


Joint Institute for Nuclear Research 
Bogoliubov Laboratory of Theoretical Physics 

XII International Conference 
on Selected Problems 

of Modern Physics 
Dedicated to the 95th anniversary of the birth 

of D. I. Blokhintsev (1908-1979) 

Dubna, June 8-11, 2003 

Section I 
Problems of Quantum Field Theory 

Proceedings of the Conference 

Edited by B. M. Barbashov, G. V. Efimov, A. V. Efremov, S. M. Eliseev, 
V. V. Nesterenko and M. K. Volkov 

Dubna • 2003 



Y)J:K 530.145(063) 
EEK' 22.315.11431 

169 

169 

The contributions are reproduced directly from the originals 
presented by the Organizing Committee. 

International Conference on Selected Problems of Modem Physics 
(12; 2003; Dubna). 

Proceedings of the XII International Conference on Selected Problems 
of Modem Physics, dedicated to the 95th anniversary of the birth 
of D. I. Blokhintsev (1908-1979), Dubna, June 8-11, 2003. - Dubna: 
IlNR, 2003. -379 p., 24 p. photo. 

ISBN 5-9530-0037-5 

The collection of papers includes the talks given at the XII International Confer­
ence on Selected Problems of Modem Physics, dedicated to the 95th anniversary 
of the birth of D. I. Blokhintsev (1908-1979), the organizer and first director 
of the Joint Institute for Nuclear Research. This collection contains the papers reflect­
ing scientific interests of Dmitrii Ivanovich and reminiscences of some theorists 
of the important events of his many-sided activity. 

Me~yuapOLt.HaH KOHlpepeuulUI IIO m6paHHbIM npo6neMaM COBpe­
MeHHOH !pH3HKH (12; 2003; )];y6ua). 

Tpy,n;1,1 XII Me)KJ];yuapo,n;uoii KoucpepeHUHH no m6paHHbIM npo6ne­
MaM COBpeMeHHOH !pH3HKH, IIOCBHIUeHHOH 95-ii ro,n;OBIUHHe co ,LIHH po­
)K,LleHHH )];. 11. EnoXHHUeBa (1908-1979), )];y6ua, 8-11 HIOHH 2003 r. -
)};y6ua: OIUll1, 2003. - 379 C., 24 C. !pOTO. 

ISBN 5-9530-0037-5 

B c6opHHK BOIIIJIH H36paHHhie ,llOKJia.z:lhl, npe,ncTaBJieHHhie Ha XII Me:JK,llyHa­
pO,llHOll Ha)"IHOll KOHtpepeHUHH IIO m6paHHhlM npo6JieMaM COBpeMeHHOll 4JH3HKH, 
IIOCBll:IUeHHOll 95-il ro,nOBIUHHe co ,llHll: po)K)leHHll: .u. H. bJIOXHHUeBa 
(1908-1979) - opraHH3arnpa H nepnoro ,nHpeKTopa OH5IH. BKJIIO'leHhI pa6oThl, 
OTpa)KaJOIUHe Hay'!Hhle HHTepeChl .[(MHTPHll: HBaHOBH'la bJIOXHHUeBa, a TaIOKe BOC­
IIOMHHaHHll: COTPY.llHHKOB O BalKHhIX :nanax ero MHOrorpaHHOll ,llell:TeJihHOCTH. 

Y,Ll,K 530.145(063) 
66K 22.315H431 

ISBN 5-9530-0037-5 
© Joint Institute for Nuclear 

Research, 2003 

Organizing Committee 

V.G. Kadyshevsky (JINR) - Chairman 
A.N. Sissakian (JINR) - Vice-Chairman 
V.L. Aksenov (JINR) - Vice-Chairman 

T.S. Donskova (JINR) - Secretary 

B.M. Barbashov (JINR) 
D. Blaschke (JINR) 
G.V. Efimov (JINR) 
A.V. Efremov (JINR) 
D.I. Kazakov (JINR) 

V.V. Nesterenko (Sc. Secretary, JINR) 
M.K. Volkov (JINR) 
V.L. Yudichev (Sc. Secretary, JINR) 
V.I. Zhuravlev (JINR) 

Advisory Committee 

A. Bassetto (Padova U., INFN) 
V.V. Belokurov (MSU, Moscow) 
L. Brink (Goterborg U.) 
S. Dubnicka (Inst. Phys., Bratislava) 
D. Ebert (Humboldt U., Berlin) 
P. Exner (RNPI Tech U., Prague) 
L.D. Faddeev (Steklov Math. Inst., St.­
Petersburg) 
A.T. Filippov (JINR, Dubna) 
A. Di Giacomo (Pisa U., INFN) 
Zhau Guanzhao (ChAS, Beijing) 
N. Van Rieu (Phys. Inst., Hanoi) 
L.N. Lipatov (PINP, St-Petersburg) 
A.A. Logunov (IHEP, Protvino) 
D. Ltist (Humboldt U., Berlin) 

M. Mateev (Sofia U.) 
V.A. Matveev (INR,Moscow) 
H. Rollnik (Bonn U.) 
G. Ropke (Rostock U.) · 
V.A. Rubakov (INR, Moscow) 
D.V. Shirkov (JINR, Dubna) 
A.A. Slavnov (Steklov Math. Inst., 
Moscow) 
A.N. Tavkhelidze (HEPI, Tbilisi) 
M. Vasiliev (Lebedev Inst., 
Moscow) 
A.G.Zagorodny(ITP,Kiev) 
V.E. Zakharov (Landau ITP, 
Moscow) 
V.I. Zakharov (Munich, MPI) 
J. Zinn-Justin (SPhT, Saclay) 

The Conference is supported by 
Russian Foundation for Basic Research, 

the Ministry of Industry, Science and Technology and 
the Ministry of Atomic Energy of the Russian Federation 

and through the Programs: Heisenberg-Landau, 
Votruba-Blokhintsev and 

Bogoliubov-Infeld 





Proceeding• of XII International Conference on. Selected Problem• of Modern Physic·•, 
Section I, Dubna, June 8-11, 2009. 

Preface 

5 

The 12th International Conference on Selected Problems of Modern Physics 
dedicated to the 95th anniversary of the birth of the outstanding scientist 
Professor Dmitrii lvanovich Blokhintsev (1908-1979), the first supervisor and 
director of the first at~mic station in the world and the founder of the Joint 
Institute for Nuclear Research, was held at Dubna on June 8-11, 2003. 

This series of conferences was initiated by D.I. Blokhintsev as meetings 
on fundamental problems of quantum field theory. Thirty-five years passed 
since the first meeting enriched the .methods of field theory and opened many 
new areas. The present conference was the 12th of this kind organized by 
the Joint Institute.for Nuclear Research. The conference was opened by the 
memorial session. Further work of the conference proceeded in two parallel 
parts - "Problems of Quantum Field Theory" and "Physical Investigations at 
Pulsed Reactors". 

The topic of the conference reflects the current status of many fundamental 
problems in modern physics (Quantum Mechanics; Quantum Field Theory, 
QCD; Hadron Physics; Gravitation and Cosmology) and those areas of physics 
to which Blokhintsev has made significant contributions. These Proceedings 
collect the talks presented at the part "Problems of Quantum Field Theory". 

The total number of participants of the conference was the following: twenty 
scientists came to Dubna from "remote abroad", one hundred and twenty from 
"neighboring abroad" (Community of Independent States and Russia). We 
had twenty-three plenary talks and seventy-five sectional talks. This volume 
compiles the plenary and sectional talks and contains the main part of pre­
sented reports. We hope this will give an idea of the scientific content of the 
conference. 

The organization of the conference would not be possible without the spon­
sorship of the Russian Foundation for Basic Research (grant 02-2-2002/19), the 
Ministry of Industry, Science and Technology, the Ministry of Atomic Energy of 
the Russian Federation and JINR through the Heisenberg-Landau, Votruba­
Blokhintsev and Bogoliubov-Infeld Programs. On behalf of the Organizing 
Committee we gratefully acknowledge this support. 

The Editors. 
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Dmitrii lvanovich Bfokhintsev 
(11.01.1908 - 27.01.1979) 

(Essay of scientific activity) 

B.M. Barbashov, A.V. Efremov, V.N. Pervushin 

Bogolubov Laboratory of Theoretical Physics, Joint Institute for 
Nuclear Research, Dubna 141980, Russia. 

Abstract - A brief survey is given on the scientific activity of the Corre­
sponding Member of the USSR AS Dmitrii Ivanovich Blokhintsev, one of 
the pioneers of atomic science and technology in USSR, the organizer and 
the first director of the Joint Institute for Nuclear Research in Dubna. 

"None in the world will wake 
The soul, who left to the rest, 
But on the Earth, you stranger, 
Your songs will wander be." 
(D.l. Blokhintsev, Coll. "Muza 
in the temple of science", M., 1982.) 

There is a good tradition in our country to name the streets of cities af­
ter their famous citizens. Among them are Blokhintsev streets in Russian 
little towns of Dubna and· Obninsk, named in honor of the outstanding So­
viet physicist, distinguished organizer of science, a colleague of Kurchatov in 
creation, formation and development of nuclear science, technology and nu­
clear power engineering in our country and countries of East Europe. "The · 
name of Dmitrii Ivanovich Blokhintsev ranks row with the names of Sechenov, 
Timiryazev, Umov, Lebedev, Vernadsky, Vavilov, Khokhlov and many others, 
who make the pride of our· nation" ("Pravda", 23 January, 1980). 

Dmitrii Blokhintsev enriched the world's science by fundamental works in 
solid state and statistical physics, acoustics, physics of reactors and atomic · 
power engineering, quantum mechanics, quantum field theory and quantum 
electrodynamics, high-energy and nuclear physics, philosophy and methodol­
ogy of science. His role in education of physicists and engineers in our and East 
Europe countries is widely known and received the deserved acknowledgement. 
He was lucky enough to be the founder of many directions in science but first 
of all he was the personality - phenomenally versatile and many-sided person, 
scientist, engineer, inventor, teacher, artist, poet, state and public figure, the 
contact with whom was a great pleasure. 
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Strong influence on the outlook of Dmitrii Ivanovich was made by the ac­
quaintance with the works by K.E. Tsiolkovski and personal correspondence 
with him. DI perceived from Tsiolkovskiy that spirit of the Russian science of 
the beginning of the XX-th century, which was not just aspiration to achieve­
ment of specific scientific results, but rather the creation of integral harmonic 
world outlook. Admiration of beauty and harmony of the world, and also the 
highest degree of respect to Nature and Man was inherent in the mentality 
of Tsiolkovskiy. Just for this reason - loved to stress DI - Tsiolkovskiy never 
used such word combinations as "conquest" of Space, but he always spoked 
about its "exploration". Blokhintsev succeeded in preserving these youthful 
ideals of the world perception till the end of hit life. This tendency toward the 
truth of his initial period, ever increasing with the years, forced him not only 
to be up to date in all basic scientific achievements in both physics and other 
fields of knowledge, mathematics, philosophy, biology, economy, etc. but also 
to develop his own original viewpoints and judgments. 

Dmitrii Ivanovich believed that it is rather easy to learn solving already 
formulated problems in any fashionable field of contemporary physics. Almost 
any person with a sufficiently regulated mind, can become a not bad theoreti­
cian. More difficult is to pose problems by himself. Physicists whose interests 
are determined by their own outlook are considerably less numerous, but just 
they most frequently become the authors of those "fashionable" directions in 
science which give food and work to minds of many others. 

The famous experiments of Rutherford in splitting an atom forced young 
Dmitrii Blokhintsev, a graduate of Moscow industrial-economical technical 
school, to focus his attention on those enviable possibilities which nuclear 
energy promises and this determined his further way. In 1926 he entered the 
Physics Department of Moscow State university (MSU), where distinguished 
scientists as L.I. Mandel'shtam, SJ. Vavilov, NJ. Luzin, D.F. Egorov and I.E. 
Tamm were his teachers. · 

There were the years of quantum mechanics formation and of explanation 
with its aid of many mysterious physical phenomena. DI's early works were 
already noted by large skill and depth of physical thought. For his graduate 
work he was recognized worthy the Doctor of Sciences degree (1934). 

DI calculated the work function of electrons from the metal and based on 
it offered an explanation of the anomalous magnetic properties of bivalence 
metals. This was the reason that energy of electron in these metals depended 
not only on the absolute value of its momentum but also on its direction 
with respect to the crystal axes. He generalized Bloch's theory to the 1;:ase of 
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overlapping zones. His formula for the energy of the overlapping zones was of 
special importance. 

At the same time, DI opened a nonlinear dependence of the radiated light 
(in Stark effect) on the intensity of the falling one (1933). This work was the 
first study on the nonlinear optics, which is now being developed substantially. 

During the subsequent years he gave the first explanation of the mechanism 
of the mysterious phosphorescence phenomenon. The basic idea of this work 
wonderfully illustrates figurativeness of thinking of the scientist. He noted ' 
that the presence of local impurities in phosphorouses led to the appearance 
of local levels between the lower zone and the conduction band. Therefore, 
the electron which fell on this level and "hole" in the lower zone are space 
divided so that the probability of their recombination substantially decreases 
and leads to the anomalously long recombination time. j 

In his subsequent works DI developed this basic idea and, in particular, \ 
investigated the kinetics of phosphorescence and he was the first to explain 
the experimentally observed luminescence behaviour with time. 

Further he turned to the effect of the rectification of current by semicon­
ductors and found a simple and correct explanation of this phenomenon. The ! 

essence of his explanation is based on the fact that near the contact of two 
semiconductors the gradient of electric field leads to the appearance of a space 
charge and, therefore, to a change in the electrical conductivity. However, 
the sign of this change depends on the direction of current that causes the ' 
rectifying action of the system. 

These and subsequent basic works of DI, in particular, the development 
of the theory of heteropolar and colored crystals, and the theory of electrical 
breakdown of dielectrics played an important role in the development of studies 
in quantum solid stat~ theory and in practical use of their results. 

Already in his early works he showed up a deep understanding of the essence 
of quantum mechanics and originality of thinking anticipating a further devel­
opment of physics. Especially characteristic in this respect is the work on 
calculation of "spectral line shift" caused by a reverse action of radiation. The 
work actually contained the theory of the Lamb shift, opened only ten years 
later and served as the beginning of quantum electrodynamics. The formula 
obtained by DI for the Lamb shift differs from the famous one of H. Bethe 
only by a numerical coefficient, which appeared as a result of the ultraviolet 
cut. The work was reported at the seminar in the Lebedev Physical Institute 
in 1938. Unfortunately, this very important discovery was not understood by 
contemporaries and the article was rejected by the editorial staff of JETF. It 
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was published only in 1958 in the collection of Blokhintsev's works, although 
its results were cited earlier in the review by Ya.A. Smorodinsky (Uspekhi 
Fizicheskikh Nauk, 1949, v. 39, p. 325). 

In 1935 D.I. Blokhintsev was elected professor of the Department of Theo­
retical Physics of MSU. From that time and to his last days of life his activity 
was tidily connected with the Physical Faculty of MSU, where he managed 
the chair of Nuclear Physics and prepared many generations of specialists. DI 
was one of the organizers of the Department of Nuclear Physics of the Physical 
Faculty of MSU and creator of the Dubna branches of MSU and of the Moscow 
Institute of Radio Engineering, Electronics and Automation, whose tasks were 
to approach the student audience to research laboratories. 

DI liked the student audience. He was a frequent guest in a student hos­
tel. Among his students there are many well-known scientists who produce 
a worthy contribution to the development of science. "Science - he said - is 
a matter of talent and vocation, and now science is also a matter of a team. 
Nevertheless, among scientists, regardless titles and the fact who they are -
graduate or PhD students - is a special category of people obsessed by passion 
to science, scientists whose great talent only seldom gives gladness to them 
but often causes a constant flour of dissatisfaction to achievements. Just on 
these rare brittle people entire success of an Institute is based. These people 
are usually unpractical, they are easily hurtled and vulnerable, they must be 
taken care of, they are necessary to be guarded, they are white cranes". · 

Dmitrii Ivanovich created and read many fundamentaltheoretical courses, 
among which especially should be mentioned the course of quantum mechan­
ics, which composed the basis of the first in the world university textbook. 
It has withstood 22 publications since 1944 - six in our country and 16 in 
other countries in the world in nine languages. Many generations of student­
physicists were brought up on it. For his successes in quantum mechanics D.I. 
Blokhintsev was awarded the State Prize. 

From 1935 through 1950 DI, besides the teaching activity in MSU, worked 
in the Lebedev Physical Institute. In the same years he was the member of 
the Scientific Council of the Physical Institute in Kiev (Ukraine), where he 
supervised works of young Ukrainian physicists. After liberation of Kiev from 
fascists occupation he took active part in the restoration of science in the 
Ukraine. 

Blokhintsev's attention in the pre-war years was concentrated on funda­
mental questions of quantum mechanics. This activity continued also in the 
postwar period. He established a relation between the quantum description of 
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a system of particles in the phase space and its classical distribution function. ' 
In particular, he revealed the impossibility of direct transfer into classics of 
quantum condition of the indistinguishability of identical particles. He first 
introduced the concept of "quasi-probability" {1940) at which Dirac arriv~d: 
much later. 

He established that the diffraction pattern not always gives a possibility 
for unambiguous judgment about the form of the observed object. Objects 
of various forms can give similar diffraction patterns. He showed also that 
under some conditions it is possible to see an atom with the aid of an electron ; 
microscope. He showed that the "detailed balance principle" can be broken in 
spite of time reversibility. 

D.I. Blokhintsev is the author of the quantum ensemble concept. On the 
basis of this concept he gave an objective treatment of the wave function. This/ 
approach, being of large heuristic value, helps removing a number of internal 
contradictions in the interpretation of quantum mechanics and established a 
close connection between quantum mechanics and statistical physics. This . 
concept of the "Moscow school" gives the modest role to an observer and · 
emphasizes everywhere the objective nature of. the quantum ensembles and I 

regularities controlling them. He was the first to realize the special role of a 
classical instrument in quantum mechanics as an unstable state of a macro­
scopic system. It was an important step in overcoming the barrier, set by Nils • 
Bohr authority, who considered that there is no sense in uniting a measuring 
instrument with a microscopic system, since then another classical instrument , 
will be required for studying the integrated system. ' 

The works by D. Blokhintsev played an important role in formulation of, 
methodological basis of contemporary quantum theory. In the preface to his j 
book "Fundamentals of quantum mechanics" (fifth edition, 1976) he wrote: 
"I always gave much importance to the correct methodology without which 
even the most outstanding mind acquires the nuance of handicraft. There­
fore, the materialist methodology, sometimes clearly sometimes less clearly :. 
pierces the entire book". In more detail these questions were considered in 
his monographs "Fundamental Questions of Quantum Mechanics" (1966) and 
"Quantum Mechanics (Lectures on selected questions)", 1981. 

During the years of the second world war DI almost completely turned to 
work on the military subjects in the field of acoustics and soon became the 

I 
leading specialist in this field creating the acoustics of inhomogeneous and ·· 
moving media. On the basis of the gas-hydrodynamics equations he obtained 
the equations of acoustics for the most general case ("Blokhintsev's equation") 

DMITRII IVANOVICH BLOKHINTSEV(ll.01.1908 - 27.0l.1979)(Essay of scientific .. .) 11 

of which he derived a number of acoustic laws, explained and calculated diverse 
acoustic phenomena in the moving and inhomogeneous media (including the 
turbulentenes) which concern, on the one hand, the mechanism of generation 
of noise and, on the other hand, methods and means of its reception. In 
particular, the sound produced by propellers, the excitation of resonators by a 
gas flow and methods of reduction in this excitation, protection of the sound 
receivers from the large- and small-scale fluctuation of the incident flow and a 
number of others problems forming the basis of the theory of acoustic location 
of aircraft and submarines. He formulated the equations of geometric acoustics. 

He introduced an extremely fruitful concept of the pseudo-sound as a phe­
nomenon which possesses the formal criteria of sound, but which is not an 
acoustic process. In some manifestations the pseudo-sound is identified with 
the Rayleigh waves or with the Fresnel zones of radiation in the electrody­
namics (although does not reduce to these phenomena). He formulated the 
theorem which determines a necessary and sufficient condition for generation 
of sound during the motion of a body in the liquid or during the motion of 
liquid. Further development of this question led him to the conclusion that 
the basis of any emission, including acoustics, are the phenomena analogous to 
the Vavilov-Cerenkov effect. He emphasized high fruitfulness of this acoustic 
and electrodynamic analogy. 

For these works D.I. Blokhintsev was awarded the Order of Lenin {1946). 
Subsequently they were united in the monograph "Acoustics of an Inhomoge­
neous Moving Medium" (1946), published twice in USSR and abroad which is 
now the classics of a large intensively developing branch of physics. Almost 
every work in physics of noise in the turbulent boundary layer which arose on 
fuselages of modern liners or noise of exhaust jets of their engines refer the 
Blokhintsev's book as a basis of new acoustics. 

In the last years of the war and in the postwar years the task of usage of 
atomic energy became vitally important for our country. Beginning in 1947, 
Dmitrii Ivanovich actively worked on the development of Soviet atomic sci­
ence and technology headed by LV. Kurchatov. Igor Kurchatov madea great 
impact on his formation as a leader of large scientific and technical projects 
capable of uniting a collective and to inspire it for reaching a result. 

Kurchatov saw in an outstanding theoretician the talent of a big organizer 
and research engineer. Since then the name of D.I. Blokhintsev is inseparably 
connected with the history of the peaceful atom. Together with Kurchatov, 
he became the initiator of the creation of the world first atomic power station 
(Obninsk). In his book "Birth of the peaceful atom" DI wrote that " ... he was 
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lucky to participate in the great epic of the creation of Soviet atomic power 
engineering". 

In 1950 he was appointed the fist director of the Institute of Physics and 
Power Engineering in Obninsk, and also the scientific supervisor of creation 
and putting into operation of the the world first atomic power station (" Atom­
naya energiya", v. 44, no. 6, 1979). To him belong the physical and design 
calculations of the reactors of this first APS. In the middle of 1954 the first 
APS gave current. A long-standing successful operation of the station con­
firmed the correctness of choosing the reactor type and basic parameters of 
the first APS. For this work D.I. Blokhintsev was awarded the Lenin prize 
(1955). His talk on the first APS in Obninsk was the main one at the first 
International Conference on Peaceful Use of Atomic Energy in Geneva (1955). 

In the subsequent years he calculated and supervised the development of 1 

design and construction of a new type of reactors - the promising, in indus­
trial sense, fast-neutron reactors with the liquid-metal heat-transfer agent. 
Now such reactors are exploited at ·other APS. He also developed the effective 
methods of calculation of slow and intermediate neutrons reactors. For the 
fulfillment of important State tasks in creation of atomic power engineering 
D.I. Blokhintsev was awarded the title of Hero of Socialist Labor (1956). 

Reactors attracted Blokhintsev's attention not only as the basis of power 
plants, but also as an intensive neutron source for diverse scientific studies. 
He is the author of the remarkable invention (1955) - the fast pulsed reactors 
(IBR-1 and IBR-2), the pulsed power of which at a very small mean power is 
competitive with the most powerful reactors of a constant action. The first 
reactor of this type, IBR-1, was built and put into operation in Dubna in 
the Laboratory of Neutron Physics under the scientific leadership and with 
the direct participation of DI (1960). (He frequently called it his "dowry"). 
After many years of work this reactor proved to be a remarkable tool for 
studies in nuclear physics, physics of liquid and solid states and elementary 
particles physics. For this work D.I. Blokhintsev was awarded the State Prize 
(1971 ). During the subsequent years he was the scientific leader of the design 
and construction of a more advanced and powerful reactor IBR-2. He led its 
physical start (1977) and to the last days of his life the preparation of its 
power start. Now this last engineering creation of DI gives interesting physical 
results. 

DI initiated the creation of the Joint Institute for Nuclear Research. In 1956 
the Committee of Plenipotentiaries of eleven countries unanimously elected 
him the first Director of this Institute. The leading scientists of the Soviet 
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Union and other JINR Member States were drawn in the work at the In­
stitute. In addition to the two existed in Dubna Laboratories - Laboratory 
of Nuclear Problems and Laboratory of High Energies, three new Laborato­
ries were created: Laboratory of Nuclear Reactions, Laboratory of Neutron 
Physics and Laboratory of Theoretical Physics. The last two - on the ini­
tiative of Blokhintsev. During the period of his stay as Director (1956-1965) 
the Institute was finally organized and converted into the largest scientific re­
search center which won high authority and international recognition for his 
research. It became the smithy of the scientific staff of the Member States. 
During the subsequent years {1965-1979) Blokhintsev headed the Laboratory 
of Theoretical Physics. He also made a noticeable personal contribution to the 
world scientific authority of Dubna. 

Fundamental problems of theoretical physics always drew Di's attention. 
In 1957, based on the "deuteron peaks" in the reactions of quasielastic high­
energy proton scattering on nuclei, discovered by the group of M.G. Meshch­
eryakov, he proposed and developed the idea of fluctuations of nuclear den­
sity, capable as a whole to receive a large momentum transfer. The idea of 
"Blokhintsev's fluctons" best manifested itself 20 years latter when in reactions 
with relativistic nuclei the so-called "cumulative" particles were discovered. 
Later on DI participated in the development of the multi-quark interpretation 
of fluctons. Just they were the subject of the last Di's report at the Tokyo 
Conference on High Energy Physics in the fall of 1978. These studies grew now 
in the new promising direction - relativistic nuclear physics. In particular, just 
the presence of multi-quark states explains the "core" of nuclear forces. The 
remarkable confirmation of the flucton idea was obtained in experiments at 
CERN for deeply inelastic scattering of muons on nuclei and in the production 
of cumulative protons by a neutrino beam at Serpukhov. 

In the same years he investigated {on the basis of the optical "eikonal" 
model) the structure of nucleons, established .its division into the central and 
peripheral parts and came to the conclusion about the dominant role of periph­
eral interactions. He showed the contradiction of the hydrodynamic approach 
to the multi-particle production processes with the basic principles of quan­
tum mechanics (1957). The force of this criticism increasingly more begins to 
appear now as more correlation and spin measurements are carried out. 

Dmitrii lvanovich proposed the idea of existence of several vacua in quan­
tum field theory and spontaneous transition between them {1960). This idea is 
intensively used in contemporary unified theories of elementary particles. He 
was the first to point out the possibility of existentje of the so-called "unitary 

c 
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limit" in weak interactions (1957) and the limit of applicability of quantum 
electrodynamics. 

A large and important cycle of his works was dedicated to quantum field 
theory, nonlinear and nonlocal theories, non-Hamiltonian approach, and sto­
chastic space-time geometry. In particular, he showed the possibility of break­
ing the finite time signal propagation "in the small" without the essential 
breakdown of this fundamental law in the macrocosm. D.I. Blokhintsev pro­
posed a new approach to nonlocal fields based on the hypothesis of stochastic 
fluctuations of the space-time metrics. 

Investigating substantially nonlinear fields, DI came to the conclusion that 
the concept of point-like coordinates becomes meaningless and requires a change 
in the geometry of microcosm if the mass spectrum of particles is bounded from 
above. These questions found their reflection in the book by D.I. Blokhintsev 
"Space and Time in the Microworld", published in 1970 and in 1982 in our 
country and repeatedly republished abroad. 

Considerable time was spent to searches for a non-Hamiltonian S-matrix 
method in the field theory which would replace the traditional Hamiltonian 
formalism. Blokhintsev proposed the specific version of the mathematical ap­
paratus of this method (1947) based on the introduction of the "elementary 
scattering matrix". This apparatus gave the results which coincided with the 
approaches of usual relativistic invariant perturbation theory. 

The creative activity of Dmitrii Ivanovich did not fade to his last days. He 
investigated the problem of anomalously short time of the ultra-cold neutrons 
(UCN) storage and proposed the simple mechanism of explanation of this 
effect - heating of UCN by hydrogen adsorbed by surface. He worked at 
one of the most complex problems, confinement of quarks, and proposed the 
original hypothesis for the nature of this phenomenon. In the last few years 
his thoughts repeatedly returned to the "Big Bang" in cosmology. Analyzing 
Friedman's model he arrived at the conclusion that the visible part of our 
universe could not be formed within the limits of four-dimensional space-time 
and proposed his original hypothesis of the existence of extra space dimensions, 
meta-space, in which meta-bodies and antibodies collide. Our Universe could 
be formed as a result of such a collision. 

DI always took a great interest in the philosophy and methodologies of 
science. He repeatedly had to defend in discussions the idea of materialism 
from both his opponents and primitive defenders. Much attention was given 
by him to defence of the energy conservatio~ law as the basis of materialistic 
natural science and the cqrrect understanding of the theory of relativity and 
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atomic theory. In his first book "What is the theory of relativity?" he gave not 
only comprehensible exposition of this theory, but also its first correct inter­
pretation. Special importance he gave to his last work "On the Relationship 
of Applied and Basic research" where, being based on the specific features 
of man as a biological form - inquisitiveness, extended transmission of infor­
mation from one generation to the next one, which caused the detachment 
of man from the remaining living world, the needs. for the emotional contact 
with the external world - he came to the conclusion on inevitability of increase 
of the activity of people in the production of ideas. Very interesting are his 
unpublished "Science and Skill" and "Essays on the Materialistic Philosophy". 

His gift of foresight appeared not only in his scientific and philosophical 
works, but also in the organization of conferences, in particular, conferences 
on nonlocal quantum field theory (which, actually, were conferences on funda­
mental problems of field theory) in the period of its almost complete refusion 
when it was necessary to have courage to foresee its subsequent renaissance. 
He was the permanent chairman of these unique conferences during 1964-1979. 
In accordance with his understanding of creative activity, DI proposed such 
organization of conferences, which would give to its participants as much the 
leisure as possible (not the rest, but the leisure - in that sense of this word, 
what ancient Greeks put into it, and which is so small in the contemporary life). 
He considered it useful not only to listen to reports, but even more useful to 
converse with interesting men. The conferences and the workshops organized 
under his leadership, thoroughly planned, gave participants the possibility of 
maximum of self-realization. This was one of the reasons for a constant in­
crease of their popularity. 

To him belongs a big role in the establishment of the first scientific ex­
changes between CERN (Geneva) and JINR, in the organization of many in­
ternational conferences and symposia, including the so-called Rochester con­
ferences - the largest conferences on high-energy physics. 

D.I. Blokhintsev was the outstanding public figure: the member of the 
Soviet Peace Committee, the scientific adviser of Secretary General of the UN, 
Vice President (1963-1966) and President (1966-1969) of the Union of Pure and 
Applied Physics (IUPAP), the member of the USSR State and Lenin Prizes 
Committee and a large number of commissions, scientific councils and editorial 
boards. 

Blokhintsev's merits were recognized by the highest Soviet and foreign re­
wards - the title of Hero of Socialist Labor, Lenin and two State prizes winner, 
four Orders of Lenin, the order of the October Revolution, the Order of the 
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Red Banner of Labor, the nominal gold medal of the Academy of Sciences of 
Czechia, the order of Cyril and Methody of 1-st degree (Bulgaria), the highest 
orders of Romania, Mongolia, and many other orders and medals of the USSR 
and other countries. 

The public activity D.I. Blokhintsev was marked by the honorable cer­
tificate of the World Council for Peace (1969). He was chosen member of 
the Academies of Sciences of many countries and the honorable doctor of a 
number of universities. Scientist, citizen he in his articles and presentations 
repeatedly emphasized that the scientist must not be locked in the professional 
shell: " ... Our duty, great duty of scientists and engineers of our time, and no 
one must escape from this, is to explain to all people what threat will hang 
over the world and let then the wrath of entire humanity stop the madmen of . 
atomic warfare". 

The many-sidedness of D.I. Blokhintsev, his universality appeared not only 
in the scientific but also in the aesthetical perception of the world. He was 
original poet and artist whose pictures were repeatedly demonstrated at exhi­
bitions and their reproductions were published in periodicals and newspapers. 
Through entire life he carried love for the poetry .. His many verses were pub­
lished in the periodicals and in the collection "Muza in the Temple of Science" 
(1982). But the main part of his verses still awaits for publication. In his pic­
tures and verses he is a fine psychologist, attentive observer, deep philosopher. 
He deeply understood the process of creative thinking directed for the creation 
of a new in science and skill. "Creation - he said - is not volitional event but 
the special state of spirit and intellect which implicates into the process of 
thinking rich aesthetical experiences". 

The personal charm of ingenious collocutor, the unique combination of 
calmness and boiling creative energy which he always generously shared left 
lasting impression. The essence of his personality is possible to express briefly 
- the creation. Personal contacts with him enriched the collocutor. He began 
to feel himself as a creative personality and acquired the belief in his own 
forces. 
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O6'he.UHHeHHbIM HHCTHTYT 11.uepHbIX nccne,uoBaHnii, Ily6Ha, Poccn11 

OTKpbIBa11 3TY KOH<pepeHUHIO, 11 XOTeJI 6bI npe:iK.ue Bcero OTMeTHTb 'ITO 

I!MHTpHii MBaHOBH"l c.uenan oqeHb MHoro eme .uo Toro, KaK opraHH30BaJI H 

B03rnaBHJI OM51M. OH 6bm TaJiaHTJIHBbIM y<JeHhlM H KpyIIHbIM cneunann­

cToM KaK B cpyH.UaMeHTaJibHbIX, TaK H B IIpHKJia,UHhlX o6JiaCT11X !pH3HKH, 6ne­

CT11IUHM HH)KeHepoM, Bbl,l.(aIOIUHMC11 opraHH3aTopnM, ocymecTBJI11BIIIHM Mac­

IIITa6Hbie Hay<JHO-TeXHH<JeCKHe npoeKTbl. OH 6blJI O,UHM H3 opraHH3aTopOB 

H nepBblM .unpeKTOpOM <pH3HK0-3HepreTH<JeCKOro HHCTHTyTa B O6HHHCKe, r.ue 

6bma cnpoeKTHpOBaHa H IIOCTpoeHa nepBal! B MHpe aTOMHal! 3JieKTpocTaHUH11. 

8To 6hlJIO co6bITHe IIOHCTHHe BCeMHpHoro 3Ha"leHH11, n6o BIIepBble Ha npaK­

THKe 6blJia IIOKa3aHa B03MO)KHOCTb H 3KOHOMH<JecKa11 uenecoo6pa3HOCTb nony­

"leHH11 3JieKTpH"IeCKOM 3HeprHH Ha OCHOBe HCIIOJib30BaHH11 3HeprH pacmenJieHH11 

aTOMHOro 11.upa. 

BcnOMHHal! 0 I!MHTpHH MBaHOBH<Je, HeB03MO)KH0 CJie.UoBaTb 3apaHee IIO.U­

roTOBJieHHOMY TeKCTY H, C BaIIIero pa3pe11IeHH11, 11 OTBJieKycb. BcnoMHHaIO 

raJeTbI HIOH11 1954 ro.ua necTp11mne, coo6meHH11MH o 3anycKe nepBoii B MHpe 

aTOMHoii CTaHUHH B CCCP. B TO BpeM11 11, OKOH"IHB CyBopoBcKoe yqnnnme, 

Haxo,UHJIC11 a BOeHHOM narepe H TIJiaHHpOBaJI IIpO,UOJI:lKHTb CBOe BhlCIIIee o6pa3o­

BaHHe. Ho 3Ta HH!pOpMaUH11 TaK no.ueiiCTBOBaJia Ha MeH11, 'ITO 11 IIOH11JI:cne.uyeT 

IIOCTynaTb TOJibKO B YHHBepCHTeT. 

IIo3:iKe Ha <pH3<paKe MI'Y 11 noceman neKUHH I!MnTpn11 llBaHOBOBH<Ja, KOT0-

pb1e Bcer.ua npHBJieKann MHornx cnyIIIaTeneii. B 1956 ro.uy, Kor.ua 6blJI opra­

HH30BaH OM51M, o.unH n3 npeno,uaBaTeneii <pH3<paKa cKa3aJI MHe:"IIonpo6yiiTe 

nonacTb B Ily6Hy, MocKBa-3TO y:iKe Hay<JHa11 npoBnHun11". M 11 BH11JI 3TOMY 

COBeTy. 

IIonaB B OM51M, 11 06manc11 c II.M. BnoxnHueBhlM y:iKe B Ha<Jane cBoeii 

pa60Thl, HeCMOTp11 Ha TO, 'ITO 6blJI Tor.ua BCero JIHIIlb MOJIO,UbIM Hay<JHhlM co­

Tpy,UHHKOM. l13yMJI11Jia IIIHpOTa Hay<JHbIX HHTepecoB I!MnTpH11 MBaHOBH"la: 

MnpoBoii aBTOpHTeT B o6n_aCTH aKyCTHKH, KBaHTOBOH MexaHHKH, <pH3HKH pe­

aKTopoB. •• Ero 3HaMeHHThlM n nonyn11pHb1:ii yqe6HnK no KBaHTOBOH MexaHnKe, 

"' hi -- .......... 'liil~··~,;,,:~ 
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II3,UaHHhIM BO BpeM1! BOMHbl (1944 ro.u) Ha IlJIOXOM 6yMare BbI,UepJKan 3aTeM 22 

113.uamrn Ha 9 113bIKax. He.uaBHO no6bIBaBmIIn: B OM51M npcpeccop B. En10M, 

311Tb 3HaMeHllTOro B. ran:3eH6epra, pacCKa3bIBaJI MHe, 'ITO faij:3eH6epr on~­

HIIBaJI KH11ry IlMIITp1111 MBaHoB11'la KaK o.u11H 113 nyqm11x yqe6H11KOB no KBaH­

TOBon: MexaHllKe. Iln11 MHOrHX qJ11311KOB 3Ta KHllra .uo ·c11x nop OCTaeTC11 Ha­

CTOJibHOH: TaK MHOro B Hen: u:eHHOro II BaJKHOro ,UJ111 IlOCTllJKeH1111 KBaHTOBJM 

MexaHllKll. 

MM11 EnoxllHU:eBa Hepa3pbIBHo cB113aHo c co3,UaHHeM B HameM MHcT11TyTe 

nepBbIX B M11pe HMilJJibCHbIX peaKTopoB (HEP). Cero.uH11 Ha ero .ueT11me pe­

aKTope MEP-2 Be.UyTc11 11HTepecHeii:m11e 3Kcnep11MeHTbI yqeHbIMll 113 MHor11x 

CTpaH Mllpa. 

Ben11Ka 3acnyra IlMHTp1111 MBaHoB11'la B no.uroTOBKe Hay'IHbIX Ka.upoB. Ilpe­

no.uaBa11 C 1935 ro.ua B MrY, OH 6bIJ1 Hepa3pb1BHO CB1!3aH C 3THM YH11Bepc11-

TeTOM, r.ue npO'IllTaJI p11.u cpyH,UaMeHTaJibHblX KypcoB. OH JKe 11BllJ1C11 O,UHHM 

113 11u11n11aTopoB 11 opraHH3aTopoB cp11n11ana HMM51<P MfY B ropo.ue Ily6ue, 

r.ue 6bIJia OCBoeua HOBa1! cpopMa 06yqeu1111 CTJ,UeHTOB B TeCHOM KOHTaKTe C 

uay'IHhIMll llCCJ1e,UOBaHll11Mll. 

IlaBaii:Te nonpo6yeM ua :noii: KOHcpepeHu:nn BOCC03,UaTb o6pa3 IlMnTp1111 

MBaHOBU'la BO Bceii: ero IlOJIHOTe. Be.uh TaKne JIIO,Ull BCTpe'IaIOTC11 Kpaii:He 

pe,UKO 11 naM1!Tb O HHX Bcer.ua JKUBeT C naMU. 

.. ,..,. 
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Ilo3BOJ1bTe MHe ua'laTb CBOe KOpOTKOe BbICTJTIJieHUe C npe.ucTaBJieH1111 BaM 

uecKOJibKHX cp0Torpacp11ii: KOHU:a 50-x ro.uoB, coxpannBm11x o6pa3 IlMIITp1111 

MBaHOBll'la Enoxnuu;eBa BMeCTe co BCeM11puo 113BeCTHblMII qJU3HKaMII 20-ro 

CTOJ1eTH11. 
Bna.unMnp feoprIIeBH'l B cBoeM BbicTynnennII .uan 11pKy10 xapaKTepncnIKy 

.ue11TeJ1bHOCTH I11rnTpn11 MBanoBn'la EnoXHHU:eBa KaK nepBoro .unpeKTopa 

OM51M (1956-1965 rr.). 
B 1965 r., OCTaBHB IlOCT .unpeI(TOpa MHCTHTyTa, OH 6bm H36paH .unpeK­

TOpOM Jia6opaTOpI1H TeopeTll'leCKOM q>H3UKH, KOTopy10 B03rJiaBJ111J1 .uo KOHU:a 

CBoeii: JKU3HH (1979 r. ). JIT<P ( TaKJKe KaK u Jia6opaTopII11 Heii:TpoHHOM cpu-

3IIKn) 6bma C03,UaHa npn yqpeJK,UeHHll O6'be,UIIHeHHOro IIHCTIITyTa ITO JIII'IHOM 

IIHHU:HaTnBe IlMIITpH11 MBaHOBII'la, pyKOBO.UIITb KOTopo.ii OH Tor.ua npHrnacnn 

aKa,UeMHKa H.H.Eoromo6oBa. 

B COOTBeTCTBIIH co CBOHM IIOHIIMaHneM TBOp'IeCKOH .ue11TeJ1bHOCTH yqeHoro 

II ponn HayKn B o6mecTBe, KOTOpble ccpopMIIpOBaJIHCb y Hero Ha orpoMHOM 

OIIbITe pa60Tbl Ha,U cpyH.UaMeHTaJibHbIMH II rrpIIKJia,UHblMH rrpo6JieMaMH cpH-

3HKH, a eme B IOHbre ro,UbI rro.u BJIH11HHeM JIH'IHO.ii nepen11cKn c K.8.U11onKoB­

cKnM, OT KOToporo OH BOCilpHH11J1 .uyx poCCIIHCKOM HayKn Ha'laJia xx BeKa, 

Il.M.Enoxnuu;eB c'rpeMnnc11 6bITb Bcer.ua B Kypce Bcex Hay'!HbIX .uocTHJKenn.ii 

B qJH3HKe, cpnnococpHH, .upyrHX pa3,UeJIOB HayKH, rroomp11Tb Bee HOBbie II rro.u­

'lac HeCTaH.uapTHbie II,UeII II ua'IIIHaHH11, aKTHBHO no.u.uepJK11BaTb TBOp'IeCTBO 

MOJIO,UbIX HCCJie,UOBaTeJie.H. 

lf3 JIH'IHbIX HaJ'IHbIX .UOCTHJKeHnn: IlMHTpII11 MBaHOBII'la HanoMHIO, npeJK.ue 

Bcero, IlOJIJ'IHBillIIe MHpOBJIO II3BeCTHOCTb pa60Tbl no aKJCTHKe HeO,UHopo.u­

Ho.ii II .UBIIJKyme.iic11 cpe.UbI. IlMHTpH.ii MBaHOBll'l 11Bn11eTc11 aBTopoM K011u:en­

IIHII KBaHTOBbIX aHCaM6Jie.ii, Ha OCHOBe KOTOpo.ii HM 6bIJia ,UaHa o6'beKTHBHa1! 

TpaKTOBKa BOJIHOBOH q>JHKU:HII II o6'b1!CHeHHe pOJIII Ha6J1IO,UaTeJ111 B KBaHTOBOH 
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Mexamme. BrrepBbie HM 6bma rrpe,[(JI0)KeHa H,[(e5I yqeTa B3aHMO,[(e:iicTBH5I ::meKJ 

Tp0Ha C co6CTBeHHhIM 3JieKTpm.rnrHHTHhIM II0JieM II KaqeCTBeHH0e BhI'IlICJieHIIe 

C,[(BHra 3JieKTp0HHhIX ypoBIIeII B aT0Max (1938 r.) - JhM60BCKHII C,[(BHr, 3KC­

nepnMeHTaJibH0e o6Hapy)KeHne K0T0poro lI nocJie,[(OBaTeJihHhIII pacqeT 6hrm:11 

ocymecTBJieHhI JIHIIIh 10 JieT cnycT5I. B o6JiaCTll npHKJia,[(HhIX HCCJie,[(OBaHHM 

eMy npHHa,[(Jie)KHT H,[(e5I C03,[(aHirn HMnJJibCHhIX peaKT0p0B II ee npaKTnqecK0e;. 

ocymecTBJieHne - nMnJJihCHhre peaKT0phI ua 6hICTphrx HeIITpoHax B Ol15Ill. · 

B 60-x-70-x ro,[(ax BMecTe c lIMnTpneM llBanoBn<IeM aKTHBH0 pa6oTann B: 
JIT<I> TaKne H3BeCTHhie y<IeHhie KaK M.A.MapKOB (KcTaTH - 0,[(HoKypcHHK Ib.m­
TpH5I llBaHOBH<Ia), A.A.JioryHoB, A.H.TaBXeJIH,[(3e, 11.B.lllnpKOB, B.f.Cono­

BheB, yqenhrII H3 KnTaIICKOII Hapo,[(HOII Pecrry6nHKII 9)Koy fyan 9)Kao, ll.To­

,[(opoB (Hapo,[(Ha5I Pecrry6nnKa Bonrapn5I), Hryen Ban Xhey (BbeTHaM), . 

A.M.BaJI,[(HH, 51.A.CMopo,[(HHCKHII, M0JI0,[(hle B TO Bpe:r..rn: B.f.Ka,[(hIIIIeBcKn:iiJ 

B.A.MaTBeeB, P.M.Mypamrn, C.C.fepIIITeIIn, JI.11.ConoBbeB, B.ll.OnreBeU- ! 
KHII, C.M.BuneHhKHII, B.A.Memep.sIKOB, H.A.9epmIKOB u .[(p. B na<IaJie 60-i 

x ro,[(0B, 6naro,[(ap5I JIH'IHhIM Hay<l:HbIM n .[(py)KeCKHM K0HTaKTaM 1IMHTpH5Ii 

llBaHOBH<Ia c BnKTopoM BaIIcKompoM, fenepanhHhIM ,[(HpeKTopoM UEPH B Toi 

BpeM5I, 6bm ycTaH0BJieH nay<IHhIII o6MeH Me)K,[(y y<IeHhIMH Oll5Ill H UEPH, 

<ITO .sIBHJioch Ba)KHOII BexoII c pa3BHTIIeM HaIIIHX K0HTaKT0B c EBponeIIcKof11 

opramnauneII 51,[(epHhIX nccne,[(oBaHIIII B )KeueBe. 

B03rJiaBJI515I Jla6opaTopmo TeopeTn<IecK011 q>H3HKn, · 11:r..rnTpHII llBaHoBwri 

co3,[(aJI nayquyro IIIKony 113 M0JI0,[(hIX Tor,[(a ero y<IeHHK0B (B.M.Bap6aIIIoB,; 

r.B.Eq>HMOB, A.B.EqipeMoB, M.K.BoJIKOB, r.ll.KonepoB, B.H.IIepBJIIIHH, 

B.B.HecTepenKo n .[(p. ), ycneIIIH0 pa6oTaromyro u nonhrne B o6nacTH HemrneII­

HOII II HeJIOKaJibHOII KBaHTOBOII Te0pHH noJI.sI II Teop11H 3JieMeHTapHbIX qacTHU. 

K K0HUY 50-x ro,[(0B oTH0C5ITC5I ,[(Ba Kpym-1hIX ,[(0CTH)KeHH5I 1IMnTpH5I llBa­

H0Bnqa DJIOXHHUeBa. Bo-nepBbIX, HM 6bIJIO BBe,[(eH0 noH.sITHe YHHTapHoro npe­

,[(eJia. Bo-BTOphIX, B o6JiaCTH 51,[(epHOII q>H3HKH HM 6bIJia BhI,[(BHHyTa H pa3pa-

6oTaHa K0HUenUH5I q>JIJKTyauun nJI0TH0CTH 51.UepHoro BemecTBa - q>JIYKTOHbl 

DJIOX1IHUeBa, no3BOJIHBIIIa5I o6'.b5ICHHTh p.sI,[( 3ara,[(0'IHhIX T0r,[(a npoueccoB npn 

coy,[(apeHHH npOT0H0B BhIC0KHX 3HeprHII C 51,[(poM, uanpHMep, o6Hapy)KeHHble 

eme B 1957 ro.[(y rpynnoII M.f.Memep5IKOBa ".rieIITponnhre nnKn" B peaKunn 

KBa1nynpyroro pacce.sIHH5I npoTonoB Ha 51,[(pax. 

IloH5ITHe q>JIJKTOHOB HaIIIJIO Han6onee .sipKoe no,[(TBep)K,[(eHHe qepe3 20 JieT, 

KOr,[(a B peaKUH.sIX e peJI5ITHBHCTCKHMH 51,[(paMH 6bIJIH 3aq>HKenpoBaHhI, TaK ua-

3bJBaeMbie, KYMYJI.sITHBHhre qaeTHUhI. Eme 0,[(H0 no,[(TBep)K,[(enne 3TOII n,[(ell 

6bIJIO nony<IeHo B 3KcnepnMeHTe HA-4 B UEPHe no rny6oKo-HeynpyroMy pae­

ee.sIHHIO MIO0HQB Ha 51,[(pax H B pO)K,[(eHHH KYMYJI.sITHBHhIX npOTOHOB HeIITpHH-

1I.ll..Enox1rnueB n Jla6opaTop11l! Teopen1qecK01i q>11311K11 21 

JihIM nyqK0M B llneTHTyTe q>H3HKII Bbie0KHX 3HeprHII B II poTBHH0. 8To H0-

B0e _ HanpaBJieHHe neeJie,[(OBaHIIII - peJI5ITIIBHeTeKa5I 5I,[(epHa5I q>H3HKa, eeII<Iae 

yeneIIIH0 pa3BHBaeTC5I KaK y nae B llHCTIITJTe, TaK II B .[(pyrnx 51,[(epHbIX 

ueHTpax MIIpa, HO y)Ke Ha 0CH0Be :r..rnorOKBapKOBOII HHTeprrpeTauun q>JIJKTO­

H0B (C.B.fepaCHMOB, A.B.EqipeMoB, B.K.JlyKh5IHOB, A.ll.TnToB, B.11.ToHeeB, 

C.M.EnIIceeB n .[(p. ). 

B :3TII )Ke ro,[(hI 11.ll.BnoxnuueB IIeeJie,[(yeT ua ocnoBe onTII<JecKoII 3IIKo­

HaJihHOII M0,[(eml eTpyKTYPY HJKJI0H0B II npIIX0,[(HT K neo6XO,[(IIMOeTII ee pa3-

,[(eJieHII5I Ha ueHTpaJibHJIO II nepIIq>epnqecKyro qaeTH, ,[(eJiaeT BhIB0,[( 0 ,[(0MII­

HIIpyromeII ponn B rrpoueccax pacee5IHII.sI rrepnqiepuqecKnx eoy.[(apemIII. 

B TeopIIH MH0)KeCTBeHHoro p0)K,[(eHH5I· qaeTIIU OH II0Ka3bJBaeT 5IBHble npo­

TIIB0pe<III5I Me)K,[(J rn,[(p0,[(IIHaMII<JeeKIIM II0,[(X0,[(0M H oeH0BHhIMII npIIHUIIIIaMII 

KBaHTOBOII MexaHIIKII. 8Ta HeC0BMeCTHM0CTh rII,[(p0,[(IIHaMHKII e KBaHT0BhIMII 

3aKoHaMII MHKp0MHpa Bee 60JihIIIe npo5IBmleTC5I ceII<Jae no Mepe paeIIIIIpe­

HII5I K0ppeJI5IUII0HHhIX II cnIIH0BhIX II3MepeHIIII B q>II3IIKe BhIC0KIIX 3HeprIIII 

(A.B.EqipeMoB, O.B.Tep5reB, C.B.fonocKOKOB n .[(p.). 51 xoTeJI 6hr c 6naro,[(ap­

uocThIO 0TMeTIITh, 'ITO H B CBOeII Hay<IHOII ,[(e.sITeJibH0eTn, Ha'IIIHa.sI C K0HUa 

60-x ro,[(oB, 51 ncrrhIThIBaJI BJIH5IHIIe H,[(eII lIMIITpII~ llBaHOBH<Ia, B T. <I., B ero 

B033peHII5IX Ha rrpouecCbI MH0)KeeTBeHH0ro pO)K,[(eHII5I qaeTIIU. 

TBopqeeKa5r aKTIIBHOCTh 1IMHTpH5I llBaHOBII<Ia, oxBaTbIBaBIIIa5I IIIIIpoKHII 

,[(liaIIa30H rrpo6JieM q>II3HKII II q>IIJIOCOqJIIH, He yraeana ,[(0 eaMbIX nocJie,[(HIIX 

,[(Hell ero )KH3HII. TaK 0,[(HHM II3 ero nocne.[(HHX IIecne,[(oBaHHII 6hIJia 3a,[(aqa 

o6'b5ICHemrn aH0MaJibH0 MaJioro BpeMeHH y,[(ep)Kamrn JJibTpa-X0JI0,[(HbIX HeII­

Tp0H0B (YXH), ,[(JI5I peIIIeHH5I KOTopoii: on npe,[(JI0)KIIJI rrpocTOII qin3nqecKn 5re­

HhIII MeXaHH3M HarpeBaHH.sI JJibTpa-X0JI0,[(HhIX HeIITpOHOB B0,[(0p0,[(0M, a,[(cop-

6npoBaHHhIM II0BepXH0CThIO eocy,[(a, B KOT0p0M HaX0,[(5ITe5I 3TH YXH. 8TOT 

MeXaHH3M nony<IHJI CB0e 3KCIIepHMeIITaJihH0e II0,[(TBep)K,[(eHne B OIIhITax ITO 

Te:r..mepaTypHoII 3aBHCHM0CTH BpeMenn xpauenu51 YXH. 

Oeo6o cJie,[(yeT 0TMeTHTh neKJIIO'IHTeJihHyro 3aenyry 11.ll.BnoxnuueBa B 

,[(eJie Il0,[(r0T0BKH II B0CIIHTaHH5I M0JI0,[(0ro noK0JieHH.sI y<IeHbIX-q>H3IIKOB BO MHO­

rnx CTpauax-yqacTunuax Oll5Ill n, rrpe)K,[(e Bcero B CoBeTeKoM Coro3e. By­

.[(yqu e 1935 ro,[(a npoqieecopoM q>II3H<IeCKoro q>aKJJibTeTa MocKoBcKoro ynn­

BepcnTeTa, OH 3a BpeM5I eBoen ,[(OJiroII nperro.uaBaTeJibCKOII ,[(e.sITeJibHOCTH rrpo­

'IHTaJI ueJibIH p.sI,[( q>JH,[(aMeHTaJihHhIX TeopeTH<JeeKHX KypcoB II epe,[(H HHX 

oco6o eJie,[(yeT BhI,[(eJIHTh Kype KBaHTOBOII MexaHHKH, Ha<JaTbIH HM eme B 1933 

ro,[(y. Co3,[(aHHhIH Ha ocnoBe 3Toro Kypea yHnBepenTeTCKIIH yqe6unK "OenoBhI 

KBaHTOBOH MexaHHKII" BhI,[(ep)KaJI e 1944 ro,[(a 22 ll3,[(aHH5I y Hae B eTpaHe. II 3a 

py6e)KOM. KaK II3BeeTno, B,feibeH6epr BbleoKo ueHHJI 3TOT yqe6mm, xoT.sI II 
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He pa3.uemm qnmococpcKyIO TpaKT0BKY KBaHTOBOii MexaHIIKII, II3JI0)KeHHYIO B 

KHnre. IlMnTpnii lIBaHOBIIq Bnoxnmi:eB CT0HJI y IICT0K0B co3.uauHJi: 11.uepHoro 

oT.ueneHIIH Ha cpn3nqecKOM cpaKyJibTeTe MrY. IlepBbre TpII Kacpe.upbr Bo3rJI~­

BHJIII H.M.<l>paHK, B.H.BeKCJiep II IlMIITpnii lfoaHoBnq. Il.lI.Bnoxnmi:eB n 

B.lI.BeKcnep B 1960 ro.uy 0TKpbIBaIOT B Ily6He .IIBe H0Bbie Kacpe.IIpbI q>II3IIqe­

cKoro cpaKyJibTeTa - "TeopIIII aT0MHoro 11.upa" - 3aB.Kacpe.upoii Il.lI.BnoxirnueB; 

II "<l>n3IIKII :meMeHTapHbIX qacTmr", 3aB.Kacpe.upoii B.lI.BeKCJiep. UeJibIO co-

3.IIaHIIH H0BhlX yqe6HhlX Kacpe.up B Ily6He 6bIJIO o6yqeHIIe cTy.IIeHT0B CTapIIIIIX 

KypcoB Ha 6a3e OlI5IlI, npIIBJieqeHIIe B Ily6Hy nyqrnIIx cTy.ueHT0B II3 By3oB 

MH0rnx ropo.uoB CTpaHbI, no.uroT0BKa Ka.upoB II .IIJIH 6bIBIIIIIX C0UIIaJIIICTII- : 

qeCKIIX cTpaH. 8Ta u.ue11 IlMIITpIIH lIBaHoBnqa 6bma aKTIIBH0 no.u.uep:a<aHa 

B.M.IloHTeKopBo, KOTopbrii B 1966 ro.uy B03rJiaBIIJI Kacpe.upy "<l>n3IIKH :meMen­

TapHbIX qacTuu" II 6bIJI ee 3aBe.IIyIOIUHM Ha npoTH)KeHIIll noqTII 20 JieT. TaKIIM 

o6pa3oM, IlMIITpIIii lIBaHOBIIq npo.II0JI)KaJI 3aH1IMaTbCH yqe6HbIM npoueccoM B 

Ily6ue, B q>IIJIIIaJie HlilI51 <I> MrY, Hap11.uy c co3.ua111IeM cBoeii Hayquoii rnKoJibI., 

3.uecb ueo6XO.IIIIMO 0TMeTIITb IIHTepecHyIO .ueTaJib: M0CK0BCKaH Kacpe.upa 

bJIOXIIHUeBa -"<l>II3IIKa aT0MH0ro 11.upa" - HeK0Topoe BpeMH cyruecTB0BaJia o.u­

H0BpeMeHH0 C .uy6ueucKoii Kacpe.upoii "TeopIIH aTOMH0ro 11.upa", a 3aTeM 3TII 

Kacpe.upbl o6'be)IIIHIIJIIICb, II 0CTaJiaCb JIIIIIIb .uy6neHCKaH. B 1973 ro.uy Kacpe.upa 

Il.lI.Bnox1IHUeBa MenHeT Ha3BanIIe II cTaH0BIITCH Kacpe.upoii "TeopeTIIqecKoii 

11.uepuoii q>II31IKII". 

<l>opMaJibHO !plIJIIIaJI HlilI51 <I> MrY 6bIJI 0TKphlT B 1961 ro.uy. Ho ecJIII 

n0CM0TpeTb ua )I0KyMeHTbI, TO CTaHeT HCH0, qTo II)IeH C03)IaHIIH q>IIJIIIaJia 

npIIIIIJia B Ily6uy BMeCTe C C03)IaTeJIHMII O6'be)IIIHeHHOro IIHCTHTyTa, n0T0MY 

KaK y)Ke B 1956 ro.uy BbIIIIJI0 pacnopH)KeUIIe CoBeTa MIIHIICTp0B 06 oprauII~ 

3aUIIII cpnnIIana cp1I3nqeCKoro cpaKyJibTeTa MrY. B 1959 ro.uy pacnopH)KeHIIe 

o cTp0IITeJibCTBe 3.IIaHIIH cp,mIIana B Ily6ue. Becuoii 1961 ro.ua 3.Uanne 6hlJIO 

c.uauo B 3KcrmyaTaUIIIO. B 3To )Ke BpeMH np1IKa30M no MIIHIICTepcTBY BhlC­

rnero II cpe.uuero cneUIIaJibuoro o6pa3oBaHIIH PC<l>CP II npIIKa30M no MrY 

YTBep)K.ueua cTpyKTypa II onpe.ueneubr 3a.uaq1I cpnnnana. Co3.uau1IIO q>IIJIIIaJia 

aKTIIBH0 cnoco6cTBOBaJIII peKT0p MrY lIBaH reopr1IeB1Iq IleTpOBCKIIii, .IIII­

peKT0p HlilI51<1> IlMIITpm1 Bna.um.rnpoBIIq CKo6eJibUIIH. Ho npaKT1IqecK1IMII 

co3.uaTeJIHMII q>IIJIIIaJia HBJIHIOTCH, npe)K.ue Bcero, IlMIITpIIii lIBaHoBnq BnoxIIH­

ueB II Cepreii H1IKoJiaeB1Iq BepnoB, KOTOphlii c 1960 ro.ua CTaJI .unpeKTopoM 

HlilI51<1> II 3aBe.IIyIOI1IIIM oT.ueneu1IeM, K0Topoe B 1960 ro.uy 6bmo nepenMeuo­

Bano B OT.ueneune 11.uepuoii q>II3IIKII. 5Icuo, qTo .IIJIH unx co3.uau1Ie q>IIJinana 

ue 6hlJIO cnyqaiiHhlM n o6oco6JieHHhlM co6bIT1IeM, a 6hlJIO coBeprneuuo. ecTe­

CTBenuoe pa3BIITIIe npouecca nnTerpauIIn uayKII II o6pa3oBaHIIH. 
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IIepBoro OKTH6pH 1961 ro.ua B Ily6He B q>IIJIIIaJie HlilI51<1> MrY naqaJIIICb 

3auHTIIH, np1IexanII nepBhle cTy.IIeHThl. Il.lI.BnoxlIHUeB II B.M.IIonTeKopBo 

qaCT0 BCTpeqaJIIICb co CTy.uenTaMII, nplIX0)IIIJIII K HUM B o6rue)KIITIIe, npIIHII­

MaJIH caM0e )IeHTeJibH0e yqacTIIe B ycTpoiicTBe cTy.IIeHTOB-BbITIYCKHIIK0B Ha 

pa6oTy, Bux )IaJibHeiirneii uayquoii Kapbepe. BMeCTe c co6CTBeHHOii YBJieqeH­

H0CTbIO HayKoii, BMeCTe C TaKIIMII qeJIOBeqecKIIMII KaqecTBaMII KaK qecTH0CTb, 

.uo6po)KeJiaTeJII,H0CTb II qyBCTB0 IOMOpa, Bee 3T0. C03)IaBaJI0 uenOBTOpHMbiii 

cBeTJiblii o6pa3 Kacpe.up (B !plIJIIIaJie HlilI51<1> MrY), KOTOphlii, M0)KHO CKa-

3aTb, OCTaJICH B naMHTII MH0rlIX, eCJIII He Bcex BbITIYCKHIIKOB. 

TaKIIM o6pa3oM, co3.uauneM cpnnnana 6bmo_ 06be.II1IHeno nonyqeuue o6pa-

3oBaHUH B MrY II uayquaH .ue11TeJibH0CTb B KpynueiirneM IIHCTIITyTe, OlI5IlI. 

Muorne BbmycKHIIKII Kacpe.uphl BnoxlIHUeBa nonoJIHIIJIII K0JIJieKTIIB Jla6opaTo­

pnu TeopeT1IqecKoii q>II31IKH u ycneurno npo.II0JI)KaIOT pa6oTaTb B Heii, BH0CH 

6oJibIIIOii BKJia)I B ee uayqnble .IIOCTII)KeHIIH. Cpe.IIII _HIIX TaKIIe y)Ke II3BeCTHbie 

yqeubre, KaK B.H.IIepByIIIIIH, E.A.lIBanoB, Il.lO.Bap.IIIIH, B.B.HecTepenKo, 

M.A.lIBanoB, B.B.BopoHoB, A.lI.B.uoBIIH II .upyrne. OTMeqy, qTo n.ue11 co-

3.IIaHIIH Y1t1IBepc1ITeTa B Ily6ue, a TaK)Ke Yqe6no-nayquoro uenTpa (YHU) 

B OlI5IlI - 3To T0)Ke HBJIHeTcH pa3BUTIIeM uacne.IIIIH IlMIITplIH lIBanoBnqa. 

CoI03 nayKII II ymrnepc1ITeTcKoro o6pa3oBaHIIH - 1IJieH, K0TopaH aKTIIBHO npo­

narau.unpoBanacb B 50-e rO.IIbI PH.IIOM BbI)IaIOIUIIXCH yqeHbIX, n B IIX q1Icne 

Il.lI.BnoxnHUeBhlM, M.A.JlaBpeHTbeBbIM II ,upyrnMn. 

IlMnTpIIIO lIBaHOBIIqy 6bm np1Icyru .uap npe.IIBII.IIeHHH B pa3BIITHII uayKn. 

Ou no.u.uep)KHBaJI n noorupHJI B JIT<I> pH.II nccne.u0Ban1Iii, KOTOpbre B TO BpeMH 

HeJib3H 6bIJIO OTHeCTII K "MO.IIHhlM" uanpaBJieHIIHM. TaK, uanpnMep, no ero 

IIHIIUUaTIIBe II aKTIIBH0M yqacTHII MHOrlie ro)IbI opraHII30BhlBaJIIICb Me)K.uyua­

P0.IIHbie KOHcpepeHUIIII no ueJIOKaJibHOii II ueJIIIHeiiuoii KBaHTOBOii TeoplIH nOJIH, 

II cero.unHIIIHHH Koncpepeuuu11·- 3T0 npo.uoJI)KeHIIe Tpa.IIIIUIIH. 8To 6hlJI nep1Io.u, 

Kor.ua KBaHTOBO-n0JieBbie MeTO)Ibl B !plI3HKe 3JieMeHTapHbIX qacTHU 6bIJIII no­

qTII npe.uanbl 3a6BeHHIO. Tenepb )Ke OHII HBJIHIOTCH )I0MIIHIIpyIOIUIIMII, II co­

BpeMeHHbie )I0CTH)KeHIIH B 3Toii o6JiaCTII nonyqeubl B paMKax 3TIIX no.uxo.uoB. 

Mo)KHO CKa3aTb, qT9 3TOT aKuenT B IICCJie.II0BaHIIHX no3BOJIHeT Jla6opaTOp1I1I 

TeopeT1IqecKoii q>H3II,KII 6b!Tb ua nepe.II0BbIX py6e)Kax TeopeTHKO-noJieBhlX no.u­

XOJIOB B II3yqeunn KBaHTOBhlX 3aKOHOMepHOCTeii MIIKp0MIIpa lI BHOCHTb JIOCToii­

Hbiii BKJia)I B TaKne pa3.IIeJihl TeoplIH KaK KBaHTOBaH xpoM0.IIIIHaMHKa, TeOplIH 

peJIHTHBHCTCKIIX CTpyu, cynepcHMMeTplIH, KOCM0JIOrIIH H .up. 

IlMIITpHii lIBaHOBIJ:q BnoxlIHUeB n H1IKonaii HHKOJiaeBIJ:q BoronI06oB OKa-

3aJIH H np0.IIOJI)KaIOT OKa3bIBaTb BJIHHH'He ua .uyx uayquoro .ueMOKpaTII3Ma He 

TOJibKO B JIT<I>, HOH BO BCeM lIHCTHTyTe H CBH3aHHbIX C UHM uayqnhlX ueu-
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Tpax. 

Ymrnepcan:bHOCTb IlM11TpMH l'IBaHoB0:qa npoHBJilfJiacb He TOJihKO B Hayq­

HOM ,UelfTeJibHOCTH, HO H B 3CTeT11qecKOM BOCIIpMHTMH MHpa - OH 6bIJI opHrM­

HaJibHbIM xy,UO)KHMK M II03T. Ero KapTHHbI HeO,UHOKpaTHO .ueMOHCTpHpOBaJIMCb 

Ha BbICTaBKax, a HX penpo.uyKIIHH neqaTaJIMCb B )KypHan:ax; ero qmnocoq>CKalf 

KOHIIeIIIIHlf Bbipa)KeHa HM B npe,UHCJIOBHM K KHMre )) OcHOBbI KBaHTOBOM Mexa­

HMKM") r.ue OH IIHCaJI: )) 5I Bcer.ua np11.uaBaJI 6oJibillOe 3HaqeHMe MeTO,UOJIOrHM, 

6e3 Bna.ueHmI KOTopoM .ua)Ke caMbIM OTJIHqHhIM yM np1106peTaeT OTTeHoK pe­

MecneHH11qecTBa", a B cTaTbe "IlBe BeTBH II03HaHMlf MMpa" ("TexmrKa MOJio-­

.ue)KH") 1982 r.) OH IIMCaJI: )) 5I Bepro B CMJIY pa3yMa H B03MO)KHOCTb rapMOHMH 

Me)K.uy HMM H Ilpttpo.uoM. HaM HY)KHa Bepa B 6naroHaMepeHHOCTh By.uymero, 

TBOpHMOro qeJIOBeKOM M IIpHpO,UOM, IIOTeplf TaKOM Bepbl 03Haqan:o 6bI YBlf,UaHHe 

qenoBeqecKoro po.ua". 

"Hm,mo ua CBeme ue pa36yaum 

llywu, yweaweu ua nox:o(L, 
Ho ua 3e.MJte; me6e '<lyJ1Cou, 
TBOU cx:umambC.H necuu 6yaym ... " 

- He3a.uonro no BHe3aIIHoro yxo.ua H3 )KH3HH HaIIHCaJI IlMMTpHM JilBaHoB11q . 

Cero,UHlf ,UeMCTByromee IIOKOJieHMe TeopeTMKOB c 6naro.uapHOCTbIO omy­

maeT Ha ce6e BJIMlfHMe HpKoM n11qHoCTM D.ll.BnoxMHIIeBa - 3aMeqaTeJibHoro 

yqenoro, TBopua. 

TTepBaR ,11,HpeK!!HH OvUU1: M . 4aHbllll , 4 - YI. DAOXHH!!eB, B. 8oTpy6a. 1956 r. 

TT. 4HpaK, 4- YI. DAOXHH!!eB, M. 4aHbllll, M. r. Mef!!ep11KOB, H. H. 6orOAI060B, 

R A. CMopo,11,HHCKHH. 4y6Ha, 1958 r. 



BH3HT B OYIJIYI Cl>. llioAHo-KiopH, 1958 r. CAeBa Hanpaso: M. ,llaHhilll, 5. M. floHTeKopso, 

m. Aa6eppHr-Cl>poAOBa, ct>. llioAHo-KiopH, .a. YI. 5AOXHHgeB 

H. H. 5oroAI06os H ,ll. YI. 5AOXHHges 

,ll. YI. 5AOXHHges H 5. M. 5ap6all!oB Ha 3al,!!HTe AHnAOMHbIX pa6oT 

CT)'AeHTOB <jlHAHaAa HYIYlrlct> MrY B ,lly6tte 
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11.11. BnoxMHUeB - rrepBbIM Hay11HbIM 

,nMpeKTOp ITa6opaTopMM "B" 

A.B. 3po.llHIIK0B, IO.B. <l>porroB 

rHU P<I> " <PI13I1KO-::rnepreTH'leCKI1H I-IHCTHTYT" HM. 

A.H.JieiinyHcKoro 06HHHCK 

Abstract - BocnoMHHaHHll o pa6oTe n.H. BnoxHHI(eB B KaqecTBe riep­
noro ttay<rnro .n;HpeKTopa Jia6opaTopHH "B". 
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O .U.H. BnoXHHUeBe qacTo n11rnyT, 'ITO B 1950 r. OH 6bIJI Ha3Ha'leH nepBhlM 

.n11peKTOpOM <1>8.H:, I1JII1 KaK Tor.na Ha3bIBaJICj{ Harn Hay'IHbIH ueHTp - Jia6opa­

TOpI1I1 "B" IIepBoro rnaBHoro ynpaBJieHHH (IIfY) np11 CoBMHHe CCCP. Ha 

caMOM .nene .no IlM11TpI1j{ .H:BaHOBH'la 6bIJII1 y:lKe .IIBa Ha'laJihHHKa Jia6opaTo­

p1111 "B" (Tor.rra He 6bIJIO .IIOJI)KHOCTI-1 .IIHpeKTopa). 8To 6bIJII1 ITOJIKOBHI1KI1 

I1H:lKeHepHo-TeXHI1'1ecK0ii cny:lK6bl MB.IT CCCP, np11 KOTOpbIX Hay'IHoe pyKo­

BO.llCTBO ocyruecTBJijlJII-1 Hay'IHhIH pyKoBO.IIHTeJib (HeMeUKIIH npocpeccop XaHc 

Ilo3e) 11 3aM. Ha'laJihHHKa Jia6opaTop1111 no Hay'IHOH qacTII (AH.rrpeii KamITo­

HOBH'-1 Kpac11H). Ba:lKHoe OTJIII'IHe cTaTyca IlM11TpI1j{ HBaHOBH'la B TOM, 'ITO 

OH CTaJI nepBbIM Hay'IHhlM .IIHpeKTOpOM I-IHCTHTyTa: 

IlM11Tp11ii HBaHOBH'-1 6hlJI 3a'IIICJieH B IIITaT Jia6opaTop1111 "B" c 16 MapTa 

1950r. KaK Ha'laJibHHK TeopeTII'lecKoro oT.rrena, a c 21 HIOJij{ Toro :lKe ro.rra 

Ha3Ha'leH ee .IIIIpeKTOpOM [l]. 0.rrHaKo, C Jia6opaTop11eii "B" OH 6bIJI CBj{3aH 

ropa3.IIO paHbIIIe. 

K pa6oTaM no aTOMHOH npo6neMe BnoxHHUeB 6bm npHBJie'leH He no3.IIHee 

1946r., Kor.rra cTan coTpy.IIHHKOM 9-ro YnpaBJieHHj{ MB.IT CCCP. (Ilpyroe ero 

Ha3Bam,e: Y npaBJieH11e cneu11anbHhlX 11HcT11TyToB.) Eme HII pa3y B n11Tepa­

Type He 6hma npaBHJibHO YKa3aHa .IIOJI:lKHOCTb, KOTopyIO 3aHIIMaJI OJIOXIIHUeB 

B 9-M YnpaBJieH1111. KaK cne.rryeT 113 npIIKa3a Ha'laJihHIIKa 9-ro YnpaBJieHHj{ 
0 Ha3HaqeH1111 Bnox11HueBa B Jia6opaTop1110 " B" nocne.rrHj{j{ ero .IIOJI:lKHOCTh B 
3TOM YnpaBJieHHII - "Ha'laJihHHK oT.rreneHifj{" . 

