present with no spurious state. 

The next step is to implement this formalism for three-gluon glueballs. This work is 
under construction. However, we have some indications that the lowest odd-C are spin 1 
and 3 [10]. Symmetry arguments are also in favour of a four-gluon interpretation for o+-. 
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Abstract 

We propose to investigate infrared properties of gluon and ghost propagators re
lated to the so-called Gribov-Zwanzigcr confinement scenario, originally formulated 
for Landau and Coulomb gauges, for other gauges as well. We present results of our 
investigation of SU(2) lattice gauge theory in the maximally Abelian gauge (MAG), 
focusing on the behavior of propagators in the off-diagonal (i.e. non-Abelian) sector. 
We also comment on our preliminary results for general linear covariant gauges, in 
particular for Feynman gauge. 

1 Introduction 

Important features of quark and gluon confinement in QCD are believed to be closely related 
to the behavior of gluon and ghost propagators in the infrared limit. One must notice, 
however, that the study of infrared properties of these propagators must be performed by 
nonperturbative methods and at a fixed gauge. The Gribov-Zwanziger confinement scenario 
[1, 2] - proposed for Landau and Coulomb gauges - provides predictions for gluon and 
ghost propagators in the infrared limit, which may be tested by lattice simulations and 
by nonperturbative analytic methods such as Dyson-Schwinger equations. In particular, 
a suppressed infrared gluon propagator D(p2) is predicted, with D(O) = 0. The latter 
statement implies maximal violation of reflection positivity for the gluons, a result that may 
be viewed as an indication of gluon confinement. (Note that it suffices to have violation of 
reflection positivity, not necessarily maximal.) At the same time, the infinite-volume limit 
favors gauge configurations on the boundary region known as the first Gribov horizon, 
where the smallest nonzero eigenvalue >-min of the Faddeev-Popov matrix M goes to zero. 
As a consequence, the ghost propagator G(p2 ) - which is obtained from M-1 

- should 
be infrared-enhanced, introducing long-range effects in the theory. These, in turn, would 
be respvnsible for the color-confinement mechanism. 

The nonperturbative study of infrared propagators may be carried out from first prin
ciples in lattice simulations, taking into account that the true infrared behavior is however 
obtained only at large enough lattice volumes. Considerable effort has been dedicated to 
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investigations of the above predictions for the Landau gauge, considering very large lattice 
sizes (see e.g. (3]). The status of these studies is discussed in (4]. Here we propose to test 
similar predictions for the propagators as applied to the lattice implementation of other 
gauges, to try to gain a unified understanding of the mechanism of confinement and its 
manifestations. We consider the maximally Abelian gauge (MAG) and the linear covariant' 
gauges, in particular Feynman gauge. 

In the case of the linear covariant gauges, which include and generalize Landau gauge,· 
some studies suggest that the Gribov-Zwanziger confinement mechanism may apply to the 
complete class of such gauges (5, 6]. (A recent study of Dyson-Schwinger equations for 
Feynman gauge has been presented in (7].) On the other hand, for MAG, the usual confine
ment scenario is based on the concepts of Abelian dominance and of dual superconductivity 
(8]. Nevertheless, one might argue that a modified Gribov-Zwanziger scenario would likely. 
hold in MAG for the non-Abelian directions in gauge-configuration space. A study of the 
Yang-Mills Lagrangian restricted to the (MAG) Gribov region by addition of a horizon 
function with Gribov parameter I has recently been carried out for SU(2) gauge theory 
in (9]. As pointed out in that reference and also by other groups, the infrared behavior of 
propagators in MAG may be modified by the presence of ghost and gluon condensates of 
mass dimension two. An example of such objects is the ghost condensate v [10, 11], related 
to the breakdown of a global SL(2, R) symmetry. This quantity is expected to modify 
the symmetric and anti-symmetric components of the (off-diagonal) ghost propagator. In: 
particular, a nonzero value for v corresponds to nonzero anti-symmetric components of the· 
ghost propagator. In Section 2 we present results of our lattice studies of pure SU(2) theory 
in MAG. (The implementation of gauge fixing for MAG on the lattice is straightforward.) 
We consider gluon and ghost propagators, the ghost condensate v mentioned above and the 
smallest eigenvalue of the Fadeev-Popov matrix. Our preliminary results have also been 
presented in (12] and (13]. We note that the bounds recently introduced for studying gluon, 
and ghost propagators on large lattices in· Landau gauge (14, 15] may be written also for 
other gauges. 

Contrary to the case of MAG, the technical aspect of fixing the linear covariant gauges on 
the lattice is still not a settled issue. We comment on our recent proposals for gauge-fixing 
methods for these gauges in Section 3. 

2 Infrared propagators in MAG 

On the lattice, for the SU(2) case, the MAG is obtained (see e.g. (16]) by minimizing the 
functional 

S = - 2:v I:Tr [u3Uµ(x)u3Ui(x)] . 
x,µ 

(1) 

At any local minimum one has that the Faddeev-Popov matrix, defined as 

L Mab(x, Yd(Y) = L ,a(x)[Vµ(x) + Vµ(x - eµ)] + 2 { ,a(x - eµ)[l - 2(U2(x))2] 
by µ 

- 2 L ,b(x - eµ)[t:abU2(x)U!(x) + L ladEbcUt(x)Ui(x)l}, (2) 
b ro 
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l positive-definite. Here the color indices take values 1, 2 and we follow the notation 
Tµ(x) = ui(x)JL + ia-aU;(x) and Vµ(x) = (Ui(x)) 2 + (Ut(x)) 2 

- (Ui(x)) 2 
- (Ui(x)) 2

, 

rhere aa are the 3 Pauli matrices. Notice that (as in Landau gauge [17]) this matrix is 
ymmetric under the simultaneous exchange of color and space-time indices. Using the 
~lation Uµ(x) = exp [-iag0 Aµ(x)] one finds (in the formal continuum limit a -+ 0) the 
;andard continuum results [18) for the stationary conditions above and for Mab(x, y). ' 

We have considered four values of /3 (2.2, 2.3, 2.4, 2.512) and lattice volumes up to 404
. 

lata for a larger lattice, of volume 564, have also been recently produced, but are not fully 
rralyzed yet. We include data for the ghost propagator at this volume in Fig. 2 below, for 
)mparison. 

Our results for the gluon propagators are in agreement with the study by Bornyakov et 
I. [16): we see a clear suppression of the off-diagonal propagators compared to the diagonal 
.ransverse) one, supporting Abelhin dominance. We have fitted our data for the various 
.uon propagators (at all values of V up to 404 and for (3 = 2.2), obtaining the following 
"haviors. For D(p2 ) (transverse) diagonal, our data favor a Stingl-Gribov form 

(3) 

ith a mass m = /-;;jb ~ 0.72GeV. Note that the above equation corresponds to 
pair of complex-conjugate poles z and z*. We can thus write z = x + iy with x = 

'(2c) ~ 0.32GeV2 and y = Ja/c-x2 ~ 0.47GeV2
. Let us recall that in the case of 

Gribov-like propagator these two poles are purely imaginary. For D(p2 ) transverse off
agonal our best fit is of Yukawa type, i.e. D(p2

) = 1/(a + bp2
), with a mass m = 

a/b ~ 0.97 GeV. Finally, the longitudinal off-diagonal gluon propagator is best fitted by 

(p2
) = 1/(a+bp2 +cp4 ) (i.e. also ofYukawa type) with a mass m = /-;;jb ~ 1.25GeV. 

3 expected from Abelian dominance, the mass is larger in the off-diagonal case. 
In Fig. 1 (left) we show our data for the ghost propagator G(p2), as a function of an 

1proved momentum p (see Ref. [19)). The data show little volume dependence at small 
(Note that, contrary to Landau gauge, here we can evaluate the ghost propagator at 

ro momentum.) We see no sign of an enhanced IR propagator. We have fitted our 
,ta (at /3 = 2.2), obtaining a behavior of the type (3) above with a = 0.45(1) GeV2

, 

= 1.1(3), c = 0.73(30) Gev-2 , d = 2.1(9) Gev-2 • Thus, we see a Stingl-Gribov fit with 
ass m ~ 0.6GeV and complex poles given by x ~ 0.75, y ~ 0.22. 

We next consider (see Fig. 1, right) the smallest eigenvalue Amin of the Faddeev-Popov 
atrix. We have looked at Amin for several lattice volumes and values of (3 as a function 
1/ L. The data are fitted to a (1/ Lt with b = 1.6(1), showing that Amin vanishes more 
>wly than (1/L) 2 (Laplacian). This may explain why we do not see a diverging ghost 
opagator at zero momentum even at rather large lattice volumes [15). 

Following the analysis done in Landau gauge [17), we consider the anti-symmetric off
igonal ghost propagator ( I EabGab(p2 )/2 I) rescaled by L2 

/ cos (1r Pµ a/ L), as a function 
the (unimproved) momentum p for all lattice volumes and (3 values considered. The 
ta show nice scaling for all cases considered. The data at V = 404 and /3 = 2.2 can 
fitted by <I>(p) = (a+ bp/ L2 )(p4 + v2 ) with a = 0.0026(7) GeV2

, b = 32.6(7) GeV-1 

d v2 = 1.7(1) GeV4 . We thus have a rather large ghost condensate v ~ 1.3 GeV2
, but 

, cannot be sure that it survives in the infinite-volume limit, since the overall constant a 
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Figure 1: Left: plot of G(p2
) as a function of improved p for lattice volumes V = 164, 244, 

404 and /3 = 2.2. Right: plot of the smallest eigenvalue of the Faddeev-Popov operator, a:; 

a function of the inverse linear size of the system. 

might be null. We can also fit data at several V's and /J's for <I>(p2) as a function of p and 
L (see Fig. 2, right). We obtain <I>(p) = (a+ bp/ L2)(p4 + v2) with a= 0.0033(6) GeV2 , 

b = 35.8(5) Gev- 1 and v2 = 1.87(8) GeV4
• We note that the fit parameters change little 

with the (physical) lattice volume. In fact, data obtained recently for a larger lattice volume, 
564

, are seen to fall nicely on top of the fit done for the smaller volumes, as seen in Fig. 2 
(right). 

We have also investigated possible effects of Gribov copies on our results, by consider~ 
ing the difference between our standard gauge fixing (using the stochastic overrelaxation 
algorithm [20]) and the so-called smearing method (21]. The effects are found to be of the 
order of the statistical error. 

3 Linear covariant gauges 

As mentioned in the Introduction, gauge-fixing to linear covariant gauges (other than Lan
dau gauge) on the lattice is a challenge. More precisely, the gauge condition is given by · 

8,,A~(x) = Aa(x) (4) 

for real-valued functions Aa(x). As opposed to the case of Landau gauge - for which 
Aa(x) = 0 and the gauge is fixed by minimizing a simple functional of the gauge-transformed 
links - in the general case no such functional exists [22]. The solution to this problem 
presented in [22], based on the consideration of a modified gauge-fixing condition for the 
minimizing functional, may be affected by spurious minima and it leads to an altered form 
of the Faddeev-Popov matrix. We propose to consider a class of gauges on the lattice that 
coincides with the perturbative definition of linear covariant gauges in the formal continuum 
limit. Our method is based on a three-step process. Instead of minimizing a functional 
of Aa(x) directly, we first fix the gauge to Landau gauge, i.e. the transformed gauge fields 
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satisfy 8µA~(x) = 0. Then we determine a transformation ¢i(x) such that 

(5) 

satisfies Eq:(4). Finally, we repeat the procedure for several functions Aa(x) with a Gaus
sian distribution of width ../f.. The case ~ = 1 corresponds to Feynman gauge. The resulting 
distribution of 8A':(x) is shown for~= 1 in Fig. 3, in comparison with the original (Gaus
sian) distribution taken for Aa(x). We see that the expexted distribution is fairly well 
reproduced. 

Our preliminary results were presented in [23]. We are currently investigating an alter
native method for fixing these gauges. 

·• A 

Figure 3: Distribution of 8A':(x) (solid line) compared with a Gaussian of width ../E. (dashed 
line). 

335 



4 Acknowledgments 

We thank S. Sorella for helpful discussions. A. C. and T. M. were partially supported by 
FAPESP and CNPq. The work of T. M. was also supported by the A. von Humboldt 
Foundation. A. Maas was supported by the DFG under grants number MA 3935/1-1 
and number MA 3935/1-2 and by the FWF under grant number P20330. A. Mihara was 
partially supported by CNPq. 

References 

[1] V. N. Gribov, Nucl. Phys. B 139, 1 (1978). 
[2] D. Zwanziger, Nucl. Phys. B 378, 525 (1992). 
[3] A. Cucchieri and T. Mendes, PoS LAT2007, 297 (2007). 
[4] A. Cucchieri and T. Mendes, these proceedings, arXiv:0809.2777 [hep-lat]. 

[5] R. Alkofer, C. S. Fischer, H. Reinhardt and L. von Smekal, Phys. Rev. D 68, 045003 
(2003). 

[6] R. F. Sobreiro and S. P. Sorella, JHEP 0506, 054 (2005). 
[7] A. C. Aguilar and J. Papavassiliou, Phys. Rev. D 77, 125022 (2008). 
[8] A. S. Kronfeld, M. L. Laursen, G. Schierholz and U. J. Wiese, Phys. Lett. B 198, 516 

(1987). 
[9] M. A. L. Capri, V. E. R. Lemes, R. F. Sobreiro, S. P. Sorella and R. Thibes, Phys. 

Rev. D 77, 105023 (2008) .. 
[10] M. Schaden, arXiv:hep-th/9909011. 
[11] M. A. L. Capri, V. E. R. Lemes, R. F. Sobreiro, S. P. Sorella and R. Thibes, Phys. 

Rev. D 72, 085021 (2005). 
[12] T. Mendes, A. Cucchieri and A. Mihara, AIP Conf. Proc. 892, 203 (2007). 
[13] A. Mihara, A. Cucchieri and T. Mendes, Int. J. Mod. Phys. E 16, 2935 (2007). 
[14] A. Cucchieri and T. Mendes, Phys. Rev. Lett. 100, 241601 (2008). 
[15] A. Cucchieri and T. Mendes, arXiv:0804.2371 [hep-lat]. 
[16] V. G. Bornyakov, M. N. Chernodub, F. V. Gubarev, S. M. Morozov and M. I. Polikar-

pov, Phys. Lett. B 559, 214 (2003). 
[17] A. Cucchieri, T. Mendes and A. Mihara, Phys. Rev. D 72, 094505 (2005). 
[18] F. Bruckmann, T. Heinz!, A. Wipf and T. Tok, Nucl. Phys. B 584, 589 (2000). 
[19] J. P. Ma, Mod. Phys. Lett. A 15, 229 (2000). 
[20] A. Cucchieri and T. Mendes, Nucl. Phys. B 471, 263 (1996). 
[21] J. E. Hetrick and Ph. de Forcrand, Nucl. Phys. Proc. Suppl. 63, 838 (1998). 
[22] L. Giusti, Nucl. Phys. B 498, 331 (1997). 
[23] A. Cucchieri, A. Maas and T. Mendes, arXiv:0806.3124 [hep-lat], to appear in Comput. 

Phys. Commun. 

336 



New arrangement of common approach to calculating 
the QCD ground state 
S. V. Molodtsov1

•
2

, G. M. Zinovjev3 

1 Joint Institute for Nuclear Research, RU-141980, Dubna, Moscow region, RUSSIA. 

2Institute of Theoretical and Experimental Physics, RU-117259, Moscow, RUSSIA. 

3Bogolyubov Institute for Theoretical Physics, UA-03143, Kiev, UKRAINE. 

The quark behaviour in the background of intensive stochastic gluon field is studied. An approx
imate procedure for calculating the effective Hamiltonian is developed and the corresponding 
ground state within the Hartree-Fock-Bogolyubov approach is found. The comparative analysis 
of various model Hamiltonian is given and transition to the chiral limit in the Keldysh model is 
discused in detail. 

We study the quark (anti-quark) behaviour while being influenced by intensive stochastic 
gluon field and work in the context of the Euclidean field theory. The corresponding 
Lagrangian density is the following 

(1) 

liere q (q) - are the quark (anti-quarks) fields with covariant derivative Dµ = 81, - igA~ta 
iVhere A~ is the gluon field, ta = Aa /2 are the generators of colour gauge group SU(Nc) and 
en is the current quark mass. As the model of stochastic gluon field we refer to the example 
)f (anti-)instantons considering an ensemble of these quasi-classical configurations. On our 
1vay to construct an effective theory (which usually encodes the predictions of a quantum 
'ield theory at low energies) the assumptions done are not of special importance. However, 
1vhat is entirely restrictive to fix the effective action at really low energy (i.e. low cutoff) 
1p to a few coupling constants is an idea to neglect all the contributions coming from gluon 
l.elds Aex generated by the (anti-)quarks. 

Aex«A. 

'\.ctually, it means the removal of corresponding cutoff(s) from consideration, but by the 
iefinition of an effective theory this operation does not pose itself. Then the corresponding 
familtonian description results from 

1{ = 7T'Q - [,E , 71' = OiqE = iq+ , (2) 

md 
Ho= -q (i,V + im) q , (3) 

or noninteracting quarks. In Schrodinger representation the quark field evolution is deter
nined by the equation for the quark probability amplitude \]i as 
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with the density of interaction Hamiltonian 

Vs= q(x) t 0 ')'µA~(t, x) q(x) . (5) 

The explicit dependence on "time" is present at the gluon field only. The creation and 
annihilation operators of quarks and anti-quarks a+, a, b+, b have no "time" dependence 
and consequently 

. ( ) _ J-3:!!_ l [ ( ) . ( ) ipx b+ ( ) . ( ) -iPX] q"" x - (21r)3 ( 2IP
4
l) 1/ 2 a p, s, c u"" p, s, c e + p, s, c Ven p, s, c e . 