C ero pa6oToii B 9-M YnpaBJieHIIH CBj{3aHa o.rrHa 113 caMhlX 3ara.rro'IHhIX ne­
reH,n o HeM, cornacHo KOTopoii Il.H. BnoxHHUeB 6bm Ha3Ha'leH ".rry6nepoM" 
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H.B. Kyp"<IaToBa Ha cny-qaii Hey;::i:a-qII c nepBoii 6oM6oii. MbI roBopIIM "Jie­

reH;::i:" nOTOMY' 'ITO :na IIHcpopMaUIUI npoxo;::i:IIT TOJihKO B BOCnOMHHamrnx Me­

MyapIICTOB. HIIKaKIIX apXHBHhIX ;::i:oKyMeHTOB, no;::i:TBep)K.11:aIOIUIIX :ny Bepnno, 

B nay"<IHOM o6opoTe noKa He noJIBIIJIOCh. 

9-e YnpaBJieHIIe MBLI CCCP pJKOB0.11:IIJIO IIHCTIITyTaMH, KOTOphie 6hmn 

co3;::i:aHbI .11:JIJI opraHII3aUIIlI pa60ThI HeMeUKlIX cneuIIaJIIICTOB, npIIrJiaIIIeHHhIX 

B CCCP B 1945-1946rr. O;::i:HIIM II3 HHCTIITyToB, o6pa3oBaHHhIX B cncTeMe 9-ro 

YnpaBJieHHJI, 6bIJia Jia6opaTopIIi:r "B". Pa6oTai:r B 9-M YnpaBnenHII BnoxIIH­

ueB npIIHIIMaJI Henocpe;::i:CTBeHHOe y-qacTIIe B C03;::i:aHIIH Jia6opaTOpIIH "B" II 

cpopMIIpoBaHIIH ee Hay"<IHhIX nJiaHOB. 

CTaB .11:IIpeKTOpOM Jia6opaTOpHII "B" OH COBMeCTlIJI B 0.11:HOM JIHUe a;::i:MIIHII­

CTpaTHBHOe lI Hay"<IHOe PYKOB0.11:CTBO lIHCTIITYTOM: "3a co6oii OCTaBJIJIIO o6mee 

PYKOB0.11:CTBO 06'beKTOM, Hay'l:HOe PYKOB0.11:CTBO Jia6opaToplIJIMII lI TeopeTII"'le­

CKlIM OT;::i:eJIOM". (IlpII 3TOM 6bIJia coxpaneHa .11:0JI)KHOCTh 3aM. ;::i:npeKTopa no 

Hay"<IHoii -qacTn (A.K. KpacIIH), 3a KOTOphIM 6hIJIO ocTaBJieHo: "pyKoBo;::i:cTBO 

Hay"<IHhIM CeKTOpOM N2 2, COCTaBJieHHe npOH3BO.ll:CTBeHHhIX nJiaHOB lI OT"'ICTOB 

no HayKe, KOHTpOJih 3a BhlnOJIHeHHeM nJiaHOB Jia6opaTopIIeii, PYKOB0.11:CTBO no­

BhIIIIeHIIeM KBaJIIIq>IIKaUHII HC II IITp".) 2) 
Ll.ll.BnoxIIHUeB Bo3rJiaBIIJI IIHCTHTYT Ha nepenoMHOM 3Tane ero ncTopun: 

3aKaH"'llIBaJICJI HeMeUKIIll 3Tan II Ha"CJIIHaJICJI HOBhiii 3Tan pa3BIITIIJI <1>8ll. 8TOT 

3Tan - 1950-1956rr. - BeTepaHhI HHor;::i:a Ha3hIBaIOT BnoxnHUeBCKlIM. lIMeHHO 

B 3TOT nepII0.11: 6hIJIH ccpopMnpoBaHbI OCHOBHhie Hay"<IHhie HanpaBJICHIIJI B IIC­

cne;::i:oBaHHJIX <1>8ll II Ha"<IaTbI pa60ThI, BO MHOrOM onpe;::i:eJIJIIOIIIHe ero JIHUO lI 

B HaCTOJIIIIee BpeMJI. 

IlpII ;::i:upeKTope BnoxIIHUeBe 6hmu: * co6paHhI nepBhle B IIHCTHTyTe cpH3H-

-qecKIIe c6opKII ypan-rpacpIITOBhIX peaKTOpOBj 

* cnpoeKTIIpoBana, nocTpoeHa II nymeHa IlepBai:r B MIIpe A8C (1951-1954); 

na"<IaThI pa6oThI no: 

• C03;::i:aHIIIO aTOMHhIX peaKTOpOB .11:JIJI no;::i:B0.11:HhIX JI0.11:0Kj 

• C03;::i:aHIIIO i:r;::i:epHhIX 3HepreTII"'leCKIIX ycTaHOBOK .11:JIJI KOCMH"'leCKlIX anna­

paTOBj 

• co3;::i:aHIIIO peaKTOpOB Ha 6bICTpbIX neii:Tponax; 

• BhlnOJIHeHbI pac"CJeTHO-TeopeTII"'leCKile IICCJie;::i:oBaHHJI no TepMoi:r;::i:epHOMY 

B3phIBHOMY ycTpOHCTBY (1951-1955 rr.); 

• OTKphITo npII HHCTIITyTe Be'l:epnee oT;::i:enenIIe (3aTeM cpIInnan) Mll<l>ll 

- cero;::i:ni:r O6HIIHCKIIM rocy;::i:apCTBeHHhIM TeXHII"'leCKHM YHHBepCIITeT aTOMHOii 
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H.B. KypqaToBa Ha eJiyT.Ia:ii Hey.n.a'III e rrepBo:ii 6oM6oii. Mbr roBopIIM "n 
reH.n." IIOTOMY, 'ITO 3Ta IIHq>OpMaumr rrpOXO.D,IIT TOJlbKO B BOeIIOMIIHamrnx M 

MyapIIeTOB. HIIKaKIIX apXIIBHbIX .D.OKyMeHTOB, IIO.D,TBep,K.D,aIOIUIIX ::ny BepeIIIQ 

B Hay'IHOM o6opoTe IIOKa He IIOJIBIIJIOeb. . 

9-e YrrpaBJieHIIe MB.Il CCCP pJKOBO.D.IIJIO IIHeTIITyTaMn, KOTOphle 6bIJ1 

e03.D,aHbI .D,JIJI opraHII3aUIIII pa60TbI HeMeUKIIX erreuIIanHeTOB, rrpIIrJiaIIIeHHbI 

B CCCP B 1945-1946rr. O.n.HnM II3 nHeTIITYTOB, o6pa3oBaHHhIX B eIIeTeMe 9-r, 

YrrpaBJieHnJI, 6blna Jia6opaTop1rn "B". Pa6oTaJI B 9-M YrrpaBne1mII BnoxnH 

ueB IIpIIHHMaJI Herroepe.n.eTBeHHOe yqaeTIIe B eo3.D,aHIIII Jla6opaTopmI "B" 

q>OpMIIpOBaHIIII ee Hay'IHbIX IIJiaHOB. 

CTaB .D.IIpeKTopoM Jia6opaTopnII "B" OH eoBMeeTIIJI B O.D.HOM nnue a.n.MIIHH 

eTpaTIIBHOe II Hay'IHOe PYKOBO.D,eTBO IIHeTIITYTOM: "3a eo6o:ii oeTaBJIJIIO o6me, 

PYKOBO.D,eTBO 061,eKTOM, HayqHoe PYKOBO.D,eTBO na6opaTOpIIJIMII II TeopeTIIT.I 

eKIIM OT.D,eJioM". (IlpII 3TOM 6bma eoxpaHeHa .D.OJI)KHOeTh 3aM . .n.npeKTOpa rr, 

HayT.IHo:ii qaeTII (A.K. KpaeIIH), 3a KOTOpbIM 6bIJIO oeTaBJieHo: "pyKoBo.n.eTB 

Hay'IHbIM eeKTOpOM N2 2, eoeTaBJieHIIe rrpOII3BO.D,eTBeHHbIX IIJiaHOB II OT'leTO 

no HayKe, KOHTpOJih 3a BhlIIOJIHeHIIeM IIJiaHOB Jia6opaTOpIIe:ii, PYKOBO.D,eTBO II 

BbIIIIeHIIeM KBaJIIIq>IIKaUHII He II IITp".) 2) 
.Il.H.BnoXIIHUeB B03rJiaBIIJI IIHeTIITYT Ha rrepeJIOMHOM 3Tarre ero neTopn 

3aKaH'IIIBaneJI HeMeUKIIII 3Tarr n Ha'lnHaneJI HOBbIII 3Tarr pa3BIITIIJI <1>8H. 8To 

:nan - 1950-1956rr. - BeTepaHbI IIHor.n.a Ha3bIBaIOT bJIOXIIHUeBeKIIM. HMeHH 

B 3TOT rrepIIO.D. 6bI.ITII e<jJopMnpoBaHbl oeHOBHbie Hay'IHbie HarrpaBJieHHJI B IIC 

eJie.D,OBaHIIJIX <1>8H II Ha'laThl pa60TbI, BO MHOroM orrpe.D,eJIJIIOIUIIe ero JIIIUO 

B HaeToJimee BpeMJI. 

IlpII .D.IIpeKTope BnoxnHUeBe 6bmn: * eo6paHbI rrepBbie B IIHeTIITyTe q>II3II 

qeCKne e6opKII ypaH-rpaq>IITOBbIX peaKTOpOBj 

* errpoeKTIIpoBana, rroeTpoeHa II rrymena IlepBaJI B MHpe A8C (1951-1954), 

HaT.IaTbI pa6oThl no: 

e e03.D,aHIIIO aTOMHbIX peaKTOpOB .D,JIJI IIO.D.BO.D,HblX JIO.D,OKj 

• e03.D,aHHIO anepHbIX 3HepreTII'leeKHX yeTaHOBOK .D,JIJI KOeMIIT.IeeKHX arrrra 

paTOBj 

• e03.D,aHHIO peaKTOpOB Ha 6bleTpbIX He:iiTponax; 

• BbIIIOJIHeHhl pae'leTHO-TeopeTH'leeKHe IIeene.uoBaHHJI no TepMOJI.D,epHOM 

B3pbIBHOMY yeTpo:iieTBy (1951-1955 rr.); 

• OTKpbITO rrpn IIHeTIITyTe BeT.IepHee 0T.D,eJieHHe (3aTeM q>IIJIHan) MH<I> 
- eero.D,HJI O6HnHeKIIII roey.n.apeTBeHHblll TeXHH'leeKHH YHHBepeHTeT aTOMHO"' 
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::mepreTIIKH. 

IlepBM A3C 

Han6oJihllIYIO H3BeeTHOeTh 11.H. BnoxHnUeBy rrpIIHeeJia IlepBaJI B MIIpe 

A8C. _ 
16 Mall 1950 r. BhlllIJIO IloeTaHOBJieHIIe CoBMIIHa CCCP o coopy,KeHHII 

Ha nnoma.n.Ke Jia6opaTopnn "B" Tpex TpanerropTHhIX peaKTopHbIX yeTano­

BOK (o6beKT "B-10")3). B .n.e:iieTBHTeJibHOeTII HaII6onee rro.n.roTOBJieHHbIM 6bm 

npoeKT peaKTopa AM, onnpaBrnn:iieJI Ha OIIhIT ypaH-rpaq>IITOBbIX peaKTopoB. 

O.n.HaKo no CBOHM pa3MepaM AM He yMemaneJI B oTeeK rro.n.Bo.n.no:ii no.n.Kn, II 

6hlJIO perneHo peanu3oBaTb ero B Bn.n.e rrepBo:ii A8C. (TaK - AM - "ATOM 

MopeKo:ii" eTaJI "AToMOM MHpHbIM".) 
IlepBoHaT.IaJihHO Bee Hay'IHbie IIeene.n.oBamrn no yeTaHoBKe AM rrpoBo.n.n­

JIHCh B Jia6opaTopIIn II3MepIITeJihHhlX rrpII6opoB AH CCCP ( JIHTIAH, TaK 

e 1949r. eTana Ha3blBaTbeJI Jla6opaTopHJI N2 2, HbIHe PKHU KH). B nrone 

195lr., eorJiaeHO rroeTaHOBJieHIIJO CoBMIIHa II rrpHKa3Y nrY, OTBeTeTBeHHhlMH 

3a eoopy)KeHHe A8C Ha3HaT.IaroTeJI pyKoBo.D.IITeJIII Jla6opaTopHH "B" 

11.H.BnoximueB u TI.II. 3axapoB. Tor.n.a )Ke Bee rrpoeKTHbie MaTepnanhI no 

AM rrepe.n.aroTeJI H3 JIHTIAH B Jla6opaTopnro "B"4). TaKHM o6pa3oM e '.lTOro 

BpeMeHH Jia6opaTOpHJI "B" JIBJIJIJiaCb II 3aKa3'IHKOM, H nay'IHblM PYKOBO.D,H­

TeJieM Beex rroeJie.n.yromIIx pa3pa6oToK no rrpoeKTY IlepBoii A8C. rJiaBHhIM 

KoHeTpyKTopoM oeTaBaJieJI HHHXHMMAIII (H.A:lionJie)Kanb) [5). 

3.n.ecb Heo6xo.D,IIMO IIOJieHHTh, 'ITO rrpoeKTHbie MaTepHaJibl no peaKTopy AM 

6blJIH rrepe.n.aHbI Jla6opaTopHII "B" B HJOHe 195lr. 6e3 TeXHII'leeKIIX perneHn:ii 

no uenoMy plI.D.Y Ba)KHeIIUIHX rrpo6neM, B qaeTHOeTH, - no TB3JiaM. Bn.n.nMo 

rronoMy Ha rrHebMe 1-ro 3aM . .D.HpeKTopa JIHTIAH H.H.ronoBnHa o rrepe.n.aT.Ie 

.D.OKyMeHTOB ("IlepeeblJiaJO BaM Bee HMeIOmIIeeJI y nae rrpoeKTHbie ~aTepnaJibI 

no AM") " " ~ . na.n. eJIOBOM Bee eTOHT 3HaK Borrpoea, Bbipa,KaIOIUHII ne.n.oyMeHHe 

11.H.BnoxnnueBa. poToMy, OKOH'laTeJibHhlII rrpoeKT A8C eymeeTBeHHO oT­

JIIIT.IaJieJI OT rrepBoHa'laJibHOro II oeHOBHaJI pa3pa6oTKa ero 6bma rrpoBe.D,eHa B 

Jla6opaTopIIH "B". 

"B xo.n.e .D.aJibHe:iirne:ii pa3pa6oTKH rrpoeKTa, - BerroMnHan 11.H.BJioXHHUeB -

npo.n:on)KaBrne:iicJI rrapanJieJibHO c eoopy,KeHneM 3.D.aHHJI, B03HHKJIO MHO,KeeTBO 

npo6neM. . .. bOJibUIOe 3Ha'leHHe HMeJia rrpoBepKa pa3JIH'IHblX rrpe.n.BapHTeJih­

llbIX .n:aHHbIX Ha '.lKCIIepIIMeHTaJlbHOM CTeH.D,e ... "[6)). 
3ToT eTeH.n: - KpIITH'leeKaJI e6opKa-MaKeT aKTIIBHOII 30HhI peaKTopa AM 
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II3 rpaqnITa, ypaHa II BOL(hI, - Ha3BaHHa5I BIIOCJie,UCTBIIII "qm3. CTeHL(OM AM<P", 

co6IIpanc5I rrp5IMO rro,u Ka6IIHeToM 11.ILBnoxIIHUeBa A.K.KpacIIHhIM II 

B.r.1Iy60BcKIIM. UenhIO ocymecTBJieHII5I "qiII3. cTen,ua arrrrapaTa AM" 5IBJI5I­

JIOCh rroJiy'IeHIIe 3KcrrepIIMeHTaJibHhIX L(aHHhIX, II03BOJI5IIOII(HX rrpoBepHTh rrpa­

BHJihHOCTh MeTOL(HKII pac'!eTa II Bbl6opa rrapaMeTpoB, UCIIOJih3yeMbIX rrpII pac­

"9:eTax arrrrapaTa AM. AM<P ,uocT:nr KpIITII'!ecrwro cocT05IHII5I 3 MapTa 1954r. 

II CTaJI rrepBbIM peaKTOpOM B O6HIIHCKe, Ha KOTOpOM 6bma ocymecTBJieHa uerr­

Ha5I peaKUH5I ,ueJieHII5I ypaHa. IlpoBe,UeHHhie Ha HeM 3KcrrepIIMeHThI IIOKa3aJIH, 

'ITO 60JihIIIHX OIIIII6oK, ITO Kpai1:Hel1 Mepe Ha Ha'IaJIO KaMIIaHHH l1epBOI1 A8C, 

He 6y,ueT [7]). 
OcHOBHa5I IIL(e5I rrpoeKTa AM COCT05IJia B rrpIIMeHeHHH Tpy6"9:aToro TB3Jia, 

B KOTOpOM IIOTOK BOL(hl L(JI5I TeIIJIOC'beMa L(BII)I(eTC5I BHYTPII Tpy6KII, a ypaH Ha­

XOL(IITC5I CHapy)KII II L(OJI)KeH IIMeTb Ha,Ue)KHhIII TeIIJIOBOI1 KOHTaKT co CTeHKOI1 

Tpy6KII. Co3,uaHne TaKoro TB3Jia 6hmo OJJ:HOII 113 caMhIX Tpy,uHeiiIIInx rrpo-

6JieM. K Ha'IaJIY rrpoeKTHpOBaHII5I crroco6 II3rOTOBJieHH5I Tpy6"9:aTbIX TB3JIOB 

He 6hm II3BecTeH. MHoro'IIICJieHHbie rrorrhITKII p5I,ua HHCTHTYTOB (JIMilAH, 

HMM-9, HMM-13) H3roTOBIITh OIIhITHhie o6pa3UhI Tpy6'!aThIX TB3JIOB, KOTO­

pbre BhI,Uep)KaJIH 6bI rrpoeKTHble TeIIJIOBbie Harpy3KII C TepMOUIIKJIHpOBaHHeM, 

3aKaH'IIIBaJIHCh Hey,ua'IaMII. "PeIIIaromnii ycrrex, - OTMe'!aeT .II.M.BnoxnHu;eB 

. B CBOIIX BOCIIOMIIHaHH5IX, - BhIIIaJI Ha L(OJIIO TeXHOJIOrH'IeCKoro OTL(eJia B O6-

HHHCKe, pyKoBOJJ:HMoro B.A.ManhrxoM"[8]). B KoHue 1952r. 0HII pa3pa6oTaJIII 

TB3JI, K0HCTPYKUH5I K0T0poro ,uorrycKaJia ocymecTBJieHIIe MHOrHX TepM0UIIKJIOB 

II BbIJJ:ep,KIIBaJia Harpy3KII B TpII C JIIIIIIHHM pa3a rrpeBhIIIIaIOII(IIe rrpoeKTHhie. 

l1o,u-qepKIIBa5I poJih 11.M.BnoxnHu;eBa H coTpyJJ:HIIKOB Jla6opaTopnH "B" B 

co3,uaHHH IlepBoii A8C MhI HII B Koeii Mepe He xoTHM rrpIIHH3IITh ponh pyKoBo­

JJ:HTeneii IlrY H BKJia,U B 3TY pa6oTy OIIhITHhIX y-qeHhIX II crreu;HaJIHCTOB ,upy­

rIIX IIHCTHTYT0B :n rrpe,urrpII5ITIII1. C Ha'!aJia M0HTa)Ka o6opy,uoBaHH5I Ha CTaH­

UHH IIO'ITII 6e30TJIY'IHO Haxo,unnrn E.11.CnaBCKIIH, rrpHe3)KaJin M.B.Kyp-qaToB, 

A.11.AneKcaH,upoB, rnaBHhII1 K0HCTPYKTop peaKTopa H.A . .IIonJie)KaJih. 

CnaBCKIII1 qiaKTII'IeCKII B35IJI Ha ce65I PYKOBOL(CTB0 MOHTa)KHhIMH pa6oTaMn, 

Kyp'IaToB - 6oJihIIIe 3aHIIMaJIC5I qJH3IIKoii peaKTopa, AneKcan,upoB - ,uorroJIH5IJI 

Kyp'IaToBa B -qacTH HH)KeHepHo-rrpoII3BOJJ:CTBeHHhIX BorrpocoB, IlonJie)KaJih -

"9:eTKO rrpe,ucTaBJI5IJI ce6e KapTIIHY pa3BIITII5I 3HepreTII'IeCKoro peaKTOpOCTpo­

eHII5I, 0 "9:eM CBIIL(eTeJibCTByeT Bbl6op Tpy6"9:aTOI1 K0HCTpyKUHH TB3JI II KaHaJia 

peaKTopa A8C9). 

11.M.BnoxnHu;eB, KaK Hay'IHhIH pyKoBo,unTeJih rrpoeKTa, 3aHIIMaJic5I He TOJihKO 

B0IIpocaMH coopy)KeHII5I peaKTOpa, HO II BOIIpocaMII C03L(aHII5I TB3JIOB, II BCeMH 

IIH,KeHepHbIMII rrpo6JieMaMII. Ero pa60'IHI1 ,ueHh, KaK BCIIOMIIHaIOT BeTepaHbl 
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IIHCTIITyTa, npo.n:omKaJIC11 He MeHee 15 '!aCOB M Bp11.n: JIil OH HMeJI BhIXO.L{Hbie. 

TaKoe Harrp11JKeHHe Mor BbI,n:epJKaTb TOJibKO cnopTCMeH, KaKOBbIM OHM 11BJI11JIC11 

(KaK II3BeCTHO, OH 6bIJI aJibIIMHHCTOM [10]). 

Te Tpy.n:nocTH, c K0TopbIMH CTOJIKHYJIHCb Il.ll.Bnoxrrm1eB Mero copaTHIIKH 

B 3TOT rreptto.n:, O'IeHb xoporno oTpaJKeHbI B · IIMCbMe IlMHTpH11 llBaHOBH'Ia B 

rrrY B ,n:eKa6pe 195lr.: 

,, ... coo6maro, 'ITO B Jia6opaTOpHH "B" HMeIOTC11 TOJibKO TpH JIHIIa, crroco6-

HbIX ocymecTBJI11Tb Hay<IHoe pyKoBo,n:cTBo: JieiirryHcKHH A.If., KpacHH A.K. 

M BnoxHHUeB Il.ll. B ocTaJibHOM Jla6opaTop1rn cocTOHT H3 ManoorrbITHOH MO­

no.n:eJKH. MeJK,n:y TeM, eCJIH y<IeCTb 06113aHHOCTH, B03JIO)KeHHhle na Ha3BaHHhIX 

Jl~U rrpaBHTeJibCTBeHHhIM perneHHeM, OTHOC1IIUHec11 K CTpOIITeJibCTBY M rrpoeK­

THpoBaHHIO pa3JIH'IHbIX arperaTOB, M K pac<JeTaM IIO crreUHaJibHOH rrpo6JieMe, 

TO ofo,eM yJKe rrony'IeHHOH pa60ThI .n:aneKO BblXO.L{HT 3a rrpe,n:eJibl CKOJibKO­

HH6y,n:b HOpMaJibHOH Harpy3KH, rrpH KOTopoii Morno o6ecne'IHBaTbC11 Ha,n:eJKHOe 

rr~Bce,n:HeBHoe pyKoBo,n:cTBo" [11]). 

· IlycK II ycrrernHa11 pa6oTa IlepBoii A3C IIMeJIII II rocy.n:apcTBeHHoe, II rro­

JIIITII'IeCKoe 3Ha'!eHIIe, IIOTOMY KaK B TaKOH 3aKpblTOH o6naCTII KaK aTOMHa11 

CCCP eme Mano 'ITO Mor OTKphITo noKa1aTb MIIpy. A 3,n:ecb - MIIpHbIH aToM. 

Il.ll.BnoximueB BbicTyrraeT B OTKphITOH ne<IaTII co cTaTb11MII o MIIpHoM 

rrpIIMeHeHIIII aTOMHO:ii 3HeprHII. B HarneM apXIIBe coxpaHHJIIICb IIHTepeCHbie 

noKyMeHTbI o rro.n:roTOBKe IlMIITpIIeM llBaHOBII'IeM rrepBoii cTaTbU rro'ITU cpa3y 

rrocne rrycKa A3C B urone 1954r. .n:n11 ra3eTbI "If3BecTu11", KOTopa51 TaK 

u Ha3bIBanacb "IlepBhIH mar rro rryTu MUpHoro rrpuMeHeHH11 aTOMHOH 3Hep­

ruu". O6cyJK,n:eHue CTaTbU "B OTHOilleHUU CTerreHII umpopMauuu, KOTopa11 

M0)KeT B Heft co.n:epJKaTbC11" rrpoucxo,n:UJIO Ha BbICilleM MUHUCTepcKOM ypoBHe: 

B.A.ManbIIlleB OTIIUCaJI cTaTbIO Ha OT3hIB B.JI.BaHHUKOBY, E.II.CnaBCKOMY, 

B.C.Ilo3,n:H11KOBY M A.II.AneKcaH,n:pOBy. OT3hIBbI pa3,n:eJIHJiucb. Ilo3,n:H11KOB u 

ManbIIIIeB rroTpe6oBaJIII ee rrepepa6oTKII. Ilpu<IeM Ilo3.L{H11KOB Harrucan pa3-

BepHyThie 3aMe'!aHU11, KOTOphle, KaCaJIUCb TOJlbKO Hay'IHO-TeXHII'IeCKHX BOIIpo­

COB. 

IlMuTpuro llBaHOBU'IY, cy.n:11 no ero noMeTaM Ha rron11x 3aMe'!aHuii Kpac­

HbIM KapaH,n:arnoM: "BepHo", "3To Bee IIOHHMaIOT", "IlyTaHIIUa", "9:To )Ke 

BepHo?" II T . .n:. - KpIITIIKa He O'IeHb IIOHpaBHJiaCb. TeM 6onee Ha'IaJibHIIKII, 

BUlIIIMO, caMU He 3HaJIII, 'Iero XOTenu, II6o CnaBCKHH Tor.n:a )Ke B CBOeM pe3IOMe 

K0HCTaTIIpOBaJI: "CTaTb11 xoporna11 II He Tpe6yeT KoppeKTIIpOBKH", a AneK­
caH,n:poB: "C<IuTaro cTaTbIO O'IeHb xoporneii, u HarrucaHa xoporno, u He<Jero II3 

Hee BbICOCaTb ... " [12]). 

· IlpuMe'IaTeJibHO, 'ITO B urone 1954r. BnoxuHueB rrpocun MHHHCTpa 
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B.A.ManhrIIIeBa nepe.n ny6mrnarr11eii 3Toii nepBoii cTaThII "peIIIIITh Bonpoc oT­

H0CIITeJihH0 nceBJ.(0HIIMa, T.K. o603Ha'IeHIIe MOeii [T. e. BnoXIIHIIeBa) cpaMIImrn 

M0)KeT cnoco6cTBOBaTb JI0KaJIII3aIIIIII: 061,eKTa, He o6o3Ha'!eHHOII B coo6nreHIIH ' 

npaBIITeJihCTBa" [13)). 

II po6JieMa "JIOKaJII13aIIIIII o6'beKTa"' He o603Ha'IeHHOro MeCT0HaXmK.neHIIeM 

B coo6nreHIIII TACC o nyCKe IIepBoii B MIIpe A3C, peIIIIIJiaCh o<JeHh 6brcTpo: 

y)Ke B 1955r. cnaBa Jla6opaTopIIH "B" nepeIIIarHyna rpaHHIIhI CoBeTCKoro: 

CoI03a, a Ha IlepBoiI A3C CTaJIII npIIHIIMaTh IInocTpaHHhle .nenerarrIIIi:. 

TaK, uanpIIMep, B H0516pe 1955 r. B MocKBY npII6hma .neneraIIIIJI aurnuii­

CKHX y<IeHhlX. IleneraIIIIJI no6brnana II <1>3H, r.ne 03HaK0MIIJiach c aToMHoii 

3JICKTpocTaHIIIICM. 3.necb aHrJIIIMCKIIM y'IeHhIM 6bIJI nperro.nHeCeH B no.napoK 

4}IIJihM "IIepBaJI B MIIpe" 06 aTOMHOM 3JieKTpocTaHIIIIII AKa.neMHII HayK CCCP, 

KaK Tor.na Ha3hIBaJIH IIepByIO A3C. 

Ilo'ITII 50-neTHHM rrepno.n ycrreIIIHOii pa60Thl IlepBo:ii A3C no.nTBep.nIIn 

npaBIIJihH0CTh npIIHJ!ThlX Tor.na peIIIeHIIM. 3a 3TY pa6oTy IlMIITpIIM IIBaHOBII'I 

B 'IIICJie .npyrnx co3_naTeneiI IlepBOM A3C 6hIJI y.nocToeH JlemrncKOM npeMIIII 

(1955). IloKna.n BnoxnnrreBa o IIepBoii A3C 6bm ocH0BHhlM .noKna.noM Ha 

IlepBo:ii Me)K_nyHapo.nuo:ii KOHcpepeHIIIIH no MIIpHoMy IIcnoJih30BaHIIIO aToMHoii · 

3HepmII B )KeHeBe ( 1955). 

IIepBM A3C oco6bIMH HIITJIMII 6paTCTBa CBJl3aJia ee c03.naTeneii Ha Bee 

rrocne.nyIOIIIHe ro.nhr. 3TH CBJl3II coxpaHIIJIHCh .no CIIX nop. Ilpu )Kll3HH IlMII­

TpHM IIBaHOBH'I He nporrycTim HII o.nHo:ii I06Hne:iiHOM BcTpe'III B O6mmCKe, 

nocBJ1i:IIeHHoii nyCKy IlepBoiI A3C. 

BhrcTpbre peaKTOpbr 

Pa6oThI no peaKTopaM Ha 6brcTphrX HeMTpoHax B CCCP IIHIIIIIIIIpoBamich c 

K0HIIa 40-x rr. n npoBo.nnnnch no.n HaJ'IHhlM pyKoBo.ncTB0M A.H.JieiirryHcKoro. 

BnoxIIHIIeB, B Ha'IaJie 50-x ro.nax C0BMeCTH0 c Jie:iirryncKHM ocynrecTBJIJIJI lIJ.(CO­

JI0rH'ICCK0C PYK0B0J.(CTB0 pa3pa60TKOH Te0pHH H rrpoeKTa rrepBoro B EBporre 

peaKTopa Ha 6bICTpbIX HeMTpOHax c )KllJ_(K0MeTaJIJIH'IeCKIIM TCIIJI0H0CIITeJieM, 

KOTOpbIM CTaJI rrpe.nrneCTBeHHIIK0M p51.na peaKTOpOB-pa3MHO)KHTeJieM. 

B Te BpeMeHa CJI0B0 "pyKOBOJ.(IITh" He HMeJI0 Toro CMbICJia, B K0T0p0M OHO 

'!aCT0 ncn0Jih3yeTCJI ceromrn. PyKOBOJ.(HTh 4}H3pac'IeTOM peaKT0pa 03Ha'IaJI0, 

'ITO 'IeJioBeK J.(0JI)KCH 6hIJI caM npoc'IIITaTh, 'ITO OTH0CHJI0Ch K 4)H3HKC peaK­

Topa. Il.lI.BnoxnnrreB JIII'IH0 3aHHMaJICJI pac'!eTHo-TeopeTH'!ecKHMII nccne.no­

BaHHJIMH no q>H3IIKe 6bICTpbIX peaKTOpOB. B l 950r. OH Bhln0JIHIIJI pa6oTy "Kn-



.IT.II. Enox1mueB - nepBbiii Hay'!Hb!H .11npeKTOP Jla6opaTopnn "B". 31 

HeTII'leCKHe ypaBHeHHJI mm 6bICTpbIX HYJieBhIX TO'leK" no TeopHH 6bICTpbIX pe­

aKTopoB, B KOTopoii 6hma nocTaBJieHa 3aii;a<Ja HaXOJKJJ:eHHJI npocTpaHCTBeHH0-

3HepreTH'leCKoro pacnpeneneHHJI HeiiTpOHOB C y'leTOM Bcex OCHOBHhIX cyme­

CTBeHHhIX 3<p<peKTOB B3aIIMoneiicTBHJI HeiiTpOHOB C JCJJ:paMH. B 3TOH pa6oTe 

6bmo naHO KHHeTH'leCKoe ypaBHeHHe JJ:JIJI <pyHKUHH pacnpeneneHHJI HefITpOHOB 

H npennoJKeH PJCJJ: MeTOJJ:OB perneHHJI 3TOro ypaBHeHHJI (14]). 

B npyroii pa6oTe "K TeopHH KHHeTH'leCKHX ypaBHeHHii" HM 6h!JIH cqiop­

MynHpoBaHhl OCHOBhl TeopHH pac'leTOB KpHTH'leCKHX Mace H BOcnpOH3BOJJ:CTBa 

B peaKTopax Ha 6bICTpbIX H npoMeJKyTO'IHhIX HeiiTpOHax. K 1953r. OCHOBhl 

.C03JJ:aHHOH HM JIH'IHO TeopHH pac'leTa peaKTOpOB 6bIJIH 3Ha'IHTeJibHO pa3BHThl 

ero y'leHHKaMH - MOJIOJJ:hIMH COTpyii:HimaMH, pyKOBOJJ:HMOro BnoxHHUeBbIM Te­

opeTH'leCKoro OTii;ena, H npnMeHeHhl K npaKTH'leCKH ocymecTBJIJ!eMhIM CHCTe­

MaM [15]). IIepBhIMH TaKHMH cncTeMaMn CTaJIH peaKTOphl BHT H BHT<I> 

(BP-1 H BP-2) Manoro pa3Mepa c nnyToHHeBoii aKTHBHoii 3oHoii:. 

M, HaKoHeu, HeJih3JC He OTMeTHTh, 'ITO HMeHHO B O6HHHcKe B 1955r. IlMH­

TpHii MBaHOBH'l npennoJKHJI HJJ:eIO MBP H cTan rnaBHhIM Hii;eonoroM co3ii;aHHJ1 

HMnynhCHOro peaKTOpa nepHOJJ:H'leCKoro neiicTBHJI. 

5I8Y ,n:Jrn JieTaTeJihHbIX arrrrapaToB 

IIepBhie npopa60TKH JCJJ:epHbIX ycTaHOBOK JJ:JIJI neTaTeJihHhIX anrrapaTOB 

KOCMH'leCKoro H aBHaUHOHHoro Ha3Ha'!eHHJI 6bIJIH Ha'laThl B Jia6opaTOpHH "B" 

: B 1953r. IlepBhle HeiiTpoHHO-<pH3H'leCKne, TerrnoTexHH'lecKHe H TepMOJJ:HHa­

MH'leCKHe pac'!eThl, BhIIIOJIHeHHble Torna, IIOKa3aJIH B03MO,KHOCTh C03JJ:aHHJI 

JCJJ:epHoro paKeTHoro JJ:BHraTeJrn (5IPil) c rrpJCMhIM HarpeBOM Boii;opona B Ka'le­

CTBe pa6o<Jero Tena. 

8ToT rrpoeKT ero aBTOphl Heoii;HoKpaTHO o6cyMii;anH c C.II.KoponeBhIM, 

B.II.rnyrnKo, M.B.Kenii;h!IIIeM, A.M.JI10nhKoii. B 1955r. rrpoeKT 6h!n oqiopM­

neH B BIIJJ:e Hay<JHoro OT'leTa, aBTopaMn KOToporo 6h!JIH Il.M.BnoxHHUeB, 

M.M.BoHii;apeHKo, B.51.IIyrrKo H ii;p.(16]) . 

. HecMOTpJC Ha TO, 'ITO KOHCTPYKTOpbI neTaTeJihHhIX annapaTOB He cneIIIHJIH 

BOIIJIOIIIaTb Hii;en Jia6opaTOpHH "B", JJ:OCTaTO'IHO 6bICTpo 3a neii: 3aKpenHJICJI 

HeKnii rrpirnpHTeT B 3Toii HOBoii o6nacTH HccnenoBaHHii. TaK M.B.Kyp'IaToB, 

nony'laJC MaTepHaJihl no C03JJ:aHHIO aTOMHhIX paKeTHhIX JJ:BHraTeneii, npocHT 

B.JI.BaHHHKOBa nanpaBJIJCTh HX "JJ:JIJC nony<JeHHJC 3aKJIIO'leHHJC TOB. BnoxHH-

. ueBy Il.M." [17]). · 
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B 1955 r. Jla6opaTopm.1 "B" npe,IJ;JIO)KIIJia npoeKT 6aJIJIIICTIF-IeCKo:u paKeTbI 

C "TBep.[(bIM peaKTOpoM". C.II. KopoJieB II B.II. rnylllKO CtJIITaJIII, 'ITO TaKaH 

paKeTa 6y;::i;eT He KOHKypeHTOcnoco6HOM B cpaBHeHIIII C paKeTOII Ha XlIMIItJe­

CKOM )Kll.[(KOM TOnJIIIBe, noTpe6yeT 60JibllllIX 3KCnepIIMeHTaJibHbIX II lICCJie.[(O­

BaTeJibCKIIX pa60T' HanpaBJieHIIe KOTOpbIX Ha TOT nepIIO.[( npe;::i;cTaBJIHJIOCb HM 

CJIIIIllKOM Heonpe;::i;eJieHHbIM. 

bJIOXIIHUeB no 3TOMY BOnpocy HMeJI oco6oe MHeHIIe, KOTOpoe B .[(eKa6pe 

1955r. Bbipa3IIJI B 3anIIcKe, a;::i;pecoBaHHOH A.II.3aBeHHrIIHy: "51 ;::i;yMaIO, tJTO 

o6JiaCTb npIIMeHeHIIH aTOMHbIX paKeT - 3TO CBepX.[(aJibHIIe paKeTbI, no3BOJIH­

IOIUIIe nepe6paCbIBaTb 6oJiblllOM rpy3 (He MeHee 10 TOHH) B JII06y10 TOtJKY 

3eMHOro Illapa. . .. paKeTa C TBep.[(bIM peaKTOpOM HBJIHeTCH cei\:qac e.[(IIHCTBeH­

HbIM BapIIaHTOM, TeXHIItJeCKOe ocymecTBJieHIIe KOToporo HBJIHeTCH BnOJIHe MbI­

CJIIIMbIM. Ilo3TOMY OH npe;::i;naran pa3BepHyTh B Jia6opaTopIIII "B" He TOJihKO 

pactJeTHbie, HO II 3KcnepIIMeHTaJibHhle pa60Tbl no aTOMHOM paKe're, "opIIeH­

TIIpOBaTb IIX Ha C03.[(aHIIe MaJIOM onbITHOM aTOMHOM paKeTbI, KOTOpaH .[(OJI)KHa 

HBIITbCH npoTOTIInOM 6y;::i;ymnx 6on'bllllIX aTOMHbIX paKeT" (18]). 

Kopa6eJihHhie peaKTOphI 

9 ceHTH6pH 1952r. BhIIIIJio IIocTaHOBJieHIIe CM CCCP 3a no;::i;nIIChIO 

M.B.CTaJIIIHa o c03;::i;aHIIII aTOMHo:u no;::i;Bo;::i;Ho:u no;::i;KII. O6mee pyKoBo;::i;cTBo 

HaytJHO-lICCJie.[(OBaTeJibCKIIMII pa6oTaMII II pa6oTaMII no npoeKTIIpOBaHHIO o6'b­

eKTa B03JiaraJIOCb Ha rrrY npII CM CCCP (E.JI.BanHIIKOB, A.II.3aBeHHrIIH, 

M.B.KyptiaToB), cTponTeJihCTBO )Ke, a TaK)Ke pa3pa6oTKa Kopa6eJihHOM qa­

CTII II BOopy:lKeHIIH o6'beKTa - Ha MIIHIICTepcTBO cy;::i;ocTpOIITeJibHOM npOMbIIII­

JieHHOCTII (B.A.ManhIIIIeB, E.I'.9IIJIIIKIIH). HaytiHhIM pyKoBO.[(IITeJieM pa6oT 

no ocymecTBJieHIIIO o6'beKTa 6bm Ha3Hatien A.II.AneKcan;::i;poB, rnaBHhlM Kon­

CTpyKTopoM KOMnJieKcHo:u 3nepreTIItiecKoii ycTanoBKII - H.A.IlonJie:lKaJih, rnaB­

HhIM KoncTpyKropoM o6'beKTa - B.H.Ilepery;::i;oB. IlnH pyKoB0.[(CTBa pa6oTaMII II 

paCCMOTpeHIIH naytJHbIX II KOHCTPYKTOpCKIIX BonpocoB, CBH3aHIIbIX C nocTpo:u­

KOM JIO.[(KII, npII HaytiHO-TeXHIItJeCKOM COBeTe rrrY 6hma opraHII30BaHa ceKUIIH 

M 8, KOTopy10 Bo3rJiaBIIJI B.A.ManbIIIIeB. BhlnonneHIIe ocnoBHhIX pa6oT no 

aTOMHOM ycTaH0BKe nopytiaJIOCb Jia6opaTOpIIII "B"' 0 tJeM 20 cenTH6pH 1952r. 

3aBeHHrIIH B nIICbMe coo6IUIIJI bJIOXIIHUeBy: "Bbl YTBep:lK.[(eHhl 3aMeCTIITeJieM 

no uenTpOCIICTeMHbIM pactieTaM II HCCJie.[(OBaHIIHM naytinoro PYK0B0.[(IITeJIH 

o6'beKTa M 627 T. AneKcan;::i;poBa A.II."19) 

A.II.3aBenHrIIH nIIcaJI TaK:lKe, tJTO IIocTaHOBJienIIeM CoBMIIHa Ha Jla6opa-
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Topmo "B" 0.IJ;H0BpeMeHH0 B03JI0,KeHo BhlII0JIHeHIIe pae'leTHO-TeopeTII'IeeKHX 

pa6oT' pa3pa6oTKa TB3JI0B, eoopy)KeHHe II HeIIbITaHHe 0IIhlTHOro peaKTopa 

IIO.IJ;BO)];HOH JI0.IJ;KH. 

IlepBOH H Ba,KHe:fi:rne:fi: 3a.n;aqe:fi: HBHJieH Bb16op THIIa peaKTOpa B KatJeeTBe 

OCHOBHoro neTO'IHIIKa 3HeprIIH, a TaK)Ke 06111ero o6JIHKa 3HepreTH'leeKOH yeTa­

H0BKH. CHa'laJia 3TO 6hlJIH peaKT0phl Ha rpaq>HTOBOM II 6epHJIJIHeBOM 3aMe.IJ;­

JIIITeJie e TerrnoBh1,neJIHIOIIIHMH Tpy6aMn, HeeymIIMH .n;aBnenne. Ilo Tnrry omi 

0Ka3aJIHeb 6JIII3KH K eTpoHme:fi:eH Tor.na rrepBo:fi: A8C. HeeKoJibKO rro3.n;Hee B03-

HHKJIH yeTaH0BKH, y KOT0phlx 3aMe.IJ;JIHTeJieM 6hlJia TH)KeJiaH Bo.n;a. 11 TOJibK0 

II0T0M ( a II0 TeM TeMrraM 3T0 6bm O.IJ;IIH MeeHII) II0HBHJieH KoprryeHOH B0.IJ;O­

BO.IJ;HHOH peaKT0p. 

\ B OKTH6pe 1952r. BnoXHHIIeB .IJ;0KJia.IJ;hlBaJI B CeKIIHIO .M 8 HTC rrrY 
o rrpoBe.n;eHHhlX B Jia6opaTopnn "B" pa6oTax: "B pe3yJihTaTe rrpoBe.n;eHHOH 

rrpe.n;BapHTeJibHOH pa6oThl Mhl e'!HTaeM B03MO)KHbIM rrpe.n;JI0)KHTb .IJ;JIH o6ey­

)K)];eHHH . . . ene.n;yromne BapHaHThl: 

a) TexHoJiornqeCKyro exeMy, Ha oeHoBe peaKTopa AM e neperpeBoM rrapa 

BHyTpH peaKTopa, pa3pa6oTaHHYIO B OT.n;ene TOB. A.K.KpaenHa II 

, .. 6) CxeMhl e npnMeHeHneM MeTaJIJIH'leeK0ro OXJia)K,neHHH, pa3pa6oTaHHble 

B oT.n;ene T0B. Jle:fi:nyHeKoro A.H. 

Y ,Ke npn npoeKTHpoBaHHH peaKTopHo:fi: yeTaHoBKH .n;na IIJIA BhlHBHJioeb 

MH0)KeeTB0 Tpy.n;HoeTe:fi:. CJIO)KHbIM 0Ka3aJI0eb eo3.n;aH11e 6HOJior11qeeKOH 3a­

lI(l1Thl, K0T0paH, e O.IJ;HOII eTopoHbI, o6eenetJIIBaJia 6hl xopornyro 3aIUHTY JIH'l­

H0ro eoeTaBa OT H3Jiy'leHHH peaKTOpHOH yeTaH0BKH, a e .npyro:fi: eT0p0HhI, He 

.ll0JI)KHa 6hlJia no Beey yTonHTh no.n;Bo.n;Hyro no.n;Ky. BoT KaK nnrneT 06 3T0M B 

1952r. BnoXHHIIeB: 

"HeTpHBHaJibHOeTb 3TOH 3a.n;aq11 (rro.n;pa3yMeBaeTeH 3a.n;aqa pa3pa6oTKH JI0-

.l(0'IHOro peaKTopa] BH.n;Ha 113 Toro, 'ITO MOIUHe:fi:rnn:fi: II3 .no e11x rrop pa3pa6o­

TaHHhlX 3HepreTH'!eeKHX peaKT0p0B [B )];OKJMeHTe Be3.n;e rrpoxo.IJ;HT KaK "KpH­

CTaJIJIH3aTop"] 11MeeT TeIIJI0BYIO M0IUH0eTb (30] 000 KBT II Bee BMeeTe e 3aIIIH­

T0II [B .n;oKyMeHTe Be3.n;e - "H30JIHIIHH"] - 5000 TOH. Ilp11 3TOM rnaBHhlH Bee 

COCpe.n;oTO'leH B 3aIIIHTe27. 

Tpy.n;H0CTH y.n;anoeb rrpeo.noneTh, H B arrpene-Mae 1953r. 6bm BhIIIYIIIeH 

3CKll3HhlH rrpoeKT 3HepreTH'leCKOH yeTaH0BKII H HeeKOJibKO II03)Ke Beei't rro.n­

BO.IJ;HOH JI0.IJ;KII. OH II0Ka3an, 'ITO JI0.IJ;Ka H 3HepreTHKa .IJ;JIH Hee MoryT 6hlTb 

C03.IJ;aHhl B BeebMa K0MIIaKTH0M BH)];e II e yMepeHHhlMH MaeeaMH, 'ITO OTKphlJIO 

uopory Brrepe.n;. 

O.n;HaKo pyK0B0.IJ;HTeJIH rrpoeKTa, oeo6eHHO A.II.AneKeaH.n;poB, 

n.M.BJIOXHHIIeB, A.11.Jie:fi:rryHeKHH, OTJIH'IH0 II0HHMaJIH, 'ITO rroeTaBJieHHaH ee-
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pbe3HaJI 3a,n:aqa MO:lKeT 6bITh perneHa TOJihKO Tipll HaJill'lllll KpyTIHOMaCIIITa6-

HhIX 3KCTiepHMeHTaJihHhIX CTeH.IJ:OB, Ha KOT0phIX o6opy.n;oBamre OTpa6aTbIBa­

JIOCh 6hr B ycJIOBllJIX, 6JIH3KHX K HaTypHhlM. Ilo3TOMY B 1953r. Ha 6a3e Jia-

6opaTOpHH "B" TipHCTYTIHJIH K CTpOHTeJihCTBY TIOJIHOMaCIIITa6HhIX CTen.n:oB­

TIPOT0THTIOB 3HepreTH'leCKHX ycTaHOBOK peaKTOpOB IIJIA C BO.IJ:JIHhlM OXJia:lK.n:e­

HHeM H )Kll.IJ:KOMeTaJIJIH'leCKHM OXJia:lK.n;eHlleM (TiepBhlll H3 KOTOphlX 6bIJI BBe.n:eH 

B .n:errcTBIIe TIPH IlMHTpIIH IlBaHOBH'le B Ha'lane 1956r.). OnH Tipe,n:cTaBJIJIJIH 

co6ofi: TIOJIHOCThIO peaKTOpHhIIT oTceK H Typ6HHHYIO ycTaHOBKY IIJIA. Ha 3THX 

CTeH,n:ax 3aTeM .IJ:JIHTeJihHOe BpeMJI OTpa6aThIBaJIHCh peaKTOphI HOBhIX TllTIOB 

H Tipoxo,n:HJIH o6y'leHHe 3KHTia:lKH TIO.IJ:BO.IJ:HhIX JIO.IJ:OK. 

PilC-6T 

26 aTipeJIJI 1950 ro.n:a CoBeT MIInHcTpoB CCCP TIPHHJIJI IIocTaHOBJienn:e 

"O pa6oTax TIO co3.n:anH10 PLIC-6". B 3TOM TI0CTaHOBJieHHH Tipe,n:ycMaTpH­

BaJiaci, opraHH3a:UHJI pac'leTHO-TeopeTH'leCKHX, 3KCTiepHMeHTaJihHhIX H KOH­

CTpyKTOpCKHX pa6oT no co3.n;aHHIO H3.IJ:eJIHIT P1IC-6c ("Cnofi:Ka") H P1IC-6T 

("Tpy6a")20). (Illmpp "P LIC" TIO O.IJ:HOII JiereH.n:e pacrnmppOBhIBaeTCH KaK "Pe­

aKTHBHhlll ,n:Bn:raTeJih CTanHna", TIO .n:pyrofi: - "Pocc1rn .n:enaeT caMa".) 

K pac'leTHO-TeopeTH'leCKHM HCCJie,n:oBaHHJIM TIO TepM0JI.n:epnoMy B3phIBHOMY 

ycTpofi:cTBY (TeMa P1IC-6T) IIocTaHoBJieHHeM CM CCCP OT 9 MaH 195lr. na­

pH.IJ:Y c rpyTinofi: 5I.B.3eJih.IJ:OBII'la B KB-11 (BHHH8<1>) 6hlna TipHBJieqena H 

Jia6opaTOpHlI "B". B TipHKa3e rrrY OT 16 MaH 195lr. .NH67cc roBOpllJI0Ch: 

"IlpHHJITh K pyKoBo,n:cTBY, 'ITO CoBeT MllHHCTpoB CCCP .n:anHhlM TIOCTanoBJie­

HlleM pa3pernHJI rnaBKY opraHH3oBaTh B Jla6opaTopHH "B" oT,n:en TipHKJia.n;Ho:ii: 

TeopeTU'leCKOIT !pll3HKH B KOJIH'leCTBe 15 qeJIOBeK YKOMTIJieKTOBaB ero KBaJill­

!pH:UllpoBaHHhlMll !pH3IIKaMH, TeopeTIIKaMII, MaTeMaTIIKaMll ll pac'leT'IHKaMII" 

[21]). 

B COOTBeTCTBHll C 3THMH perneHHlIMll npHKa30M BnoXHH:UeBa OT 13 OKTJI6p.sI 

195lr. .IJ:JIJI BhIIIOJIHeHHJI pa6oT TIO TepMOJI,n:epnofi: TeMaTIIKe B Jla6opaTopllH 

"B" 6hm co3,n:aH HOBhlIT oT,n:eJI .M 6 TipHKJia,n:Horr TeopeTII'lecKorr <pH3HKll B co­

CTaBe ,n:Byx na6opaTopHrr. Hay'!Hoe pyKoB0.IJ:CTBO oT.n:enoM II BceMII pa6oTaMn: 

Jla6opaTOpHH "B" TIO 3TOIT npo6JieMe corJiaCHO yKa3aHHIO rrrY B03JiaraJIOCh 

Ha 11.H.BnoxHH:UeBa [22]). 

XpoHonorII'lecKHrr HHTepBan Me:lK.IJ:Y npHHJITIIeM perneHIIJI (Marr) H c03.n:a­

HHeM OT.IJ:eJia .M6 (oKTJI6pb) CBJI3aH C KOMTIJieKT0BaHHeM 0T.IJ:eJia ll ocpopMJie­

HlleM .IJ:OTIYCKOB BhlTIYCKHIIKaM BY30B. BJIOXllH:UeBy 6hlJill ,n:aHhl O'leHh IIIllpO-
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KIIe noJIHOMO'IlU{ Ha61IpaTh cnerr1IaJIIICTOB B Hl:Il:I II y<Ie6HhIX 3aBe.nemrnx. Ho 

KBaJIIIqmmrpoBaHHhie cnerr1IaJI1ICThl, 0 KOTOphIX roBOpIIJIOCh B nocTaHOBJiemrn 

CoBMima II np1IKa3e rrrY' y)Ke 6bIJIII 3alif{Thl B .npyrlIX IIHCTIITJTax. IloTOMY 

1Iccne.noBaH1I5IMII no TeMe PilC-6T (KaK, Bnpo<IeM, II no BCeM .npyrlIM TeMaM 

Jla6opaTOp1I1I "B") BMeCTe C BnoXIIHIIeBhIM 3aHIIMaJIIICh, B OCHOBHOM, MOJIO­

.[(hie <plI31IKII II MaTeMaTIIKII TOJihKO 'ITO OKOH'IIIBIIIIIe IIHCTIITJThl. BnoxnurreB, 

ocTaBaBIIIIIHC5I rrpocpeccopoM MfY, HMeJI B03MO)KHOCTh BhI61IpaTh II rrpIIrna­

IIIaTh CBOIIX y<IeHIIKOB. (TaK B Jla6opaTop1IIO "B" rrorrann B.B.Ka.noMrreB, 

1O.II.Paii:3ep, B.C.l:IMIIIenuIIK, Jl.H.Yca<IeB, A.C.PoManoBH'I H .np., cTaBIIIne 

IIOTOM II3BeCTHhIMII y<IeHbIMH.) 

3a rrepno.n 1951-1955rr. rro.n pyKoBo.ncTBOM IlM11Tp1rn l:IBaHOBII<Ia no TeMe 

PilC-6T 6bIJIH rrpoBe.nenhl cephe3uhre pac<IeTno-TeopeTH<IecKne nccne.noBann5r 

no TepM05I.[(epnoMy B3phIBHOMY ycTpOHCTBY, ua<IaJio KOTOphIM IIOJIO)KIIJI OT­

<IeT Il.l:I.BnoxnurreBa "fa30.nnHaMnKa BemecTBa rrpn BhICOKHX TeMrrepaTypax" 

(195lr., <JaCTh 1). 

Bcero no pe3yJihTaTaM pa6oT 6hmo BhrnymeHo 6onee 20 uay<IHhIX OT<Ie­

TOB Jla6opaTopHH "B"' B KOTOpbIX C<pOpMyJinpoBana <pH3HKO-MaTeMaTH'IeCKa5I 

MO.[(eJih Bcex OCHOBHhIX rrporreccoB, rrpoTeKaromnx BO B3phIBHOM ycTpOHCTBe. 

Cpe.nn unx TaK011 cpyu.naMenTaJihHhIH OT'IeT, KaK: "0 uerrpo3pa<InocTn B03-

.nyxa B y.napuoii: BOJIHe n MllHHMyMe 5IpKOCTH orHenuoro IIIapa" (1954r.). AB­

TOphr: Il.l:I.BnoxnurreB, A.C.IlaBhl.L\OB, 10.II.Paii:3ep. 

Ha.no OTMeTHTh, 'ITO B HCCJie.[(OBaHH5IX Jla6opaTopHH "B", IIpOBO.[(HMhIX 

TIO.[( pyKOBO.[(CTBOM BnoxnurreBa, paccMaTpHBaJIHCh ue OT.[(eJihHhie !pH3H'IeCKIIe 

rrpo6JieMhI, a KOHKpeTHa5I KOHCTPYKIIH5I TepM05I.[(epuoro B3pbIBHOro ycTpoii:­

CTBa. <l>n3n<IecKa5I cxeMa rrpe.nno,Keuuoro rpyrrrroii: BnoxnurreBa ycTpoii:cTBa 

0TJill'IaJiaCh OT auanorII'IHhIX pa3pa60TOK BHl:Il:18<1>, C KOTOphIMll COTpy.n­

HllKll Jla6opaTopnn "B" 3HaKOMhI He 6bIJill. l:I.ne5I COCT05IJia B BOCIIJiaMeHeHHll 

60JihIIIOH Macchl .neii:Tepll5I B Bll.[(e ccpepbI. 

3TH nccne.noBann5r IIOBJIH5IJIH ua orrenKy rrepcrreKTHB pa3pa6oTOK no "Tpy6e". 

B Ha<Jane 1954r. B MnHHCTepcTBe COCT05IJI0Ch COBemaune, KOTOpoe BeJI 

l:I.B.Kyp<IaTOB; y<IacTBOBann B.A.ManhrIIIeB, Il.l:I.BnoxnurreB, l:I.E. TaMM, 

A.Il.CaxapoB,51.B.3eJih.L\OBII<I,Jl.Il.Jlau.nay,l:I.51.IIoMepaH<IYK,10.B.XapnToH 

n .np. Ha 3TOM coBerrraunn OT Jla6opaTopIIH "B" BHa<Jane BhICTyrrnn 

Il.l:I.BnoxnurreB, a 3aTeM coTpy.nnnKn ero oT.nena. fnaBHhIM 6hm .noKna.n 

B.B.Ka.noMrreBa o rrepeuoce ueii:TponoB B .nefITepnn. B cBoeM BhICTyrrneunn 

Ka.noMrreB rroKa3an, 'ITO B Pf3YJihTaTe rrpoT5r,KeHnoro B ·rrpocTpancTBe rrepe­

Hoca :rneprnn n HMIIYJihca 6hICTphIMll ueii:TponaMn, a TaK)Ke H3-3a 3<p<peKTa 

KOMIITOHH3arrnn B .neii:Tepnn ua6nro.naeTC5I rrpocTpancTBenuoe 3HeproBhl.[(ene-
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HIIe Ha 6oJihllIIIX paccTOHHII5IX. IIo::iTOMY' 3a.[\a'Ia rrony<IeHII5I .neTOHaUIIII B 

"Tpy6e" He IIMeeT rapaHTIIpOBaHHoro ITOJIO)KIITCJihHOro pellleHII5I [23]). 

B 1955r. IIccne.noBaHII5I no TepMo5I.nepHoii: TeMaTIIKe B Jla6opaTopIIII "B" 

rrpeKpameHhI. AMepIIKaHIIhl y6e.[(IIJIIICh B 6ecrrepcrreKTIIBHOCTII 3TOro MeTo.na 

eme B 1950r. 

" <PII3I'FieCKIIH II,IleaJIII3M" II pa3BIITIIe TeopeTIIqecKOH qm3IIKII 

BpeM5I pa6oThl Il.M.EnoxIIHIIeBa B Jla6opaTop1m "B" coBrrano c OKOH'Ia­

HIIeM TaK Ha3hIBaeMoii: .[\IICKJCCIIII O "q>II3II'IeCKOM II.[(eaJIII3Me". Ha<IaTasr 

B.M.JleHIIHhIM erue B "MaTepIIaJIII3Me II 3MrrIIpIIoKpIITIIIIII3Me" 6oph6a c qm-
3II'ICCKIIM II.[(eaJIII3MOM rrpO.[(OJI)KaJiaCh ITO'ITII Ha rrpOT5I)KeHIIII Bceii: IICTOpIIII 

COBeTCKOH q>IIJIOCO<pIIII II q>II3IIKII. B rrocJieBOCHHhle rO.[(hI oHa ITOJIJ'IIIJia HOBOe 

pa3BHTIIe II Benach BOKpyr OCHOBHhIX ITOJIO)KeHIIH TeOpIIII OTHOCIITeJihHOCTII II 

KBaHTOBoii: MexaHIIKII. lIIIcKyTIIPYIDIUIIe cTopoHhI rrpe.ncTaBJI5IJIII c o.nHoii: CTO­

poHhI <pII3IIKII AKa.neMIIII nayK, c .npyro11 - <IaCTh <pIIJIOcocpoB II q>II3IIKOB MI'Y. 

OpTO.[\OKCaJihHhie rrapTIIHHhle q>IIJIOCO!phl ( eme IIX Ha3hIBaJIII "MexaHIICThl") 

.[\OKa3hIBaJIII, 'ITO TeopII5I OTHOCIITeJihHOCTII II KBaHTOBa5I MeXaHnKa ITOCTpOeHhI 

Ha n.neaJIIICTII'IeCKOii: q>IIJIOCOq>IIII, rrpIIL\yMaHhI 3a py6e)KOM II TOpM03HT pa3BII­

TIIe COBeTCKOH <pII3IIKII. Ha OCHOBe pa3BCH'IaHII5I HOBeii:urnx TeopIIii: "II.nea­

JIIICTOB" II "KOCMOIIOJIIITOB" OHII XOTeJIII pa.nIIKaJihHhIM o6pa30M rrepecTpOIITb 

rrperro.naBaHIIe II rro.nroTOBKY Hay<IHhIX Ka.npoB. 

Me)K.ny TeM, 60JihllIIIHCTBO <pII3IIKOB, o6BIIHHBllIIIXC5I B II.[(CaJIII3Me II KOCMO­

ITOJIIITII3Me ( erue IIX Ha3hlBaJIH - "3aIIa.[(HIIKII")' 6hlJIII Be.nymIIMII TeopeTIIKaMII, . 

rrpII3HaHHhIMII crreuIIaJIIICTaMII B TeopIIII OTHOCIITCJihHOCTII, KBaHTOBOH Mexa­

HIIKe II 51.nepHoii: q>II3IIKe (51.M.<f>peHKeJih, B.A.<f>oK, M.E.TaMM, JI.Il.JlaH.nay II 

.np.). 

8Ta II.[(COJIOrII'IeCKa5I L\IICKJCCII5I .[\OCTIIrJia arroresr B 1949-1952rr., IIpII 3TOM 

B03HIIKJia rrapa.noKcaJihHa5I CIITyauIIsr: C03.[\aHIIe aTOMHoro opy)KII5I OITIIpaJIOCb 

Ha 5IJJ:epHyIO q>II3IIKY' KOTopaic HeMhICJIIIMa 6e3 TeopIIII OTHOCIITeJihHOCTII Il 

KBaHTOBoii: MexaHIIKH. IlpnH5ITO c<IuTaTh, 'ITO M.B.CTaJiuH BMelllaJicsr u OT­

MeHHJI rro.nroTOBKY TaK Ha3hIBaeMoro "cpunococpcKo-KOCMOITOJIHTil'ICCKOro IIO­

rpoMa" 1949r. rrocne Toro, KaK c HMM rreperoBopunu o6ecrroKoeHHhie JI.II.Eepua 

HJIH M.B.Kyp<IaToB. EoM6a 6hlna Ba,KHee qiunocoqiuu. (IIpaB.na, 3Toii: Kpacu­

Boii: BepcHII HeT JJ:OKJMeHTaJihHOro IIO.[\TBep,K.[(eHHH). O.nHaKo JJ:HCKJCCHH Ha 

3TOM He rrpeKpaTHJiach, Il 3Ha'IHTeJihHYIO pOJib B Heii: Ha BCeM IIpOTH)KeHHil 

nrpan EnoxHHIIeB . 
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IlpII 3TOM rroJIO)KeHIIe ero 6bmo B II3BeCTHOH cTerreHII He rrpocThIM: lIMII­

TpIIii: lIBaHOBMtI 6bm O.UIIHaKOBO 6mI30K K o6eIIM rpyrrrraM y<IeHbIX, TaK KaK 

.UJIIITeJihHOe BpeM.H O.UHOBpeMeHHO pa6oTaJI II B MrY, II B <t>IIAH, T.e. B CII­

CTeMe AKa.UeMIIII HayK. 

C .upyroii: CTOpOHhI, bJIOXIIHIJeB HeCOMHeHH0 IIOJih30BaJIC.H oco6bIM .llOBepIIeM 

PYKOBO.UIITeJieii: COBeTcKoro aTOMHOro rrpoeKTa, II BO BpeM.H .UIICKJCCIIII no qrn-
3IIKe HeO.UHOKpaTHO BhlCTynaJI B pomr KOHCJJihTaHTa PYKOBO.llIITeJieH rrrY, a 

3aTeM II MIIHIICTepCTBa. Mo)KHO rrpe.unoJI02KIITh, 'ITO IIOCJie rrpoBaJia COBeIIJa­

HlUI no q>II3IIKe 1949r. II cMepTII npe3II.UeHTa AH CCCP C.U:.BaBIIJIOBa (Ko­

TOphIH B 3Ha'IIITeJibHOH Mepe c.uep2KIIBaJI pa3BIITIIe HeraTIIBHhIX npo11eccoB), 

PYKOBO.UIITeJIII aTOMHOro npoeKTa penIHJIII B3.HTh CIITya11mo IIO.ll KOHTpOJib. 

BepmrTHO rro3TOMY He 1103.UHee q>eBpaJI.H 195lr. Kyp<IaTOB npe.uno2KIIJI, <IT06hl 

BnoxHHIJeB B03rJiaBIIJI CJie.uyIDIIJYIO B03MO)KHJIO .UIICKJCCIIIO ITO q>II3HKe [24]). 

KocHeMC.H KpaTKO B3rJI.H.UOB bJIOXHHIJeBa Ha IIOJI02KeHHe B o6JiaCTII COBeT­

CKOH TeopeTH'leCKOH q>II3IIKH B TOT rrepuo.u. 

B crrpaBKe, 110.uroTOBJieHHoii: .UJI.H A.II.3aBeH.HrIIHa B q>eBpane 1951r. Bno­
x1rn11eB IIHIIIeT, 'ITO "TeopeTH'lecKa.H q>II3HKa xx CTOJieTH.H orrupaeTC.H Ha .UBe 

q>JH.UaMeHTaJibHbie TeOpllII - TeopIIIO OTHOCIITeJibHOCTH H KBaHTOBYIO Mexa­

HHKy". O.uHaKO TYT )Ke OH OTMe<IaeT' 'ITO "o6e 3TH q>yH.UaMeHTaJibHhJe q>II3II­

:qecKHe TeopIIll B03HHKJIH Ha IIO'!Be 3apy6e2KHOH, 6yp2KJa3HOH HayKn 11 3TO He 

MOrJIO He OTpa3HTbC.H OTpnIJaTeJibHO Ha pa3BllTHII COBeTCKOH TeopeTH'leCKOH 

MhICJIH, BMeCTe C 3TllMII TeOpll.HMH K uaM 6blJIH 3aHeceHhl Bpa2K.ue6Hble peBo­

JIIOIJHOHHOMY MaTepIIaJIH3MY q>IIJIOCOq>CKHe KOHIJenIJIIH 11 .uyx HII3KOIIOKJIOHCTBa 

rrepe.u rrpe.ucTaBIITeJI.HMll 3apy6e2KHOH HayKH [25]). 

lJHTa.H TeKCTbl Tex JieT ua.uo xoporno IIOHIIMaTb rrpo6JieMy B3allMOOTHOIIIe­

mrn HayKII 11 II.ueonor11II B To BpeM.H, npe.ucTaBJI.HTh, KaKIIM o6pa3oM y.uaBaJIOCb 

CO'leTaTb q>llJIOCOq>CKyIO Teop11IO MapKCII3Ma 11 q>llJIOCOq>CKIIe rrpllHIJllllbl uayq­

Horo peaJIII3Ma, 11 Ha ypoBHe rrpaKTllKII pa3rpaHll'IIIBaTb cqiephl KOMIIeTeHIJIIll 

y'leHhIX, crreIJIIaJIIICTOB 11 u.ueoJioroB. bJIOXHHIJeB, HCII0Jih3J.H caKpaMeHTaJib­

HYIO q>pa3eOJIOrIIIO TeX JieT' roBopIIT O ueo6xo.uHMOCTII pa3BHTII.H TeopeTII'le­

CKOH q>II3IIKH. Ho 06 3T0M Me roBOpHJI II aKa.ueMIIK <POK - O.UIIH II3 rJiaBHblX 

06'beKTOB aTaK rrapTIIHHbIH q>HJIOCOq>OB B TeX .UIICKJCCH.HX, - <POK roBOpHJI, 'ITO 

"HHKTO H3 HaIIIIIX q>H3HKOB He C'IIITaeT KBaHTOBJIO TeOpHIO nOT0JIK0M q>H3II­

qecKOH Teopmr". 

"lin.H Bcex TeopeTIIKOB, - nHrneT .uanee bJIOXIIHIJeB - COBepIIIeHH0 .HCHa ••• 

fl IIOH.HTHa He.uocTaT0'IHOCTb KBaHTOBOH MexaHIIKH, a M02KeT 6bITb II TeOpIIH 

)THOCHTeJihHOCTH B o6JiaCTH JJibTpaMaJihlX MaCIIITa6oB, xapaKTepHhlX .UJI.H 

meMeHTapHbIX 'laCTIIIJ. Ilepexo.u K HOBhlM MaCllITa6aM, KaK Y'IHT .UHaJieK-
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THqeeKIIii MaTepIIaJIII3M, .lJ:OJI)KeH eonpOBO)KJJ:aTbeH, IlpIIHIIIIIIIIaJIJ,HhlMII, 1rnqe-· 

eTBeHHhlMII II3MeHeHIIHMII TeOpIIII. 

TaKoe IIOJIO)KeHIIe .n:en, Kor.n:a y Hae IIpaKTIIqeeKII He pa6oTaIOT Ha.n: IIpIII!­

IIIIIIaMII TeopIIII, HBJIHeTeH TeM 6onee He.n:onyeTIIMhIM, Bee MhiemrmIIe <pII3IIKH 

IIOHIIMaIOT, qTo IIX HayKa eTOIIT eeiiqae HaKaHyHe HOBoro Bemmoro nepeJIOMa 

II eoBeTeKIIe TeopeTIIKH eTpaeTHO )KeJiaJIII 6hl oeymeeTBIITh 3TOT rrepeJIOM". 

[26]). 

OOJibIIIOH IIHTepee npe.n:eTaBJIHeT aHaJIII3 eoeTOHHIIH H pa3BIITIIH eoBeTeKoii 

TeopeTIIqeeKoii <pII3IIKII, no.n:roTOBJieHHhIH OJIOXIIHUeBhIM B OKTJ!6pe 1953r. .ll:JIH 

oT.n:ena epe.n:Hero MaIIIHHOeTpoeHIIH CoBMIIHa CCCP. 8ToT aHaJIII3 6hm e.n:enaH 

B eBH3H e pa6oTon: KOMIIeeIIII UK KIICC no rrpOBepKe <pH3<paKa MrY. B03rna­

BJIHJI KOMIIeeIIIO MIIHIIeTp epe.n:nero MaIIIIIHOeTpoeHIIH CCCP B.A.MaJiblIIIeB. 

MHIIIIIIIIpOBaJIO 3TY npoBepKy o6pameHIIe rpyIIIIhl Be.n:yIIIIIX yqenhIX 

(M.B.KypqaToB, M.A.JleoHTOBIIq, M.E.TaMM, JI.A.AprrIIMOBIIq, lI.M.BnoxIInrreB 

II .n:p. - noqTII Bee yqaeTHHKH aTOMHoro npoeKTa) B AKa.n:eMIIIO nayK II MIIHII­

eTepeTBO epe.n:Hero MaIIIHHOeTpOeHIIH. 

B eBOeM anaJIII3e OJIOXIIHUeB .n:eJIIIT neTopIIIO pa3BIITIIH eoBeTeKoii Teope­

TIIqeeKOH !pll3IIKII na TpII 3Tana H KpaTKO IIX xapaKTepII3yeT. 

Ero 6eenoKOIIT OTeT,iBanIIe naIIIett: TeopeTIIqeeKOH !pII3HKII, H OH npe.n:Jia­

raeT pH.n: Mep (II3 12 nyHKTOB), Heo6xo.n:IIMhIX JJ:JIH ee pa3BIITHH. Cpe.uII HIIX, B 

qaeTHOeTII, TaKIIe npe.n;JIO)KeHIIH: 

• BepnyTh MaeeoBoeTh HaIIIeii nayKe; • eymeeTBenno noompHTh pa6oTy na.n: 

npo6JieMaMII TeopeTnqeeKoii <pII3IIKIIj • eHHTh pe)KIIM eeKpeTHOeTII e pa6oT, ne 

IIMeIOIIIIIX OTHOIIIeHIIH K TeXHIIKe II npoII3Bo.n;eTBYj • eqIITaTb o6H3aTeJibHhIM 

JJ:JIH PYKOBOJJ:HIUIIX uayqnhIX pa60THIIKOB, 3aHHThIX B IIpOMhIIIIJienuoeTII, yqa­

erne B nayqHhIX eeMnnapax H JIIIqnoe HMM PYKOBo.n;eTBO. 

MHorne II3 npe.n:Jio)KeHnii, BhleKa3aHHhIX B 3Toii enpaBKe 11.M.BnoxIIHUeBhIM, 

BOIIIJIH B TOH HJIII HHOH pe.uaKUHII, B 3aKJIIOqenIIe KOMIIeeIIII II B rroene.n:y10mee 

3aTeM IIoeTanoBnenIIe UK "0 Mepax no ynyqIIIem110 no.n:roTOBKII Ka.n:poB <pII-

3IIKOB B MrY". 