(6) 
The stochastic character of gluon field (which we supposed) allows us to develop the ap
proximate description of the state W if the following procedure of averaging 

1¥->(W)= l dTW(T)/t 

is intoduced. With this procedure taken the futher step is to turn to the approach of 

constructing a density matrix (lltw). However, here we believe that at calculating the ground 
state (or more generally with quasi-stationary state) it might be sufficiently informative 
to operate with the averaged amplitude directly. Then in the interaction representation 
W = eHotcp we have the equation for state <I> as 

ci, =-Vil>' V = eHotvse-Hot. (7) 

Now the "time" dependence appears in quark operators as well and after averaging over 
the short-wavelength component one may obtain the following equation · 

(<i>(t)) = + fo"0 

dT (V(t)V(t - T)) (<P(t)) . (8) 

The limitations to have such a factorization validated are well known in the theory of 
stochastic differential equations (see, for example, [l]). The integration interval in Eq.(8) 
may be extended to the infinite "time" because of the rapid decrease (supposed) of the 
corresponding correlation function. Now we are allowed to deal with amplitude (<I>(t)) in 
the right hand side of Eq.(8) instead the amplitude with the shifted arguments in order to 
get an ordinary integro-differential equation. In the quantum field theory applications it is 
usually difficult to construct the correlation function in the most general form. However, if 
we are going to limit our interest by describing the long-wavelength quark component only 
then gluon field correlator (A~(x)At(y)) may be factorized and as a result we have 

(ci>(t)) = j dx ij(x, t) t0 1µ q(x, t) f" dT j dy ij(y, t-T) tb!V q(y, t-T) g2(A~(t, x)At(t-T, y)) (<I>(t)). 

Having assumed the correlation function rapidly decreasing in "time" we could ignore all 
the retarding effects in the quark operators. Turning back to the Schrodinger representation 
we have for the state amplitude X = cH01 (iP) the following equation 

X = -Hind X, 

'Hind= -q (i-y'v + im) q - ij t0
')'µ q J dy i/ tb')',., q' fo00 

dT g2(A~A~) , 
(9) 
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with q = q(x), q = q(x), q' = q(y), q' = q(y) and A~= A~(t,x), AJ = At(t-T,y). Now 
the correlation function might be presented as 

{

0 

dT g2(A~A~) = 5ab Fµv(X - Y) , 

with the corresponding formfactors Fiw(x -y) = <lµv I(x -y) + Jµv(x -y). In our consid
eration we ignore the contribution of the second formfactor spanning on the components of 
the vector x - y. Thus, on output we receive the Hamiltonian of four-fermion interaction 
with the formfactor rooted in the presence of two quark currents in the points x and y. 
With this form of the effective Hamiltonian we could apply the Hartree-Fock-Bogolyubov 
method [2] to find its ground state as one constructed by the quark-anti-quark pairs with 
the oppositely directed momenta 

10") = T ID) , 

T = IIp,s,c exp { ; [ a+(p, s, c) b+(-p, s, c) + a(p, s, c) b(-p, s, c)) } , 

(10) 

where the parameter 0(p) characterizes the pairing strength. Introducing the creation and 
annihilation operators of quasi-particles A = Ta r- 1 , A+ = T a+r-1 , B = Tb r- 1

, 

B+ = T b+r- 1 , we can rewrite the quark (anti-quark) operators as 

J dp l 
q(x) = (2rr)3 (2IP41) 112 

_ J dp l 
q(x) = (2rr)3 (2IP41)1/2 

with the quasi-particle spinors 

[ A(p, s, c) U(p, s, c) eiPX + B+(p, s, c) V(p, s, c) e-ipX] , 

[ A+(p, s, c) U(p, s, c) e-ipx + B(p, s, c) V(p, s, c) eiPX] , 

U(p,s,c)=cos(n u(p,s,c)-sin(;) v(-p,s,c), 

(11) 

V(p,s,c) = sin (n u(-p,s,c) +cos (n v(p,s,c), 

where U(p, s, c) = u+(p, s, c) ")'4 , V(p, s, c) = v+(p, s, c) ")'4 . Minimizing the mean energy 
functional one is able to determine the angle 0 magnitude 

(12) 

Dropping the calculation details out we present here the following result for the mean energy 
as a function of the 0 angle 
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' 0 

here the following designations are used p = IPI, q = lql, l = f(p + q), l;i = l;i(P + q), 
J = Lf=1 l;;, p2 = q2 = -m2

, 0' = 0(q) where G is the constant of corresponding four-· 
fermion interaction (the relevant details can be found in [3]). The first integral in Eq. (13) 
comes from free Hamiltonian, and we make a natural subtraction (adding the unit) in order 
to have zero mean free energy when the angle of pairing is trivial. 

0 
C .iii 

1.QQ Li' _I I I I I I j 411zc:::c::::::1 Ii j I i I I lj I I I I I I I I j i Iii I I I I I jj 

' ' ' ' ' ' 
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p 

Figure 1: Phase portrait of the Keldysh model, sin0 as a function of momentum p(MeV). 
The dotted curve corresponds to the solution with the negative values of angle in the chiral 
limit m = 0. 

Nambu-Jona-Lasinio model 

In order to get an idea of the parameter scales we continue with handling the model in 
which the formfactor behaves in the coordinate space as I(x - y) = o(x - y), lµv = 0, 
dropping contribution spanned on the p;qi tensor also. Actually, it corresponds to the 
Nambu-Jona-Lasinio model (4]. As well known the model with such a formfactor requires 
the regularization and, hence, the cutoff parameter A comes to the play 

W = /A (:~3 [1P41 (1- cos0) - c
1
;

1 
(sin0-; cos0) /A (:~31; 1 (sin0' - ; case')] 

(14) 
We adjust the NJL model with the parameter set given by Hatsuda and Kunihiro [4] in 
which A = 631MeV, m = 5.5MeV. One curious point of this model is that the solution 
for optimal angle 0 in the whole interval p E (0, A] can be found by solving the simple 
trigonometrical equation 

(p2 + m2
) sin0 - Mq (pcos0 + msin0) = 0, 

with the dynamical quark mass 

!A dp p (. m ) 
Mq = 2G (27!')3 IP

4
I sm0 - p cos0 . 
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Eventually the results obtained look like Mq = -335 MeV for dynamical quark mass and 
(aJqqJa) = -i (245 MeV)3 for the quark condensate with the following definition of the 
quark condensate 

i N laoo p2 
(aJqqJa) = -,f dp -

1 
-

1 
(psin0- mcos0). 

7r O p4 
(17) 

The Keldysh model 

Now we are going to analyse the limit, in some extent, opposite to the NJL model, i.e. 
we are dealing with the formfactor behaving as a delta function but in the momentum 
space (analogously the Keldysh model, well known in the physics of condensed matter [5]), 
I(p) = (21r)3 o(p). Here the mean energy functional has the following form 

J dp [ p2 ( . m ) 
2

] W(m)= (21r)3 Jp4J (1-cos0)~G IP
4
l2 sm0-pcos0 . (18) 

contrary to the NJL model there is no need to introduce any cut off. The equation for 
calculating the optimal angle 0 becomes the transcendental one 

Jp4J3 sin0 - 2G (pcos0 + msin0) (psin0 - mcos0) = 0, (19) 

and, clearly, it is rather difficult to get its solution in a general form. Fortunately, it is much 
easier and quite informative to analyse the model in the chiral limit m = 0. There exist one 
trivial solution 0 = 0 and two nontrivial ones (for the positive and negative angles) which 
obey the equation 

p 
cos0 = 

20
. (20) 

Obviously, these solutions are reasonable if the momentum is limited by p < 2G. Then for 

the mean energy we have W±(O) = -
1
~;2 if the quark condensate defined as (aJqqJa)(O) = 

i ~~ G
3

• For the trivial solution the mean energy equals to zero together with the quark 
condensate W0 (0) = 0, (aJqqJa) 0 (0) = 0. Introducing the practical designation sin 0 = 

(p2 /~.Jl)l/2 which characterizes the pairing strength by the parameter Me we have, for 

example, for the nontrivial solution Me= (4G2 - p2 )
112

. In order to compare the results 
with the NJL model we fixed the value of four-fermion interaction constant as Me(0) = 
2G = 335 MeV. It is interesting to notice that the respective energy becomes constant 
E(p) = Jp2 + MJ?, E(p) = 2G. 

After having done the analysis in the chiral limit which is shown by the dotted line in 
Fig.I we would like to comment the situation beyond this limit. The evolution of corre
sponding branches is available on the same plot 1. One solution denoted by A is developing 
in the local vicinity of coordinate origin and for small values of quark mass this domain is 
practically indistinguishable. In order to make it noticeable (to have a reasonable resolution 
on the plot) the quark mass was put as m = 50 MeV. Besides, there are two solutions a· 
and b in the domain denoted by I, three solutions denoted by 1, 2, 3 in the domain II 
and one solution B in the domain II I. The minimum of mean energy functional can be 
realized with the piecewise continuous functions. At the local vicinity of coordinate origin 
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Figure 2: The optimal angle 0 as a function of momentum p(MeV). The solid line corre
sponds to the NJL model and the dashed one to the Keldysh model. The current quark. 
mass ism= 5.5 MeV and P0 ~ 40 MeV. 

we start with the solution branch A, then relevant solution passes to the branch a or b 
interchanging its position from a to b in any subinterval. But in any case there is only 
one way to continue the solution at streaming to the infinite limit and it is related with 
the branch B where the angle is going to the zero value. As to the functional (18) the 
contribution of the term proportional to the cosine in the second parenthesis is divergent 
even if the angle 0 is zero. It means the mean energy out of chiral limit goes to an infinity 
at any nonzero value of quark mass. The same conclusion is valid for the chiral condensate. 
In principle this functional could be regularized and corresponding continuation might be 

· done but it is out of this presentation scope. It is not difficult to demonstrate the similar 
discontinuities of functional are present, for example, for Gaussian J(x) = G exp (-a2 x 2

), 

and exponential I ( x) = G exp ( -a Ix I), formfactors and they are present even in the N JL 
model but this fact is masked by the cut off parameter. 

Comparing the optimal angles in the NJL and Keldysh models (see Fig. 2) it is interest-· 
ing to notice that the formation of quasiparticles becomes significant at some momentum 
value close to the origin P0 ~ 40 MeV but not directly at the zero value. It is clear the in-. 
verse value of this parameter determines the characteristic size of quasiparticle. Parameter 
Me as a function of momentum p corresponding to the best fit to the NJL data Mq = 335 
MeV, (alqqla) = -i (245 MeV) 3 is shown in Fig.3. The solid line corresponds to the Gaus
sian formfactor in the chiral limit and the dashed one shows the same dependence for the. 
current quark mass m = 5.5 MeV. This dependence for exponential behaviour of formfactor 
is presented by the dotted lines on the same plot (the characteristic angle is Pe ~ 150 MeV 
in this case). Analysing the discontinuity of mean energy functional and quark condensate 
we face some troubles at fitting the quark condensate, for example. However, the dynamical 
quark mass and quark condensate are nonobservable quantities and it is curious to remark. 
here that although the mean energy of the quark system is minus infinity the meson ob
servables are finite and even in Keldysh model the mesons are recognizable with reasonable 
scale and we can in principle make a fit for this observables. 
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Figure 3: The parameter Me(MeV) as a function of momentum p(GeV) corresponding to 
the best fit of the NJL data Mq = 335 MeV, (alqqla) = -i (245 MeV)3 • The solid line 
corresponds to the Gaussian formfactor in chiral limit and the dashed line corresponds to 
the magnitude of current quark mass m = 5.5 MeV. The exponentially behaving formfactor 
is represented by the dotted lines and p8 ~ 150 MeV. 
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Heavy baryons in the field correlator method 

I.M.Narodetskii, M.A.Trusov, A.I.Veselov 
!TEP, 117218 Moscow 

Abstract 

We use the field correlator method in QCD to calculate the masses of I:c, Cc and 
recently observed I:b, Cb baryons and their orbital excitations. 

The spectroscopy of c and b baryons has undergone a great renaissance in recent years. 
New results have been appearing in abundance as a result of improved experimental tech
niques including information on states made of both light ( u, d, s) and heavy ( c, b) quarks. 
Before 2007, the only one baryon with ab quark, the isospin-zero A~, was known. Now, we 
have the isospin one Eb, Bi; baryons and Sb, The CDF Collaboration has seen the states 
Bt and B;±, while D0 and CDF have observed the 2; [1]. 

On theoretical side there are many results on heavy baryon masses from different ap
proaches. In the present paper we use the field correlator method (FCM) [2] to calculate 
the masses of the S wave baryons containing c and b quarks and orbitally excited states 
that will be experimentally accessible in the future. 

The key ingredient of the FCM is the use of the auxiliary fields (AF) initially introduced 
in order to get rid of the square roots appearing in the relativistic Hamiltonian, see [3] and 
references therein. Using the AF formalism allows to write a simple local form of the 
Effective Hamiltonian (EH) for the three quark system 

3 (m2 µ·) H= L _; +~ +Ho+V, 
i_=l 2µ; 2 

(1) 

where Ho is the kinetic energy operator, V is the sum of the string potential and a one gluon 
exchange potential, m; are the bare quark masses, and µ; are the constant AF which are 
eventually treated as variational parameters. They have the meaning of quark constituent 
masses. The string potential is Vy(r1 , r 2 , r3 ) = armin, where a is the string tension and 
Tmin is the minimal length corresponding to the Y-shaped string configuration 

The mass M8 of a baryon is given by M = Mo + l:!,.EHF, where l:!,.EHF is the spin 
correction, and 

3 ( m2 µ;) 
Mo = L -' + - + Ea(µ;) + C, 

i=l 2µ; 2 
(2) 

E0 (µ;) being the energy eigenvalue of the Shrodinger operator Ho + V. The constant C in 
(2) is the calculable quark self-energy correction [4] which is created by the color magnetic 
moment of a quark propagating through the vacuum background field. This correction adds 
an overall negative constant to the hadron masses. 

Using the hyperspherical method we calculate the constituent quark masses µ; and 
the zero-order baryon masses M0 • Then we estimate HF splittings from the perturbative 
color-magnetic interaction with account of the wave function correction,s. We calculate the 

344 



Table 1: Heavy Baryons with L = 0. The underlined masses have been used to fix me and 
mb, The experimental baryon masses are for the isospin averaged states. All masses are in 
units of MeV. 

Baryon µn µ. /lh Mo t.E(p) 
HF 

t.E(np) 
HF M Mexp 

Ee 470 1455 2479 -19 -6 2454 2455 
E* e 470 1455 2479 30 13 2522 2520 
=-e 476 522 1458 2519 -39 -20 2460 2471 

Eb 509 4749 5806 0 2 5808 5810 
E* b 509 4749 5806 +19 8 5833 5830 
3b 514 615 4751 5844 -36 -17 5791 5790 

hyperfine splitting with account of the both perturbative and nonperturbative spin-spin 
forces between quarks in a baryon. 

We employ mn = 7 MeV (with n standing for either u or d) and the strange quark 
mass m, = 185 MeV found previously from the fit to D, spectra. However, our predictions 
need an additional input for the bare quark masses me and mb, These were fixed from the 
masses of Ee and ~b, respectively, me = 1359 MeV and mb = 4712 MeV. 

The result of the calculation of the S wave states is given in Table 1. In this Table we 
also present the dynamical quark masses µn, µ, and µQ for various baryons (Q standing 
for either c orb). The latter are computed solely in terms of the bare quark masses, a and 
a 8 and marginally depend on a baryon. We also display the results obtained without the 
HF corrections. The result show good agreement between data and theoretical predictions. 
In particular, the hyperfine splitting between 2; and 3~ is found to be 69 MeV that agrees 
with the experimental value (~ 70 MeV), while the predicted mass difference 2;: - 2;, = 
26 MeV agrees with the finding of Ref. [5]. However, our perturbative calculations do 
not reproduce the observed 3~ - 2e mass difference. The large hyperfine splitting between 
axial and scalar ns diquarks is usually described by the smeared 5-function that requires 
additional model-dependent assumptions about the structure of interquark forces. 

A similar calculations were performed for the P-wave orbitally-excited states, see Table 
2. Our . basis states diagonalize the confinement problem with eigenfunctions that cor
respond to separate excitations of the light and heavy quarks (p - and .\ - excitations, 
respectively). Excitation of the.\ variable unlike excitation in p involves the excitation of 
the "odd" heavy quark. For states with one, unit of orbital angular momentum between 
Q quark and the two light quarks we obtain M(Ee) = 2832 MeV, M(3e) = 2867 MeV, 
M(Eb) = 6132 MeV, and M(3b) = 6164 MeV, while the states with one units of orbital 
momentum between the two light quarks are typically ~ 100 MeV heavier. Note that 
zero order results of Table 2 do not include the spin corrections and the (negative) string 
corrections contributing into the masses of the orbitally excited baryons. Our preliminary 
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Table 2: Heavy Baryons. L = l. The bare quark masses are the same as in Table 1. 

Baryon La µn µ. µh Eo M 

nnc Ip 536 1452 1397 2920 
nnc l.x 495 1491 1377 2832 
nsc Ip 542 582 1455 1372 2954 
nsc l.x 497 544 1494 1353 2867 

nnb Ip 570 4746 1294 6240 
nnb l.x 540 4764 1234 6132 
nsb Ip 574 615 4748 1271 6272 
nsb l.x 542 588 4765 1211 6164 

analysis of the latter shows that the string corrections tend to decrease the masses of the 
P-wave states by~ 50 MeV. A more complete analysis will be given elsewhere. 

In conclusion, we have calculated the masses of heavy baryons systematically using 
the FCM and the perturbative color-magnetic interaction. There are two main points in 
which we differ from other approaches to the same problem based on various relativistic 
Hamiltonians and equations with local potentials. The first point is that we do not introduce 
the constituent mass by hand. On the contrary, starting from the bare quark mass we arrive 
to the dynamical quark mass that appears due to the interaction. The second point is that 
for the first time we calculate the hyperfine splitting with account of the nonperturbative 
spin-spin forces between quarks in a baryon. 

This work was supported by the RFBR grants 06-02-17120, 08-02-00657, 08-02-00677. 
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Impact of eight-quark interactions in chiral phase 
transitions I: Secondary magnetic catalysis 
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Abstract 
The influence of a constant magnetic field on the order parameter of the four

dimensional Nambu and Jona-Lasinio model extended by the 't Hooft six-quark term 
and eight-quark interactions is considered. It is shown that the multi-quark interac
tions cause the order parameter to increase sharply (secondary magnetic catalysis) 
with increasing strength of the field at the characteristic scale H ~ 1014 A 2 G /Me V2 . 

It has been shown in a series of papers [1]-[3] that in 2+ 1 and 3+ 1 dimensions a constant 
magnetic field H i= 0 catalyzes dynamical symmetry breaking leading to a fermion mass 
even at the weakest attractive four-fermion interaction between massless particles, and the 
symmetry is not restored at any arbitrarily large H. 

It is known, however, that the QCD motivated effective lagrangian for the light quarks 
(N1 = 3) contains also the six-fermion term: the U(l)A breaking 't Hooft interaction, 
and probably eight-quark terms. These extensions of the Nambu and.Jona-Lasinio model 
are well-known, for instance, the four-quark U(3)L x U(3)R chiral symmetric lagrangian 
together with the 't Hooft six-quark interactions has been extensively studied at the mean
field level [4]-[7]. Recently it has been also shown [8, 9] that the eight-quark interactions 
are of vital importance to stabilize the multi-quark vacuum. 

The additional multi-quark forces can affect the result which is obtained when only 
four-fermion interactions are considered. We argue here that the 't Hooft and eight-quark 
interactions can modify the theory in such a way that the local minimum, catalyzed by the 
constant magnetic field, is smoothed out by increasing the strength of the field. This is 
an alternative regime to the known one in which the strong magnetic field cannot change 
the ground state of the system. For the first scenario to become possible it is sufficient 
that the couplings of multi-quark interactions are chosen such that the system displays 
more than one solution of the gap equation at H = 0. However, the above condition is 
not a requirement. Even if the gap equation has only one nontrivial solution at small H, 
an increase in the magnetic field can induce the formation of a second minimum. Starting 
from some critical value He the second minimum is becoming a new ground state. We call 
this phenomenon a secondary magnetic catalysis. To see the details we need the effective 
potential of the theory, V(m, IQHI) = V,t + Vs, which is the smn of two terms. The first 
contribution results from the many-fermion vertices, after reducing them to a bilinear form 
with help of bosonic auxiliary fields, and subsequent integration over these fields, using the 
stationary phase method. This part does not depend on t.he nw.gnetic field. The specific 
details of these calculations are given in our recent work [8]. In the SU(3)1 symmetric case 
the result is 
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The function his a solution of the stationary phase equation 12>.h3 +11;h2+ 16(Gh+m) = 0, 
where G, K, A are couplings of four, six and eight-quark interactions correspondingly. This 
cubic equation has one real root, if G/>. > (11;/24>.) 2. Assuming that the couplings fulfill 
the inequality, one finds the single valued function h(m, G, K, >.). 

The second term, Vs, derives from the integration over the quark bilinears in the func
tional integral of the theory in presence of a constant magnetic field H. As has been 
calculated by Schwinger a long time ago [10] Vs= Ei=u,d,s Vs(m;, IQ;HI), where 

Ne Joo ds 2 Vs(m, IQHI) = - 2 2 e-sm p(s, A2)IQHI coth(slQHI) + const. 
81r s 

(2) 
0 

Here the cutoff A has been introduced by subtracting off suitable counterterms to regularize 
the integral at the lower limit: p(s, A2) = 1 - (1 + sA2)e-•A

2
• The unessential constant is 

chosen to have Vs(0, IQHI) = 0. We ignore in the remaining the charge difference of u and 
d, s quarks: the averaged common charge IQI = l4e/91 will be used. 

One sees that the gap equation, dV(m)/dm = 0, has always a trivial solution m = 0, 
which corresponds to the point where the potential reaches its local maximum, if H f= 0. 
This phenomenon is known as magnetic catalysis of dynamical chiral symmetry breaking. 
The nontrivial solution is contained in the equation 

21r
2
h(m) _ (A

2 
+ m

2
) IQHI [ ( A

2
) A2 r (~)] 

A2Ncm -'1/J 2IQHI -1\.2 In 1+m2 - A2+m2+2ln r(~) ' (3) 
2IQIII 

where '1/J(x) = dlnf(x)/dx is the Euler dilogarithmic function. Here the l.h.s. originates 
from V,1 and the r.h.s. from Vs. 

Let us consider first the standard case with K, A = 0 and h = -m/G. Then the l.h.s. 
is a constant T- 1 = 21r2/GA2Nc. 'Fig. 1 (left panel) illustrates this pattern. One sees that 
at H = 0 the system is in the subcritical regime of dynamical symmetry breaking. The 
introduction of a constant magnetic field, however small it might be, changes radically the 
dynamical symmetry breaking pattern: due to the singular behaviour of the r.h.s. of Eq. 
(3) close to the origin the curves corresponding to the r.h.s. and l.h.s. will always intersect 
and the value of m where this happens is a minimum of V(m). One concludes that in the 
theory with just four-fermion interactions the effective potential has only one minimum at 
m > 0, and this property does not depend on the strength of the field H. 

In the theory with four-, six-, and eight-quark interactions one can find either one or two 
local minima at m > 0. We illustrate these two cases in the central panel of fig. 1. Namely, 
the upper full curve f (r.h.s. cif Eq. (3) for IQHIA-2 = 0.5) has only one intersection point 
with the bell-shaped curve u (!.h.s. of Eq. (3) for GA2 = 3, KA5 = -103

, >.A8 = 3670). 
This point corresponds to a single vacuum state of the theory. The other full curve f 
for IQHIA-2 = 0.1 has three intersections with the same curve u. These intersections, 
successively, correspond to a local minimum, a local maximum and a further local minimum 
of the potential. The first minimum catalyzed by a constant magnetic field ( that is, a slowly 
varying field) is then smoothed out with increasing H. It ceases to exist at some critical 
value of IQHIA-2 , from which on only the large Mctyn solution survives. This is shown in 
the right panel of fig. 1. The new phenomenon might be a clear signature of eight-quark 
interactions. 
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Figure 1: Left: The l.h.s. (straight short-dashed line) and the r.h.s. of Eq. (3) at "-, ,\ = 0 
and GA2 = 3 as functions of m/ A for four different values of H: full curves (top to bottom) 
correspond to IQHIA-2 = 0.5; 0.3; 0.1, and the dashed curve to H = 0. Box insert: close
up of region around origin with solid lines for IQHIA-2 = 0.2; 0.15; 0.1. Centre: The l.h.s. 
(short-dashed line) and the r.h.s. of Eq. (3) at ;;_A5 = -103 , ,\A8 = 3670 (or,\= 0), and 
IQHIA-2 = 0.5; 0.1; 0. Right: The dimensionless dynamical mass Mctyn/A as a function 
of the dimensionless magnetic field IQHIA-2

• The full lines are minima, the dashed line 
maxima. Up to IQHIA-2 = 0.084 the smaller Mctyn/A correponds to the deeper minimum 
of the potential; from this value on the larger solution becomes the stable configuration. 

This work has been supported in part by grants provided by FCT: POCI/2010, FEDER, 
POCI/FP /63930/2005 and POCI/FP /81926/2007. 
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Next-to-Leading order Analysis of the Gluon 
Distribution at low x 
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Abstract 

\Ve present solutions of the gluon distribution function by the Taylor expansion 
as a function of F2(x, Q2

) and its derivative with respect to LnQ2 in the next- to
leading order of the perturbative theory at low x. The obtained values are in the 
range 10-4 ::; x::; 10-2 at Q2 = 20GeV2 • 

The DGLAP evolution equation for the singlet quark structure function has the form: 

d~(x, Q2) = O'.s (1-x dz[pLO+NLO(l - z)~(-x-, Q2) + 2n pLO+NLO(l - z)G(-x-, Q2)] 
dlnQ2 21r lo qq l - z I qg l - z 

(1) 
where the splitting functions are the leading order (LO) and the next- to- leading order 
(NLO) Altarelli- Parisi splitting kernels [1]. To find an analytic solution, we note that the 
splitting kernels have the following forms as z-+ 0 (2,3]: 

0'.8 40CFNJTR 

21r 9z 
pq~O+NLO(z) 

0'.8 40CANJTR 

21r 9z 
pq~O+NLO(z) (2) 

For an SU(N) gauge group we have CA= N, CF= (N2 -1)/2N, TF = N1TR, and TR= 1/2, 
that CF and CA are the color Cassimir operators. 

We introduce the standard parameterization of the singlet distribution functions and 
the gluon distribution as 

~(x, Q2
) = Asx-68 (1 - xt3(1 + csVX + ,sx)=E(x, Q2 )x-88

, 

G(x, Q2
) = A9x-8•(1 - xt•(l + E9 VX + 19x)=G(x, Q2 )x-8

•. (3) 

where, the usual assumption is that c5i(=S,g) = 0. However, the small x behavior could well 
be more singular. Note that the behavior of Eq.(3) with a Q2 independent value for c5i(=S,g) 

obeys the DGLAP equations when x-6,<= 5 ,•> >> 1(4]. According to Regge theory, the high 
energy (low x) behavior of both gluons and sea quarks is controlled by the same singularity 
factor in the complex angular momentum plane, and so we would expect 8s = 89 = 8, where 
c5 is taken as a constant factor throughout the calculation. For the structure functions we 
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take f(x, Q2 ) = x6 f(x, Q2) to be finite at x = 0 with c5 satisfying o::;c5::;½, i.e. G(x) = x6G(x) 
and E(x) = x0E(x). Expanding G(x/1 - z) and E(x/1 - z) about x = 0, we obtain 

G( 1 :)=G(O)+ l:za'(O), 

E(l:) = E(O) + l: ZE'(O). (4) 

The assumptions in these equations are the convergence and the possibility to neglect O(x2 ) 

terms. 

Inserting Eqs.(2) and (4) in Eq.(1) we will have the DGLAP equations for the singlet 
evolution at small x : 

;; l-x dz(;; 9(1 ~ z) )( 1: )-6 X (E(O) + 1: z E'(O)) 

+ ;; l-x dz(2n1 )(;; 
9

(
1 
~ z) )( 

1
: )-6 x (G(O) + 

1
: z G'(O)] 

where ( = 40CFN1Tn and~= 40CAN1Tn. 

Solving this equation and taking all these considerations into account, we find: 

dE 
dlnQ2 

(5) 

(6) 

where Vi = (t)2
~ and Vu= (t)2(2n1)~. The function 1( 16~11 ) (j = G, E) is a small 

constant at x = 0. At low- x, this constant can be neglected in the Eq.(6) due to the 
singular behavior of the gluon distribution. We therefore have 

dE 
dlnQ2 = T[ViE(µx) + VuG(µx)], (7) 

where T = 
1
~~-1~,, µ = 16~11 . This equation is a formula to extract the gluon distribution 

function from singlet structure function and its derivative dE/dlnQ2 at small x in the next
to- leading order of perturbation theory. 

So that, we can arrive of the gluon distribution function from the F2 proton structure 
function and its scaling violation at low x as 

(8) 

By means of this equation we have extracted the gluon distribution from HERA data, 
using the slopes dF2/dlnQ2 determined in Ref.[10). Figure 1 shows the extracted values of 
the gluon distribution compared to the Kotikov-Parente (KP) model [4), the Ellis-Kunszt
Levien (EKL) model [5) and MRST [G,7] parameterization. This result indicate that our 
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calculations [8,9), based upon the available structure functions and its derivative [10), are of 
the same form as the one predicted by the QCD theory. The formulae used to generate the 
parton distribution is in agreement with the rise observed by Hl experiments. We observed 
a continuous rise towards low x. 

"~-------------~ 

i 
0 ,0 

i g 

• Our calculations 
with total errors 

• KP Model 
• EKL Model 

Solid Una MRST 

. . 

l1 1!7. 
D+------~.....,.-----.-<h-......-j 
1E➔ 0.01 

Figure 1: The solid circles represent our gluon prediction (Eq.8) using the structure function 
F2 and dF2/dlnQ2 are taken by the Hl [10] collaboration for a range of x values at Q2 = 
20GeV2 • The error bar show total errors to Hl data. We compared our results with KP 
model [4], EKL model [5] and MRST fit[6,7](Solid line). 
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Gravimagnetic nucleon form-factors in the impact 
parameter representation 
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Abstract 

In the framework of the new t-dependence of the General Parton Distributions 
(GPDs), which reproduce the electromagnetic form factors of the proton and neutron 
at small and large momentum transfer, the gravitational form factors of the nucleons 
and a separate contribution of the quarks to them are obtained. 

As a basis, it is assumed that the form factor is dominated by a soft mechanism and 
the Generalized Parton distributions (GPDs)-handbag approach [1] is utilized. GPDs for 
~ = 0 provide information about the distribution of the parton in impact parameter space 
[4]. It is connected with t-dependence of GPDs. 

In [3], a simple ansatz was proposed which will be good for describing the form factors 
of the proton and neutron by taking into account a number of new data that have appeared 
in the last years. We choose the t-dependence of GPDs in the form 

(1 x) 2 

'W(x, t) = u(x) exp[a+ - t]; xm (1) 

The size of the parameter m = 0.4 was determined by the low t experimental data; the free 
parameters a± (a+ - for 1-l and a_ - for£) were chosen to reproduce the experimental data 
in a wide t region. The q(x) was taken from the MRST2002 global fit [5] wth the scale 
µ2 = 1 GeV2

. In all our calculations we restrict ourselves, as in other works, only to the 
contributions of u and d quarks and the terms in 1-lq and Eq. Correspondingly, for E'"(x), 
as for example [2], we have 

(2) 

where A;1 = 1.53 and A;2 = 0.31 [2]. With standard normalization of the form factors, we 
have ku = 1.673, kd = -2.033, Nu= 1.53, Nd= 0.946. The parameters a+ = 1.1 and a_ 
were chosen to obtain two possible forms of the ratio of the Pauli and Dirac form factors. 

1 Proton and neutron electromagnetic form factors 

The proton Dirac form factor calculated in [3] reproduces sufficiently well the behavior of 
experimental data not only at high t but also at low t. Our description of the ratio of the 
Pauli to the Dirac proton form factors and the ratio of G1i,;/G1J.t shows that in our model we 
can obtain the results of both the methods (Rosenbluth and Polarization) by changing the 
slope of E. Based on the model developed for proton the neutron form factors are calculated 
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Figure 1: a)[left] Gravitation form factor Aq (hard line) and Proton Dirac form factor 
(dashed line), both calculated in this work; the data for Ff are from [7]. b)[right] Contri
butions of the u (dashed line) and d (hard line) to the gravitation form factor Aq 

too. To do this the isotopic invariance can be used to change the proton GPDs to neutron 
GPDs. Hence, we do not change any parameters and conserve the same t-dependence of 
GPDs as in the case of proton. Our calculation of G'}, shows that the variant which describes 
the polarization data is in better agreement with the experimental data. The calculation 
of G11 more clearly shows that this variant much better describes the experimental data 
especially at low momentum transfer. 

2 Gravitational form factors 

As was shown in [6], the gravitational form factor for fermions is determined as 

J._1
1 

dx x[H(x, ti. 2 , ~) + E(x, ti.2
, ~)] = Aq(ll.2) + Bq(ll.2). (3) 

Using this representation we can calculate the gravitational form factor for the nucleon. 
Our result for Ag(t) is shown in Fig.la. Separate contributions of the u and d- quark 
distribution are shown in Fig.lb. At t = 0 these contributions equal Au(t = 0) = 0.35 and 
Ad(t = 0) = 0.14; and Bu(t = 0) ':"' 0.22, Bd(t = 0) = -0.27. The sum of Bq will be near 
zero Bq(t = 0) = -0.05. In accuracy of our approximations this result coincides with zero. 
In fig. la we compare gravitational form factors with our calculations of electromagnetic form 
factors. It can be seen that at large momentum transfer they have the same t-dependence. 
Of course, they essentially differ in size. 

3 Conclusion 

We introduced a simple new form of the t-dependence of GPDs. It satisfies the conditions 
of the non-factorization, introduced by Radushkin, and the Burkhardt condition on the 
power of (1 - xt in the exponential form of the t-dependence. With this simple form we 
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Figure 2: Densities of a)[left] the gravitational form factor A and b)[right] the electromag
netic form factor Fi-

obtained a good description of the proton electromagnetic Sachs form factors. Using the 
isotopic invariance we obtained good descriptions of the neutron Sachs form factors without 
changing any parameters. 

On the basis of our results we calculated the contribution of the u and d quarks to the 
gravitational form factor of the nucleons. The cancellation of these contributions at t = O 
shows that the gravimagnetic form factor is zero for separate contributions, gluons and 
quarks, which confirms the result of [8]. 
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Abstract 

The results of analyses of experimental data on the isovector P-wave of 1m scat
tering and on the isoscalar S- and D-waves of processes 1r1r -> 1r1r, KK, 1/1/, 1111' in 
approaches, based on analyticity and unitarity, are given. Some spectroscopic impli
cations of these analyses are discussed. 

\Ve present results of the combined analysis of data on processes 1r1r -> 1r1r, K K, 1/7/, 7/7/' 
in the JG JPC = o+o++ and 0+2++ channels and on the 1r1r scattering in the 1 + 1 -- channel. 
The analysis adds to clarifying a QCD nature of the observed mesonic states and their 
assignment to the quark-model configurations, which is problematic up to now. Parameters 
of the resonances (and even the status of some of them) are not well known yet [1). 

Our method of analysis is based on analyticity and unitarity of the S-matrix utilizing the 
uniformizing variable [2) (the model-independent approach - MIA) and on the multichannel 
Breit-Wigner (BW) forms. In MIA a resonance ( depending on its nature) is represented 
by three and seven types of pairs of complex-conjugate clusters (of poles and zeros on the 
Riemann surfaces) in the 2- and 3-channel cases, respectively. MIA being very sensitive to 
data is applicable, however, only in the 2- and 3-channel considerations. 

Some results of the analysis in the scalar and vector channels were already published in 
Refs.[3) and [4), respectively. Here we summarize the results and add some new results for 
the tensor channel. 
Analysis of the isoscalar-scalar sector. Considering processes 1r1r-, 1r1r,KK,7J7J,7J7J1 

in MIA, we performed separately the 3-channel analyses of 1r1r -> 1r1r, K K, 7/7/ and 1r1r -, 
1r1r, K K, 7J7J1

• Influence of the remaining channels is taken into account via the background 
[3). We got a satisfactory description in both analyses: the total x2 /NDF is 345.603/(301-
40) ~ 1.32 in the former and 282.682/(293 - 38) ~ 1.11 in the latter. 

In the analyses, an additional confirmation of the O"-meson with mass 835 MeV is ob
tained. This mass value accords rather well with prediction (mo- ~ mp) on the basis of 
mended symmetry by S. Weinberg [5). 

A model-independent indication for f 0 (980) to be the 7/7/ bound state is obtained. 
The j 0 (1370) and fo(l 710) have the dominant ss component. Our conclusion about 

the f 0 (1370) agrees well with the one drawn in Ref.[6) where the fo(1370) was identified 
as 7/7/ resonance in the 1r07J7/ final state of the pp annihilation at rest. Conclusion about 
the fo(l 710) is quite consistent with the experimental facts that this state is observed in 
n-> Ksks [7) but not in 11 -> 1r+1r- [8). 

The f 0 (1500) is almost the 8th component of octet mixed with a glueball dominant in 
this state. Its largest width among the enclosing states also suggests its glueball nature [9). 