HaeKOJihKO eIIJihHO BOJIHOBaJIO lIMIITpIIH MBanoBIIqa eoeTOHHIIe eoBeTeKoii 

TeopeTIIqeeKOH <pII3IIKH BIIJJ:HO II II3 .n:pyron: errpaBKII, eoeTaBJieHHOH noqTII B 

TO )Ke BpeMH ( noH6pb l 953r.) JJ:JIH Hayqno-Texm1qeeKoro ynpaBJieHIIH MIIHII­

eTepeTBa epe.n:nero MaIIInnoeTpoenmi:. CnpaBKa na3hrnaeTeH "K eoBemaHIIIO 

no TeopeTIIqeCKoii <pH3IIKe". B neii BnoxIIHIIeB ITIIIIIeT: 

B noene.n:nIIe ro.n;hI B AMepIIKe e.n:enaHhI eymeeTBeHHhle yenexII no KBaHTO­

Boii ::ineKTpo.n:IIHaMIIKe ("Mero.n: nepenopMnp.oBKII") II no TeopnII H.n:pa ("H.n:ep­

Hhle o6onoqKII"), a B 1IanIIII pa3pa6oTaHa "KoJIJieKTHBHaH Mo.n:enh H.n:pa", npe.n:-
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.CTaBJIHIOIUaH cymecTBeHHhltt nporpecc no cpaBHeHHIO "KaneJihHOtt" M0L(eJihIO. 

B Harnett :iKe cTpaHe, B HacTomuee BpeMH, pa6oTa no TeopHH npoTeKaeT, B 

0CH0BH0M, B paMKax _naJihHettrnero pa.3BHTHH Ha3BaHHhIX 3apy6e:iKHhIX H.[{ett H 

no pa3pa6oTKe Te0pHH 0TL(CJihHhIX qacTHhIX HBJieHHtt". 

B 3THX o6cTOHTCJihCTBaX OH npe.nnaraeT H36e)I<:aTh Ha C0Bem;aHHH o6cy­

)KL(eHHH pa.3JIH'IHhIX MeJIKHX L(OCTH:iKeHHtt 0T.D;eJihHhIX JIHII, H o6cy,nHTh 0CH0B­

Hble Bonpocbl: KaK .nornJIH .no cymecTBYIOIUero Hey,noBJieTB0pHTeJihH0ro II0-

JIO)KeHHH? 9To ,neJiaTh, 'IT06bl BhlttTH H3 Hero? O6cy,nHTh 3TH B0npocbI C 

IIOJIHOtt 0TKp0BeHH0CThIO, npoaHaJIH3Hp0BaTh ornH6KH npornnoro, pa3BepHyB 

6ecnoma.nHyIO KpIITHKY TeX PYKOBOL(HTeJiett, KOT0phie He no.n.nep:iKHBaJIH HO­

BhIX <pII3H'IeCKHX HL(ett B Harnett CTpaHe, rnyrnHJIH HX pa3BHTHe [27)). 
IJocJieL(H.llll cnpaBKa HaITIICaHa B TO BpeMH, Kor,na eme He OK0H'IHJiaCh 6oph6a 

C cpH3H'JeCKIIM H.[{eaJIII3M0M, H eme CBC,KlI 6bIJIH 0TrOJI0CKH 6oph6h1 C K0CMO­

II0JIHTH3M0M. Ho 3.[(CCh y)Ke HCT ynoMIIHaHHtt 06 0TPIIIIaTeJihH0M BJIHHHHH 

6yp:iKya.3HOtt HayKH Ha pa3BHTHe COBeTCKOtt TeopeTH'IeCKOtt q>H3HKII H np0'IHX 

. II0.[{06HbIX Bem;ett. C _npyrott CT0p0HhI, ero CJI0Ba 06 0TCTaBaHHII COBeTCKOtt 

q>H3HKH 3BJ'IaT .[{HCC0HaHC0M T0MY "3Be3,nona.ny"' KOTOphltt o6pyrnHJICH Ha cpH-

3~K0B IT0CJie nepBhlX HCITbITaHHtt .sr,nepHoro opy:iKII.ll. 

ll.11.BJioXIIHUeB B BocrroMIIHaHII5IX 

Il.ILEnoxIIHIIeB, KaK BC.llKHtt TaJiaHTJIHBhitt qenoBeK 6hm MHororpaHHOtt 

JIHqHQCThIO. ApxHBHhie ,noKyMeHThI, nerrnIIe B 0CH0BY 3T0ro paccKa3a, cyxH H 

Oq>IIIIHaJihHhI. Iln.sr Toro 'IT06h1 nonHee paCKphITh xapaKTep H nyqrne Y3HaTh 

3T0ro qeJI0BCKa o6paTHMCH K B0Cn0MHHaHHHM Tex, KT0 pa60TaJI C IlMHTpHeM 

lfBaHoBH'IeM. BoT KaK nncan o HeM yqacTHHK C03,naHH.ll IlepBott A8C MnxaIIn 

EropoBnq MHHarnHH: 

"HecMoTpH Ha 3aHHT0CTh, IlMHTpHtt lIBaHOBHq coxpaH.srJI cBe:iKeCTh yMa, 

.M0JIHHeH0CHYIO peaKIIHIO, HHKor.na ue yTpa'IHBaJI 'IYBCTBO IOMopa n:, rJiaBHoe, 

. :iKeJie3HhIM o6pa.3oM He .nonycKan paccTpottcTBa o6mecTBeHHo-Hayquott )KH3HH 

HH~TIITyTa. B TO BpeM.sr Ka3aJI0Ch, 'ITO nponycK <pH3H'JeCKOro CeMHHapa B 

lIHCTHTJTe 6bln paBH0UeHeH B3phIBY 60M6h1". 

Jiro6onbITHO, qTo 3TH CeMHHaphl, KaK ITHCaJI bJIOXHHIIeB B O.[{H0M H3 npH­

Ka30B no HHCTHTYTY, . OH np0BO.[{HJI L(JIH "no.nn.srTH.ll Hayquoro T0Hyca np0H3-

BOL(CTBeHHOtt )KH3HH Jia6opaTopn:n: "B" H ,naJihHettrnero pa.3BepThIBaHHH KpH­

TIIqecKoro o6cy:iK,neHH.ll ••• BhIIIOJIHeHHhIX pa6oT" [28)). 
· OH He mo6n:n CKopocneJihIX pernem1ii, Tpe6oBaJI BcecTopoHHero 06,nyMhI-
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Bamur, o6cy)K.n:emur co crreunamicTaMn cMe,KHhIX rrpo6neM. OH HHKor.n:a He 

yrrycKan cny11aH, 'IT06h1 Boo.nyrneBHTb cBoero rro.n:11nHeHHoro co6ece.n:nnKa. B 
TaKHX cny11aHx OH roBopnn: "Ax, ecnn 6hr He 3Ta TeKy'!Ka, H 6b1 o6H3aTenbHO 

nonpo6oBan peIIIHTb 3TY 3a.z:i:a11y' y)K 0'leHb 0Ha HHTepecHa. Ho 3T0 MHe He 

cy)K.n:eno. BpeMeHH HeT. E.n:nncTBeHHoe Moe npe~MymecTBo, KaK .n:npeKTopa, 

C0CT0HT B TOM, 'ITO 3a M0HM Ka6nHeTOM eCTb eme o.n:Ha K0MHaTa H MHe He 

npHX0.[(HTCH .n:aneK0 X0.[(HTb H TpaTHTb BpeMH". 

lIMHTpnii llBaHOBH'l o6na.n:an y.n:nBHTenbHOH crroco6uocTbIO 6hlcTpo pe­

rnaTb 3a.n:a11n, nony11aTb 'lHCneHHbJe pe3ynbTaTbI, Bep0HTH0, no 3TOH MepKe 

OH ouennBan II .n:pyrIIx mo.n:eii. IlyMaIO, 'ITO HMeHIIO II03TOMY OH 3arpy,Kan 

pac'!eT'lHK0B TaKHM o6'beMOM pac'!eTHbIX pa6oT, KOTOphIH OH caM HCKpeHHe 

C'lIITan eme He HC'IepnhIBaIOJUIIM B03MO)KHOCTeii, HO ua BbIII0nHeHIIe K0T0poro 

He XBaTano II 16-TH '!aC0B pa6011ero .[(1151. 

lI Bee ,Ke pa6oTa BMecTe c lIMnTpneM lIBaHOBH'leM Ka3anacb nerKoii n 

Becenoii! B cny11ae, Kor.n:a y nae 11To-nn60 He. nony11anocb, MbI rnnn K 1lMnTp1110 

lIBaHoB1111y n Bcer.n:a rrony11ann oT'BeT, 'ITO npome Bcero 3T0 .n:enaTb TaK-To, 

11nn "a 3TY 3a.z:i:a11y II pernaTb He Ha.no", II0T0MY-T0 H noToMy-To. 

HecMoTpH Ha To, 'ITO no Mepe npo.n:BII,KeHIIH npoeKTa IlepBoii A8C, <pII311K 

11.lI.BnoxnH:u;eB Bee 6onee BTHrnBancH B Texmmy, OH Bee ,Ke ocTancH <pH3H­

K0M. Ilo nocne.n:mix .n:Heii npe6brnamrn B Jia6opaTopIIII "B" OH 1rnor.n:a B03MY­

manoI MH0rHMH TeXHII'leCKIIMII TepMHHaMH, a B nepBoe BpeMH nocMeIIBanCH 

ua.n: "<paMHnbHOH anre6poii" KpIITepHanbHhIX ypaBHeHIIH TennoTeXHHKH II r11-

.n:paBnIIKH, B03Mymanor ITO noBo.n:y np11MeHeHirn TaKIIX e.n:HHHU KaK KIIn0Kano­

pIIH B 'lac": "B 11acax M0)KHO H3Mep5ITb TOnbKO BpeMJI cua, a ue K0nH'leCTB0 

nepe.n:aHHOH 3HeprIIII. Hy, cKa,KIITe, 3a11eM Bbl IIcnonb3yeTe TaKy10 e.n:nHn:u;y, 

Kor.n:a oHa caMa Hari:parnIIBaeTcH c.n:enaTb 113 nee xoTH 6hl "Kanop1110 B ce­

KyH.n:y?". IlopH.D:OK o.n:11H II TOT )Ke!". 

IlpeBocxo.n:cTBO 3HaHIIH II yMennH y lIMHTpIIH lIBaHOBII'la B cpaBHeH1111 c 

HaMH, ero n0.[('lIIHeHHbIMII, He n03BOnHno HaM cnopIITb n, Kp0Me Toro, orrpaB­

.[(bIBaTb 3TII e.n:IIHII:Ubl B TO BpeMH Mbl eme He Mornn. O.n:HaKO npeB0CX0.[(CTB0 

B 3HaHII5IX 1IMIITpII51 lIBaHOBll'la ue 0CTaBnJlno uerrpHHTH0ro 'lYBCTBa,. T. K. 

OH Bcer.n:a ncrronb30Ban ero B .n:o6po,KenaTenbHOM HarrpaBneHHH .z:i:n51 cBoero co-

6ece.n:HIIKa. Ilepexo.n: lIMIITpIIH lIBaHOBII'la H3 Jla6opaTopnn "B" Ha H0BYIO 

pa6oTy B Te'!eHIIe .n:nIITenbHOro BpeMeHII rro.n:.n:ep,KIIBan 'IYBCTB0 C0)KaneHHH y 

0'leHb MH0rIIX IIH)KeHepoB, oco6eHHO y pac'!eT'lHKOB" [29]). 
PaccKa3bIBaH 06 o6HIIHCKoM rrepIIo.n:e )KH3HH 11.lI.BnoxIIH:UeBa Henb3H He 

BCII0MHIITb o ero )KeHe Cepa<pIIMe liocII<poBne Ilpa6Knnoii. IlpII 1IM11Tp1111 

lIBaHOBH'le B Jla6opaTopII11 "B" 6hlno 0TKphITO Be'lepHee oT.n:eneH11e MlI<l>lI, 
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II CepacpIIMa lfoeIItpOBHa eTaJia 0.UHIIM II3 nepBbIX npeno.n:aBaTeJieii BHOBb eo-

3,UaHHoro IIHeTIITyTa. OHa npeno.n:aBaJia MaTeMaTIIKY II KBaHT0BYIO tpII3IIKy. 

C 6onblnoii: TennoToii: II n1060BbIO ee .n:o eIIx nop BenoMIIHaIOT Bee 6bIBIIIIIe eTy­

.n:eHThl. B 1957r. eoeTmme.SI nepBbIH BhmyeK O6HIIHeKoro tpIIJIIIaJia MI1<1>IL 

II nepBbIII Bhlnyrn npIIrnaeIIJI lIMIITpII.SI I1Ba:rtoBII"<ra II CepacpIIMY I1orncpoBHY 

'(KOTOpbie )KIIJIII II pa6oTaJIII y)Ke B Ily6He) Ha npa3,UHIIqHoe TOp)KeeTBO no 

3TOMJ noBo,Uy B O6HIIHeK. 

3aKmoqem-ie 

TaKIIM o6pa3oM, KopoTKIIii nepIIo.n: .n:e.SITeJibHOeTII lIMIITpII.SI l1imHOBIIqa B 

O6HIIHeKe - Ba)KHM eTpaHIIUa B IIeTopIIII HaIIIero HayqHoro UeHTpa. KaK y)Ke 

roBop1moeb B Haqane, BnoXIIHUeB B03rJiaBIIJI IIHeTIITYT Ha nepeJIOMHOM 3Tane 

ero IIeTopIIII II oeTaBIIJI B Heii HeII3rJia,UIIMblll ene.u. IlpII BnoXIIHUeBe qIIeJieH­

HOeTb IIHeTIITyTa Bblpoena B 3,5 pa3a. Ho Ba)KHee TO, qTo K eepe.UIIHe 50-x 

ro,UOB ( KaK OTMeqaJI eaM lIMIITpIIii I1BaHOBIIq B eBoeM BbieTynJieHIIII nepe.n: 

KOJIJieKTIIBOM Jla6opaTOpIIII "B" B cpeBpaJie 1956r., 3a TPII Mee.Siua .uo ero ne­

pexo.ua B OII51II), IIHeTIITYT "II3 rpynnbI HOBIIqKoB, 03IIpaIOIIIIIxe.SI Ha To, qTo 

.n:enaeTe.SI y 6onee onhlTHhlX II MoryqIIx eoee.n:eii:, ... npeBpaTIIJie.SI B MOIIIHbiii:, 

KBaJIIItpIIUIIpoBaHHblll KOJIJieKTIIB, 3a nJieqaMII y KOToporo HeMaJiblll onblT B 

eaM0eTO.SITeJibHOM peIIIeHIIII 6oJibIIIIIX 3a,n:aq" 30). 

Hap.SI.UY e oeH0BHblMII HanpaBJieHII.SIMII ,n:e.SITeJibHOeTII Jla6opaTOpIIII "B", 

B pa3BIITIIe KOTOpbIX BHee 6oJibIIIOii: BKJia,n: lIMIITpIIii llBaHOBIIq, oeo6oii: ero 

mo6oBbIO oeTaBanaeb TeopeTIIqeeKa.SI tpII3IIKa. lIMIITpIIii IlBaHOBIIq npIIJIO­

. )KIIJI Bee yeIIJIII.SI, qTo6bI e03,UaTb B IIHeTIITyTe eIIJibHblH TeopeTIIqeeKIIH OT­

,UeJI, eTaBIIIIIii rop.n:oeTbIO <1>8II, ero M03roBbIM ueHTpoM. BeeM II3BeeTHbI npe­

KpacHbie yqeHhle, BhlpoeIIIIIe B 3TOM oT.n:ene: JI.H.YeaqeB, r.H.CMIIpeHKIIH, 

B.30JIOTJXIIH, r.H.MapqyK, A.B.I1rHaTIOK, A.C.PoMaHOBIIq, H.C.Pa60THOB II 

.upyrIIe, MHOro e.uenaBIIIIIe .UJI.8 pa3BIITII.8 TeopeTIIqeeKOH tpII3IIKII II npaKTIIqe­

CKIIX ee npIIJIO)KeHIIII. 

CToJib )Ke 60JihIIIy10 poJib ehirpan II <1>8 I1 B )KII3HII lIMIITpII.SI I1BaHOBIIqa. 

• 3.ueeb OH npIIo6peJI nepBblll onbIT pyK0BO.UCTBa KpynHbIM HayqHblM KOJIJieKTII­

BOM, 3,Ueeb K HeMy npIIIIIJia HaeT0.Slllla.8 MIIpoBa.SI eJiaBa. I1 BnOJIHe o6oeHOBaHO 

B xapaKTepIIeTIIKe no BbI.UBII)KeHIIIO lIMIITpII.SI I1BaHOBIIqa B AKa.n:eMIIIO HayK 

CCCP A.K.KpaCIIH nIIean B 1953r.: "B JIIIUe .II.I1.BnoxIIHUeBa eTpaHa IIMeeT 

BhI,n:a10meroe.SI yqeHoro II opraHII3aTopa, eMeJio pa3BIIBa10r.uero HayqHhle 3Ha­

HII.SI II npaKTIIqeeKII uanpaBJI.SIIOIIIero 3TII 3HaHII.8 Ha pa3BIITIIe HOBbIX o6naeTeii 
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II.11.BnoxrrHUeB rr ero pa6oTa B CapaTOBCKOM 

yHrrBepcrrTeTe. 

B.B. Hromrn 
CapaTOBCKOIIM yHIIBepcIITeT, CapaToB, Poccmr 

Abstract - BocrroMI1Ham1e o pa6oTe 11.ll. Enoxl!HIJ;eBa B CapaTOBCKOM 

YHIIBepCl!TeTe. BbICTYIIJ1em1e Ha rrpo,n;om1rnHIIII 3TOH KOH<pepeHIJ;llll B Ca­

paT0BCK0M yHI!BepCI!TeTe. 

.. . IlomepJIJl 20.,,,y6y10 36e3ay, 
Ilycmo 6 me.U?lOM 3a.«ep3ute.« caay . 
0 n°omepe pe6UU6o MOJl'lly ... 
... Bee ce6e J1Ce pe6UU6o uten'lly: 
5/ ee ombl'I.LfY, Offibl'I.LfY• 

II.Ii. oJIOXIIHUeB 

I. IlocJie OKOH<J:aHIIH acrrnpanTyphI II 3aIUIIThI .nIIccepTaUIIH (B1934 r.) II.Ii. 
OJIOXIIHUeBy Ha ee OCHOBe 6bIJia rrpIIcy)I{.neHa B 1935 r. yqeHaH CTeIIeHb .UOK­

TOpa <pII3IIKII. B TOM )I{e ro.ny OH 6hm rrpIIrJiarneH Ha pa6oTy B CapaToBcKIIM 

rocy.napcTBeHHhIM ymrnepc1neT HM. HS. l.JepnbirneBcKoro Ha .noJI)I{HOCTb 

rrpocpeccopa - pyKoBo,nnTeJIH co3,naBaeMOH Kacpe,npbI TeopeTII<J:ecKoM <pII3HKH 

<pH3IIKO-MaTeMaTII'IeCKoro cpaKyJibTeTa. Co6CTBeHHO Borrpoc O ee C03,naHHH 

B03HHK ropa3,no paHbrne: erue B KOHUe 1919 HaqaJie 1920 rr. Ha 6a3e cyme­

cTByroruero Ka6HHeTa TeopeTH<J:eCKOM <pH3HKH <l>II3H'IeCKOro HHCTHTyTa cry, 
pyKoBO.llHMoro EorycJiaBCKHM C.A. OpraHH3aUHH Kacpe.npbI 6hma rrpH3HaHa 

BeCbMa )I{eJiaTeJibHOM H B perneHHH VI Bcecoro3Horo c'be3.na <pH3HKOB (1928r.) 

H IIOCTi;l,HOBJieHHH rrpaBJieHIIH YHHBepcHTeTa. O.nHaKO peaJibHble B03MO:lKHOCTH 

opraHH3aUHH TaKOM Kacpe,npbI IIOHBHJIHCb K cepe.nttHe 30 -x ro,n:OB xx B. BoT 

'ITO IIHCaJia MHoroTHpa:lKKa yHHBepCHTeTa "3a HayqHble Ka,npbI" ( OT 23 HIOHH 

1935r.): "Bl934r. . .. 6bIJIH OTKpbITbI HcTopttqecKHe cpaKyJibTeTbI rrpII Mo­

CKOBCKOM H JleHIIHrpa,ncKOM YHHBepCHTeTax. B 3TOM ro.ny OTKpbIBaeTCH Teo­

peTH<J:eCKIIM cpaKyJibTeT B CapaTOBCKOM JHHBepCHTeTe. 8To CBH.UeTeJibCTByeT, 

'ITO cry IIOCJie CTOJIH'IHbIX JHHBepCHTeT0B 3aHHMaeT O.llHO H3 rrepBbIX MeCT 

no CBOeMy uayquo-yqe6HOMY o6opy.noBaHHIO, 6tt6JIHOTeKe tt CBOHM HayqubJM 
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Ka.npaM. Oco6~HHO peunITeJihH0 M0)KH0 6y.neT 06 3T0M 3aJIBIITh U0CJie ocyme­

CTBJiemu.1 UIHpOKOH nporpaMMhl, K0T0paH HaMe'leHa B pa3BIITIIH CrY C 1935-36 
yqe6Horo ro.na. C oceHH 1935 ro.na pa3BepTh.lBaIOTCH H0Bh.le Kacpe.nphl II Jia6o­

paTopIIII no MaTeMaTIIKe, <pH3HKe, XIIMIIII, 6IIOJIOrIIII reonorIIII II T . .L\. Ilo K0JIII­

'-IeCTBY Kacpe.np cry 3aHIIMaeT nepB0e MeCT0 cpe.nII JHIIBepcIITeT0B PC<l>CP 

rrocne YHHBepCIITeT0B MocKBh.l II JleHIIHrpa.na. .IlJIH pyK0BO.L\CTBa H0BhIMM Ka­

qie.npaMII npIIrnarnaIOTCH YHIIBepcIITeTOM KpynHhle cnenHaJIHCThl CoBeTCKoro 

Co103a, npocpeccophI: XHH'-IHH, IleTpOBCKH:u, Kyporn, BarHep, EnoxIIHU:eB II 

nenh.ltt pH.LI .npyrIIx y11eHh1x". Mec1.1neM no3)Ke Ta )Ke ra3eTa rnrcana (B Ho1.16pe 

OT 29 '-IIICJia 1935 r.) B cTaThe peKTopa XBopocTIIHa: "Kom111ecTBO Kacpe.np B 

CfY B 3T0M ro.ny BhipaCTeT C 16 .L\O 34. Ha 3aHHTHe HX npIIrnarneHhl npocpec­

copa MocKoBCKoro JHHBepCIITeTa A. XHH'IHH, II. IleTpoBCKIIH, A. Kyporn II 

B. BarHep no MaTeMaTII'-IeCKIIM-Kacpe.npaM H .II. nJioXHHneB no Kacpe.npe Teo­

peTH'leCKOH <pII3IIKH, Ka6aK no Kacpe.npe .L\HHaMHKH pa3BHTHH T . .L\. " HaKoHen, 

rrpIIBeL(eM CBIIL(eTeJihCTB0 o6naCTHOH ra3eTh.l "KoMMJHIICT "B KoppecnoHL(eH­

UIIII no CapaTOBCKOMY JHIIBepcHTeTy (J'& 234 (521) oTlO OKTH6p1.1 1935 r., c. 

4): "... linH pyK0B0.L\CTBa Kacpe.nphl reoMeTpHII npII6hlJI .L\OKT0p MaTeMaTH­

'-IeCKIIX HayK npocpeccop BarHep II .L\JIH pyKoB0.L\CTBa TeopeTII'lecKOH q>H3HKH -

. .L\0KT0p <pH3II'leCKIIX :aayK npocpeccop bJIOXHHI(eB. Kacpe.npoft .L\HHaMHKH pa3BH­

Tirn ( 6IIonorII11ecKIIH <PaKJJihTeT) 3aBe.nyeT npIIexaBilIHH B CapaTOB npocpec­

cop Ka6aK H Kacpe.npo:u cpII3II'!ecKOH reorpaq>HH - npocpeccop IlIIoTpOBCKIItt". 

Mhl cnenIIaJihH0 TaK no.npo6HO 0CTaHOBHJI.IICh Ha J(OKJMeHTaJihH0M o6o0CHO­

BaHIIII cpaKTa O C03.[\aHIIII Kacpe.nphl TeopeTII'leCKOH <pT3IIKH cry II ee nepB0M 

pyKoB0.L\IITene EnoxIIHneBe LI.II. B CBH3II c TeM, 'ITO co3L(aHIIe Kacpe.nphl .no Ha­

cTomnero BpeMeHH OTH0CIIJIII K 1946 ro.ny, a pa6oTa npocpeccopa EnoxHHIIeBa 

B CrY B006IlJe BO BCeX O<pIIIIHaJihHh.lX MaTepHaJiaX (106HJ1e:UHhlX, HeKponore 

n,.np.) .[\a)Ke He yn0MIIHaeTCH. TaK 'ITO, no BII.L\IIMOMY, HaCTOHill;aJI ny6JIII­

KaIIIIH B 3TOM nnaHe HBJIHeTCH nepBOH. A 3TO 06H3hlBaeT H~C npHBeCTII eme 

_HeCKOJlhKO .[\OKJMeHTaJihHhlX .naHHhlX. OcpHIIHaJihHO Kacpe.npa TeopeTH'leCKOH 

<l>n3IIKII 6hma yTBep)K.L\eHa HapKoMnpocoM JieTOM 1935 r. Tor.na )Ke Ha Ka­

qie.npy, Hap1.1.ny c EnoxIIHIIeBh.lM, 6h!JIH npIIrJiarneHhl IO.E. PyMMep H C. II. 
Lipa6KIIHa. Lion)KHOCTh 3aBe.ny10mero Kacpe.npoft JTBep)K.L\eHa c !5 XII 1935 
r. (IlpIIKa3 no yHnBepCIITeTy OT 19 MapTa 1936 r.) C OKTH6p1.1 Mec1.1na 1936 
r. Ha Kacpe.npy 3a11ncneH 6h!JI KaH.L\II.L\aT cpH3II11ecKIIX HayK III.III. IIIexTep -

yqeHIIK .II.I-I. EnoxIIHIIeBa (npIIKa3 .M OT 11 XII 1936 r.). He6e3hlHTepecHo, 

'-ITO B npIIKa3aX no JHIIBepcnTeTy ( OT 9 IX H 4 XI 1935 r.) onpe.neJIHJIOCh 

'-IIIcno BhlnonHeHHhlX LI.II. EnoxnnrreBhlM y11e6nhlx 11acoB (neKU:IIOHHhlX II ce­

MnnapoB). IlpH 3T0M BO BTOp0M npHKa3e eMy.nonoJIHIITeJihHO 3aC'IHThlBaJIOCh 
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50 JieKIUIOHHhIX 'laCOB II 36 ceMIIHapoB ( CBepx paHee 3aIIJiaHIIpoBaHHhIX). He-
6e3hIHTepeCHO TaK:lKe, 'ITO B .D:OJI:lKHOCTHhIX nepe'IHJIX "Ha36/37 y'le6Hhlll ro.u 

"ycTaHaBJIIIBaJIIICh (B cooTBeTCTBIIII c npIIKa30M HaKpoMnpoca PC<PCP - .na.H 

B npIIKa3e no YHIIBepcIITeTy .N2 5 OT 11 JIHBapJI 1937 r.) nepcOHaJihHhle CTaBKll 

npoqieccopcKo-npeno,naBaTeJihCKOMY cocTaBy, B TOM 'llICJie npoqieccopy Bno­
XIIHIIeBy ( 1000 py6Jieii: B MeCJIII) II .no11eHTaM Ilpa6KHHoii: II IIIexTepy ( c 1 XII 
1936 r.). M 'ITO CHMnToMaTII'IHO - TaK 3TO BeChMa He THnII'IHOe Kan11eJIJipCKH­

a.nMHHHCTpaTIIBHOe pacnopJI:lKeHne 3a no.nnIIChIO npoqieccopa roJiy6a (BPHO 

peKTopa CrY): " ... 9. IlpeKpaTHTh BhlnJiaTy nepcoHaJihHhlx cTaBOK npoqiec­

copy BJioXIIHIIeBy n .no11enTy Ilpa6KnHoii: c IV 1937 r B BII,ny npeKpamenIIJI nx 

pa6oThl B ynIIBepcIITeTe" (?), T.e. eme .no Kon11a ceMecTpa. MB 3aBeprnem1e 

nepBOH 'laCTII Harnero coo6menIIJI O CTaHOBJieHIIII Kaq>e.nphl TeopeTII'leCKOii 

q>II3HKII cry OTMeTIIM, 'ITO IIocTaHOBJieHHeM BAKK BKBIII (oT 23 V 1938) 

IIIexTep III.III. 6h!JI yTBep:lK,nen B y'lenoM 3BaHIIII .no11enTa no Kaqie.npe Te<>'­

peTII'lecKoii: q>H3HKH, a 3aTeM npHKa30M BKBIII npn CHK CCCP yTBep:lK,neH 

"B ,noJI:lKHOCTH Bp. M.0. 3aB. Kaq>e.npoii: TeopeTH'leCKoii q>H3HKH (npnKa3 OT 

9 HIOHJI 1938 r.) 

II. Y'l:e6no-ne.narorn'lecKaJI pa6oTa no TeopeTH'leCKoii: q>H3HKe c npnxo,noM 

BJIOXHHIJeBa n .np. ecTeCTBeHHO IIOBhICHJia neo6xo,nHMhle n ypoBeHh, n CH­

CTeMaTH'IHOCTh H nocJie,noBaTeJihHOCTh, noCKOJlhKY BhIIIOJIHJIJiaCh cneIJIIaJIH­

CTaMH ,nannoro npoq>HJIJI B paMKax ynnBepCHTeTCKOH CTPYKTypnoii: JI'leHKll 

- Kaq>e,nphl TeopeTH'leCKOH q>H3HKH 'IHTaJIHCh Kypchl KBaHTOBOH MexanHKH, 

TeopHH IIOJIJI H 3JieKTpOHHOH Teopnn, CTaTHCTH'leCKOH q>H3IIKH H TepMo,nnna­

MHKH, TeopHH OTHOCHTeJihHOCTH H Kypc .D:OIIOJIHHTeJihHhle rJiaBhl COBpeMennoii: 

q>H3HKH - 3JieMeHThl TeOpHH aTOMa H pa.nnoaKTIIBHOCTH H ,np. lIJIJI o6mero 

npe,ncTaBJieHIIJI 06 ypoBne JieKIJHOHHhlX 3aHJITHH H ceMHHapoB IJeJiecoo6pa3HO 

npHBeCTH Ha3Ba~IHJI neKOTOphIX nay'IHhlX pa6oT BJIOXHHIJeBa, ony6JIHKOBaH­

HhIX B "CapaTOBCKHe" H .nepBhle ro,nhl IIOCJie pa60Thl B CrY (neCOMHeHno, 

3a,nyMaHHhlX B CapaToBe) nepno.n: BpeMJI :lKH3HH 'l:acTHII B a,ncop6npoBan­

HOM COCTOJIHHH ( COBM. C IIIeJITepoM). ATOMHCTHKa B COBpeMeHHOH q>H3HKe 

(coBM. C <P. ranhnepHHhlM). MaTepHJI, Macca H 3HeprHJI (coBM. C <P. raJih­

nepHHhlM). 3q>Hp ( COBM. C <P. ranhnepHHhlM B :lKypnaJie "<PpOHT nayKH II 

TeXHHKH"). B 'leM 3aKJIIO'laIOTCJI OCHOBHhle oco6eHHOCTH KBaHTOBOH Mexa­

HHKH. IlncKyccHJI o cTpyKType aToMnoro JI.D:pa (B Ycnexax q>H3H'leCKHX nayK) 

l.ho TaKoe TeopnJI OTHOCHTeJihHOCTH OHTM. M.-JI. 1936 r. IloBTopno oroBo­

pHMcJI, 'ITO nepe'IeHh ne BKJIIO'laeT KaK pannne pa60Thl, TaK H Bee nocJie,ny­

IOIIJHe ny6JIHKaIJHH BJIOXHHIJeBa, poBHO KaK H ne no.npa3yMeBaeT KaKyIO JIH6o 

HX xapaKTepHCTHKy. BechMa Ba:lKHO, o.nnaKo, OTMeTHTh, 'ITO pa6oTa npoqiec-
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copa BJIOX.IIHIJ;eBa B cry. He orpaH.11q.11Banach T0JihK0 O.llHOM aKa)leM.11qecKOM 

Harpy3KOM. lIM cpa3y )Ke 61,ma pa3BHTa c.11cTeMaTirqecKasr, BHe JlOJI)KHOCTHOM 

ceTKH, HayqHo nonymrpHaH .II npocBeT.IITeJibCKasI )leHTeJihHOCTb. BoT qTo nu­

cana o6nacTHasI raJeTa "KoMMJHHcT" (B HoMepe OT 22 OKTH6pH 1935 r., M 
244 (531), c 4.): "Ilp.116I,1Brn.11n: .113 MocKBhI .llJIH pa6oThl B CapaTOBCKOM JHH­

BepcuTeTe npoq>eccop Bnox.11Hu;eB Il.lI. npoqTeT U:HKJI neKU:HM .llJIH HayqHux 

pa60TH.IIKOB CapaToBa Ha TeMy "Ilpo6neMhl aT0MH.oro H,npa". IlepBaH neKU:HH 

cocT0HTCH cero,nHH B 8 q, 10 MHH. Beqepa B cp.113.11qecKoii ay,nuTop.11.11 (III Kop­

nyc yH.11Bepc.11TeTa). Cero.llHH )Ke npocpeccop X.11Hq.1IH np.11cTynaeT K qTeHHIO 

YH.1IBepc.11TeTCK0ro Kypca Teop.11.11 .nettCTB.IITeJibHOro nepeMeHH0ro. JleKIJ;.II.II 6y­

.ll.lIT qHTaTbCH no qeTBepTbIM .llHHM rneCT.II.llHeBK.II c 9 q, 20 M.IIH. Beqepa B 

. q>.113.IIqecKOH ay.llHTOp.lIH YHHBepCHTeTa". 3aMeqy' qTo 3TH nepBble JieKIJ;.II.II ( a 

3a TeM .11 nocne.ny10m.11e) H - llIKOJihHHK 9 KJiacca cpe.nHen: llIK0JihI noceTHJI, 

K C0)KaJieH.IIIO He npOBO.llH KaKHX-JIH6o, XOTH 61,1 KpaTKHX, 3anuceii. B na­

MHTH coxpaHHIOTCH T0JibKO OT)leJibHble qacTHhle cpaKThl. OTqeTJIHBO noMHIO, 

HanpHMep, 3JieMeHTbI H3 JieKIJ;HM O runoTe3e HeHTpHHO H 3aKOHe coxpaHeHHH 

3HeprH.II H HeKOTOpbie .npyrue (no TeopHH OTHOCHTeJibHOCTH H 3q>Hpe). 5J CTaJI 

cTy.lleHTOM q>.II3MaTa capaTOBCKOro YHHBepCHTeTa B ceHTH6pe 1937 r., KOr,na 

IlMHTpHM lIBaHOB.IIq B cry y)Ke He pa6oTan. O.nHaKO CBOIO poJib ero JieK­

lIHH curpaJI.II B Bbl6ope MOen: cneu;HaJibHOCT.II. IlIKOJIHpOM B COOTBeTCTB.II.II c 

.llYXOM Toro BpeMeH.11, H Hau;eJIHBaJICH Ha cneu;.11an.113au;.1110 no Kacpe.npe a3por.11-

.llPOMexaH.1IKH ( T .e. "aBHaIJ;.IIOHHOMy" HanpaBJieH.IIIO YHHBepcHTeTCKOro o6pa30-

BaHHH). JleKIJ;.II.II npocpeccopa BJIOX.IIHIJ;eBa B KOpHe .II3MeH.IIJI.II MOe npe,ncTaBJie­

HHe O COOTHOllieH.II.II OT.lleJihHbIX HayqHl,IX .n.11cu;.11nJIHH. 5J B Mepy B03paCTHhlX 

B03MO)KHOCTeM CTaJI OC03HOBaTb qTo eCTb q>.113.IIKa KaK q>yH.naMeHTaJibHasI YHH­

BepcHTeTCKaH nayKa .II ee IlOJIO)KeH.IIe B C.IICTeMe 3HaHHM. Bo3Bpamasrcb K TeMe 

"BJIOX.IIHIJ;eB .II ero pa6oTa B. CrY", OTMeqy, qTo B nocJie.D;H.IIe npe,nBOeHHhle 

11 BOeHHhle ro.nu (1938 - 1945) B yH.11BepcuTeTe .II Ha Kacpe.npe TeopeT.11qeCKon: 

<p113HKH CrY KaKHX-JI.1160 Il.lICbMeHHhlX MaTepHaJIOB O KOHTaKTaX .II CBH3HX C 

.II.IL BnoxHHU:eBhlM neT. HeT n y MeHH TaKoBux, poBHO .11 n.11qH1,1x Bocno­

M1IHaH.11n:. Ilo-B.IIJl.lIMOMY' OH B 3TOT nepno.n C yH.11Bepc.11TeTOM ne o6maJICj{ .II 

B CapaToB He npHe3)KaJI. BHOBh c Il.lI. Bnox.11nu;eBhlM H BCTpeTHJICH y)Ke B 

1946 r. Bo BpeMH cOBMeCTHOM KoMaH,nHpoBKH c 3aB. Kacpe.npon: A.C. IIIex­

TepoM B MocKBY (no ,neJiaM HlilIM<t> crY, IIOM. .ll.lipeKTopa KOToporo no 

a)lM.IIH.IICTpaTHBHO-TeXH.IIqecKOM qacTH H 6bIJI, 6y_nyq.11 CT. npeno,naBaTeJieM 

Kaqie.npu O6men: q>H3HKH, ll 0.l(HOBpeMeHHO no HayqHhlM BOnpocaM Moen: H/n 

pa60Thl - npo6JieMe pa3.lleJieHHH TH)KeJibIX .II30TonoB BY: 3JieKTpOMarH.IITHhlM 

IT0JieM C q>a30BOM q>OKycnpoBKOM - lI3OTPOH). BcTpeqa C n.H. BJIOXHHIJ;eBbIM 
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II ero co,ue:iicTBIIe o6ecne'IIIJIII nepBI,re Mon KOHTaKTbI c HI1<1>I1-2 (Ha CoKone) 

II 3HaKOMCTBO c npocpeccopoM C.H. BepHOBbIM, a TaK )Ke .upyrnMII npocpecc~ 

paMII cpn3II'IeCKoro cpaKJJibTeTa MrY (CnIIBaKOBhlM II TnMnpa3eBbIM). 3aTeM 

, B Haqane y)Ke 50-x ro,uoB, co,ue:rrcTBIIe IlMIITpIIH I1BaHOBII'Ia npIIBeJio K KOH­

TaKTaM c T.T.JI. B CBH3II c npo6neMo:rr co3,uanna IIHKJIOTponnofI na6opaTopIIII 

B CapaTOBCKOM ynnBepCIITeTe II, naKonerr, B KOHIIe 50-x ro.uoB, nocne opraHII-

3aIIIIH B CrY npo6JieMHOH Jia6opaTOpIIII a,uepno:rr cpII3IIKII (3aB. Jia6. I1roHIIH 

B.B. ), 6naro,uapa no.u.uep)KKe IlMnTpIIa I1BanoBII'Ia BnoxIInrreBa II aKTHBHhlM 

.ue:iicTBIIHM 3aB. Kacpe,upo:ii TeopeTII'IeCKOH <l>II3IIKII A.C. IIIexTepa, 6bmo ycTa­

noBneno nayqnoe co,upy)KeCTBO c OI15II1 (r. Ily6na), nepepocrnee B c03,uanIIe 

cpnnnana Kacpe,upbl B O6'be,UIIHeHHOM IIHCTIITyTe (Mbl 3,UeCb He OCTanaBJIIIBa­

eMCH na BbIXO.UHIIIIIM 3a paMKH ,uaHHoro coo6meHIIH, co,upy)KeCTBe Kacpe,upbI 

II JI5I cp cry C cpII3II'IeCKHM IIHCTIITJTOM AH CCCP, no.u.uep)KaHHOro aKa,n:e­

MIIKOM CKo6eneBbIM B.II. - oT,uen "IIIITOMHIIK", 3aB oT,uenoM aKa;:i:eMIIK B.H. 

BeKcnep na6opaTopIIefI - Jl.E. Jla3apeBa) Cpe.uII nepBbIX cTy,ueHTOB, OKOH'IIIB­

IIIIIX cry no cnerrIIaJibHOCTII cpII3HKa aTOMHOro a,upa II KOCMII'IeCK:UX Jiyqeif 

r.I1. KonepoB, H.H. CnoHOB, B.K. JlyKbHHOB, B.r. CepanIIH, o.r. BoKOB, 

M.A. rpnmeHKO, O.I1. JiorIIHOB, A.B. <l>eHIOK, H.B. CKa'IKOB, B.II. rep.UT, 

r.H. JlbIKaCOB, IO.P. TroxTHeB, B.II. )KIIryHoB, M.B. IllepTeJib, I0.11. 
I1BaHbIIIIIH, JI.III. IllexTep II ,up. (3a .uecaTnnenre 1955 - 1965 rr. 'IIICJI0 

CTy,ueHTOB no ,UaHHOH cnerrIIaJIII3aIIIIII TeopeTII'IeCKOH H 3KCnepIIMeHTaJibHOH 

B03pOCJIO .uo noJIHOH rpynnbI ymrnepCIITeTCKOro rmaHa no,urOTOBKII cnerr:ua~ 

JIIICToB). Cpe.uu nepBbIX pyKoBO.UIITene:ii ,uIInJIOMHbIX pa6oT no OI15II1 6bIJIII 

P.M.PbIH.UIIH, C.M. BnneHbKHH, B.B. BenaeB, M.I1. IllnpoKoB, Hryen BaH,­

Xhey, B.H. 3axapbeB, B.A. Ap6y3oB, B.A. MemepaKoB, A.B. EcppeMoB, 

B.r. Ka,ubIIIIeBCKIIH, c.c. reprnTeHH. H.A. l.JepHHKOB, H.I1. TapaHKIIH, 

B.B. BanarnoB :u ,up. Bee pyKoBO.UIITeJIII (II perren3eHTbI) ,uunnoMHbIX pa6oT 

IIIHpOKO H3BeCTHbie yqeHbie, 6e30TKa3HO npHHHMaJIH Ha ce6a BeCOMbIII rpy3 

PYKOBO,UCTBa .UHnJIOMHbIMH pa6oTaMII, o6ecne'IHBaH HX BbICOKIIH nay'IHbIII ypo­

BeHb, npe,U'bHBJIHeMbIM K BbIITJCKHIIKaM YHIIBepCIITeTOB. C .upyrofI CTOpOHbI, 

IIMena pyKoBo,UHTenefI CBII.UeTeJibCTBYIOT o cTenenn npe,uBapIITeJibHOH no.uro­

TOBKII CTy,ueHTOB, cnerrIIaJIII3IIpOBaBIIIHXCH no Kacpe.upe TeopeTII'IeCKOH II a,uep­

HOH cpH3HKH CrY, cnoco6Hbrx pa6oTaTb na ypoBne Tpe6oBaHIIII BbICOKOKBaJIH­

cpHUIIpoBannhrx pyKoBO.UIITene:ii. Ha 3TOM MO)KHO 6bIJIO 6hr nocTaBHTb TO'IKY B 

paccMoTpemrn Bonpoca o II.I1. BnoxIIHIIeBe II ero CBH3HX c CapaTOBCKIIM yn:n­

BepcIITeTOM II pOJIII B cTaHOBJieHHH II pa3BIITHH nanpaBJieHHH cpH3HKa a.upa II 

3JieMeHTapHbIX qacTHU Ha cpH3cpaKe crY. O.unaKo, HaM npe.ucTaBJIHeTCH rrene­

coo6pa3HbIM npnBeCTH neKOTOpbre cpparMeHTbI H3 II03TH'IeCKoro TBOp'IeCTBa 
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lIMIITpiu.1 IfBaHoBwm, ofo,eKTII3IIpy10mee ero BHJTpeHHee cocTO.HHHe .UY.I.I.III B 

ro,Uhl O KOTOphIX 3,UeCh .1.1.IJia pe'Ih. BoT 3TII CTpOKII (II3 CTIIXOTBOpeHII.H" Me<J:Te 

Moei'i" ): " ... Mo.a Ha,ue:iK,ua II Me<J:Ta! 

Hae e mo6010 6u.itu, u3pauu.itu, U3M.H.itu .. 

... JlorJ uo2u 6poea.itu 6peaua uedoaepu.H! 

.. . B .itU1'O uaxa.itb'ltO pJFCa.ito .itU1'eMepbe. 

Ho Mbl oema.itueb ua uo2ax . 

..• Ho x:ax: 3a6b1mb. Bee noMUUM . 

... Eu.itu: ue.itenoemb10 eaepxy, 

dux:oemb10 a nax, 

HoJFCoM npedame.itbemaa a enuuy. 

A Mbl e mo6oi1 oema.itueb ua uo2ax. 

Ho x:pbl.itb.H eM.Hmb1! 

Tenepb .itememb yJFCe dpy2uM, 

lloaepuM a uux, ouu xopowue pe6.Hma". 



,ll. 11. 5AOXHH!!eB H A. K. KpacHH Ha nepBOH B MHpe A8C. 06HHHCK, 1954 r . 

,ll. 11. BAoXHH!!eB c pa6o'!HMH Ha A8C B 06HHHCKe. 1954 r. 



4. 11. 6Aox1rnyea Ha npa3AH0BaHHH 10-AeTHSI nepaoii B MHpe A3C. 
O6HHHCK, 1964 f. 

20-AeTHHH 106HAeH nepaoii B MHpe A3C. 1974 r . 
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The famous book "An Introduction to Quantum Mechanics" by Prof. D.I. 
Blokhintsev was one of the first textbooks on quantum mechanics for universi­
ties published in Russia. Dmitriy lvanovich succeeded to explain very delicate 
:i,nd intricate problems in a strict and comprehensible manner. 

The notion of measurement in quantum mechanics and probabilistic char­
:i,cter of the theory were among them. These problems were important in the 
~arly years of quantum mechanics. They attract a great interest now as well, 
rarticularly in connection with the present development of quantum commu-
1ication. 

Here we present a detailed description of a new quantum mechanical notion 
- Conditional Density Matrix - proposed by the authors (1], [2], (3]. This 
10tion i~ a natural generalization of von Neumann density matrix for such 
Jrocesses as divisions of quantum systems into subsystems and reunifications 
>f subsystems into new joint systems. As we will see, conditional density 
natrix assigns a quantum state to a subsystem of a composite system under 
:ondition that another part of the composite system is in some pure state: 

First, let us recall some elements of the general scheme of quantum me­
:hanics proposed by von Neumann in 1927 [4]. 

According to von Neumann, to evaluate the mean value of a physical vari­
tble F one should calculate the trace 

< F > = Tr(Ff>). 

Here operator f> satisfies three conditions: 

1) r = f>, 

2) Tr{> l, 

3) V'ljJ E 1l < 'l/Jli>'l/J > ~ 0. 
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By the formula for mean values von Neumann found out the correspondence 
between linear operators p and states of quantum systems: 

state of a system p ¢=} linear operator p. 

In this way, the formula for mean values becomes quantum mechanical 
definition of the notion "a state of a system". The operator p is called Density 
Matrix. 

From the relation 
( < F > )* = Tr( fr+ p) 

one can conclude that Hermitian-conjugate operators correspond to complex­
conjugate variables and Hermitian operators correspond to real variables. 

F B fr ¢=} r B fr+, 

F = F* ¢=} fr = fr+. 
The real variables are called observables. 

From the properties of density matrix and the definition of positively defi­
nite operators: 

fr+= fr, \:/1/J E 1-l < 1/JIF.1/J >- 2: 0, 

. it follows that the mean value of a nonnegative variable is nonnegative. More­
over, the mean value of nonnegative variable is equal to zero if and only if this 

· variable equals zero. Now it is easy to give the following definition: 
variable F has a definite value in the state p if and only if its dispersion in 

the state p is equal to zero. 
In accordance to general definition of the dispersion of an arbitrary variable 

D(A) = < A2 > (< A >)2' 

the expression for dispersion of a quantum variable F in the state p has the 
form: 

Dp(F) = Tr((J2p), 

where Q is an operator: 

Q = fr-< .r> E. 

If F is observable then Q2 is a positive definite variable. It follows that the.• 
dispersion of F is nonnegative. And all this makes clear the above-given defi­
nition. 
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. Since density matrix is a positive definite operator and its trace equals 1, 
we see that its spectrum is pure discrete and it can be written in the form 

where Pn is a complete set of self-conjugate projective operators: 

n 

Numbers {Pn} satisfy the condition 

P~ = Pn, 0 s; Pn, LPnTrFn = l. 
n 

ltfollows that pacts accordingto the formula 

piJ! = LPn L cf>na(</>naliJ!). 
n aEAn 

The vectors ¢no form an orthonormal basis in the space 1-l. Sets ~n = 
{1, ... , kn} are defined by degeneration multiplicities kn of eigenvalues Pn• 

Now the dispersion of the observable :F in the state p is given by the 
equation 

'Dp(:F) = LPn L IIQ</>noll 2
• 

n oEAn 

All terms in this sum are nonnegative. Hence, if the dispersion is equal to 
zero, then 

if Pn -=/- 0, then Q</>na = 0. 

Using the definition of the operator Q, we obtain 

if Pn -=/- 0, then F'c/Jno = c/Jno(F). 

In other words, if an observable :F has a definite value in the given state p, 
then this value is equal to one of the eigenvalues of the operator F'. 

In this case we have 

pF'cpnc, = c/JnaPn(:F}, 

F' (J<pnc, = </>nc, ( :F) Pn , 

that proves the commutativity of operators F' and p. 
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It is well known, that if A and B are commutative self-conjugate operators, 
then there exists self-conjugate operator T with non-degenerate spectrum such 
that A and B are functions of 'I': 

TIJI = L <Pnotno(<Pnol1J1)1 
no 

t~O = tno, tna # tn'o'l if (n,a) # (n',a'). 

FIJI = L<Pnof1(tno)(<Pnol1J1), 
no 

plJI = L<Pnoh(tno)(<PnallJI), 
no 

Suppose that F is an operator with non-degenerate spectrum; then 
if the observable :F with non-degenerate spectrum has a definite value in 

the state p, then it is possible to represent the density matrix of this state as a 
function of the operator F. 

The operator F can be written in the form 

fr = LfnPn, 
n 

P:.= Pn, PmPn = OmnPm, tr(Pn) = 1, LPn = E. 
n 

The numbers {/n} satisfy the conditions 

f:=fn, fn#fn,, if nf,n'. 

We obviously have 
F = LfnPn. 

n 

From 
(F) LPnfn ff,, 

n 

(F2
) = LPnf;. = ff., 

n 

we get 

Pn = OnN• 

In this case density matrix is a projective operator satisfying the condition 

•2 A 

p = p. 
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It acts as 

where jw) is a vector in Hilbert space. 
The mean value of an arbitrary variable in this state is equal to 

It is so-called PURE state. If the state is not pure it is known as mixed. 
Suppose that every vector in 1-l is a square integrable function w(x), where 

x is a set of continuous and discrete variables. Scalar product is defined by 
the formula . . 

(wl<I>) = j dxw*(x)<I>(x). 

For simplicity we assume that every operator F in 1-l acts as follows . 

(Fw)(x) = J F(x, x
1

)dx
1

W(x'). 

That is for any operator F there is an integral kernel F(x,x') associated with 
this_ operator 

F ~ F(x,x'). 

Certainly, we may use <>-function if necessary. 
Now the mean value of the variable :F in the state p is given by equation 

(:F)p = j F(x,x
1

)dx
1

p(x
1

,x)dx. 

Here the kernel p(x, x
1

) satisfies the conditions 

p*(;,x') = p(x
1

,x), 

j p(x,x)dx I, 

VW E 1-l j w(x)dxp(x,x
1

)dx
1

W(x
1

) 2 0. 

Suppose the variables x are divided into two parts: x = {y, z }. Suppose 
also that the space 1-l is a direct product of two spaces 1-l1 , 1-l2 : 
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So, there is a basis in the space that can be written in the form 

</>an(y,z) = fa(y)vn(z). 

The kernel of operator F in this basis looks like 

F ¢::=} F(y, z; y', z'). 

In quantum mechanics it means that the system S is a unification of two. 
subsystems S1 and S2 : 

S = S1 u S2. 

The Hilbert space H corresponds to the system S and the spaces H1 and H 2 · 

correspond to the subsystems S1 and S2 • 

Now suppose that a physical variable F 1 depends on variables .y only. The 
operator that corresponds to F 1 has a kernel 

F1(y,z;y
1,z') = Fi(y,y

1

)iS(z-z
1

). 

The mean value of F1 in the state p is equal to 

(Fi)P = j F(y, y
1

)dy
1

p1(y
1

, y)dy, 

when~ the kernel p1 is defined by the formula 

P1 (y, y') j p(y, z; y,, z )dz. 

The operator p1 satisfies all the properties of Density Matrix in S1• Indeed,' 
we have 

P1*(y,y') = P1(Y
1

,Y), 

j P1(y,y)dy = 1, 

V'111 E Hoo / '111(y)dyp1(Y, y
1

)dy
1

'111(Y
1

) ~ 0. 

The operator 

P1 = Tr2f>1+2, 

is called Reduced Density Matrix . Thus, the state of the subsystem S1 is · 
defined by reduced density matrix. 
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The reduced density matrix for the subsystem S2 is defined analogously. 

Quantum states Pt and p2 of subsystems are defined uniquely by the state 
· P1+2 of the composite system. 

Suppose the system S is in a pure state then a quantum state of the sub­
system S1 is defined by the kernel 

Pi(Y,Y
1

) = I w(y,z)dzw*(y
1

,z). 

If the function w(y, z) is the product 

w(y,z) = f(y)w(z), f lw(z)l2dz = l, 

then subsystem St is a pure state , too 

As it was proved by von Neumann, it is the only case when purity of composite 
system is inherited by its subsystems. 

Let us consider an example of a system in a pure state having subsystems 
in mixed states. Let the wave function of composite system be 

w(y,z) 
1 

v'2(J(y)w(z) ± J(z)w(y)), 

where < flw >= 0 and < f If >=< wlw >= l. The density matrix of the 
subsystem St has the kernel 

The kernel of the operator Pi has the form 

2 ') Pt (y, Y = 
1 I I 

4(f(y)J*(y) + w(y)w*(y )). 

Therefore, the subsystem St is in the mixed state. Moreover, its density matrix 
is proportional to unity operator. 
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The mean value of a variable with the kernel 

is equal to 

where 

Fc(x, x') = F1(Y, y')u(z)u*(z'), f Ju(z)l2dz = 1, 

(Fc)p = pf F1(y,y
1

)dy'pc(y
1

,y)dy, 

pc(y, y
1

) = ~ f u*(z)dz p(y, z; y', z') u(z')dz', 

p = f u*(z)dzp(y,z;y,z')u(z')dz'dy. 

Since we can represent p in the form 

P = f P(z, z')dz' p2(z'; z)dz, 

P(z, z') u(z)u*(z'), 

we see that pis an mean value of a variable P of the subsystem S2 • Operator 
P is a projector (.?2 = P). Therefore it is possible to consider the value pas 
a probability. 

It is easy to demonstrate that the operator pc satisfies all the properties of 
density matrix. So the kernel pc(y, y') defines some state of the subsystem S1. 

What is this state? 
According to the decomposition of o-function 

o(z - z') = I: <t>n(z)<t>n *(z'), 
n 

{ <Pn ( z)} being a basis in th~ space H 2 , the reduced density matrix is represented 
in the form of the sum 

Here 

and 

P1(y,y') = LPnP~(y,y'). 

P~(y,y') = 2_ f </>n*(z)dzp(y,z;y',z')</>n(z')dz' 
Pn 

Pn f <Pn *(z )dz p(y, z; y, z') <Pn(z')dz' dy 

f Pn(z, z')dz' p2(z', z)dz. 
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The numbers Pn satisfy the conditions 

Pn* = Pn, Pn 2'. 0, LPn = l. 
n 

· and are connected with a probability distribution. 
The basis { </>n} in the space H2 corresponds to some observable G2 of the 

subsystem S2 with discrete non-degenerate spectrum. It is determined by the 
kernel 

G2(z,z') = L9n<Pn<P*n, 9n = 9*n; 9n /=- 9nl if n /=- nl. 
n 

The mean value of G2 in the state p2 is equal to 

f dyp2(z, z')dz'G(z', z) = 

= L9n f dyp2(z,z')dz'</>n(z')</>n*(z') = LPn9n• 
n n 

Thus number Pn defines the chance that the observable G2 has the value 9n 
iri the state p2 • Obviously, the kernel p~(y, y') in this case defines the state of 
system S1 under condition that the value of variable G2 is equal to 9n· Hence 
it is natural to call operator p~ as Conditional Density Matrix 

It is ( conditionaQ density matrix for the subsystem S1 under the condition that 
the subsystem S2 is selected in a pure state p2 = A. It is the most important 
case for quantum communication. We can see that conditional density matrix 
satisfies all the properties of d~nsity matrix. 

As density matrix is an operator with a pure discrete spectrum, that is 

n 

and projective operators satisfy the condition 

then the number 
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is the probability for the system to be in the state given by the projective 
operator CJn-

Conditional density matrix determines conditional probability in the same 
manner as usual density matrix gives probability of a measurement. 

To make this statement clear let us recall the notion of conditional prob­
ability. 

Let H be an event with the positive probability P(H). Then the probability 
of the event AH is presented in the form 

P{AH} P{AIH}P{H} 

Here P {AI H} is the conditional probability of the event A under the condition 
that the event H takes place. 

Obviously for a given H all the properties of the probabilities are valid for 
conditional probabilities, e.g., 

P{AU BIH} P{AIH} + P{BIH} - P{ABIH}. 

Consider the set of mutually excluded events {H1 , H 2 , ••. }. And let one of 
them takes place inevitably. Then any event A can be fulfilled only with one 
of the Hj simultaneously. Since the event A is represented in the form 

A = AH1 U AH2 U ... , 

the probability of the event A can be written in terms of the probabilities of 
the events { Hj} and corresponding conditional probabilities: 

P{A} L P{AIHj}P{Hj}. 
j 

For a system S = S1 U S2 matrix elements of density matrix are of the form 
p(y, z; y', z'). 

The elements of the reduced density matrix are 

/ll(y; y') LL 8(z, z') p(y, z; y', z'). 
z z 1 

Let a set of operators Pa give a decomposition of the identity operator in 
the space 1i2 • Then 

8(z, z') L Pa(z, z'). 
a 
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Now 
LL L Pa(z,z')p(y,z; y',z') 

a z z' 

a 

Here 
_!__ LL Pa(z, z') p(y, z; y', z'), 
Pa z z' 

and 
Pa E L Pa(z, z') L p(y, z; Y, z'), 

z z1 y 

z z' 

Thus, Pa is the probability for the subsystem S2 to be in the state given by 
the projective operator Pa. 

p~(l)(y; y') is a density matrix of the subsystem S1 • 

The number 

a 

i.s the probability for the subsystem S1 to be in the state ly). 
The above equation is nothing else but the representation of total prob­

ability in terms of conditional probabilities. 
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Abstract - The Blokhintsev investigations of the structure of microworld 
spacetime are reviewed. Some new proposals are made. 

D. I. Blokhintsev was a man with unusual wide personality. He was a 
scientist and a poet, a painter and a philosopher. He was also an outstanding• 
animator and manager of science. His personal charm was wonderful. 

As a physicist D. I. Blokhintsev equally well was interested in applied 
physics and in fundamental problems. One of his main subject of investi­
gation in the field of fundamental physics was the problem of spacetime in 
microworld [1]. After a profound and detailed analysis of all aspects of the 
concept of space and time in macrophysics he performed a critical review of 
all fundamental spacetime notions and tried to define them from the scratch. 
The goal was to find such definitions of spacetime concepts which, as particular 
cases, will include the standard macrophysical models of spacetime from one 
side and will give adequate models of spacetime in microworld from the other. 
side. 

He started from a very general definition of geometry as a science of order­
ing physical events. Similarly, the fundamental notion of causality he defined 
as a genetical relation between physical events. 

The understanding of spacetime as a specific physical object usually is at­
tributed to general relativity. It is generally believed that before the era of• 
general relativity all physicists treated space as empty arena for all physi­
cal processes.As a matter of fact, it is not a true statement because already 
Helmholtz paid attention to the fact that Euclidean geometry is tightly related 
to the notion of physical rigid bodies. All our ability to check geometrical re­
lations dictated by Euclidean geometry depends on the existence of physical 
bodies which more or less accurately posses the properties of ideal rigid bodies. 
In a modern language the Helmholtz analysis allows to look at the Euclidean . 
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?;eometry as a representation of the group of symmetries of rigid bodies. There­
:ore, it may be said that the intrinsic relation between geometry of spacetime 
md the class of physical bodies and processes was always present and the fact 
:hat some time ago this relation was not properly understood does not mean 
:hat this relation was absent. The discovery of new physical objects, new in­
:eractions between them and new kind of processes in which they participate 
!lust always be accompanied by critical reviews of fundamental spacetime no­
;ions in order to clarify which of them may still be applied to the new physical 
;ituation and which of them must be replaced by new and/or more general 
10tions. The relation between geometry and physical laws was also stressed 
JY B. Riemann. 

In his general analysis of spacetime concepts D. I. Blokhintsev realized that, 
:ontrary to the wide believe, in some coordinate systems the natural properties 
>f spacetime and physical processes may be described simpler than in other 
mes. In this way he admitted the possibility of formulating physical theories in 
>rivileged reference systems. This statement does not contradict the relativity 
Jrinciples. As a matter of fact, the physical theories with preferred reference 
,y;tems are now intensively developed [2]. It seems that the pr~ferred systems 
tre necessary for relativistic quantum mechanics as well as in all classical 
;heo_ries in which the space properties are described in terms of generalized 
unctions instead of ordinary functions. 
, • lfrom the general Blokhintsev's analysis of spacetime concepts it follows 
;hat he was close to formulate the statement that the understanding of these 
:oncepts depends on [3}: 

1. The class of observers. 
2. The class of elementary events. 
3. The kind of agents which are used to connect the observers with the 

:lementary events. 
4. The assumed way of interaction of the agents with the events. 
5. Some conventions. 
These items needs some explanation. 
Ad. 1: In the standard approach to special relativity it is assumed that 

he observers have emitters and detectors of light signals. The emission times 
,nd detection times are registered by ordinary clocks. These facts limit the 
,pplicability of. models constructed by such observers to classical models. In 
nicroworld the emission and detection times are connected with some uncer­
ainties and neglecting that is possible only in classical physics. 

Ad. 2: It is not so obvious how to select the class of elementary events. 
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Here already the very definition of elementary events is a complicated problem: 
Again, as a rule, we apply here only classical intuitional concepts. 

Ad. 3: As a rule, it is uncritically assumed that only light signals may serve 
as agents to connect observers and events. The light is treated classically as 
objects moving uniformly with invariant velocity. It is however easy to develop 
special relativity assuming that light is moving with constant acceleration [4]. 
It is also an interesting exercise to repeat the Einstein-Bondi radiolocation 
method with different from light signals agents. In each case we end up with 
different models of spacetime. Simultaneously we see that light is not the only 
tool of communication between observers and events. Such possibilities were 
already been considered by D. I. Blokhintsev. 

Ad. 4: This point is the most difficult item in the construction of mod­
els of spacetime. Here we have to include as one of fundamental facts the 
knowledge of the interaction between agents and elementary events. However 
most of such knowledge is connected with some models of spacetime. We fall 
therefore in a closed circle of reasoning. The only way to get out from this 
circle is to agree that all our constructions should be treated as approximate 
and we must perform repeated applications of model dependent knowledge to 
construct better models. The final goal is to get (in some limit) a universal 
model of spacetime adequate for microworld physics. 

The standard radiolocation method assumes that light behaves according 
to geometrical optics. In particular, the light signals immediately reflect from 
ideal ;'mirrors" located at elementary events. The real light is behaving ac­
cording to quantum electrodynamics and therefore any model which disregards 
this fact must be treated as very approximate one with a restricted domain of 
applicability. It is almost obvious that disregarding the quantum character of 
interaction of light with matter located at elementary events excludes models 
based on such an assumption as invalid in microworld. 

Ad. 5: The conventional character of all models of spacetime was exten­
sively discussed by H. Reichenbach [5]. In this line D. I. Blokhintsev discussed 
other "non spatial" models of spacetime. For example, he discussed models 
based not on numbered coordinates but on different colors ascribed to dif­
ferent points of space. This is an example rather of a qualitative picture of 
spacetime. Another line of reasoning consists in investigation the influence of 
"pseudo events" taken as real physical events. Again, as an example, D. I. 
Blokhintsev considered a model based on the replacement of the space coordi-' 
nate by the value of force exerted by a mass point at the given position. He 
observed that the standard Hook's law 
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a!= _I_p 
k 

allows to replace the concept of position by the concept of force. This method 
seems to be more general because the force is directly measurable in a very 
wide class of events. Unfortunately, the Hook's law is invalid for large values of 
the coordinate and this restricts its validity at large scale distances. A better 
example seems to be the method based on a Coulomb law 

E = _1_-t 
41rt:0 r 3 

which is valid for large distances. For small distances we meet a limitation 
connected with the fact that the maximal value of measurable intensities of 
electric field is of the order of 105 V/m. This definitely shows that for small 
distances our intuition breaks down. The applicability of the Hook's law for 
· small distances is however artificial because as a matter of fact we do not know 
whether in microworld such law is reasonable or not. 

D. I. Blokhintsev extensively investigated the possibility of replacement 
the standard classical spatial coordinatization of spacetime by the values of 
physical fields. Unfortunately, he never considered· the real electromagnetic 
field as a fundamental object on which we may base our understanding the 
concept of spacetime. As is well known, Maxwell equations possess definite 
symmetry properties [6] which in the simplest case is the SO (3, 3) sym~etry . 
. The standard Minkowski spacetime posses the SO (1, 3) symmetry and all 
physical objects are described by various irreducible representations of this 
symmetry group. Here we get a possibility to reverse the way. Instead of 
looking for the representations of the SO (1, 3) group we may look for the 
various representations of the SO (3, 3) group and base the construction of the 
spacetime model on one such representation which adequately will describe 
the regularities in the microworld. In particular, this approach in natural way 
introduces the notion of a three-dimensional time, a concept also extensively 
investigated at the present time [7]. 

D. I. Blokhintsev came to the conclusion that each way of ascribing space 
and time coordinates to elementary events is in fact an arbitrary procedure 
which requires to perform some definite manipulations with physical objects. 
Since our knowledge increases in time also the known constructions of space­
time models time to time must be revised and, if necessary, improved. In 
this way we may achieve extensions of the applicability domains for differ­
ent existing models and i~prove their degree of accuracy. This applies not 
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only to rnicroworld models but also to rnacroworld models, especially for non 
stationary worlds. 

According to D. I. Blokhintsev there is rather a little doubt that we aq­
equately know precise models of rnacroworld spacetirne. It is not so for mi­
croworld where we shall agree that adequate models of rnicroworld spacetime 
must be more abstract and less intuitive than the rnacroworld concepts are. 
He came to the conclusion that we should also be ready to reject the concepts 
of spacetime coordinates at all and base our understanding of space order and 
time relations on other more abstract notions. The full understanding of this 
new abstract notions will be achieved gradually after deriving sufficient number 
of conclusions which can experimentally be checked. 

D. I Blokhintsev deeply believed that for investigating the rnicroworld 
spacetime structures "we need to find new physical concepts and, consequently, · 
a new language which will be more adapted for description of internal nature of 
elementary particles". He hoped that for finding this new language "we need to 
find only two or three new words which will allow to express that new physical 
idea which is necessary to understand all rnicroworld events". He appealed to 
the corning generations of physicists to find these new words having in mind 
that "these new words should be as revolutionary as those words which led to 
formulate quantum mechanics or the theory of relativity". 

In my opinion, it is rather the opposite case: we do not need to add 
some new elements to the spacetime physics but we have first to re­
move from it some standard concepts which obscure the new looks 
into microworld spacetime physics. Let me remind that quantum physics 
removed from physics the classical notion of the trajectory and relativity thee 
ory rejected the absolute character of time. Since all essential troubles of 
rnicroworld spacetirne physics are connected either with finite accuracy of ex­
perimental devices or with fundamental uncertainty relations I would like t~ 
propose to replace the standard mathematics used in analyzing phys­
ical phenomena by new, more modern mathematical methods. In 
particular, I propose to use mathematical methods based on: 

1. Non-standard analysis. 
2. The theory of fuzzy sets. 
3. The topos theory, the categorial approach to logic. 
These proposal are indeed revolutionary. The immediate gains from them 

are the following: 
1. The non-standard analysis [8] allows to avoid all questions connected 

with fundamental uncertainties. The physical uncertainties simply define the 
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mathematical "monads" which surround all standard numbers used in stan­
dard analysis. 

2. The fuzzy sets [9] in a more fundamental way introduce into physics 
the quantum mechanical languages. In particular, the quantum mechanical 
probabilities define the degree of inclusion the elements into a given sets. The 
c1ew physics will be simply a fuzzy version of ordinary physics. 

3. The topos theory [10] is the most radical change in mathematics which 
tllows to realize different logical deduction schemes. For physics, the most 
tttractive feature of topos theory is to have a possibility to analyze structures 
>f complex systems without specifying their elements. This allows to avoid 
;he question where the physical limit of divisibility of matter is. According 
;o Niels Bohr and Werner Heisenberg the theory which do not allow to ask 
manswerable questions is a good physical theory. 
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Abstract - The concepts of the lifetime and path-length of a virtual 
particle are introduced. It is shown that near the mass surface of the 
real particle these quantities constitute a 4-vector. At very high energies 
the virtual particle can propagate over considerable (even macroscopic) 
distances .. The formulae for the lifetime and path-length of an ultrarela­
tivistic virtual electron in the process of bremsstrahlung in the Coulomb 
field of a nucleus are obtained. The lifetime and path-length of the vir­
tual photon at its conversion into the electron-positron pair is discussed. 
The connection between the path-length of the virtual particle and the 
coherence length (formation length) has been analyzed. 

1 Localization of a virtual particle in time and space 

It is known that internal lines of Feynman diagrams play the role of inter­
mediate states, or virtual particles [1]. The definite 4-momentum P = { E, P} 
outside the mass surface of the real particle corresponds to the virtual particle. 
Here Eis the energy of the virtual particle, P is its 3-momentum (we use the 
unit system, in which Ii= c = 1). The magnitude 

M=\lfJ2 =JEz_pz (1) 

has the meaning of the mass of the virtual particle. When P is the time-like 
4-momentum,.then the virtual particle has the positive mass as well as the real: 
particle. In so doing M -=I= m, where m is the mass of the real particle. When, 
Pis the space-like 4-momentum, then the imaginary mass (M2 < 0) formally 
corresponds to the virtual particle. 

The lifetime T of the virtual particle, characterizing the time scale of the· 
considered process, can be defined on the basis of the uncertainty principle for 
energy and time: T = l.6.El- 1

, where 

.6.E = Jpz + mZ _ Jpz + MZ 

is the difference of energies of the real and virtual particles 
with the_same 3-momentum P. As a result, we obtain: 

T= E+E 
lm2 - M21· (2) 
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Here Eis the energy of the virtual particle, E = ✓ E 2 + m2 - M 2 is the energy 
of the real particle. Relation (2) can be rewritten in the form: 

E (✓ m2-M2 ) 
T = lm2 - M211 + . E2 + 1 . (3) 

Analogously, the space dimensions L of the region of propagation of the virtual 
particle, characterizing the space scale of the given process, can be defined 
on the basis of the uncertainty principle for momenta and coordinates: L = 
l.6.Pl-1 , where 

lb.Pl= ✓E2 - m2 - ✓E2 - M2 

is the difference of momenta of the real and virtual particles moving along the 
direction of the momentum vector P with the same energy E. It is easy to see 
that 

L- IPl+IPI 
- lm2 - M21· 

(4) 

Here IPI = ✓P2 - m2 + M2 is the absolute value of momentum of the real 
particle. We can also write 

IPI (✓ m
2 

- M
2 

) L = lm2 - M211 - p2 + 1 . 

At small differences of masses of the virtual and real particles, when 

lm2 - M2I « E2, 

it follows from Eqs. (2) and (3) that 

T- 2E 
- lm2 -M2I' 

(5) 

(6) 

Under these conditions the quantities T and L = 2P /lm2 - M 21 constitute the 
4-vector [2) 

2P 
{T, L} = lm2 - M21 (7) 

All the relations presented above are valid for any 4-momentum of the vir­
tual particle (both time-like and space-like). In the case of the time-like 4-
momentum P the quantity L can be clearly interpreted as the vector of path­
length of the virtual partide moving with the velocity v = P / E < 1; in so 
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doing, the path-length and lifetime of the virtual particle are connected by the 
standard equation L = vT 1 = ) . 

When the mass M of the virtual particle is close to the mass m of the 
real particle, the lifetime T of the virtual particle strongly increases and its; 
path-length L = ILi may considerably exceed the interatomic distances. The. 
same takes place also at ultrarelativistic energies E » IMI, E » m, when. 
the velocity of the virtual partucle approaches the velocity of light. In the 
limit of very high energies the path-length of the virtual particle can reach 
even macroscopic values. That leads to the coherent effects observed in the 
interaction of very high-energy particles with matter [3-6]. 

2 Lifetime and path-length of the relativistic virtual electron at the: 
electron bremsstrahlung 

Using the Born approximation, the bremsstrahlung of the electron in the, 
Coulomb field of a heavy nucleus is described by two Feynman diagrams (see 
Fig.I). Let us denote the 4-momenta of the initial electron, final electron and 
photon, respectively, as 
PI = {E1, pi},p2 = {E2, P2} and k = {w, k}. Taking into account that the• 
energy transfer to the heavy nucleus is absent, the equality E 2 = E 1 - w is ' 
valid, and the energy component of the space-like 4-momentum of the virtual · 
photon q = {O, q} is equal to zero (here q is the 3-momentum transferred to . 
the nucleus)[!]. Then the 4-momentum of the virtual electron, corresponding· 
to the diagram I, is 

P1 = P2 + k = { E1, P2 + k}, 

and the 4-momentum of the virtual electron, corresponding fo the diagram II, 

l) In the usual unit system t_he formulae (3), (5), {6) and (7) have the following form: 

hE (✓ (m2 - Af2)c4 ) 
T = lm2 - Af2ic41 + E2 + 1 ; 

_ hlPI (✓ (m2 - Af2)c2 ) . 
L - lm2 - Af2ic2 1 - p2 + 1 ' 

2hE 2h = IPI 
T = ----, L = ,------.,--'--'- · 

lm2 - Af21c4 lm2 - Af2ic2' 

2hP 
{cT, L} = lm2 - Af21c2. 

(3a) 

(5a) 

(6a) 

(7a) 
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IS 

Pu = P1 - k = { E2, Pi - = k}. 

It is evident that the square of mass of the virtual electron for the diagram 
I has the form: 

where m is the electron mass, 0 is the angle between the final electron mo­
mentum P2 and the photon momentum k, v2 = Jp2 I/ E2 is the velocity of the 
final electron. According to Eqs.(6), the lifetime and path-length of the virtual 
electron under the condition 
Er » E2w(l - v2 cos 0) are determined by the following formulae: 

E1 . 
T1=------· 

E2w(l - V2 cos 0)' 

Analogously, in the case of the diagram II we have: 

M]1 = (P1 - k) 2 = m2 
- 2p1 k = m 2 

- 2E1w(l - v1 cos if), 

(8) 

·where 0 is the angle between the initial electron momentum p 1 and the photon 
momentum k, v1 = I Pi I/ E 1 is the velocity of the initial electron. In accordance 
with Eqs.( 6), we obtain, under the condition E? » E1w(l - v1 cos 0), the 
following expression for the lifetime and path-length of the virtual electron: 

E2 
Tu= ------~; 

E 1w(l - v1 cos0) 
(9) 

At ultrarelativistic energies E 1 » m, E2 » m and small angles 0 « I, if« I 
one can write: 

where 11 = Eifm and 12 = E2/m are the Lorentz-factors of the initial and 
final electrons, respectively bi » 1, 12 » 1). Under these conditions, taking 
into account the approximate equalities IP2 + kl ~ E1 and IP1 - kl~ E2 , the 
relations (8) and (9) give: 
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The main contribution into the process of the bremsstrahlung of the ultrarela- . 
tivistic electron in the Coulomb field of a heavy nucleus arises from the region 
of small angles 0 <~ 1/,2 , 0 <~ 1/,1 • As a result, the effective path-length• 
of the ultrarelelativistic electron at the bremsstrahlung in the Coulomb field 
has the magnitude of the order of 

L ~ LI ~ L II ~ fl /2 
w 

(11) 

In the usual unit system L1 ~ Lu ~ fic,nd(E1 - E2 ). For example, for the. 
electron with the energy E1 ~ E 2 = 100 Ge V and the photon energy w = 10 • 
MeV the effective path-length L of the virtual electron amounts to~ 8 • 10-2 

cm~ 1 mm (the virtual electron lifetime T equals ~ 3 • 10-12 sec). 

3 Conversion of the virtual photon into the electron-positron pair 

Any process with the emission of a photon may be accompanied by the : 
other process in which the virtual photon is converted into the e+e--pair (see 
Fig.2). In this case the virtual photon has the time-like 4-momentum P = • 
{E+ + E_, P+ + P-}, and its mass is given by the formula 

M 2 = 2m2 + 2E+E_(l - v_v+ cos c/>), 

where mis the mass of the positron and electron, P+, E+, v+ - the momentum, 
energy and velocity of the positron, respectively, p_, E_, v_ - the same for the · 
electron, cf> is the angle between the electron and positron momenta. According 
to Eqs.(6), under the condition E2 = (E+ + E_ )2 » M 2 the lifetime and path­
length of the virtual photon at the conversion into the e+e_-pair amount to 

2E 
T ~ L = M 2 • (12) 

For narrow electron-positron pairs, when cf> ~ 0, M 2 ~ 4m2, E+ ~ E_, we 
obtain: 

T ~ L ~ E+ + E_ ~ J_ 
2m2 m' 

where I is the Lorentz-factor of the positron and electron. In the usual unit 
system T ~ fi1 /mc2, L ~ fi1 /mc. For example, at 1 = 106 (the energies of 
the ultrarelativistic electron and positron amount to E+ ~ E_ ~ 500 GeV), 
the lifetime and the path-length of the virtual photon reach the values T ~ 
1.3 · 10-15 sec , L ~ 3.8 · 10-5 cm, respectively. These magnitudes are not 
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macroscopic but they, = nevertheless, strongly exceed the characteristic atomic 
scale. 

4 Connection between the path-length of the virtual particle and the 
coherence length 

For the process of the ultrarelativistic electron bremsstrahlung, the co­
herence length (formation length) is inversely proportional to ·the minimal 
momentum qmin transferred to the nucleus [1,3-6): 

The minimal transferred momentum corresponds to the forward direction, 
when the momenta of both the final electron and photon are parallel to the 
momentum of the initial electron. It is clear that 

qmin = JE; - m 2 - JE'#,- m 2 -w = JE; - m 2 - JE'#, - m 2 - (E1...:... E2) ~ 

[all the notations are the same as in Section 2). So, we obtain: 

Lcoh ~ 2'
112 

• w 
. (13) 

fhus, the path-length L of the virtual ultrarelativistic electron ( see Eq. ( 11)) 
:oincides, by the order of magnitude, with the coherence length Lcoh• 

The relation L ~ Lcoh is valid for any process, in which the transition of 
1 real particle into the virtual one, or the reverse transition, takes place with 
;he very low momentum transfer to a nucleus. 

, Summary 

l. The concepts of the lifetime T and path-length L of a virtual particle are 
introduced. On the basis of the uncertainty principle for energy and time 
and the uncertainty principle for momenta and coordinates, the general 
expressions for T and L are obtained. 

2. Using the example of the ultrarelativistic electron bremsstrahlung in the 
Coulomb field of a heavy nucleus, it is shown that at very high energies 
the virtual particle can propagate over considerable ( even macroscopic) 
distances. · 
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3. The conn(j~tion between the path-length of a virtual particle and the co-· 
herence length at the interaction of ultrarelativistic particles with nuclei 
is analyzed. 

The work is supported by Russian Foundation for Basic Research (grant 
No. 03-02-16~10) 
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~igure l. Feynman diagrams for the electron bremsstrahlung in the Coulomb 
field of a nucleus. 

gure 2. Conv~rsion of the virtual photon into the electron-positron pair. 
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Particles and wave functions 
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Abstract - Problems of particles, wave functions and measurement are 
considered. It is shown that there are superselection rules for macroscopic 
objects. 

1 Quantum mechanics: Questions 

The non-relativistic quantum mechanics (QM) rises obvious questions: 
1) What is particle? 
2) What is wave function? 
3) What is measurement? 
Different "interpretations" of QM ·give different answers to the questions. 
The Copenhagen interpretation (CI). A particle has no certain position 
or momentum; i,L,-functions describe individual systems ( e.g. electron) and • 
contain full information about particles; measurement cannot be described in 
details ("uncontrolled interaction" of a microscopic object with a classical ap- : 
paratus ). It is tacitly assumed that particles are pointlike. 
The statistical interpretation (SI). " ... a momentum eigenstate (plane 
wave in configuration space) represents the ensemble whose members are sin­
gle electrons each having the same momentum but distributed uniformly over 
all positions." [l. p. 361]. Thus QM is not complete: particles can be charac­
terized by both positions and momenta. There is no problem of decoherence 
of macroscopic apparatuses in the act of measurement ( i,L,-function describes a 
statistical ensemble!). Particles are pointlike. 
The Everett interpretation (EI). The interpretation was invented to solve ; 
the orthodox QM problem of decoherence of macroscopic objects [2]. In the 
process of measurement the initial state !o)IA) of an object lo) and of an ap­
paratus IA) becomes ent;mgled: 

lo)!A) ➔ L cklk)IAk)-
k 

The process is described by the Schroedinger equation. Both initial and final 
states are pure. Thus the classical apparatus is described by superposition of 
macroscopically different states. Assumption: the world branches. Only the · 
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observed state IA0 ) is in "this" world. All the other states also exist, but in 
"other" worlds. The Everett interpretation respects both the orthodox QM 
and the principle of macroscopic certainty of classical bodies. 

It is significant that even in XXI century quantum problems are discussed 
in terms appeared some 70-75 years ago. 

2 D.I. Blokhintsev: Answers 

It is usually assumed that D.I. Blokhintsev confessed the statistical inter­
pretation [1, p. 360]. Actually it is not the case [3]. As is easily seen from book 
:4] he adhered to the orthodox QM, though keeping door open for the other 
)ossibilities. D.I. Blokhintsev acknowledged wave function though invented 
1ew term "quantum ensemble" in order to stress stochastic nature ·of QM and 
>eculiarity of its mathematical apparatus (probability amplitudes instead of 
>robability densities). 

1. PARTICLES. Blokhintsev pointed out that particles are not pointlike 
>bjects [5,6]; they are excitations ( quanta) of fields (see also [7]). Actually this 
s the key to the main problem of QM. It follows from it that particles are non­
ocal objects. They can be registered at any point where the field is excited. 
f the field is treated as an ordered set of oscillators then it is natural to call 
he set "quantum ensemble". But Blokhintsev understood under "quantum 
nsemble" an ensemble of macroscopic experimental devices plus microobjects 
i]. 

2. WAVE FUNCTIONS. Blokhintsev was not certain about nature of wave 
mctions. He discussed, in particular, the hypothesis that wave function is a 
diary of physicist" (4, p. 121]. Indirectly he even admitted the possibility 
~at there exists more detailed description of microobjects ("Who prevents 
ou to set the Thames on fire?" [4, p. 157]; the Russian equivalent sounds less 
;rong). It is amazing that he did not identified wave function with the field 
Jr functional) describing the one-particle field excitations. In [5, p. 81] he 
1sisted: "Of course one should not identify field 'lf(x, t) with the wave function 
,". Even more amazing that sixteen years later in his book [4] he even did not 
1ention this idea on nature of particles as quanta of fields. Of course he had 
:rious reasons for that, 1) QM is an essentially linear theory while the field 
iuations are non-linear, 2) one has to explain why the excitation behaves like 
particle. 

3. MEASUREMENT. One of the main problems of QM is description of the 
~asurement process. Microobjects are described by QM while experimental 
!vices are classical objects. Question: what mechanics should be used? This 
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was the source of many vague ideas like uncontrolled interaction of a particle 
with the measuring apparatus. Later on it became clear that macroscopic 
objects are also described by QM. The problem was to explain nonexistenc~ 
of superpositions of macroscopically different states of macroscopic objects. 

Blokhintsev has given a model of measurement permitting its full descrip­
tion. Of course, the model didn't solve the general problem but it allowed to 
understand some essential features of the procedure. 

3 Particles and wave functions: Quantum mechanics and quantum 
field theory 

At present time the idea that particles are quanta of fields is universally 
accepted. Gradually it becomes clear that for free fields one should identify the 
wave function of a particle with the function describing excitation of the cor­
responding field. Indeed, in case of a scalar field state vectors lk) = iz+(k)IO}, 
Ix) = cp(x)IO) describe the one-particle states with momentum k and coor­
dinate x correspondingly (here IO) is the vacuum vector, cp(x) - the field 
operator; in case of Ix) the field is excited only at the point x). By definition 
the scalar product 

(xlk) = (Olcp(x)lk) = e-ikx 

is the spinless particle wave function. Taking cp(f) = -i J d3x f ( x )o0cp( x) ....: 
o0 f(x)cp(x), we observe that the state vector cp(f)IO) also describes the one­
particle state, but the excitation of the field depends on the function f(x ); the 
field ~(x) is excited only at the area where f(x) # 0. On the other hand, f(x) 
is the particle wave function by definition 

(Olcp(J)+lk) =if d3xf*(x) 80 e-ikx_ 

We see: wave functions describe excitations of fields. 
There are two obvious· difficulties in this approach. First, the integrity 

of particles (in particular, photons). One should explain why such excitations 
behave like unbreakable objects. The reason is simple. Dividing a quantum of a 
field into, say, two parts one introduces discontinuity of the field, thus getting 
a field configuration with infinite energy: Hamiltonian of any bosonic field 
contains the term (V ~ )2 leading in this case to the non-integrable singularity 
(o(x ))2. Thus, the integrity of particles in QFT is guaranteed by the continuity 
of fields. In case of discrete set of oscillators jump of a field leads to finite, but 
very large energy~ !:ix(6.~/6.x)2 ~ li,1(6.~)2 where [p = 1.6 • 10-33 cm. 

The second difficulty comes from the non-linearity of quantum field theory 
(QFT). The resolution of the problem is simple. In QFT the particle number is 
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not conserved, and one should consider more general object - a vector in the 
Fock space or the Fock functional. These functionals also describe excitations 
of fields, and their evolution in time is given by linear equations (both in 
quantum and classical theories). Thus, QFT allows to "materialize" the wave 
function. 

We conclude: at low energies particles are a one-particle excitations of 
fields, and wave functions are functions describing these excitations. At higher 
energies one should use the functionals, i.e. the state vectors in the Fock space. 

4 Measurement: Macroscopic objects and the superselection rules 

The main problem of measurement is description of the process in the 
framework of QM. Both the measuring apparatus and the microobject are de­
scribed by some state vector. Of course, the former is a macroscopic object, 
but all the objects in the world are more or less complex excitations of fields, 
and the latter are quantum ones. In this case one should explain the main 
property of classical bodies important for experimenters: the macroscopic ob­
jects cannot be in the states which are superpositions of their macroscopically 
different states. 

The mentioned model of measurement considered by Blokhintsev though 
takes into account the essential features of the procedure, deals whith classical 
objects. Therefore, this consideration does not solve the problem. 

It is easy to see that the superpositions of macroscopically different quan­
tum states of macroscopic objects are indeed forbidden due to the superse­
lection rules. These rules was first discussed in (8]: the state 'l/; = 'lpb + 'l/; f, 
where 'l/Jb, 'l/; 1 are correspondingly bosonic and fermionic states, is forbidden. 
Under 27r-rotation of the coordinate system the wave function 'l/; f changes the 
sign ('l/;1 ➔ -'l/;1), and 'l/; ➔ 'l/J.' = 'lpb - 'l/J1- But the 27r-rotation is an identical 
transformation and 'l/; cannot be changed, i.e. the vector 'l/; cannot be realized. 
Analogous statement is valid for macroscopic objects. 

Definition. The macroscopic object is that having all the properties of a 
compact stable system of N particles retained in the limit N ➔ oo. 

Superselection rule. If there is an operator S commuting with all the phys­
ical operators of a system (Hermitian polynomials of canonical variables) then 
the liner combinations of eigenfunctions of S are forbidden. 

THEOREM_. Superpositions of wave functions of macroscopic objects with 
different centers of mass are forbidden. 

PROOF. Let {x;, p;}, i = 1, 2, ... , N be the canonical variables of a compact 
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stable system of N particles in the 3D space. Then 

, 1 N 
X=-I:x; 

N i=I 

is the operator of center of mass, and the limit N -+ oo obviously exist. h 
this limit X commutes with all the physical operators Pn(x;, p;), n < oo 

[X, Pn] -+ 0, N -+ 00. 

Thus, Xis an operator of the type S, and superposition of states correspondinf 
to different proper values of X are forbidden (9]. 

The physics behind this phenomenon is simple. In the limit N -+ oo th( 
body is described by the quantum field theory. Bodies with different centers ol 
mass has orthogonal Hilbert spaces and the evolution operator cannot trans­
form a vector from one space to th.e other because it is a physical operator. 
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It seems to be evident that classical and quantum field theories are quite 
:lifferent. Main objects - states - are presented as classical field configu­
:ations in classical field theory and Hilbert space vectors in quantum. The 
Poincare group transformations are symplectic in classical theory and unitary 
'n quantum. The classical observables are functions of the field configuration, 
IVhile in quantum theory the obsrvables are operators. Moreover, classical the­
>ry is much simpler and can be defined mathematically, while quantum theory 
ias not been rigorously formulated yet. 

However, classical and quantum models are applied to the same object. 
fhis means that the results of classical and quantum theories should not con­
,radict each other, so that classical results should be reproduced from the 
1uantum theory. Therefore, we come to the problem of correspondence be­
;ween "exact" ( quantum) and "approximate" but simpler ( classical) theories 
if the same object. 

Different approaches to this problem has been developed for systems of a 
inite number of degrees of freedom. Various semiclassical methods are known. 
;ome of them (the Ehrenfest approach) are based on investigation of the av­
:rage values of "semiclassical" observables; other use the path integral tech-
1ique. However, from the mathematical viewpoint, it is much more suitable 
o use approaches based on substituting the approximate wave function to the 
khrodinger equation, since the accuracy of the approximation can be esti­
nated. 

Consider the Schrodinger equiation of a general form 

\: first step to apply any of the semiclassical techniques is to choose such a sys­
em of units that the Planck constant is dimensionless and small (it is denoted 
,s h in ( 1)), while all other parameters of the quantum system (parameters of 
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the potential, particle mass, distances etc.) are also dimensionless and of the 
order 0(1 ). If such a system of units exists, one comes to a purely mathematical 
problem of solving eq.(1) ash ➔ 0. 

Historically, the first known semiclassical substitution (satisfying eq.(l) ~ 
h ➔ 0) was the WKB wave fucntion of the form 

'ljJ(x, t) ~ cp(x, t)e-kS(x,t)_ (2) 

Nowadays, a much wider class of semiclassical solutions of eq.(1) is known. 
Maslov (1, 2] has classified them. The simplest example is given by the Maslov 
theory of a complex germ in a point. It is the semiclassical wave packet 

•1·(x t) ~ conste-kS(t)e-kP(t)(x-Q(t))f(t x - Q(t)) = I<h J(t) (3) 
'I' ' - , -Jh _ - S(t),P(t),Q(t) · 

One can show that the wave function (3) is indeed an approximate solution of 
eq.(1), provided that the following conditions are satisfied: 

(a) "classical" equations for S, P, Q: 

dS(t) - P(t)dQ(t) - H(P(t) Q(t))· 
dt - dt ' ' 

dP(t) = _aH(P(t),Q(t)); dt 8Q dQ(t) = 8H(P(t), Q(t)); dt 8P 

(b) Schrodinger equiation for f with quadratic Hamiltonian: 

-aJ(t,O _ [11 a a2n 1 a+ It a2n 1 a 11 a a2n t+ It a2n t]J(t t) 
i at - 2;aeapap;ae 2"'aQaP;ae + 2;aeaPaQ"' 2"'aQaQ"' ,.,, · 

(4) 

(5) 

(6) 
Let us compare the wave functions of the types (2) and (3). The uncer­

tanties of coordinates and momenta for the WKB wave function are usually of 
the order 0(1) (not small as h ➔ 0). Thus, the wave function (2) cannot cor­
respond to a point classical particle. On the other hand, for the Maslov wave 
function (3), the uncertanties of coordinates and momenta are of the order 
O(-./h), so that the state (3) corresponding to the minimal value of product 
opoq ~ O(h) can be interpreted as a point particle with momenta P(t) and 
coordinates Q(t). Substitution (3) confirms the heuristic Ehrenfest theorem 
then. 

Let us discuss the geometric interpretation of the semiclassical state (3) 
and its evolution. At fixed moment of time, it is specified by classical variables 
X = (S, P, Q) E R 2n+1 and quantum function f(O. Therefore, a semiclassical 
wave packet state can be viewed as a point of a bundle ("semiclassical bundle" 
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[4]) with the base X = R 2n+l = {(S, P, Q)} being a classical space and fibres 
L2{Rn) = {f} beirig Hilbert spaces Fx of quantum states in the external 
classical background X. 

The semiclassical evolution transformation (taking initial conditions for 
eqs.(4),(5),(6) to the solution) can be viewed as an authomorphism of the 
semiclassical bundle. The initial state (X0 = (S(O), P(O), Q(O)), f° = f(O, ()) 
is taken to (Xt = (S(t), P(t), Q(t)), Jf = f(t, e)): (X0

, J0
) f-t (Xt, Jf) with 

here Ut are transformations of the base, while Ut(utX0 +--- X 0
): Fxo ➔ Fu,XO 

are unitary operators. 
Geometric structures of the classical mechanics can be derived from the 

semiclassical point of view [4]. If one shifts the classical variables by the 
quantities of the order O(h), S(t) ➔ S(t) + hoS(t), P(t) ➔ P(t) + hoP(t), 
Q(t) ➔ Q(t) + hoQ(t), the wave packet wave function (3) will be (in a leading 
order in h) multiplied by a c-number 

'ljJ ~ e-i(P(t)SQ(t)-8S(t))'lj}. (7) 

Since both wave functions (7) are approximate solutions of eq.(1 ), one comes to 
the conclusion that P(t)oQ(t)-oS(t) = const, provided that ( c5S(t), oP(t), oQ(t)) 
is a solution of the variation system for (4), (5). Thus, the differential form 

w = PdQ-dS 

on the base of the bundle should conserve under time evolution. 
Analogosly, under the shift X ➔ X + ~oX of the order 0( ~), the wave 

packet (3) transforms as K'Jt+./hsxf ~ constKj.ein[SXlj with the operator­
valued 1-form 

(n[oXJJ)(l) = (oPl - oQ¼ :e)f(O, 

or 
l 8 n = dP . c - dQ . - -

.,, i ae' 
which should also conserve under time evolution 

The introduced 1-forms satisfies the important commutation relation 
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which can be also interpreted geometrically. 
It happens that other semiclassical substitutions (including WKB) of the 

wave packets (3) can be presented as a superposition (3] 

ijJ(x, t) = const j dcd{~(t,cr),P(t,cr),Q(t,cr/(t, a), a E Rk. (9) 

One can show (3) that the superposition (9) is not exponentially small only 
under the Maslov isotropic condition 

fJX 
w[-]=0 

8aa ' 

while the inner product is then as follows 

f fJX 
(ijJ, ijJ) ~ da(f(a), I] o(n[

80
))f(a)). 

(10) 

(11) 

Thus, the semi classical approximation shows that quantum mechanics ( with 
Hilbert space of states) leads not to the calssical mechanics (with phase space) 
directly but to the semiclassical mechanics with the semiclassical bundle as the 
main object ( analog of the space of states); the classical space is the base of the 
bundle. Wave packet semiclassical states (3) are points of the bundle; more 
complicated semi classical states (9) are identified with surfaces (X( a), J( a)) 
on the bundle. Symmetry transformations of the semiclassical mechanics are 
authomorphisms of the semiclassical bundle. The c-number 1-form w and 
operator-valued 1-form n are also important objects: they should conserve 
under any symmetry transformation; they also enter to important relations· 
(8), (10), (11). 

Let us now clarify the main objects of the semiclassical field theory for the 
simplest scalar theory case with the Lagrangian ,C = ½8µ<.paµ<p- ¼V(v'h<.p), h 
being a "Planck constant". In the canonical approach, the operators v'hrj;(x) 
and v'hir(x) are analogs of quantum mechanical coordinate and momenta op­
erators. One can formally develop the semiclassical theory in the Schrodinger 
functional representation analogously to finite dimensional case. The main 
objects of the semiclassical field theory will be [5) 

• the semiclassical bundle with base X = {X} = {S, II(x), <I>(x)} and 
fibres :Fx being quantum field state spaces in the given classical back­
ground; 
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• the c-number form w[oX] = f dxII(x)o<I>(x) - oS and operator-valued 
1-form D[oX] satisfying commutation relation (8); 

• the semiclassical wave packet states - points of the semiclassical bundle; 
the "composed" semiclassical states - surfaces {X(a),J(a)} obeying 
the conditions (10) (the inner product is of the form (11)); 

• semi classical Poincare transformations: to each element g of the Poincare 
group one assigns classical transformations X t--+ u9 X and unitary oper­
ators U9(u9X +- X): :Fx ➔ :Fu

9
x; the group property 

Ug1 Ug2 = Ug1g2; 
U9j(u9192 X +- u92 X)U92 (u92 X +- X) = U9192 (u9192 X +.:... X) 

should be satisfied; the I-forms w and n should conserve under Poincare 
transformations: 

Wugx[oXg] = wx[oXo]; 
ilu

9
x[oX9]Ug(u9X +- X) = U9(u9X +- X)Dx[oX0], 

(12) 

with u9(X + oX0) '.::::'. u9X + oX9; the properties (12) provide unitarity of 
Poincare transformations of states (9). 

• field operators in the semiclassical mechanics ( can be expressed via !1; 
their Poincare invariance is a corollary of (12)). 

he formulated properties are checked in [5] with the help of results of [6]. 
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D.I. Blokhintsev and Fundamental Problems 

of Quantum Mechanics 

A.D. Sukhanov 

1 The Statement of the Problem 

Foundations of Quantum Mechanics have been formed more than 75 years 
ago. Its creation opened up new horizons for the development of thinking. 
But the process of the new world-outlook familiarization was rather slow and 
contradictory. In these circumstances a great deal has been done by those 
scientists, who along with the creators of the new theory contributed to the 
propagation and adequate interpretation of fundamental ideas of this theory. 

Among those who made a significant contribution to this matter a partic­
ular position belongs to representatives of the Moscow school, headed by aca­
demician L.I. Mandelshtam [1]. One of them was K.V.Nikol'skii, in his book 
"Quantum Processes" (1940) there have been presented for the first time ideas 
of this school [2]. Starting from the middle of 1940th it was D.I. Blokhintsev 
who became the leader of this school, and to whose memory this conference is 
devoted. The Moscow's interpretation of the Quantum Mechanics, developed 
by him, was in strong opposition to the initial version of the Copenhagen's 
interpretation from the Bohr's school [3]. 

Still at 1944 he created the first in the world textbook "Foundations of 
Quantum Mechanics" (6th edition in 1983), which still remains to be one of 
the best and has been translated to nine languages [4]. During almost 40 years 
Blokhintsev systematically gave an account of his point of view in the papers, 
devoted to methodological problems of Quantum Mechanics [5,6]. They have 
been collected later on in his well-known monograph "Principle Questions of 
Quantum Mechanics" (1966, 1987) [7] and in Lectures on Quantum Mechanics 
for young scientists (1981, 1988) [8] delivered at Dubna in 1970th years. Theses 
repeatedly advocated by him were not always accepted by adherents of other 
views. 

But Blokhintsev firmly persisted and, as a result, the positions of many 
of his opponents has been changed. At the same time, when analyzing views 
of his opponents, he always yearned to find a rational pearl inside of them, 
in order to fill up, as he noticed by himself"... all gaps in that "Moscow" 
understanding of Quantum Mechanics ... " (1981 ). In relation with this still 
sound actual his words, which have been said at 1968 [5]: " ... Now, when 
already many things were thought over and lots of things were written, it 
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looks more reasonable to consider a good many of those "alternative" points 
of view as just a various aspects of the one and the same scientific problem ... 
Evidently, that the deal is not as much in the setting off the different points 
of view, but instead in the successive development and in more thoughtful 
understanding of the problem". 

In the presented report we do not pursue the aim to embrace all method­
ological problems of Quantum Mechanics, which were discussed by Blokhint­
sev. The aim of this talk is to show that 

• the main Blokhintsev's methodological ideas definitely passed the so­
called time-test; 

• their development allows one to get an approach to a new understanding 
of the Complementarity Principle; 

• they might be spread out on the other physical theories with the proba­
bilistic description; 

• these ideas open up the perspectives for creation of an integral non­
classical (non-deterministic) physical theory. 

The main tool of our analysis would be the generalized uncertainty relations 
(UR), introduced in Quantum Mechanics by Shroedinger still at 1930 [9]. As it 
became clear nowadays, their successive application allows one to make more 
precise and to extend the Moscow interpretation of Quantum Mechanics. More 
than that, an extension of similar UR on the other physical theories with 
the probabilistic description demonstrates an intrinsic proximity of several 
theories, which are traditionally considered as standing far from each other. 

2 Some methodological ideas by D.I. Blokhintsev 
Without saying, the probabilistic character of the description of Nature 

in Quantum Mechanics does not have any opponents already for a long time. 
The questions arise when one tries to make more precise the physical meaning 
of these probabilities. In this direction today has been achieved a substantial 
progress, initiated in much by the Moscow school ideas, developed by Blokhint­
sev. Their last versions might be in short given in the form of several thesises, 
based on Blokhintsev's sayings {1976): 

" The principal quarrels are concentrated around the understanding of the 
wave function. Does the wave function provides one with the objective and 
complete description of the physical reality or it is just a "notebook" of an 
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observer. .. ? Does the wave function describes the state of the particle, or that 
of the system of particles? 

We restrict ourselves to an explanation of the putted above questions, start­
ing from the concept of quantum ensembles ... This concept ... differs from .. 
the concept of Copenhagen school to those, that it gives a more modest role 
to an observer, while underlines the objective character of quantum ensembles 
and that of patterns, which control them. 

The concept of quantum ensembles is a very close one to the concept of 
Gibbs' classical ensemble. In Gibbs' ensemble a microsystem is considered in 
the interaction with a macroscopic thermal bath, having the temperature 0 .• 
The probability We of one or another result of the measurement ... is related 
with the ensemble, formed by unlimited reiterations of the microsystem µ at 
one and the same macroscopic conditions, given by the thermal bath with the 
temperature 0. · 

In the full analogy with a classical Gibbs' ensemble a quantum ensemble is 
formed by unlimited reiterations of situations, made up by one and the same 
microsystem µ, which is imbedded into one and the same macroscopic environ­
mentz M. Macrosituation might be artificially formed at the laboratory ... , as · 
well as to arise by itself in natural conditions .... The wave function WM ( or 
the density matrix PM) is an objective characteristic of the quantum ensemble 
and, in principle, might be found by measurement". 

In the above expressions there are posed several fundamental problems, 
which would be commented in what follows. The main problem, which was 
under discussion, that is whether the probabilistic description of Nature in 
Quantum Mechanics is the primary, fundamental one or it is a secondary one, 
as it has been traditionally considered in the Classical (deterministic) Physics. 

As it is known, in Classical Physics there is initially presupposed the univa­
lent predeterminance of the course of events. Therefore the impossibility of an 
univalent prediction of all events, which is encountered in practice, one usually 
refers to an incompleteness of the initial data, that is to consider as a secondary . 
effect. However," ... the real collapse of determinism happened along with the 
development of Quantum Mechanics, starting from the Einstein's work (1916) 
on the radiation theory, were there have been introduced a priori probabilities 
for the first time in physics" (V.A. Fock, 1957) [10]. Now it is possible to 
affirm, that the a priory, a primer character of the probability description in 
Quantum Mechanics is accepted by majority among investigators. 

A substantial progress in this question has been achieved only after eluci~ 
dation of the meaning of probability, as used in physics as a whole. In relation 
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1 with that Blokhintsev (1977) [6] wrote: "Probability is the numerical measure 
of the potential possibility of that or another one draw of events. The draw 
happens in a some statistical ensemble of events, which should be defined by 
clearly formulated material conditions. ... Probability is not a characteristic 
of an individual mechanical system as itself.· It belongs to a particular sys­
tem to that extent, to what extent this system is a member of some definite 
statistical ensemble." Let us underline, that the use by Blokhintsev and by 
some other well-known physicists of the term "quantum ensemble" caused in 
the past obdurate discussions. 

Evidently, that just a refusal of the term "ensemble" and its change by 
another similar terms - statistical population (von Neumann) [11), statistical 
collective (Mandelshtam, Fock) etc. - does not make any essential changes. 
It is needed to define clearly, what kind of statistical collective (ensemble) 
is subtended in Quantum Mechanics. In relation with this Fock (1957) [10) 
wrote: " Elements of statistical collectives, considered in Quantum Mechanics, 
are not micro-objects by themselves, but results of experiments over these 
objects. Moreover, a definite setting of the experience corresponds to a definite 
collective ... Probability is related to a particular object and characterizes its 
potential possibilities; at the same time for an experimental definition of its 
numerical value it is needed the statistics of realization of these possibilities, 
that is a multiple reiteration of the experiment. Hence it is clear, that the 
probabilistic character of the theory does not exclude, that it might be related 
with an individual object". 

It is not difficult to see, that Blokhintsev's and Fock's positions on these 
questions finally became rather close. From these positions it follows that the 
probability is a characteristic of an individual object, but not of it as itself, but 
rather as that of a member of some statistical collective (ensemble), defined 
by the same external conditions. 

In the clearest form this statement might be expressed when using the 
concepts of observables and states, introduced by P. Dirac (12). According to 
L.D. Faddeev {1980) (13], " ... the conditions of experiment do determine the 
state of a system, if for a multiple reiteration of the experiment under these 
conditions there arise probabilistic distributions for all observables". Hence it 
follows, that each of similar systems under invariable exterior macro-conditions 
appears to be at one and the same state, independently of that whether they 
will be putted under these conditions sequentially one by one or all together 
simultaneously. In this case it is not to any extent essential are these states 
pure or mixed. 
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One should say, that Blokhintsev in the course of development of Moscow. 
school ideas always persisted for the consistent consideration of pure (wave 
function) and mixed (density matrix) states in Quantum Mechanics. The la~­
ter were traditionally associated with mixed states of Classical Statistical Me­
chanics, which (in contradiction to Gibbs view) were related with an ensemble 
of particles, but not with an individual particle at all. Therefore Blokhintsev's 
point of view on this problem was not usually accepted. 

Now the position of scientific society on this question has been drastically 
changed. Due to the efforts of I. Segal [14], G. Mackey (15] and Faddeev [13] 
the description of Nature on the language of observables and states became 
possible to extend from quantum mechanics to other physical theories, up to. 
the traditional classical mechanics. The only peculiarity, which is inherent for 
classical (deterministic) theories, is that to their pure states does correspond 
degenerate ( delta-like) distributions of probabiiities. It is possible to look at: 
this position as on the development of Moscow school ideas. 

Let us recall two more important methodological problems to which Blokhin1 
sev paid a considerable attention. These are "Probability and Objectiveness 
of Knowledge" and "Probability and Perceptuality of Nature". 

The first problem deals with the role of an instrument and an observer in 
Quantum Mechanics. As it is known these questions were among the most 
important in the initial version of Copenhagen interpretation. That led to the 
exaggeration of the role of.a measuring instrument and an observer, and gave 
rise to some subjective interpretations up to the perception on the defining role 
of an observer consciousness. Our point is that there is no any base for any 
doubts on the possibility of an objective description of micro-world. In this 
relation Fock (1957) (10] wrote: "We can call "an instrument" such a device, 
which on the one side might interact with a micro-object and react on its effect, 
and on the other side provides a classical (deterministic) description ... In this 
definition of an instrument it is completely inessential whether this is human 
hand made one or it presents by himself a natural.. combination of exterior. 
conditions, where the micro-object was putted in. It is important only, that· 
these conditions should be described classically". 

In his turn Blokhintsev (1968) [5] noted: "An observer does not take part 
in events, therefore he must be excluded from the game. Paradoxes, incident 
to an understanding of wave function as a collection of information, or as a 
notebook of an observer, are cleared up when one performs an analysis of a 
microsystem action on the instrument". Such an analysis has been successfully 
performed by Blokhintsev in 1968. 
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In the second problem one deals with the role of an uncontrollable quan­
tum influence (interaction) of a microobject on the system, which forms its 
state. There were different opinions expressed. Let us give Fock's (1958) [16] 
statement: "Actually we are speaking here not about an interaction as .it­
self, but instead about a logical interrelation between quantum and classical 

· ways of description at the junction of that part of system, which is described 
quantum-mechanically, and that one, which is described classically. The term 
"uncontrollable interaction" as it sounds literally, causes perplexity: since any 
physical process is perceptual one, and therefore available for a control". 

The thesis "about a logical interrelation between classical and quantum 
ways of description" has a subjective inflection and there-fore was rejected by 
Moscow school. There were some reasons for that. In Quantum Mechanics 
there are considered two qualitatively different ways of changing the state­
either an evolution in accord with Schrodinger equation ( the controlled in­
fluence), either a reduction as a result of changes in macro-environment (the 
uncontrolled influence). Minimal uncontrolled quantum influence consists in 
an interchange by an elementary quantum of action. The fact that his numer­
ical value differs from zero demonstrates an uncontrolled influence inherent in 
the very Nature is unremovable. Hence, the presence of an elementary quan­
tum of action restricts the perception of Nature not more, than the existence 
of the limiting velocity of motion. As it was noticed by Blokhintsev (1963) in 
this respect" the discovered in quantum region finiteness of interactions does 
not set any boundaries for perception." 

3 Development of D.I.Blokhintsev's ideas and the modern outlook 
on the Complementarity Principle . 

. Blokhintsev's ideas an_ quantum ensembles originated prerequisites for the 
contemporary interpretation of such statements as the wave-particle duality 
concept and the Complementary Principle. Blokhintsev (1963) wrote: "ac­
cording to Bohr, a quantum description of phenomena falls into two alterna­
tive classes, which are complementary. to each other in that very sense, that 
their totality in classical physics provides with complete description. In other 
words, in the first row are not objective peculiarities of micro-world, but in­
stead the abilities of an observer, who manipulates with macroscopic quantities 
and concepts". 
. In essence, position of the Moscow school is different. The basis for this 

position is the perception about a self-dependent role of the state of system 
is a qualitatively new feature of physical reality. The fundamental property 
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of a state is its entirety, which gives rise to a substantial interdependency of 
conjugate characteristics of a system. The task raises to demonstrate in the 
most visual form the necessity of an entire opinion of the Nature, which could 
not be reduced to a collection of complementary mutually exclusive pictures. 
Its resolution appeared to be possible on the base of investigation of the most 
general properties of the state spaces, which are of use in Quantum Mechanics 
and elsewhere. 

At the description of the Nature in terms of observables and states in dif­
ferent physical theories these spaces can be vastly different from each other, 
but their "geometrical" properties are similar in many respects. They are de­
termined by the Cauchy-Bunyakovskii-Shwarz's inequalities which, as a rule, 
lead to non-trivial UR. These relations have sense of the fundamental restric­
tions determining the basic features and interrelations in corresponding space 
of states. 

Let's analyze this thesis by the example of the complex Hilbert's space used 
in quantum mechanics [17,18]. Opportunities for such analyzes have appeared 
after Shroedinger [9] has received the most general UR for any pair of conjugate 
observables and in any states which are not eigenvectors of operators A and 
B . Further this conclusion has been propagated on the any mixed states of 
quantum mechanics. 

Let us restrict ourselves with the consideration of the conjugate observ­
ables - coordinate and momentum - for the micro-particle, which is subjected 
to the one-dimensional motion. In this case Shroedinger's UR "coordinate -
momentum" has the form 

!:lq2 . !:lp2 2: I Rqp 12. (1) 

Here !:lq2 and /:lp2 are dispersions (variances) of observables q and p, which 
characterize their fluctuations in the state jw), and 

IRqpl 2 = a;p + c;p = i(wl{!:lq, !:lft}lw)2 + :
2 

(2) 

is the square of generalized complex correlator (covariance) of these fluctua­
tions. 

Let us note some features of Shroedinger's UR (1): 

• in the generalized correlator IRqpl on the equal rights enter the same 
footing average values of the commutator Cqp = ½l[!:lq, !:lft]I and the anti­
commutator a qp for the operators !:lq = q- q and !:lp = p-p accordingly, 
with q and p being average values of observables. 
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• it goes over it's special versioni namely the Heisenberg's UR'only by the 
condition O"qp = O; · 

.. • in the quasiclassical limit Cqp ➔ 0 whereas O"qp don't go .to zero, but goes. 
, , .over into the correlator (liq· tip) from the classical probability theory . 

. For more detailed analysis let us present the. first term in the Eq. , (2) in. 
the following form [19f · 

(3) 

where 

. . Ii . ar.p 
]pr(q) = --::-;p(q)~, 

m · uq ' ( 4) 

is the density of the probability .current in the state, described by the wave 
fun~tion \Jl(q) =. Jpp'.(q)exp{ir.p(q)}. This denotes, thatth~ quantity uqp turns. 
equal to zero for all the real wavefunctions and also for the infinite harmonic 
de Brogli~ wave, whe~ jp~ = const. In order the quantity to be different 
from zero ( uqp =f. 0), the correspo11ding wave fonction have to be complex and 
non~stationary (with tiq(t) =f. o): . . . ' . 

As an example of realistic model for which aqp f O let us consider the free 
motion of micro-particle with the mass m in the state of Gauss wave packet 
with initiai width tiq(O) ~ b ~nd the velocity of the packet center Vo = const. 
In' an arbitrary instant of time we have: • . . 

(5) 

O"qp = m¼!t, (6) 

w~ere Fq,, = ~ = 2!b is the rate of the spreading of the Gauss packet. 
In this case t~e Shroedinger's UR obtains the form (19) 

. . Ii 
tiq2(t). tip2 = IRqpl 2 = (m¼~t)2 + 4, (7) 

so the Gauss packet minimizes Shroedinger's UR (1), turning it into equality 
at any value of t. We note, that the rate of spreading is deter-mined by the 
dispersion of the momentum in the initial instant of time (tip2 = li/4tiq5), 
when both UR (Shroedinge·r's and Heisenberg's) coincide. 
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As is known the starting version of complementarity principle [3] was tightly 
bound with the analysis of the Heisenberg's UR. It follows from this one that 
in Nature there are no states , for which the dispersions of coordinate and 
momentum equal to zero together. But the illusion remained that there may 
be experimentally realized the states for which the coordinate and momentum 
dispersions go to zero individually. But it does not seem reasonable to say that 
this illusions are valid. The example with the Gauss packet for which shows 
.0.p2 = canst -:fa 0, that it never can spread enough to transform into an infinite· 
de Broglie harmonic wave with .0.p2 = 0. Thus the states which illustrate the 
complementarity principle are only mathematical abstractions of a kind of the 
o- functions or an infinite harmonic de Broglie wave and not more. 

·Moreover, one cannot ever say formally that the quantity .0.p-+ 0 by .0.q-+ 
oo or vice versa because the square of generalized correlator IRqpl in the form 
(7) has two terms playing different roles on the divers stages of the packet's 
spreading. As a threshold time one may define Tqu = _v:b. It characterizes 

qu 

the time interval which is necessary for doubling of initial packet width. Then 
the second term which corresponds to the traditional contribution into the 
Heisenberg's UR can be ignored at t » Tqu• In this limit it comes out that the 
dispersions .0.q2 and .0.p2 are directly proportional each other .0.q2 ~ ( ¾ )2 .6.p2

• 

Thus the traditional statement that these quantities are inversely proportional 
each other (.6.q2 ~ 41:2 ) has only some meaning at the time t « Tqu• 

Thus the widely used. perceptions about the particle-wave dualism and 
about the complementarity of these two alternative types of micro- particles 
description are seen now as somewhat conventional. In the Nature there are 
no micro-objects in states, in which they have quite definite values of the co-: 
ordinate or the momentum. Moreover in many cases the initial mutual inverse 
proportionality of the values .0.q2 and .6.p2 with the time evolution turns into a 
direct proportionality. Thi:, means that the concept of the two complementary 
(alternative) ways of the micro-object description is the echo of classical repre­
sentations. It may be realized only approximately. For an adequate description 
of the micro-world it is only convenient the holistic approach by which both 
conjugate observables - the coordinate and the momentum - posses no definite 
values in any state. They are characterized by average values, dispersions and 
generalized correlator. Furthermore the type of their fluctuations correlation 
is changed from anti-phase one (.6.q2 ~ A~2 ) to the in-phase one (.6.q2 ~ .0.p2

). 

Summing up we are dealing in fact with the same observables in the clas­
sical and in the quantum mechanics. The ~nly difference consists in the fol­
lowing: it the first ( classical) case the conjugate observables are considered as 

.. L 
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independent primary, whereas in the other (quantum) case - as interdepen­
dent ones. The interdependence between coordinate and momentum in the 
quantum mechanics one may demonstrate explicitly [19] in its version named 
Nelson's stochastic mechanics [20]. 

4 The propagation of D.I. Blokhintsev's ideas beyond the frameworks 
of Quantum Mechanics. 

The ideas of Moscow school about the unified treatment of pure and mixed 
states in quantum mechanics initiated the problem of interrelations between 
the probability description in quantum mechanics and outside it. This prob­
lem was interesting for Blokhintsev for a long time. The last paper on this 
subject under the title "Classical statistical physics and quantum mechanics" 
was published by him in 1977 [6] (a year and a half before his death). 

His ensemble approach opens up some possibilities to a more wide inter­
pretation of probabilistic type theories. Now it is possible to say that there are 
the theories beyond frameworks of the quantum mechanics also. In them the 
probability description has also a primary fundamental character. It would 
be quite natural to expect that corresponding limitations in their state spaces 
will appear in these theories,which would be analogous to the Schroedinger's 
UR (1). 

For convenience of comparison with behavior of one free micro-particle let 
us consider one-dimensional generalized diffusion [21], described by the Fokker­
Planck equation in the configurational space 

(8) 

where 

(9) 

n is the velocity of flow or the current velocity, proportional to the particle flow 
h density v = lj. 

p 

e This quantity is made up of two qualitatively different terms. Addend w 
d . means an average velocity of the motion forward of separate particle or drift 
n velocity. It is defined by Newton's dynamics, that is initial conditions and 
) . known forces working on a particle ( controllable influence). 
s- The second term in the formulae (9) 
1-
ts lop 

u = -Dr-­
poq 

(10) 
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refers to osmotic ( or diffusion) velocity. It is meaningful to velocity of 
displacement of particles of a flow as a result of diffusion according to Fick's 
law ( uncontrollable thermal influence) with coefficient of diffusion 

kBT 
Dr= -r (11) 

m 

Here T - is temperature of the environment,m - is mass of a particle, T -

is the relaxation time and - is the fundamental Boltzmann's constant. Let's 
notice, that by w = 0 the equation (8) turns to the ordinary equation of 
diffusion. On the contrary, at the same equation turns to Liouville's equation 
concerning to the mixed states of classical (deterministic) mechanics. 

In the case of the generalized diffusion, as the momentum conjugate to 
coordinate it is accepted to choose [22,23,21] the current momentum 

m. 1 op 
p = mV = -J = m(w- Dr--) 

P paq 
(12) 

The corresponding UR" coordinate-momentum" which follows from Cauchy 
-Bunyakovskii-Schwartz inequality has the following form 

!J..q2
• tJ..p2 2': (.6.q . .6.p)

2 = m 2 [(.6.q . .6.w) + (.6.q · .6.u)]2, (13) 

where (.6.q · .6.u) = Dr. As wt,11 as in quantum mechanics, right -hand side UR 
of a kind (13) at adequate definition conjugated coordinate and a momentum 
is distinct from zero only when velocity w ( or u) and coordinate q are inter­
dependent. As to study sources of such interdependence outside of quantum . 
mechanics let us analyze two extreme cases. 

First we shall consider a case when Dr= 0, i.e. diffusion is absent (osmotic 
velocity u = 0). This case corresponds to Classical (deterministic) Mechanics 
of the particle which is taking place in the mixed state owing to disorder of 
the initial data. The elementary example of similar type has been described 
in known Blokhintsev's monograph (1966) [7] in which was considered one­
dimensional movement of a free particle with initial distribution function for 
coordinate and momentum of Gauss' type 

l (p-p)2 (q-ij)2 
Po(q,p) = J 2 2 exp{- 2.6. 2 - 2.6. 2 } (14) 

21r .6.q0 .6.p0 Po qo 

In this case the Fokker-Planck equation (8) transforms to the special case 
of the Lioville's equation where the current velocity V = w = P/m = const: 
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ap a Pap 
at = - 8q(pw) = - m 8q (l5) 

According to Faddeev's terminology [13] such kind of description corresponds 
to the Liouville's picture of motion in classical ( deterministic) mechanics. The 
s~lution of Eq. (15) at an arbitrary moment of time is obtained from the Eq. 
(14) by the change of q on (q - ;, · T). · 

The simplest calculation shows that in this case 

A 2 _ A 2 V2t2• A 2 _ ( 1/, )2 _ A 2 _ t uq - u% + cl , up - m · c1 - up0 - cons , (16) 

where ½1 = .6.p0 /m- the velocity of spreading of Gauss initial distribution of 
classical mechanics. Continuing the analysis of the space states p:roperties we 
obtain the expression for the correlator 

O'qp = m(.6.q • .6.w) = m½,7t. (17) 

As a result the UR "coordinate-momentum" (13) in considered special case 
takes the form 

(18) 

Let us now analyze another special case of UR (13) corresponding to the 
Brownian motion by the absence of external forces when the drift velocity 
w = 0. In the limit t » T it has been examined by Furth {23] still in 1933 [23] 
when instead of (14) he has received the formula 

(19) 

where the correlator 

(20) 

It is easily to see that the non-trivial UR "coordinate-momentum" is the con­
sequence of the non-controlled thermal influence which is determined by the 
Bolzmann's constant. 

The generalization of the UR (19) on an arbitrary time intervals (24] in the 
frameworks of the Ornstein- Uhlenbeck theory (25,26] leads to the expression 

.6.q2 . .6.p2 > (1'2 
- qp, (21) 

where the correlator has form 
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<Tqp = mDr(t) = mDr(l - exp-t/T) (22: 

By t » T it obviously transform~ to Eq. (20), but by t « T it gives : 

t . 
<Tqp = mDr · - = kBTt = mV,'}t. 

T 
(23: 

Here Vf = ~ -is the dispersion of velocity in the thermal equilibrium stat( 
determined by one-dimensional Maxwell's distribution . 

Thus, in the Brownian's motion theory the state of a particle is formed du( 
to uncontrollable thermal influence of the thermal bath. Let us emphasize 
that it also is unremovable. In this state both the conjugate observables ~ 

and p also are interdependent, that results in essential correlation of thei1 
fluctuations. The formalism of this theory is qualitatively distinct from c 
formalism of quantum mechanics. However in the methodological attitud( 
t];iey are close enough, whereas both ones being conceptually different frorr 
that in Classical Statistical Mechanics. 

5 The conclusion. 
So, the approach of Moscow school (Mandelshtam, Nikolskii, Blokhintse, 

and their successors) to any physical theories on a basis of probability descrip­
tions shows the efficiency. The further development of these ideas opens, in om 
opinion, prospects for creation of the holistic non-classical ( non-deterministic) 
physical theory. 

As a first step there is an opportunity to enter the new criterion, allowing 
to divide the all physical theories on classical (deterministic) and non-classical 
(non-deterministic). Such criterion, in our opinion, is presence or absence ol 
fundamental uncontrollable influence of this or that type resulting to formation 
of a state of system in cert-ain macro-enviroment. 

From this point of view qualitative differencies between the mixed states in 
classical (deterministic) mechanics and states in the Brownian motion theory 
are distinctly visible as two special types of the Fokker's-Planck's equation 
decisions. In both theories takes place a correlation of fluctuations of coor­
dinate and momentum. However in classical mechanics the state of system 
is determined to two observable q and p which primary are independent. In­
terdependence of these observables in mixed states can arise, but only during 
movement (t =/: 0), in other words it is secondary. On the contrary, in the 
Brownian motion theory interdependence of observables q and p arises initially 
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at forming of a state of system due to uncontrollable (thermal) influence, in 
other words it is primary. 

It is interesting, that the certain analogy between the Brownian motion 
theory and quantum mechanics is observed to this attribute. In last one inter­
dependence between observables q and p, as well as in the Brownian motion 
theory, arises initially at forming of a system state due to uncontrollable ( quan­
tum) influence, in other words, it is primary. It gives the ground to approve, 
that both these theories concern to non-classical ( non-deterministic) physical 
theories. Furthermore, Brownian motion theory appears to be more close to 
Quantum Mechanics than to Classical Statistical Mechanics. 

Thus, the search of the holistic theory in which both types of uncontrollable 
influence would be viewed as conjoint and equal in rights, is not deprived sense 
[27-30]. As an illustration of this thesis let us address to Brownian motion of 
:1. free micro-particle. Recently we have [30] shown, that the generalized corre­
lator IRqpl at any arbitrary moment of time rather complicate de-pends from 
;he both fundamental constants Ii and kB. This dependence becomes simpler 
it t ~ Tcr = n/2kBT, where rcr- the moment of time dividing two regimes at 
1Vhich prevails either quantum, or thermal influence. In these conditions 

(24) 

:o "thermal" and "quantum" contributions to the generalized correlator prove 
o be additive. The commensurability of them might be reached at certain val-
1es of macro-parameters (temperature, and relaxation time, related with the 
riscosity of medium), and, along with an increase of these macro-parameters, 
'thermal" contribution might became a dominant one. Under these conditions 
he correlation of the coordinate and momentum fluctuations for micro-particle 
s determined not by the Planck constant, but mostly by the Boltzman con­
tant. 

Thus, ideas of the Moscow school play an essential role not only at interpre­
ation of quantum mechanics. They can be used as a com-pass by searches of 
he complete non-classical physical theory based on the joint and equal in rights 
.ccount of all types of uncontrollable influence. In this connection Blokhint­
ev's researches on fundamental problems of quantum mechanics are actual 
nd today. They, undoubtedly, represent a subject of pride of the Russian and 
rorld science. 
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Positronium Bose condensate as gamma laser 

V. S. Vanyashin 

Dnepropetrovsk National University, 49050 Dnepropetrovsk, Ukraine 

Abstract - The rate of self-stimulated emission of photons produced 
by the decay of Bose condensate of para-positronium atoms has been 
calculated. This rate exceeds the rate of spontaneous two-photon decay 
at plausible density values of positronium gas, thus opening, in principle, 
the way to the positronium Bose condensate gamma laser. 

1 Introduction 

We present the estimation of the main parameter upon which the princi­
pal possibility of one of the earliest gamma ray laser idea crucially depends. 
This parameter is the density - number of particles per unit volume - of 
positronium gas in a state of deep quantum degeneracy. The choice of exotic 
substance is suggested by the decay property of a free para-positronium atom 
that emits two monochromatic recoilless gamma quanta in opposite directions. 
So the acute in M ev range Doppler shift difficulty simply does not exist for 
the stimulated two-photon decay of condensate particles. 

2 Rate of self-stimulated emission of photon pairs from Bose con­
densate of pseudoscalar field 

For our aim we accept the phenomenological quantum field theory formal­
ism, the most straightforward one for the primary investigation of the problem. 
As the only on-mass-shell treatment is needed at the first stage, the descrip­
tion of ground state para-positronium atoms as point-like particles - quanta 
of the local pseudoscalar field cp( x) - will do no harm. 

So let us begin with the-phenomenological Lagrangian density of interacting 
electromagnetic and neutral pseudoscalar field: 

E2 _ H2 cp2 _ ('v cp )2 _ m2cp2 
£= 2 + 2 +gcpEH. (1) 

The radiation gauge is the most appropriate for our case: 

Ao= 0, VA= 0, E=-A, H='v X A. (2) 

Canonical momenta are defined as: 

Il= A.-gcpH, 7l" = cp. (3) 



Positronium Bose condensate as gamma laser 103 

All previous formulas lead to the Hamiltonian density: 

1-1.= 
E2 + H2 <p2 + (v'cp)2 + m2cp2 

2 + 2 
(IT+ gcpH)2 + H2 71"2 + (v'cp)2 + m2cp2 

2 + 2 ' 
(4) 

that consists of two positive contributions from each field. The interaction 
manifests itself through the non-commutativity of these two energy densities. 

The canonical commutation relations (nontrivial) are: 

[7r(x, t), cp(x', t)] = -io<3l(x - x'), 

(II;(x, t), Aj(x', t)] = -io; · o<3l(x - x') - i.!!._ l 
1 O;Oj 47rjx - x'I (5) 

They are consistent with the radiation gauge conditions: divA = divll = 0. 
With the help of the canonical commutators we obtain the rate of energy 

exchange between the two fields: · 

d f E2 +H2 
- d3x---
dt 2 

= g f d3x 7r HE ; EH 7r = (6) 

So in a closed conservative system of the two fields the flow of energy between 
them oscillates with a characteristic frequency of order r-1 = (g cp). For a 
real open system in thermal environment the rate of energy exchange can be 
enhanced through the Bose-Einstein condensation of the cp field. 

We have to consider this possibility in detail. The canonical variables 
cp(x, t) and 1r(x, t) can be expressed by the plane-wave decomposition: 
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For the electromagnetic field the decomposition into plane waves with circular 
polarization is: 

A(x, t) = L ~ [ ( aR(k, t)e(k) + aL(k, t)e*(k)) eikx + H.c.] , 
k v2Vw 

w = I kl, e(k) = ~ ( e1. + i~ x e1.) , e1.k = 0, e~ = 1, 

e(-k) = e*(k), e2 = e*2 = 0, ee* = 1, ek = e*k = 0, (8) 

IT(x, t) = L {w [-i ( aR(k, t)e(k) + aL(k, t)e*(k)) eikx + H.c.] , 
k 

H(x, t) = ~ fw [ ( aR(k, t)e(k) - aL(k, t)e*(k)) eikx + H.c.] , 

as 
ik x e(k) = w e(k), . ik x e*(k) = -w e*(k). 

The commutation relations for the right ( analogous for the left) polarized 
modes are: 

[aR(k, t), atR(k', t)] = (2;)
3 

5(3l(k - k') ~ 1. 

For the condensate field cp( x, t) = cp( t): 

cp(t) = k (b(t) + b\t))' 
2mV 

7r(t) = {;; (-ib(t)+ibt(t)), 

[b(t), bt(t)] = 1, [7r(t), cp(t)] = -~-

(9) 

(10) 

When we take into account only the condensate mode for physical reasons, the 
total Hamiltonian becomes: 

/ 
IT2 + H2 7r2 + m2cp2 

1i = d3x--- + V---- + 
2 2 

V 

/ 
ITH + HIT / H 2 

gcp d3x 2 + 92 cp2 d3x 2. 
V V 

(11) 
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For reasonable fields g2 (r.p2
) « 1 and the last term in (11) is negligible. The 

total Hamiltonian without it takes the form in the momentum space: 

1{ = L w ( atR(k, t)aR(k, t) + atL(k, t)aL(k, t) + 1) + 
k 

m (bt(t)b(t) + ~) + ✓2:V (b(t) + bt(t)) x 

L ~ [-i ( aR(k, t)aR(-k, t) - aL(k, t)aL(-k, t)) + H.c.] 
k 2 

(12) 

[tis convenient to separate the fast energy dependence by going to slow varying 
;ilde-operators: 

rheir time dependence is determined by the interaction Hamiltonian: 

n which we retain only the resonant (w = m/2) terms 

g 
Hint(t) = ~ X 

v2mV 

(13) 

L ~ [-ibt(t) (aR(k,t)aR(-k,t)- aL(k,t)aL(-k,t)) + H.c.]_(15) 
k,w=m/2 

:.nd omit the fast varying nonresonant terms like baa e-i(m+2w)t. 

For every fixed direction and circular polarization of a plane electromag-
1etic wave there are two coupled equations, e.g. : 

·R a (k,t) = 

(16) 

,et the annihilation decay of the condensate be compensated by a new delivery 
o it. For this case, when one could consider btb = N » 1 as a constant c­
umber, the system (16) is linear and easily solvable. It appears that the time 
volution produces the Bogolyubov transformation: 

aR(k, t) = 

,ooh ( ~~ t) ,;R(k, 0) + ,inh ( ~~ t) J.v ;;1R(-k, 0). (I 7) 
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This is a clear case of quantum parametric resonance [l]. The given condensat 
field plays the role of a time dependent external field - the energy source c 
constant intensity pumping the coherent electromagnetic field. The opposit, 
case of coherent creation of scalar boson pairs by a time dependent extern~ 
electric field was considered in [2] with a similar result.· 

The photon number increment according to (17) and agreeing with (6 
tends to 

Nph = I 91 JmN_ 
Nph Yw (18 

The dependence of the photon emission rate on the density of emitters is simila 
to other collective phenomena. Another peculiar feature of the result (18) i 
that a measurable effect comes out with the first rather than the second powe 
of the small coupling constant, that is more favorable. 

3 The feasibility of positronium Bose condensate gamma laser 

Formula (18) is applicable for the self-stimulated two-photon decay of an: 
pseudoscalar particles condensate, e.g., for 7!'0-mesons or hypothetical axions 
As our priority is the para-positronium condensate, we substitute the parame 
ters m and 9 by me and a : 

1 5 me 9
2 

3 --=a-=--m 
Tpara 2 647!' 

m = 2me, Nph = ✓ 41ra
5 

N 
Nph me V · 

(19 

It follows from (19) that the photon number increment dominates ove 
spontaneous two-photon decay at the condensate densities N/V ~ 1019cm-3 

this should be feasible at the liquid hydrogen temperatures. 
All above results were obtained a decade ago and published in [3]. Toda} 

the whole topic of Bose-Einstein condensation is very promising physics, anc 
this fact gives new impetus to the problem considered. 

The author would like to thank the Conference organizers for the invitatior 
and financial support. 
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The scalar O(N) model beyond the Hartree 

approximation, in and out of equilibrium 
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Abstract - We discuss recent results obtained in the two-loop approxima­
tion of the two-particle point-irreducible (2PPI) effective action applied 
to the scalar O(N) model at finite temperature and out of equilibrium. 

1 Introduction 

107 

The fundamental theories and phenomenological models of elementary par­
ticle physics contain, as a basic constructive element, the Higgs mechanism. 
This involves the physical phenomena of spontaneous symmetry breaking, 
phase transitions and symmetry restoration at high temperatures and energy 
densities, particle production in time dependent background fields via the mass 
term provided by the Higgs field. The question of thermalization of particles 
produced in this way arises in inflationary cosmology. Most of these concepts 
are not based on exact results in quantum field theory but on certain ap­
proximations to it. Beyond the tree level approximation as defined by the 
basic Lagrangian typical approaches are: resummation schemes like lPI, 2PI, 
2PPI, the 1 / N expansion, the loop expansion, the semi classical approximation, 
the Hartree approximation and variational approaches based on Gaussian and 
other wave functionals. A simple model which displays spontaneous symmetry 
b'reaking and in which such approximations can be studied is the 0( N) sigma 
.model with a Mexican hat potential 

1 ). ( 2) 2 ,C = -0 <l>-{)l'<l>. - - <l> ·<l> · - V 
2 µ ' ' 4 ' ' 

(1) 

The model appears, e.g., in the Higgs sector of some fundamental theories 
(Coleman-Glashow model, S0(10) GUT etc.), as an effective low energy the­
ory for 7r and a mesons, and as a model for particle creation after inflation. 
Many results are known in leading order (I-loop, large N, Hartree) in ther­
mal equilibrium and out of equilibrium. Next-to-leading order calculations 
are technically very demanding, both analytically and numerically. Not even 
renormalization has been achieved in some resummation schemes. In out-of­
equilibrium quantum field theory an outstanding problem is the approach to 
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thermalization after copious particle production at the end of inflation. In 
leading order approximations the systems do not thermalize. 

In this context we have recently investigated some aspects of the model, we 
will present here some of our results for the O(N) model in the 2PPI scheme 
in the two-loop approximation: at finite temperature in 3 + 1 dimensions, and 
out of equilibrium in the 0(1) model in 1 + 1 dimensions. We will discuss the 
different resummation schemes in section 2, and present our results in section 
3. In section 4 we will draw some conclusions. 

2 Effective action formalisms 

2.1 The effective action, lPI 
Consider the action S of a quantum field theory with external source J( x ). 

Then the effective action r1
P

1 [¢] generates the one-particle irreducible (lPI) 
Feynman graphs. Vice versa, r1PI is the sum of all lPI Feynman graphs with 
external lines representing ¢( x ). We have 

r[¢] = Sc1[¢l + r1P1[¢] 

The summation of all orders in the external field can be obtained by writing all 
vacuum Feynman graphs, but with .the free Green function G(0>(x, x') replaced 
by the Green function in the external field defined by 

[□ + m2 + 3A¢2(x)] G(x,x') = -o4(x - x') (2) 

In this way one resums all seagull diagrams. In the lowest order approximation 
one just takes account of the simple bubble diagram and obtains the one-loop 
effective action. 

2.2 The 2PI effective action (CJT) 
One gets a more powerful resummation [1] by introducing in addition to an 

external field ¢(x) the Green function G( x, x') via Legendre transformation of 
a bilocal source term K(x,x')¢(x)¢(x'). 

r[¢, G] = Sc1[¢] + ~iTr ln a-1 + ~iTr ( n-1a) 
+r2P1[¢, G] , (3) 

Here f 2
P

1 [¢, G] is the sum of all two-particle irreducible (2PI) vacuum Feynman 
graphs, Feynman diagrams that do not fall apart if one cuts any two interior 
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lines. Here the Greens function G is a solution of the Schwinger-Dyson equa-
tion 

(4) 

The simple bubble is already contained in the "Trace-log" term, the lowest 
nontrivial contribution is the double-bubble graph, giving rise to the daisy 
and superdaisy resummation. This reproduces the exact theory in the limit 
N ➔ oo. The next term in a loop expansion is the sunset diagram. Here the 
insertions 

A( ') = oT2P1[</>, G] 
ux,x c5G(x,x') (5) 

are no longer local. If we truncate r2 including two-loop order terms we have 

In order to obtain the next-to-leading order approximation (2PI-NLO-l/N) in 
the 1/ N expansion [2] one has to resum all necklace diagrams: 

(a)Q (b)·····O·· 

This approximation has been investigated in nonequilibrium quantum field 
theory in 1 + 1 and 3 + 1 dimensions by Berges and collaborators, and at finite 
temperature by Bordag and Skalozub [3]. 

2.3 The Bare-Vertex-Approximation (BVA) 
The bare vertex approximation (BVA) has been introduced in nonequi­

librium quantum field theory by Blagoev, Cooper, Dawson and Mihaila (see, 
e.g. [4]). It is based on the 2P I scheme. One introduces an auxiliary field 
x(x) = µ2 + f;TrG and replaces the exact vertex (<I>(x )<I>(x')x(x")} by the bare 
one. By this approximation the set of Schwinger-Dyson-equations closes; the 
expansion ends at the two-loop-level of graphs containing internal </> and X 
lines. . 

8 
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It differs from NL0-1/N by inclusion of the second graph, so it becomes iden­
tical to the NL0-1/N approximation if¢>= 0. 

2.4 The 2PPI formalism 
The 2PPI formalism in its original form [5] is based on the action 

r[¢>,~] = Sc1[¢>] + r2PPI[¢>,M2] + 34),, J dDxL~.2(x). (6) 

It differs from the 2PI formalism by introducing, in the functional integral, 
only a local source term f dDxK(x)¢>2(x). Here r 2PPI[¢>,M2] is the sum of all 
two-particle point-irreducible (2PPI) graphs; these are defined as graphs which 
do not decay into two parts if two lines joining at a point are cut. So among 
the following diagrams \e/ 

(a) ./ \_ (b) 

···~·· 

....... ... .... 

the diagram (a) is both two-particle reducible (2PR) and and two-particle 
point reducible (2PPR) while diagram (b) is 2PR but 2PPI. 

In r 2PPI[¢>, M 2] the Feynman propagators are replaced by the solutions of 

(□ + M2(x))G(x, x') = -o(x - x') (7) 

and the gap equation is 

M2(x)- m2 - 3>..¢>2(x) = 3>..~(x) = -6>.. JT2PPI[¢>,M2] (8) 
oM 2(x) . 

So ~ contains all local insertions into the propagator. If one uses this in order 
to eliminate ~, the action becomes a function of¢> and M 2 • By variation 
with respect to ¢> and M 2 ·one reobtains the gap equation and the equation of. 
motion for the mean field 

0 = □ ¢> + M2(x)¢>(x) - 2>..¢>3(x) - or2P;)(~)M2] ' (9) 

the equation of motion for the mean field and the gap equation. Unlike in the 
2PI formalism the Green function itself is a functional of M 2 and therefore not 
a variational variable. In the lowest order this approach reduces to the Hartree 
approximation. Here we go beyond the Hartree approximation by including,. 
besides the bubble diagram (a) the sunset diagram (b) which constitutes the 
entire two-loop contribution. 
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Renormalization in the Hartree approximation leads to well known inconsis­
tencies of the counter terms with those of standard perturbation theory; this 
is due to the lack of crossing symmetry in the subgraphs taken into account in 
a certain order. This problem has been analyzed thoroughly by Verschelde [6]. 
He decomposes the counter-terms into 2PPI ones and the remainders and for­
mulates the bookkeeping to all orders. He thereby shows the overall consistency 
of the procedure. In praxi his approach reduces to renormalizing on the level 
of the gap equations. 

2.5 Comparison of the different formalisms 
In general the three schemes resum large classes of Feynman graphs; this is 

not immediately evident from the graphs displayed when formulating a certain 
approximation, as by resummation the meaning if the lines in these graphs is 
different in the three schemes. If one "counts" the graphs actually included in 
the resummation in next-to-leading order one can roughly rank: 

BVA > NLO - 1/N > 2PPI(2 - loop) (10) 

[t is unclear, however, whether these resummations correctly reproduce the 
expected features of the model even qualitatively: order of phase transition, 
late-time behavior, thermalization (or equilibration), Goldstone particles etc .. 
[t is unclear, furthermore, how small 1 / N has to be in the first two schemes 
:>r if there is another small parameter (h ). So we would plead for taking the 
pragmatic approach: to apply these schemes, and to compare them with each 
:ither and with known features of the exact theory, whenever possible. 

3 Numerical results 

3.6 The 0(1) model in 1 + 1 dimensions, out of equilibrium 
The simulation of the simultaneous time evolution of the classical field and 

the fluctuations ( as encoded in the Green functions) is a formidable task, once 
)Ile goes beyond the Hartree approximation. As the leading order large-N or 
f-lartree approximation is often used e.g. in cosmological models of particle 
rroduction, it is important to see whether and how the qualitative and quan­
titative features survive in higher orders, either in a loop or a 1 / N expansion. 
fhis is very difficult in 3 + 1 dimensions [7], where in the 2PI formalism the 
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renormalization has not been performed even in equilibrium for nonzero ex-· 
ternal fields. We have chosen to consider simulations in 1 + 1 dimensions [8], 
where Cooper, Dawson and Mihaila [4] have already compared the Hartree, 
NL0-1/N and BVA approximations. 

The time evolution of a quantum system in the Heisenberg picture has been 
formulated by Schwinger and Keldysh [9]. The perturbation theory in the so-· 
called Schwinger-Keldysh or closed-time-path (CTP) formalism is similar to 
the Feynman graph expansion of the S-matrix with the following modifications: 
in all Feynman graphs the integrations over p0 are replaced by integrations over 
x 0 = t, and this time integration is not from -oo to +oo, but along a closed 
time path. 

lmt 
~ 

C+ 

Rel 
c_ 

The vertices have different signs on the two parts of the path; thereby the time 
integration decays into parts, whose number proliferates as 2n, where n; is the ' 
number of interior lines. These combine in such a way that the kernels of the 
time integration become causal. The spatial momentum integrals are those of 
the usual Feynman graphs. They are regularized in dimensional regularization 
using d3-<p. 

How does the calculation (8] proceed in practice? If we consider a spatially 
homogenous classical field cp(t) the variational masses likewise depend only on 
time. So the x dependence can be formulated in a plane wave basis. The 
Green function for momentum p satisfies · 

[ g;2 + p2 + M 2(t)] G(t, t',p) = -o(t - t') (11) . 

As in the 2PPI formalism used by us the mass term is local in time the solution 
can be written in factorized form 

G(t, t',p) = 0(t - t')f(p, t)j*(p, t') + 0(t' - t)f(p, t')j*(p, t) (12) 

Having solved the differential equations for the mode functions 

[ gt22 + P2 + M2(t)] f(p, t) = 0 (13) 
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the Greens function can be computed and used to compute all relevant Feyn­
man graphs. The factorized form represents a tremendous computational sim­
plification. We do not have to store the memory of the past, and the compu­
tation of the Feynman graphs is also greatly simplified. 

The mode functions f (p, t) can be used as a basis for a Fock space, and serve 
to formulate particle production via Bogoliubov coefficients. This Fock space 
is also used in formulating the initial state or density matrix. Note however, 
that these Green functions do not converge to the exact Green functions, and 
therefore, unlike in leading order, the particle interpretation becomes rather 
questionable. 

The initial conditions of course depend on the physics of the system under 
consideration .. In inflationary models one of the initial conditions specifies 
the initial inflation amplitude ¢(0) and reheating after inflation starts with an 
"empty" vacuum, so the Fock vacuum is widely used as initial condition for 
the quantum state. 

We here consider both the case of a double well potential as also the {;ase 
,vithout spontaneous symmetry breaking, i.e., a potential V( <I>) = m2 <I> 2 /2 + 
>i<I>4 /4 with m2 > 0. 

We first display the results for the latter case, with m2 = 1, ,\ = 1 and 
;b(O) = 1.2. 

1.5 
2 loop 2ppi -

18 

1i " Ii 
H4rtr e ---- 16 

I '\ . \ ., '\ 14 

o.s 12 

" " 
10 .. ,. 8 

-0.S 

-1 

-1.5 
0 5 10 15 20 25 30 35 40 45 so 0 s 10 15 20 25 30 JS 40 45 so 

t 

0.6 
Eeot:-
Ecla -----· 

0.4 1.5 Equ• 

0.2 1 -. 

" ~ 0.5 

"' .. 
-0.2 

-0. 4 -o.s 

-0. 6 -1 
0 s 10 15 20 25 30 35 40 45 so 0 5 10 15 20 25 30 35 40 45 so 

t t 



114 J. Baacke, A. Heinen, S. Michalski 

The four figures show the time dependence of the mean field ¢(t), the effective 
mass squared M 2(t), the sunset contribution S(t) to the equation of motion 
of cp(t), and the energy. While dissipation is negligible in the Hartree approxi_­
mation, the amplitude cp(t) shows strong dissipation when the sunset diagram 
is included. Indeed the sunset contribution is large in the region 10 < t < 35 · 
where the dissipation is strong. 