356 



We can assign the scalar mesons to lower nonets, excluding the fo(980) as the TJTI bound 
state. The ground nonet: the isovector a0(980), the isodoublet K 0(900), and f0(600) and 
f 0 (1370) as mixtures of the 8th component of octet and the SU(3) singlet. The Gell-Mann
Okubo (GM-0) formula 3m}

8 
= 4m1,0 - m~0 gives m1s = 872 MeV. In the relation for 

masses of nonet ma + m10c137o) = 2mK,; the left side is by 25 % larger than the right 
one. The next nonet: a0(1450), K0(1450), and f0(1500) and fo(l 710). From the GM-0 
formula, m18 ;::::: 1450 MeV. In the relation, m10c1soo) + m/o(1710) = 2mI<,i(l450), the left side 
is by 12 % larger than the right one. Now an adequate mixing scheme should be found. 
Analysis of the isovector ?-wave of 1r1r scattering. Here we applied both MIA and the 
multichannel BW forms [4]. In MIA, the thresholds of the 7r7r and w1r channels and the left 
branch-point at s = 0 were included into the uniformizing variable whereas influence of other 
channels was accounted via the background. In the BW method, four inelastic channels, 
1r+1r-21r0, 21r+21r-, rJ27r, and w1r0 , were assumed. We analyzed the energy behaviour of the 
phase shift and inelasticity parameter of the 1r1r-scattering amplitude taking three, four, 
and five resonances respectively from the p(770), p(1250), p(1600), p(1910) and p(1450). 

As a result, the 1st p-like meson has the mass 1257.8±11 MeV in MIA and 1249.8±15.6 
MeV in the BW one unlike the mass 1459±11 MeV of the 1st p-like meson, cited in the 
PDG tables [l]. If the p(1250) is interpreted as the 1st radial excitation of the 1+1-- qq 
state, then it lies down well on the corresponding linear trajectory with an universal slope 
on the (n, M 2) plane (n is the radial quantum number of the qq state) [9, 12], whereas 
the p(1450) is considerably higher than this trajectory. The p(1250) and the isodoublet 
K*(1410) are well located to the octet of 1st radial excitations. Then the GM-0 formula, 
3mt~ = 4m}., - m~,, gives mw~ = 1460 MeV compatible fairly good with the mass of the 
1st w-like meson w(1420), for which one obtains the values in range 1350-1460 MeV [l]. 

Existence of the p(1450) together with p(1250) does not contradict to the analyzed data. 
In the qq picture, the former might be the first 3 D1 state with, possibly, the isodoublet 
K*(1680) in the corresponding octet. From the GM-0 formula, we obtain the value 1750 
MeV for the mass of the 8th component of this octet. This corresponds to one of the 
observations of the 2nd w-like meson cited in the PDG tables under the w(1650) [1]. 

The 3rd p-like meson has the mass 1600 MeV rather than 1720 MeV cited in the PDG 
tables. As to the p(1900), in its energy region there are practically no data on the ?-wave 
of 7r7r scattering. The MIA analysis testifies in favour of this state existence but the BW 
one gives equivalent description with and without it. 

The suggested picture for the first two p-like mesons is consistent with predictions of 
some quark models [10]. However, if existence of the p(1250) is confirmed, some of the 
quark potential models, e.g. in Ref.[11], will require substantial revisions, because, in these 
models, the 1st p-like meson is usually predicted about 200 MeV higher than this state. To 
the point, the 1st K*-like meson is obtained in the indicated quark model at 1580 MeV, 
whereas the corresponding very well established resonance has the mass of 1410 MeV. 
Analysis of the isoscalar-tensor sector. In analysis of processes 1r1r --> 1r1r, K K, TJT/, 
we considered explicitly also the channel (21r)(21r). Here, we generated the resonance poles 
and zeroes in the S-matrix by the 4-channel BW forms. 

We obtained a satisfactory description with ten resonances h(1270), h(1450), !~(1525), 
12(1580), h(1730), h(1810), h(1960), h(2000), h(2240) and h(2410) and with eleven 
states adding the h(2020) needed in the analysis of processes pp--> 1r1r, TJT/, rJT/1 [12]. The 
total x2/n.d.f. is 161.147/(168- 65);::::: 1.56 in the 1st case and 156.617/(168- 69);::::: 1.58 
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in the 2nd one. We do not obtain the h(1640), h(1910) and h(2150), however, we see 
h(1450) and !2(1730) which are related to the statistically-valued experimental points. 

Usually one puts the h(1270) and !~(1525) into the ground tensor nonet. One can assign 
h(1600) and h(l 760) to the 2nd nonet though the isodoublet member is not discovered 
yet. If a2(1730) is the isovector of this octet and if h(1600) is almost its 8th component, 
then the GM-O formula gives this isodoublet mass at 1633 MeV. Then the relation for 
masses of nonet will be fulfilled with a 3% accuracy. In Ref.[13] the strange isodoublet was 
observed with yet indefinite remaining quantum numbers and with mass 1629 ± 7 MeV in 
the mode K21r+1r-. This state can be the tensor isodoublet of the 2nd nonet. 

The !2(1963) and !2(2207) together with the isodoublet K:2(1980) could be put into 
the 3rd nonet. Then in the relation Mh(J963) + M12c2207) = 2MK,;(198o), the left side is 
only by 5.3 % larger than the right one. If h(1963) is almost the 8th component of octet, 
M;

2 
= 4Mi2c198o) - 3MJ

2
c1963) gives Ma, = 2030. MeV that coincides with the armeson 

mass obtained in Ref.[14]. This state is interpreted as the 2nd radial excitation of the 
1-2++ state considering the a2 trajectory on the (n, M 2) plane [12]. 

Presence of the h(2020) in analysis with eleven resonances makes it possible to interpret 
h(2000) as a glueball. In the case of ten resonances, the ratio of the 7r7r and 7/7/ widths is in 
the limits obtained in Ref.[12] for the tensor glueball. However, the K K width is too large 
for the glueball. When passing from the ten-states description to the eleven-states one, the 
resonance parameters have varied a little, except for h(2000) and h(2410). Mass of the 
latter has decreased by 40 MeV but the K K width of the former has changed significantly. 
Then all ratios of the partial widths are in the limits corresponding to the glueball. 

Interpretation of the h(1450), h(l 730), h(2020) and h(2410) remains open. 
Yu.S. acknowledges support provided by the Votruba-Blokhintsev Program. P.B. thanks the Grant 
Agency of the Czech Republic, Grant No.202/08/0984. Yu.S. and R.K. acknowledge support 
provided by the Bogoliubov-Infeld Program. 

References 
[1] C. Amsler et al. (PDG), Phys. Lett. B 667, 1 (2008). 
[2] D. Krupa, V.A. Meshcheryakov and Yu.S. Surovtsev, Nuovo Cimento A 109, 281 

(1996). 
[3] Yu.S. Surovtsev, D. Krupa and M. Nagy, Phys. Rev. D 63, 054024 (2001). 
[4] Yu.S. Surovtsev and P. Bydzovsky, Nucl. Phys. A 807, 145 (2008). 
[5] S. Weinberg, Phys. Rev. Lett. 65, 1177 (1990). 
[6] C. Amsler et al., Phys. Lett. B 355, 425 (1995). 
[7] S. Braccini, Frascati Physics Series XV, 53 (1999). 
[8) R. Barate et al., Phys. Lett. B 472, 189 (2000). 
[9] V.V. Anisovich et al., Nucl. Phys. Proc. Suppl. A 56, 270 (1997). 

[10] E. van Beveren et al., Phys. Rev. D 27, 1527 (1983); S.B. Gerasimov and A.B. Gov-
orkov, Z. Phys. C 13, 43 (1982); ibid. 29, 61 (1985). 

[11) S. Godfrey and N. Isgur, Phys. Rev. D 32, 189 (1985). 
[12) V.V. Anisovich et al., Int. J. Mod. Phys. A 20, 6327 (2005). 
[13] V.M. Karnaukhov et al., Yad. Fiz. 63, 652 (2000). 
[14] A.V. Anisovich et al., Phys. Lett. B 452, 173 (1999); ibid. 517, 261 (2001). 

358 



Wandzura - Wilczek Approximations and Transverse 
Momentum Dependent Parton Distributions 

T. Teckentrupa, H. Avakianb, A. V. Efremovc, K. Goekea, A. Metzd and P. Schweitzer• 
a Institut fur Theoretische Physik II, Ruhr- Universitiit Boch um, 44 780 Bochum, Germany 

b Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, USA 
c Joint Institute for Nuclear Research, Dubna, 141980 Russia 

d Department of Physics, Barton Hall, Temple University, Philadelphia, PA 19122-6082, USA 
e Department of Physics, University of Connecticut, Storrs, CT 06269, USA 

Abstract 
Certain exact relations among transverse momentum dependent parton distribu

tions due to QCD equations of motion turn into approximate ones upon the neglect 
of pure twist-3 terms. On the basis of available data from HERMES we test the use
fulness of one such "Wandzura-Wilczek-type approximation" connecting h~p) to h1. 

1 Introduction 

Semi-inclusive deep inelastic lepton nucleon scattering (SIDIS) allows one to access informa
tion on transverse momentum dependent parton distributions (TMDs) and fragmentation 
functions, where altogether eight twist-2 and sixteen twist-3 TMDs exist [1, 2]. Integrating 
over transverse parton momenta one is left with just six independent "collinear" parton 
distribution functions (PDFs) (3, 4]. In view of the numerous TMDs we ask whether there 
are useful approximations among the various, independent. TMDs. In the present note we 
will briefly summarize our results presented in [5]. 

We start from the QCD equations of motion (EOMs) which provide the exact relation [1] 
J.(1) ( EOM X X - ( ) hlL x) = - 2 hL(x) + 2 hL(x) , 1 

with h~P\x) denoting the second PT-moment of the TMD hfL(x, p}), hL(x) a "collinear" 
twist-3 PDF, and hL(x) a pure twist-3 quark-gluon-quark contribution. Next we exploit 
the "Wandzura-Wilczek (WW) approximation" (4, 6] 

1
1 

dy - I WW 11 
dy hL(x) = 2x 2 h1(Y) + hL(x) ~ 2x 2 h1(Y), 

X y X Y 

where in the second step in (2) the pure twist-3 term ii~ (x) is neglected. 
Neglecting also hL(x) in the EOM (1) and taking the WW-approximation 

account one obtains the new WW-type approximation 

J.(1) !? 211 dy hlL (x) ~ -x 2 h1(Y). 
X y 

(2) 

(2) into 

(3) 

This approximation will be tested by the following single spin aHynmwtry (SSA) in SIDIS, 

A
sin 2¢ / J.(1) HJ. 
UL CX 11l, I , (4) 

for which final HERMES [7] and preliminary CLAS [8] dat,i are nvailable. 
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2 At1l2
¢ in WW-type approximation 

The expression for the SSA ( 4) in terms of structure functions is given by [1] 

A
sin2¢( ) _ J dy [cos07 (1 - y)/Q4

] Ftf 2
<P 

UL X - 2 , J dy [(1 - Y + ~)/Q4] Fuu,T 
(5) 

where the structure function Fuu,T in the parton model reads 

Fuu,T(x) = Le~ x Jf(x) (Df) . (6) 
a 

Since our purpose is to test the approximation (3), we are interested in the x-dependence 
of the SSA and denote here and in the following averages over z by ( ... ) = J dz( ... ). 

The tree-level expression for the structure function Ftf 2<1> in the numerator is given in 
terms of a convolution integral in transverse momenta containing hfL ( x, p}) and the Collins 
function Ht(z, K}) [2]. Assuming a Gaussian model for the distribution of transverse 
parton momenta in hfL(x, p}) and the Collins function one finds 

r,,sin2¢( ) _ "' 2 h.L(l)a( ) (C H.L(J/2)a) 
ruL X - 0 ea X IL X Gauss I · (7) 

a 

Here H~(J/
2
l(z) = J d2KT J~;:;~ Ht(z, K}). The factor Ccauss(z) contains the dependence 

on the Gauss model parameters and is defined in [5]. 
In order to evaluate the SSA we approximate h~},1\x) by means of (3), and use predic

tions from the chiral quark-soliton model for the transversity h1 ( x) [9]. We use information 
on the Collins effect from [10, 11] and the parameterizations of [12, 13] for fi(x) and D1(z). 

Fig. 1 shows our results in comparison to the HERMES data [7], which do not exclude 
the usefullness of the approximation (3), but they do not prove it, either. 

3 Conclusions and outlook 

In this work we asked whether there are useful approximations among the various, indepen
dent TMDs. With the help of the EOMs, the WW-approximation and the neglect of pure 
twist-3 terms we obtained a new WW-type approximation connecting h~},1\x) to h1(x). 
To test this approximation we analyzed the SSA A~~2

¢ which is sensitive to h~},1\x). The 
HERMES data on this SSA are compatible with such a WW-type approximation. 

More stringent insights on the actual usefulness of this approximation will be provided 
by COMPASS and CLAS. The former will constrain the small-x region, where the WW
type approximation predicts a small asymmetry At~2

<t>. CLAS will provide complementary 
information on the valence-x region, where the effect is predicted to be largest [5]. 

If the usefullness of the WW-type approximation is further confirmed by COMPASS and 
CLAS, this would imply that in principle it is possible to extract information on transversity 
from a longitudinally polarized target. 
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Figure 1: Prediction for azimuthal SSA At~2
<1> as a function of x on the basis of the WW

type approximation (3). The data are from HERMES [7]. 
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Effect of a Strong Laser on Spin Precession 
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Abstract 

The semiclassical dynamics of a charged spin-1/2 particle in an intense electro
magnetic plane wave is analyzed beyond the electric dipole approximation and taking 
into account the leading relativistic corrections to the Pauli equation. It is argued 
that the adiabatic spin evolution driven by a low intensity radiation changes its char
acter drastically as an intensity of a laser is increasing. Particularly, it is shown that 
a charged particle exposes a spin flip resonance at a certain pick value of a laser field 
strength, which is determined by a particle's gyromagnetic ratio. 

The problem and result. A good deal of a considerable knowledge on a charged 
spinning particle interaction with a low intensity laser has .been gleaned from the .extensive 
use of the electric dipole approximation [1]. This approximation works perfectly to describe 
the particle's classical trajectory as well as to understand the adiabatic evolution of spin, 
represented by the intrinsic angular momentum [2]. With the growing intensity of a radi
ation different relativistic corrections to the charge motion become relevant [3], [4]. This 
demands to refuse the electric dipole approximation and to take into account the influence 
of the magnetic part of the Heaviside-Lorentz force. Entering to this non-dipole region 
a new physics become tangible. In this context, the present talk aims to report on the 
manifestation of a such non-dipole physics: a charged particle's spin flip 1"C8011ance induced 
by a strong laser field. 

It is arguably the best to describe the spin-flip resonance in th(' so-l·,1lll'd average rest 
frame, frame where the mean particle's velocity vanishes. In this frnme. as our calculations 
show, the probability to flip for a spin, that is initially polarised along the direction of 
propagation of the circularly polarised monochromatic plane wave, is given by an analog of 
the well-known formula from the Rabi magnetic resonance problem [5]: 

WLll -gl ✓ 
Ws := 8 r;,2712 + (712 - r,;)2 ' (1) 

The frequency ws differs from a laser circular frequency WL and depends nonlinearly on a 
particle's gyromagnetic ratio g, as well as on a laser field strength parameter [6]: 

(· • •) - time average, A - a laser gauge pot.cut ial. (2) 

The flipping amplitude AT!(r,) in (1) has the following resonance form 

2. __ -1_ 
r1 • . - . 

g-1 
(3) 
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Sketch of the calculations. To get the above results the recently elaborated method 
[7) is extended from the classical to the quantum case. The conventional semiclassical ap
proach attitude, when a charged particle motion in a given electromagnetic background is 
studied classically within the non-relativistic Hamilton-Jacobi theory, is adopted. At the 
same time, the spin evolution is treated quantum mechanically, as required by the spin na
t.ure, using the Pauli equations with the leading relativistic corrections. The spin-radiation 
interaction is encoded in the effective spatially homogeneous magnetic field configuration, 
which is determined by the geometry of a particle's classical trajectory. The described 
approximation is formulated mathematically as follows. The laser radiation is modelled by 
the elliptically polarized monochromatic plane wave propagated along the z-axis 

Aµ := a( 0, c cos(wL(), ~ sin(wLO, 0), ( = t-:. C, (4) 

where O :S c: :S 1 is the light polarisation parameter, and the constant a is related to the 
laser field strength (2) , T/2 = e2a2 /m2c4 . A charged spin-1/2 particle is in a pure quantum 
state \JI admitting the semiclassical charge & spin decomposition, 

IIJ!) = I: I: Ca,i 11Pa)@ Ix;). (5) 
i=O,l o:=± 

Two states, l1P±) , 1 are the linearly independent WKB solutions to the Schriidiri.ger equation 
for a charged spinless particle moving in the background (4). According to the semiclassical 
calculations the spin state vectors Ix) in the decomposition (5) satisfy the spin evolution 
equation: 

ii Ix) = - .J.!:_ B' (t) · a Ix) (6) 
dt 4mc ' 

where the spatially homogeneous magnetic field B'(t) is accounted for a laser filed coupling 
to a spin moving in the laboratory frame with the velocity v and acceleration a, 

B'(t) := (B- ~v x E) + :!!!:_v X a. 
c egc 

(7) 

Here the term in parenthesis is magnetic field seen in the particle's instantaneous rest frame 
and evaluated along the particle's classical orbit. The last contribution in (7) corresponds 
to the leading part of the so-called Thomas precession correction due to the non-vanishing 
curvature of a particle's trajectory [2]. 