We now consider the case of broken symmetry (on the tree level). For for· 
v = I and .,\ = 1/6 we display the mean field amplitude ¢(t) and the effecti've 
mass M 2(t) for the Hartree and the two-loop approximations. With the initial 
amplitude ¢(0) = 1.5 
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the total energy is larger than the height of the potential barrier. Again we 
find strong dissipation in the two-loop approximation, while there is practically 
no dissipation in the Hartree approximation. While in this case the mean 
field oscillates around ¢ = 0 at late times the case becomes more interesting 
if the total energy is lower than the height of the barrier. In the Hartree 
approximation the amplitude then oscillates around the minimum of one of 
the wells. In the following figures the results are shown for the Hartree, the 
NLO-1/N, the BVA and the 2PPI two-loop approximations, for the parameter 
sets v = 2,.,\ = 0.5, and v = 0.523, .,\ = 3.65 used by Cooper et al. [4]. 
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One sees that the 2PI-NL0-1/N approximation tends towards the symmetric 
configuration ¢ = 0 at late times, and so does our two-loop 2PPI simulation. 
For the BVA, as in the leading Hartree approximation, the mean field tends 
towards the broken symmetry minimum at late times. 

In summary the inclusion of the sunset diagram (i) leads to dissipation in 
the symmetric case; (ii) causes the system to end up in the symmetric phase for 
the broken symmetry case. No thermalization is observed in the momentum 
spectra at late times. 

3.7 The 0(N) model in 3 + 1 dimensions, in thermal equilibrium 
The 0( N) model in 3 + 1 dimensions with spontaneous symmetry breaking 

on the tree level has a first-order phase transition in the Hartree approximation 
while there is evidence that is has a second-order phase transition in the exact 
theory. We recently have investigated the model beyond the Hartree approxi­
mation by going to the next-to-leading order in the 2PPI formalism (11]. This 
implies the inclusion of sunset diagrams at finite temperature. 

·0·,.·81·8•»•8·• .. ·•·0· 
•8·•2<N-1)8•·~1)-E;=1-· 

rhe next-to-leading order in the 2PPI formalism has been done for the 0(1) 
nodel by Smet et al. (10]. We have performed the calculations for the 0(N) 
nodel. An 0(N) invariant decomposition of the Green function contains two 
nass parameters M,, and M.,,. a:i;id leads to a coupled set of nonlinear gap 
:guations. Instead of solving these we compute the free energy (finite tem­
>erature action) and look for maximum as a function of the two masses M,, 
,nd M.,,.. This then leads to the effective potential V(¢). The behavior of the 
ffective potential is displayed in the following figures for several values of the 
emperature in the vicinity of the phase transition: 
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The figure on the left hand side shows the results for the Hartree approxima­
tion, by inclusion of the new diagrams the phase transition becomes second 
order as seen in the graph on the right hand side. A second-order phase tran­
sition is also signalled by the behavior of v(T): 
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The values mu (diamonds) and m" (squares) of the effective masses Mu and 
M1r at the equilibrium point, as well as the sigma mass Mu defined by the 
curvature of the potential at the minimum are displayed in the following figures: 
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Note that in 2PPI, as also in 2PI, the propagator G is not, and does not 
converge to the exact propagator of the theory. Therefore the effective masses 
mu, m" displayed in the graph on the left hand side are not the real sigma 
and pion masses but simply variational parameters. So if the "pion mass" 
is not zero below the phase transition, this does not signal a violation of the 
Goldstone theorem. One has to note that the resummation schemes violate the 
crossing relations of the included four-point amplitudes. The effective potential 
is O(N)-symmetric, however. The sigma mass as defined by the curvature at 
the minimum, displayed on the right hand side, it goes to zero at the phase 
transition. 

The 2PI approach to this model in NL0-1/N has not been performed even 
in equilibrium. Renormalization is an obstacle, the problem is solved in prin­
ciple [7], but only for <p = 0. 

In conclusion we find for the 0( N) model in 3 + 1 dimensions in thermal 
equilibrium: (i) the renormalization a la Verschelde is found to work in this 
nontrivial case; (ii) the phase transition towards the symmetric phase becomes 
.second order; (iii) besides the instabilities (imaginary part) due to negative 
M; and M; we find a new instability: the decay, in the heat bath, of u ➔ 21r 
with one external (constant) u field. Thereby the region where the effective 
potential makes sense is further reduced. 

4 Conclusions and Outlook 

As we have seen the inclusion of next-to-leading order diagrams leads to 
new features as well in thermal equilibrium as out of equilibrium: 

I. The naive association of modes with particles is no longer convincing, 
as the effective masses are not those of real particles (poles or the exact 
Green function) but simply variational parameters; this puts a question 
mark on popular models of particle production in external fields. This is 
even more apparent in the 2PI formalism where beyond the leading order 
the Green function does not factorize anymore into mode functions. 

2. While the effective potential already gets an imaginary part in the Hartree 
approximation, due to negative squared masses (spinodal instability), 
when including the sunset diagram we find at finite temperature new 
imaginary parts associated with the presence of unstable particles (the 
Higgs) in the heat bath. 

3. In the I +I dimensional out-of-equilibrium simulations we have seen that 
the various approxirriations lead to controversial results, so one is led to 
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the question whether summing more diagrams automatically implies , 
better approximation to physics. 

These topics have to be investigated in the near future. Likewise it is importari 
to see what happens if one goes to more realistic theories by including gaug; 
fields. 
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Abstract - We derive the analytical properties of the elastic forward scat­
tering amplitude of two scalar particles from the axioms of the noncom­
mutative quantum field theory for the case of only space-space noncom­
mutativity. 
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The proof of the analytical properties of scattering amplitudes is one of 
;he most remarkable achievements of the axiomatic approach to quantum field 
;heory [1 ]- [5]. The implications of the modern ideas of noncommutative geom­
!try [6] in physics have been lately of great interest (see review [7]). The task of 
~stablishing the analytical properties of noncommutative field theory is very in­
;eresting, but highly nontrivial. In passing from a usual space-time manifold to 
t space on which the coordinate operators do not commute, i.e. [xµ, xv]= i0µv, 
¥here 0µv is an antisymmetric constant matrix, the interactions acquire a non­
ocal character, which gives rise to a novel behaviour of the NC QFT. For the 
lerivation of analyticity, of crucial importance is the microcausality, which is 
dfected by the noncommutativity of space-time. The effect is drastic when 
ime does not commute with the spacial coordinates (00; -:/, 0), in the sense 
hat microcausality is completely lost [8, 9]. In the case of theories with com­
nutative time (00; = 0) microcausality survives, but as a weaker condition 
han in the commutative case [8] (see eq. (2)). For this reason one may hope 
hat analyticity can still be obtained in field theories with only space-space 
toncommutativity. 

The first step in this direction was made in [10]. The essential difference 
>etween the analytical properties of the scattering amplitude in commutative 
.nd noncommutative cases found in this work was related to a specific way of 
ontinuation of the scattering amplitude to the complex plane. 



120 M. Chaichian, M. N. Mnatsakanova, A. Tureanu, Yu. S. Vernov 

In the present work we aim at deriving analyticity first for forward elastic 
scattering of two spinless particles with masses m and M. We prove that if 
the noncommutativity affects only the space variables, then analyticity similar 
to the commutative case is valid. 

In the case of space-space noncommutativity we can choose the coordinates 
in such a way that only 012 = -021 =J 0. Then the usual condition of local 
commutativity can be substituted by its analog containing only the x 0 and x3 

coordinates [8] (see eqs. (1) and (2)). Our proof is valid under the condition 
(7) on scattering amplitude , which is weaker than the usually used polyno­
mial boundedness. We have proven the analyticity of the elastic scattering 
amplitudes on the basis of LSZ reduction formulas [11]. 

In the commutative case we admit the condition of local commutativity: 

[j (x),j (y)] = 0, if (x - y) 2 < O, (1) 

where j ( x) is the current of intera~ting fields. 
In the noncommutative case with 00; = 0 on the same basis as in the usual 

case, we assume the local commutativity condition to be [8] 

[j (x),j (y)] = 0 if (xo - Yo/ - (x3 - y3)2 < 0. (2) 

This condition was shown to be valid [9] for the cases when j(x) is any power 
of field operators with *-product. 

If in the noncommutative case "in" and "out" fields can be constructed in 
the same way as in usual theory then the standard LSZ reduction formulas are 
valid and the scattering amplitude is: 

F(E,if)= j d4 xei(Exo-q·xlr(xo)F(x), (3) 

where F (x) =< M l[j (x/2) ,j (-x/2)]1 M >. We omit in (3) numerical factor 
which is irrelevant to the analytical properties of F (E, if) and the term, which 
is some polynomial of E. Eq. (3) is written in the reference frame in which the 
particle with the mass M is at rest. E and if are the energy and momentum 
of the particle with mass m. 

In order to extend F (E, if) to the upper complex £-plane (Im E > 0) we 
integrate (3) over x 1 and x2 (similarly as in [10]). Then F (E, if) is represented 
in the form: 

00 xo 
F(E,Jql,e)= feiExodxo J e-ieaxa ✓E2-E5<I>(xo,x3)dx3, (4) 

0 -xo 
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where <l>(xo,x3) = J F(x)e-i(gixi+g2 x2ldx1dx2. 
We admit that as in the commutative case one has from the energy-momentum 
relation E5 = E 2 - qJ = m 2 + q; + qr In order to exclude the singularity at 

JE2 - E5, we make the substitution 

1 
F (E, I'll, e) ➔ 2 (F (E, I'll, e) + F (E, I'll, -e) = F (E), 

if= elql, le1 = 1. A direct extension of F (E) into the complex E-plane is 

impossible since /m J E2 - E5 > Im E (see [12], chapter 10). To overcome 
this obstacle, following [12], we substitute F (E) by the regularized amplitude 
Fe (E): 

00 xo 
Fe(E) = J eiExodxo J cos(e3x3JE2 - E5)e-e(x~+xn<I>(xo,X3)dx3. (5) 

0 -xo 

Fe (E) is an analytical function in the upper half-plane, where the integral in 
(5) converges. 

The main problem is to prove the existence of analytical function F ( E) = 
lime➔o Fe (E). To this end let's use the analytical properties of Fe (E). Our 
goal is to represent Fe (E) at complex E as integral over real axe only and then 
go to c = 0. But it is impossible to do this directly as Fe (E) f+ 0 at E ➔ oo. 
So first we have to construct such a function. In commutative case to this end 
the polynomial boundedness of F ( E) is used. Here we use the weaker bound. 
Namely we suppose that there exists a, 0 <a< 1 such that 

IF (E) I < exp (E"'), E ➔ oo. (6) 

Evidently inequality (6) is fulfilled also for Fe (E). Condition (6) is valid also 
at E ➔ -oo as 

F(-E+i0)=F*(E+i0), Fe(-E+i0)=F;(E+i0). (7) 

Eq. (7) is a standard crossing symmetry condition. Evidently, function "Pe ( E) = 
Fe (E) e (E), where e (E) = exp [- ( ✓m2 - E2)

13 
exp (-i 7l' /3)] , 0 < {3 < 

1, a < {3 satisfies the necessary condition "Pe (E) ➔ 0, E ➔ ± oo. It 
is easy to see that e (E) is an analytical function in the whole E-plane with 
cuts ( m, oo ), (-oo, -m) satisfying the conditions 

e ( -E + i 0) = e· ( E + i 0) = ~ ( E - i 0) (8) 
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Using the Cauchy formula we see that 

1 1/Je (E') d E' 
1Pe ( E) = 2 7r i fc E' - E ' Im E > 0. (9) 

Contour C consists of interval ( - R, R) and semicircle in an upper half-plane. 
Now let's demonstrate that owing to cond.(2) 1/Je (Reicp) ➔ 0 if R ➔ 

oo, 0 ~ c.p ~ 1r. Owing to the factor exp(-c: xi) integral over x3 converges 
when x 0 ➔ oo, so the integration is really taken over some finite interval. Thus 
the growing factor in exponential in eq. (5) disappears at IEI ➔ oo and we 
can put R = oo in eq. (9). So 

1 00 , 

1Pe (E) = - f 1Pe (E) d E' 
21ri E' - E ' 

ImE > 0. (10) 
-00 

Eq. (10) is valid at any fixed c:. Now let's go to c: = 0. First let's consider the 
interval (m, oo ). If E' > E0 , we can go to the limit c: = 0 without any problem 
as in this interval lime-to Fe (E') = F (E') (see eq. (5)). In the interval (m, E0 ) 

we can't use directly eq.(5). But Fe (E) is the function of E only. Let's consider 
two functions FP) (E) and FP) (E) with different qf + q~ and so with different 
E61

) and E62>. If e.g. E62
) > Ebl), then pp> (E) = Fp> (E) at E > E62>. 

Thus analytical in upper half-plane functions Fp> (E) and Fp> (E) coincide 
everywhere. The interval (Ebl), Ef>) is a physical one for function Fp> (E). 
As lime-to FP) (E) exists in this interval lime-to Fj2) (E) exists in it as well. 
Continuing this process we come to E0 = m. The interval (-oo, -m) can be 
treated similarly in accordance with eqs. (7) and (8). 

The remained interval can be considered as well as in commutative case. 
Let's construct the analytical function in the lower half-plane and prove that 
this function is an analytical continuation of Fe (E). To this end we use the 
function F (E, if), which is determined by eq. (3) with the standard substi­
tution: r(x0 )F(x) ➔ r(-x0 )F(-x). As before we substitute F(E,if) by 
Fe (E). The function .(/;e (E) = Fe (E) t (E) is an analytical function in a lower 
half-plane and .(/;e (E) ➔ 0, IEI ➔ oo. Let's suppose that vectors IP, n > form 
the complete system of basis vectors, p is a momentum, n denotes all other 
quantum numbers and that masses of intermediate states satisfy the condition 
Mn ~ M + m (excluding one M particle intermediate state). After usual cal­
culations [12) we see that in the interval (-m, m) lime=o ( 1/Je ( E) -.(/;e ( E)) = 0, 
excluding 2 points: ± m 2 /2 M. Thus function F ( E) is an analytical func­
tion in the whole E-plane excluding cuts (-oo, -m), (m, oo) and poles±-:;-;. 
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Based on the analytical properties obtained, we can derive the formal disper­
sion relations analogous to the usual case of quantum field theory [13). 

Conclusion: We have derived the analytical properties for the forward 
elastic scattering amplitude of two spinless particles in noncommutative quan­
tum field theory with space-space noncommutativity. 

We are grateful to Jan Fischer, Andre Martin, Claus Montonen and Vladimir 
Petrov for discussions and useful comments. 
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Abstract -The strong-coupling problem is considered in the scalar super­
renormalizable field theory g</>4 . We have found an optimal representation 
where the exact strong-coupling behaviour of the free energy is obtained. 
The interaction becomes weaker as the bare coupling constant grows, so 
the higher-order corrections can be systematically estimated. The new 
regularization procedure regroups the initial counter terms so that the 
divergences are exactly removed in the final expressions. 

1 Introduction 

The perturbation method is the basic, well established and reliably work­
ing instrument in QFT. However, various physical tasks require going beyond 
the weak-coupling region and the strong-coupling problem is one of the main 
and unsolved tasks in QFT. Therefore, a number of investigations have been 
devoted to the strong-coupling resummation techniques, particularly, the Pade 
approximants and the Borel transform [1], the Heaviside transformation [2], a 
modified Laplace transformation [3], the renorm-group methods [4], the vari­
ational interpolation method [5] and the strong-coupling expansion [6]. 

Along the low convergence, the above methods are not optimal for theo­
ries with divergences - the structure of the counter terms is not transformed 
correctly and, the strong-coupling behaviour differs from the exact solution. 
Besides, variational estimates may contain errors of infinite order. 

The model ¢4 plays a significant role in theoretical physics by providing a 
simple but nontrivial testing ground for new methods and techniques [7]. 

In our earlier investigations [8, 9] an effective approximate strong-coupling 
solution has been obtained in the theory <p~ by combining the canonical trans­
formations and normal ordering procedure. This technique ensures the canon­
ical structure of the theory [10]. 

Now we demonstrate the exact strong-coupling solution in the scalar field 
theory g<j)j in d-dimensional Euclidean space. For simplicity, we consider the 
case d = 2, because up to d < 4 the theory remains superrenormalizable, 
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only minor modifications will be required for extension. In higher dimensions 
(d > 4) the theory becomes either instable, or trivial [11, 12). 

2 Scalar field model in two dimensions 

Consider the ground-state energy in the ¢~-theory. The Lagrangian reads: 

(1) 

· All divergences are removed by introducing the normal form of the interaction: 

(2) 

Do= D(O), 

1. For intermediate calculations we use a dimensional regularization [13): 

D ( ) 1 100 

d/3 _f!m2_£_ 
reg X = 2 (21r/3)d/2 e 2 2/3 , 

0 

r(1-1) ( 2 )1-~ 
Do = 2(21r )d/2 m2 ' 

i.e. consider d < 2 and then, all auxiliary divergences are explicitly and accu­
rately removed out. For final formulae we restore the true value d = 2. . 

2. The normalized partition function in the Gaussian representation is: 

Zn(g) = Jdet(-82 + m2) f 8¢ e -½(<1>(-82+m2]</>)-f ([<1>2-3Do)2)+3g2Dgn 

= f 8<I> e-½(<M>) Jdet(-82 + m2) J 8¢ e-½(<t>[-02+m2]<1>)-ig(1>[<1>2 -3Do))+3g2D5n 

(3) 

In (3) we have obtained a "logarithmic" interaction, quite different from the 
. initial "quartic" one and slowly increasing at g ➔ oo. It is important to 
trace and provide the correct regularization scheme with new counter terms to 
eliminate all divergences in the new representation. The new interaction reads: 



t~ 1,Y.\Yr-,!Jtl')IRK,/i.-,JJ~!J/W!d,.1; "'"' 11011>1;1,.\nl bh{i ·,ihi;:,;) 

Y"i~J1t:Yl'l,~;ii1 1·,d;g1,f rd .uoi?,tJ'JJZ, to"! l:«niHp·n •id Hi·:1 ,rnui !JDi;·!,0111 rnrnw ·(!110 

00 ['.:'.l ,JJi Jr;i·1i·1; -CO ,•;[dr;.J~ni J·>il)i) ;;'.)JliO:J:Jlf Via/JrlJ •Jrft (!• < \1) 

I I da ' am2 J .f -½ f df) e2 (/J) 
dµo( ... ) = (21ra)df2a e--,-(.2-rhJi2rys~A'{6](ov}J=n1 1511:.em:0 b!0i1 1(;k)::i2 ·Q 

0 
:c;b1-/,1 n.1-;f·:a1.tng1;J '"Hi'"f .'.1-ru·Jd) ; :": ·,dJ ni v.: .. n·,n:) :).tHJ:~-b11JHYJ:.lQ'Jfi.r 'l')I;ic:n,) J 

Be(Y) = f d/3 o(y - x -i(/3)), : (iI>Be) = f dy iP(y)Be(Y) = / d/3 if> (x + ((/3)). 
. . 0 ' ' I: ' rr ,·c· 1 · \ l • 0 

1, j I \: :.; . ··· (<'.,1 1 1n ·- \)·-·,<';,,--·: ~-:c . .\ 
~: ' f ( • 

with ~(/3) ~ Rd,.l(O) =~(a)= 0 and J da[~] =; 1., . . 
:Ho3' t·;r;;,r,d!J.J 't•rJ.J !n tiH' 1·1ul I r:.ffl !Oil ,t'1j ,i' ·gtri.nrd)' rJ.ifl!,VQ fnV\Mfl')'Jr')',;; ;,,nl!'lJYl-'tj-!J..~' !IA 

• 10 c:x ran e mam con nou 10n 1rom JULeract10n unct10na1 ·u ['¥j we 

w9stitu~7i(t~~l '(\l~f:rJ. TJP<h w~~\1: 4 f,.fl~H3 ~- ~~~ft,1,:"<tlµ~\ )~~~n, 

' ... z [· 1 _ •:._1,~[-21'.:A2+DoA-'-05]!1 j\',;r,. ·1-.ig(Do+A)(<I>)-12U[<I>-igA) · .. n Yt - (;u \ • ' O'!.' "' · , \ 1 .• • ·1 . · 1 
. 'i:.s' ·· l ~~-:~ \. c~ '.'.I;' .. ,\ ~:~~\-i \ ""= (:1;/ ,11i; 1

. ~-:-- 1i\..1 
(4) 

4. The normal-ordered forms with respect to the Gaussian measures read: 
'n 'l . . I l . . ) ' J I ., • . T r 

.: i (-l, 
1:,~WiiU.!?eiffiW ~;1~Ii,(fo};\~fo1;))'2;~ ~l!_~f}of:b;)r:·i ')F~(i(~'Wi1 ~j~2; ~-' 

. ,, --J. (' \ i \, . ' \ ! - a: f / B B' ) · W · l '\ :, ! 
e-•g{<I>H¢) -~= e-'.9.,~'!'-8.eL:½ e: \H ( e. f~ e+.,, t.[ei-e ./>:~-- '._ ·_ -.c.c (·I.le.,/\ 

\ ;:\.,,.,_/ ::0 )~: ~\-.":t_(.>.7,~} ·:, \· . , n 

~~ I 

--wn,; fliu; '{.)fr1ii,·1·i'i) '))/, :..•ni•'l;.r:·)'/ib fif;~.'i~:1.1f [Ii; ~1·:>dt J)ijf; •.· J)l, ·T.)hr2 .. 11,n :,.i 
. -~((B{BeHr =:!If dti[~)~Be,Be):,= ) ~·~H'B. r21il. ·~';11-~1Q.: ',';iO/f!''.;l ·ri:it,;1 

:r.i ;,orii,1I''.;~·i1q•y, n1;k,•:::,;,; ·,:1r rr1 mft,JHJ no1 1hJ;1fln,:d1;f1,1c,u 'JJi1 .'.. 
o d 

: Wa(~l :e.~.•.f(df31df32j,,dk ,.:,e~~(W31H{/32)): e-~Fa(/31~/32), 
.. ,, · ,. • 1 Jj: 1 / ' • (2rr)d '·.' ') '\ 1:: 1~ -1. 'l'i--- \ ,-cc.,., 1,/S. 

0 \ ' • / \ l,/M-, 

[,.'\!' ... d"'.,if't:]·"···'w'',·r~1·,,. ..... , .. .-.o' .. '\ -,--,--;~·-;·[~--;-;-~1·\z\·,iJ•l>)i - ",7 '\ -· a.,,···: a<; :e= , 1 1··ek·=·e,··7Ji.::;,\j-.'. ,. :1,,.,, :-cc 
\. sf \. 

(IH,,,<;, j ·,\ ,:. \ \)----! ;nh f + --\ <jJ Jn'-h:.i+ (•t"v){~ '.l .())/) \ 

lit!\\ 

(ri Then, 
l 

,,J!1 ;110·;"! ln'l'l'JltiV·{<Ifo~ igAlJ::::.,OUci-fiig~q})U1.:~!Ur[<V},i11i1;ido ·nd ,,11 1'(5')[ 
{)\ \it:0\·-\Cll\\\1.-S ~:f !( .CJ(:0 ~--- \!. ~h ~ni::~J)f;"L)ni \~l·noh--1 hru; ~➔ fIO u'.)it·rf► Hj)rr :;diII[ 
where 1 • \ • • 1 \ • • · 1 · 
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:C::t,f>'lJ...nf~i-)r;['i•hi Q(~ci"A1R . . r,,1\i)'·J·n,.Tl\r:f, ,,1"H~{1,1\'1 n·, ?.'Q(g,ti>"'Aj'R'\-,(\\,p )'',,111111ih 
uo - J uµo - e ' ~g 0: ' 'Ut = J aµa (X e I g (X ' 

[ 1- ··f I Q(g2a, A>''/ ·, irllw.i1e1t· ,,(\ :;,J(~B() "(\ ! U1 if> - - dx dµo e . du[(] .e tl 2 ------L:r~n-------:~, ( !ti 11 :: l<i(p)l 
2 / 

Q(g2o:, A) = 2o:g2 Do - ~ ((BeBe))e - g2aA, R (la) =/du[(] e-f,wa[{J:i. 
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The optimal value of the shift A should be defined from the condition 
eliminating the total linear terms over cI> in ( 4) and is obtained 

A= -if dµ 0 [1 - eQ(g
20

' A)R (g2a)] . · 
The intermediate divergences are completely removed because of the equality: 

-g2 DaA + g2 D~ = ~ f dµ 0 Q(g2a, A). 

After removal of all divergences we put d = 2. Going to new scale: 

A 2 ~ 
l(/3) = va 77(r), B = h' a= m2 t, h = 1rm2 

we write the final representation for (3) as follows: 

Z[g] = e-nE = e-flEo I ocI> e-½(<t><I>)-½U1[<I>] = e-fl(Eo+Ecorr). (7) 

The leading-order term for the vacuum energy is 

m2 { /

00 

dt Ea= -- hB2 + - e-t [eQ(t) - 1 - Q(t) + eQ(t) 
81r t2 

a 
(R(ht) -1)]} (8) 

B = ~ f ~t e-t [eQ(ht,B) R(ht) - l ] , 
a 

I 

/ 
-½ f dT ,j2(T)-ht:W[7J]:u 

Q(t) =-ht [B + C + ln(t)], R(ht) = 077 · e O , 

1 

: W['fJ] :,,= fJ dr1dr2 f (
2
;)

2 
: e~q(7Jh)-7J(T2)) :,, e-f(h-T2l-(T1-T2)

2
). 

a 

The higher-order correction reads 

E - - l' _!_ l I ,;r.. -l(<I><I>)-lU1[<I>] corr - 1m O n U 'I' e 2 2 , 
fl➔R2 H 

(9) 

Eqs. (7)-(9) define the ground-state energy of the system at arbitrary 
coupling h. For large h we estimate R(ht) oc eO(ln(h)/h). Therefore, for h ➔ oo 
we obtain 

Ea= (i) [-~hln2(h)+3(C+2)hln(h)] +O(h), (10) 

B = ln(h) - C - 2, C = 0.577215 ... 
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This coincides with the exact strong-coupling solution [8] and it has been 
reached within the leading-order approximation only. 

By concluding, we have represented a path-integral technique effective for 
the strong-coupling regime. It has been applied to the problem of the ground­
state energy in the superrenormalizable scalar theory ¢,4 in two dimensions. 
Hereby, 

• the initial renormalization scheme of elimination of the divergences is 
correctly transformed into a new re-summation scheme, 

• the exact strong-coupling solution has been achieved in the leading-order 
approximation, 

• there are no artificial infinite terms in the final results, 
• any appearance of auxiliary complex functionals do not represent any 

difficulties for this technique. 
• this technique is extendable to higher dimensions up to d < 4 because the 

theory remains superrenormalizable, only minor modifications are required. 
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Abstract - We calculate classically NS radiation emitted in the colli­
sion of two bosonic strings in D 2: 4 space-time dimensions. Radiation 
arises when the point of minimal separation between two crossed straight 
strings moving in parallel planes separated by finite distance moves faster 
than light. Radiation has typical Cherenkov nature and is emitted at the 
Cherenkov's angle with respect to the direction of motion of this point. 
We analyze the radiation spectrum in arbitrary dimensions. In four di­
mensions the spectrum contains an infrared divergence which is absent in 
all higher dimensions. 

1 Introduction 

129 

Radiation emitted by strings is interesting both in the context of the cos­
mic string theory [1-3] and in the fundamental superstring theory. So far 
generation of radiation of different nature (gravitational, dilaton, axion) was 
considered only in four space-time dimensions, the main mechanism being the 
radiation from the oscillating string loops [4, 5). Radiation from an oscillating 
string can be treated within the classical theory as an effect of the first order 
in the interaction constant [6-11). The equations of motion contain an infi­
nite self-force . It was shown that in four dimensions the equations of motion 
of radiating strings can be consistently renormalized to absorb the associated 
infinite self-action terms into the redefinition of the string tension and the cou­
pling constant [7,8]. The finite part of radiation can then be easily calculated 
within the linearized theory for any given string excitation mode. 

Here we investigate another mechanism of the string axion radiation - the 
bremsstrahlung, which should arise under collision of two strings due to their 
mutual interaction. To separate the bremsstrahlung from the other radiation 
mechanisms we assume the strings to be in unexcited states as the infinite 
straight strings (i.e. endless open strings). We assume that they are moving in 
the parallel planes in space avoiding the direct contact. Contrary to the case of 
oscillating loops, the bremsstrahlung radiation. is the effect of the second order 
in the interaction constant, iike the usual electromagnetic radiation of colliding 
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charges in the perturbative treatment within classical electrodynamics. For 
strings similar perturbative technique was suggested before to calculate the 
gravitational radiation (12), however in that case the actual computation has 
led to zero result. The reason for vanishing of gravitational radiation in th~ 
collision of straight strings can be explained by the absence of gravitons in 
the 1 + 2 gravity theory which can be applied in this case. In contrary, other 
types of string bremsstrahlung such as the electromagnetic one in the case of 
superconducting strings (13} and the axion radiation under collision of global 
strings in four dimensions (14] do exist. 

Here we consider the NS radiation in the collision of two bosonic strings 
an arbitrary space-time dimensions assuming essentially the same geometry of 
collision as in (12). When two straight strings propagate with respect to each 
other at some inclination angle o: with the relative velocity v, the point of their 
minimal separation can move with any velocity, from zero value for orthogonal 
strings to an infinite value for parallel strings. It turns out that radiation 
arises once this point, which corresponds to the localization of an effective 
radiation source, moves faster than light. Radiation exhibits Cherenkov nature 
being concentrated on the cone with respect to the direction of motion of the 
superluminal point. Its properties depend on the dimensionality of space-time 
basically due to the different phase volume of emitted quanta. Our calculations 
are perturbative and involve two subsequent iterations in the strings equations 
of motion and the NS field equations. 

2 Strings interacting via NS field 

Consider a pair ofrelativistic strings xµ, = x~( aa), µ = 0, ... , D-1, aa = 
( r, a), for a = 0, 1 and n = 1, 2 is the index labelling the strings (in the 
following its position up and down will be arbitrarily used for compactness 
of the formulas). The D-dimensional space-time is flat and the signature is 
mostly minus ( and ( +, - ) for the string world-sheets). Strings interact via the 
NS two-form field Bµ,v as described by the action 

S = Sst + SB, (1) 

where the strings term is 

Sst = ~ L J (µnF,,abOaX~ObX~f/µ,v - AnBµ,vlabOaX~ObX~) d2an, (2) 
n=l,2 

and the field term is 

S1 = - 1
-/ H , Hµ,"-XdDx 192~ /J,VA 

0 (3) 
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Here µn, An are the string tension and coupling parameters ( their n-labelling 
helps to control the perturbation expansion), Levy-Civita symbol is chosen so 
that t:01 = 1, "/ab is the metric on the world-sheet, and the NS field strength is 
Hµv>. = oµBv>. + o,,,B>.µ + fJ>.Bµv• 

Using them, we fix the gauge "/ab = 'r/ab so that the constraint equations 
read x 2 +x'2 = 0, xµx'"'r/µv = 0 for each string, where dots and primes denote 
the derivatives over r and a as usual. It will be necessary to distinguish the 
NS fields generated by each string 

(4) 

where the gauge O>.B">. = 0 is assumed and the D-dimensional D'Alembert 
operator is understood D = -ryµ"OµOv, and the source term 

(5) 

with V,;" being a covariant version of the tensor vna,6 = (abOaX~ObX~. 
In the gauge "/ab = 'r/ab the strings equation of motion reads 

(6) 

The self-action presumably can be renormalized , in four dimensions this was 
done in (8), in higher dimensions this issue is worth to be clarified further. 
However, here we do not intend to focus on the renormalization problem and 
include only the mutual interaction terms (m-=/= n, no sum over m, n). The 
retarded solution to the wave equation can be presented in the standard form. 

Our strategy consists in solving the system of equations ( 4,6) iteratively, 
expanding the solution in powers of the coupling constants An: 

00 (/) 00 (1) 

Bµv = LBµ", x~(an) = L X~ (an). (7) 
l=l l=O 

In the zero order under mutual interaction the strings world-sheets are defined 
by the linear functions 

(8) 

fhe constraint equations imply the orthogonality and normalization condi­
:ions ( choosing the time-like D-velocity with the unit norm) uµI:iµ = 0, 



132 D. V. Gal'tsov, E. Yu. Melkumova, V. V. Sibrin 

uµuµ = l = -~µ~µ for each string. We choose the reference frame so that 
the first string is at rest and is stretched along the axis x 3 while the second 
string is assumed to move in the plane x2

, x 3 
, with the velocity v orthogonal 

to the string itself and inclined at the angle a with respect to he first string: 

u':. = (1, 0, ... 0), ~i = (0, 0, 0, 1, 0, ... 0), 

u~ = ,(l,0,-vcosa,vsina,0 ... 0), ~~ = (0,0,sina,cosa,0, ... 0), (9) 

where 1' = (1 - v2 )-½. We also choose both impact parameters d~ orthogonal 
to uµ and ~µ and aligned with the axis x1

• With this choice the point of 
minimal separation between the strings moves with the velocity Vp = v / sin a 
along the axis x 3

• 

(I) 
According to the expansion (7), the first order field Bµv in the equation ( 4) 

is determined by the zero order source term ( 5) 

J::V= 4,\n V,;v oD(x- fn (a)) d2a, 
(0) I (o) () 

(10) 

(0) 
where V,{'v= (u~~~ - ~~u~)- In the zero order the strings are freely moving, 

(I) 
so the lowest order NS field B~v does not contain the radiative part. Inserting 
the field terms into the right hand side of the string equations (6) we obtain 

(I) 
the small deviations x~ ( r, a) of the string's trajectories due to mutual inter­

(2) 
action. In the second approximation the axion field B~v may be obtained by 
the substitution to the right-hand side of Eq.( 4) the first-order expression for 

(2) (I) (I) 
the source □ Bµv= -41r Jµv_ In the first-order source of energy Jµv has the 
form 

J:t= 4,\n 2(.i:~i~l + xtx~l)- V,;vx~ 8;_ oD(x- Xn (a))d2a. 
(I) 1· ( (0) (1) (I) (0) (0) (I) ) (0) 

(11) 

The square brackets denote anti-symmetrization (a[µbvl = ½(aµbv - avbl")). 

3 Radiation loss 

Evaluating the source terms in the D 'Alembert equations ( 4) with account 
(2) 

for these corrections we can calculate the second order NS field B~v, which 



- ----- ---------------:i 

NS bremsstrahlung under collision of bosonic strings in D dimensions. 133 

already has the radiative component. The radiation power can be computed 
as the reaction work produced by the half sum of the retarded and advanced 
fields upon the source. The radiation energy with frequency w emitted during 
an infinite time of collision in the direction n ( D -1 dimensional unit vector) 
is given by the following expression 

pµ = 2(21r~D-l / kµIJa13(k)l2 ,1:, o(k
2
)dDk ' (12) 

where the null D-dimensional wave vector kµ is introduced as kµ = 
w(l, ni cos 'lj;, Na sin 'lj;) , where ni, i = 1, 2, 3 is the unit vector in the string 
sector nini = 1 , ni = (sin 0 cos¢,, sin 0 sin¢,, cos 0) and Na is the unit vector 
in the remaining space, a= 1, ... , D - 4. 

Here for simplicity we consider the ultrarelativistic collision , » 1. Af­
ter some calculations one obtains for the spectral distribution of the radiated 
energy per unit string length in D = 4: 

dP 2 ,\ 
6 exp( - 2

':d{) sin o: 
dwdD.zdl ~ 1281r µ 2 w .o(cos0 - -v-)f4 (¢,,0,o:), (13) 

where(= coso:+vsin0sincp and f 4 (¢,,0,o:) = (--t2co!o2 _ 1),)e4 ((,
2(+sin¢,2)2+ 

cos qi). This expression contains an infrared divergence, so to integrate over 
w one has to introduce a cutoff parameter fl. This leads to the logarithmic 
dependence of the total radiated energy In l,ll/2dj, where d = d1 - d2 is the 
impact parameter. 

It is easy to recognize the Cherenkov nature of radiation· which arises 
once the point of minimal separation moves with the faster-than-light velocity 
( v / sin o: > 1) and is concentrated on the cone with respect to the_ direction of 
motion of the superluminal point ( cos 0 = si: 0 ). 

The structure of the angular dependence through the function f 4 ( ¢,, 0, o:) 
indicates that the main part of the radiation is emitted within the .narrow 
interval of the angle cp around cp ~ ~7r. 

In higher dimensions D > 4 there is no infrared divergence in the spectral 
distribution 

where 
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( = cos o:+v sin O sin ¢ cos VJ and f D = (-t2 co; 0:2 _ 1) c,: ~2 
( 2 cos o:( -cos ¢2 cos o:2 + 

v 2 cos VJ 2 
- 1). 

In D ~ 5 dimensions the frequency region for the radiation energy is 0 < 
w < "(V / d, in the lower limit (w ➔ 0) the spectral distribution tending to 
a constant at low frequencies in 5-dimensions and to zero in higher D > 5 
dimensions. Note that the argument of the delta-function, which indicates 
the shape of the Cherenkov cone, now depends on the angle VJ showing the 
propagation of radiation into the "extra" space: cos0cosVJ = sino:/v). Again 
the main part of radiation is concentrated around the angle ¢ ~ ~1r. More 
detailed description of radiation will be given elsewhere. 
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Some facts and fictions in subnuclear realm 
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Abstract - Some well-known but poorly understood phenomenological 
facts in subnuclear realm, which may be of paramount importance for the 
future theory, together with some widespread mythic concepts are briefly 

'reviewed. , 

1 Facts and their interpretation 

13.5 

• Lack of isolated quarks. For whatever reason colored particles can not be 
isolated and directly observed. This fact culminates in the idea of confinement, 
including the color confinement (kinematic aspect) and the permanent confine­
ment of quarks in hadrons due to a linearly rising potential of stringy color 
forces between quarks (dynamical aspect), for a review see, e. g., Prokhorov 
(1994). The nuclear forces, that keep colorless hadrons in nuclei, are often 
viewed as a residue of these direct inter-quark interactions, similar to the van 
der Waals forces collecting electro-neutral H20 molecules of water. However, 
assuming all the gluon lines of force to be squeezed in a string-like bunch, 
the binding of hadrons in nuclei are prevented from being patterned after the 
van der Waals multipole scheme: the residue of the color field outside such 
string-like hadrons is zero. 
• Fewness of species of quark clusters. Only baryons and mesons (QCD-atoms) 
and about 300 types of different nuclei (QCD-molecules) completing the pe­
riodic table of elements are experimentally observed, as opposed to the great 
diversity of usual atoms, molecules and their aggregates making up condensed 
substances. Relatively stable are only hadrons, that is, clusters composed of 
two or three quarks, while multi-quark clusters are evanescing, even though 
they are crucial for the cumulative effect in nuclear collisions (see Baldin 1977), 
which was originally pointed out by D. I. Blokhintsev. Furthermore, the pre­
dicted glueballs still remain to be experimentally discovered. 
• The Okubo-Zweig-/izuka rule: Strong interactions show a mechanism of the 
suppression of creations and annihilations of quarks and anti-quarks belonging 
to the same meson, see, e. g., Ogawa et al. (1980). To illustrate, experimental 
data on the ¢>-meson decay evidence that the probability of the ¢> -+ /{+ + !{­
mode is far beyond that of </> -+ p + 1r, see Figure ?? . 

Thus, the OZI rule makes it clear that quarks should not be taken as 
ordinary quantum-mechanical objects since a quark and an anti-quark with 
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opposite quantum numbers, constituting some meson, defy their mutual an­
nihilation ( even at a sacrifice of the identity principle, see Figure ??). Such 
persistence of quarks is characteristic for classical objects. Recall, classical 
particles are immune to creations and annihilations. 
• The quark sea suppression. A medium of the normal nuclear density in a tiny 
volume occupied by a hadron ( about 2 fm in diameter) would offer a fertile 
ground for creations and annihilations of quark-anti-quark pairs. Neverthe­
less, the quark-anti-quark sea is largely suppressed in hadrons. Undisturbed . 
hadrons are systems with a fixed number of constituents, namely two or three 
valence quarks. This suppression of virtual pairs appears quite enigmatic from 
the uncertainty principle standpoint; yet it is a further evidence in favor of 
classicality of the valence quarks. 
• Witten's hadron phenomenology. The bulk of the low energy hadron phe­
nomenology is grasped by the Harari-Rosner planar diagrams which are tree 
diagrams containing no intersections of the quark lines. The classicality of 
constituent quarks is readily seen in" such diagrams where most of quark world 
lines are timelike smooth curves. Planar diagrams describing collisions and 
decays of hadrons involve the A- and V-shaped world lines of valence quarks 
related to annihilations and creations of quark-anti-quark pairs, but the con~ 
tribution of these diagrams is suppressed as the number of such lines increases. 
ff we su.bstitute the QCD gauge group SU(3) by the N-color group SU(N) and 
go to the limit N ----+ oo, the planar diagrams become dominating among all 
relevant Feynman diagrams. The real hadronic world is qualitatively displayed 
even in the zeroth approximation of the 1 / N expansion, that is at 1 / N = 0, 
(for a review see Yaffe 1982 and Das 1987). 
• Quantum fluctuations of gauge invariant quantities disappear as N ----+ oo, 
see Witten (1979). Thus, QCD mutates to a classical theory in the large-N 
limit. Were we actually capable to reach this classical limit of QCD, and then 
quantize the resulted classical theory in the ordinary way, where should the 
color-SU(3) Yang-Mills theory come from? Is the desired SU(3) gauge group 
a relic of the N = oo limiting classical theory? 
o The puzzle of nucleon spin. Results of recent experiments show that only 
about 30% of the proton's spin is produced by quark's spin. The missing 70% 
of the spin may come from gluon spins and the orbital angular momentum due 
to the motion of quarks and gluons within the nucleon. In any case, a spinless 
classical particle is a good first approximation to the description of the real 
valence quark. However, in hadron collisions with momentum transfer greater 
than the characteristic QCD scale Q ~ 200 Me V, quarks appear to regain their 
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quantum status. 
• Two phases of subnuclear matter. At temperature T ~ 200 MeV and/or 
density of some units of the proton energy density (0.5 GeV /fm3) nuclear 
matter melts converting to a quark-gluon plasma. The lattice calculations show 
that the order of the phase transition is sensitive to the involved approximation. 
The real deconfinement may well be the second-order phase transition, see, e. 
g., Meyer-Ortmanns, (1996). Should this be the case, the question arises of 
whether we are aware of the hadronic phase symmetry? We reasonably assume 
that the symmetry of the plasma phase is the color-SU(3). Recall that the 
gauge invariance cannot be spontaneously broken. Meanwhile some symmetry 
is certain to change in the second-order transition, and there is no suitable 
symmetry except for the gauge symmetry to be subject to changing (the chiral 
symmetry-restoring transition seems to be distinct from the deconfinement, 
and the conformal symmetry is immaterial). 
• The Regge spectrum of hadrons. J = a 0 + a' M 2 • Hadrons belonging to 
some Regge trajectory are separated by intervals 6.J = 2. Ne'eman and 
Sijacki related this Regge arrangement to the SL( 4, R) classification of hadrons. 
All the Regge sequences are thus infinite multiplets of the noncompact group 
SL(4, R), see Dothan et al. (1965), and Ne'eman and Sijacki (1988). Thus 
SL( 4, R) appears to be an appropriate gauge group of the hadronic phase. 
Where may this SL( 4, R) come from? 

2 Model 

2.1 Basic principles and specific assumptions 
The classical limit of QCD is related to the limit of large number of col­

ors. Substitute the color group SU(3) by SU(N) and go to infinite N. Then 
planar diagrams dominate, and vacuum fluctuations of gauge invariant oper­
ators disappear. I guess: the classical limit of QCD is related to the SU(N) 
Yang-Mills-Wong theory with large N. 

Consider classical spinless point particles interacting with classical SU(N) 
gauge field. Those are called quarks and labelled by index I. Quarks with 
color charges Q'j are moving along timelike world lines z'; ( Tf ). This gives rise 
to the current · 

where Q1 = Q'}Ta, Ta are generators of SU(N), v~ = dz~/dr1 is the four-
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velocity of Ith quark. The action (see Balachandran et al. 1978) is 

K 

S = - L jdrr (m~ ✓v£ v'f + tr ZrX11 ~r) -fd4x tr (jµ Aµ+ -
1- Fµv Fµ"), 

l=l 1671" 

where >.r = >.r(rr) are time-dependent elementsofSU(N), Zr= e'}Ta, ·e'} being 
some constants whereby the color charge is specified, Qr= >.rZrX11

• 

The Euler-Lagrange equations are the Yang-Mills equations 

Dµ Fµv = 41rj,,, 

the equations of motion of bare quarks 

m~ a;= vi tr ( Qr p>-µ(zr)), 

a} = vf is the four-acceleration, and the Wong equations 

Qr= -ig[Qr, viAµ(zr)] 

describing the evolution of the quark color charges, see Wong (1970). 

2.2 Solutions to the classical Yang-Mills equations 
The invariance of a given quantum field system is the invariance of its 

classical background fields (Coleman 1966). There are two classes of exact 
retarded solutions to the Yang-Mills equations with point-like sources, de­
scribing background fields of two phases of the gluon vacuum (see Kosyakov 
1998). Solutions of the first class are complex-valued with respect to the 
Cartan basis of su(N), but it is possible to convert them to the real form, then 
those become invariant under SL(N, R) or its subgroups. 

The Cartan-Weyl basis of su(N) consists of N elements Hn of Cartan · 
subalgebra obeying the relation I:;;:'=1 Hn = 0, and N 2 

- N raising and lowering 
elements E;;,n and E;;.n, n > m. Nontrivial commutators are: 

[Hm, E~nl = ± E~n, [E;;..n, E;;.nl = Hm - Hn, [E;i, E~] = ± Efm• 

An example of such solutions: 

2. K I K-1 
z """ ( vµ ± r IT K I ) Aµ= =f - ~ Hr - + g K, E1 K+i Rµ o(R · R ) . 

9 I=l PI I=l 

It is interpreted as the field generated by a K-quark cluster in the cold phase. 
This solution is invariant under the gauge group SL(K +1, R). The background 
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generated by a three-quark cluster is invariant under SL( 4, R), and that due to 
a two-quark cluster is invariant under SL(3, R). This symmetry is independent 
of N and is retained in the limit N-+ oo. Thus the Yang-Mills backgrounds 
of all hadrons are ivariant under SL( 4, R). 

Solutions of the second class are real-valued and invariant under SU(N). 
For K = 0, the Yang-Mills equations linearize. Coulomb-like solutions describ­
ing the background field in the hot phase are 

For dimension different from 4, there is no exact retarded solutions other 
than Coulomb-like (Kosyakov, 1999). Only for 4D, both differentiation and 
multiplication by Aµ raise the power of a singularity by 1, hence both terms 
of covariant derivative Oµ - igAµ act coherently. 

3 Discussion 

Any Yang-Mills background generated by a cold quark occupies individu­
ally some color sl(2, R) cell. Backgrounds generated by different quarks cannot 
be contained in the same sl(2, R). This is similar to the Pauli blocking prin­
ciple. Just as a cell of volume h3 in the phase space might be occupied by at 
most one fermion with a definite spin projection, so any color sl(2, R) cell is 
intended for the background of only one quark. This color blocking guarantees 
the totality of color cells against shrinkage. We deal actually with the large-N 
situation. We thus arrived at a plausible classical 4D picture of the cold phase. 

By contrast, the most energetically advantageous field configuration in the 
hot phase is such that the color charges of quarks are lined up into a fixed 
direction, thereby reducing SU(N) to SU(2). This bears resemblance to the 
Bose-Einstein condensation in the color space. We are dealing with the ef­
fectively low-N situation. Thus the hot phase is described by a 4D quantum 
picture, the usual QCD picture. 

In the cold phase, a dressed quark possesses the 4-momentum 

where 
2 2 8 ( 1) To = - I tr Q I = -- 1 - - . 

3m 3mg2 N 

It follows that 
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The dressed quark should turn to a tachyonic state with p2 < 0 if its acceler­
ation exceeds the critical value !al = 1/T0 • Such accelerations are within the 
scope of validity of classical description. Indeed, let two light quarks be sep­
arated by distance p. The critical acceleration due to the Coulomb-like color 
force is achieved at a distance p ~ !tr Q 2 1/m which is about 29-2 times greater 
than than the Compton wave length of the quarks. Rather than turn to the 
tachyonic state, the cold quark plunges into the hot phase for a period of order 
of the inverse of its mass 1/m. The cold phase melts whenever the acceleration 
of any cold quark exceeds 1/To, i. e., the energy transferred to it is about its 
constituent mass m, and subsequently the hot phase freezes up again. 

4 Conclusions 

Two central ideas advocated here are: 
(1) The hadronic phase can be accounted for by a four-dimensional classical 

picture, while the plasma phase is described by a four-dimensional quantum 
picture, the usual QCD picture. Deconfinement occurs whenever the acceler­
ation of a valence quark exceeds 1/To, that is, the critical momentum transfer 
Q is about its constituent mass m; for u and d constituent quarks, we have 
Q ~ 200 MeV. 

The classical character of the subnuclear realm in the hadronic phase must 
be verified experimentally in a direct way, e. g., through the use of the Bell 
inequalities. 

(2) The color is not confined in the hadronic phase. The color gauge sym­
metry of the cold phase is SL(4, R), the Ne'eman and Sijacki symmetry group. 
It manifests itself in infinite multiplets that constitute Regge sequences. 
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Figure 1: Allowed (left) and forbidden (right) channels of the </>-meson decay 
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diagram on the right is derived form that on the left by interchanging identical 
quarks q/3), the OZI rule forbids the diagram on the right 
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Abstract - A variant of electrodynamics is constructed in which the faster­
than-light motions are possible. 

143 

The existence of faster-than-light motions (with velocities v > 3 · 1010 cm/sec) 
is the subject of discussion in modern physics. 

It is in 1946-1948 when Blokhintsev already [1] paid attention to the 
possibility of formulating a field theory that permits the propagation of 
faster-than-light (superluminal). interactions outside the light cone. Kirzh­
nits (1954) [2] showed that a particle possessing the tensor of mass M\ = 
diag(mo, m 1 , m 1 , mi) may move with the faster-than-light velocity if m0 > m 1 . 

Terletsky (1960) [3] introduced into theoretical physics the particles with imag­
inary masses moving faster-than-light. Feinberg (1967) [4] named these parti­
cles tachyons and described their main properties. Research on the superlu­
minal tachyon motions opened up additional opportunities which were studied 
by many authors (hundreds publications), for example by Bilaniuk and Sudar­
shan (Sb. [4]), Kirzhnits and Sazonov (Sb. [4]), Recami [5], Mignani (Mon. [5]), 
Corben (Mon. [5]). 

The publications are also known in which the violation of invariance of the 
speed of light is considered [6] - [12]. One can note, for example, Pauli mono­
graph [6] with the elements of Ritz and Abraham theories; Logunov lections on 
Relativity Theory [7]; Glashow paper [8] on the violation of Lorentz-invariance 
in astrophysics; publications (9] - [12] considering the violation of invariance 
of the speed of light in SR. · 

Below a version of the theory permitting faster-than-light motions of elec­
tromagnetic fields and charged particles with real masses is proposed as the 
continuation of such investigations. 

Let us introduce space-time R4 with the metric 

ds 2 = ( ci + v2 )dt2 
- dx2 

- dy2 
- dz2 = 

( c~ 2 + v'2)dt'2 
- dx'2 

- dy'2 
- dz' 2 

- invariant, 
(1) 

where t is the time, x, y, z are the spatial variables, v is the velocity of a 
particle being investigated, co is the proper value of the speed of light. Due to 
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homogeneity and isotropy of space, the velocity v does not depend on space­
time variables. Let the proper value of the speed of light be invariant: 

co= c'0 = 3 · 1010cm/sec. (2) 

As a result, the common time may be introduced on the trajectory of movement 
of frame /(' and the velocity of light c, corresponding to the velocity v: dt = 
dt~ ➔ c = c0 J1 + v2 / c0

2 1
• Let us introduce also the new variables 

t t 

x0 = f cdr = c0 f J1 +v2/c0
2dr, x"' = (x,y,z), a= 1,2,3, (3) 

0 0 

and turn to Minkowski space M 4 with the metric 

ds2 = (dx0 )2 - (dx1 
)

2 
- (dx2

)
2 

- (dx3 )2 - invariant. · (4) 

The infinitesimal transformations, retaining the invariance of the form ds 2 are 
dx'i = Likdxk, i, k = 0, 1, 2, 3, where Li k is the matrix of Lorentz group [14]. 
The corresponding integral transformations are 

O (31 1 /30 1 (31 
10 _ X - X • x'l _ X - X • 12,3 _ 2,3. I _ - U ( ) 

X - ✓l-/32 , - ~' X -X , C -C~. 5 

They belong to the group of direct product L6 XS1 , where L6 is the Lorentz 
group, S1 is the scale transformations group c' = 1 c. One can say that these 
transformations act in the 5-space V5 = M 4 XV 1

, where V1 is a subspace of 
the velocities of light c. The relationship between the partial derivatives of 
variables (t,x,y,z) and (x 0 ,x1,x2 ,x3 ) are as follows: 

0 ox0 0 ox"' 0 0 
ot = ot ox0 + L 8t 8x 0 = cox0 ; 

a 
t 

!_ ~ ox
0 ~ + ox"'_.!!_ - ( I oc dr) ~ + ~ 

ox - ox ox0 L OX ox"' - ox ox0 ox 1 • 
a 0 

(6) 

The expressions for O I oy and a IO z are analogous to the expression a I OX. 
Below we restrict our study by the case, when the velocity of light in the range 
of interaction does not depend on the space variables. Then 

'vc(x0
) = 0 ➔ 'vc(t) = O. (7) 

1 In the form of c' = c(l - /32 ) 112 this formula was obtained by Abraham before (6). 
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Some features of this study are: 
1. As in SR, parameter J3 = V / c in the present work is in the range O :S J3 < l. 
2. As in SR, the value dx 0 is the exact differential. 
3. The time x0 = J cdt is the functional of c(t) in general case. 
4. The property J3=const is compatible with V(t), c(t). 

Keeping this in mind, let us construct a theory in M 4 and reflect it on the 
space R4

• Following (13], we start from the expression for integral of action: 

S =Sm+ Smf + S1 = -mco J ds - ..:_ J A;dxi - -
6

1 J F;kpikd4x. (8) 
Co 1 1TCo 

Here Sm is the action for a free particle; SJ is the action for a free electro­
magnetic field; SmJ is the action for interaction between a charge· e and elec­
tromagnetic field; m is the mass of a particle, f = (p, pu") (6) is the 4-vector 
of current density; u0 = v0 /c is the 3~vel~city of a particle. The meaning 
of the other values is standard. Accordingly to the construction, the action is 
Lorentz invariant and does not depend on the velocity of light c. As a result 
the action is also invariant with respect to the group of direct product L6 XS1• 

Lagrangian takes the form: 

L = -mea✓l - u2 +-=-(A· u - ¢). 
Co 

(9) 

The generalized momentum P and generalized energy 1l are: 

BL mc0u e e e 
P = - = ~+-A= p+ -A= mv+ -A, 

OU y 1 - u 2 Co Co Co (10) 
1l = P · u - L = (mc0c + ecp)/co. 

Here p = mv is the momentum, mc0 c = mc0
2 (1 +v2 

/ eo2
) 1/

2 = £ is the energy, 
T = mca2 ( cf Co - 1) is the kinetic energy of a particle. For a free particle they 
are integrals of motion, £ and p may be united into the 4-momentum pi (as 
in SR) 

; ; ( meac ") ( £ ) p = meau = --,mcu = -,mv. 
co co 

(11) 

The components of the 4-momentum are related by the expressions: 

£ £ ·1 p = -v; p = -c, z m = 0, v = c. 
coc Coe 

(12) 

One can see from here that the momentum of a particle with the zero mass 
m = 0 does not depend from the particle velocity v = c and is only determined 
by the particle energy in accordance with i> = n£/eo, n = c/c. 
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Next we start from the mechanical [13] and field (13,14] Lagrange equations: 

_!!:_ aL _ aL = 0 _ _i_ ac _ ac = o. 
dx 0 ou ox '8xk8(8A;j8xk) 8A; (13) 

Here Lis the Lagrangian; C = -(l/eo)A;/-(l/l61rc0 )F;kFik is the density of 
the Lagrange function; 8(Fikpik)/8(8A;joxk) = -4Fik [13}. As a result, we 
find the equations of motion for a charged particle and electromagnetic field: 

dp dv c e 
- = m 0 - = -eE + -vxH; 
dt dt Co co 

d[ de e 
- = eE · v ➔ m 0 - = -v · E. 
dt dt c0 

loH 
V'XE+-- = 0· 

C Ot ' V', E = 41rp; 

1 aE v 
V'XH- -- = 41rp-· V' ·H = 0 

C Ot C' ' 

(14) 

(15) 

t 
where c(t) = c0 (1 + v2 /eo2

)
1f 2 = c(0)[l + (e/mc0 c(0))Jv · Edr], V'c = 0. 

0 
These equations, considered as the whole, form the set of nonlinear equations 
of electrodynamics. They permit the existence of faster-than-light motion of 
a particle with the real mass m, rest energy £0 = mc0

2 and velocity 

v = /t:2 
- m2eo4/meo > Co, (16) 

if the particle energy is £ > ,/2£0 [12]. For example, for electron ,/2£0 is 
723 keV, the velocity of 1 GeV electron is ~ 2000 c0 • The£ and p variations 
with time determine a new dynamics which goes to Newton one if v2 /ca2 « 1. 

Explained in the frame~ork of the constructed theory may be the Michelson 
experiment, Fizeau experiment, aberration of light, dilatation of life time of 
atmosphericµ - mesons, Doppler effect, known tests to check independence of 
the speed of light from the velocity of the light source, Compton effect, decay 
of unstable particles, creation of new particles in nuclear reactions, possible 
faster-than-light motions of nuclear reaction products. For example, in the case 
of Compton effect [15} we find from the law of energy-momentum conservation: 

liw = liw' +mc0
2 [(1 +v2/c0

2)112 -1]; (1iw/c0 ) = (1iw'/c0 )cosO+mvcosa., 0 = 
(liw' / c0 )sin0-mvsina.. Here nw, nw' are the energies of incident and scattered 
'Y quanta, meo2 is the rest energy of electron, a and 0 are the angles of scattering 
the electron and 'Y quantum respectively. As a result the angular distribution 
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of scattered I quanta is w' = w/[1 + liw(l - cos0)/mc0
2

]. (As in SR [15]). 
But the velocity of forward-scattered electron may exceed the speed of light 
c0 : ve(a = 0) = liw/meo - 0.5c0 > c0 if liw > 1.5mca2, which is in accordance 
with the formula (16) and differs from SR. The velocity of scattered I quantum 
does not depend on the angle 0 and is determined by mechanism of scattering 
(immediately, or in the act of absorption-emission by scattered electron). 

As a result the theory has been constructed which is invariant with respect 
to the group of direct product L6 XS1• In accordance with [1] we may assume 
that the proposed theory may be useful in the field of quantum physics of 
extended particles, where the property of elementary nature should not con­
tradict to the existence of the internal structure of a particle. 
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Abstract - The factorization method for the noncommutative differential 
calculus over the commutative algebra of functions is applied to construct 
the generalized ladder operators. It is shown that on this way all known 
types of the q-oscillators can be obtained in a systematic way. As the 
algebra of functions is defined on the spectrum of the unitary irreducible 
representations of the Lorentz group, these q-oscillators are the direct 
relativistic analogs of standard harmonic oscillator problem in quantum 
mechanics 

For more than one decade the kit of ideas of algebraic geometry and topology 
under the general name "non-commutative" or "quantum" differential geome­
try have been considered as a possible mathematical arena for comprehensive 
Quantum Field Theory incorporating gravity mostly in the framework of String 
theory [l]. As it often happens in the history of science, these ideas has already 
been expressed and cultivated in physics for many years may be in somewhat 
different context1 . 

Non-commutative differential calculus is introduced [9]- [11] as a deforma­
tion of the theory of differential forms. Here, we outline the notion of differ­
ential calculus on a commutative algebra A [11] generated by the coordinate 
functions x. The differential calculus on A is a Z-graded associative algebra 
over C: 

n (A)= EB nr (A), n° (A)= A, W (A)= {O} If,< 0 (1) 
rEZ 

The elements of nr (A) are ,-forms. There exists an exterior derivative (C -
linear) operator d : nr (A) ➔ nr+l (A) which satisfies the following condi­
tions: 

d2 = 0, d(ww') = (dw)w' + (-lYwdw' (2) 

where w and w' are r - and r' - forms, respectively. In the standard dif­
ferential calculus over usual manifolds, differentials commute with functions: 

1See the references to old works of H.Snyder, W.Pauli, C.N.Yang, LE.Tamm, Yu.A.Gol­
fand, V.G.Kadyshevsky, and others in [2]- [7] and also [12]. 
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[xi, dxi] = 0. For us it is essential that this relation can be generalised ( de­
formed) in different ways with (1, 2) still being true. Let us consider in more de­
tail the deformation of the form (in what follows we consider the I-dimensional 
case). 

[x, dx] = adx (3) 

where a is a ( complex) constant which is constrained by the requirement of a 
consistency of the differential calculus. Operator d is defined as 

dw = [fr, w]r = frw - (-1r wfr (4) 

where fr is the operator valued 1-form. It is easily seen that conditions (2) are 
satisfied We introduce the limitations. 
Limitation /. Algebra A is a commutative algebra generated by the coordinate 
functions x E <C: 

WO = f(x) df = [fr,!] dx = [fr, x] (5) 

Limitation //. 
[fr, x] = -afr (6) 

We arrive at the differential calc~lus in which (3) holds: 

[x, dx] = [x, [fr, x]] = -a [x, fr] = adx (7) 

Noncommutative Quantum Mechanics. Let us introduce the translation 
operators T and T. 

In terms of the "left and right momentum operators" (2] 

P-t = 1 - T = - a 7 d P+- = T - 1 = - a ~ d (9) 

the physical momentum operator and free hamiltonian have the form 

P = P-t + P+-, 
p2 a2 a2 (1 t,,--) 

Ho = 2 = 2 (7 d + ~ d) 2 = 2 + o d (10) 

Note that operators p and Ho act on the function i.e. the zero order form w0 : 

1 w0 = 0, ~ w0 = 0 and the relation 7 ~ = 0 holds. 1 and t are right 
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and left [2] Hodge operators. For clarity we recall the corresponding nonrela­
tivistic expression for the free hamiltonian operator in terms of (commutative) 
differential calculus: H0 = - "

2
/ = - "; o d. The free hamiltonian (10) can 

be factorized in different ways, giving us the different q-oscillators [7, ?] a and 
(3 are arbitrary numbers 

Ho= a22 (r - r) (r - r) = a;r0 (rl-a - T-ar). 
Tp (rr-P - Tl-P) = a; Ta-P (rl-a - Tl+a) (rl+P - Tl-P) (11) 

Remember that the nonrelativistic hamiltonian can be factorized only as 

Ho = - = - - o d = - - ( * d) ( * d) = - - - -p2 n2 !i,
2 

· n2 ( d ) ( d ) 
2 2 2 . 2 dx dx (12) 

if we avoid the fractional derivatives. We can single out the simplest cases: 
1) a = (3 = 0, 2) a = -(3 = 1, 3) -a = (3 = 1, 4) a = (3 = 1 
Now let us apply the factorization method in the noncommutative case. Let 
us concentrate on the case 2). We introduce the ladder operators 

1 ( t;;-2) 1 ( r,;-2) t 17+ = - ~eP1 1 - 1 e-P2, 17- = ~e-P3 1 - T e-P4, (11±) = 17'F- (13) 

It can be shown that the modification of the Leibnitz rule [2] for the noncommu­
tative interior derivatives leads in a natural way to the notion of q(x )-mutators 

[11-, 17+ ]q(x) = 17- q(x)17+ - 17+ q(x)17- q(x) = ea(x) (14) 

function a(x) is unknown quantity (deformation parameter) which must be 
evaluated. Inseting here (I-3) we come to the complicated expression 

1 
[17-,T/+]q(x) = 2 

eP1+p4-p2-p3 (e-a _ e<>) _ 

_ ( e-p3 T2 
eP1+a _ eP1 r 2 e-P3-a) eP4-p2 

-eP1-P3 (e-P4 r2 
e-P2+a _ e-p2 r2 eP4-a) + 

+ _ e-p3 r 2 eP1 +P4+a r 2 e-P2 _ 
Pl t;;-2 -p3-p4-a t;;-2 p4 -e 1· e 1· e 

(15) 

The noncommutative analog of the oscillator corresponds to the case when the 
right hand side of (15) is a canst. This means that terms containing equal 
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powers of T must cancel each other. The solution of this problem can be 

found using important identies T eP(x) = e T p(x) T eP(x) = e T p(x). We 
have p;(x) = wf + i (;x. The first term in this expression coincides with the 

nonrelativistic p;(x) = w;2. After applying the condition (13) we conclude 
that the imaginary parts (; are fixed up to one arbitrary parameter e: 

(1 = -w (2 + e) ' (2 = -we' (3 = we' (4 = w (2 + 0 ' -oo < e < CX) 

17+ = ,/2e-awx({+2) ( 1 - e ";" T2 e ";") eawx{ (16) 

17- = - ,,12e-awx{ ( 1 - e- ";" T2 e- ";") eawx({+2) 

In the oscillator case 

(17) 

Another couple of the creation and annihilation operators K± comes out if we 
start with the case 4) 

"'+ = - ,,12 (r) 2a(e+
2

> ( 1 - e-"~" r 2 e-"~") (r) at 

"'- = ,/2 (rrt (1 - e-"~"r2e-";") (rr(2-o (1s) 

q" = e-w, [K-,K+]q" = sinhw 

DIMENSIONAL QUANTITIES Trying to understand how deforma­
tions are related to physical objects, it is very instructive to analyse the di­
mensional quantities entering into the theory. The deformation parameter q is 
dimensionless. At the same time, we expect it to have physical meaning, i.e. 
q must depend on the dimensional parameters of the theory considered. This 
means that different parameters ( at least two) of the same dimensionality ( we 
choose the length) must be inherent in the theory, entering into the operators, 
wave functions etc. In the case of nonrelativistic oscillator we have only one 

quantity of the dimension of length: l = #Transferring to the relativistic 
theory we aquire the second length, the Compton wave length of the particle: 

Ii 
Ao= - (19) 

me 

and obviously an infinite number of quantities of the same dimensionality of 
length which could be constructed from ( ) and ( 19). For us important will 
be the quantity 

[2 C 
A=-=-

Ao w 
(20) 
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It can be shown (7] that 
~ w q = e-.,,. = e-4mc2 (2f 

So the q - plane structure is inherent in the noncommutative theory from th« 
beginning. Using the q-mutator relations as (17)( cf. (7]) we obtain the differen1 
energy spectra corresponding It is instructive to write down the energy spectra 
corresponding to cases 1 ), 2), 4): 
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Abstract - The relations for spectra of masses and decay constants for 
variety of non-strange meson resonances in the energy range 0-2.5 GeV 
are analyzed which follow from the string-like, linear mass spectrum for 
vector, axial-vector, scalar, and pseudoscalar mesons with an universal 
slope. The possible corrections to the linear trajectories of radial excita-. 
tions are discussed. The way to match the universality with the Operator 
Product Expansion (OPE) is proposed. From the ensuing sum rules and 
normalizing on the ground states, the whole spectrum for meson masses 
and residues is obtained in a good agreement with phenomenology. 

1 Introduction 

153 

As follows from phenomenology [1,2], the masses squared of mesons with 
given quantum numbers form linear trajectories with respect to the number 
of radial excitation n, which may signify that QCD is a string-like theory. As 
follows from the bosonic string model, the slope of all trajectories must be 
equal since this quantity is proportional to the string tension depending on 
gluedynamics only (we call this universality). On the other hand, there exist 
sizeable deviations from the string picture which are not understood yet. In the 
present analysis we examine possible corrections to the linear trajectories in the 
vector (V), axial-vector (A), scalar (S), and pseudoscalar (P) channels [3]. Our 
method is based on the consideration of the two-point correlators of V,A,S,P 
quark currents in the large-Ne limit of QCD [4]. On one hand, by virtue of 
confinement they are saturated by an infinite set of narrow meson resonances, 
that is, up to subtraction constants, they can be represented by the sum of 
related meson poles in Euclidean space: 

ITJ(Q2
) = J d4xexp(iQx)(qfq(x)qfq(O))planar = L Q2

2::;~n), (1) 
n 

J = S,·P, V,A; r = i, ,5, ,,,, ,,,,5. 
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On the other hand, their high-energy asymptotics is provided by the perturba­
tion theory and the OPE with condensates (5]. Matching these two approaches 
results in some Chiral Symmetry Restoration (CSR) sum rules representing a 
set of constraints on meson mass parameters. · 

In Sect. 2 we give our results and we conclude in Sect. 3. 

2 Matching and results 

Let us consider the linear ansatz for the meson mass spectra with a non­
linear correction 8: 

m~(n) = m~;J +an+ OJ(n), J= V,A,S,P. (2) 

The last term in Eq. (2) simulates a possible deviation from the string pic­
ture in QCD. The condition of convergence for the generalized Weinberg sum 
rules imposes the equality of slopes and exponential decrease of non-linear 
correction. 

The asymptotic freedom leads to the relation between residues and masses: 
F2(n) ~ d':Jn). Our analysis showed that the analytical structure of the OPE 
admits, however, exponentially small deviations from this relation ( compare 
to (6]). We can argue also that D-wave vector meson must asymptotically 
drop out the CSR sum rules. This results in the exponential decrease of the 
corresponding residues (we denote them as FJ

0
(n)). Our final results are as 

follows: 

m~(n) = m~ +an+ A~e-Bmn, 

F{A(n) = ( Cv,A + AiAe-B;'.•An) (a - A~/Bme-Bmn), 

p2 (n) = aADe-Bmn Vo F , 

FJ,p(n) = ( Cs,P + A:P /-BVn) (i _ 3o:. ..\
2 

) dmlp(n) 
41r3 Cs,P m1,p(n) dn ' 

C 1 ( a.) 3 ( llo:•) 
V,A = 81r2 1 +-;- ' Cs,P = l61r2 1 + ~ ' Em> 0, st> 0, 

(3) 

(4) 

(5) 

(6) 

(7) 

where ,\ represents the possible dimension two condensate. In principle, there 
can be several exponents in each case, but we considered only the simplest case 
- with one exponent. We do not know the underlying dynamics responsible for 
the appearance of those exponential corrections. But it seems for us reasonable 
to suppose that, for masses, this dynamics does not depend on flavor. Thus, 
we keep the exponent Em the same for all channels. 
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• We have carried out numerical calculations with and without D-wave V­
mesons. The former case let us call Set I (see Tables 1,3 of Appendix), the 
latter case let be Set II (see Tables 2,3 of Appendix). In the V,A,P sectors our 
fits are compared with experiment [2, 7). The scalar sector is quite involved 
because of strong mixing effects and one should relate the masses of scalar 
mesons to the corresponding bare masses [2). 

Given an ansatz for mass spectrum m}(n) and decay constants FJ, one 
can calculate the electromagnetic pion mass difference /:::;.m1r = m1r+ - m1ro and 
the chiral constant L10 (8) (parametrizing the decay 7r ➔ evy). The example 
)f such a calculation was demonstrated in (9). Besides, in the scalar sector 
Ne can calculate the chiral constant L8 (8) (parametrizing the ratio of current 
iuark masses). Below we give the results of numerical calculations. 
[ 10 = -5. 7 • 10-3 (for the Set I and II) to be compared with the accepted 
!stimate from phenomenology: L10lphen = (-5.5 ± 0.7) · 10-3 [10). 
~m1r = 3.5 MeV (Set I) and f::;.m1r = 4.2 MeV (Set II). The experimental value 
s [7): l::;.m1rlexpt = 4.5936 ± 0.0005 MeV. 
~8 = 0.8·10-3

• The accepted estimate for L8 is Lslphen = (0.8±0.3)·10-3 (10). 
It is interesting to note that the first two chiral pairs of resonances saturate 

he chiral constants L8 and L 10 almost completely, but this is not the case for 
he quantity /:::;.m1r. In the latter case the contribution of D-wave vector mesons 
urns out to be substantial. 

I Summary 

In the present work we have considered the problem of matching the vector, 
.xial-vector, scalar, and pseudoscalar meson mass spectra m 2(n) (n is the 
.umber of radial excitation) with universal slope to the Operator Product 
\xpansion. The analysis was carried out for the light non-strange mesons in 
he large-Ne and chiral limits. The main result is that, given the masses of 
he ground states, the chiral symmetry restoration sum rules (following from 
his matching) allow to restore the whole spectrum for the V,A,S,P masses and 
~sidues. Let us summarize the results our analysis: 

• The matching to the OPE can not be achieved by a simple linear para­
metrization of the mass spectrum. 

. • The convergence of the generalized Weinberg sum rules requires the uni­
versality of intercepts for masses of chiral partners. The tree-level limit 
implies universality of intercepts for all V,A,S,P spectra. Thus, there 
must exist deviations from the linear spectra (bosonic string picture) 
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parametrizing the chiral symmetry breaking. These deviations must de­
crease at least exponentially. 

• There are also deviations from the relation for the meson residues ( decay 
constants) F2 (n) ~ dm:ln). The analytic structure of OPE imposes the 
exponential decrease on these deviations ( or faster). 

• At high energies, the D-wave vector mesons have to decouple the CSR 
sum rules. This fact implies the exponential ( or faster) decreasing the 
corresponding decay constants F'jy(n). However, at small n the contri­
bution of D-wave vector mesons may be sizeable and important. 

We have proposed the simplest ansatz for the V,A,S,P meson masses and 
residues meeting the all general principles above. The numerical solutions of 
the CSR sum rules for these spectra were obtained and compared with the 
experimental data. Our fits agree well with the existing phenomenology. 

Unfortunately, the underlying dynamics, which generates the non-linear 
contributions to the spectra of meson masses and residues, is not known. We 
can say only that these deviations from the string picture seem to parametrize 
the chiral symmetry breaking in QCD and, consequently, might be propor­
tional to the chiral condensate (ijq). Developing a theory of these non-linear 
contributions is an interesting task for future. 

This work is supported by Grant RFBR 01-02-17152, INTAS Call 2000 
Grant (Project 587), and the Program "Universities of Russia: Basic Research" 
(Grant 992612). 
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Appendix 
In this Appendix we give an example of meson mass spectra proposed in our 

work. The inputs general for all tables (if any) are: a = (1200 MeV)2, (qq) = 

-(240MeV)3 , ~((G~1,)2) = (360MeV)4
, fir= 87MeV, F-,r = <jy2

, a,= 0.3. The 
units are: m(n), F(n) - MeV; Am - MeV2 ; AF, BF,m - MeV0 • · 

Table 1: Set I. An example of parameters for the mass spectra of our work without 
D-wave vector mesons. The corresponding experimental values [2, 7] (if any) are 

\ displayed in brackets. · 

I Case II Inputs Predictions 

I 
I 
I 
I 
I 
l 
I 
I 
I 

For all 
VASP 

V 
A 

s 
p 

mo = 1240, Bm = 0.8 

m(0) = 770 (769.3 ± 0.8) Am = -9702, AF= -0.004, BF= 1.7 + i1r 
m(0) = 1130 (1230 ± 40) Am= -5002, AF= -2 · 10-7, BF= 0.1 

m(0) = 1230 
Am= -1652, AF= -0.019, BF= 0.6+ i1r 
msut = 770 

m(0) = 1400 (1300 ± 100) Am = 6502
, AF = 0.004, BF = 0.48 
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Table 2: Set II. The account of D-wave vector mesons. 

Case Il Inputs Predictions 

A,S,P The same as in Table 1 The same as in Table 1 

Vs 
m(0) = 770 (769.3 ± 0.8) 

Am = -9702 , Ap = -0.003, Bp = 0.6 
F(0) = 145 (154± 8) 

Vv 
m(0) = 1700 (1700 ± 20) 

Am = 8002 , Ap = 0.003, Bp = 0.8 
mv = 1500, F(0) = 59 

Table 3: The mass spectrum and residues for the parameter sets of previous Tables 
The known experimental values [2, 7] are displayed in brackets. 

n !!out I 0 I 1 I 2 I 3 

mv(n) II 1770(769.3±0.8)11540 (1465 ± 25)11960 12280 (2149 ± 17) 
Fv(n) 143(154±8) 152 139 135 

mA (n) II 11130(1230±40)11640 (1640 ± 40)12000 (1971 ± 15)12300 (2270 ± 50) 
FA(n) 142(123±25) 137 134 133 

ms(n) 1177011230 11670 12010 12300 
F5 (n) 207 95 · 213 160 190 

mp(n) II O 11400 11730 (1801 ± 13)12030 (2070± 35)12310 (2360± 30) 
Fp(n) - 155 169 175 178 

mvs( n) II 1770(769.3±0.8)11540 (1465 ± 25)11960 12280 (2149 ± 17) 
Fv£(n) 145(154±8) 139 135 133 

mvD (n) II ll 700(1700±20)11950 (1980 ± 30)12210 (2285±?) 12460 
Fv!2 (n) 59 40 27 18 
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Abstract - The CLEO experimental data on the rr-y transition are an­
alyzed to NLO in QCD perturbation theory using light-cone QCD sum 
rules. We obtain new constraints for the Gegenbauer coefficients a2 and 
a4 , as well as for the inverse moment x- 1 of the pion distribution am­
plitude (rrDA) and conclude that the data confirm the shape of the rrDA 
previously obtained by us using QCD sum rules with nonlocal conden­
sates, while the exclusion of the asymptotic and the Chernyak-Zhitnitsky 
DAs is reinforced. We also check our rrDA against the di-jets data of 
the E791 experiment, providing credible evidence for our results far more 
broadly. 
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The recent high-precision CLEO results [1] for the 1r1 transition form factor 
;ave rise to dedicated theoretical investigations [2-9). These experimental data 
,re of particular importance because they can provide crucial quantitative 
riformation on nonperturbative parameters of the 1rDA and - as we pointed 
mt in [9] - on the QCD vacuum nonlocality parameter,\;, which specifies the 
,verage virtuality of the vacuum quarks. In the absence of a direct solution of 
he nonperturbative sector of QCD, we are actually forced to extract related 
nformation from the data, relying upon a theoretical analysis as complete and 
.s accurate as currently possible. 

It was shown by Khodjamirian [5] that the most appropriate tool to analyze 
he CLEO data is provided by the light-cone QCD sum-rule (LCSR) method. 
:chmedding and Yakovlev (SY) [6] applied these LCSRs to the NLO of QCD 
1erturbation theory. More recently [9], we have taken up this sort of data 
1rocessing in an attempt to (i) account for a correct ERBL [10] evolution of 
he 1rDA to each measured momentum scale, (ii) estimate more precisely the 
ontribution of the (next) twist-4 term, and (iii) improve the error estimates 
11 determining the 1- and 2-o- error contours. 

The main outcome of these theoretical analyses can be summarized as 
:>Hows: (i) the asymptotic 1rDA [10) and the Chernyak-Zhitnitsky (CZ) [11) 
ne are both outside the 2-o- error regions; (ii) the extracted parameters a2 and 
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a4 are rather sensitive to the strong radiative corrections and to the size of the 
twist-4 contribution; (iii) the CLEO data allow us to estimate the correlation 
scale in the QCD vacuum,,\~, to be ;S 0.4 GeV2

• . 

The present note gives a summary of our lengthy analysis [9] extending it 
a step further in an attempt to obtain from the CLEO data a direct estimate 
for the inverse moment of the 1r DA that plays a crucial role in electromag­
netic/transition form factors of the pion. Moreover, we take into account 
the variation of the twist-4 contribution and treat the threshold effects in the 
strong running coupling more accurately. The predictive power of our refined 
analysis lies in the fact that the value of the inverse moment obtained from 
an independent sum rule is compatible with that extracted from the CLEO 
data, referring in both cases to the same low momentum scale. As a result, the 
7r DA obtained from QCD sum rules with nonlocal condensates is within the 
1-a error region, while the asymptotic and the CZ 7r DAs are clearly excluded, 
as being well outside the 2-a region. Our prediction for the 1r DA is confirmed 
by the analysis of Fermilab E791 data [12]. 

Below, we sketch the improved NLO procedure for the data processing, 
developed in [9). Let us recall that this procedure is based on LCSRs for the 
transition form factor p-y'-yrr( Q2 , q2 ,:;; 0) [5, 6). Accordingly, the main LCSR 
expression for the form factor 

F so 2 oo 
LCSR~•~"(Q2)=¼ J;;, p(Q2,s;µ2)e(mp-s)/M2 +¼ J !If p(Q2,s;µ2) 

0 P so 

(1) 

follows from dispersion relation. Corresponding spectral density p( Q2
, s; µ 2

) = 
Im [ FQco~•~•"(Q2,q2=-s;µ2)] is calculated by virtue of the factorization theorem 
for the form factor at Euclidean photon virtualities q; = -Q2 < 0, q~ = 
-q2 ~ 0 [10, 13), with M 2

,:;; 0.7 GeV2 being the Borel parameter, whereas mp 

is the p-meson mass, and s0 = 1.5 GeV2 denotes the effective threshold in the 
p-meson channel. The factorization scale µ 2 was fixed by SY at µ2 = µ§y = 
5.76 GeV2. Moreover, FQco~•~•"(Q2,q2;µ2) contains a twist-4 contribution, which 
is proportional to the coupling &2 (µ 2

). This contribution has been calculated 
for the asymptotic twist-4 DAs of the pion [5] . 

We set µ 2 = Q 2 in FQco~•~•,,.cq2,q2;µ2) and use the complete 2-loop expression 
for the form factor, absorbing the logarithms into the coupling constant and 

the 1rDA evolution at the NLO [9] so that a.(µ 2
) -~ a.(Q2

) (RG denotes the 

renormalization group) and 'Prr(x;µ 2
) E~ c.p,r(x;Q2

) = U(µ 2 -+ Q2 )c.prr(x;µ 2
). 

Then, we use the spectral density p( Q 2
, s, µ 2 = Q 2

), derived in [6] and used 
there at µ2 = µ~y, in Eq. (1) to obtain p-y*-yrr(Q2 ) and fit the CLEO data over 

.. 



Pion DA and QCD vacuum: recent results from CLEO and E791 161 

the probed momentum range, denoted by {Q;xp}· In our recent analysis (9) 

the evolution <p1r(x; Q2
) = U(µ 2

5y Q 2 ) ( • 2 was performed for every point 
-t <p,r x,µSY) 

Q;xp' with the aim to return to the normalization scale µ§y and to extract 
the DA parameters (a2 , a4 ) at this reference .scale for the sake of comparison 
with the previous SY results (6). Stated differently, for every measurement, 
{Qexp2 F',"-,"(Q , its own factorization/renormalization scheme has been used 

' exp2 )} 

so that the NLO radiative corrections were taken into account in a complete 
way. The accuracy of this procedure is still limited mainly by the uncertainties 
of the twist-4 scale parameter (9), k · <F, where the factor k expresses the 
deviation of the twist-4 DAs from their asymptotic shapes. 

To summarize, the focal points of our procedure of the CLEO data process­
ing are (i) a.( Q2

) is the exact solution of the 2-loop RG equation with the 
threshold Mq = mq taken at the quark mass mq, rather than adopting the 
approximate popular expression in (14) that was used in the SY analysis. 
This is particularly important in the low-energy region Q2 ~ 1 GeV2, where 
the difference between these two couplings reaches about 20%. (ii) All log­
arithms In( Q2 / µ 2 ) appearing in the coefficient function are absorbed into 
the evolution of the 1rDA, performed separately at each experimental point 
Q;xp· (iii) The value of the parameter 82 has been re-estimated in (9) to read 
<F(1GeV2

) = 0.19±0.02 GeV2
• The present study differs from the SY approach 

in all these points and extends our recent analysis [9) with respect to points 
(i)and (iii) yielding to significant improvements of the results. In the absence 
of reliable information on higher twists, one may assume that the uncertainty 
due to the shapes of the twist-4 DAs is of the same order as that for the leading 
twist case. Therefore we set k = l ± 0.1. As a result, the final (rather conser­
vative) accuracy estimate for the twist-4 scale parameter can be expressed in 
terms of k • 82(1GeV2

) = 0.19 ± 0.04 GeV2 • To produce the complete 2u- and 
lo--contours, corresponding to these uncertainties, we need to unite a number 
of contours, resulting from the processing of the CLEO data at different values 
of the scale parameter k · 82 within this admissible range. This is discussed in 
technical detail in [9). Here we only want to emphasize that our contours are 
more stretched then the SY ones. The obtained results for the asymptotic DA 
(u), the BMS model (6) [7), the CZ DA (n), the SY best-fit point (1) [6), a 
recent transverse lattice result (t) (15), and three instanton-based models, viz., 
(H) [16), (s) (17], and (F) (using in this latter case mq = 325 MeV, n = 2, and 
A= 1 GeV) [18), are compiled in Table 1 for the maximal and the minimal 
twist-4 scale parameter. F?r the middle k · 82 value (0.19 GeV2 ) - discussed 
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Table 1: Models/fits for different values of k • cF (see text). 

k · o2 0.23 GeV2 0.15 GeV2 

Models/fits Symbol ( a2, a4) I /tgy2 
x2 · (a2,a4)I µsy2 

x2 

Best fit (b .f.) ( +0.28, -0.29) 0.47 (+0.16, -0.16) 0.47 
SY b.f. 1 ( +0.19, -0.14) 1.0 ( +0.19, -0.14) 0.57 

BMS 6 ( +0.14, -0.09) 1.7 ( +0.14, -0.09) 0.52 

Asymp. u (-0.003, +0.00) 5.9 (-0.003, +0.00) 2.2 

CZ n ( +0.40, -0.004) 4.0 ( +0.40, -0.004) 7.0 

Latticel. t ( +0.06, +0.01) 3.8 ( +0.06, +0.01) 1.2 

PPRWK H ( +0.03, +0.005) 4.7 ( +0.03, +0.005) 1.6 

ADT s ( +0.03, -0.03) 4.6 ( +0.03, -0.03) 1.6 

PR F ( +0.06, -0.01) 3.6 ( +0.06, -0.01) 1.1 

in [9) - the corresponding values of the best-fit point (:) are a2(µ 5y2)=+o.22 , 

a4(µsy2l=-o. 22 , and x2 = 0.47. 
We· turn now to the important topic of whether or not the set of CLEO 

data is consistent with the non-local QCD SR results for '-P-rr· We present 
in Fig. 1 the results of the data analysis for the twist-4 scale parameter k · 
o2 varied in the interval (0.15 ~ k • o2 ~ 0.23) GeV2

• We have established 
in [7) that a two-parameter model '-P-rr( x; a2 , a4) factually enables us to fit all · 
the moment constraints that result from NLC QCD SRs (see [19) for more 
details). The only param~ter entering the NLC SRs is the correlation scale 
,\~ in the QCD vacuum, known from nonperturbative calculations and lattice 
simulations (20, 21). A whole bunch of admissible 1rDAs resulting from the 
NLC QCD SR analysis associated with,\~ = 0.4 GeV2 at µ5 ~ 1 GeV2 [7) was 
determined, with the optimal one given analytically by 

<p:Ms(x) = <p;:."(x) [1 + a?t · C]12(2x - 1) + a~pt · C]12 (2x - 1)] , (2) 

where <p:(x) = 6x(I - x) and a?t = 0.188, a?t = -0.13 are the correspond­
ing Gegenbauer coefficients. From Fig. 1 we observe that the NLC QCD SR . 
constraints encoded in the slanted shaded rectangle are in rather good over­
all agreement with the CLEO data at the la-level. This agreement could 
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0 0.1 0.2 0.3 0.4 a2 

Figure 1: Analysis of the CLEO data on F1r--,•--,(Q 2 ) in terms of error ellipses in the 
(a2,a4) plane contrasted with various theoretical models explained in the text. The solid 
line denotes the 2u-contour; the broken line stands for the lu-contour. The slanted shaded 
rectangle represents the constraints on (a2, a4) posed by the NLC QCD SRs [7] for the value 
A~= 0.4 GeV2

. All constraints are evaluated at µ§y= 5.76 Gev> after NLO ERBL evolution. 

eventually be further improved adopting smaller values of A;, say, 0.3 GeV2, 

_which however are not supported by the QCD SR method and lattice calcu­
lations (21]. On the other hand, as it was demonstrated in (9], the agreement 
between QCD SRs and CLEO data fails for larger values of A;, e.g., 0.5 GeV2 • 

In the present study we have processed the CLEO data in such a way as 
to obtain an experimental constraint on the value of (x- 1 )" = f

0

1 'P1r(x)x- 1dx 
that appears in different perturbative calculations of pion form factors. This 
is illustrated in Fig. 2(a). A "daughter SR" has been previously constructed 
directly for this quantity by integrating the r.h.s. of the SR for 'P1r( x) with the 
weight x- 1

, (for details, see [22, 71). Due to the smooth behavior of the NLC 
at the end points x = 0, 1, this integral is well defined, supplying us with an 
independent SR, with a rather good stability behavior of (x-1 );R(M

2
l, as one 

sees from Fig. 2(b ). We have estimated (x-1 );R(µ~~ 1 GeV
2
)=3-2s±o.3 I at the value 

,\: = 0.4 GeV2 of the non-locality parameter. It should be emphasized that this 
estimate is not related to the model of 1r DA, cpBMS,.(x;a2 ,a4 ), constructed within 
the same framework. Nevertheless, the value obtained with the "daughter" 
QCD SR and those calculated using the bunch of 1rDAs, mentioned above, 
match each other. 

On the other hand, from the CLEO data one obtains a constraint on the 
value of a2 + a4 = (x-1)exp,./3

-I at the low pointµ~ ~ 1 GeV2 that complies 
with the NLC SR estimate. In Fig. 2(a) we demonstrate the united regions, 
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Figure 2: (a) The result of the CLEO data processing for the quantity {x- 1)°xp./3-t at 
the scale µ5 r:::J 1 GeV2 in comparison with three theoretical models. The thick solid-line 
contour corresponds to the union of 2CT-contours, while the thin dashed-line contour denotes 
the union of lu-contours. The light solid line with the hatched band indicates the mean 
value of {x- 1)SR,/3-t and its error bars in the second part of the Figure. (b) The inverse 
moment {x- 1) 5R• shown as a function of the Borel parameter M 2 from the NLC SR at 
the same scale JL5 (7); the light solid line is the estimate for {x-1)5R•; the dashed lines 
correspond to its error-bars. 

corresponding to the merger of the 2u-contours (solid thick line) and the la-­
contours (thin dashed line), which have been obtained for values of the twist-4 
scale parameter within the determined range. This resulting admissible region 
is strongly stretched along the ( a 2 - a4 ) axis, demonstrating the poor accu­
racy for this combination of DA parameters, while more restrictive constraints 
are obtained for (x-1 )exp,,.. One appreciates that the NLC SR result, (x-1 )SR,,., 

with its error bars appears in good agreement with the constraints to (x- 1 )exp,,. 
at the lu-level, as one sees from the light solid line within the hatched band 
in Fig. 2( a). In particular, the lu-constraint obtained at the central value 
k • &2 = 0.19 GeV2 exhibits the same good agreement with the corresponding 
SR estimate because the theoretical uncertainty of the twist-4 scale parameter 
affects only the ( a 2 - a4 ) constraint. Moreover, the estimate (x-1 

)SR,,. practi­
cally coincides with that obtained in the data analysis on the electromagnetic 
pion form factor in the framework of a different LCSR method in [23]. These 
three independent estimates are in good agreement to each other, giving ro­
bust support that the CLEO data processing and the theoretical calculations 
are mutually consistent. 

More importantly, the end-point contributions to the (x-1 )~R are sup­
pressed, the range of suppression being controlled by the value of the parameter 
>.!. The larger this parameter, at fixed resolution scale M2 >>.!,the stronger 
the suppression of the NLC contribution. Similarly, an excess of the value of 
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(x-1)" over 3 (asymptotic DA) is also controlled by the value of>.;, becom­
ing smaller with increasing >.;. Therefore, to match the value (x-1 );R to the 
CLEO best-fit point(:) in Fig. 2(a), would ask to use larger values of>.~ than 
0.4 GeV2• But this is in breach of the ( a2 , a4 ) error ellipses. A window of about 
0.05 GeV2 exists to vary >.;: any smaller and one is at the odds with QCD 
SRs and lattice calculations [21]; any larger and the NLC QCD SRs rectangle 
can tumble out of the CLEO data region. 

Before we come to the Fermilab experiment [12], let us summarize our 
findings. They have been obtained by refining the CLEO data analysis in the 
following points. We corrected the mass thresholds in the running strong cou­
pling and incorporated the variation of the twist-4 contribution more properly. 
In addition, the CLEO data were used to extract a direct constraint on the in­
verse moment (x-1 )1r(µ5) of the 1rDA - at the core of form-factor calculations. 
This has relegated the asymptotic and CZ 1r DAs beyond the 2a- level (95% ), 
with the SY best-fit point still belonging to the la- deviation region (68%) in 
the parameter space of ( a2 , a4 ), while providing compelling argument in favor 
of our model [7]. 

50 

Ill 
,IJ 40 
s:: ! 30 

20 

10 

X 

Figure 3: Comparison of <pas (solid line), <pcz (dashed line), and the BMS bunch of 7rDAs 
(strip, [7]) with the E791 data [12). 

To compare our model DA for the pion (7] with the E791 di-jet events, 
we adopt the convolution approach developed in [24] having also recourse to 
[25]. The results are displayed in Fig. 3 making evident that, though the data 
from E791 are not that sensitive as to exclude other shapes for the 1r DA, also 
displayed for comparison, they are in good agreement with our prediction. 

As a conclusion, both analyzed experimental data sets (CLEO [1] and Fer­
milab E791 [12]) converge 'to the conclusion that the 1rDA is not everywhere 
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a convex function, like the asymptotic one, but has instead two maxima with 
the end points (x = 0, 1) strongly suppressed - in contrast to the CZ DA. 
These two key features are controlled by the QCD vacuum correlation length 
>..;, whose value suggested by the CLEO data analysis here and in [9) is ap­
proximately 0.4 GeV2 in good compliance with the QCD SR estimates and 
lattice computations [21]. 
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Abstract -The behavior ofnonperturbative part ofisosinglet axial-vector 
correlator at Euclidean momenta is studied in the framework of a covariant 
chiral quark model with nonlocal quark-quark interactions. 

It is well known that due to UA (l) axial Adler-Bell-Jackiw anomaly the 
singlet axial-vector current is not conserved even in the chiral limit, 

8µJ! 0 (x) = 2NfQ5 (x), (1) 

where Q5 (x) = (a./81r)G~,_,(x)G~,_,(x) is topological charge density. The cor­
relator of singlet axial-vector currents, J;0 = Lf=(u,d) <i/'/µ"f5qf, is defined as 

rr:~0(q) = i J d4x eiqx(o IT { Jµ(x)J,,(o)t}I 0) = (2) 

= ( qµq,, - gµ,_,q2) rr1·o( Q2) + qµq,,IIf·o( Q2). (3) 

In the chiral limit its longitudinal part is related to the topological suscepti­
bility, the correlator of the topological charge densities Q5 (x), 

X ( Q2
) = i J d4 x eiqx(o IT {Q5(x)Q5(0)}10), 

by the relation (see, e.g., (1]) 

rrf·o ( Q2) = (2i; )2 x ( Q2). 

At high Q2 the operator product expansion (OPE) predicts for x (Q2), [2], 

(4) 

(5) 

X ( Q
2

-+ oo) = - 1~: \ :• ( c:,,)2) + O(Q-2
) + O(e-QP), (6) 

where the perturbative contribution has been subtracted, and the exponential 
corrections are due to nonlocal instanton interactions. 
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At low Q 2 the topological susceptibility x (Q2
) can be represented as sum 

.of contributions coming purely from QCD and from hadronic resonances, [1]. 
Crewther proved theorem [4] that x (0) = 0 in any gauge theory where at least 
one massless quark exists (the dependence of x (0) on current quark masses 
has been found in [3]). Also, the contribution ·of nonsinglet hadron resonances 
to x is absent in the chiral limit. Thus; at low-Q2 for massless current quarks 
one has 

X ( Q2 -to)= -Q2x'(0) + O(Q4
). (7) 

The estimates of x'(0) existing in the literature are rather controversial: 

x'(O) = (48 ± 6 MeV)2 [5], x'(0) = (26 ± 4 MeV)2 [6]. (8) 

This makes further model estimates valuable. 
Within the nonlocal chiral quark model [7] the full isosinglet axial-vector 

current becomes [8] 

r:0 (k, q, k' = k + q) 
. I (JM(k')-/M[ij'f 

= / µ, ,5 - /5 ( k + k ) /J, k'2 - k2 (9) 

15 qµ,2JM(k 1)M(k)G' l -GJpp(q
2
) . 

. q2 G 1 - G'Jpp(q2) 

where M(k) is dynamical, momentum dependent quark mass, G and G' are 
4-quark couplings in isotriplet and isosinglet channels, correspondingly, and 

2 i J d4 
k ( ) ( [ a ( b] Jpp(q )oab= -M2 --4M k M k+q)Tr S(k),5T S k+q),5T . 

q (21r) 
(10) 

In (10) the (inverse) quark propagator is s- 1 (p) = p- M(p). Because of axial 
anomaly the singlet current does not contain massless pole, since as q2 ➔ 0 
·one has: 

1 - GJpp(q2) - G J; (11) 
-q2 - MJ' 

where frr is pion weak decay constant and Mq = M(0). Instead, the current 
develops a pole at the r/- meson mass, 1-G' Jpp(q2 = -m~,) = 0, thus solving 
the UA(l) problem. The vertice (9) satisfies the anomalous Ward-Takahashi 
identity: 

50 , ~ , 2JM(k')M(k) ( G') 
q~rµ,(k,q,k =k+q)=q15 ~ 15[M(k)+M(k)]+,s 1 _ 0 ,Jpp(q2) 1- G , 

(12) 
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where the last term is due to anomaly. Thus, the QCD pseudoscalar gluonium 
operator is interpolated by the pseudoscalar effective quark field operator with 
coefficient expressed in terms of dynamical quark mass. This is a consequen~e 
of the fact that in the effective quark model the connection between quark and 
integrated gluon degrees of freedom is fixed by the gap equation. 

Full model calculations lead to the following expression for the topological 
susceptibility [8] 

- (2N1 )2 X ( Q 2
) = 

( 
G') { 2 ( 2) [ G'JAp(Q

2
) 1 ] = 2N1 1 - Q Q J1rA Q 1 - M; + l _ G'Jpp(Q2 ) (13) 

2 ( 2) ( G' 2 ) [GJ AP( Q
2

) G - G' ] 
+ MqJpp Q l-MiJAp(Q) MJ -G[l-G1Jpp(Q 2 )] 

G [ d
4
k M(k) [ ]]

2

} + M; 4NcNt J (21r)4 D(k) M(k)- ✓M(k+Q)M(k) , 

where D(k) = k2 + M 2(k) and the integrals JAp(q2
) and J1rA(q2 ) are defined 

by 

JAP( q2
) 

J,rA (q2
) Jab 

J d
4l M(l) ✓ 

4NcNt - 4 -(l) M (l + q) M (l), 
. (21r) D 

= q~ J d4\Tr [S(k)r!a(k,q,k + q)S(k + q) r~ (k + q,k)]. 
q (21r) 

At large Q 2 one obtains the power-like behavior consistent with the OPE 
prediction (6), namely 

· 2N M
2 

( G') - (2N1 )2 X ( Q2 ➔ oo) = ~ q 1 - G . (14) 

At zero momentum the topological susceptibility is zero 

x(0)=0, (15) 

in accordance with the Crewther theorem. For the first moment of the topo­
logical susceptibility we obtain 

x' (0) = 2~
1 

{ J; ( 2 - ~) + ( 1 - ~) 

2 

J~p(O)} . (16) 
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Figure 1: Topological susceptibility versus Q2 predicted by the model with 
G' ~ 0.1 G, Eq. (13), (solid line). 

The constants G and G' are fixed with the help of the meson spectrum. Ap­
proximately one has G' = 0.1 G. Then the estimate for the first moment of 
the topological susceptibility is: 

x'(0) = (50 MeV) 2
• (17) 

For the above estimate we have taken Ni = 3. We can see that the model 
gives the value of x'(0) which is close to the estimate of Ref. [5]. In Fig. 
1 we present the model prediction for the topological susceptibility at low 
and moderate values of Q2 for the full model calculations (13). In the region 
of small and intermediate momenta our result is quantitatively close to the 
prediction of the QCD sum rules with the instanton effects included [l]. 

In the present talk we have analyzed the nonperturbative part of the 
Euclidean-momentum correlation functions of the singlet axial-vector currents 
within an effective nonlocal chiral quark model. By considering this correlator 
the topological susceptibility has been found as a function of the momentum, 
and its first moment is estimated. In addition, the fulfillment of the Crewther 
• theorem has been demonstrated. It would be interesting to verify the predic­
tions given in Fig. 1 by modern lattice simulations. 

The author thanks for partial support from RFBR ( Grants nos. 02-02-
16194, 02-02-81023, 03-02-17291 ). 
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The perturbative quantum chromodynamics (pQCD) has been extremely 
successful in the prediction and description of main properties of quark and 
gluon jets. There are, however, some problems of the jet calculus with the 
higher order corrections of the modified perturbative expansion which should 
be resolved to get more precise statements. Some of them are discussed here. 
The property of the asymptotic freedom of QCD is also questioned in this talk. 

The numerous achievements of pQCD in the jet calculus are well known and 
described in many review papers (see, e.g., [1-5]). The leading approximation 
is perfect and only high order terms need more care. In this talk I would like 
to describe some problems related to these calculations and rarely discl).ssed. 
The Figures demonstrating the comparison with experiment are omitted to 
shorten the presentation. They can be found in the abovecited review papers. 

I mention briefly the following six problems: 
1. Different characteristics of jets are differently sensitive to higher order 

corrections. Therefore, for the comparison with experiment, one should choose 
those which are not overshadowed by the leading terms of the perturbative 
expansion and help most efficiently elucidate these corrections. 

2. The correction terms are proportional to higher powers of the coupling 
strength but can get the large numerical coefficients in front of them. Thus, 
even though in asymptotics this expansion is valid due to the running nature of 
the coupling strength, at present energies it fails to provide small corrections. 

· Therefore one should find such characteristics where these coefficients are also 
small enough for corrections to be trusted. 

3. It is very desirable to get the physical interpretation and motivation for 
the value and nature of the higher order corrections ( especially, for cumulant 

. moments). 
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4. The QCD equations or approximations used in the jet calculus are 
sometimes not completely precise themselves. Their modifications can be con­
sidered or the influence of the omitted terms estimated. This can lie at the 
origin of the problems discussed above. 

5. Some shortcomings of the analytic approach are discussed. 
6. The property of the asymptotical freedom of QCD is briefly described 

and, if violated, the typical energy scales are found and possible tests discussed. 
I will be mainly concerned with jet characteristics in some sense related to 

the jet multiplicity distributions that are closer to my personal interests. First, 
let me remind some simplest definitions [6, l] concerning jet multiplicities in 
QCD. The generating function G is defined by the formula 

00 

G(y, u) = L Pn(y)un, (1) 
n=O . 

where Pn(Y) is the multiplicity distribution at the scale y = ln(p0/Q0 ) = 
ln(2Q /Q0), pis the initial momentum, 0 is the angle of the divergence of the 
jet (jet opening angle), assumed here to be fixed, Q is the jet virtuality, Q0 = 
const, u is an auxiliary variable which is often omitted to shorten notations. 
The analytic properties of the generating functions in u are of the special 
interest (see [l, 3]) in view of some analogies with the statistical physics, but 
we will not consider them here. 

The moments of the distribution are defined as 

F. = Ln Pnn(n - l) ... (n - q + 1) = _l_. dgG(y, u)\ _ (2) 
g (Ln Pnn)g (n)g dug I-I, 

K = _1_. dqJnG(y,u)\ _
1

_ ( 3) 
.g (n)g dug 1-

Here, Fg are the factorial moments, and Kg are the cumulant moments, re­
sponsible for total and genuine (irreducible to lower ranks) correlations, cor­
respondingly. These moments are not independent. They are connected by 
definite relations which can easily be derived from moments definitions in.terms 
of the generating function: 

g-1 
Fg = L C';,_1Kg-mFm, (4) 

m=O . 
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The QCD equations for the generating functions are1
: 

G'a = fo 1 

dxI<g(x),6[Ga(y + Inx)Ga(y + ln(l - x)) - Ga(y)] 

+ n1 fo1 

dxI<~(x),~[GF(Y + Inx)GF(Y + ln(l - x)) - Ga(y)], (5) 

G~ = fo1 

dxK~(x),6[Ga(Y + Inx)GF(Y + ln(l - x))- Gp(y)]. (6) 

Here G'(y) = dG/dy, n1 is the number of active flavours, 

2 2Ncas ,o=--. 
71" 

The running coupling constant in the two-loop approximation is 

where 

271" ( /31 In 2y) 3 
as(y) = /Joy 1 - /JJ · -y- + O(y- ), 

f3, _ llNc - 2n1 
0 - 3 ' 

/Ji= 17N; - n1(5Nc + 3Cp). 
3 

(7) 

(8) 

(9) 

The labels G and F correspond to gluons and quarks, and the kernels of the 
· equations are 

Nc=3 is the number of colours, and Gp= (N; - 1)/2Nc = 4/3 in QCD. 

(10) 

(11) 

(12) 

Herefrom, one can get equations for any moment of the multiplicity dis­
tribution both for quark and gluon jets. One should just equate the terms 
with the same powers of u in both sides of the equations. In particular, the 
equations for average multiplicities read 

· (na(y))' = f dx,6[I<g(x)((na(Y + lnx)) + (na(Y + ln(l - x)) - (na(y))) 

+n1I<~(x)((np(y + lnx)) + (np(y + ln(l - x)) - (na(y)))],(13) 

1To exclude the nonperturbative region from further consideratio.n, the limits of integra­
tion in these equations are often chosen as exp(-y) and 1- exp(-y) which tend to O and 1 
at high energy y. 
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(nF(Y))' = j dx,JI<;?(x)((na(y+lnx))+(nF(Y+ln(l-x))-(nF(Y))). (14) 

Their solutions can be looked for as 

(na,F) ex exp(jy ,c,F(y1)dy1). (15) 

The lower limit of integration has not been fixed because its variation results 
in the substitution of a new normalization constant which is not shown in 
the above relation but is in practice considered as a fitted parameter which 
depends on the nonperturbative component of the underlying dynamics of a 
process. 

Using the perturbative expansion of the exponent in (15) 

,a = 1 = ,o(l - ano - a2,6 - a3,g) + O(,g), (16) 

one arrives to the so-called modified perturbative expansion of QCD. This 
means that the perturbative expansion has been used in the exponent of the 
expression for a physical quantity, i.e., even the first term includes higher power 
corrections of the ordinary perturbative formulas. Moreover, the expansion 
parameter is the coupling strength itself and not its squared value as as usually 
happens. The structure of the equations (5), (6) dictates such series. Let 
me stress that the ordinary perturbative expansion for mean multiplicity, if. 
boldly attempted, would surely fail because the coupling strength decreases 
with energy while multiplicities increase mainly due to the enlarged phase space 
volume. The coefficients a; are calculable from the eqs (13), (14). This method 
was first proposed and used for higher order calculations in gluodynamics in [7] .. 

Let us briefly mention that the equations (5), (6) can be exactly solved 
[8, 9] for fixed coupling strength, i.e., if 10 is set constant. Then the mean 
multiplicities increase like a power of energy. 

For the running coupling strength the multiplicities increase [6, 10, 11] slower • 
than power-like but stronger than logarithmically, namely 

(na,F) = Aa,FY-a1c
2 

exp(2cy'y + Oa,F(Y)), 

where c = (4Nc/f30 )
112

, 

(17) 

C /3 2 a/3 
oa(Y) = r,;[2a2c2+/3~(ln2y+2)]+-[a3c2- /3

1 
/(ln2y+l)])+O(y-312). (18) 

vY o Y o 

The corresponding expression for o F(Y) can be easily obtained from the for­
mulas for 1'F· The relation between the anomalous dimensions I of gluon and 
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quark jets is 

where 

T' 
1F = ,- -, 

T 

with To=~ = 9/4; B = f3o/8Nc; B1 = f3i/4Ncf3o, 
, F 

Thus 

(19) 

(20) 

'YF = 1o[l-ano-( a2+BT1h6-(a3+2BT2+BT~ht-( a4+B(3T3+3T2T1 +B1T1 +T{)hi]. 
, (21) 

Usually, in place of ,F the ratio of average multiplicities in gluon and quark 
jets 

(no) Aa 
T = (nF) = AF exp(c5a(y) - c5F(y)) (22) 

is introduced, and its perturbative expansion 

(23) 

I is used. The analytic expressions and numerical values of the parameters ai, Ti 

1 for all i ::S 3 have been calculated from the perturbative solutions of the above 
J equations. All of them are at least twice less than 1 ( the review is given in [3)). 

I 
I 
I 
I 
I 
I 

I 
I 
I 

1. Sensitivity to high order terms. Within these approximations the 
experimental data about the energy dependence of mean multiplicity in e+ e--
annihilation are well described. The two leading terms in expressions (17) 
completely determine it. They are the same for quark and gluon jets. That is 
why gluodynamics can be used for their estimate as was done in early years. 
The higher order corrections given by c5a,F are almost unnoticeable there. Thus 
mean multiplicities are not sensitive to these corrections by themselves. 

However, if one considers their ratio T, it happens to be really sensitive. 
This is because in the ratio the two leading terms corresponding to leading 
order (LO) and next-to-leading order (NLO) cancel since they are the same for 
both quark and gluon jets. Therefore, only higher order corrections determine 
the energy behaviour of the ratio T. The first term To= CA/CF= 9/4 is given 
by the relative strengths of gluon and quark forces. It is the same both in LO 
and NLO approximations. · The next term is proportional to 10 and will be 
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called NLOr-correction in distinction to common NLO-terms. Actually, NLOr 
corresponds to 2NLO-terms (like a2 ) because of the cancellation of the NLO 
(power-like in y) terms in the ratio of the expressions for multiplicities. In the 
same sense the "r3 "-term in r corresponds to 4NLO contribution in , ev~n 
though it is proportional to ,g etc (see [11]). This leads to shift and misuse of 
the terminology for the anomalous dimensions ,'sand for the ratio r. 

Thus we have found the characteristics which is more sensitive to higher 
order corrections than the original formulas for mean multiplicities. The exper­
imental data about the ratio r are described with much lower accuracy about 
15% in such an analytic approach. Even though each subsequent perturbative 
term in r improves the agreement, no precise fit has been achieved yet. This 
is one of the problems. 

However, one should mention here that the computer solution of the equa­
tions [12, 13] provides the quantitative fit. This poses the question about the 
accuracy of perturbative approximations for this particular characteristics and 
indicates that the higher order uncalculated corrections are still comparatively 
large for this ratio up to the highest presently available energies. 

Another very sensitive characteristics is the beha~iour of the factorial mo­
ments (2) as functions of the size of the phase space bins in which they are 
measured. Now one has to deal with a part of the phase space and the above 
equations are not applicable directly. One has to use the Feynman diagram . 
technique for the treatment of these small bins [14-16]. This complicates the 
matter. It was impossible to pass to high order corrections. Some NLO-terms 
have only been taken into account [15]. From comp.arison with experiment 
(see, e.g., (17-19]) it is seen that the qualitative behaviour is described but 
quantitatively the disagreement becomes stronger at smaller bins. This poses 
the problem of the proper account of higher order corrections. Possible flow 
of partons from small bin_s should be considered more precisely. The newly 
developed technique of the so-called non-global logarithms [20] can be helpful 
in this respect. 

2. High order coefficients. Fortunately, the coefficients a; and r; hap­
pened to be small enough (see the Table in [3]) so that the subsequent terms 
in the expansions can be trusted even at the rather large values of the ex­
pansion parameter 10 ,::;J 0.4 - 0.5 at present energies. This is not always the 
case. If the high order terms become larger than 1, the expansion can not be 
trusted. Thus the next problem is to find such characteristics in which it does 
not happen. Only these features can be reliably compared with experiment. 
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This criterium becomes crucial, e.g., for the slope r' of the ratio r. The 
2ancellation of two leading terms in the ratio r reveals itself in the proportion­
ality of the scale (energy) derivative r' to ,J. Therefore it can be calculated 
up to the terms 0(,8)- The leading term is very small (about 0.02 at the 
Z0-resonancer Asymptotically, all corrections vanish. However, at present 
energies of z0

, they are so large that calculations become unreliable. The 
second term in the brackets in (20) is larger than 1 since 2r2 /r1 ~ 4.9 and 

1 ~ 0.45 - 0.5. Even the third term is approximately about 0.4. The problem 
of convergence of the series at Z0-energies and below becomes crucial. 

Therefore, it is desirable to use at present energies such characteristics 
which are sensitive to these corrections and do not possess large coefficients in 
front of the expansion parameter. In particular, it has been shown in [11] that 
these coefficients are smaller in the ratio of derivatives (slopes) 

r{l) = (na)'. 
(nF)' 

This ratio should be slightly larger than r 

r(l) ~ r(l +Brn5) ~ r(l + 0.07,5). 

The same is true for the ratio of curvatures ( or second derivatives) 

(2) _ (na)" 
r - . 

(nF )" 

It is even cl~ser t? the asymptotics 

r< 2
) ~ r(l + 2Brn6) ~ r(l + 0.14,5). 

The QCD predictions for them 

r < r(l) < r< 2
) < 2.25 

have been confirmed in experiment. 

(24) 

(25) 

(26) 

(27) 

(28) 

· The present experimental accuracy does not allow, unfortunately, to mea­
sure these values more accurately. As one sees; in expressions for r(l), r<2) the 
coefficients in front of 1'6 are slightly decreased. compared with r but not in 
front of 10 . The last ones cancel in their ratios to r so that the second order 
terms are left. However, these ratios r(l) /r and r<2

) /r have not yet been accu­
rately measured. Further search for such characteristics is needed. 



180 I.N. Dremin 

3). Interpretation. Another question I'd like to raise concerns physical 
interpretation of the high order effects. First of all I mean the oscillations of 
cumulant moments as functions of their rank in QCD. They have not yet been. 
completely clarified. They were predicted [7, 21] as the effect of the high order, 
terms of the modified perturbative expansion. First experimental confirmation • 
was found in [22,23]. 

Usually exploited phenomenological distributions of the probability theory 
do not possess any oscillations. E.g., all cumulant moments of the Poisson 
distribution are identically zero. One interprets this as the absence of gen­
uine correlations irreducible to the lower-rank correlations. For the negative 
binomial distribution one easily gets 

Kq 2 
Hq = Fq = q(q + l) > 0. 

(29) . 

Since Fq are always positive according to their definition, this inequality implies . 
the positive values of Kq. · 

In the leading order approximation, the gluodynamics equation for the 
generating function 

[lnG(y)]" = 15(G(y) -1) 

transforms in the relation 

q2 Kq = Fq or 
1 

Hq = -. q2 

(30) 

(31) 

However already in the next-to-leading order Hq-moments become negative 
with a minimum at the rank qmin ~ 1;~

0 
+ 0.5 ~ 5 (7]. This minimum is 

rather stable. Nevertheless this is a purely preasymptotic feature. The min­
imum slowly moves to higher ranks with energy increase and disappears in 
asymptotics as is required according to the formula (31). At higher orders of 
the perturbative expansion, the oscillations of higher rank cumulant moments 
show up [21]. They have been confirmed in experiment. 

Both the role of conservation laws and the changing character of the genuine . 
correlations ( described by the cumulants) can be blamed as originating these 
oscillations. If the latter factor is important it would imply that attraction 
( clustering) is replaced by repulsion ( and vice versa) in particle systems with 
different number of particles. It would be exciting to find other examples of 
such a behaviour in hadronic systems. 

We are also interested to get from experiment the data about the energy . 
behaviour of the ratios Hq or, better, of the asymptotically normalized ratios 
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Dq = q2 Hq which should tend to 1 in asymptotics independently of q. It would 
ask for high precision dat~ at different ~nergies. · 

4). Generalization. Finally, there exists the problem of possible gen­
eralization of the equations for the generating functions. As such, the Eqs 
(5), (6) have only been proved (see, e.g., [6]) up to the NLO-approximation. 
Iri principle, their high order treatment is unjustifued. Nevertheless, one can 
assume that these equations have the status of the kinetic equations of QCD 
and studied in this approach. 

From one side, we. understand that even if treated as· kinetic equations 
the~e equations are limited by our ignorance of the four-gluon interaction and 

. non-perturbative effects, by the· simplified treatment ~f conservation laws etc. 
Actually, the energy conservation is only approximately accounted by the In x 
and ln(l-x) terms in the equations. In the perturbative expansion we consider 
the Taylor expansions of the ge~e~ating functions. Thus we approximate fur­
ther the energy conservation. Namely this reveals itself in factorial moments 
behaviour for small bins and in the oscillations of cumulant moments. In the 
computer solutions [12, 13) the kinematic restrictions are precisely considered 
and the results also show better precision. Thus, probably the inaccuracies of 
the analytic approach are connected just with the improper treatment of the 
kinematic boundaries. 

. Some phenomenological approaches to avoid these limitations were at~ 
tempted from the very beginning [24-26). In [24) it was proposed to treat 

• hadronization of partons at the final stage of jet evolution in analogy with the 
ionization in electromagnetic cascades where it results in their saturation and 
in the finite length of the shower. This leads to some modified equations if 

· the analogy between ionization losses in QED and deconfinement in QCD is 
imposed. Three different stages ~f the cascade were con~idered in the· modified 

. kinetic equations proposed in [25, 26). No quantitative results were, however, 
· obtained. 

The more successful modification of above equations was proposed [27) in 
the framework of the ~:lipole approach to QCD with more accurate kinematic 

. bounds accounting for the transverse momenta as ~ell. It has been shown 
· that the ratio r can be obtained in good agreement with experimental data. 

Nevertheless, further study [28) of higher rank moments of the multiplicity 
distribution predicted by the modified equations has shown their extremely 
high sensitivity to higher orders of the perturbative expansion. The results 
become inconclusive. 
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Thus no successful generalization is at work nowadays. Rather, the general. 
theoretical trend has shifted to the direct calculation of non-perturbative ef­
fects in some jet characteristics (see, e.g., [29,30]) and to understanding effects 
described by the non-global logarithms [20]. 

From another side, the success of numerical solutions of the existing equa­
tions (12, 13] raises the question if the generalization will give any other noti­
cable contribution. Probably, our failure to describe more precisely the ratio r 
could be just due some defects of the purely perturbative expansion at available 
energies. More rigorous treatment of the numerical solutions of the equations 
should be done. Moreover, it was claimed recently [31] that the renormalization 
group improvement of the perturbative results gives rise to good description 
of experimental data. 

5). The shortcomings of the analytic· approach. Apart from the 
non-perturbative corrections there are terms which are not directly taken into 
account in the analytic approach. The high order terms considered above 
correspond to corrections only due to more accurate treatment of the energy 
conservation and of the two-loop expression for the coupling strength ( the term 
with /31 in (8), (18) considered). It is still impossible to consider in a proper 
way the transverse momenta. No high order terms have been added to the 
kernels (10), (11), (12). The four-gluon vertex has been also ignored. All these 
shortcomings provide the problems for further studies. 

6). The asymptotical freedom of QCD. In principle, the asymptotical 
value of the QCD coupling strength at infinite momentum transfer could be 
not equal to zero as it follows from Eq. (8) but a finite value. Fortunately, 
the upper bound on it is low enough for jet calculations at present energies 
to be safe enough when Uf?ing the expression (8). Some problems can arise in 
jet calculus only at unachivable superhigh energies (see [32]). However, the 
typical scales of possible violation of the asymptotic freedom are at the TeV 
energy region available at the next generation of electron colliders. 

In conclusion, I'd say that the practical accuracy of the pQCD calculations 
is high enough. This is somewhat surprising in view of the rather large value 
of the expansion parameter at present energies. They can serve as a good 
estimate of the background in searches for new physics effects. However some 
principal questions concerning the calculation of several properties of quark­
gluon jets and the validity of QCD equatioiis for the generating functions at 
higher orders has not yet been resolved. 
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Abstract - The effective string action of the color-electric flux tube in 
the dual Ginzburg-Landau (DGL) theory is studied by performing a path­
integral analysis and taking into account the finite thickness of the flux 
tube. A modified Yukawa interaction appears as a boundary contribution 
and is reduced into the ordinary Yukawa interaction in the London Limit. 

1 Introduction 

185 

The construction of a realistic low-energy Lagrangian for hadrons based 
on quantum chromodynamics (QCD) clearly requires a deeper understanding 
of the mechanism of confinement. A very useful concept for an analytical 
description of this phenomenon is the dynamical scheme of a dual supercon­
ductor proposed more than twenty years ago by 't Hooft and Mandelstam [1,2]. 
This approach emphasizes, in particular, the role of magnetic monopoles for 
confine~ent. The condensation of monopoles squeezes the chromoelectric flux 
into (open) Abrikosov-Nielsen-Olesen (ANO) type vortices which then confine 
the quark and anti quark· sitting at their· ends. Recent studies in lattice QCD 
in the maximally Abelian gauge indeed suggest remarkable properties of the 
QCD vacuum, such as Abelian dominance and monopole condensation. This 
confirms the dual superconductor picture, which is suitably described by the 
dual Ginzburg-Landau (DGL) theory [3,4]. The DGL theory is here obtained 
by Abelian projection which is a crucial step in order to find the relevant IR 
degrees of freedom of QCD. · 

In the present talk we review recent analytical studies of the confinement 
mechanism leading to a path-integral derivation of effective string actions from 
the U(l) and U(l)xU(l) DGL theory [5,6]. As has been shown earlier (see 
e.g. [7-10] and references therein), the corresponding path-integral approach 
is essentially simplified in the so-called London limit of large monopole self­
coupling A ➔ oo (large monopole mass mx ➔ oo ), where the modulus of 
the magnetic monopole field is frozen to its v.e.v., and ANO vortices become 
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infinitely thin (core radius p = (mx)-1 ➔ 0). In this limit the DGL theory can 
be suitably reformulated as a theory of a massive antisymmetric Kalb-Ramond 
(KR) field interacting with surface elements of the world-sheet swept out by 
the ANO vortex (Dirac string). By performing finally a derivative expansion of 
the resulting effective action, it was possible to derive the Nambu-Goto (NG) 
action including a correction (rigidity) term, and to estimate field strength 
correlators of the DGL theory. Obviously, the London limit picture is only 
appropriate for large transverse distances from the vortex (string), where the· 
thickness of the core and the corresponding contribution to the field energy 
per unit length (string tension) are neglected. Moreover, since the monopole 
field in this approximation is nowhere vanishing, one gets a massive dual gluon 
leading to a Yukawa interaction term in addition to the confining potential. 
Clearly, it is a challenge to go beyond the London limit in the sense of taking 
into account the finite thickness of vortices and the vanishing of the monopole 
field inside the vortex core. One might then naturally ask, whether one gets 
besides of the confining potential a Coulomb potential ( as used in quarkonium 
spectroscopy) instead of the Yukawa one, or possibly something between them. 

The main goal of this talk is to show how to extend the usual path-integral 
approach as much as possible beyond the London limit, paying special atten­
tion to the treatment of boundary terms related to the nonconfining (shorter 
range) part of the potential. 

Finally, in the second part of the talk, we are going to generalize the discus­
sion of the U(l) model by investigating the U(l)xU(l) DGL theory beyond 
the London limit. Note that the Wey! symmetric formulation reduces the 
U ( 1) x U ( 1) DG L theory here into the sum of three types of the U ( 1) theory, 
which was quite useful to simplify the treatment of the U(l)xU(l) case and 
the investigation of the flux-tube solution [11, 12]. 

2 U(l) DGL theory 
In this section, we shall review the derivation of the effective string action 

of the U ( 1) DGL theory [5] which, in distinction to earlier work [7-10], does not 
employ the London limit. We first briefly explain how one obtains the flux-tube 
solution and then discuss how one arrives at its effective action with taking into 
account the finite thickness by performing the path integral transformation. 

2.1 Classical flux-tube solution 
The U(l) DGL action in Euclidean space-time has the form 

S = ~ (F)z + (d¢)2 + ((B + d17)¢)2 + >.(¢2 - vz)2, (1) 
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Table 1: Ingredients of the U(l) DGL theory in the differential-form notation. 
dual gauge field 1-form B = Bµ,dxµ, 
monopole field 0-form X = </> exp( i17) 
electric Dirac string 2-form ~ = ½~µ,vdxµ, I\ dx,., 
electric current 1-form j = Jµ,dxµ, 

Table 2: Definitions in differential forms in JR 4
• 

exterior derivative d r-form f-t ( r + 1 )-form 
Hodge star * r-form f-t ( 4 - r )-form 

** multiply a factor ( - 1 y for r-form 
codifferential 
Laplacian 
Inner product 

8 = - * d* r-form f-t (r -1)-form 
~ = d8 + 8d r-form f-t r-form 
( Wr , T/r) = J Wr I\ * T/r 

where the dual field strength F is expressed as 

F = dB - 21r * ~- (2) 

We summarize the ingredients of this theory in Table 1 and useful differential 
form notations in Table 2. In the dual formulation external quark sources, 
corresponding to the q-q system, have been introduced as an open electric 
Dirac string ~, the boundary of which describes the trajectories of _the quarks. 
In fact, the presence of the electric charge is seen from the violation of the 
dual Bianchi identity as 

dF = -21rd * ~ = -21r * 8~ = 21r * j #- 0, (3) 

where the relation 8~ = -j is used. Clearly, if there is no external electric 
current, one must set ~ = 0. The inverse of the dual gauge coupling is denoted 
by /39 = 1/ g2, the strength of the self-interaction of the monopole field by >., 
and the monopole condensate by v. These couplings are related to the mass of 
the dual gauge boson and the monopole mass as mB = ~v = "2,gv and 
mx = 2\/"Xv. The ratio of these masses is the Ginzburg-Landau (GL) para­
meter K = mx/ mB, which determines the type of the dual superconductivity. 
The· value K < 1 ( K > 1) describes the type-I ( type-II) vacuum. 
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-q 

+ I 
q 

Figure 1: The composed structure of the electric field inside a flux tube, which 
is represented by dBreg (left) + 21rti.-115* j (middle) = F (right) 

To find the flux-tube solution associated with I;, it is convenient to decom­
pose the dual gauge field as 

B =. sreg + ssing, 

where the singular part has the explicit form 

Bsing = 21rti_-lt5 * I;. 

(4) 

(5) 

By using the relation dti.- 10 + oti.-1d = 1 and the equation oI; = -j, we find 

dBsing = 27r *I;+ 21rtJ.-lJ * j = 21r(*I; + *C), (6) 

where *C = ti_- 10 * j is the 2-form field. The dual field strength is then written 
as 

F = dBreg + 21r * C. (7) 

The physical meaning of *C will be clear if one computes its contribution to 
the action. Using o * C = 0, one obtains (F)2 = (dBreg)2 + 41r2(*C)2, where 
the second term is further evaluated as ( *C)2 = (j, ti. - 1 j), which is nothing 
but the Coulombic interaction of electric currents. This means that *C is the 
Coulomb electric field originating from the electric quark charges 1• 

The field equations are given by 

/3 8 (8 sreg _ 8 sreg) = 2(Breg + ssing),1.2 = k g µ µ ,, ,, µ ,, ,, 'f' _,,, 

8µ8µ¢; + (B:eg + s:ing)2¢; = 2>.¢;(¢;2 - v2), 

(8) 

(9) 
1Note that the equality of Fin Eqs. (2), (7) does not at all mean that the Dirac string 

world sheet is simply replaced by the Coulombic electric field of the quark charges, since both 
objects are combined with different fields B and Breg having different boundary conditions. 
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where the phase ry of the monopole field is absorbed into Breg_ The boundary 
conditions of Breg and ¢ are determined so as to make the energy of the 
system finite: just on ~, Breg = 0 and ¢ = 0, whereas at large distances from 
the string, Breg = -B•ing and </> = v. The r.h.s. of Eq. (8) is identified as the 
monopole supercurrent, which circulates around the azimuthal direction of the 
q-ij axis., It then leads to the solenoidal electric field ({)I\ Breg)µv, which plays 
an important role to cancel the Coulombic field *Cµv at distant place from the 
string. The total electric field thus forms a flux-tube structure (see Fig. 1 ). 
Clearly, the width of the flux tube depends on the strength of (a I\ Breg)µv 

and hence on the profile function of </> near the string. These two widths 
are characterized by the inverse of masses of the dual gauge boson m:i:/ and 
the monopole m;1 , respectively. The standard London limit approximation, 
considered in [7, 9, 10] corresponds to taking¢= v everywhere, which will be 
realized when A ➔ oo (mx ➔ oo). 

2.2 Path integration towards the effective string action 
Let us next perform the path integration of fields with taking into account 

the finite thickness (width) of the flux tube. The starting partition function is 
given by 

Z(~) = f 'DB'Dx'Dx*exp[-S(B,x,x*,~)]. (10) 

The gauge fixing term and corresponding Faddeev-Popov determinant is omit­
ted here for simplicity. 

We start from the linearization of the square term ( ( Breg + B•ing + dry)</> )2 

by means of a 1-form auxiliary field E as 

exp [- ( ( Breg + Bsing + dryreg)q>)2] 

= r4 I 'DE exp [-{ (E, 4~2 E) - i(E, Breg + Bsing + dryreg)}] . (11) 

Then, based on the relation (E, dry) = ( oE, ry), we can integrate over the regular 
part of the phase ry, which leads to the delta functional o[oE] in the integration 
measure. The constraint on E can be resolved by introducing the 2-form KR 
field h as 

o[oEJ = f VM[oh - fh]o[E - o * h], (12) 

where the first delta functional is to avoid the overcounting in the integration 
over h, which is due to the hyper-gauge invariance h 1-+ h + dA with 1-form 
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field A. Now, we can immediately perform the integration over the auxiliary 
field E and then Breg: 

Z(I:) = I <r3Dq/Dho[oh - !h] exp [-{ 21r2/3g(j, !),_-l j) +(d¢>)2+ (dh, 4:2 dh) 

+ 2~g (h )2 
- 2~g (oh,/),, - 1oh )- 21ri(h, I:) - 21ri( oh,/),, - 1j)+>.( ¢>2 

- v2
)
2

} l (13) 

For further evaluation, we divide the action into three parts as 

5 = 5(1) + 5(2) + 5(3), (14) 

where each action is defined by 

5(1)=21r2/J9 (j,!).- 1j), (15) 

5(2)=(d¢>)2+(dh,i{:2 -:2 }dh)+>.(¢>2 -v2 )2, (16) 

5(3
)= ~(dh)2 +-f3

1 
(h) 2

- -/3
1 

(oh, !).- 1oh)-21ri(h, I:)-21ri(oh, /),,-)').(17) 
4v 2 9 2 9 . 

The first term 5(1) leads to the pure Coulomb potential (pure boundary con­
tribution) for the static q-ij system. The second terin 5(2) is defined so as to 
give a zero contribution to the effective string action in the case that ¢> = v, 
which usually corresponds to taking the London limit. In other words, this 
term leads for finite >. to a nonvanishing contribution due to the finite thickness 
of the the flux tube, inside which the monopole field smoothly becomes zero, 
q> = 0. The third term 5(3

) is mainly responsible for the field contributions 
outside the core, near the surface of the flux tube, which remains even in the 
case that the monopole field has a constant value, ¢> = v. 

In order to discuss the effective string action let us consider here the case 
that mB < mx, but mx is finite. For the rough space-time structure, whose 
mesh size is larger than m;1 , the London limit picture based on a dominating 

expression 5(3
) _ 1 is valid, where the subscript means that one has to integrate 

>mx 

over transverse distances from the string, p > m; 1 , with the monopole mass 
mx chosen as an effective cut-off Aetr• Clearly, in this case, we cannot see the 
inside structure of the flux tube. On the other hand, to see the finer structure 
of the flux tube, variations of the monopole field in 5(2) should be taken into 
account. The effective action of the vortex "core" contribution is described 
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by 5(2) + 5(3
) _ 1 , and its leading term contains the NG action with the string 

<mx 
tension acore and a current term 5core(j), 

(18) 

where (a ( a = 1, 2) parametrize the string world sheet described by the co­
ordinate :iµ(O, and g(O is the determinant of the induced metric, 9ab(0 = 
8~~~0 8~ke). The string tension a core is controlled by the solution of field equa­
tions derived from the action in the core region. Note that 5core(j) results only 
from 5(3

) _, 2 • 
<mx 

Let us evaluate the "surface" contribution described by 5(3
) _,. To do this, 

>mx 
we first integrate out the KR field, and then extract the surface contribution 
from it by taking into account a suitable regularization in transverse variables. 

, Since the action 5(3) does not depend on the monopole modulus </;, and it 
is gaussian with respect to h, we can easily integrate out h. The resulting 
effective action from the surface contribution is 

where we have defined the propagator of the massive KR field D = (~+m1)-1
. 

Note that "l>m;;-•" means that a corresponding effective cutoff (mesh size) 
should be taken into account. One finds that the first term represents the 
interaction between world sheet elements of the electric Dirac string via the 
propagator of the massive KR field. . 

By the Taylor (derivative) expansion of the propagator of the KR field, 
with respect to the Laplacian on the string world sheet 

we obtain from the first term of Eq. (19) the explicit form 

47r
2
v

2 (~,D2nl>mx' = asurf I d2(y'g({) 

(20) 

+asurf J d2
( 'J9Wgab(O (8aiµv(O) (8btµv(O) + O(~D- (21) 

2If one approximately considers a vortex core with radius mx 1 in which <p = 0 and dh = 0 

everywhere as on the string world sheet, one finds ScoreU) = 0, since 5(3
) _, = 0. 

<mx 
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The first term of the r.h.s. represents the NG action with the string tension · 

2 + 2 
2 mB mx 2 ( 2) O"surf = 1TV In 2 = 1TV In 1 + K, ' 

mB 
(22) 

and the second term is the so-called rigidity term with the negative coefficient 

7TV
2 

( 1 1 ) 1r{39 ,;,
2 

O'.surf = 2 m~ + m1 - m1 = -41 + ,,,2 ( < 0), (23) 

where,;, = mx/mB is the GL parameter. Note that the rigidity term appears 
as a first order contribution in the derivative expansion with the Laplacian f:.e. 

The second term of Eq. (19), which is induced from the boundary of the 
string world sheet, is evaluated in a similar "effective regularization" scheme. 
Finally, by combining it with the pure Coulomb term 5(1), we may write the 
effective string action 

Seff(I;) = S(j) +(a-core+ O"surf) / d2fy'g({) 

+asurf / d2f y'g({)gab(f) (8aiµv(e)) (8biµv(f)) + O(f:.D, (24) 

where the boundary ( electric current) contribution is given by 

S(j) = Score(j) + 2~e (j, .0.-
1j) + 2~e (j, { D - ,0.-I} j) l>mxl • (25) 

Here, f3e = 4/e2 is introduced instead of {39 through the Dirac quantization 
condition eg = 41r. Clearly, only in the London limit mx -+ oo, Score(j) 
vanishes and the Coulomb contribution is completely cancelled, so that S(j) = 
21. (j, Dj). This means that the non-confining part of the potential reproduces• 
the usual Yukawa one ( cf. [9, 10]). The complete potential includes, of course, 
the confining potential Vconf = (a-core + O"surf )r arising from the NG action in 
Eq. (24). 

3 U(l)xU(l) DGL theory 
In this section, we extend the discussion of the U ( 1) theory of the previous 

section to the U(l)xU(l) DGL theory. However, this requires no further tech­
niques of the path integration if one realizes the Weyl permutation symmetry 
of the U(l)xU(l) DGL theory [11, 12]. 
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3.3 Weyl symmetric formulation 
The U(l)xU(l) DGL action can be written as the sum of three types of 

the U(l) DGL theory as 

SoGL = t, [ ~ F/ + (d</;;) 2 + ((B; + dry;)</;;) 2 + A(lxl - v
2 )2], (26) 

where the ingredients of this action are the same as in the U ( 1) DG L theory 
except the additional labels of the color, indicated by i = 1, 2, 3. The dual 
field.strength is expressed as 

(27) 

with 
3 

-_,(m) _ " -_,(e) 
*L.,i = ~ ffiij * L.,j ' (28) 

j=l 

Here, I;lm) ( i = 1, 2, 3) denotes the ''color-magnetic" (Weyl symmetri~) repre­

sentation of the open color-electric Dirac string I;)e) (j = 1, 2, 3). The factor 
m;; in front of the color-electric Dirac string appears as a result of the extended 

Dirac quantization condition between the color-magnetic charges Qf m) = gt; 

(i = 1, 2, 3) and color-electric charges Qt> = ewi (j = 1, 2, 3): 

(eg = 41r), (29) 

where t; and Wj are the root and weight vectors of the SU(3) Lie algebra, 
respectively. Explicitly, these vectors are defined as ?1 = (-1/2, -/3/2), f2 = 
(-1/2, --/3/2), l:3 = (1, 0) and w1 = (1/2, -/3/6), w2 = (-1/2, -/3/6), w3 = 
(0,-1/vf:3). The labels j = 1,2,3 describe, for instance, red (R), blue (B), 
and green ( G) color-electric charges, respectively. The matrix 

3 

ffiij = 2{; · Wj = L Cijk 

k=l 

(30) 

takes the integer values ±1 or 0. Based on these definitions of charges, the R-R 
system is defined by I;}~1 = I; #- 0, I;;~2 = I;}~3 = 0, which is also expressed 

,;,(m) 0 -_,(m) "' d -_,(m) "' · h 1 · · as LJi=l = , LJ;=2 = -L.,, an LJ;=3 = LJ 1n t e co or-magnetic representation. 
The color-electric Dirac string in the color-magnetic representation satisfies 
the relation I:7=1 I;lm) = ff. 
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3.4 The effective string action 
The effective string action Seff(~~m)), written in terms of the color-magnetic 

representation of the color-electric Dirac string, will be obtained after the path 
integration over both the dual gauge fields and the monopole fields: · 

3 3 

Z(~im)) = J II 'DB;'.Dx;'Dx7o[I: oB;] exp[-SoaL(B;, Xi, x:, ~~m))). (31) 
i=l i=l 

It is important to notice that the Weyl symmetric formulation requires to take 
into account the (Lorentz invariant) delta function constraint among the dual 
gauge fields. As a result, the dual gauge symmetry of the DGL theory is kept 
in U(JJxU(l). In fact, although the DGL action (26) itself has the [U(1))3 

dual gauge symmetry 

Xi 1--t Xiexp(ia;), B; 1--t B; - da; (i = 1,2,3), (32) 

this is finally reduced to U(l)xU(l) by the relation LT=i da; = 0, which is 
implied by the constraint used. 

The evaluation of the constraint is not difficult, since it is written as 

3 3 

o[I: oB;] = J 'Ds exp[i L( oB;, s )), 
i=l i=l 

(33) 

wheres is a 1-form auxiliary field. The same path integration techniques as in 
the U ( 1) case, and the integration over s, finally lead to the similar expressions 
as in Eqs. (15), (16), and (17). The corresponding expressions can be found 
in-[6). 

We mention here only the difference between the U(l) and U(l)xU(l) 
cases. The explicit form of the effective string action depends on the quark 
system, that is to say, the combination of the color-electric charges. In the· 
SU(3) case, one can consider not only the mesonic string, described by R-R, B­
B and G-G systems, but also the baryonic string, as given by the combination 
of three color-electric charges R-B-G (see, Fig. 2). Remarkably, since the form 
of the action is now the Weyl symmetric one, which means invariance under the 
exchange of the color labels i, one can immediately conclude that all mesonic 
strings do not depend on the color. The baryonic system is constructed by · 
connecting the three-colored mesonic strings, R-R, B-B, and G-G, at a certain · 
junction, forming a Y-shaped structure [6,8). This is possible because the sum 
of all three color charges at the same point turns out to be zero. 
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Figure 2: The structure of the color-electric Dirac string in the color-magnetic 
representation for the mesonic (left) and the baryonic (right) quark systems. 

It is also interesting to note that we can refer to the interaction among 
,tring world sheets of various colors without solving their dynamics. Since the 
mm of two types of color charges reduces to another type of anti-color charge, 
'or instance as R+ B ➔ G, one finds that if two strings composed of R-f{ and 
B-B interact with each other, this will be equivalent to a G-G string. Then, 
.t is easy to imagine that the force between them must be attractive. 

i Summary and conclusions 

We have reviewed the effective string action of the color-electric flux tube 
n the dual Ginzburg-Landau (DGL) theory using the path-integral analysis in 
:lifferential forms, both in U(l) and in U(l) x U(l) cases. Important findings 
ire summarized as follows. 

(i) The effect of the finite thickness of the flux tube leads to.a modified 
iukawa interaction as the boundary contribution of the open string, which 
;urns over to the ordinary Yukawa one only in the London limit. 

(ii) The derivative expansion of the Kalb-Ramond propagator with respect 
;o the covariant Laplacian (20) leads to the Nambu-Goto action and the rigidity 
,erm as the leading and next-to-leading parts of the action. Such an expansion 
s clearly justified when the fluctuation of the string world sheet can be treated 
>erturbatively. If not, one has to handle the expression of the first term in 
~q. (19) directly. 

In the U(l)xU(l) case, thanks to the Weyl symmetric formulation, where 
he symmetry is naturally extended to [U(1)]3, we have found that the treat­
nent of the U(l)xU(l) DGL theory becomes rather simple. The resulting 
orm is the sum of three types of the U(l) DGL theory, which allows us to 
1se the same technique to derive almost the same effective string action. So 
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the interpretation of the action was straightforward. The difference is only the 
number of color-electric charges, which then allows us to describe not only the 
mesonic system but also the baryonic system. 

Note finally that the extension to [U(l)JN-1, corresponding to the SU(N) 
gauge theory in Abelian projection, is also straightforward. 
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Abstract - The status of our understanding of the mechanisms of color 
confinement is reviewed, in particular the results of numerical simulations 
on the lattice. 
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Quarks and gluons are visible at short distances. They have never been 
bserved as free particles. Search for quarks started in 1963, when first Gell-
1ann introduced them as fundamental constituents of hadrons: the signature 
1 their fractional charge q = ±1/3, ±2/3. 

The upper limit to the ratio of quark abundance to proton abundance is 
q/np < 10-27 (?], to be compared with the expectation in the Standard Cos-
10logical Model ng/np = 10-12 (?). The experimental limit on the production 
:oss section in nucleon collisions is (?) a < 10-40cm2 to be compared with the 
{pected value a ~ 10-25 cm2 in the absence of confinement. The only natural 
cplanation of these small numbers is that these ratios are exacly zero, or that 
mfinement is an absolute property due to some symmetry. 

A transition, however, can occur at high temperature to a phase in which 
1arks and gluons are deconfined and form a quark-gluon plasma. (?). 

Big experiments at heavy ions colliders aim to detect such a phase tran­
tion, even if no clear signature for it is known. [?} A number of theoretical 
eas exist on the mechanism of confinement, which we shall briefly review 
'.low. 

Lattice is a unique tool to investigate the existence of the deconfining phase 
:1.nsition, to check the theoretical ideas and possibly to give indications on 
mt to look at in experiments. 

Lattice investigations 

The partition function of a field theory at temperature T is equal to the 
clidean Feynman integral extending in time from O to 1/T, with periodic 
undary conditions in time for bosons, antiperiodic for fermions. 

Z = Trexp(-H/T) = j[d</>J exp [- foi/T dt J d3xL(x,t)] (1) 
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Finite temperature QCD is simulated on a lattice N'; x N1 with N. » Nt. 
The temperature T is given by 

1 
T = N1a(f3) (2) 

where a is the lattice spacing in physical units , which by renormalization 
group arguments in the weak coupling regime is given by 

1 
a(/3) = -;:._exp(-{3/bo) (3) 

with {3 = 2N/g2; -bo the lowest order coefficient of the beta function, which 
is negative because of asymptotic freedom. It follows then from eq.(2) that 
the strong coupling region corresponds to low temperatures, weak coupling to 
high temperatures. 

If a deconfining phase transition exists at some temperature, how can it be 
detected, or what is the criterion for confinement? 

For pure gauge theories a reasonable answer exists, which consists in look­
ing at the static potential acting between a quark and an antiquark at large 
distances: if it is positive and diverging there is confinement by definition. In 
principle this criterion does not insure that no colored particles exist as an 
asymptotic state, but certainly means that heavy quarks are confined. The 
static potential is related to the correlator D( x) of Polyakov lines 

D(x) = (L(x)L(O)) 

as follows 
V(x) = -TlnD(x) 

It can be shown by use of the cluster property that at large distances 

D(x) ➔'.:::::'. C exp (--Ta lxl) + 1(£)12 

lxl➔oo 

A temperature Tc is found in numerical simulations such that 

for T < Tc (L) = 0 and hence V(r) =a• r (confinement) 

for T > Tc ( L) -:f- 0, V ( r) ~ con st ( deconfinement) 

(4) 

(5) 

(6) 
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both for SU(2) and for SU(3) pure gauge theories. (L) is an order parameter 
for confinement, and Z3 is the corresponding symmetry. 

Of course no real phase transition can take place on a finite lattice [?) , 
so that the transition from 0 to 1 of (L) is smooth on a finite lattice , and 
becomes steeper and steeper as the size goes large. The steepness is measured 
by the susceptibility XL, 

(7) 

1 which diverges with some critical index I at the critical point 

(8) 

Other relevant critical indices are the index v of the correlation length t of the 
order parameter 

t CX T-11 

and the index a of the specific heat 

(9) 

Q1"{ and v identify the universality class and/or the order of the phase transi­
tion. A weak first order transition is a limiting case a= 1 , 1 =1 and v= 1/d 
(d the number of spacial dimensions i.e. 3). 

The critical indices are determined from the dependence of susceptibilities 
on the spacial size of the system, by use of a technique known a-s finite size 
scaling[?). The result is that for quenched SU(2) the transition is second order 
and belongs to the universality class of the 3d ising model [?}, for SU(3) it is 
weak lrst order [?) . 

.In the presence of dynamical quarks Z3 is not a symmetry and therefore the 
Polyakov line cannot be an order parameter.Moreover the string breaks due 
to the instability for production of dynamical quark pairs and the potential at 
large distances is not growing with the distance, even if there is confinement. 
Another symmetry exists at zero quark masses, the chiral symmetry.At T=0 
it is spontaneously broken , the pseudoscalar bosons being the Goldstone par­
ticles , but it is restored at T ~ 170 Mev. The corresponding order parameter 
is (¢if;). It is not clear what exacly chiral symmetry has to do with confine­
ment: in any case it is explicitely broken by quark masses , and therefore it 
cannot be the symmetry responsible for confinement discussed in sect 1. For 
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[ scale=0.4]figl.eps 

Figure 1: The phase diagram of NJ= 2 QCD. 

a theory with N1 = 2, mu = md = m, which is a model approximation of real~ 
ity, the situation is schematically represented in fig L The critical line Tc(m) 
is defined by the maxima of the susceptibilities XL, X,f,,t,, xc., which coincide 
within errors [?, ?], and as an empirical definition the region below the line 
is assumed to be confined, the region above it to be deconfined. Theoretical 
ideas are needed to understand the symmetry pattern of the system. 

As for the chiral transition a renormalization group analysis and the as­
sumption that that the pions are the relevant degrees of freedom gives the 
following predictions [?]. If the U(l) axial symmetry is restored below the 
chiral transition, the transition is first order and such is the critical line at 
m -=f. 0. If instead the anomaly persists below Tc the transition is second order 
and the critical line at m -=f. 0 is a crossover. 

3 Theoretical ideas 

A number of theoretical models of deconfinement exist in the literature. 
There is a Gribov model, which is a clever picture of the chiral phase 

transition [?]. It does not apply, however, to quenched theory. In the spirit of 
the Ne --+ oo approach the mechanism of confinement should be the same for 
quenched and unquenched. 