Analysis of the equations begins with the derivation of the exact solution to the classical 
non-relativistic Hamilton-Jacobi equation for spinless particle moving in the electromag
netic background (4). Solving this Hamilton-Jacobi problem [7) one determine both, the 
WKB solution to the Schriidinger equation and the effective magnetic field (7). We assume 
below that the particle's classical trajectory x(t) fulfills the initial condition x(O) = 0 and 
fix also the frame, where the average of a particle's velocity component, orthogonal to the 
wave propagation direction vanishes, < v1_ >= 0. To find the effective magnetic field we 
owe from [7) the expression for a particle's velocity 

v = [-crJccn(w~t, µ), -crJ~sn(w~t, µ), c-c(l-.Bz)dn(w~t, ti)], (8) 

1To simplify expressions, the initial state is assumed to have only one nonzero coefficient, c+,o. Note 
that, the unit normalization condition on the WKB wave function fixes this coefficient 1rct0 = 2mwp, wp 

- a particle's fundamental frequency. 
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as well as the expression for its z-coordinate: z(t) = ct - wcL am(w1t, µ). The argument 
of the elliptic Jacobian functions and the Jacobian amplitude function, am(u, µ), is the 
laboratory frame time t, scaled by the non-relativistically Doppler shifted laser frequency 
w1 = "fzWL, 'Yz = 1-vz(0)/c and the modulusµ is "f:µ 2 = 7)2 (1-2 c2

) .
2 Using this solution 

the exact expression for the effective magnetic field B'(t) can be found: 

The resonant oscillations.- In the average rest frame, < v >= 0, when laser beam is 
circularly polarised, c2 = 1/2, the expression for the effective magnetic field B' simplifies 
to the constant magnitude field: 

B'(t) = !B'I n(t), !B'I := aw Lil - gl J K,2 + 7/2' 
2gc 

(9) 

aligned the unit time dependent vector n(t) := (sin0coswLt, sin0sinwLt, cos0). The 
effective magnetic field (9) rotates with the frequency WL about the axis inclined with 
respect to the field. The inclination angle 0 is determined from the relation: 7/ tan 0 = K, • 

Therefore, the effective laser-spin interaction for the circular polarised radiation is pre
cisely the famous rotated magnetic field describing the nuclear magnetic resonance phe
nomenon! Having in mind this observation one can use the well-known exact Rabi solution 
[5] to find the semiclassical evolution of spin-1/2 particle. Particularly, a straightforward 
calculations lead to the expressions (1) and (3) for the spin flipping probability announced 
at the beginning of this report. 

Conclusion. In the present talk the non-dipole effect of a strong laser on the spin of a 
charged particle was described quantum mechanically, while the evolution of position and 
momentum of a particle itself were treated according to the classical Newton equations with 
complete Heaviside-Lorentz force. The derived results indicate a very different spin physics 
in a high intensity laser field versus to a low intensity adiabatic regime. 
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Abstract 
New applications of categorical methods are connected with new additional struc

tures on categories. One of such structures, the double category, is considered in 
this article. It is shown that double categories exist in the Cayley-Klein topological 
quantum field theories. 

1 Double Category 

A double category D consists of the following: 
(1) A category D0 of objects Obj(D0 ) and morphisms Mor(D0 ) of 0-level. 
(2) A category D 1 of objects Obj(Di) of 1-level and morphisms Mor(D1) of 2-level. 
(3) Two functors d,r: D1~Do. 
(4) A composition functor 

* : D1 Xn0 D1 --> D1 

where the bundle product is defined by commutative diagram 

D1 Xn0 D1 ~ 
71"1 ! 

D1 
r 

--> 

D1 
! d 

Do 

( 5) A unit functor ID : D0 --> D 1 , which is a section of d, r. 
The above data is subject to Associativity Axiom and Unit Axiom. If both of· 

them are fulfilled only up to equivalence then the double category is called a weak double 
category, if they are fulfilled strictly then it is a strong double category. 

Here we see that for two objects A, BE Obj(D0 ) there are 0-level morphisms D0 (A, B) · 
which we note by ordinary arrows f: A--> B, and 1-level morphisms D(l)(A, B) which we 
note by the arrows ( : A ⇒ B, for A = d(() and B = r((). So with a 2-level morphism 
a: (--> (, where (:A ⇒ Band (:A' ⇒ B' we can associate the following diagram 

A 
d(a) ! 

A' 

and arrow a: d(a) ⇒ r(a) 

~ 

{' 
⇒ 

B 
! r(a) f---+ 

B' 

The composition on 2-level associated with the diagram 

A ~ B 
d(a) ! ! r(a) 

A' e 
⇒ B' f---+ 

d(a') ! ! r(a') 

A" 
{" 
=> B" 
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2 Cobordism and Double Categories 

Let Md be the category of oriented compact d-dimensional smooth manifolds ( with bound
ary) and piecewise smooth maps (the sense of the condition we do not define more exactly 
here; this may be such continuous maps f : M -+ Y that are smooth on a dense open 
subset U1 C M ), let CMd be its subcategory of closed (with empty boundary) manifolds 
and smooth maps, C Md C Md, 

There are the following functors: 
(1) Disjoint union 

u : Md X Md -+ Md : (X, Y) f--t Xu Y. 

(2) Changing of the orientation of manifolds on opposite 

(3) Boundary operator 
a: Md+i-+ CMd: x - ax. 

(4) Multiplication on the unit segment I= [O, 1] 

IX . : CMd-+ Md+!: X f--t IX X. 

Now we define a double category C(d) with 

(1) C(d)0 = CMd. 

(2) 1-level morphisms C( d)c1) (X, X') is a set of pairs (Y, !) where Z is oriented compact 
( d + l )-dimensional smooth manifold with the boundary oY and / is an diffeomor
phism 

f: (-X) UX'-+ oY, 

where U notes the disjoint union of -X and X'. Thus we write (Y, !) : X ⇒ X'. 

(3) The composition of (Y, !) : X ⇒ X' and (Y', f') : X' ⇒ X" is the morphism 

(Y Ux, Y', Ulx) U (f'Jx,)): X ⇒ X", 

where (Y Ux, Y') denotes the union (Yu Y') after identification of each point f(y) E 
f(Y) with the point f'(y) E f'(Y) for all y E Y and smoothing this topological 
manifold. 

(4) The 1-level identical morphism I Dx is (Xx [O; 1], id(-X)ux), because 8(X x [O; 1]) = 
(-X)UX. 

(5) 2-level morphisms of C(d) 1 ((,0 from ( = (Y,f: X' U (-X)-+ 8Y): X ⇒ X' 
to f = (Y', f' : X" U (-X') -+ 8Y') : X' ⇒ X" are such triples of smooth maps 
(/1, h, h) that the following diagram is commutative 

(-X) ux' _.l__, ay c Y 

1/iUh lh 
(-X') ux" L ay' c Y' 
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It easy to see that functors U and (-) may be expanded to double category functors 

U: C(d)-+ C(d), (-): C(d)-+ C(d)0 

and ( - ) is an equivalence of the double categories. 

3 Cayley-Klein Topological Quantum Field Theory 

Cayley-Klein topological quantum field theory is a functor Z from the category CM(d) of 
d-dimensional manifolds to the category of CK of (usually Hermitian) finite dimensional 
Cayley-Klein spaces. Really, the functor Z is a functor between double categories. 

Thus, Cayley-Klein topological quantum field theory in dimension dis a functor 

Z: C(d)-+ Morph(CK), 

between double categories such that: 
(1) the disjoint union in C(d) go to the tensor product 

u f->@, 

where (-)* : CK-+ CK0 is dualization of Cayley-Klein spaces. 
(2) changing of orientation in C( d)0 go to dualization 

(-)-(.)* 

Thus, as consequence of double categorical functorial properties, we get 

(1) for each compact closed oriented smooth cl-dimensional manifold X E Obj(C(d)0 ) 

the value of the functor Z(X) is a finite dimensional vector space over the field C of 
the complex numbers (usually with Hermitian metric), 

(2) for each (Y,J) : X ⇒ X' from Obj(C(d)1 ) the value of the functor Z(Y,f) is a 
homomorphism Z(X) -+ Z(X') of (Hermitian) vector spaces, 

and the following well known axioms of topological quantum field theory are satisfied: 

A(l) (involutivity) Z(-X) = Z(X)*, where -X denotes the manifold with opposite ori
entation, and * denotes the dual vector space. 

A(2) (multiplicativity) Z(X U X') = Z(X) 0 Z(X'), where U denotes disconnected union 
of manifolds. 

A(3) ( associativity) For the composition (Y", f") = (Y, J) * (Y', J') of cobordisms must be 

Z(Y", J") = Z(Y', J') o Z(Y, f) E Homc(Z(X), Z(X")). 

(Usually the identifications 

Z(X' - X) ~ Z(X)* 0 Z(X') ~ Homc(Z(X), Z(X')) 

allow us to identify Z(Y, f) with the element Z(Y,f) E Z(8Y). 

A( 4) For the initial object 0 E Obj(C( d)0 ) Z(0) = C. 

A(5) (trivial homotopy condition) Z(X x [O, 1]) = idz(X)· 
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1 Introduction 

The main problems of modern physics include in particular: 
1. Emergence of quantum mechanics. 
2. Ultraviolet divergences in local quantum field theories (QFT). 
3. Quantum theory of gravitation. 
4. Unification of all interactions (including gravity). 
5. Emergence of supersymmetry (SUSY). 
6. Dark matter. 
7. Dark energy. 

There is a considerable activity in direction of the first problem [1-5]. Supersymmetry 
softens the problem of divergences. Quantization of gravity is still a very serious problem. 
The problem of unification of all interactions also is not yet solved. The problem of emer
gence of SUSY is open. Recently there appeared new difficult problems: dark matter and 
dark energy (their nature, theory). We give no references to the points 2 - 7 because they 
either are well known, or even not formulated (the fifth point). 

The superstring theory claims to become a theory of everything. But it meets difficulties, 
e.g. incorporation of strings into QFT [6]. Indeed, excitations of strings contain graviton 
(excitation of space), but strings move in curved space. Does it mean that there are two 
kinds of gravitons? The same question about photons: there is electromagnetic field and 
there are massless spin 1 excitations of strings. 

2 Planck scales. Model 

It turns out that modelling of 3d-space by a bosonic strings network put into a thermal 
bath [3-5] solves most of these problems. In the large scale limit one obtains the 3d-space. 
Excitations of the structure manifest themselves as matter. They are described by fields. 
The latter satisfy relativistic equations of motion (appearance of relativity, the Minkowski 
space M4). Evolution of the nonequilibrium distributions of a harmonic oscillator (and a 
bosonic string) in a thermal bath is described by probability amplitudes (4,5]. In this ap
proach there automatically appear the Planck constant n, the Fock space, the Schroedinger 
equation, operators. A bosonic string in a thermal bath becomes a helix which models the 
Ramond-Neveu-Schwarz (RNS) superstring (4], and in effect we obtain a 3d-network made 
of superstrings. Its excitations are described by quantum mechanics and contain all the 
known fields. The bosonic strings are taken as discrete ordered sets of harmonic oscillators, 
so there is no divergences in this theory. Besides, it solves the problem of emergence of 
space (6]. Thus, in this approach both the 3d-space and relativistic quantum mechanics 
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emerge in the natural way. Because of (global) supersymmetry the ground state energy is 
zero and there is no problem of vacuum energy (one of cosmological problems: in present 
theory the vacuum density of fields exceeds the observed value approximately by 120 orders 
of magnitude). At the same time this theory inevitably leads to non-zero cosmological 
constant: 2A = 1/t;, tr being the relaxation time of the nonequilibrium distribution [4]. 

In principle, there is also place for dark matter. We identify the "normal" matter with 
the "second level excitations" < Xµ xv > (gravitational and vector gauge fields, see Sec. 
3) and fermions < Sµ > of the RNS string, but there are a lot of other excitations, for 
example, < X 1' >. We conclude that this approach looks very promising and gives clue to 
solutions of the most serious problems of modern physics. 

3 The Kaluza-Klein-Mandel-Fock model 

The proposed model of the 3d-space leads to unification of gravitation and Yang-Mills 
theory in the framework of the generalized Kaluza-Klein-Mandel-Fock (KKMF) approach 
[7-10]. It is remarkable that there appears no problem of compactification. 

The subtle point is the problem of dimension of the embedding space D. Bosonic 
string theory is formulated in the space-time with D = 26. There are two unphysical : 
variables among Xµ (X 0 and X11), thus we have 24 physical components. This is exactly 
the dimension of the group SU(5) adjoint representation. But in a thermal bath the bosonic 
string becomes a helix [4], i.e. (approximately) the superstring with the critical dimension 
D = 10 and 8 ( =10 - 2) physical degrees of freedom (just the dimension of the group SU(3) 
adjoint representation). Of course, this is true only for "ideal" RNS-string. Here we have 
a helix which needs extra two dimensions (taken from 16=26 - 10 ones). Thus, the model 
is effectively formulated in (11+1) space-time. Now application of the KKMF theory leads 
to the 4d gravitational equations together with those for the SU(3) gauge vector fields · 
("colour"). Notice that application of the KKMF approach to strings (not to network in 
(11+1) space-time) gives "gravitation" in (l+l). 

Now, one should define the metric tensor. In MD we introduce the coordinates Xµ(xi, xa),: 
i = 0, 1, 2, 3, a = 4, ... , D - 1. For any cell in the network (e.g. a cube) one always can 
find links composing a closed string. It is known that spin 2 massless excitations of the 
latter correspond to the tensor Xµ(T, a)Xv( T, a) (a parametrizes the string). We define the 
metric tensor associated with the cell (which represents a "point" in the emerging space) 
with the center n(n1 , n2 , n3 ), ni - entire numbers, by the average 

9(:,n) =< xµxv >= £\2 f daXµ(T, a)Xv(T, a), 
C n 

(1) 

where l characterizes the size of the cell, Le is the length of the integration contour. It 
is a nonlocal object in the string theory. But in the· continuous limit nili --> xi (li is 
the distance between the centers of the neighbor cells along the axis i, ni --> oo, li --> 0, 
i = 1, 2, 3) we obtain the local tensor gµv(x), x = (x0 , x1, x2

, x3 ), x0 = T. Evidently, outside 
the 4d pseudoeuclidean manifold it is defined by the equations 

agµv = 0, 
axa 

agab _ o a b = 4, ... , D - 1. --- , , 
axµ 
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The covariant second order equations of motion for 9µv follow from the action (in proper 
units) 

-11 D ~ S = - 2 d xy l9DIRD, 2K 
9D = detgµv, (3) 

where RD is the scalar curvature of D-dimensional space-time, G is the gravitational con
stant, l ~ K, and 

_ ( 9;j + 9abAi Aj Afgab ) . 
gµv - Ajgba 9ab (4) 

Conditions (2) for D = 12 give in the standard way [11,12] the action 

vs! ii:', 1 
S = ~K2 d4xy lgl(R - 4F 2

). (5) 

Here vs is the (infinite) volume of 8-dimensional co-space, g = detg;j, R is the scalar 
curvature of (3+1) physical space-time in the large scale limit, F'2 = 9abF!:;f'i~gk1gii, Fki = 
[Dk, D;], Dk is covariant derivative in the SU(3) Yang-Mills theory. 

4 Dark matter 

There are left the cell excitations < Sµ > and < Xµ > (notice that < 1 >= lll2 , 

and dim < Xµ >= dimz- 1 ). The former present fermions. Their incorporation into the 
formalism is a separate difficult problem [13]. As for< Xµ >, they give vector Ai=< Xi > 
and scalar r/>° =< xa > fields. These fields are candidates for dark matter. It is useful to 
"disentangle" operators Xµ and< Xµ >. Introducing Jcµ= Xµ - l2 < Xµ >, < _xµ >= 0, 
we define instead of (1) 

9µv =< _xµ >< X" >= gµv - z2 < Xµ >< X" >= gµv - l2Aµ A". (6) 

The tensor and vector fields gµv, Aµ appear in the way specific for the Bekenstein Te V eS 
theory [14]. The latter was invented to describe the dark matter effects. It leads to mod
ification of the Newton potential what is of importance in connection with the recent 
astrophysical observations [15] and Pioneer spacecraft [16] measurements. 

We conclude that the proposed model allows to solve a number of the most difficult 
problems of modern theoretical physics. 
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Abstract 

We consider the mass generation for the usual quarks and leptons in the Minimal 
Supersimmetric Standard Model (MSSM). The masses of the top, the bottom, the 
charm, the tau and the muon are given at the tree level. All the other quarks and the 
electron get their masses at the one loop level. This symmetry and the assumption 
of alignment between fermions and sfermions allow us to avoid FCNC problems. 
Here a more general hypothesis of flavor mixing in the sfermion sector of MSSM is 
considered and we show that the s quark is heavier than u, d quarks due to different 
content of sfermions contributions. Our results are in agreement with the experimental 
constraint on the values of sfermions masses. 

1 Introduction 

The fact that the lighter fermions may arise only as higher-order radiative effect was suggest 
by S. Weinberg [l]. Later L. Ibanez show that, if supersymmetry is spountaneously broken 
we can generate tiny fermion masses radiatively [2]. In order to restrict this mechanism 
to the first family a discrete symmetry is applied into SUSY models in Refs. [3, 4]. From 
the analysis performed by Ferrandis [5] the radiative mechanism for the fermions masses is 
allowed through sfermion-gaugino loops and the observed flavor physics is obtained if "the 
supersymmetry breaking terms receive small corrections, which violate the symmetry of the 
superpotential" and are responsible for the observed flavor physics. Later, the presence of 
soft supersymmetry breaking terms allows for the radiative generation of quark and charged 
lepton masses throught sfermion-gaugino loops. 

The outline of this work is as follows. The section 2 describes how the additional 
discrete symmetry Z~ is introduced into the framework of MSSM in order to prevent the 
light quarks and the electron to acquire mass at tree level. The radiative mechanism is 
described in section 3, where we remove the assumption of alignment between quark and 
squarks sectors. From these results, we can explain why the quarks u and dare lighter than 
the s quark. Our conclusions are found in the last section. 

2 MSSM and Z~ Symmetry. 

The fermion mass comes from the following terms of the superpotential 

W = - (Y~bLaH1lb + yiQ;H1d'j + y0Q;H2u'j + h.c.) + ... , 
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where Y~b• Yt and y0 are the yukawa couplings of Higgs with leptons families, "down" 
sector quarks and "up" sector quarks respectively and ... stands for other terms which we 
are not concerned here. The family indices a and i run over e, µ, T and 1, 2, 3, respectively. 

The key feature of this kind of mechanism is to allow only the quarks c, b, t, and the 
leptons µ and T have Yukawa couplings to the Higgs bosons. It means to prevent u, d, s 
and e from picking up tree-level masses, all one needs to do at this stage is to impose the 
following z; symmetry on the Lagrangian 

J~ _, -J~, J5 _, -J5, u~ _, -u~, ~ _, -~, (2) 

the others superfields are even under this symmetry. 
Thus the quarks u, d, s and the electron come about be massless due to Z~ symmetry [6]. 

This point of view has implications for nuclear physics. Due to u, d and s quarks are lights 
one is allowed to build an effective field theory as an expansion on masses of light quarks 
of the underlying theory. The Chiral Perturbation Theory (ChPT) is the prototype of this 
approach. It respects all principles of the underlying theory but with effective degrees of 
freedom instead of quarks degrees of freedom. 

Using the Z~ symmetry we can also, get an expression to the CKM matrix as follows 
[6): 

( 

cos 0 - sin 0 0 ) 
VcKM=Ef1Ef = sin0 cos0 0 . 