Confinement could be produced by the condensation of vortices [?] The 
model corresponds to a well defined symmetry in 2+ 1 dimensions and quenched 
theory , but in any case the Z3 symmetry does not survive the introduction of 
dynamical quarks. 

A most appealing idea is dual superconductivity of the vacuum [?]: chro­
moelectric charges are confined by dual Meissner effect, which sqeezes the chro­
moelectric field acting between colored particles into Abrikosov flux tubes, in 
the same way as magnetic charges are confined in ordinary superconductors. 
A number of pioneering papers on this mechanism were based on the defini­
tion and the counting of monopoles. [?] We shall instead concentrate on the 
symmetry patterns involved. Dual superconductivity means that the vacuum 
is a Bogolubov-Valatin superposition of states with different monopole charge 
(monopole condensation). 

In order to define monopoles a magnetic U(l) gauge symmetry must be 
identified in QCD , which has to be a color singlet if monopoles condense 
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without breaking the color symmetry. 
The procedure to identify such magnetic U(l) is known as Abelian Projec­

tion [?]. We shall present the abelian projection in a form which will prove 
useful for what follows [?]. Let Gµ,, = TiG~,, be the gauge field strength 
with Ti the gauge group generators in the fundamental representation, and 
<I> = Ti<J>i any operator in the adjoint representation. Define 

(11) 

Fµ,, is gauge invariant and color singlet, and such are separately the two terms 
in its definition. 

Theorem [?]. A necessary and sufficient condition for the can.cellation of 
bilinear terms AµA,, between the two terms in the right hand side of eq.(11) 
is that 

<I>= <I>a = U(x)<I>diagut(x) 

with U(x) an arbitrary gauge transformation and 

(12) 

(13) 

For any choice of the form eq(12) Fµ,, obeys Bianchi identities and the 
dentity holds 

Fµv is gauge invariant and can be computed in the gauge in which <I>a is 
liagonal. In that gauge 

F;,, = 8µTr(<I>aA,,) - 8,,Tr(<I>a Aµ) (15) 

1as an abelian form. By developing A~iag in terms of roots Aµ = cxi A~ 

. i i+I 
a'= diag(0,0,0 ... l,-l,O .. . 0) (16) 

vith 
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F;., = 8µA~ - 811 A: (17) 

The gauge transformation U ( x) which brings to the unitary gauge is called 
abelian projection: 

A magnetic current.can be defined as 

1: = 8µF;; (18) 

This current is identically zero due to Bianchi identities, but can be non 
zero in compact formulations like lattice regularization , in which Dirac strings 
are invisible. In any case 1; is identically conserved 

8µ1; = 0 (19) 

and defines a magnetic U(l) conserved charge. This magnetic U(l) symme­
try can either be Higgs broken, and then the system is a magnetic ( dual) 
superconductor, or it can be realized a la Wigner,and then magnetic charge 
is superselected. For any choice of the field <I>a in eq (12 ) a magnetic U(l) 
symmetry is defined. · 

To detect dual superconductivity the vev of a magnetically charged op­
erator can be used as an order p~rameter. Such an operator has been con­
structed [?],and is magnetically charged and U(l) gauge invariant [?] . The 
continuum version of the construction goes as follows. Define 

µa(x, t) = ·i I d3 yTr(,t,0 E(y,t))bi(X-Y) (20) 

where <I>a is defined by eq(12) and E(x, t) is the chromoelectric field operator 
E; = G0; and 

-ijbj_ = o - - 21r ,;: . . 
, 'v I\ bi= - 3 + Dirac strmg 

g r 
(21) 

µa is gauge invariant by construction if <I>a transforms in the adjoint repre­
sentation. In the abelian projected gauge, where <I>a = <I>diag it· assumes the 
form 

µa(x,t) =exp{i f d3yE1(if,t)bi(x-if)} (22) 

where E'l_ is the component of the electric field along the residual U(l) 
direction as defined by eq.(16),(17), and only the transverse part survives in 
the convolution with b1. . In any quantization procedure E'l_ is the conjugate 
momentum to A'.i. so that µa is nothing but the translation operator of A'.i. and 

µa(x, t)IA'.i.(if, t)} = IA~(y, t) + bj_(x - y)) (23) 
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ua creates a magnetic monopole. 
In the confined phase , in which monopoles condense and the ground state 

is not an eigenstate of the magnetic charge (µa) -:/= 0 can signal dual supercon­
:luctivity. In the deconfined phase (11a) = 0 All this refers to a given choice of 
:he abelian projection, i.e. of the gauge transfomation U(x) defining F;,, . 

To explore [?) [?) how physics depends on the choice of the abelian projec­
;ion let us go back to eq (20). By use of the cyclic invariance of the trace µa 
:an be rewritten 

(24) 

n computing the correlation functions of µa 's a change of variables can be 
>erformed in the Feynman integral corresponding to a gauge transformation 
;enerated by U(x). If U(x) is independent of the field configuration the ja­
obian of the transformation is 1 , the operator µaassumes to all effects the 
orm eq.(24) so that the correlators , and in particular the one point func­
ion (µa) are independent of U ( x). If U ( x) depends on the field configuration 
as happens e.g. for the max abelian gauge or for any gauge in which a 

pecific field dependent operator is diagonalized, then the jacobian can be dif­
~rent from 1 and the correlators depend on the abelian projection. However, 
'the number density of monopoles is finite ,the gauge transformation which 
onnects two abelian projections is continuous everywhere except in a finite 
umber of points and preserves topology: the operator µa defined by eq(22) 
rill then create a monopole in all abelian projections. If (µa) -:/= 0 it signals 
ual superconductivity in all abelian projections. 

An extensive investigation of the density of monopoles in different abelian 
rojections has been performed, and indeed the number density of monopoles 
·, finite. Fig 2 illustrates the method , and refers specifically to the abelian 
rojection in which the Polyakov line operator is diagonal. The eigenvalues of 
1at (unitary) operator have the form 

i = 1,2,3 (25) 

:id in defining the abelian projection are ordered in decreasing order of <p;. 
monopole singularity in a point x implies that two eigenvalues are equal , 

~ ¢1 and ¢2 • Fig 2 shows the distribution of the difference of the first two 
genvalues on the lattice sites of 1000 field configurations of quenched SU(3) 
1 a 164 lattice . In no site there is a monopole. Repeating the determination 
1 a finer lattice gives similar results. As a consequence one can state that the 
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[ angle=270,scale=0.4)histocl .eps 

Figure 2: An example of probability distribution of the difference of the two 
highest eigenvalues of the phase <I> of the Polyakov line ei<I>, at the lattice sites. 
SU(3) gauge group, {3 = 6.4, lattice 164

, 103 configurations. 

number density of monopoles is finite and the dual superconductivity (or non) 
is an intrinsic property , independent of the abelian projection which defines 
the monopoles. 

An extensive analysis on the lattice [?) shows that the vacuum is indeed a 
dual superconductor in the confined phase, and goes to normal in the decon­
fined one. A finite size scaling analysis of the susceptibility p defined as 

pa = d~ ln(µa} (26) 

gives that in the quenched case (µ 0
}" is strictly zero above the critical tempera­

ture defined by the Polyakov line order parameter, is different from zero below 
it. The behaviour around Tc allows to determine the critical indices , which 
are consistent with those determined by use of the Polyakov line. This is clear 
evidence that dual superconductivity is a mechanism for confinement [?]. 

4 The case of full QCD 
The order parameters (µ 0

} can equally well be defined in the presence 
of dynamical quarks (Full QCD) [?] and have the same physical meaning of 
creators of monopoles. One can then ask if a criterion for confinement could 
be provided by (µ 0 )'s , i.e. by dual superconductivity (or absence of) . One 
should prove that in the dual superconducting phase no colored ·asymptotic 
states exist, which is of course non trivial. However this is not much different 
from the situation in quenched theory with the Polyakov line criterion , as 
discussed in sect 2. It has in fact been checked [?) that QCD vacuum is a dual 
superconductor in the phase below the critical line of figl, ( (µ 0

) -=/- 0), and is 
normal in the region above it ( (µ 0

) = 0). The finite size scaling analysis in 
this case goes as follows. For dimensional reasons the order parameter (µ 0

) 

has the form 

(µa)= <I>(z, ~•,m£Yh) (27) 

where ( is the correlation length, a the lattice spacing, m the quark mass and 
Yh the corresponding anomalous dimension. Near the critical line ( goes large 
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:ompared to a and the dependence on a/( can be neglected. (Scaling) The 
>roblem has two scales. If Yh is known one can choose different values of the 
nass and of the spacial size Ns such that mNs is constant, and then 

(28) 

3y use of eq(9) the variable Ns( can be traded with T N;fv and the scaling law 
e>llows 

(29) 

,hence v can be extracted and the order of the transition can be d_etermined. 
'he result is v ~ .33 compatible with a first order transition. 

A cross check is obtained by studying the scaling of the maximum of the 
pecific heat, which for the same choices of m and N 8 should scale as 

(30) 

'the critical indices determined through (µ 0
) coincide with those resulting 

om the analysis of the specific heat, this would be additional evidence for 
ual superconductivity as a mechanism of confinement, implying that (µ 0

) 

1n be the order parameter. 
The situation is described in ref [?) ,and is presently at the stage of i"ndi­

i,tion that this is indeed the case. Numerical work is on the way which will 
~finitely clarify the problem. 

In conc_lusion Confinement is a fundamental but difficult problem. Some 
1derstanding has been reached on the symmetry patterns involved. Lattice 
a unique tool to address the problem. 
Thanks are due to my collaborators J.M. Carmona, L.Del Debbio, M. 

'Elia, B. Lucini, G. Paffuti, C. Pica for- discussions . This work is partially 
1pported by MIUR Progetto Teoria delle Interazioni Fondamentali. 
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Instantons represent a very important component of the QCD vacuum. 
Their properties are described by the average instanton size p ~ l/3 fm and 
inter-instanton distance R ~ l fm (1-3). The Lee&Bardeen's fermionic deter­
minant detN (in the field of N+ instantons and N_ antiinstantons) is (4): 

detN = <let B, B;j = imb;j + llji, a_+= - < 'P-,oli{Jl<I>+,o >. (1) 

Here <I>±,n are defined by Eq. (i{J+ gjl1U>)i<I>±,n) = >-nl<I>±,n) (with the conven­
tion >.0 = 0). <I>±,o are quark zero-modes, generated by instanton(antiinstanton) 
I(l). detN averaged over instanton/anti-instanton positions, orientations and 
sizes is a partition function of light quarks ZN. A small packing parameter 
ir

2
(~)

4 ~ 0.1 provides independent averaging over instanton collective coor­
dinates. Then in the chiral limit Diakonov-Petrov effective action [5, 6) is 
reproduced [7, 8). 

We have to calculate a similar quark determinant but in the presence also 
of the external fields (we demonstrate this one on the example of the exter­
nal electromagnetic field vµ) and average it over the collective coordinates of 
the instantons to find the partition function with the quark current mass m 

contribution taken into account. 

2 Light quarks in the instanton background and external electro­
magnetic field vµ 

The extended zero-modes cl>0 for the quark placed into the instanton field 
A~, with his position z = 0, and electromagnetic field vµ are obeying to the 
equation: 

(i{)x + gjl1(x) + ep(x))«I>o(x) = 0 

We apply the U(l) gauge transformation 

«I>o = L<I>~, L(x) = exp (iexµ fo1 

vµ(ax)da), 

(2) 

(3) 
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where L is simply a path-ordered exponent P exp( i ft vµ( s )ds1,) with a straight 
path connecting the points Oto x (see for example [9]). Then Eq. (2) is reduced 
to 

(ifJx + gj!1(x) + ep'(x))cI>~(x) = 0, (4) 

where v:(x) = xpf~ Fpµ(o:x)o:do: has the explicit gauge invariant form. An 
approximate solution of Eq. ( 4) is 

cl>~ = cI>o - S1 ep'cI>o, (5) 

which can be expanded to any desired order of ev'. Here S 1 = (i{)+gN +imt1 

is a quark propagator ( with a small mass m) in the field of a single instanton. 
The non-zero mode quark propagator SNz in the single instanton field was 
derived in an exact closed form (see a review [10]). It is clear from this formula 
that this propagator is reduced to the free one at a short distance as well as 
a long one. We are following the argumentations of [5] and will assume that 
SNz(x, y) '.'.:::'. S0 (x - y), where S0 '= (if)+ imt1 is a free quark propagator. 
This formula together with Eqs.(3,4,5) leads to a desired extended zero mode 
<1>0 = LcI>~. Now we consider the quark propagator S in the fields of the single 
instanton A~ and vµ with the same assumption SNz '.'.:::'. S0 • Then it is easy to 
show that 

§I '.'.:::'. So+ l<I>o)(<I>ol 
im ' 

(6) 

where 50 = (if)+ ep + imt1
• 

Now we have to consider an ensemble of the instantons Aµ = I:;1 A1µ rep­
resenting the instanton liquid model of the QCD vacuum. This sum consists 
of both instantons and antiinstantons. The quarks are moving in the presence 
of the instanton ensemble Aµ and external electromagnetic field v. We will 
derive an extended zero-mode approximation for the quark determinant. 

The quark propagator S can be expanded with respect to an single instan­
ton [5]. Then, by using Eq. (6) the S becomes 

- - t 
S(x,y) '.'.:::'. So(x,y) + L cI>1,o(x_)cI>1,o(Y) (7) 

I im 

- ~t 
~ cI>1o(x) (f 4 ~t - ) cI>Jo(Y) + ~ : drcI>1,0(r)(i{J+ep+im)cI>J,o(r) -:-+•··. 
If.J im im 
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Here, I, J, · · · refer to both instantons and anti-instantons. Let us to define 
overlap integrals 

(8) 

Since, the expansion (7) is a geometrical progression, it can be easily summed 
to give 

S(x,y) ~ So(x, y) + L <I>1,o(x) (---
1
-.-) <I>},0 (y). 

I,J a+ im JJ 
(9) 

Accordingly, the total quark determinant should be splitted into low and high 
frequencies (with respect to a free mass parameter M1 ~ p-1 ): Det = Det1

0
w x 

Dethigh [5]. Dethigh can be written as a product of the determinants calculated 
:n the field of individual instantons. However, Det10 w is treated approximately, 
Nould-be zero modes being taken into account only. Then 

lnDet1ow = L r' idm[Tr(S - So) - Tr(So - So)]. 
I lM, 

\s it is clear from Eq.(9) 

~ ~ 1 
Tr(S - So) = Tr-_-.-. 

a +im 

(10) 

(11) 

['he second factor in Eq.(10) is included into the normalization factor. These 
ormulae without the external field v correspond exactly to Lee and Bardeen's 
[Uark determinant detN and lead to their extension to the case with the ex­
ernal field v switched on: 

Det1ow = detN,v = det B, Bu= (lJJ + imOJI (12) 

Fermionization of Eq. (12) with account of the current masses m 1 [11, 12] 
~ads to the gauged quark determinant in terms of the constituent quarks 'l/; 1: 

detN,v = j D'lj;D'lj;texp(j d4 xI:'l/;}(i{J+et/J+im1)'l/;1) 
I 

N+ N-

X Il(II i\['l/;}, 'l/;1])(JlV-['l/;}, 'l/;1])), (13) 
I + 
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where 

V±[1Pj, 1,l,1] = J d4 x(1/Jj(x)L1(x)ifl<I>±,o(x; (±)) J d4 y(<I>l,0 (y; (±)ifJL}(y)1,l,1(Y))_.. 

and 
(14) 

L1(x) = exp(ie1(x - z)µ. fo 1 

do:vµ.(z + (x - z)o:)) ~ exp(ie1(x - z)µ.vµ.(z)), 

assuming qp < < 1. The averaging over instanton collective coordinates ( with 
the essential usage of the smallness of the packing parameter 1r2(]?)4 ~ 0.1) 
leads to the gauged partition function (with account of quark current mass 
m): 

ZN[v, m) - J D,PD,f) exp (! d'x y ,J,)(ip + e1P + ;ml )'Pi) w:• W.:'-, 

(15) 
where 

- - 41r2 P2 ' d1 z -
( )

N 

W± = J d(± I}(V±[1Pj 1,l,1]) = (i)N' ~ JV dlt iJ±(z) (16) 

and 

- Jd4 kd4 l · 1± 5 
J±(z)19 = (

2
,r)S exp(-i(k-l)z)F((k+e1v(z))2 )F((l+e9 v(z))2

) 1Pj(k)T1 

(17) 
F(k2

) is related to the Fourie-transform of the zero-mode <I>±(k; (±) and its 
explicit content is 

F(k2
) = -tdd [I0 (t)I<0 (t) - I1(t)K1(t)], t = ~vlk2p, 

t 2 

This action was succesfuly tested by the axial anomaly low energy theorems 
[7, 8, 13] in the chiral limit and we may conclude that we found a proper way 
of gauging the effective action. 

As a first application of this effective action we have calculated the terms 
of order O(m) and O(m2

) of Gasser and Leutwyler phenomenological chiral 
lagrangian [14] and found that 

[~heor = 1.39 ([~henom = 2.9 ± 2.4), [!heor = 3.57 ([~henom = 4.3 ± 0.9). 



lnstanton vacuum QCD effective action beyond chiral limit 211 

We see the good correspondence of the theory with phenomenology at least 
for these quantities. The calculations of other couplings are in the progress. 

I acnowledge useful discussions with Prof. H.-C. Kim and partial support 
of this work by INTAS, BMBF and SNF grants. 

I am thankful to the organizers of the Conference for the invitation and 
friendly atmosphere during the Conference. 
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Abstract - The combined 3-channel analysis of experimental data on the 
processes 71"71" ➔ 71"71", J{ J{, 'f/'f/ is carried out in the channel with the vacuum 
quantum numbers. An approach, using only first principles (analyticity 
and unitarity) and the uniformizing variable, is applied. Definite indica­
tions of the QCD nature of the /o resonances below 1.9 GeV are obtained. 
An assignment of the scalar mesons below 1.9 GeV to lower nonets is pro­
posed. 

1. Introduction. The problem of scalar mesons draws permanently an at-' 
tention of investigators in view of an important role played by these mesons, 
( especially o--meson) in the hadroni

0

c dynamics. 1 · 

The Jo mesons are most direct carriers of information about the QCD 
vacuum. Therefore, every step in understanding nature of the Jo mesons is 
especially important. 

Note a situation with the o--meson. Now, there are evidences of the exis-. 
tence of the o--meson both on the basis of phenomenologic · analyses of experi- · 
mental data [l] and the theoretical explanation of phenomena and quantities.· 
The iatter is (1) a8(1rn) (see, e.g., [2]); (2) rather big experimental value of 
the 1r - N sigma term (see, e.g., [3]); (3) the enhancement of the b.I = 1/2 
processes in the I<0 ➔ 1r+1r-, 1r0 1r0 decays [4]; ( 4) the phase shift analyses of 
the N - N scattering in the 1 S0 channel have discovered an attraction in the· 
intermediate range (1 ~ 2 fm), which is indispensable for the binding of a 
nucleus and is stipulated by the light o--meson exchange [5]. 

However, a number of physicists questions till now the existence of the a-­
meson (see, e.g., [6]). Therefore, a further combined analysis of the coupled 
processes (with adding other channels) is needed for studying scalar mesons .. 

2. Three-coupled-channel formalism. We consider the processes 1r1r ➔ 

1r1r, I< I<, T/T/ in the 3-channel approach. The S-matrix is determined on the 8-
sheeted Riemann surface. The elements Saf3, where a, /3 = l(1r1r ), 2(I< I<), 3(TJTJ); 

1This work was supported by the Grant Program of Plenipotentiary of the Slovak Re­
public at JINR. M.N. were supported in part by the Slovak Scientific Grant Agency, Grant 
VEGA No. 2/7175/20; and D.K., by Grant VEGA No. 2/5085/99. 
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have the right-hand cuts along the real axis of the s complex plane, starting 
with 4m;, 4m}, and 4m~, and the left-hand cuts. The Riemann-surface sheets 
are numbered according to the signs of analytic continuations of the channel 
mom~nta k1 = (s/4- m;) 112, k2 = (s/4- m} )112, k1 = (s/4- m;) 1!2 as 
follows: signs (Imk1 , Imk2 , Imk3 ) = + + +, - + +, - - +, + - +, + - -, - -
-, - + -, + + - correspond to sheets I, II,-··, VIII. 

The resonance representations on the Riemann surface are obtained with 
the help of the formulae ( see, ref. [7], Table 1), expressing analytic continua­
tions of the matrix elements to unphysical sheets in terms of those on sheet I 
that have only zeros (beyond the real axis) corresponding to resonances. Start­
ing from resonance zeros on sheet I, from these 3-channel formulae, we obtain 
7 types of resonances corresponding to conjugate resonance zeros on sheet I of 
(a) Su; (b) S22; (c) S33; (d) Su and S22; (e) S22 and S33; (f) Su and S33; and 
(g) Su, S22 , and S33. For example, the arrangement of poles corresponding 
to a (g) resonance is: each sheet II, IV, and VIII contains a pair of conjugate 
poles at the points that are zeros on sheet I; each sheet III, V, and VII contains 
two pairs of conjugate poles; and sheet VI contains three pairs of poles. 

A resonance of every type is represented by a pair of complex-conjugate 
clusters ( of poles and zeros on the Riemann surface). The cluster kind is 
related to the state nature. The resonance coupled relatively more strongly 
to the 1T1T channel than to the I</( and ( 7777) ones is described by the cluster 
of type (a); if the resonance is coupled more strongly to the/{/( and {7777) 
channels than to the 7r7r, it is represented by the cluster of type (e) (say, the 
state with dominant ss component); the flavour singlet (e.g., glueball) must 
be represented by the cluster of type (g) as a necessary condition for the ideal 
case. 

We can distinguish, in a model-independent way, a bound state of colourless 
particles (e.g., KI< molecule) and a qq bound state [7,8]. 

It is convenient to use the Le Couteur-Newton relations [9] expressing the 
S-matrix elements of all coupled processes in terms of the Jost matrix deter­
minant d(k1 , k2 , k3 ) that is the real analytic function with the only square-root 
branch-points at k; = 0. Now we must find a proper uniformizing variable for 
the 3-channel case. However, it is impossible to map the 8-sheeted Riemann 
surface onto a plane with the help of a simple function. Therefore, we neglect 
the influence of the 7r7r-threshold (however, unitarity on the 7!'7r cut is taken 
into account). This approximation means the consideration of the nearest to 
the physical region semi-sheets of the Riemann surface. The uniformizing vari­
able can be chosen as w = (k2 + k3 )/(m~ - m} )112 . It maps our model of the 
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8-sheeted Riemann surface onto the w-plane divided into two parts by a unit 
circle centered at the origin. The sheets I (III), II (IV), V (VII) and VI (VIII) 
are mapped onto the exterior (interior) of the unit disk in the 1st, 2nd, 3rd 
and 4th quadrants, respectively. The physical region extends from the poi~t 
W,r on the imaginary axis ( 7r7r threshold, lw,r I > 1) down this axis to the point 
i on the unit circle (KI< threshold), further along the unit circle clockwise in 
the 1st quadrant to point 1 on the real axis (7777 threshold) and then along the 
real axis to oo. The type (a) resonance is represented in Sn by the pole on 
the image of the sheet II, of the sheet III, VI and VII and by zeros, symmetric 
to these poles with respect to the imaginary axis. Here the left-hand cuts are 
neglected in the Riemann-surface structure, and contributions on these cuts 
will be taken into account in the background. 

On thew-plane, the Le Couteur-Newton relations are 

Sn= d*(-w*)/d(w), S22 = d(-w- 1 )/d(w), S33 = d(w- 1 )/d(w), (1) 

SnS22 - Sf2 = d*(w*-1)/d(w), SnS33 - Sf3 = d*(-w*-1)/d(w). 

The d-function is d = dBdres with dB= exp[-i I:;=1 kn(an + i,Bn)) describing 
the background, and dres(w) = w-¥ TT~1(w + w;) being the resonance part 
(Mis the number of resonance zeros). 

3. Combined analysis of experimental data. We analyzed data on the 
processes 7r7r ➔ 7r7r' I< I<, 7777 in the channel with 1° jPC = o+o++. For the 
7r7r-scattering, the data from the threshold to 1.89 GeV are taken from ref. 
[10); below 1 GeV, from many works [2). For 7r7r ➔ I< I<, practically all the 
accessible data are used [2). The ISd2 data for 7r7r ➔ 7777 from the threshold 
to 1.72 GeV are taken from ref. [11). 

For the 7r7r-scattering, yve obtain a satisfactory description from~ 0.4 GeV 
to l.89 GeV (x2 /ndf ~ 1.5). Taking into account the the 7777-threshold branch­
point, we have considerably improved the description of the phase shift for the 
process 7r7r ➔ I< I< (x2 /ndf ~ 2.2) in comparison with the 2-cannel case. The 
total x2 /ndf for all three processes is 1.74; the number of adjusted parameters 
is 40. The background parameters (in Gev-1 units) are a 1 = 1.37,,01 = 
0, a 2 = -1.43, ,02 = 0.2, ,03 = 0.928. In Table 2, the obtained pole clusters for. 
resonances are shown (poles on sheets V and VI, corresponding to the f0 (1370) 
and fo(l 710), are of the 2nd order; the f0 (1500) cluster has a pole of the 3rd 
order on sheet VI and a pole of the 2nd order on each of sheets III, V and 
VII). 
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Table 2: Resonance pole-clusters (Js; = Er - ifr, MeV). 
Sheet Fr fo(600) fo(980) fo(l370) fo(l500) fo(l 710) 

II E 683±21 1004±6 1505±14 
r 600±22 39±5 326±34 

III E 672±25 963±12 1380±22 1505±20 1702±18 
r 600±30 76±9 116±15 260±39 30±5 

IV E 1380±19 1505±15 1702±14 
r 134±15 250±30 150±7 

V E 1367±30 1501±12 1711±15 
r 260±35 127±35 145±18 

VI E 627±23 1361±30 1515±23 1688±17 
r 600±23 253±30 172±25 162±24 

VII E 638±40 1380±25 1491±22 1702±19 
r 600±35 134±23 116±18 150±20 

VIII E 1380±15 1505±12 1702±10 
r 116±13 110±10 30±4 

For now, we did not calculate coupling constants in the 3-channel approach. 
Therefore, for subsequent conclusions, let us mention the results for coupling 
constants from our previous 2-channel analysis (Table 3, 91 is the coupling 
constant with 7r7r , 92 - with K K) [2]. 

Table 3. 

fo(665) fo(980) fo(l370) fo(l500) 
91, GeV 0.652 ± 0.065 0.167 ± 0.05 0.116 ± 0.03 0.657 ± 0.113 
g2 , GeV 0.724 ± 0.1 0.445 ± 0.031 0.99 ± 0.05 0.666 ± 0.15 

i,From Table 3, the j 0 (980) and the f 0 (1370) are coupled essentially more 
;trongly to the K K system than to the 1r1r one, i.e., they have a dominant 
,s component. The f 0 (1500) has the approximately equal coupling constants 
Nith the 7r7r and KI{, which apparently could point up to its dominant glue­
)all component. In the 2-channel case, fo(l 710) is represented by the cluster 
;orresponding to a state with the dominant ss component. 

Our 3-channel conclusions on the basis of resonance cluster types generally 
:onfirm the ones drawn in the 2-channel analysis, besides the surprising con­
:lusion about the f 0 (980) nature. It turns out that this state lies slightly above 
he K K threshold and is described by a pole on sheet II and by a shifted pole 
m sheet III under the TJTJ threshold without an accompaniment of the corre­
ponding poles on sheets VI and VII, as it was expected for standard clusters. 
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This corresponds to the description of the 'r/'r/ bound state. 

4. Lower scalar o++ nonets. Now we can propose a following assign­
ment of scalar mesons below 1.9 GeV to lower nonets. We exclude from this 
consideration the f0 (980) as the 'r/'r/ bound state. Then one can include to 
the lowest nonet the f0 (600) as the eighth component of octet, the isodou­
blet K;(900) (or 11:(800)), the isovector a0 (980) and the f0 (1370) as the SU(3) 
singlet. We consider the K;(900) (or 11:), observed at analyzing the K - 7r 

scattering (S. Ishida et al.) [12] and at studying the decay D+ -+ /{-7r+7r+ 

(Fermilab experiment E791, C. Gobel et al.) [12]. Then the Gell-Mann-Okubo 
formula 3m}

8 
= 4m7<-. - m~

0 
gives m18 = 0.87 GeV. Our result for the a­

meson mass is mu ~ 0.85 ± 0.02 GeV, if to take the resonance part of 7r7r 

amplitude in the form rres = v'sTe1/(m; - s - iJsf1o1). 

The second relation for masses of nonet, which is obtained only on basis of 
the quark contents of the nonet members and somehow restricts mass of the 
SU(3) singlet, is mu + m fo(i 37o) = 2m". The left-hand side of this relation is 
~ 20 % bigger than the right-hand one. That is, the a - f0 (1370) system gets 
an additional contribution absent in the K. 

The next nonet could be formed of the f0 (1500) (the eighth component of 
octet mixed with a glueball), the isodoublet K;(1430 - 1460), the isovector 
a0 (1490) and the f0 (1710) (SU(3) singlet). From the Gell-Mann-Okubo for­
mula we obtain m18 ~ 1.45 GeV. In second formula m10 (1soo) + m10 (mo) = 
2mK•(i46o), the left-hand side is ~ 10 % bigger than the right-hand one. 

Though the Gell-Mann-Okubo formula is fulfilled for both nonets almost 
as for an ideally-mixed nonet, however, the not identical mass splitting of the 
isoscalar of octet, the isodoublet and the SU(3) singlet and the breaking of 
the second relation ( especially for the lowest nonet) yet tell us about non-ideal 
mixing. 

5. Conclusions 
1. In a combined model-independent analysis of data on the 7r7r scattering 
(from 0.4 to 1.89 GeV), processes 7r7r-+ l{l{ (from the threshold to 1.48 GeV) 
and 7r7r -+ 'r/'r/ ( from the threshold to 1. 7 Ge V), a confirmation of the a-meson 
with mass 0.85 GeV is obtained once more. This mass value rather accords 
with prediction (mu= mp) on the.basis of mended symmetry by Weinberg [13]. 
2. Consideration of the 'r/'r/ channel is necessary for a cosistent and reasonable 
representation of the obtained resonances. 
3. The f 0 (980), f 0 (1370) and fo(l 710) have the dominant ss component. 
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Moreover, we obtain an additional indication for f 0 (980) to be the 'r/77 bound 
state. Remembering a dispute [14] whether the f 0 (980) is narrow or not, we 
agree rather with the former. 

• 4. The f0 (1500) has the dominant flavour-singlet ( e.g., glueball) component. 
5. An assignment of the scalar mesons below 1.9 GeV to lower nonets is 
proposed. This assignment is not a solution of the scalar meson problem. 
However, it moves a number of questions and does not put the new ones. 
Therefore, this is probably a way to solve this problem. 
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Abstract - In the paper the problem of introducing the notion of neutron 
polarizability and the role of Prof. D.1.Blokhintsev in the development of 
this problem are discussed. The influence of neutron polarizability on neu­
tron scattering by heavy nuclei is considered. The results of estimations of 
electric neutron polarizability in the megaelectronvolt energy region and 
in the energy region of less than 300 keV are correlated. The reasons are 
given in favor of the opinion that neutron polarizability was observed for 
the first time in neutron experiments, namely, in megaelectronvolt small 
angle neutron scattering, i.e. in 1957. 
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I would like to tell you about neutron polarizability - a problem, which 
appeared about 50 years ago, and about the influence of neutron polarizability 
.on neutron scattering by heavy nuclei at relatively low energies of neutrons 
{less than 10 MeV). 

The problem of neutron polarizability is closely connected with the name of 
D.I.Blokhintsev. Among other things, first experimental search of the neutron 
polarizability influence on the character of neutron scattering was initiated in 
the Institute of Physics and Power Engineering (IPPE), Obninsk, where Prof. 
Blokhintsev was director in the 1950s. 

One of the great successes in physics of the 1950s were famous experiments 
by Hofstadter carried out on the electron accelerator of Stanford University 
(USA). Hofstadter was the first to show experimentally that proton was not 
a point particle. In this connection physicists were wondering if there are 
other natural phenomena indicative of nucleon space structure. In the mid­
dle of the 50s this question was considered independently by three groups of 
physicists: in the USA by Klein ( 1955) [l], in Russia by Bal din ( unfortunately 
first paper in 1960 [2)) and by Alexandrov and Bondarenko (1956) [3]. In all 
of the mentioned papers the notion of nucleon polarizability was introduced 
(independently) similar to a certain degree, to the existing notions of atom 
polarizabilities. Since the influence of neutron polarizability on neutron scat­
tering was considered only by the third group, I would like to tell you about 
the research initiated by this group in Obninsk. 

The phenomenon of polarizability implies a deformation of spatially ex­
tended nucleon in electric or magnetic field. In case of electric field E neutron 
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acquires electric dipole moment d = o:E, where a is a coefficient of electri~ 
polarizability, and neutron obtains additional potential energy 

V(r) = -dE = -1/2(o:E2
) (1) 

I discussed with Prof. Blokhintsev the possibility of such phenomenon 
inherent exactly in neutron as far back as 1954, after that he sanctioned the 
experimental search of this effect in neutron scattering. 

At this time the first fast reactor in Europe was started in Obninsk. To­
gether with Dr.Bondarenko we made a decision to search the influence of neu­
tron polarizability on small angle neutron scattering. The angles of scattering 
can be estimated using the correlation 0 :S >i./ R, where R is· the radius of in­
teraction. At A. ~ 4.6 x 10-13cm (E = 1 MeV) and at R exceeding the radius 
of nuclear interaction ( R ~ 2 x 10-11 cm) it is possible to obtain 0 ~ 1.5°. 

As a result of first measurements in 1955 [3], carried out in Obninsk on lead 
at neutron energies of 2-3 MeV, so-called Schwinger scattering was discovered. 
This phenomenon was predicted by Schwinger in 1948 but was not found till 
the mid-50s, despite the efforts of physicists from USA, Canada and other 
countries. It is the result of interaction between the magnetic moment of 
moving neutron and the Coulomb field of nucleus. 

The following data [4,5], obtained by me in Obninsk at small angle mega­
electronvolt neutron scattering by the nuclei of Pu, U, Bi, Pb, Sn and Cu, were 
pr~ces~ed using the optical model of nucleus supplemented by the Schwinger 
potential. The results are shown on Fig.I [5], where dashed curves represent 
purely nuclear scattering, dot-and-dashed curves represent nuclear scattering 
supplemented by the Schwinger potential. Thus, as long ago as 1957 the 
additional scattering for the plutonium and uranium nuclei in the region of 
small angles was observed, which could not be explained by nuclear and the 
Schwinger potentials only. Later similar additional scattering of megaelectron­
volt neutrons was observed in many works (Obninsk - up to 1989, Gatchina, 
USA, Italy, etc.). 

It was natural to explain the obtained results by the contribution of scat­
tering caused by neutron polarizability using potential (1). In case of the 
Coulomb field it will be · 

V(r) = -1/2(o:E2
) = -o:(Ze2)/(2r4

) (2) 

and the value of polarizability coefficient a obtained during experimental 
data processing will be about a~ 10-40cm3 [5]. 
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In 1960 the Goldansky's group measured the a: value for proton in the 
experiment of ,-quantum scattering with the energy from 40 to 70 MeV on 
hydrogen. It proved to be in the region of 10-42cm3

, that is 100 times less 
than Obninsk's value. By that time theoretical evaluations of the nucleon a: 
appeared, primarily, in the works by Prof. Baldin. However, all of them led to 
the value a:~ 10-42cm3 and, thus, were at variance with the Obninsk's value. 

The information about the value of a: can be also obtained by studying 
neutron scattering on heavy nuclei at the energies less than 300 keV. Such 
kind of experiments were started since 1960. Among them the experiment 
of 1966 should be mentioned. It was performed in FLNP (Dubna) using the 
time-of-flight method on lead at the pulsed reactor IBR in the neutron energy 
region from 0.6 to 26 keV. As a result, the value a: :'.S 6 x 10-42 cm3 was obtained 
[6]. This value remained record-breaking up to 1986, which is about 20 years. 

Later the measurements of angular distribution of neutrons and of total 
cross sections were performed by FLNP in cooperation with Garching ( Ger­
many), in Gatchina, as well as in Austria - USA, in England and other coun­
tries. However, in all this works the estimations of a neutron value are· less 
by a factor of 100 than the value 10-40cm3

, namely, they are in the region 
10-42 cm3. Thus, there was a serious deviation between the results obtained in 
the megaelectronvolt neutron region and those obtained in the region of ener­
gies lower than 300 keV. This contradiction remained unexplained for 45 years. 
I think, the explanation was found due to two more factors, apart from the 
factor of time, of course. The first one was pointed out in 1959 by Blokhintsev, 
Barashenkov and Barbashov in the article (7) : ... perhaps there are effects of 
interaction between the neutron and the electron shell of heavy nuclei. The 
second one is a possible existence of long-range action (forces of th~ van der 
Waals' type, r- 6 in hadron interactions, to which Sawada (Japan) (8] paid and 
pays special attention (in 2000 one of the paper by Sawada was entitled as 
Proposal to observe the strong van der Waals force in the low energy neutron 
- Pb scattering ). Apropos, as I know, the first work discussing a possible 
existence of long-range hadron interactions belongs to Prof. Wilkinson (1961, 
The Rutherford Jubilee International Conference). In 1999 it was shown in 
the work by Pokotilovsky [9) and in his work made in cooperation with his 
colleagues [10) that at the neutron energies 0.5 - 10 MeV the changes in differ­
ential cross section of neutron scattering on the isotope 20sPb in the region of 
small angles caused by the potential (2) with the value ( a: = 1.5 x 10-40cm3 

will be the same as those caused by the van der Waals potential 
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V(r) = -UR(R/r)6 (3) 

(R is the radius of nucleus) when choosing constant UR~ 300 keV. At the 
same time the potential (3) will not practically appear in the region of lower 
energies. The constant UR was not calculated in the ~orks by Pokotilovsky's 
group but was defined by selection, by trial method to achieve the best agree­
ment between the calculations and the experiment. The constant UR was not 
related to neutron polarizability spatially. 

However, it was desirable to calculate the constant UR and see how it was 
related to neutron polarizability that is to the value a. These calculations 
were performed by me, your obedient servant, in 2001. I will not tell you 
about these calculations in detail. I told about these calculations in Dubna 
(ISINN-10) and in Sarov on International Conferences [11, 12] last year (see 
also [13] ). It should be noted that they are not undoubtedly precise yet. 
However, at present, it is enough to be sure that there are no considerable 
errors that would change the neutron value ( by the factor 100, since this is 
the difference between the values 10-42 cm3 and 10-40cm3 which were obtained 
at low (less than 300 keV) and higher (0.5 - 10 MeV) energies. 

As a result of calculations in the second approximation of perturbation 
theory one can obtain: 

. 30:' . 
U(O) = 2R6 I>:lE;a;(O) (4) 

where D.E; ~ E; is the binding energy of the i-th electron in atom, o:; is 
the polarizability of the i-th electron in atom. 

Equation (4), which shows that the van der Waals interaction energy is 
proportional to the product of polarizabilities of two systems, is universal, i.e. 
it does not depend on the internal structure of the interacting systems and 
it holds for atoms, hadrons, and elementary particles of other types. It only 
depends on the validity of general principles, such as the Lorentz invariance, 
electromagnetic current conservation, analyticity and unitarity (see, e.g. [14]). 
We will continue using eq.(4) below. 

The sought constant UR can be obtained by the operation of averaging over 
the scattering angles from 3° to 15° (this small angle range was considered in 
paper[lO]): 

UR= J UR(O)sin(O)d0/ J sin(O)dO (5) 
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It is necessary to know (i of electrons in a complex atom. At present, 
however, there exists no strict theory of their calculation. In the first approx­
imation we can accept the model of atom as a linear oscillator and, thus, we 
have from the book by Blokhintsev (15): 

e2n2 

a;(0) = N;(0)-E2 m; 

where mis electron mass, N;(0) is the number of i-th electron in atom. 

(6) 

It is possible to verify eq (6) on the examples of some atoms. It is known, 
e.g., that for hydrogen atom aH = 6.66 x 1025 cm3

• From eq (6) one can obtain 
OH= 6.06 x 1025 cm3 , if E =13.5 eV. From eq (6) one can obtain for tin atoms 
the value of asn, which will be approximately equal to the value obtained as 
the result of the Thomas-Fermi model calculations (16). For uranium atoms 
the difference between the results of analogous calculations does not exceed 
1.5 times (16). 

The spatial distribution of electrons in the atom can be determined from 
the angular distribution of small angle scattered neutrons. In the first approx-

. imation the distance of the neutron trajectory going through the atom from 
the nucleus, b..R, is related to the scattering angle as b..R ~ >./0. Knowing b..R 
and using the Thomas-Fermi model for the atom, it is possible to determine 
the number of electrons N; participating in the investigated process, i.e. of 
those which are at a distance smaller than b..R from the nucleus. 

Carrying out the calculations numerically, it is possible to obtain the UR 
= 210 keV for uranium, for the neutron energy 1 MeV and for the neutron 
polarizability a = 1.5 x 10-42 cm3

• Thus, the neutron polarizability was first 
detected in small angle neutron scattering experiment as far back as 1957 in 
Obninsk, i.e. earlier than proton polarizability was observed in the 1 - p 
scattering experiment (1960). 

In conclusion, it should be emphasized, that similar to the Hofstadter ex­
periments that proved the nucleon to have a spatial structure, the notion of 
deformation (polarizability) of the nucleon and its discovery in the experi­
ment do not only lead to a new important physical property but are also of 
fundamental philosophic importance. 

The important role in solution of this problem belongs to Prof. D. I. 
Blokhintsev and I want to emphasize it in my report. 
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Abstract - A possibility for light fermions and Higgs bosons to be lo­
calized on the four-dimensional domain wall in five-dimensional world is 
examined. The mechanism of light particle trapping is accounted for by 
a strong self-interaction of five-dimensional pre-quarks. The fluctuation 
of the brane gives rise to a nearly sterile scalar particles, branons, which 
may be candidates for the dark matter. 

1 Introduction 

The possibility of location of the observable world on a four-dimensional 
surface - a domain wall or a 3-brane - in a space-time with dimension higher 
than four has been recently set forth as a theoretical concept (1 ]- (4] for so­
lutions to the problems of the Planck mass scale, symmetry breaking scales 
and fermion mass hierarchy. Respectively, an experimental program has been 
posed for the forthcoming collider and ri.on-collider physics research to discover 
new particles signaling on the existence of extra dimensions. The extensive lit­
erature on those subjects and their applications is now covered in few review 
articles (5]- [8]. Among other options the domain wall formation and the 
trapping of low-energy particles in its layer might be triggered [9]- (11] by a 
number of background fields living in the multi-dimensional bulk. Certainly, 
the dynamical origin of such background fields and the way of how they induce 
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spontaneous symmetry breaking is to be explored. g 
In our talk we describe the non-compact 4 + 1-dimensional fermion model · fi 

with strong local four-fermion interaction that leads to the discrete symme- fi 
try breaking and to a domain wall pattern of the vacuum state [12]. As a 
consequence light massive Dirac particles and light scalar bosons, Higgs-like 
particles and "branons" [13], live in four dimensions whereas very heavy states 
may leave a brane, i.e. disappear from our world. 

The main ingredients of the model are made of the five-dimensional fermion 
bi-spinors 'lj;(X) coupled to a scalar field <I>(X). The extra-dimension coordi­
nate is assumed to be space-like, (X0 ) = (xµ, z) , µ = (0, 1, 2, 3), and the sub­
space of x µ eventually corresponds to the four-dimensional Minkowski space. 
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The extra-dimension size is supposed to be large enough. The fermion wave 
function obeys then the Dirac equation 

with "lex being a set of the Dirac matrices. 
The trapping of light fermions on a four-dimensional hyper-plane - the 

domain wall - located in the fifth dimension at z = 0 can be generated by a 
certain topological background configuration of the scalar field, for instance, 
by (<I>(X))0 = Mtanh(Mz) as it induces a z-localized zero-mode in the four­
dimensional fermion spectrum, i.e. an essentially four-dimensional massless 
fermion with a given chirality (left or right). 

Meanwhile the real quarks and leptons of our world are mainly massive 
Dirac fermions. Therefore, for each light fermion on a brane one needs at 
least two five-dimensional proto-fermions 'lfi (X), 'l/;2(X), to obtain left- and 
right-handed parts of a four-dimensional Dirac bi-spinor as zero modes. In 
order to produce zero modes with different chiralities they have to couple to a 
background scalar field with opposite charges, 

where ::Ya =,a® 12 are Dirac matrices and Ta = 14 ® CT a, a= 1, 2, 3 are Pauli 
matrices acting on the bi-spinor components 'lf;(X). 

The next task is to supply these fermions with light masses. As the mass 
operator mixes left- and right-handed components of the four-dimensional 
fermion it is embedded in the Dirac operator (1) with the mixing matrix T1m 1 
of the fields 7Pi (X) and 'l/;2 (X). Following the Standard Model fermion mass 
generation by means of Higgs scalars, one may introduce the second scalar 
field H(x) replacing the bare mass T1m1 by v.e.v. T1 < H(x) >. Both scalar 
fields might be dynamical indeed and their self-interaction should justify the 
spontaneous symmetry breaking by certain classical configurations allocating 
light massive fermions on the domain wall. 

2 Fermion model with self-interaction in 5D 

After the preliminary motivation we formulate our model with the following 
Lagrange density 
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- . NA3 
2 NA3 

2 ===;> ll!(z ~- T3<l> - r1H)w - -- <l> - -- H . 
91 92 

where ll!(X) is an eight-component five-dimensional fermion field with the 
total number N = N1 Ne of color and flavor states. The ultraviolet cut-off 
scale A bounds fermion momenta and 91 and 92 are suitable dimensionless 
effective couplings. In the second line the bosonization with the help of a 
pair of auxiliary scalar fields <I>(X) and H(X) is performed to get the requhed 
triHn'ear coupling of fermions and scalars. . 

In this Lagrangian the discrete r-symmetry: W ➔ r 1 W, <I> -4 · -<I> and 
W ➔ r3 W, H ➔ - H, does not allow the ·fermions to acquire a mass ~nd 
prevents a breaking of translational invariance ih the perturbation theory. ' 

On the other hand, for sufficiently strong couplings, this system undergoes· 
spontaneous breaking· of the r-symmetry. In order to describe it, the effective 
low-energy Lagrange density is derived with the help of FMR (14], 

£}!! = W1(X)[ i ~ - r3<l>(X) - r1H(X) ]ll!1(X) 

+ :; {8a<I>(X)8"<I>(X) + 8aH(X)8qH(X) 

+2ll1 <l>2(X) + 2ll2H 2(X) - [ <l>2(X) + H 2(X) ]2}. (2) 

where the two mass scales fl; are introduced in order to parameterize the 
deviations from the critical point 9'f' = 91r3 , i = 1, 2: 

ll;(9;) = 2
9
A

2 
(9; - 9?') fl1(9i) > ll2(92) · 

9i 

If ll 1 (91) > 0, then the true minima appear at a non-vanishing vacuum expec­
tation value of the scalar field <I>(X): namely, 

(I) <I>1 = (<I>(X))o = ±J fl1(91) = ±M , H1 = (H(X))o = 0 .. 

This follows from the stationary point conditions, 

2 [ M2 - <1>
2 -H2] <I>= 8"'8a<I>' 2 [ fl2 - H 2 - <1>

2] H = 8"8aH' 

and from the positive definiteness·of the second variation of the boson effective 
action. From the latter one we find the masses of composite scalars: M1 = 2M 
(the Nambu relation) and M2 = ✓2ll 1 - 2ll2. Respectively, the generation 
of a dynamical fermion mass M occurs that breaks the r 1 -symmetry. Around 
this minimum the particle physics is entirely five-dimensional. 

____,,,.,,1,,..-· 
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3 Domain walls 

The existence of two minima in the potential gives rise to another set of 
vacuum solutions which connect smoothly the minima. 

(J) (<I>(X)}o = ±Mtanh(Mz) , . (H(X)}o = 0; 

(K) (<I>(X)}o = ±Mtanh(,Bz), (H(X)}o = ±µ sech(,Bz). 

where ,6 = ✓ M 2 - µ 2 = J2(/j.1 - /j.2). The solution (K) exists only for 
0 < 2/j.2 - !vf2 = µ 2• For such a range of parameters /j.i this solution delivers 
a minimum (it can be found out of the second variation around it) whereas 
the solution ( J) lies on a saddle point. 

In both phases v.e.v. of the scalar field (<I>(X)} has a kink shape and hence 
its coupling to fermions induces the trapping of the lightest, massless fermion 
state on the domain wall. However, only the solution ( K) supplies this light 
fermion with a mass due to a non-zero v.e.v. of the field (H(X)). Let us focus 
on this phase. · 

At ultra-low energies much smaller than M, the physics on the vacuum 
(K) is essentially four-dimensional. It is described by the Dirac fermion with 
.the mass 

1+= - ~ 
m1 = dz 'lj.;0 (z) HK(z) 'lpo(z) = - µ. 

-= 4 
As well one has two localized ultra-light modes in the spectrum of the second­
variation operator for the scalar fields <I>(X) and H(X). They produce two 
four-dimensional scalar bosons, a massless¢ and a massive h. When assuming 
that µ « M one finds, 

µ2 
mh = µV2 + O(M) . 

. The ultra-low-energy effective four-dimensional Lagrangian density for the 
light states reads: 

( ) - 1 ( )2 1 ( )2 1 C 4 = 'lj.;(x)(i,,tfJµ - m1)'1j.;(x) + 2 Oµ</>(x) + 2 oµh(x) - 2m~h2(x) 

-g1~(x)'lj.;(x)h(x) - A1</>4(x) - A2 </>2 (x)h2(x) - A3h4 (x) - ,\4 h3(x) , 

with the ultra-low energy effective couplings given by 
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Herein the heavy scalars and fermions with masses~ M have been decoupled. 
Quite remarkably, the domain wall Lagrange density has a non-trivial large 

cut-off limit in the vicinity of the scaling pointµ « M, provided that the rati~ 
M / A < 1 is fixed. The four-dimensional ultra-low-energy theory happens to 
be interacting. 

We stress that a priori possible 3-point vertex </>2( x) h( x) does not emerge 
and the coupling of light fermions to the massless scalar °ijj(x)'lj;(x)¢(x) cannot 
appear in principle. Thereby the direct decay of the massive Higgs-like boson h 
into a pair of massless branons [13] is suppressed and the low-energy Standard 
Model matter turns out to be stable. · · 

4 Manifest breaking of translational invariance 
One can conceive that in reality the translational invariance in five dimen­

sions is broken not only spontaneously but also manifestly due to the presence 
of a gravitational background, of other branes etc. In a full analogy with the 
Pseudo-Goldstone boson physics one can expect [12, 13] that the small manifest 
breaking of translational symmetry supplies the branons with a small mass. 

In the model presented here the natural realization of the translational sym­
metry breaking can be implemented by the inhomogeneous scalar backgro~nd 
fields coupling to the lowest-dimensional fermion currents. Let us restrict our­
selves to the scenario of the type ( I<) and introduce two scalar defects with the 
help of the background fields F <I> ( z) and FH( z ), which are supposed to be quite 
small. These scalar defect fields catalyze the ti-anslatio:nal symmetry breaking 
and the domain wall formation by means of their interactions with the fermion 
currents, 

,e~) = - F<I>(z) \Jl(X)r3\Jl(X) - FH(z) \Jl(X)ri \Jl(X) . 

In units comparable with t_he low energy effective action (2), 

91µ
3 

F<1>(z) = 47r3A2 f<1>(z) ' 
92µ3 

FH(z) = ~A2 fH(z) , 471" 

Let us introduce a defect of topological type: 

µ f<1>(z) =M I tanh(/3z); fH(z) = 11: sech(/3z) , 

where 1 , 11: are dimensionless parameters. For this particular ansatz the solution 
of the modified equations for stationary configurations of scalar fields can be 
found analytically [12] in a similar form, 

(<I>(X))0 =Ma tanh(/3z) , (H(X))o = µ (l + 0 sech(/3z) . 
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where for µ / M « l, I\: « 1, ( « 1 one obtains approximately a ,:;j l, 'jj ,:;j /3 
and I\: ,:;j 2( + (, /2). Further on we use ( as an input parameter instead of I\:. 

The branon mass happens to be triggered entirely by the topological defect, 

( ) 2 ~ 2 mq, ~,µ . 
One can see a strong polarization effect induced by a topological defect: the 
local minimum is guaranteed only for asymptotics at infinities which are co­

. herent in their signs, i.e., for positive 1 . 
The Higgs mass encodes both topological and non-topological vacuum per­

turbations, 

(mh) 2 
,:;j µ

2 ( 2 + 6( + ~/) . 
As 1 > 0 the topological defect makes the Higgs particle heavier. However the 
sign of ( is not fixed by the requirement to provide a local minimum. Therefore 
the Higgs mass ratio to the fermion ( ~ top-quark) mass can be substantially 
reduced with an appropriate choice of a non-topological part of the defe~t ~ (. 
In particular, the Higgs masses may be well adjusted to a phenomenologically 
acceptable value ~ 135 GeV for a reasonably small value of a defect ( ~ 0.4. 
The induced coupling constants Ai, A2 , A3 appear to be insensitive to a very 
small background defect whereas the fermion mass and the constant A4 are 
subject to rescaling m1 ,:;j mj0\1 + (), A4 ,:;j .A.~0)(1 + (). 

Thus a very small topological defect does not change the main dynamics of 
domain wall trapping of light fermions and scalars. In particular, the Standard 
Model matter remains stable and the "branons", being now massive, yet do not 
decay directly into a pair of fermion and anti-fermion. It makes then difficult 
to register them in the collider experiments. Nonetheless, for top-quarks ( in 
the fusion production) there might be a room to discover branon pair signals 
for sufficiently light branons. 

Anyhow, the nearly sterile, massive branons seem to be good candidates 
for saturation of the dark matter of our Universe [13]. 

This work is supported by Grant INFN/IS-Pl13. A. A. and V. A. are 
also supported by Grant RFBR 01-02-17152, INTAS Call 2000 Grant (Project 
587) and The Program "Universities of Russia: Fundamental Investigations" 
(Grant UR.02.01.001). 
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Abstract - The properties of scalar fo(980), fo(1370), fo(1500) mesons 
are studied in rm scattering and pp annihilation at rest with unitarized 
multi-state Breit-Wigner (BW) formulae for scattering amplitudes and 
production processes. 

1 Unitarized multi-state BW approach 

233 

We consider a situation with several overlapping resonances with the same 
quantum numbers coupling to various hadron states and develop unitarized 
multi-resonance BW formula. 

The use of the K-matrix rather than T-matrix is a simple way to satisfy 
unitarity. The actual physics states (the most often point of view is that they 
are closely related to BW description) and the K matrix states are different. 
Thus, a writing down the S matrix as a sum of resonance terms. and then to 
solve the constraints imposed by unitarity can give a direct way to extract 
resonances parameters from data. 

Lets write the scattering matrix S in a resonance form: 

S(E) = I - i/;(i) T(E) /;(i), 
N ~~ 

T(E) = L 9r9r . 
r=l E - €r(E) 

(1) 

Here cr(E) = c~(E) + is~(E). Complex energy independent vectors of partial 
widths §r = §~+iii; have M-components (M is the number of channels). 
The scattering matrix T is free of threshold singularities that are included 
in the diagonal M x M matrix p(E). Below the k-th threshold Pk(E) => 
il(Pk(E)I (variable E is used instead of s = E2 to simplify formulae). In 
further development of work (1) the resonances widths are energy dependent 
and we can study the case when resonances lie close to thresholds. A way to 
include background is described in (1). 

A complicity of the vectors §r is another way to take into account the 
relative phases between different BW terms, thus 

r-(E) = ~ i"'l? l9irl • l9rjl 
•J L., e E - (E)' r=l Cr 

(2) 
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where 'Pij are real (constant) relative phases. · 
Find the conditions that should be imposed on vectors 9r to keep matrix 

S unitary and T invariant, i.e. s+(E)S(E)= I and S;j(E) = Sj;(E) identically 
on E. To satisfy these relations, vectors 9r are constructed in the way such 
that their imaginary parts~ are combinations of the real parts ff:: · · 

g'/. = Ur19f + Ur2~ + ... + UrN9N, (r = l, ... ,N), (3) 

where matrix U = { Urk}~k=I is a real antisymmetric matrix ( Urr = 0, u,k = 
-Ukr) and vectors 9r satisfy the relations 

M 2 L Pk(E)0k(E) l9rkl 2 = -s[S + 2Qr]c~, (4) 
k=I 

E Pk(E)0k(E)Re(g;k9rk) = -¾ [Fqr(c:; - c~) + Gqr(t:~ + t:n), (5) 
k=I 

E Pk(E)0k(E)lm(g;k9rk) = -¾ [Gqr(c:; - c~) - Fqr(t:~ + t:n). (6) 
k=I 

Here r = l, ... ,N, q = r +l, ... ,N. The constant coefficients S, Q,, Fqr Gq, 
are determined via the elements of matrix U. 

The matrix U gives a measure of overlapping of resonances. If the reso­
nances do not overlap, JE; - Ejl » r; + rj, the matrix elements Urk-+ 0, and 
vectors 9r are getting real and orthogonal: g, = g~, (9r9q) = 0. In this case 
c:;(E) can be arbitrary real functions of E (constants, when p(E) P::! const) 
and the resonance widths are 

M 

rr(E) = -2c:r(E) = L Pk(E) 0k(E)Jg,kJ2. 
k=I 

.M 

(7) 

Taking, for instance, t:,(E) = mr(E)- ½ I: Pk(E)(9rk)2, where mr(E) are real 
k=I 

functions (or constants), we obtain Flatte kind formula for several resonances: 

N 9ir9rj 

T;j = L i. I; Pk(9rk)2 
r=I E - mr + 2 k=I 

(8) 

For overlapping resonances vectors 9r are complex and the expressions for 
masses and widths can be obtained from relations ( 4) - ( 6): 

t:~(E) = 
S M 

2(S + 2Qr) ~ Pk(E)0k(E) l9rkJ
2

, r = l, ... ,N. 
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If function €f(E) is chosen as an arbitrary real function then functions €;(E) 
(r = 2, ... , N) are.determined with 

€~(E) = €f (E) + 2(F2 S cz ) x 
lr + lr 

M 

XL Pk(E)0k(E) [F1rRe(g;k9rk) + G1rlm(g;k9rk)] • (9) 
k=I 

The remaining (N -1 )(N -2)/2 equations (5)-(6) imply the limitations on the 
vectors §r (when the number of resonances N > 2) (1]. For three resonances 
(N = 3) these limitations are just the quadratic equations for each k = l, ... , M. 
When N > 3, the corresponding equations become nonlinear and practical 
usage of this method (when Pk(E) are not constants) is not simple. 

The solution of equation E - €;( E) = 0 gives the mass of the r-th 
resonance, Er (generally there might be several roots, but for Jo resonances we 
obtained one root for each r). 

Equation (7) gives the width of the r-th resonance: 

S M 

fr= rr(ir) = S 2Q LPk(ir)0k(ir) l9rkl
2

-

+ r k=l . 

Correspondingly, partial widths are given by 

(11) 

Branching ratio of the r-th resonance into the k-th channel is 

frk Erk=-,-= 
rr 

Pk(ir)0k(Er) l9rkl 2 

M 
I: Pk(Er)Ok(Er) l9rkl 2 

k=I 

(12) 

It is instructive to show two resonances case (for two overlapping resonances 
with constant widths the unitarized BW formula was derived first.in [2]): 

i,j = 1, ... , !vi. (13) 

In this case U = ( ~ ~a ) , i.e. gf = -afA, fh = aift. Parameter a is 

not entirely free but limited by the condition O ::; a < 1. The coefficients in 
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the unitary constraints (4) - (6) are: S = l - a2, Q1 = Q2 = a 2 , F12 = -a:, 
G12 = 0. According to the unitarity relation, c:i( E) and c:H E) should obey 
the relation ( 4) 

€y -r -

1- a2 M 

2(1 + a2) ~ Pk(E)0(E) l9rkl2, r = 1, 2. 

Real part of "energy" of the first resonance c:f(E) is an arbitrary real function 
of E. Lets. choose c: 1(E) in a form similar to the Flatte formula: 

. 1 - a2 M 2 

'ei(E) = m1 - z 2(1 + 02 ) ~ Pkl9lkl • (14) 

Function c:H E). is defined by relation (9): 

1 2 M 
c:;(E) = c:f - -

2 
°_ L, Pk(E)0k(E) gfkg;k. 

a k=l 

Therefore, the complex "energy" of the 2-nd resonance can be given as 

t:2(E) 
l -a2 M 

D(E) - i 2(1 + 02 ) ~ Pkl92kl\ 

D(E) 
1- 0 2 M · 

m1 + 2(l + 02)?; Pk(l - 0k(E))(l9lkl
2 

- l92kl 2
) -

l -a2 M 
--2- L Pk(E)0k(E) gfkgfk• 

a k=l 

M 
The widths of the resonances are rr(tr) = 1

1+-CT~ I: Pk(tr) l9rkl 2. Free parame-
CT k=l 

ters are m 1 , a and coordinates of vectors iff., fA. 
2 Production processes 

We have discussed so far the case of transitions between the same states 
i,j as occur in matrix T. Similarly to [3] it is simple to consider the slightly 
more general case in which 9ir is replaced by fvr where p, the production 
channel, does not occur in the sums in rr(E) and cr(E). For the transition 
from production state p to final state j we have 

N fvr9ri 
Fvi = L, E _ c:x(E) + ½rr(E) r=l r 

(15) 
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Vectors f,. like vectors 9r are complex. The amplitudes F and T have the same 
poles. 

3 Analysis of /0(980), /0(1370), /0(1500) states 
The model includes four channels: 1r1r, K k, T/T/, 41r. The phase states 

factors Pk(s) are: 

Pk(s) = J(s - sk)/s, ,,,fs1; = 2mk, k = 1,2,3, 

p4(s) = J(s - s4)/s/ (1 + exp [A· (so - s)]), 

_rs.;= 4m,,., So= 1.9 (GeV2
), A= 6.0 (Gev-2

). 

Such a choice of p4 approximates either the pp or aa phase space [4]. 
We describe well the data on the S-wave 1r1r scattering and available ( see [5]) 

mass spectra of the processes pp ➔ 1r
0 (T/T/), 1r0(41r) (due to lack of space we 

do not present figures). The tables show Jo parameters. 

Table 1. Parameters of Jo mesons (in Ge V) 
Meson II Mass I Width 

Jo(980) 0.987 0.117 
Jo(1370) 1.356 0.269 
Jo(1500) 1.549 0.151 

Table 2. Branching ratios of Jo mesons (in%) and relative (to J0 (980)) 
phases of J0 (1370) and J0 (1500) (in degrees). 

I State II Jo(980) I Jo(1370 I 'P!o(1370) I Jo(1500) I 'PJo(lS0O) I 
7r7r 77.29 8.19 -28.9 4.03 28.4 
KK 20.81 5.83 -38.0 3.37 18.2 

T/17 1.89 52.66 68.2 57.76 18.6 
41r 0.01 33.31 88.7 34.84 26.5 

References 

[1] T.S.Belozerova, V.K.Henner, Phys. Part. Nucl. 29, 63 (1998). 

[2] K.W.McVoy, Ann. Phys. 54, 552 (1969). 

[3] I.J.R.Aitchison, Nuclear Physics A189, 417 (1972). 

[4] D.V.Bugg, A.V.Sarantsev, B.S.Zou, Nuclear Physics B471, 59 (1996). 

[5] N.N.Achasov, G.N.Shestakov, Phys.Rev, 53, 3559, 1996. 



i3s Proceeding• of XII International Conference on Selected Problem• of Modern Phy1ic1, 
Section I, Dubna, June 8-11, 2003. 

Coexistence of color superconductivity and 

chiral symmetry breaking 

D.Blaschke 112 , M.K.Volkov 2, V.L.Yudichev 2 

1Universitat Rostock, D-18051 Rostock, Germany 
2Joint Institute for Nuclear Research, 141980 Dubna, Russia 

Abstract - The phase diagram for quark matter is investigated within 
a simple Nambu-Jona-Lasinio model without vector correlations for two 
parameter sets. In one of the two parametrization schemes a coexistence 
phase of broken chiral symmetry with color superconductivity is found. 

1 Introduction 
' 

The phenomenun of color superconductivity in quark matter [1] is of general· 
interest nowadays due to its relevance for the physics of compact stars [2] 
and potential precursor phenomenona in heavy-ion collisions [3). Different 
aspects have been investigated so far, whereby models of the NJL type have 
been widely employed [4-7) in studies of the phase structure in the vicinity 
of the hadronization transition. It has been shown in these investigations 
that for low temperatures T and not too large chemical potentials µ the two­
flavor Color Superconductivity (2SC) phase is favored over alternative color 
superconducting phases [8-10] (forµ;::: 430 MeV according to Ref. [10]). This 
finding is in contrast to studies which do not solve the gap equations but rather 
assume approximate SU(3) flavor symmetry [11]. 

It is generally agreed that at low temperatures the transition of the matter 
from the phase with broken chiral symmetry to the 2SC phase is of the first 
order (see e. g. [12]). The conclusion about the first order phase transition was 
drawn within models without vector interaction channels taken into account 
[13, 14]; the vector interaction has been considered in few papers [15, 16]. It 
has been demonstrated in Ref. [17] that the critical line of first order phase 
transition in theµ -T plane can have a second end-point at low temperatures, 
besides the well known one at high temperatures, as a consequence of the 
presence of interaction in the vector channel. In the present contribution 
(see [18] for more details) we demonstrate that in the absence of the vector 
channel interaction the resulting phase transition as well the phase diagram is 
sensitive to the choice of parametrization strategy and is not necessarily of the· 
first order. 
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2 NJL model with the scalar diquark channel 

To study the 2SC phase, a new order parameter, the scalar diquark con­
densate ('¢'¢) for u and d quarks in the form 

(1) 

is introduced in addition to the chiral quark condensate (qq). The new order 
parameter characterizes the domain of spontaneous breaking of color symme­
try. In (1) the matrix C = i1012 is the charge conjugation matrix operator for 
fermions. The matrices r 2 and >.2 are Pauli and Gell-Mann matrices, acting 
on the flavor indices of spinors and in the color space, respectively. 

We use here a simple and tractable nonperturbative model of quark inter­
action, the NJL model (4-7, 19, 20), which has been extensively exploited for 
the description of the properties of the light meson sector of QCD (also to 
describe the color superconductivity phase (8,21,22]). 

Leaving the strange quark and effects related to it beyond our considera­
tion, we start with the SU(2)L x SU(2)wsymmetric Lagrangian density for 
scalar (a), pseudoscalar triplet (R), and diquark (b., b.*) fields 

C = '¢;( i iJ - m0 +a+ i,5i1r)1/J - ~b. *'¢T C,5r2.\2'¢ 

1 - -r a2 + R2 lb.12 +2b.'¢,sr2>.2C'¢ -
20 

-
2

H . (2) 

where m0 is the diagonal current quark mass matrix m0 = diag(mu, md), G 
and H are interaction constants. The isospin symmetry (m~ = m~ = m0 ) is 
assumed hereafter. 

Using the Nambu-Gorkov bispinor representation q(x) = (c~~{xi), and 
integrating over the quark fields, one obtains 

(3) 

with 

(4) 

being the inverse quark propagator, M = (m0 -a-)1-i,5iR, and 1 = le· lrln. 
The trace in 3 is taken in the color, flavor, and Dirac spaces. 
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The minimum of the effective potential. ½tr = - limv4 -too 1.. J, d4x£,ff, 
V4 V4 ' · 

where v4 is the 4-volume, is given by a set of gap equations 

av,,lf = av,,lf = av,,lf = 0 
00" 86. 86.* . 

(5) 

Having solved Eq. (5) for u one obtains the gap equation (u) = 2G(~¢) 
and introduces the constituent quark mass m = - (u) + m0 • In the NJL 
model the quark condensate is ({;7/J) = -4mlf(m), where It(m) is a divergent 
integral regularized by a sharp ultraviolet cutoff at the scale A: It{m) = 

~ 
-iNc ji0(A2 _ p::,2)_£p_ •·· I p< 
(2,r)4 m2-p2 • • f 

In our model we have to fix four parameters: the four-quark interaction con- T 
stants G and H, cut-off A, and the current quark mass m0

• Without diquarks, 
there are only three: G, A, and m0

• They are fixed by the following relations: 
1) the Goldberger-Treiman relation: m = g1rF1r, where F;xp ~ 93 MeV is 
the pion weak coupling constant and 91r describes the coupling of a pion with 

k ~.T. ~.1. -2 4JA( ) 1· A( ) -iNc f 0(A2 -r)d4
p 2 ) h · k I w quar s 91r1T:'+'T'P, 91r = 2 m , 2 m = (Z1r)2 (m2 -p2 ) 2 ; a t e quar \ ic 

condensate from QCD sum rules ({;7/J)QCDSR = -4mlt(m) ~ (-240 MeV)3; 
2b) the decay constant gp for the p -+ 211: process gp = -/6g1r, g;xp ~ 6.1; 
3) the current quark mass m 0 is fixed from the GMOR relation: F;M; = 
-2m0({;7/J), M;xp ~ 140 MeVor M1r = 0 in the chiral limit. With the 
diquar~ channel inclu~ed, there is an_ addit_ional parameter H whi~h can be [. 3 
fixed with 4) the relation H = 3/4G from F1erz symmetry (as e.g. m [8]) 1. 

In the item 2, we have given two alternatives: a) one can either use the value 
of the quark condensate taken from QCD sum rule estimates or b) demand i 81 

from the model that it should describe the p -+ 211: decay. The latter is well I c 
observable in experiment, contrary to the quark condensate. d 

For simplicity, we perform all calculations in the chiral limit m 0 = 0. In this s 
case, when investigating the hot and dense quark matter, the borders between n 
phases turn out to be sharp and the critical temperature and chemical potential a 
are well defined: As a result, one obtains two different parameter sets shown in r 
Table 1. In the Type I parameter set the interaction of quarks is stronger, the 1 
UV cut-off is smaller, and the constituent quark mass is greater. As we will i ( 

see further, these two parametrizations result in qualitatively different phase 
diagrams. 

1Some authors use H = 1/2G. It turned out that within our model the resulting phase 
diagram is not much affected if one makes the choice in favor of H = l/2G. However, it 
would be preferable to fix the constant H from some observable, e. g. from the nucleon 
mass. I 

l 
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A G H m 3 - ( ;/;1/J) gp 

[GeV] [GeV-2] [Gev-2] [MeV] [MeV] 
type I 600 12.8 9.6 350 240 9.2 
type II 856 5.1 3.8 233 284 6.1 

Table 1: The model parameters for two different schemes of parameter fixing. 

We extend the N JL model to the case of finite temperatures T and chemical 
potentialµ (without isospin asymmetry), applying the Matsubara formalism. 
The thermodynamical potential per volume is 

where Wn = (2n + l )1rT are Matsubara frequencies for fermions, and the chem­
ical potential is included into the definition of inverse quark propagator· 

3 Numerical results 

·, In the case of type I parameter 
set, we have for T = JL = 0 a nonzero 
constituent quark mass ( quark con­
densate) corresponding to the ab­
solute minimum of the thermody­
namical potential at m ~ 350 MeV 
and (l~I) = 0. At a certain chemical 
potential, a new local minimum re­
lated to the diquark condensate near 
(l~I) ~110 MeV and m = 0, but it 
does not yet give the absolute mini­
mum. There is also a local maximum 
around m ~ 200 MeV and (l~I) = 0. 
As the matter becomes more dense, 
the second minimum lowers until it 
becomes degenerate with the first one 

150 

~ 
6100 
f-, 

50 

100 200 
µ[MeV] 

300 

Figure 1: The quark matter phase dia­
gram from the NJL model with the Type 
I parameter set. 

400 
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while the average value of a ( or -m) remains almost unchanged. At µ > µc ~ 
321 MeV, the second minimum becomes the absolute one and a first orde~ 
transition occurs, during which (a} discontinuously changes· to zero while th~ 
diquark condensate acquires nonzero value breaking the color symmetry of the 
strong interaction. This characterizes the color superconducting phase transi­
tion in quark matter. Further, at higherµ, only the local minimum at l~I ~ 
130 MeV and m = 0 remains. 

Atµ > µc and T > 0, the average value of l~I decreases until it reaches zero 
at Tc~ 0.57 (l~lh=o (BCS formula holds here!). Above Tc the quark matter is 
in the symmetric phase 2 where the chiral and color symmetries are restored. 
The corresponding phase diagram is shown on Fig. 1 with three phases: the 
symmetric phase (I), hadron phase (II), and 2SC phase (III). All three phases 
coexist at the triple point: Tt ~ 55 MeV and µt ~ 305 MeV. 

For the type II parameter set we 
have four phases shown in Fig. 2: 
the symmetric (I), hadronic (II), 2SC 

200~-~-~-~-~-~-~-~-~~ 

(III), and the phase of massive su­
perconducting matter (IV). The cases ~ 

of dilute (µ = 0) and very dense ~ 100 

matter (µ = 400 MeV) are qualita- ~ 
tively analogous to the type I scheme, 

50 

150 

only the absolute values of m and l~I 
are noticeably lower. At intermediate 
densities, however, there is a qualita­
tive difference. 

00 100 200 

µ[MeVJ 

I 

300 400 

Within a very narrow range of val­
ues of the chemical potential ( about 
µ = .286 MeV), there ex;ists a new 
phase of massive superconducting 

Figure 2: The quark matter phase dia­
gram from the NJL model with the Type 
II parameter set. 

matter. At higher µ the chiral symmetry is restored and the quark matter 
is in the pure superconducting phase. 3 

Thus, for the Type II parameter set, the transition from the hadronic to the 
superconducting phase is smooth. This behavior is unlike to what is commonly 
expected for a cold and dense 'matter but it parallels the findings of Ref. [17) 

2 According to recent investigations (3, 25], a so-called pseudo-gap phase as a precursor of 
color superconductivity can occur in this region. 