0 0 1 
(3) 

We can conclude that the Z~ symmetry in the MSSM can explain the lower masses of 
the u, d and s quarks and also gives a hint about the mixing angles of quarks. 

3 Radiative Mechanism to the fermions masses 

The discrete symmetry Z~ has to be broken in order to allow the generation of fermions 
masses by radiative corrections. By another hand, Supersymmetric non-renormalization 
theorem guarantee that corrections to the relations arising from these constraints are very 
small, even if the discrete symmetry, defined at Eq.(2), is broken. 

The behavior of scalar components of chiral superfields under Z~ symmetry are given 
by: 

d3 _, -d3, d3 _, -d3, d3 _, -d3, d3 _, -d3, 
u~ -> -u3, u~-> -u~, [~-> -f5, l5-> -l5, (4) 

while all other fields of the model are even. It worth noting that the Z~ symmetry has the 
same role as in the fermion sector: it forbids the flavor mixing between the third family 
and the other two families of sfermions [7]. 

Therefore the z; symmetry help us to keep under control the dangerous FCNC problems, 
and we still obtain the mass hierarchy pattern without additional assumptions. We can 
rewrite the light fermion mass expressions as follow [7]: 

M g;m9 sin(2011 ~ mt 1 (mt) M =g;mgsin(20a~ ml 1 (ml) 
" 16 4 L ( 2 2) n 2 ' d 16 4 ~2...., ( 2 2) n 2 , 

1r •=I m 11, - mg mg 1r •=I ma, - mg m9 
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It is important to emphasize that the first two contribution to the mass of c quark are the 
same as those in the mass expressions of u and d quarks. The third contribution came from 
the flavor non-diagonal sfermion mass matrix contribution. 

4 Conclusions 

We show that we can introduce a discrete symmetry Z~ in MSSM and in both SUSYLR 
in order to explain the lower masses of the quarks u, d and s and of the electroµ while a 
consistent picture with experimental data of CKM matrix is obtained. 

We, also, showed that the extension of Z~ symmetry to the squarks sector provide us 
with a natural mechanism for explaining the chiral mass hierarchy pattern and also the 
mass gap between strange and non-strange quarks. It means, we can give a reasonable 
explanation of the mass gap between s quark and non strange quarks, even in the case of 
all squarks are degenerate in mass at low energy. It is due to the fact that the s quark 
can couple with two families of squarks while the u and d quarks can couple only with one 
family. 
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Abstract 

Working within the context of Lorentz-violating extended electrodynamics (a part 
of the Standard Model Extension, SME), we investigate the following physical prob
lems: Chern-Simons term (CS) generation by the fermion loop in the Lorentz-violating 
background, electron bound state in the Coulomb potential (hydrogen-like atom), 
electron in a constant homogeneous magnetic field and synchrotron radiation (SR). 

1 Introduction 

1.1 The Standard Model Extension (SME) 

The SME stems from a spontaneous breaking in a covariant FT, hence Lorentz-violating 
terms in the Lagrangian of the SME are singlets under observer Lorentz transformations. 
So, the field indices should match those of the coupling coefficients ~ some power of 
mw/Mp = 10-11 . There emerges the extended quantum electrodynamics from the lepton
gauge sector of the SME. Its Lagrangian can be written in the following general form: 

,eQEDExtension = ,eQED + LJepton + Lphoton, (1) 

where ,eQED is the well-known QED Lagrangian: 

QED 1 1- - -£ = --F pµv + -•1-i'vµD •1• - • 1•m•1• 4 µv 2o/ I µo/ o/ o/, (2) 

LJepton, £photon are the terms describing the Lorentz non-invariant interactions in the elec
tron and the photon sectors of the theory respectively. They can be decomposed into a sum 
of CPT-even and odd parts, among which the following are of interest in our investigation: 

,eCPT-odd _ --;;i; µ .1. --;;i; 5 µb .!, 
lepton - -o/'Y aµo/ - o/"/ 'Y µo/, 

rCPT-odd l (k )" AfJpµv 
.L,photon = Z AF E:a(Jµv • 

The SME action is covariant under observer Lorentz transformations. 
transformations leave the coupling coefficients (condensates) unaffected. 
4-dimensional directionality to the spacetime in any fixed inertial frame. 
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(3) 

(4) 

Particle Lorentz 
This provides a 



The aim of the investigations is to establish possible signals of Lorentz violation, place 
bounds on the associated couplings. High-precision tests have been carried out including 
those using anomalous magnetic moments, charge-to-mass ratios for particles and antipar
ticles confined in a Penning trap, etc., that have shown no evidence for the existence of 
Lorentz violation; all SME-couplings are thus tightly constrained (;:S 10-22 - 10-33 GeV), 
except for the few ones, e.g. the zero component of the axial vector bµ: 

(5) 

1.2 Extended electrodynamics 

We use the minimal CPT-odd form of the extended QED with electrons and photons: 

(6) 

Electron charge qe = -e < 0, a= e2/41r; Dµ = 8µ -ieAµ, "(s = -i"(0
"(

1
"(2"(

3
, and lf is a 

constant axial vector condensate that introduces a Lorentz-violating CPT-odd interaction. 
The possible dynamical origin of bµ still remains a subject of an open question. In 

particular, it can be related to some background torsion in the large-scale Universe, bµ ~ 
€µv>.0T 11M, and it could also be generated by chiral fermions [l]. 

2 Chern-Simons term generation by the fermion loop 
in the b0-background 

Consider a Lorentz- and CPT-violating axial-vector term in the fermion Lagrangian 

(7) 

with bµ = {bo, b }. In perturbative treatment, we have two one-loop diagrams with axial
vector fermion-line insertions. As a result, the photon Lagrangian should be added by the 
CS term linear in bl' 

(8) 

However, the final result depends on the regularization scheme, i.e. ~ is a numerical con
stant depending on the method of calculation [2). Therefore, a nonperturbative method of 
calculation should be applied, where such ambiguity is eliminated. 

The one-loop effective action has the form 

r.ff(A, b) = -iTr In (i'Y8 - "/A+ ("fb)"/5 
- me) = 

. 1 · 5 I "(O - i"(A + i("!b)"/5 

= -iTr In t"(O - "(A+ ('Yb)"! - me - Tr arctan -------
me 

(9) 

The second term vanishes and we have 

i . i100~ r.tf(A,b) = --Trln (-(q8- "(A+ ("!b)"/5
)

2 + m;) = -
2 

-Tre-zH, 
2 0 z 

H = -(1rµ1r + 2ia-µ 11 b 1r "'5 - ~a-µ 11 F. - b b11 
- m2 ) µ µ II I 2 µ11 µ > 

379 



t ~ 
:1 

where rrµ = i8µ - eAµ. In the linear in b approximation we obtain 

Tr(e-•H) = -16(bo,g~ + b,.,Rµ"°' 13 )(C2F°'13 + C4F°'13 )e-zm' X 

00 (-2izF{)n 8 
( )

-1 

X 9~ - ~ (n + l)! a>.'I Trx exp (z(rrµ7rµ + AprrP)) IA=O, 

where Rµ"<>/3 is a certain function of pµv and 

(11) 

Trxexp(z(1rµ1rµ+>.µ1rP)) = J d4x(xlexp(z(1rµ1rµ+>.P1rP))lx). (12) · 

In the weak field limit, we finally obtain the linear in b term in action 

fetr(A, b) = ibµcµv<>/3 Fo,131
00 

dzzTrx7rv exp(-zm2 + zrr2
) = 

= ~bµcµvo,/3 Fo,131
00 

dz a~v e-zm'-zA'Trx exp(z(rrP + )..P)2) IA=O= 0 (13) 

Due to gauge invariance of the theory, the above expression vanishes after differentiating 
over>." and putting>.= 0. The CS term, which should be linear in if, thus vanishes in our 
approach. This lies in agreement with earlier calculations made by different methods (3). 

3 Hydrogen-like bound state 

The one-particle bound states of the electron in the external electromagnetic field Aµ(x) 
are described with the modified Dirac equation, the Lagrangian (6) leads to: 

in81/J/8t = iln(t)1/J, 111/111 2 = 1; (14) 
• A O 2 

Hn = co · P + "( mec - eAo - bo"fs - b · :E, o = "1°, = -:E"(5 , P = p + :.A. (15) • 
C 

We first examine the quasirelativistic regime of our model, making an expansion into a · 
series with respect to 1/c up to the second order assuming /i,c ,f 1, if= {cb1,b}. This 
method is analogous to that proposed by Landau within QED. The wavefunction 1/J of a 
positive-energy bound electron, which fulfills (14), can be approximately expressed in terms 
of a 2-component quasi-relativistic wave/unction <I:> so that 1 = 111/111 2 = ll<I:>11 2 + 0(1/c3

), · 

if we assume P, E, H = O(c0 ), when acting upon 1/J, and b1, b = O(c0
). As a result, the · 

equations of motion for <I:> lead to the expression for the quasi-relativistic Hamiltonian 

. . ( k ) eli · eli • eli2 u[P[bP]) 
h = K 1- --

2 
+--uH-ub-eA0+--

2
-
2
u[EP]+-

8 2 2 
VE+ 

2
c2 , (16) 

2mec 2mec 4m.c mec 2me 

• • 2 
where K = ;-((P -b1u) 2 -2bn, in agreement with [6) in the corresponding special cases. 

In the Co~lomb field, eAµ = { Z~llc, O} (Za « 1), for b = 0, the unitary transformation 

• - { ib1 ( Zr e) } -<I:>(x) = U<I:>(x) = exp h 1 + ~ u • r <I:>(x), 
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Te=--, 

meC 
(17) 



where x = {ct,r}, gives h = (Jtfi(J = hlbo=O +O(bl), so the b0 f. 0 solutions are readily 
found to be 'Pnljm; = U<Pnljm; lbo=O +O(b5) (for the explicit expression, see (4]). The 
wavefunctions do not possess a definite parity, and l quantum number responds to an 

·2 
integral of motion other than l . Within the first order in b0 and the second order in 1/c, 
the energy spectrum is unaffected and is given by the conventional Dirac formula (7, §34]. 

We further resort to a fully relativistic description of a bound electron, taking Ii = c = l 
and using the quadratic approximation in II' = {b0 , O}. We consider an electron in an 
arbitrary spherically-symmetric potential cp(r), and in a weak 'external' field A£e)(x), so 

that Al'(x) = { cp(r) + Ab•\x), A(•J}. Perform a gauge-covariant unitary transformation: 

exp {-ib0 [ Ex - ~e ( E(rP] + 1) , 0
, 5]} ~(x), 

H I - bl f•"'-'o - d E(e) - µ• H(e) + H(2)[A(e)] + O(b3) 
0 bo=O I A A mt O , 

me 

(18) 

(19) 

where µA= ~,0[Er], dA = i,5µ,A, J =El+ l, and H;~{[A(e)] = O(b5). We have shown 
that the parity-odd correction µ, A generates a nonzero anapole moment of the electron 

orbital. When A);l = 0, i.e. in a spherically-symmetric potential, Ho is parity-even (as 

does H0 in the b0 = 0 case). Moreover, J,0 = x(j + 1/2) at the eigenfunctions 'lj!~~~m; of 

H0 lbo=O, so we took them as the b0 f. 0 solutions in the transformed representation [4]. 
After the inverse transformation is performed, we found the desired eigenfunctions 

2 ( R(I) yz _ b (i+I/2 (2) _ R{I)) yz' ) 
'Ip . = -iE,.,;t --'f (r2+(j+l/2)2/mn nlj jm; 0 m, Rnlj XT nlj jm; 

nlJm; e e xR(2)_yl' - bx (i+l/2 R(l) + xrR(2)_) yz , 
nlJ Jffij O me nlJ nlJ Jffij 

(20) 

Enlj = E~~j - xb~(j + 1/2)/me, (21) 

where j = ½, ~, ... , mi = -j, ... , j; l = j - ~ determines the parity P (-1)1 

of the function ,J;, and not the orbital moment. { E~~;} and R~~/l are the spectrum 

and the radial wavefunctions in the b0 = 0 case, which are 
known in the Coulomb potential [7, §36]. A nonzero b0 removes 
the degeneracy over l typical for this case, the splitting being 
:S 105Hz when lbol :S 10-2eV though it increases linearly with 
j. 

The parity of a hydrogen atom (Z = 1) broken in the back
ground of II' = {bo, O} affects its radiative transition properties. 
We found that the first-order bo-induced corrections to the angular 

Figure 1: An effect of b0 
radiation distribution appear only for polarized states (i.e. with- on the radiation angular 
out a summation over mi quantum numbers). Within the 1/c- distribution. 
approximation, after the transformation (17), the signature of Lorentz violation is provided 
by the modified electron magnetic moment operatorµ,= --2 •li (l+a)+µ,A, µA= ~[ar]. 

ffieC ffieC 

µA introduces a parity-nonconserving correction to the Ml term of the transition matrix 
element, that mixes El and Ml transitions, the radation distribution acquiring corrections 
of the order lbol/m.c2 :S 10-8. Within the linear order in b0 , the total rates are unaf-
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! 

fected. For instance, the angular distribution (summed over the photon polarizations) for 
the transition J2p1; 2 , mj = 1/2) -> J1s 1; 2 , mj = -1/2) was shown to lose its symmetry: 

dw1; _ 256n3 R { 2 0 8bo e} 
dr, - -656 1 + cos - --2 cos ' 
"k l1r m.c 

(22) 

where R = n 2m.c2 /2/i, 0 is the angle between the photon momentum lik and the axis of the 
angular moment quantization (z). It is shown in fig.1, with the dashed line demonstrating 
the b0 = 0 case and b0/m.c2 = 0.05 chosen for vividness. 

4 Synchrotron radiation 

In this section we present a quantum treatment of the radiation problem within the extended 
QED for an electron moving in a classical constant homogeneous external magnetic field 
H = Hez (with 4-potential Aµ = {0, ½[Hr]}). We assume bµ = {bo, O} in the observer 
frame; and we also take into account the particle anomalous magnetic momentµ,::: f-,f
(since H «He= m;/e,::: 4.41 x 1013 Gauss). The one-particle Hamiltonian then reads: m, 

Hn = Hn(bo,Pz, m.,µ) = aP + , 0m. + µHt°E3 - bo,s, P = {Pi, A,fJz}. (23) 

In the subspace with definite Pz where 1/J(r) ~ eip,z, using the unitary transformation 

-{}-f'/2 :;. H~ H. (0 - - -) 1/J=e 'I', n= D ,Pz,me,µ, 

- ✓ 2 2 (m•) _ ( cosiJ siniJ) (m•) .a_ ~ µH =(µH) + b0 , _ - .• a .a , v - arctan H' Pz -smv cosv Pz µ 

(24) 

(25) 

we reduce the problem to that without L?rentz violation solve~ in [8], except for the change 

(me,Pz, µ)-> (rhe,Pz, µ). Taking )z and fi.1 = meE3+h0,s[:E.P]z as the integrals of motion 
with the eigenvalues n-s-1/2 and IT= ( Jm~ + 2eHn (n, s = 0, 1, ... , ( = ±1) and going 
back to t~e initial representation, we find that the electron transversal spin polarization 

operator fi.1 transforms to a mixed (partially longitudinal) one: 

fr = fr.1 cos rJ + fr11 sin rJ, 
• ... • . 0 • 

IT11 = :EP, Il.1 = meE3 + q ,s[:EP]z. 

The solutions for 1/J and the spectrum have the form (see details in [5]): 

1/J,,p.,n,s,((r; bo, me,µ) 

E,,p.,n,((bo, me,µ) 

• 3 '( - ) e-,-r e' P,-p, z'I/J,,r,.,n,s,((r;0,m.,µ), 

E,,r,,,n,((0, m., µ) = EJ(IT + µH) 2 + ii;, 

where E = ±1 is the sign of the energy and fr'I/J,,p,,n,s,( = IT'I/J,,p,,n,s,(• 

(26) 

(27) 

(28) 

Using these solutions, we apply the quasiclassical theory of synchrotron radiation quite 
analogous to the b0 = 0 case, so we discuss it only briefly (see [5] for details). The electron 
orbital motion becomes quasiclassical for H « He and m./ E = >. « 1. We neglect the ratio 
µH/ E under typical laboratory conditions (E ~ 1 GeV, H ~ 104 Gauss), since µH/ E « 1 
if b0 » 10-20 eV, and we take the initial momentum Pz = 0. However, rJ is not assumed 
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to be small. In spherical coordinates with the polar angle 0 measured from the z-axis, the 
total radiation power is 

J . 27 y2 8 )2 
W = Wet dy sm0d0 647r2 ).S(l + (y) 4 <I>(O), Wet= 27 (eme( , (29) 

where y > 0 is a dimensionless variable related to the 
h t k· -"'- - ...51L d C - ~Kl t· t p o on energy . E - l+(y, an .,, - 2 He.\ es 1ma es 

the role of quantum effects. One of the angular distri
butions <P;(0) for polarization T and spin (' = ±( is Figure 2: Normalized angular distribu
shown in fig.2. The distribution asymmetry relative tion <I>;;(0) for ( = -1, k = l MeV, E = 
to the orbit plane O = 1r /2 caused by the longitudinal 1 GeV, H = 10

4 
Gauss, bo = 10-

9 
eV. 

admixture to its spin polarization (when b0 =J 0) also maintains for unpolarized electrons. 
Since experiment confirms the 'transversality' of electron states, we can conclude that 
rJ « 1. Taken under laboratory conditions, this implies: Jb0 J « µH ~ 10-5 eV. 

5 Conclusion 

We have shown that CS term linear in bµ does not appear in the one-loop effective action 
within the SME. At the same time, for an electron being in a bound state, the Lorentz
violating coupling b0 manifests itself in the modified electron spectrum and integrals of 
motion (parity or polarization), in the nonperturbative interaction with its anom.alous mag
netic moment, and in the asymmetries of the radiation distributions, especially for polarized 
electrons. The results obtained gave us stringent constraints on b0 and seem promising in 
suggesting new experiments. 

Acknowledgements 

The authors are grateful to A.V.Borisov, D.Ebert, and A.E.Lobanov for helpful discussions. 

References 

[l] I. L. Shapiro, Phys. Rcpt. 357, 113 (2002); G. E. Volovik, JETP Lett. 70, 1 (1999); 
G. E. Volovik and A. Vilenkin, Phys. Rev. D 62, 025014 (2000). 

[2) A. A. Andrianov, P. Giacconi, and R. Soldati, Grav. Cosmo!. Suppl. 8Nl; J. High 
Energy Phys. 02, 030 (2002); R. Jackiw and V. A. Kostelecky, Phys. Rev. Lett. 82, 
3572 (1999). 

[3] Yu. A. Sitenko, K. Yu. Rulik, Eur. Phys. J. C 28, 405 (2003). 
[4) 0. G. Kharlanov and V. Ch. Zhukovsky, J. Math. Phys. 48, 092302 (2007). 
[5) I. E. Frolov and V. Ch. Zhukovsky, J. Phys. A 40, 10625 (2007). 
[6] V. A. Kostelecky and C. D. Lane, J. Math. Phys. 40, 6245 (1999); M. M. Ferreira, Jr. 

and F. M. 0. Moucherek, Int. J. Mod. Phys. A 21, 6211 (2006). 
[7] L. D. Landau and E. M. Lifshitz, Theoretical Physics, Pergamon, Oxford, 1991, Vol.4. 
[8] I.M.Ternov, V.G.Bagrov, and V.Ch.Zhukovsky, Vestnik Mask. Univ., Fiz. Astron. 7, 

No.l, 30 (1966). 

383 



QUANJTUM 

THEORY 



Quantum Channel Decoherence in Optics 
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Abstract 

The decoherence effects of distribution of an optical quantum channel produced by 
the Bell-like states are considered. The degrees of entanglement of quantum channels 
of <I> and 'V types depending on conditions of their propagation along optical paths 
are given. 

The quantum information schemes for quantum cryptography, quantum teleportation 
and quantum computation use entangled states as a basis for a quantum channel. In 
optics such quantum channels are realized by means of dielectric four-port devices like 
beam splitters, mirrors and fibres through which entangled photons are distributed. This 
dielectric environment arouses some dispersion and absorption that destroys the initial 
quantum coherence of the photon state. 

A quantum theory of state transformations of the electromagnetic field at dispersing 
and absorbing four-port devices based on the quantization of the Maxwell equations was 
given in [1]. In this theory, the effect oft.he dielectric device on the incoming radiation can 
be described by introducing in quantum input-output relations bosonic fields playing the 
role of the device excitations which are associated with absorption [2]. So that the density 
matrix of the electromagnetic field states in output ports of a dispersive and absorbing 
four-port device of an arbitrary frequency linear response is related to the initial density 
matrix by the following expression 

.(F) - Tr(D) { •. [At( ) "']} l!out - em w a , 

where the SU( 4) matrix A is completely determined by the complex refractive-index profile 
of the device, and the four-dimensional vector operator 5. is formed by two input field 
operators and two other bosonic operators of the device excitations over which the trace 
is carried out. Relation (1) allows one to estimate the state of the electromagnetic field 
after propagation along an optical path by repredenting it as a four-port device with a given 
refractive-index profile. 

The proposed formalism is suited for an analysis of entanglement degradation of a 
quantum channel. As quantum channels which can be used for optical schemes on quantum 
information, let us consider states of the Bell type 

j<I>(>.)) = 100) + >-111), 

~ 
(2) 

lw(>-)) = 101) + >-110), 

~ 
(3) 
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where A stands for an arbitrary complex parameter. States (2) and (3), whose density 
matrices have the forms 

i?! = 1 +
1
IAl2 {100)(001 + Alll)(00I + A*I00)(lll + IAl2I11)(11I}' (4) 

i?! = 1 +
1
IAl2 {101)(011 + AllO)(0ll + A*I0l)(lOI + IAl2l10)(10I}' (5) 

are maximally entangled states at IAI = 1. 
Let us assume that the quantum channel made up by the state (2) or (3) transmits along 

two communication paths described by some transmission coefficients T1(w) and T2(w). As 
it results from the transformation relation (1), the states of the quantum channels (4) and 
(5) after propagation become (see also [3]) 

i?!ut = l +llAl2 {[1 + IAl2(1- ITd2)(1- IT2I2)] I00)(00I 

+AT1T2lll)(ooI + A*Ttr;I00)(11I + IAl2IT1l2(1 - IT2I2)I10)(10I 

+IAl2(1 - ITil2)IT2I2I0l)(0ll + IAT1T2I2I11)(11I}' (6) 

i?tut = l +\AI2 {(1 + IAl2 - IAT1'2 - IT2I2)I00)(00I + IT2I2I0l){0ll + IAT1'2I10)(10I 

+AT1r;I10)(01I + A*Ti'T2I0l)(10I}, (7) 

correspondingly. Eqs. (6) and (7) show that the initial pure quantum states convert into the 
mixed ones because of the interaction with dielectric matter of the paths. Such decoherence 
processes reduce the original degree of entanglement of the quantum channel. 

The. effect of entanglement degradation can be estimated with the help of a measure 
of entanglement based on the eigenvalue problem of the partial transpose of the density 
matrix of the bipartite mixed state [4]. Since for any entangled state the partial transpose 
[!T of its density matrix I? defined as 

(Uli?PTlk,l) = (k,ili?li,l) (8) 

has necessarily negative eigenvalues µ; < 0, the sum of their absolute values 

N(i?) = l~µ;I (9) 

which is called negativity determines the degree of entanglement in terms of the logarithmic 
negativity 

EN(i?) = log2 [1 + 2N(i?)]. (10) 
This method can be directly applied to the density matrices (6) and (7) to evaluate their 
degrees of entanglement. The straightforward calculations of eigenvalues of the partial 
transpose of these matrices give the following expressions for the negativities 

Nif.> = 2(1 ~:Al2) { J4IT1T2l2 + IAl2(IT1I2 - IT2I2)2 - IAl(IT1I2 + IT2I2 - 2IT1T2I2)} ,(11) 

provided that IAI ~ (1 + IT1T2I2 - IT1I2 - IT2I2)-112, and Nif> = 0 otherwise; 

Nw = 2(1: IAI2) { j[IAl2(1 - IT1l2) + 1 - IT2I2l2 + 4IAT1T2I2 

-IAl2(1 - ITii2) + 1 - IT212}. (12) 
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Figure 1: Logarithmic negativities of the <!>-channel (left) and W-channel (right) for the 
symmetric communication paths with transmission coefficients T1 = T2 and l>-1 being equal 
to 1 (solid line), 2 (dashed line) and 0.3 (dotted line). 

The behavior of the logarithmic negativities (10) which correspond to expressions (11) 
and (12) depending on the transmission coefficients of the distribution paths in the sym
metric scheme T1(w) = T2(w) and on the parameter>. are shown in Fig. 1. It is clearly seen 
a rapid decrease of the logarithmic negativities from their initial values as the transmissiv
ity of the communication paths is reduced. This signifies the entanglement degradation of 
the quantum channel on account of unavoidable losses during its distribution. Moreover, 
the <!>-channel can become completely disentangled, EN(<I>) = 0, at certain values of the 
transmission coefficients and the parameter l>-1 (> 1) in accordance with the relation in 
eq. (11), whereas the lli-channel keeps a residual part of the initial entanglement even at 
very low transmissivity of optical paths. 

The stated approach for estimation of entanglement degradation can be also applied 
to the case of continuous-variable quantum channels, in particular based on two-mode 
squeezed vacuum states [5]-[8]. Thus, a quantum theory of state transformations of the 
electromagnetic field at dispersing and absorbing four-port devices is a convenient tool in 
consideration of specific problems of quantum information processing. 

This work is partly supported by the RFBR Grant No. 08-02-00118. 
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Abstract 

The development of Theory of Self-Organization was originated by the creation of 
the natural, argued, and novel concept of time. Time by itself exists in the form of 
the scalar temporal field and is the cornerstone of any dynamical theory and, hence, 
the dynamical theory of spin (spindynamics) as well. The equations of spindynamics 
are represented in the most symmetrical and obviously dynamical form, using the 
formalism of vector algebra and vector analysis in the 4-dimensional and general 
covariant form. Through this, we recognize the operator of evolution in spindynamics 
as the covariant derivative along the stream of time. It differs from the operator of 
evolution for the (general) electromagnetic field and the gravitational field, where it 
is the Lie derivative along the stream of time. 

Introduction 

Theory of Self-Organization is the new, self-consistent, and integral structure in which 
geometry, symmetries, and fields are tightly connected and kept inseparable providing the 
adequate solution of the most difficult conceptual problems [1], [2], [3]. In the dynamical 
Theory of Self-Organization all manifolds of phenomena are projected on the set of the four, 
fundamental fields: the gravitational field, the temporal field, the general electromagnetic: 
field, the spinning field. In the static theory of Self-Organization the temporal field is 
absent. The first principles and laws of Self-Organization of this defining system of fields 
are established and on this basis the novel theory of spin phenomena is developed. It is 
shown that spin is the diverse phenomenon which involves the concepts of the spinning field, 
spin symmetry with its bipolar structure, the equations of spinstatics and spindynamics as 
the natural and fundamental manifestation of bipolar structure, new understanding of the. 
time reversal, unbroken spin symmetry with the concepts of internal spin and the spin 
current. Since the Theory of Self-Organization is integral structure, spindynamics involves 
all phenomena connected with spin. Hence, having in our disposal the bipolar structure 
of spin symmetry we can maintain that observer does not need to consider the artificial 
concept of weak or strong isotopic spin. In this case, the geometrical and physical nature 
of the strong interactions can be understood only in the framework of the nontrivial causal 
structure defining by the temporal field. We can consider in the first approximation that 
physical space is 4-dimensional Euclidean space. It is easy to find that in this case the basic 
equation of temporal field has general solution and singular solution. The first solution 
defines the causal structure that corresponds to the special relativity. The second solution 
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is considered as the starting point for understanding the strong interactions on the basis of 
the new causal structure tightly connected with rotations. 

For comparison, let us look at the historical development of Quantum Mechanics. From 
the geometrical point of view, in the Schrodinger theory the two real scalar fields are 
introduced and internal symmetry appears at first in the form of the complex scalar field. 
Here the principle of sufficient cause is substituted by the experiment but the question 
remain open. In the Dirac theory already the four complex scalar fields are introduced 
and, hence, it can be considered as the theory of the Higgs fields with nontrivial internal 
symmetry defined by the Dirac spin matrices. In the electroweak theory and quantum 
chromodynamics the number of the scalar fields increases again and again and thus, the 
artificial internal symmetry is extended. This way of development of the theory looks like 
artificial and oriented on the explanation of the artificial phenomena since it is impossible 
to derive the theory of elementary particles from the first principles without understanding 
the essence of time. But nevertheless the final judgment should be leaved to the future 
development of the theory and experiment. 

2 Equations of Spindynamics 1n Hamiltonian Form 

In the Theory of Self-Organization the properties of time and physical space are not de
fined by the properties of devices and by the methods of measurements. A temporal field 
(together with other fields) designs physical space, but it has also other very important 
functions in spindynamics. The temporal field with respect to the coordinate system 
u 1, u2, u 3 , u4 is denoted by f ( u) = f ( u1, u2, u3 , u4 ). The gradient of the temporal field ( the 
stream of time) is the vector field t with the components 

; BJ BJ 
D f -gl __ -1 
t- a·a·-· uJ uJ 

where gii are the contravariant components of the positive-definite Riemann metric ds2 = 
9iiduidui. The rate of change with time of some quantity is the Lie derivative with respect 
to the stream of time t and the symbol Dt denotes this operation. The other possible 
operator of evolution has the form of covariant derivative in the direction of the stream 
of time. This operator is denoted by 'vt = ti'v;, where 'v; is a covariant derivative with 
respect to the connection that belongs to the Riemann metric 9ii · 

We remind some definitions of the vector algebra and vector analysis in the four
dimensional and general covariant form [1]. The operator rot is defined for the vector 
fields as follows: 

where eijkt is the orientation of physical space ("element of volume"). It is easy to show 
that 

(M, rotN) + div[MN] = (rotM, N), 

where 
[MN]; = eiikltiMkN1 

is a vector product of two vector fields Mand N, divM = 'v;Mi. Thus, the operator rot 
is self-adjoint. We also mention that (gradcp); = 6.;cp, 6.; = 'v; - t;'vt and rot grad= 
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0, div rot = 0. To apply vector analysis to equations of spindynamics in the geometrical 
form [3] 

1 ~ ~ ~ 
2(QtA + AQt)w = mQtW, 

1 ~ ~ • ~ • 

2
(QtA + AQt) \ll= mQt w, (1) 

we consider the mapping of the spinning field 

\¥ = ('lj;, 'Ip;, 'lp;j, 'lp;jk, 'lpijkl) 

onto two scalars ,,, and µ, two pseudoscalars >. and v, two vectors K and M, two pseu
dovectors Land N, all being orthogonal to the stream of time, (t, K) = (t, L) = (t, M) = 
(t, N) = 0. This mapping is defined as follows: 

K, = ti'lj;;, µ = 'Ip, 1 ' kl ' = -t1e'1 .!,. 'k A 
3

, '1-'tJ , 
1 · kl 

V = 41 e•J 'lpijkl, 

Ki= hi .1,m Mi= t .1,ki Li= ]:_hi emjkl.1,. Ni= t .T,ki 
m'f' , k'f' , 3! m 'f'Jkl, k'f' , 

where h} = b; - titJ, {/i = ½ekijl'lj;Jl· The inverse mapping has the form 

'lj; = µ, 'Ip;= K; + K,t;, 'lp;J = t;MJ - tJM; + e;1k1tkN
1
, 

'lpijk = emijkLm + A tmeijkm, 'lpijkl = V eijkl· 

Further, we write down the equations (1) in the component form and after some trans
formations arrive at the following symmetric system of equations of spindynamics which 
include four scalar and four vector equations: 

. (v't + irp),,, = divK - mµ 
(v't + ?ip)>. = divL - mv 
('v\ + ?<p)µ = div M + m,,, 
(v't + 2rp)v = divN + m>. 

(v't + irp)K = -rotL +grad,,,+ mM 
(v't + ?rp)L = rotK +grad>.+ mN 
(v't + -rp)M = rotN + gradµ - mK 
(v't + ½rp)N = -rotM + gradv - mL, 

(2) 

(3) 

where 'v't = tiv';, <p = v';ti. l,From the first principles of Self-Organization it follows that 
Equations (2) and (3) describe all phenomena connected with spin symmetry and spin. 
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Abstract 

In last years investigations in the area of quantum telecommunication intensively 
develop. In this connection the problem of a locality has got a special urgency. In 
proposed work the quantum-theoretical scheme which is based on the theory of alge
bras and classical probability theory is described. This scheme possesses the following 
distinctive peculiarities. Firstly, for quantum ensembles it reproduces the standard 
mathematical formalism of quantum mechanics. Second, it provides performance 
of locality condition for each individual event, including the act of measurement. 
Thirdly, it allows to establish that the quantum state does not possess property of a 
locality. As an example double-slit experiment is discussed. 

1 Introduction 

Since the famous debates between Einstein [1] and Bohr [2], specialists have argued about 
locality in quantum mechanics. Einstein claimed that the locality principle is violated in 
quantum mechanics, which is therefore inconsistent or at least incomplete. The locality 
property occupies the central place in quantum field theory. The locality property is not 
denied in nonrelativistic quantum mechanics when considering interactions of quantum 
objects. But the situation is drastically changed when discussing the problem of interaction 
between quantum objects and classical measuring devices. 

The main constructive tool describing such an interaction is the projection principle. In 
the most cases, the projection principle had indeed proved its usefulness when describing 
the influence of a measuring device on a quantum object in the framework of the standard 
mathematical apparatus of quantum mechanics. But the physical mechanism for realizing 
this principle as well as its 'consistency with the locality condition is still missing. 

Instead, people vaguely reason that the human brain has an experience of describing 
only classical objects and therefore cannot provide a concrete image of how a quantum 
object interacts with a classical device. 

The locality problem has become more and more relevant in recent years. This is because 
"it passes more and more from the domain of theoretical reasonings and Gedankenexperi
ments into the domain of actual experiments. Moreover, the first attempts are being made 
to construct prototypes of engineering constructions in the domain of so-called quantum 
telecommunication. The quantum locality problem plays a key role in this domain. 

We mention here that the results of modern experiments are interpreted in most cases as 
evidence that a "local physical reality" does not exist in quantum physics. The locality of 
the quantum theory then acquires a somewhat metaphysical status removed from material 
reality. 
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Here, we attempt to demonstrate a quantum theory formulation that, on one hand, 
preserves the mathematical apparatus of the standard quantum mechanics and, on the other 
hand, ensures the satisfaction of the locality condition for each individual event including 
the measurement procedure (see also [3)). 

The basic notions of the proposed approach to quantum mechanics were presented 
in [4]. We only briefly review these notions here. The entire construction is performed 
in the framework of the algebraic approach. We therefore do not assume that a physical 
system state is described by a vector of a Hilbert space (~r by a density matrix) and that 
observables are described by operators in this space. 

We take the following postulates as basic. 

POSTULATE 1. Observables of a physical system are described by Hermitian elements 
of some C* -algebra 2!. 

Elements of the algebra 21 are called dynamical variables. We let 21+ denote the set 
of observables. We let o, denote maximum commutative subalgebras of the algebra 21 
belonging to 21+. We use the subscript ~ E B to distinguish among these subalgebras. 

POSTULATE 2. For observables A and .B to be compatible (simultaneously measurable), 
it is necessary and sufficient for them both to belong to some subalgebra ,Q{· 

We let 'P,(·) denote a character of the subalgebra D{, i.e., A~ 'P{(A) is a homomorphic 
map of the algebra o, (A E D{) into the algebra of real numbers. 

We call the collection 'P = ['P{] (( E B) of functionals 'P{(· ), each of which is a character 
of the corresponding subalgebra D{, an elementary state of a physical system. 

POSTULATE 3. The result of any individual experiment on measuring physical system 
observables is determined by an elementary state of this system. 

Because compatible measurements are possible only for compatible observables, we can
not unambiguously fix the elementary state 'P in an experiment. The maximum that we 
can do is to determine the reduction of the elementary state to a subalgebra ,Q{ only for 
one~ (~ = T/ EB) , i.e., we can fix the functional 'P,,(·). We say that elementary states 'P 
are 'P,,-equivalent if they have the same reduction 'P,,(·) on the subalgebra 0 11 • 

We define the purely quantum state '11 'P", to be the class { 'P} 'P" of 'P,,-equivalent ele
mentary states. We can therefore experimentally determine only whether a system under 
investigation belongs to a definite quantum state. 

The collection of physical systems whose elementary states constitute the equivalence 
class { 'P }'P" is called a pure quantum ensemble. 

POSTULATE 4. A quantum ensemble admits the structure of the probability space. 

We recall that the probability space is the fundamental object in the classic probability 
theory (see, e.g. [5, 6]. The probability space is a triple (n, :F, P). The first term in the 
triple, n, is a set of elementary events. In our case, the elementary state 'P plays the role of 
an elementary event. The second term of the triple, :F, is the Boolean O'-algebra of the set 
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n. Elements of the algebra :Fare subsets of the set fl. These subsets are called (probability) 
events. The third term in the triple is a probability measure P. This is a map of the set 
:Finto the set of real numbers: each FE :Fis sent to a number P(F). This mapping must 
satisfy the conditions O :s; P(F) :s; 1 for all F E :F, P(O) = 1, and P(r,i Fi) = L.i P(Fj) 
for any denumerable union L.j F; of nonintersecting subsets Fi E :F. 

We recall that the probability measure is defined only for the events F E :F. For 
elementary events, the probability measure may not exist in general. 

The mathematical representation of a physical system is the algebra of its dynamical 
variables; vice versa, the physical representation of the algebra of dynamical variables is 
some physical system. We can therefore consider the physical representation of a subalgebra 
to be the corresponding physical subsystem. This subsystem is by no means isolated from 
the rest of the system, i.e., it can be an open system and not have its own dynamics. But 
in most cases, the conclusions of the probability theory are not related to the dynamics. 
In particular, we can treat the subalgebra o, as an algebra of observables of a classical 
subsystem of the quantum system under investigation. Because we can confine ourself to 
the measurements compatible with the measurements of observables from the subalgebra 
o, in order to find the mean (.4) of an observable A E o,, the classical probability theory 
suffices for calculating such a mean. The formula 

(1) 

then holds. Here, 

(2) 

Experiment proves that the following statement holds. 

POSTULATE 6. The quantity w(A) is a linear functional of observables, i.e., 

w(A) + w(B) = w(A + B) for all A, BE !2!+. 

This functional can be unambiguously extended to the algebra !2! using the formula 
w(A + i.B) = w(A) + iw(B), where A, BE !2!+. 

Every C*-algebra !2! is isometrically isomorphic to a subalgebra <:B(S'J) of bounded linear 
functionals in a Hilbert space .f'J (see, e.g., [7]), i.e., 

A+-> IT(A), A E !2!, II(A) E <:B(S'J). 

It can be shown (see (4]) that the mean (.4) of the observable A with respect to the 
quantum ensemble 1¥ defined by formula (1) can be represented as the expectation of the 
operator IT(A): 

(A) = (wtrr(A)lw), (3) 

where :w) E .f'J is the corresponding vector in the Hilbert space. 
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2 Double-slit experiment and EPR-paradox 

Formula (1) and (3) indicate that, on one hand, we can use the mathematical tools of the 
standard quantum mechanics to calculate quantum means w(A) and, on the other hand, we 
can interpret a quantum state as an equivalence class of elementary states. An equivalence 
class is a mathematical notion existing out of time and space. Speaking about a localization 
of a quantum state is therefore absurd. 

To discuss the locality problem in more detail, we consider how we can describe particle 
scattering by two slits a and b using the idea of the elementary state. An interference 
pattern is vividly observed in this experiment. This picture is clearly determined by the 
probability distribution of particle momenta after scattering. Three events are essential in 
the experiment under consideration: the event Fa, which means that the particle hits a 
domain of slit a, the event Fb, which means that the particle hits a domain of slit b, and 
the event Fk, which means that the scattered particle momentum falls into a fixed small 
solid angle around the direction K. 

The problem under consideration can be formulated in these terms as a typical problem 
of calculating conditional probability. We must calculate the probability of the event Fk 
under the condition of realization of either event Fa or event A. Classical probability theory 
provides a standard formula, but we cannot apply it directly in the quantum case because 
it involves the probability of simultaneous realization of the events Fk and Fa + Fb. But 
a probability measure does not exist for this event because the events Fk and Fa + Fb are 
incompatible because of the incompatibility of simultaneous measurements of the coordinate 
and the momentum. 

But we can propose a detour for calculating such a conditional probability. For this, 
it suffices to consider the first stage of scattering in which the particle hits either the 
domain of slit a or the domain of slit b as the preparation of a quantum state. When 
using this quantum state as the new probability space, we can consider the event Fk as an 
unconditional one. 

We can set the observable Pa, which takes the value Pa = 1 if the particle hits the domain 
of slit a and value Pa = 0 if the particle misses this domain, into correspondence with the 
event Fa. We set the analogous observable 'Pb into correspondence with the event Fb. Only 
those particles whose elementary states correspond to the value of the observable Pa + Pb 
equal to one contribute to the interference pattern. Such elementary states constitute 
an equivalence class, denoted by Wa+b· Because the observable Pa+ Pb is not the only 
independent generator of the maximum subalgebra of compatible observables in the general 
case, the quantum state corresponding to the equivalence class W a+b can be mixed. But 
even in this case, the functional describing the means of observables with respect to this 
quantum state is positive definite, linear, and normalized to unity. We let Wa+b(·) denote 
this functional. For all the elementary states in this quantum ensemble, we have 

({){(]) = ({){(Pa+ Pb) = 1, 

where i is the unit element of the algebra 2L Therefore, the functionai Wa+b(·) by virtue of 
formula (1) satisfies the condition 

Wa+b(f) = Wa+b(Pa +Pb)= 1. (4) 
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Because the functional llta+b(·) is positive definite, the Cauchy-Buniakowski-Schwarz 
inequality holds for it, 

(5) 

By virtue of equalities ( 4), the right-hand side of inequality (5) is zero. Therefore, 

(6) 

Analogously, 
'1ta+b(A) = '1ta+b ((Pa+ Pb)A) • (7) 

Replacing A-> A(pa + Pb) in (7) and taking (6) into account, we obtain 

(8) 

We set the observable k into correspondence with the event H. Using formula (8), we 
obtain the expression for the mean of this observable 

(K) = '1ta+b(K) = Wa+b(PaKPa) + '1ta+b(PbKPb) + '1ta+b(PaKPb + PbKPa). (9) 

The first and second terms in the right-hand side of (9) describe the scattering from the 
respective slits a and b. The third term describes the interference. Because PaPb = PbPa = 0, 
in the case where [pa, k] = 0 or [pb, k] = 0, the interference term disappears. 

The interference pattern is purely determined by the structure of the abstract equiva
lence class 1lt a+b would therefore organize our experiment as follows. We can prepare many 
copies of the same experimental device and distribute it over the globe. At each device, we 
perform one scattering act at random time instants. We then put together all the screens 
on which we have spots from hits of the scattered particles and put all these screens in one 
stack. For a sufficiently large number of screens, we must obtain a pattern close to that 
described by formula (9). 

We note that in contrast to considering the same experiment in the standard quantum 
mechanics, we consider that the scattered particle hit either the domain of slit a or the 
domain of slit b in each separate case, not passing in a mysterious way through both slits 
simultaneously. This means that we consider a particle well localized in each separate act. 

The quantum correlation problem is closely related to the nonlocality problem. This is 
because these correlations often look like a distant action. A typical example is the Einstein
Podolsky-Rosen (EPR) paradox. For example, in the variant proposed by Bohm [8], the 
result of measuring the projection of a spin of one particle from the singlet pair of particles 
with the spins 1/2 on one direction instantly and unambiguously predicts the result of 
measuring the projection of the other particle spin on the same direction even if the particles 
are separated by a large distance in space. It seems that this result contradicts the locality 
principle. But this contradiction arises only if we assume that the correlation results from 
the interaction between the particles at the instant of the measurement. 

The notion that a correlation between separate elements of a physical system is always 
due to interaction between these elements is a deeply rooted delusion. It is even reflected in 
the terminology used in quantum mechanics. We can often hear the terms "exchange inter
action," "nonforce quantum action," or reasonings about "strong quantum correlations." 
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In fact, quantum correlations are not caused by features specific to quantum interac
tions. For example, in the Einstein-Podolsky-Rosen paradox, the correlations between spin 
projections of two particles arise because these particles were created as a singlet pair for 
which the law of conservation of the proper angular momentum is satisfied. But the angular 
momentum conservation law also holds in classical physics. 

In most cases, quantum correlations are due to the structure of the physical system 
ensemble participating in the quantum experiments. This structure is fixed by the procedure 
for preparing the ensemble under consideration, and the preparation procedure is in turn 
determined by the properties of the classical device used. As a rule, quantum correlations 
are therefore caused by the interaction between each separate constituent of the quantum 
ensemble and the classical device (or devices) preparing this quantum ensemble, not by the 
interaction between quantum objects. This interaction can be smeared both in time and 
space for separate constituents of the ensemble. It is therefore not amazing that it often 
seems that correlations contradict the principle of the locality of interaction. In fact, the 
locality principle is always satisfied for correlations. But this correlation must be verified not 
from the standpoint of interaction between different constituents of the quantum ensemble 
but from the standpoint of interaction of separate constituents of this ensemble with the 
devices preparing this ensemble. 

3 Conclusion 

Summarizing, we can draw the following conclusions. 
Quantum theory, both relativistic and nonrelativistic, can be formulated such that it 

does not contradict the locality condition accepted in quantum field theory. The measure
ment process also does not contradict this condition. 

The incompleteness of quantum mechanics noted by Einstein can be removed by intro
ducing a: new notion of the "elementary state," which is to be attributed to an individual 
physical system 

The elementary state is the mathematical representation of the material carrier of the 
wave properties of the physical system. 

A quantum state is an equivalence class in the set of elementary states and plays the role 
of the mathematical representation of the ( quantum) ensemble of physical systems under 
investigation. The quantum state does not have the property of locality in the Minkowski 
space. 
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1. GENERAL OUTLOOK 

We present our generalization of statistical thermodynamics in which quantum effects are 
taken into account on the macrolevel without using the operator formalism while traditional 
relations between the macroparameters are preserved. 

In formulated by us a generalized thermostat model, thermal equilibrium is characterized 
by an effective temperature bounded from below [1-3]. We introduce for the first time 
fundamental macroparameters of the theory [4]: the effective entropy and the effective 
action. 

>From our theory it follows the effective entropy is nonzero at low temperatures. So we 
can write the third law of thermodynamics in the form postulated by Nernst. The effective 
action is also bounded from below. 

As a very important result, we establish that the ratio of the effective action to the 
effective entropy in the low-temperature limit is determined by an universal stochastic
action constant depending on the Planck and Boltzmann constants simultaneously . 

We study the discrepancy between the behavior of the action-to-entropy ratio in the low
temperature limit in the quantum equilibrium statistical thermodynamics proposed by us 
and one in quantum equilibrium statistical mechanics, which can be verified experimentally 
[5]. We demonstrate that the more early theory is the quasi classical limit of our theory. 

2. STATEMENT OF PROBLEM 

In recent years an increased interest in equilibrium thermodynamics as an autonomous 
macro-theory is observed. This tendency can be explained by at least two facts. From a 
fundamental standpoint, thermodynamics gives a universal macro-description of nature in 
which specific micro-models of objects are unnecessary. The role of an universal description 
without micro-models increases sharply under contemporary conditions when our knowledge 
about structure of matter is not seemed very complete one. 

>From a pragmatic standpoint there is an obviously demand for thermodynamics using 
to describe the behavior of relatively small objects (nanoparticles, nuclear spins, etc.) in 
thermal equilibrium at low temperatures; to study high-energy physics problems (including 

• The paper is done by the support of Fundamental Research Russian Fond (project 07-06-00239) 
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the quark-gluon plasma) and models of the early Universe, and to study fundamental sense 
of phenomena of viscosity, superfluidity etc. in micro- and macro-world. 

3. THERMODYNAMICS DESCRIBING NOW 

Now we have three versions of thermodynamic describing. 
a). Classical thermodynamics. 
In this theory the Zeroth principle has the form 

T=To, (1) 

where T is the object temperature and T0 is the thermostat temperature. We note that in 
this case fluctuations of any macro-parameters miss. 

b). Non-quantum version of statistical thermodynamics. 
In the contrary we have the Zeroth principle in the form 

T = T0 ±oT, (2) 

where To = (T) and oT is the temperature fluctuation of object. Here we suppose that 

(3) 

i.e. the temperature fluctuation is less or equal the average temperature of object. Corre
spondingly there is the canonical distribution in the macro-parameters space: 

{F-£} dw([) = exp ~ d[. (4) 

where £ = £(V, T) is the object energy, 0 = k8 T0 is the distribution modulus. 
At last it is accepted to think that once more version of thermodynamics describing 

follows from 
c). Quantum statistical mechanics. 

In this case the canonical distribution in the micro-parameters space is 

{
F- en} 

Wn = exp knT , (5) 

where T = To and En is a quantized energy spectra of object. Many people are sure that from 
quantum statistical mechanics they can get the most complete thermodynamics version. But 
we will show that it is not true. 

4. PRINCIPAL DIFFICULTIES OF QUANTUM STATISTICAL MECHANICS 

It is important to say that: 
* The contribution of the energy ~ to canonical distribution vanish because of the nor
malization condition. Hence the canonical distribution (5) in this theory is initially quasi
classical. 
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* Temperature fluctuations are absent from the very beginning. 
* All results are valid only in thermodynamics limit. So all other fluctuations vanish too. 

Our point of view is such: 
1. Any generalization of quantum statistical mechanics is not effective. 
2. An alternative way is generalization of statistical thermodynamics {in the quantum ver
sion). 

5. OUR MAIN IDEA IS EFFECTIVE TEMPERATURE (1) (1998) 

We propose to pass from the classical thermostat model to a more general quantum one. 
Correspondingly, instead 

(cc1.) = 8 = kBT, {6) 

we get 

(cqu.) = e = kBT*. (7) 

Then the generalized canonical distribution [4] in macro-parameters space is 

dw(£) = p(£)d£ = k
8
~. exp {- k:T•} d£, {8) 

where £ - a random c-number quantity. 
In this formula effective temperature as a characteristic of quantum and thermal stochas

tic actions together is a function of two variables 

• _ (cqu) _ ru,; h ru,; 
T =,;;; - 2kB cot 2kBT. {9) 

Correspondingly the condition of generalized equilibrium is 

T* = T;. {10) 

But at the same time T = T0 and w = w0 simultaneously where To and w0 are characteristics 
of a quantum thermostat normal mode. 

Limit cases of effective temperature are: 
* if T ---> oo, then T* --+ T; 
* if T ---> 0, then 

ru,; 
T* ---> T;,in. = 2kBT" {11) 

SO we can give the definitions for concepts of low and high temperatures starting from 
the criteria: 

Low temperatures: T « T;,in .. 
High temperatures: T » T;,in .. 
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6. EFFECTIVE ENTROPY 

Now we can calculate effective entropy using the generalized canonical distribution (8) with 
effective temperature (9). We apply our theory for a concrete model. For any object charac
terized by frequency w we choose the model of a harmonic oscillator. To make calculations 
we pass to the dimensionless probability density 

'ii(£)= p(c)nw/2. (12) 

Then effective entropy is 

S* = -kB J p(c) lnp(c) (n;r1 

de= kB [1 + ln(coth 2::r)] = 

= kB [1 +ln(coth T~in)]. (13) 

Limit cases for effective entropy are: 
* if T----, oo, then S*----, kB In T + canst; 
* if T----, 0, then s•----, s;,.in = kB, 

This result corresponds to the initial formulation of the Nernst theorem with Smin f= 0. 

7. EFFECTIVE ACTION AS MACROPARAMETER 

Our new idea is to introduce a notion of action into quantum statistical thermodynamics. 
For the classical oscillator with energy c we suppose to pass to new variables action - angle 
j, t.p instead of variables p, q . Then the action in classical mechanics is 

. c 
J = -

w 

and this quantity is an adiabatic invariant. 

(14) 

According to Boltzmann (1904), the action as a macroparameter for the classical oscil
lator in a classical thermostat is determined as 

(15) 

So we determine effective action for quantum oscillator in the quantum thermostat 
analogically: 

J* = (j) = (cqu) = £* = kBT*. 
w w w 

(16) 

vVe have limit cases: 
* if T----, oo, then J* ----, J; 
* if T----, 0, then J;,.in = ~ f= 0. Here J;,in. has a sense intrinsic, or own, action of object. 

There is a fundamental interconnection between effective action and effective entropy: 
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S* = S';,.;n [ 1 + In ~:J = S';,.;n [ 1 + In coth T~n] . (17) 

Effective action and effective entropy are very important characteristics of objects in a 
thermostat. In general case action-to-entropy ratio has the form 

J* J;,.in coth T;,;n/T 
- = -- -------- = X 
S• s;,.in l + In coth T;,;n/T 

cothxw/T 
1 + lncothxw/T' 

(18) 

Here 

J• n 
X = ';"n = -- = 3, 82 • 10-12 K • C 

Smin 2ks 
(19) 

is an universal constant of joint quantum and thermal stochastic action. 

8. THE ACTION AND THE ENTROPY IN QUANTUM STATISTICAL MECHAN
ICS 

For comparison with our results above let us consider analogical quantities in quantum 
statistical mechanics. According to Planck, in this quasi-classical theory we have 

E:quasi n • n 
lquasi = -- = ( nw) l = J - 2, (20) 

w exp kaT -

Squasi = -ks { k~T (1-exp k~T )-l +In (1-exp(-t';r,))}. (21) 

The subject of our especially interest is the limiting behavior of the corresponding quantities 
in both theories. At T ---. 0 we have in our theory 

J* ---. ~- S* ---. ks· 
2' ' 

J* 
S• ---. X ,f 0. 

In quantum statistical mechanics at T ---. 0 we have not only 

but the ratio 

J quasi ---. 0; S quasi ---. 0, 

Jquasi nexp(-nw/ksT) -- ---. -~-~--',----'.::..__,_ 
Squasi ks(nw/ksT) exp(-nw/ksT) 

T ---. 0. 
w 

Which of the two theories is right we will soon know from experiments. 
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9. THE COMPARISON WITH THEORIES [5] CONSIDERING THE GRAVITY 
DUALS AT Tc/0 

In these theories it was shown that shear viscosity T/ -to-entropy density s = 8S/8V ratio 
is bounded below at T --. 0: 

T/ 
- --> x. 
s 

(26) 

Because according to our theory 

(27) 

this limit is universal . 
Now the experimental situation is such. In experiments with quark-gluon plasma (RHIC, 

2005) and liquid He-4 (Andronikashvili, 1948) it was shown that the ratio is independent 
on the temperature and is not equal to zero, limited below by a constant close to universal 
constant x. This fact follows automatic from our theory and contrary to quantum statistical 
mechanics. We hope that validity of our theory can be confirmed soon in new experiments 
as in high energy Physics (LHC) so in hydrodynamics of superfluids. 
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