3 A possibility of the chiral diquark condensates to coexist at certain condition has been 
already noticed in Ref. (23] 

r 

t 
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where vector interactions are responsible for this behavior. As a consequence, 
the border between 2SC and the symmetric phases of quark matter lies at 
noticeably lower temperatures. (see Fig. 2). 

4 Conclusion 

In the framework of the simple NJL model for two flavors, a phase diagram 
is obtained for T = 0-200 MeV and µ = 0-450 MeV. Three phases are found 
for the Type I parameter set and four phases for the Type II parameter set. 
The critical temperature and chemical potential obtained in the Type I scheme 
differ from those obtained with the Type II parameter set. At T = 0, µc :=:::! 320 
Me V for the Type I parameter set and µc :=:::! 288 Me V for the Type II. The 
corresponding quark densities differ by a factor 1.5 - 1.7. The critical temper­
ature for the Type II parameter set is as low as 7 Me V and thus much closer 
to critical temperatures for the paring instability in nuclear matter systems 
(see [24]) whereas for the Type I parameter set the critical temperatures are 
an order of magnitude larger. This striking difference in the critical parame­
ters obtained within the same model calls for a more detailed investigation of 
the question of model parametrization. 
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Abstract - Two ways to experimental studying of rare decays are de­
scribed. The abvantages and the disadvantages are regarded. The devi­
ations from Standart Theory of weak interactions in some experimental 
results of different setups are discussed. 

1 Introduction 

245 

This note is devoted possible deviation from Standard Model of weak in­
teraction. The deviation appear from recent experiment data on 7r -+ ev1 and 
I{ ➔ ev7r0

• In the middle 80th were made several experiments on study these 
processes. Main goal was to measure ratio,= FA/Fv, axial-vector (FA) and 
vector ( Fv) weak currents [1] in radiative pion decay. The amplitude of the 
radiative 

7r -+ ev1 

decay is traditionally described in two terms corresponding to the inner 
bremsstrahlung (IB) and structure-dependent '(SD) radiation. 

Two experimental methods decay measuring: one used decays of stopped 
pious and other - decay in flight. Typical layouts are shown in two figures: 
in fig.l the layout PIBETA for stopped pions and in fig.2 the ISTRA setup 
for pion decays in flight. PIBETA and ISTRA setups had been described in 
details in papers [21] and [15]. 

All the previous experimental studies of the decay (1) were made with 
stopped pions. Such measurements are sensitive to the SD+ contribution 
mainly and, thus, yield two different values for , [6] [7]. The high statistics 
measurements at SIN (now PSI) give the values [8] , = 0.52 ± 0.06 and , = 
.:..2.48 ± 0.06 the positive value being more likely than the negative one. The 
positive sign of, was confirmed by the LAMPF experiment [9], where the 
unique (3.5 standard deviations) value,= 0.25±0.12 was found. These results 
have been confirmed additionally by the study of the 7r+ ➔ e+ve+ e- decay [10]. 
Nevertheless, the experimental study of the 7r ➔ ev1 decay could not have been 
considered as completed since (i) there was a discrepancy (approximately 2 st. 
dev.) between the values obtained at SIN and at LAMPF, (ii) the selection 



246 V. N.Bolotov, V. A.Duk 

, 
of the sign of I in the 1r -+ ev1 experiments was not sufficiently reliable;'.and 
(iii) the studied kinematical region was relatively small (Fig.3). 

The experimental results of study of 7r -+ ev, decay are summarizediri 
table (W - the ratio of probability of positive and negative value 1 .) · 

The high energy of the decaying particles allows to overcome the principal 
difficulties encountering in experiments with stopped pions. INR experiment 
was performed at the ISTRA set up at the end of the 80th with 17 GeV 
pion beam produced by the IHEP U-70 accelerator. The admixture of kaons 
and muons in the beam was respectively 3% and 2% respectively. Special 
attention was paid to the purity of the pion isolation. Pions decayed in 10 m 
long decay volume. Pion and electron tracks were respectively measured by the 
scintillation hodoscopes [11] and by the proportional chambers with an induced 
charge readout [12]. The electrons and photons from the decays were detected 
in 20x24 array of the lead glass EM calorimeter [13]. The experimental setup 
is described in detail in our previous papers on the kaon decays [14] and in 
the complete review of ISTRA detector [15](Fig2). Main results of the study 
of radiative pion decay were published in ref [16]. From the analysis of 1 orie 
gets: 1 = FA/ Fv = 0.41 ± 0.23. The value 1 = -2.4 is suppressed by factor of 
W = 5 • 109 , that corresponds to 6. 7 standard deviations. · 

The wide range of the kinematical variables in INR experiment has en­
abled us to determine the value of Fv without using the CVC hypothesis. 
Considering the value of Fv to be a free parameter in the fit, one gets IFvl =. 
0.014 ± 0.009. The obtained result agrees both with the CVC prediction and 
with the SINDRUM value JFvJ = 0.023 ± 0.015 [10]. The discrepancy for the 
total branching ratio (more than 3 standard deviations) is due to the negative 
(unphysical) value of the SD contribution. Authors cannot explain this result 
by a systematic error due to the specific features of event detection and/or 
their processing. So, authc;>rS [16] found some discrepancy for the total decay 
probability, and the kinematical distributions for missing events being similar 
to that of SD- radiation [16]. It should be mentioned [17] that decay (1) 
may be sensitive to the search for deviations from the Standard Model since 
a 1r -+ ev1 decay is strongly suppressed. In particular, the negative value 
for asv may be simulated by adding tensor radiation term to the structure 
dependent amplitude: 

Mr= i(eGFVud/,/2.)€µqv Fru(pe)aµ,,,(l + 15)v(p,,,) (2) 

The decay rate densities for the SD- radiation and the interference term 
between the inner bremsstrahlung and the tensor radiation are similar, so· 

! 

d 
1 
C 

s 
C 

-~'-· 
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destructive interference may reproduce the results of fit, giving Fr = (-5.6 ± 
1.7) · 10-3 . This value does not contradict the listed constraints on a tensor 
coupling from nuclear beta decay as well as from muon decay (if universality is 
supposed) [17). This result also does not contradict the previous experiments 
carried out with stopped pions either [18). 

Several works [19] were devoted to the study of possible deviation from SM 
in radiative pion decay. In one of them the involving of antisymmetric tensor 
fields into the standard electroweak theory allows to explain results of this 
work as well as [20]. It is evident that additional experimental and theoretical 
investigation of this problem should be carried out. 

Recently a report on preliminary results performed by the PIBETA Col­
laboration from PSI meson factory has appeared [21). The fits were made in 
two-demensional kinematic space of x = 2E...)m1r and >. = (x + y - 1)/x = 
ysin2(0e-y/2) on a very large statistical material (60k events 1r ➔ evy decays) 
Fig.4. Fitting experimental data requires Fr # 0( Fr ~ 0.0017 ± 0.0001). Here 
is the quotation from PIBETA Annual Progress Report: " Thus, like the IS­
TRA data, our data appear to call for a destructive interference between the 
IB term and a small negative tensor amplitude." 

The results from ISTRA and PIBETA setups don't solve the problem. That 
study should be continued. 

The Lorentz invariant form of the matrix element for decay I<- ➔ z-v1r0
, 

is [23]: 

GFsin0c 5 1 
M = v'2 u(p,,)(1 + 1 )[mKfs - 2[(PK + P1r)af+ + 

(PK - P1r)af-hc, + i fr O'c,fJPxPf]v(p1) (3) 
mK 

It consists of scalar, vector and tensor terms fs, fr, J± are the functions of 
t = (PK - P1r)2, 

Assuming linear dependence of f + = f + ( 0) ( 1 + A+ t / m1r 2 ) and real constant 
fs, fr it is getting the Dalitz plot density expression. From experimental 
Dalitz plot (Fig. 5) there are extracted of the parameters A+, fs, fr after the 
subtraction normalized MC estimated background. The result of the fit are 
summarized in Table 2. 

The comparison of these results with the most recent J<± data [20] [24] [25] 
shows that our statistics, at present, is the highest in the world and the errors 
smaller than in [20] [24] and comparable with [25]. 
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These results do not confirm the observation of a significant f s and fr 
in (20]. They are in a good agreement with (24] (25] (27] and with the theoretical 
calculation for A+ = 0.031 (26]. 

The authors thank S.V. Bolotova and E.A. Mazurova for the assistan·ce 
at preparing this work. The work is supported by the RFFI furid contract N 
03-02-16135. 
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Table 2. K--+ e-v1r0 • 

Experimental results Experiment 
or the firrst 

author of 
work 

-X+ = 0.0293 ± 0.0015 ISTRA [28] 
Fr= fr/ f+(0) = 0.045 ± 0.060 
Fs = ls/ J +(0) = 0.019 ± 0.025 

-X+ 0.0278 ± 0.0026 Shimizu[24] 
0.0284 ± 0.0027 Akimenko[20] 
0.0290 ± 0.0040 Bolotov[27] 
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0.53 ± 0.010 ± 0.1 Akimenko[20] 
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Figure 1: The layout of PIBETA setup. 
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20 40 60 80 E 1 [MeV] 

Figure 3: The kinematic regions of the 1r ➔ evy decay at the ISTRA setup 
(grey), in the stopped pion experiments (black) and at the PIBETA (black 
and light grey). Black points correspond to the maximum values of the SD± 
terms. 
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Abstract -The preliminary LEP data on the e+ e- ➔ z+ z- scattering are 
·r Ii'// t I ,?nrlysed to establ!sh a model-independent sea~ch for the signals of virt~al 

. . .,st.ates of the Abehan Z' boson. The recently mtroduced observables give 
l!Ulfl t"f'Jla 1possibility to pick up uniquely the Abelian Z' signals in these processes . 
. bki rJOiTHe mean values of the observables are in accordance with the Z' existence 
'.ll!l ni ,at-,tbe lu confidence level. 

l .Introduction 

255 

-o;"tfik nfintly stopped LEP2 experiments have accumulated a huge amount 
l(?~{lfby f?,~r-fermion processes at the center-of-mass energies y's ~ 130-207 
~~xJ1.f;_}3f~\des the precision tes~s of _the Standard Model (SM) of element~ry 
partdes tliese data allow the est1mat10n of the energy scale of a new physics 
8Jy6H~ Viik"S1

M. 

tc
-l)rrt,~iii.{J~ntc\del-dependent and model-independent approaches to detect man-
. ,rrh,. "· 111 'r· 1'h · b d h SM h b d. h 1· I 1 es~ations, o ,'p ys1cs eyon t e ave een propose m t e 1terature. t 
s:f~Tt'~)u! 

1
that it is reasonable to develop the model-independent searches 

f1 rnt·''brrt1l,w1" t· fh . 1 . h 'fi t b S h or cue hlamresta 10ns o eavy partic es wit spec1 c quan um num ers. uc 
a11 ,apprp_~_ch \S intended to detect the signal of some heavy particle by means 
of'the' ~fi/e'riiNJtital data without specifying a model beyond the SM. In this 
Jiy;;lrr\Y'1:I~l/~'ossible to derive model-independent constraints on the mass 
~'HlFf1il\1:1c\bpii1ii~s of the considered heavy particle. To develop this approach 
on,~'.Has2•t8'~~ltl\nto account some model-independent relations between the 
c:b1up'rtti.gi?'b'fl~f{~1'heavy particle as well as some features of the kinematics of 
the considered scattering processes. 
, ! 1In the pre~e?tJeport we focus on the problem of model-independent searches 

for signals of the heavy Abelian Z' boson [2] by means of the analysis of the 
Ii~J;>h ~et.ih<?:O: e;\)'l-, ➔ µ+ µ-, r+r-. This particle is a necessary element of dif­
f~~r-~! ~~~rl§. eJCtm1ding the SM. In the previous papers [3] we argued that the 
lqf~ir/1fiff5X·f~~P:Jivgs of the Abelian Z' boson to the SM particles satisfy some 
rrni~,aj:;/M~Rh1i1g!il}\{~elations, which are the consequences of renormalizability 
0[1 f j~m~:rPlrYP~'i\ ithe SM remaining in other respects unspecified. These 
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relations reduce the number of unknown Z' couplings: They give a possibility 
to introduce sign-definite observables, which uniquely pick up the Z' virtual 
state in the process e+e- ➔ [+[- [3]. 

The presented analysis has to answer whether or not one could detect the 
model-independent signal of the Abelian Z' boson by treating the LEP2 data. 
As it will be shown, the LEP2 data on the scattering into µ and T pairs lead 
to the Abelian Z' signal at no more than lo- confidence level. 

2 The observable 
The Abelian Z' boson can be introduced in a model-independent way 

by defining its effective low-energy couplings to the SM left-handed fermion 
doublets, h, the right-handed fermion singlets, f R, and the scalar doublet, 
¢ [2]. Such a definition usually means that the covariant derivatives in the 
Lagrangian contain the additional terms -i§Y Bµ/2, where Bµ denotes the 
massive Z' field before the spontaneous breaking of the electroweak sym­
metry, and g is the charge corresponding to the Z' gauge group. Diago­
nal matrices Y(</>) = diag(Y.t,,i, Y.t,,2 ), Y(h) = diag(Y"L,1u, YL,1J and numbers 
Y(f R) = YR,1 mean the unknown Z' generators characterizing the model be­
yond the SM. Such a parameterization involves the Z' interactions of renormal­
izable type, since the non-renormalizable interactions are generated at higher 
energies due to radiation corrections and suppressed by mz!. The correspond­
ing Lagrangian generally leads to the Z-Z' mixing of order m1/m1, which ; 
is proportional to Y.t,,2 and originated from the diagonalization of the neutral 
vector boson states. The mixing contributes to the scattering amplitudes and 
cannot be neglected at the LEP2 energies. 

In what follows we will use the couplings to the vector and axial-vector 
fermion currents v~,, a~, = (YR,1 ± YL,1 )/2. These two numbers parameterize 
the Abelian Z' couplings to a fermion J. Assuming an arbitrary underlying 
theory, one usually supposes that aJ and VJ are independent couplings. How­
ever, if a theory beyond the SM is renormalizable these parameters satisfy 
some relations [3]: 

VJ - aJ = VJ* - af*, aJ = T3,1Y.t,, Y.t,,1 = Y.t,,2 = Y.t,, (I) 

where[* = v1, vi = l, .. . , and TJ is the third component of the fermion weak 

isospin. In what follows we will use the short notation a = a1 = -Y.t,/2. Note 
also that the Z-Z' mixing is expressed in terms of the axial-vector coupling a. 

We investigate the processes e+ e- ➔ [+ z- (l = µ, T) with the non-polarized 
initial- and final-state fermions. To take into account the correlations (1) 

L.. 
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we introduce the observable a1(z) defined as the difference of cross sections 
integrated in some ranges of the scattering angle 0 [3]: 

11 da-1 lz daz 
a1(z) = -d 

0
dcos0- -d 

0
dcos0, 

z cos -1 cos 
(2) 

where z stands for the cosine of the boundary angle. The idea of introducing 
the z-dependent observable is to choose the value of the kinematic parameter 
z in a way to pick up the characteristic features of the Abelian Z' signals. 

The lower-order diagrams for the process describe the exchange of photon, 
Z or Z' boson in the s-channel. Two classes of the one-loop corrections are 
taken into account. The first one includes the pure SM mass operators, vertex 
corrections, and boxes. The second set improves the Born-level Z'-exchange 
amplitude by 'dressing' the Z' propagator and the Z'-fermion vertices. We 
assume that Z' states are not excited inside loops (the Z'-boson is completely 
decoupled). The differential cross-section consists of the squared tree-level 
amplitude and the term from the interference of the tree-level and the one­
loop amplitudes. To obtain an infrared-finite result, we also take into account 
the processes with the soft-photon emission in the initial and final states. 

In the lower order in m·z'! the Z' contributions to the observable are ex­
pressed in terms of four-fermion ·contact couplings, only. If one takes into con­
sideration the higher-order corrections in mz:, it becomes possible to estimate 
separately the Z'-induced contact couplings and the Z' mass. In the present 
analysis we keep the terms of order O(mzn to fit both of these parameters. 

After the expansion in mz: the observable ~a1(z) = a1(z )-afM(z) consists 
of various products a;aj, a;ai(, and a;aiakan, where 

The coefficients at these products are determined by ...js, z, and the SM cou­
plings and masses, only. They are evaluated with FEYNARTS, FORMCALC 
and LOOPTOOLS software within the MS renormalization scheme. 

Among the mentioned products of the unknown Abelian Z' couplings one 
can find the sign-definite quantities E = jj2m~a2/(41rm~,), t(, and t2

• There 
is an interval of values of the boundary angle z, at which the factors at these 
products contribute more than 95% of the observable value. To estimate the 
contributions from the sign-definite factors at a given value of the boundary 
angle z we define some quantitative criterion [4]. Maximizing the criterion, we 
found the cosine of the boundary angle z*( s ), which provides the sign-definite 
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observable (with the accuracy 4-5%): 

~a,(z*) = [Ai 1(s,z*) + (B! 1(s,z*)] f + C! 111 (s,z*)!:2 < 0, (~) 

where A.~ 1 ( s, z*), B!1 ( s, z*), and Ci 111 ( s, z*) are calculable coefficients. The 
cosine of the boundary angle z*(s) decreases with the growth of the center-of­
mass energy from 0.45 at vis= 130GeV to 0.37 at 207GeV. 

The introduced observable ~a,(z*) selects the model-independent signal of 
the A belian Z' boson in the processes e+ e- ➔ z+ z-. It allows to use the data . 
on scattering intoµµ and TT pairs in order to estimate the Abelian Z' coupling · 
to the axial-vector lepton currents. 

Although the observable can be computed from the differential cross-sections 
directly, it is also possible to recalculate it approximately from the total cross- ' 
sections and the forward-backward asymmetries (4): 

~a,(z*) = [AfB (1 - z*2
) - : (3 + z*2

)] ~o-T + (1 - z*2
) O"('SM~AfB. (4) 

As computations show, the theoretical error of the approximation is of order 
0.003pb, whereas the corresponding statistical uncertainties on the observable 
are larger than 0.06pb. Thus, the introduced approximation can be successfully 
used to obtain more accurate experimental values of the observable, because 
the published data on the total cross-sections and the forward-backward asym­
metries are still more precise than the data on the differential cross-sections. 

3 Data fit and conclusions 
In the lower order in m·2} the observable (3) depends on the one flavor­

independent parameter f, which can be fitted from the experimental values of 
~aµ,r(z*). The sign of the.fitted parameter(!:> 0) is by construction a signal 
of the Abelian Z'. To derive the central value off and the corresponding lu 
confidence-level interval we apply the usual fit method based on the likelihood 
function£(!:) ex exp(-x2(!:)/2) [4]. We also introduce the probability of the 
Abelian Z' signal, P, as the integral of .C(!:) over the positive values of L 

Actually, the fitted value of the contact coupling f originates mainly from 
the leading-order term in mz; in Eq. (3). The analysis of the higher-order 
terms allows to constrain the Z' mass. Substituting f in the observable (3) by 
its fitted central value, i:, one obtains the expression, which depends on the 
parameter ( = m~/m~,. Then, the central value of ( and the corresponding 
la confidence level interval are derived in the same way as those for L 

l 
..i,;._ 
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The contact coupling f with the lo- confidence-level uncertainty, the prob­
ability of the Z' signal, P, and the value of ( = m~ / m~, are fitted from the 
observable recalculated from the experimental values of the total cross-sections 
and forward-backward asymmetries [1 ]. We assume several data sets, including 
theµµ, TT, and the completeµµ and TT data: 

µµ: 

TT: 

µµ+TT: 

( = o.oooo366~g:ggggm, p = o.n, 
t: = -0.0000266~g:gggg~!~, P = 0.34, 

t: = 0.0000133~g:gggg~:~, P = 0.63, 

( = 0.009 ± 0.278; 

( = -0.001 ± 0.501; 

( = 0.017 ± 0.609. 

The more precise µµ data demonstrate the signal of about lo- level. It cor­
responds to the Abelian Z'-boson with the mass of order l.2-l.5TeV, if one 
assumes !F /41r ~0.01-0.02. No signal is found by the analysis of the TT cross­
sections'. The combined fit of the µµ and TT data leads to the signal below 
the lo- confidence level. Being governed by the next-to-leading contributions 
in m z;, the fitted values of ( are characterized by significant errors. The µµ 
data set gives the central value which corresponds to mz, ~ 1.1 TeV. 

We also perform a separate fit of the parameters based on the direct calcu­
lation of the observable from the differential cross-sections. The complete set 
of the available data is used. Three of the LEP2 Collaborations demonstrate 
positive values of c The combined value f = 0.00012 ± 0.0003 is also positive. 

As it follows from the present analysis, the Abelian Z' boson has to be 
light enough to be discovered at the LHC. On the other hand, the LEP2 data 
on the processes e+ e- --+ µ+ µ-, r+r- do not provide the necessary statistics 
for the detection of the model-independent signal of the Abelian Z' boson at 
more than lo- confidenceJevel. So, it is of interest to find observables for other 
scattering processes. 
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Abstract - We introduce and briefly discuss a model for propagation 
of quark and gluon jets in nuclear matter, taking into account the 
Landau-Pomeranchuk-Migdal effect and cascading of soft particles in a 
nucleus. Calculations were performed by Monte Carlo method. The role 
of Blokhintsev's fluctons in the _generation of energetic cumulative nucle­
ons produced in neutrino interactions with nuclei is investigated and the 
formation zone length is obtained. 

1 Introduction 

The main motivation for the study ultrarelativistic heavy-ion collision is 
their role in the testing quantum chromodynamics ( QCD) and their possi­
ble to manifest the predicted the quark-gluon plasma (QGP). QGP scenarios 
should be tested against the background of particle yields from elementary 
collisions, which can be described by perturbative QCD. Thus, to confirm the 
production of QGP, we require accurate knowledge the 'partonic background' 
of nuclear collision and its formation time in the dense medium. In addition, 
the study of the structure of particle jets in hard collisions continue to be 
an active field of research, in the strong interaction physics. The interest is 
directed in explore predictions of peturbative QCD on the parton cascade evo­
lution and to investigate the hadronization process which cannot be treated 
perturbatively. In order to investigate the possible emergence of guark-gluon 
plasma, it is necessary to understand the properties of ordinary multiparti­
cle productions mechanisms in more simple conditions than in the relativistic 
collisions of heavy ions. The particle-nuclear reaction offers the unique pos­
sibility of studding the space-time development of production process: the 
system formed as a consequence of a primary h - N or l - N interaction will 
interact again with other nucleons long before it achieves the asymptotic state 
that we see in free h - -N or l - N collisions. In this sense the nucleus is 
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really used as a very dense hydrogen bubble chamber. An advantage of lepton 
· induced interactions with respect to hadronic processes is the fact that the 
projectile interacts only once and the interaction can practically take place 
everywhere in the nucleus. In the case of hadron-nucleus collisions, the inter­
action takes place essentially on the surface of the nucleus. As a consequence 
not all the nucleons participate in the process. At present, effects of such type 
are investigated in different scientific centers, e.g., by HERMES and NOMAD 

. collaborations [1,2]. Besides backward proton production (according to A.M. 
Baldin [3]- cumulative production) has been studied in lepton interactions with 
nuclei. In absence of nuclear effects their production is forbidden. The anal­
ogous effect was observed in Dubna for a long time (see [4] and references 
therein). In 1957, Dmitry Ivanovich Blokhintsev suggested the interpretation 
~f Dubna's experimental data on backward elastic pd-scattering ( and other 
nuclear reactions.) He proposed that proton interacts with a narrow group of 
nucleons ( with a flucton) of the dimension less than wave length of the projec­
tile. At present, the ideas (for the first time established by D.I. Blokhintsev) 
about the peculiarity of nuclear structure at short distances is widely used in 
the study of various new effects: cumulative production, chance of the creation 
of QGP etc. In this presentation, we analyse the data of semi-inclusive DIS 
of neutrino on nuclei to find the space-time property of partons hadronization 
a!1d to include the idea of fluctons (~r multiquarks bags) in the mechanism of 
cumulative nucleons production (see, e.g., [1,5,6]). 

2 The model 
We developed a cascade model of multiproduction of neutrino-nuclei in­

teraction. On the phenomenological standard, the model describes a Markov 
branching process of the evolution of parton's jet (up to hadronization) in the 
atomic nucleus. We assume that the interaction between incident an lepton 
and a target nucleus takes place in a lepton-nucleon interaction. (More de­
tail description of the model along with the full list of the references about 
experimental data can be found in [5, 6].) The nucleus is excited by a se­
ries of collisions between secondaries (produced in the first lepton-nucleon 
interaction) and the intranuclear nucleons. At high energies the secondaries 
traverse the nucleus in such a short time that nucleons cannot rearrange them­
selves until the probe has left. In the main the target nucleons are just static 
spectators,so that the scattering problem is in the first approximation a se­
quence of two-body one. This process continues until all secondaries escape 
target nucleus. A part of the energy is spread through the nucleus to produce 
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a fully-equilibrated nucleus which then decays statistically. The process of 
generation of particles is simulated by the Monte Carlo (MC) method. The 
characteristics of the partons from neutrino-nucleon interaction 1 and of the 
produced particles with nucleons in nucleus are taken from experiments with 
free nucleons, see, e.g., (5, 6]. 

The space-time characteristics of lepton-nucleon interactions inside the 
target nucleus were taken into consideration. The cross section for the next 
collision of a secondary particle with a nucleon inside the nucleus is given by 

a - exp(l - / hN - ahN _ e r ro), (1) 

where T is the time from the moment of production of this particle in the 
previous collision and a~"J/ is the experimentally determined total interaction I 
cross section of a hadron with a free nucleon at the corresponding energy of the 
secondary particle produced. Thus, only after a relatively long time T does 
the cross section of intranuclear interaction reach the value a~"J/ (hadronic 
Landau-Pomeranchuk-Migdal effect). 

In our equation, the parameter To is a certain characteristic corresponding. 
to the formation time of the secondary generated hadron. The equation for' 

· a hN can be rewritten in the form with the formation length parameter L f ( in 
· the System of a Moving Parton, SMP). In the present model, at a finite value 
of L1, secondary particles-pions-are formed not instantly but after a certain 
time. 

3 Results & discussion 

The average multiplicities of secondary relativistic particles (mostly pions) 
and nonrelatisistic one (mostly nucleons), produced in charged-current vµ­
emulsion interaction, vs. corresponding quantities calculated in our model at 
different values of Li are presented in Table 1. It is to be noted that when 
L1 --+ 0, our model will reduce to the old fashioned cascade model in which 
secondary hadrons are produced instantly in the intranuclear interactions. In 
the present model, at a finite value of Li, secondary particles (e.g. pions) 
are not formed instantly but after a certain time. The cross section of the 
intranuclear interaction is calculated as a function of the mean free path L f (in 
the SMP) and the velocity of parton ( at fixed L f ). The slow secondary particles 
interact inside the target · nucleus more frequently than the fast ones. The 
most rapid secondaries may fly out without interaction with the subsequent 

1The parton spectra is assumed to be the same as hadronic one. That approach is based 
on the concept of "Local Parton Hadron Duality" [5, 6]. 
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nucleon inside the target nucleus. As the model prediction are sensitive to the 
formation lenght Li, in Table 1. we compare our MC theoretical computation 
:of the multiplicities vs. Li with the corresponding experimental value. Table 
). argue the accordance of experimental and calculated data at Li= 0.5 fm. 

Table 1. The average multiplicities of relativistic Nre and nonrelativistic 
Nnr particle produced in charged-current vµ-emulsion interactions obtained in 
.. the experiment compared with the values calculated according to our model. 

Experimental Calculations of the model 
data L-+ 0 L1 = 0.2 fm L1 = 0.5 fm L1 = 1 fm 

Nre .5.28±0.26 6.45±0.06 5.60±0.04 5.12±0.03 4.08±0.02 
Nnr 1.33±0.15 2.08±0.03 1.71±0.02 1.35±0.02 0.82±0.01 

Figure 1. represents the multiplisity distribution of relativistic particle. 
The dashed line correspond to the prediction with the value of the parameter 
L 1 -+ 0 ( clasical cascade model, i.e. momentary particles production in the 
intranuclear interactions). The solid line demonstrate agreement of the model 
with data at L1=0.5 fm. 

Figure 2. display the spectrum of protons emitted backwards, with respect 
to the beam direction, which have energies not allowed by the kinematics of 
collisions on a free and stationary nucleon. The solid curve on the Figure show 
our theoretical results. The left part of the curve (with big slope) manifests 
the of proton with P 2 :S 0.2(GeV/c)2). The mechanism of such slow proton 
production is a process of the evaporation of the residual nuclei excited in 
the stage of the propagaton of jets in the nuclei. It is worth to remark that 
in our approach the evolution of quark-gluon jets in nuclei in the framework 
of our model is accompained by a nucleon emission at backward angles and 
momentum 2:: 300 Me V / c [1, 6] ( cumulative nucleons). The spectrum of such 
protons is depicted by the right part of the solid curve on Figure 2 ( with smaller 
slope than the left one). In our model the underlying mechanism responsible 
for energetic protons production was the ordinary quasideuteron {ntranuclear 
absorption process. Such Cumulative Protons( CP) were observed in deep 
inelastic charged-current neutrino-emulsion interactions [1, 6] . The experi­
mental multillicity of CP 0.33±0.07 are in good agreement with the calculated 
one equal to 0.29. The effect of intranuclear absorption of particles (pions) 
by intranuclear 'deuterons' is well known in the theory of nuclear reactions at 
intermediate energy. This process is essential only for the slow pions ( of en­
ergy :S lGeV). At high energy beams this effect makes all only some percents. 
As a result, the existing experimental data on CP from semi-inclusive DIS of 
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neutrino on nuclei can be interpreted without new nuclear 'exotic' of the type 
of 'fluctons', multiquar bags etc. 2 

Further more, we insert the Three Nucleons 'F/uctons', TNF, in our model 
(in addition to quasideuteron, see above) to explore the chance to catch more. 
energetic nucleons (than it is observed in the present day experiment). The• 
cross sections of interactions with TNF is assumed to be ten times less then 
the cross section of quasideuteron intranuclear absorption process. In such a 
way, we predicted the production of more energetic nucleons (see dashed line 
in Figure 2.). This forecast can be tested in the new class of experiment with 
much more statistics [l, 2]. In conclusion, effect of the formation of particle is 
essential in many high energy phenomenon, e.g., in the study of "jet quenching" 
as a potentual signature for QGP formation [8]. 
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Abstract - The earlier suggested and developed idea of quark-hadron 
duality, underlying "bremsstrahlung-weighted" sum rules for total or po­
larized photon interaction cross sections, is applied to the description of 
excitation of light scalar mesons in gamma-gamma interactions. The em­
phasis is put on the discussion of a role of t4e scalar diquark cluster 
degrees of freedom in the radiative formation of light scalar mesons. 

1 Introduction 
The (constituent) quark hadron duality sum rules, used here, follow from 

the assumed equivalence of two complete sets of state vectors, saturating cer­
tain integral sum rules, one of the sets being the solution of the bound state 
problem with colour-confining interaction, while the other describes free par­
tons. The sum rules satisfying the assumed duality condition have been cho­
sen to be those related to fluctuation of the relativistic electric dipole moment 
(EDM) operator in the configuration space of valence partons in a given sys­
tem taken in the "infinite momentum" frame. The relevance of these sum rules 
has been tested in some models of quantum field theory [l] and used to de­
rive a number of seemingly successful relations for the hadron electromagnetic 
radii [2] and two-photon decay widths of the lowest spin meson resonances [3]. 
The two-photon-meson cou.plings give rather direct information on the flavour 
content of considered states. Moreover, the salient feature of our sum rule 

· approach enables one to put forward most distinctly the flavour content of the 
states at hand and, at the same time, somehow to circumvent many of mode1-
dependent aspects of the detailed structure and dynamics of multi-component 
bound quark-gluon states. Therefore they could be especially useful in the case 
of hadrons with the complex and poorly understood constituent structure. 

In what follows, we only mention briefly some technical details. Varying 
the polarizations of colliding photons, one can show that a linear combination 
of certain ''f'Y ➔ qij cross-sections will dominantly collect the qij- states with 
definite spin-parity and hence the low-mass meson resonances with the same 

? L 
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quantum numbers. The polarization structure of the transition matrix element 
M ( J PC B 2,) for the scalar meson resonance 

G[(E1E2)(k1k2) 
(E1k2)(E2k1)] (1) 

where kf are the momenta of photons, Ef are polarization vectors of photons, 
G is a constant proportional to the coherent sum of amplitudes describing the 
two-photon annihilation of partons, composing a given meson. By definition 

(2) 

where m is the meson mass and r ,, is the two-photon width of a given me­
son. Introducing the 11 - cross-sections u 1.(lll ( and the integrals thereof) that 
refer to colliding plane-polarized photons with the perpendicular (parallel) 
polarizations, and up corresponding to circularly polarized photons with par­
allel spins, one can then show that the combinations of the integrals over 
the bremsstrahlung-weighted and polarized ,, ➔ qij cross-sections, h -
(1/2)/p, /11 - (1/2)/p, Ip will be related to low-mass meson resonances hav­
ing spatial quantum numbers jPC = o-+ and 2-+, o++ and 2++(>, = 0), 
2++(,\ = 2), ifwe confine ourselves to the mesons with spins J::; 2 (.\ = 0 or 2 
being the z-projection of the total angular momentum of the tensor mesons). 

In what follows, we focus mainly on scalar meson sum rules in the light 
quark sector. As is known, the long-lasting experimental efforts have presently 
resulted in identification of a few scalar states with masses below 2Ge V, la-
belled by isospin (4, 5]: · 

I= 0 : J0 (600) or u(500),f0 (980), J0 (1200-:- 1500), 

!0 (1506), J0 (1710); 

I= 1/2: K(800), I<;(1430); 

I= 1 : a0 (980), a0 (1450). 

Following (6, 7] we assume that the listed resonances are interpreted as two 
meson nonets and a scalar glueball with the mixed valence quark and gluon 
configurations. In the states lying above 1 GeV the dominant configuration 
is, presumably, a conventional qij non et mixed with the glue ball of (quenched) 
lattice QCD. Below 1 GeV the states also form a nonet, where the central 
binding role is played by the SU(3)c(f) -triplet di quark clusters ( qq h( ijij}J in 
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S-wave with some qq admixtures in P-wave, and maybe less important glueball 
part in their state vectors. 

We begin with consideration of only constituent quark and scalar diquark 
as the basic degrees of freedom in the first stage of 11 -reactions: 1 + 1 -t 
q + q, ( qq) + ( qq) where the quark and di quark are treated as elementary struc­
tureless spinor and scalar massive particles with "minimal" electromagnetic 
interaction. 

Evaluating cross-sections and elementary integrals we get the sum rules for 
radiative widths of resonances with JPC = o++ 

L r(S;-: 2,) ~ I: ls(q) + L ls(qq), 
i ms; q qq 

(3) 

where 

3 2 251ra
2 

ls(q) = l61r2 (Q(q) ) 9m~' (4) 

3 2 2 21ra2 

ls(qq) = 16 z (Q(qq) ) -9 z . 
1T mqq 

(5) 

All the integrals over the parton (that is the quark and diquark) production 
cross sections are rapidly converging and all the resonance cross sections are · 
taken in the narrow width approximation so that for the wide scalar mesons 
the masses in Eq.(3) have rather the meaning of the "mean value"-masses. 

The term ls(qq) in Eqs.(3) and (5) corresponds to ascribing a possible role' 
to scalar diquarks as a constituent triplet (ds), (us), (ud) of "partons" with 
respective masses and electric charges composing, at least in part, the scalar 
meson nonets. 

Assuming now for a0 (980) either of two limiting options: (a)- the isovec­
tor quark-antiquark qq-structure, or (b )- the isovector diquark-antidiquark 
(qs)(qs) -configuration, and using Eq.(3)-(5), one gets 

r ')'')'( ao(980)) ~ 1.6 ( .12) ke V (6) 

The lower value of the width in (6) is obtained if, following [8], we accept for 
the diquark masses mqs ~ 560 MeV and mud~ 320 MeV (those seem to be of 
minimal value as compared to fitted mass values of many other models, thus 
stressing maximally the role of the diquark configurations in various hadrons), 
while the masses of light quarks are taken to be mu,d ~ 240 MeV and ms ~ 
350 MeV, according to [2]. 

L-
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Both values in Eq.(6) are different from r,,,,(a0 (980)) = .30 ± .10 keV [9], 
that is in between two. Another evidence against the interpretation of a0 (980) -
meson as a usual qq-state is the quenched LQCD evaluation of the scalar, 
isovector quarkonium mass m(O++, JG= 1-) = 1.330(50) GeV [10). Therefore, 
it is quite natural to suppose the a0(980)- meson to have a mixed structure 
(together with its higher-lying partner) 

lao(1474)) = cos0j(I/V2)(uu - dd)) + 

+sin0l(I/V2)((ds)(ds) - (us)(us))), 
lao(985)) = -sin0j(I/V2)(uu - dd)) + 

+cos0l(I/V2)((ds)(ds) - (us)(us))). 

(7) 

(8) 

By convention, we take here the phases of Jls(q) and Jls(qq) as +1 and-I, 
respectively. Further, with the fit 0 !::='. 10° to reproduce rTI(a0 (980)) !:::'. .3 keV, 
one gets also r,,,,(a0 (1474)) !:::'. 4.6 keV, which should be tested experimentally 
yet. 

2 A model of mixing matrices for light scalar mesons 

We turn now to a "reconstruction" of the bare masses of two (finally) mixed 
scalar nonets. Taking for grante"d the physical masses 1474 MeV - for higher­
mass, qq-dominant isovector meson and 985 MeV - for lower-mass (qq)(qq) one, 
and having defined 0 ~ 10°, the diagonal and nondiagonal elements in the·2 x 2 
mass-matrix of the isovector states are easily derived to be M (I = I; ( qq)) = 
1434 MeV, M(I = I; ((qs)(qs))) = 1005 MeV, and the universal, with the 
tentatively assumed SU(3)-symmetry, nondiagonal "mass" h = 95 MeV. In 
fact, it represents the transition coupling between states of two multiplets. 

The "bare" masses of the isospinor states are M(I = 1/2; (qs)) ~ 1435 MeV 
and M(I = 1/2; ((ud)(qs))) ~ 812 MeV. They correspond to "physical" masses 
m ~ 1450 MeV and m ~ 790 MeV, according to latest data [?,5). 

At last, to define the mass of the lightest, isoscalar "bare" state we invoke 
the mass formula of the ideal-mixing-form 

M((ud)(ud)) = 2M((ud)(us)) -
-M((qs)(qs)) ~ 620 MeV. (9) 

The mixing of a glueball and 2 pairs of isoscalar mesons is described by the 
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following mass matrix, which is diagonalized by the masses of 5 physical states: 

Ma f fv'2 g gv'2 
f Ms, 0 hv'2 0 

fv'2 0 MN, h hv'2 I (10) 
g hv'2 h Ms2 0 

gv'2 0 hv'2 0 MN2 

==> diag (mi, m2, m3m4, ms)-

Ma and Ms,,N, (or Ms2,N2 ) stand for the mass of the primitive glueball, and 
S1 = ss and N1 = nn = (uu + dd)/v'2 (or S2 = ((ns)(ns) = ((ds)(ds) + 
(us)(us))/v'2 and N2 = (ud)(ud))) mesons, respectively, the subscripts 1 or 2 
indicating the quark (or diquark) composition of the nonet the state belongs 
to; m; stand for the masses of the physical states; f ( or g} is the glueball­
qij( or( qq)( qq))-meson coupling and h is the nondiagonal quark-to-diquark pair 
transition coupling. Following [11], we take all couplings having dimensionality 
(mass), in accord with the dimensionality of the diagonal entries of (10). All 

1 
quantities in (10) are considered to be real numbers. ! 

The mixing between the glueball and the low-lying (qq)(qq)-states can be 
less important also due to relative smallness of the lowest order gg-to-(qq)(qq) 
transition amplitude as compared to the gg-to-qq transition. The relevance 
of these arguments is illustrated also by the (approximate) validity of mass­
formulae, Eq.(9), which could be strongly violated if the annihilation-induced 
mixing of different flavours would take place. Therefore, we neglect, as a first 
approximation, the coupling g in the general 5 x 5 mass-matrix. 

Defining the relation between the physical and bare states 

[ 

!0(1710) l [ G ) fo(1506) S1 

fo(m3) = U(5) N1 , 
fo(980) S2 
fo(mu) N2, 

(11) 

where masses of the underlined states are considered to be defined and 

[ x, y, z, u, v, 
X2 Y2 Z2 U2 V2 

U(5) = X3 Y3 Z3 . U3 V3 I ' (12) 
X4 Y4 Z4 U4 V4 

Xs Ys zs Us Vs 

k,-
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we obtain the expression for the individual two-photon width of a scalar meson 
in the form 

f-y-y(fo(m;)) = m7(125a2 /77767r) x 

x (y;As1 + z;AN1 + u;As2 + v;ANJ2, 

As1 = .,/2/(5m.), AN1 = 1/mq, 

As2 = -.,/i/(v'5mqs),AN2 = -2/(5v'5mud), 

(13) 

(14) 

(15) 

the coefficients y;, .. , v; being the probability amplitudes to find the quark con­
figurations S1 ,N1,S2 ,N2 in the state vector of the (iso)scalar meson fo(m;) 
with mass m;. The minus signs in front of AN2 ,s2 in Eq.(15) is the reflec-

tion of our convention about opposite signs of the square-roots J ls,N( q) and 

J ls,N( qq), defined in Eq.(5) and effectively representing the fermion-quark 
and boson-diquark loops in the meson-two-photon transition diagrams. 

The orthogonality of the matrix U in Eq.(12) provides the "inclusive" sum 
rule to be fulfilled 

I: f-y-y(foim;)) = IAs11 2 + IAN1l2 + 
i m; 

+IAs2l
2 + IAN21

2 (16) 

With assumed g ~ 0, the unknown elements in the mass-mixing-matrix (10) 
are the coupling f and masses Ma and M 51 , while among the physical masses 
the essentially unknown is a mass 1.2 :S m(3) :S 1.5 GeV [4]. It seems worth­
while to mention that starting with the evident constraint J2 2:- 0, we have 
obtained the reasonable bounds for these three quantities (in units of GeV) 

1.31 :S m(3) :S 1.55, 1.47 :S Ma S 1.51, 

1.49 S Ms1 S 1.69, (17) 

just from basic secular equations with using the known masses of the physical 
mesons. The lower-bound of Ma and upper-bound of M 51 in (17) are close to 
the values of respective masses found in [11] while their m(3) = 1.26 GeV is 
somewhat beyond of our more general bound. 

3 Concluding remarks 

The main results of this work are the following. We applied the idea of the 
(qq) - (qq)(qq)-configuration-mixing to a simpler isovector sector of two low­
lying scalar nonets to fit the two-photon width of a0(980) and extract thereby 
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the nondiagonal element in the mass-mixing-matrix. From the resulting more 
general (iso )scalar-mass 5 x 5-matrix, we derived the bounds on missing masses 
Mc and Ms1 of the "bare" glueball and scalar strangeonium states and poor 
defined mass of the so-called f0 (1370)-resonance. 

Under the assumptions that the bare glueball-two-diquark and also higher­
lying "strangeonium"(ss)-two-diquark mixing can be neglected we obtained 
[12] masses of lowest J0 (590),f(986) and f0 (1470) (iso)scalar resonances in 
reasonable agreement with latest data of the E-791 and FOCUS Collabora­
tions [5]. The preliminary estimates of the two-photon decay widths can be 
confronted only with the experimental value .56 ± .11 keV for f0 (986)-meson 
and, with stated reservations [4], for the f0 (m3 )-resonance, where it is in the 
range of 3.8 ± 1.5 -:- 5.4 ± 2.3 keV. The theoretical estimates via dual sum 
rules [12] are, roughly, two times larger than the cited data. Clearly, for more 
quantitative statements we have to have new and more accurate i'Y data. 
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Abstract -The recent experimental data on the proton structure function 
F2 collected at the JLab by the CLAS collaboration are analyzed within a 
Regge-dual model suggested earlier [1,2]. In this paper the new improved 
fits are obtained and their physical implications are discussed. 
Dedicated to the memory of M. Kotsky 

1 Introduction 

The recently measured inclusive electron-proton cross section in the nucleon 
resonance region, performed with the CLAS detector at the Thomas Jefferson 
Laboratory, has provided new data [3] for the nucleon structure function F2 

(SF) with with previously unavailable precision. A preliminary analyses of 
these data within a Regge-dual model was presented at this conference and 
subsequently published in Refs. [1, 2]. The present contribution contains im­
proved fits to the data [3] within the same model. Let us remind the reader that 
the basic idea behind the model (2] is to combine in a single explicit expression 
resonance-Regge (or Veneziano) duality with quark-hadron or (Bloom-Gilman) 
duality. The basis for this unification is a dual amplitude with Mandelstam an­
alyticity, properlycontinuesofmassshell. The resulting scattering amplitude, 
in principle is applicable for all values of its Mandelstam variables as well as 
the virtualities of the external particles and thus can be applied to Comp­
ton scattering, whose forward imaginary part is related to the DIS structure 
functions as well as to the electroproduction of vector mesons of real pho­
tons, the latter being called deeply virtual Compton scattering. The model 
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is dual in two dimensions, one in the hadron sector (Veneziano duality), the 
other one relating the quark-parton and the hadron degrees of freedom. Until 
now we considered the high-energy (low-x) Regge domain separately from th~ 
low-energy (large-x) resonance region. The two should match since both are 
limiting cases of the basic dual amplitude (see [4]). To understand better the 
complicated structure of the direct-channel resonances the low-energy behav­
iour of the amplitude was analyzed [2] with special emphasis on the form of the 
nonlinear, complex baryonic Regge trajectories and the form of the transition 
form factors, both being constrained by the dual model. Details of the model 
can be found in [2] and earlier references therein. A similar analysis using 
earlier data [5] was carried out in our previous paper [6], and in the Ref. [1] we 
tried to perform a fit over both datasets from [5] and [3]. Here, for brevity, we 
consider only the pole decomposition of the whole dual amplitude, appropriate 
in the resonance region of the CLAS data. 

2 Regge-dual model 

The main starting point [6, 1, 2] is the inclusion of the three prominent 
resonances, N*(1520), N*(1680) and b.(1232) plus a background, dual to the 
Pomeron exchange. The SF is still let to depend on effective trajectories, whose 
parameters are fitted to the data. This approach is justified "a posteriori" in 
the sense that the parameters of the effective trajectories are found to be close 
to those fitted to the spectrum of the baryon resonances. 

The imaginary part of the scattering amplitude is written as a sum of the 
contributions from the resonances plus the background, 

Im A( s, Q2
) = N { [Im A( s, Q2)]R + [Im A( s, Q2)]Ba} (1) 

Accordingly, the resonance contribution takes the following form: 

Ima· 
2 l . " f2(Q2) J 2 , [ImA(s,Q)n= ~ i (n·-'R.eai)2+Imai 

· j=tl, N1, N2 J 

(2) 

where O:j and Im O:j is the relevant Regge trajectory, and the form factors are 
calculated as described in details in previous papers [1, 2]. For example, the 
form factor for the b. resonance can be written as 

J;(Q2
) = q2 c

2 (Q~) (c3(Qo)IG+(O)l2 + c5(Qo)IG-(0)12) , (3) 

where c(z) = Q2~z2 and IG+,-(O)I = /4-;;,~IA1j2,3/2I; A1;2 and A3;2 are 
the helicity photoproduction amplitudes. Si~il;,'r expressions can be cast for 
other contributions. 
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The imaginary part of the forward scattering amplitude coming from the 
background is written as 

[Im A(s, Q2)]Ba = ~ G 4(Q ) Imi ~ j c j (n'!'in - Re ·) 2 + Im';! 
j=E,E' J J J 

(4) 

Here ntn is the lowest integer, larger than Max [Rej], ensuring that no 
resonances will appear on the exotic trajectory. The advantage of such choice 

· is that the two terms of the background depend on two different scales, Q1 
and Q1,, so they will dominate in different regions. 

The model constructed in this way, has 23 free parameters: each resonance 
is characterized by three (the intercept is kept fixed) coefficients describing the 
relevant Regge trajectory plus the two helicity photoproduction amplitudes. 
The form factors leave only two free parameters, Q0 and Q~. Finally, the 

· background, contains 8 free parameters: 4 for the two exotic trajectories, 2 
energy scales QE and QE, and two amplitudes GE and GE'· With the overall 
normalization factor, N this gives a total of 23 free parameters. The resulting 
fits to the CLAS data are presented in Table 1. 

3 Description of the fit 
Initially, the fit has been made by keeping some of the parameters fixed, 

close to their physical values, particularly those of the Regge trajectories and 
of the photoproduction amplitudes. Also, a single-term background was used. 
The resulting fit (fit 1) is shown in Table 1. Subsequently (fit 2) some of 
the parameters of the Regge trajectory were varied. Consequently the x2 was 
improved, although still remaining unsatisfactory. Actually in t_his fit 2 we 
obtain recently a substantial improvement: from x2 = 4.69 [6] to x2 = 2.88. 
We can see even bigger improvement, comparing to the result of the similar fit 
in [1] leading to Xd.o./. = 9.4, but this should be taken with care, since in [1] 
the used dataset included both data from [5] and [3]. Finally, we let all the 
parameters vary (fit 3) with the result reported in the Table. This final fit is 
quite good, with Xd.o./. = 1.30. 

The progress in the fits is shown in Fig. 1, where the experimental data 
are plotted against the structure functions for four different values of Q2 with 
the parameters from the three different fits. 

4 Moments and duality ratio 

Another important quantity to evaluate is given by the moments of the 
structure functions, as they can be used to estimate the role of the non­
perturbative effects (higher twists). In order to study higher twists effects, 
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it is essential to have a complete knowledge of the F2 covering the entire 
x-range for each fixed Q2

• Higher twists can be well established only with 
higher moments (n > 2), meanwhile for M2 their contribution is small even at 
Q2 ~ 1 Ge V2 • Therefore the most interesting kinematical region lies between 
0 and 5 GeV2 and large values of x, where the higher moments dominate. The 
JLab data and relevant calculations in [3] cover most of this region. There­
fore, we have evaluated, using the explicit expressions and parameters fitted in 
the previous section, the Nachtmann (N) and Cornwall-Norton (CN) moments 
within our Regge-dual model and compared them with the data of the CLAS 
collaboration [3] as well as with those from Ref. [7]. The relevant moments are 
defined as 

where 

M;,(Q 2
) = fo1 

dxp~(x)F2(x, Q2
) 

[ _ {s:~1 
P(x_,Q2

) for I= N 
Pn(x) - xn-2, for I= CN 

P(x, Q2
) = 

r = /1 + 4Af2x2/Q2, 

[
3 + 3(n + l)r + n(n + 2)r2

] 

(n+2)(n+3) 

e = 2x / (1 + r) . 

(5) 

We have used the parameters of fit 3 from Table l. In Fig. 3 we plot the 
Nachtmann moments for n = 2, 4, 6, 8 together with the results from [3]. In 
Fig. 4, the calculated N- and CN-moments are compared with those from[7]. 
On this second set of figures the errors in the momenta are not displayed; 
according to [7] they should be less than 5%. 

As seen from the figures, the agreement between our model and the data is 
quite good in the region Q2 < 5 GeV2, where the SFs were fitted to the data. 
The discrepancies increase with Q2

, away from the measurements. Also, note 
that in our calculations the elastic part of the SF (for x = 1) was not taken 
into account (see section III.Gin Ref. [3]). 

Duality Ratio. The validity of the parton-hadron duality for our Regge-dual 
model can be investigated by looking at the so-called 'duality ratio' 

/( Q2) = 1•max ds Ffe• I 1•max ds F;ca/ing ' 
Sm•n Sm,n 

(6) 
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where we have fixed the lower integration limit Smin = s0 , varying the upper tive 
limit Smax varying between 5 GeV 2 and 10 GeV2 • For fixed Q2 the integration 

I 

scati 

.... 



l 

.l 

r 
n 

Quark-Hadron Duality in the CLAS Data on the Proton Structure Function 277 

variable can be either s ( as in our case), x or any of its modifications ( x', ~, ... ) 
with properly scaled integration limits. The difference may be noticeable at 
small values of Q2 due to the target mass corrections (for details see e.g. [3)). 
These effects are typically non-perturbative and, apart from the choice of the 
variables, depend on detail of the model. 

In choosing the smooth "scaling curve" F;"aling (actually, it contains scaling 
violation, in accord with the DGLAP evolution) we rely on a model developed 
in [8] and based on a soft non-perturbative Regge pole input with subsequent 
evolution in Q2, calculated [8] from the DGLAP equation. 

The function F.fe• is our SF with the parameters of fit 3 (see Table 1 ). 
The results of the calculations for different values of Smax are shown in Fig. 
l. However, we note that the duality ratio may depend on the details of the 
different parameterizations, therefore any interpretation has to be taken with 
care. 

~ Conclusions and discussions 

The main objective of the present study was a phenomenological analyses 
of the CLAS data in a model within the low-energy decomposition of our 
Regge-dual model. In perspective, there is the possibility to link low-energy, 
resonance physics (and the JLab data) with the high-energy (or low x) physics 
(from HERA) by "Veneziano duality" (apart from parton-hadron duality), 
inherent in the model [4]. 

One of our main observations is the important role of the little known 
background. The existing parameterizations of the background are based on 
purely phenomenological models, whereas we treat the background on the same 
footing as the resonances, both corresponding to Regge trajectories within the 
analytical S- matrix theory. 

This bold idea was put forward in paper [9], where a new concept, called 
super-broad resonance approximation to dual amplitude was suggested. As 
suggested by its name, this approximation is opposite to the well-known narrow­
resonance approximation of Veneziano. The difference is that while the shift 
of narrow resonances to physical ones destroys the attractive features of the 
narrow-resonance dual amplitude, a similar procedure, i.e. shifting the super­
broad exotic "resonances" to the physical sheet of the amplitude is harmless 
for the model (for more details see [9)). 

The difference between resonances poles and the background, is qualita­
tive rather than quantitative: both correspond to definite singularities of the 
scattering amplitude. The same is true for the high-energy limit of the scatter-
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ing amplitude, containing two components ordinary Regge pole exchanges and 
the Pomeron, responsible for diffraction. Moreover, since the the background 
is dual to the Pomeron, we expect that its high-energy ( or low-x) behaviour 
matches that of the Pomeron, producing non-decreasing cross sections (struc­
ture functions). Actu~lly: this is ~ot the c~se for a l~mited (small!) nur~berof! 
poles. As we know, withm Veneziano duality, the high energy Regge (mclud- · 
ing that of the Pomeron) behavior is built up from a large number of direct 
channel resonances. We anticipate that this shortcoming can be resolved by 
a relevant choice of the exotic trajectory by still keeping a limited, or even 
small number of exotic poles. This option will be studied in a forthcoming 
paper [10]. 
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parameters Fit 1 Fit 2 Fit 3 

o:o -0.8377° -0.8377° -0.8377° 
a1 [Gev-2

] 0.9500° 0.9551 0.9825 
N* 1 a2 [Gev- 1

] 0.1473° 0.1500 0.0920 
A2(1/2) [Gev-1

) 0.0484E-2° 0.0484E-2° 0.8647E-2 
A2(3/2) [GeV-1

) 0.2789E-1° 0.2789E-l° 0.9634E-2 

ao -0.3700° -0.3700° -0.3700° 
a1 [GeV-2

) 0.9500° 0.9646 0.9551 
N* 2 a2 [Gev-1

] 0.1471 ° 0.0699 0.0949 
A2(1/2) [GeV-1

] 0.0289E-2° 0.0289E-2° 0.9724E-2 
A2(3/2) [GeV- 1

) 0.1613° 0.1613° 5.1973E-11 

ao 0.0038° 0.0038° 0.0038° 
a1 [GeV-2

) 0.8500° 0.8815 0.8605 
I:::,. a2 [GeV-1) 0.1969° 0.1622 0.2005 

A2(1/2) [GeV-1
) 0.0199° 0.0199° 5.3432E-08 

A2(3/2) [GeV-1
) 0.0666° 0.0666° 0.0866 

GE1 6.5488 2.8001 3.6049 
o:o 0.3635 0.7499 0.3883 

a2 [GeV-1) 0.1755 0.1699 0.3246 
E1 Q1

1 
[GeV2

) 5.2645 4.3000 3.9774 
SE1 [GeV2

) 1.14° 1.1740 1.14° 

GE2 - - -0.6520 
ao - - -0.8929 

E2 a2 [GeV- 1
) - - 1.7729 

Q12 [GeV2
] - - 2.4634 

SE2 [GeV2
) - - 1.14° 

so [GeV2
] 1.14° 1.14° 1.14° 

Qa2 [GeV2
) 0.4089 0.4699 0.9998 

Q5 [GeV2
) 3.1709 2.5499 1.8926 

N [Gev-2) 0.0408 0.05593 0.0567 

xL.J. 12.92 2.8824 1.3005 

Table 1. Parameters of the fits. The symbol O refers to the fixed parameters. 
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Figure 1: Comparison between three different fits performed in the present 
model (see text). 
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Figure 3: Nachtmann moments, M;/ for n = 2, 4, 6, 8. The plot compares 
the moments calculated from the Regge-dual with those extracted from the 
data and reported in (3) (inelastic part). 
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Figure 4: Nachtmann moments, M;/, and Cornwall-Norton moments, M~N, 
for n = 2, 4, 6, 8. These plots show the comparison between the moments 
evaluated according to our Regge-dual model and the values extracted from 
the electron-proton scattering data reported in (7] (inelastic part). 
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Abstract - The data for (p;)(Et) of J/tp produced in Pb-Pb collisions at 
the CERN-SPS contain information about when anomalous suppression 
is active. A general transport equation which describes transverse motion 
of J/tp in the absorptive medium is proposed and solved for a QGP and 
a comover scenario of suppression. While inconsistencies appear in the 
QGP, the comover approach accounts for the data fairly well. For central 
collisions the bulk of anomalous suppression happens rather late, 3-4 fm/ c 
after the nuclear overlap. 

The discovery in 1996 of anomalous J/ip suppi:ession in Pb-Pb collisions at 
the SPS has been one of the highlights of the research with ultrarelativistic 
heavy ions at CERN [1]. Does it point to the discovery of the predicted quark 
gluon plasma (QGP)? Six years later the situation is still confused, since several 
models - with and without the assumption of a QGP - describe the observed 
suppression, after at least one parameter is adjusted. The data on the mean 
squared transverse momentum (p;)( Et) [2] for the 'Ip ( this symbol stands for J/ip 
and 'l/J') in the regime of anomalous suppression and as a function of transverse 
energy Et have received less attention - for no good reason. We claim: (p;)(E1) ; 

contains additional information, namely about the time structure of anomalous 
suppression. This idea has. already been considered more than 10 years ago [3] : 
( c.f. also more recent works [4, 5]) and is based on the following phenomenon: ! 
Anomalous suppression is not an instantaneous process, but takes a certain 
time tA. During this time 'l/J's produced with high transverse momenta may leak 
out of the parton/hadron plasma and escape suppression. As a consequence, 
low Pt 'l/J's are absorbed preferentially. The (p;) of the surviving ( observed) ip's 
shows an increase c5(p;), which grows monotonically with tA [5]. In this letter 
we propose a general formalism how to incorporate the effect of leakage into the 
various models, which have been proposed to describe anomalous suppression. 
We extract information about the time tA from a comparison with experiment. 

It has become customary to distinguish between normal and anomalous 
values of suppression S(E1) = rf'"(E1)jaDY(E1) and values of (p;)(E1) for ?p's 

~-
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produced in nuclear collisions, c.f. reviews (6, 7]. Here, u1 is the production 
cross section of a 1/; and uDY is the Drell-Yan cross section in an AB colli­
sion. By definition, 1/;'s produced in pA collisions show normal suppression via 
inelastic 'lj;N collisions in the final state and normal increase of (p;) (above 
(pl} NN in N N collisions) via gluon rescattering in the initial state. These 
normal effects are also present in nucleus-nucleus collisions and happen, while 
projectile and target nuclei overlap. Anomalous values of S and (p;} are at­
tributed to the action on the 1/; by the mostly baryon free phase of partons 
and/or hadrons (we call it parton/hadron plasma) which is formed after the 
nuclear overlap. It may lead to deconfinement of the 1/; via colour screening, 
dissociation via gluon absorption or inelastic collisions by the comovers during 
the later period of the plasma evolution. In this letter we describe anomalous 
1/i suppression within a transport theory and apply it to two rather different 
scenarios: (I) Absorption involving a threshold in the energy density (QGP), 
(II) continuous absorption via comovers. 

We denote by du"' /dft't(Pt, Et) the cross section for the production of a 1/; 
with given Pt and in an event with fixed transverse energy Et. It can be related 
to the phase space density J"' via 

ddu~"' (Pt, Et)= lim / dbP(Et; b) J ds J"'(s,pt, t; b). 
Pt t--.oo 

(1) 

Here, P(Et; b) describes the distribution of transverse energy Et in events with 
a given impact parameter b between projectile A and target B. We follow 
ref. (8] in notation for P(E1; b) and the values of the numerical con~tants. The 
function J1 (s,p1, t; b) is the distribution of 1/;'s in the transverse phase space 
(s,p1) at time t for given b. 

We defiIJ.e t = 0 as the time, when the process of normal suppression and 
normal generation of (p;) has ceased and denote by Jt(s,p1;b) the distribu­
tion of 1/;'s at this time. We take ft as initial condition for the motion and 
absorption of the 1/;'s due to anomalous interactions. The evolution of the 1/; 
is described by a transport equation 

(2) 

The time dependence arises from the free streaming of the 1/; with transverse 
velocity Vt = ft/ Jm~ + p; (1.h.s.) and an absorptive term on the r.h.s., where 

the function a(s,Pt, t; b) contains all details about the surrounding matter and 
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the absorption process. We have left out effects from a mean field, because the 
elastic 'ljJN cross section is very small and have also neglected a gain term on 
the r.h.s., because recombination processes cc+N ➔ '¢+X seem unimportant 
at SPS energies since at most one cc is created per event. 

Eq. (2) can be solved analytically with the result 

J1(s,Pt, t; b) = exp ( - l dt' a(s + Vt(t - t'), Pt, t'; b)) Jt(s + iJit, Pti b), (3) 

which for t = 0 reduces to J1 = f7'- If we denote by t1 the time when 
anomalous suppression has ceased, a( s, Pt, t; b) = 0 for t > t 1, the limit t ➔ oo 
in eq. (1) can be replaced by setting t = t1, since the distribution in Pt does 
not change for larger t's. 

There is little controversy about '¢ production and suppression in the nor­
mal phase: The gluons, which fuse to the cc, collide with nucleons before fusion 
and gain additional p;. The '¢ on its way out is suppressed by inelastic 'lj;N 
collisions. Neglecting effects of formation time [9], one has 

Jt(s,pt; b) = u'JIN J dz A dzB PA(s, ZA) PB(b - s, ZB) (p;r;./ exp (-p;/(p;)N) 

x exp (-utbs [TA(s, ZA, oo) + TB(b - s, -oo, ZB)]), (4) 

where 

(p;) N(b, s, ZA, ZB) = (p;)tN+ llgNPr/ [TA(s, -oo, ZA)+TB(b-s, ZB, +oo)] (5) 

with the thickness function T( s, z1, z2) = fz7 dz p(s, z ). All densities PA, PB are 
normalized to the number of nucleons (po is the nuclear matter density). We 
shortly explain eqs. (4) and (5): For given values band sin the transverse plane 
the '¢ is produced at coordinates ZA and ZB in nuclei A and B, respectively. 
On its way out, the'¢ experiences the thicknesses TA(s,zA,oo) and TB(b-' 
s, -oo, ZB) in nuclei A and B, respectively and is suppressed with an effective 
absorption cross section utbs· The two gluons which fuse carry transverse 
momentum from two sources. (i) Intrinsic Pt, because they had been confined 
to a nucleon. The intrinsic part is observable in N N ➔ '¢ collisions and 
leads to (p;)tN in eq. (5). (ii) In a nuclear collision, the gluons traverse 
thicknesses TA ( s, -oo, ZA) and TB(b - s, ZB, +oo) of nuclear matter in A and 
B, respectively, and acquire additional transverse momentum via gN collisions: 
This is the origin of the second term in eq. (5). 

l -~-
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The constants a;(~ and a9N are usually adjusted to the data from pA col­
lisions, before one investigates anomalous suppression. Fig. 1 shows ( dashed 
curves) the results for normal suppression S1 (Et) and normal (p;)1 (Et) calcu­
lated with ft eq. (4) in eq. (1). While the difference between calculation and 
data is enormous for the suppression, it is rather small for (p;)1 (Et)-

Since the physical origin of anomalous suppression is not yet settled, we 
investigate suppression S 1 (Et) and (p;)1 (Et) for two models, which have rather 
contradictory assumptions. 

I. QGP scenario: ip's is totally and rapidly destroyed, when they are in a 
medium whose energy density above a critical one, and nothing happens 
elsewhere. As a representative model we use the approach by Blaizot et 
al. [8]. 

II. Comover scenario: The plasma of comovers (partons and/or hadrons) 
leads to a continuous absorption of long duration due to inelastic colli­
sions with the comoving particles. As a representative model, we use the 
approaches by Capella et al. [10] and Kharzeev et al. [11]. 

We begin with model I: In their schematic approach Blaizot et al. [8] include 
anomalous suppression via 

(6) 

Here nc is a critical density and n/b, s) is the density of participant nucleons 

According to eq. (6) all i/J's are destroyed if the energy density (which is directly 
proportional to the participant density) at the location s of the ip is larger 
than a critical density nc. The other ip's survive. While the prescription eq.(6) 
successfully describes the data in the full Et range of anomalous suppression 
after the only one free parameter, nc, is adjusted, the predictions for (p;)(Et) 
are significantly below the data, especially at large Et (see below). 

The expression eq. (6) for the phase space distribution J"' including anom­
alous suppression within the QGP model is recovered within our transport 
approach eq. (3) by setting 
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and taking the limit o:0 ➔ oo. The delta function J(t) has to be included 
in order to recover Eq. (6), but it reflects our preconception that the energy 
density is highest at t = 0 and absorption therefore most likely. . . 

There are various ways to introduce another time structure into the ab­
sorption term. In this paper we investigate the generalization 

o:(s,pt, t; b) = O:o 0 ( np(b, s) - nc) cS(t - tA)- (9) 

The idea of a threshold density is kept, but it acts at a later time tA, which 
time is then determined from a comparison with the data. For o:0 ➔ oo and a 
time t! = tA + l, one finds from the general solution eq. (3) 

f'"(s,p1, t1) = 0 ( nc - np(b,s)) f%(s + VtiA,Pt), (10) 

which differs from the expression (6), by the motion in phase space of Jt ! 

during the time 0 ::; t ::; tA. For t > tA · the momentum distribution derived 
from f'" does not change any more. The physical interpretation of tA is a kind 
of mean value replacing a time structure of longer duration. 

We calculate the suppression o-,J,(Et, tA)/o-DY (E1) and (pt},J,(E1, tA) with 
the distribution f,J, from eq. (10). We use the parameters of ref. [8] where 

available, i.e. for J/ip: o-~(~ = 6.4 mb, nc = 3.75 fm- 2
• The parameters for.the 

generation of (pt} by gluon rescattering are taken from a fit to the pA data [2]: 
(p;}NN = 1.11 (GeV/c) 2 and a9N = 0.081 (GeV /c2) fm- 1

• We also account for 
the transverse energy fluctuations [8] which have been shown to be significant 
for the explanation of the sharp drop of J/ip suppression in the domain of very 
large Et values, by replacing nv by ¼>nv where (Et} is the mean transverse 

energy at given b. We then calculate o-J/,J, /o-DY as a function of tA. Since the 
critical density for J/ip is quite high, the leakage affects only the very high 
momentum J/ip's, and o-JN /o-DY increases only slightly as tA increases (Fig: 1 
upper left). 

We turn to a discussion of (pnJ/,J,(Et)- Fig. 1 (upper right) shows calculated 
curves for values of tA = 0 to 4 fm/c. The dotted line (tA = 0) is the result of 
the original threshold model with immediate anomalous suppression ( and has 
been predicted in [121). It fails badly at large values of Et. Also no other curve 
with a given tA describes the data for all values of Et, We have to conclude 
that tA depends on Et: tA(Et)- The larger the values Et the later anomalous 
suppression acts. From a comparison with data we have · 

The results for the extracted values tA, when anomalous suppression acts 
within the QGP model, are strange: Can we believe that the J/ip is absorbed 

__..,._ 
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only at a mean time tA =3-4 fm/c after the two nuclei have separated? In 
the sence of the mean value, only one half of anomalous suppression acts for 
t < tA and one half for t > tA. 

Before we answer this questin we proceed to model II, the scenario of 
comovers: Partons and/or hadrons which move with the '1/; may destroy the 
1/; with a cross section O't0 • The comover density nc0 (t) depends on time, for 
which the Bjorken expansion scenario predicts r 1 • The absorptive term a in 
eq. (2) then takes the form 

(11) 

i.e. absorption by comovers starts at t = t0 and ends at ti, when the comover 
density nc0 (b,s) · t0 /t 1 has reached a value n1 independent of bands. The 
comover approach contains a definite time structure for anomalous suppression 
and we have not changed it. In the choice of parameters we have followed 
[10,11]: nc0 (b,s) = l.5np(b,s) with the participant density from eq. (7), t0 = 
1 fm/c, n1 = 1 fm- 2

,. O':{! = 4.5 mb and 0'[£1 = 1 mb. 
The calculated Et dependence of the suppression shown in Fig. 1 (lower 

left) fits the data acceptably but less well than model I. For (p;), we compare 
the results of two calculations with the data. The solid curves represent the 
result of the full calculation, including leakage, i.e. expression j1 eq.(3). It 
fits the data reasonably well for the full range of transverse energies Et. The 
dashed lines in Fig. 1 (lower right) show the calculation leaving out leakage. 
Formally this limit (which has been calculated already in [15}) is obtained from 
eq. (3) by setting ilt = 0 in the exponent and inf/,. The case without leakage 
fits the data less well, through the difference between the two curves is not 
very big. We stress: the calculation of (p;)(Et) in the comover model is a true 
prediction in the sense that no parameter is adjusted above those which are 
fitted to the suppression S1 (Et)- We have also calculated the mean time (t~) 
for comover action by studying the suppression S1 (Et) as a function of time 
and taking the mean oft with the weight dS1 (Et)/dt and find 

(t}1 ) = 3.5fm/c, (12) 

which values include the time t0 , eq. (11 ), between the end of normal suppres­
sion and the beginning of comover action. The values eq. (12) are found to be 
rather independent of Et. 
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We summarize: we have described a method to derive information about 
the time structure of anomalous charinonium suppression· from the data 011 
(p;)(Et) measured for Pb - Pb collisions at SPS-energies, where anomalous 
suppression has been discovered. The time evolution of the 'ljJ during artomalous 
suppression including leakage is described within a general transport equation. 
The formalism is applied to two models with rather contradictory underling· 
physical assumptions, the QGP and the comover models with the following 
results: 

(i) Calculations within the original models, where leakage is left out, do 
not describe the data for (p;)J/,J,(Et), the discrepancy being particularly 
strong for the QGP model at high values of E1• 

(ii) Including l~akage into the comover model, with~ut changing its structu{ii ! 

nor its parameters leads to a good ag~e'ement with the data.for (p;)(E,)' 
for J/ip over the full range of _values Et, · · • · ··· · 

(iii) The assumption in the threshold model that anomalous suppression adi/ 
instantaneously at tA = 0, i.e. right after normal suppression is not 
supported by experiment, but a mean value iA ~ 3.5 fm fits the data for 

. central events. : , ,: 
': 

We conclude: According. to the present study, anomalous suppression of 
ch~rmonia, is a process which takes. a certain time, ~ , 2 fm/ c in perip~eraL 
collision~ and ~ 4 fm/ c in <;:entral collisions. Unless the partonic phase with, 
its high density and rapid suppression has an unu.sual .time structure [4, 16],: 
the results of our paper favor the comover scenari,o with its rather weak but, 
continuous suppression over a comparably long time. . 

' ' , • ,'!. 
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Figure 1: Nuclear suppression aJN /aDY and (p;)J/,J, as a function of transverse 
energy Et. Data are from [1] for aJNjaDY and from [2] for (Pl)JN_ Upper two 
curves: Dashed curves show the result of normal suppression alone. The other 1 

curves include anomalous suppression within the QGP model eqs. (6) and 
(10), where anomalous suppression is assumed to act at time tA. The curves 
are labled by the values tA = 1,2,3,4 fm/c. Also the curves in aJNjaDY carry 
these !ables. Lower two figures: Dotted and solid lines are calculated in the 
comover model. Dotted line from ref. [15], which in our case corresponds to 
eq. (3) but setting Vt = 0. Solid line full calculations including Vt-
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Abstract - The nonlocal version of the SU(2) x SU(2) symmetric four­
quark interaction of the NJL type is considered. Each of the quark lines 
contains the form factors. These form factors remove the ultraviolet di­
vergences in quark loops and ensures the absence of the poles in the quark 
propagator(quark confinement). The constituent quark mass m(O) is ex­
pressed thought the cut-off parameter A, m(O) = A = 340 MeV in the 
chiral limit. These parameters are fixed by the experimental value of the 
weak pion decay and allow us to describe the mass of the light scalar me­
son and strong decays p -+ 71'71' and a1 -+ p7r in the qualitative agreement 
with experimental data. 

291 

The effective meson Lagrangians obtained on the basis of the local four-
1quark interaction of the Nambu-Jona-Lasinio(NJL) type satisfactorily describe 
low-energy meson physics [1,2]. Ho\;Vever, these models contain ultraviolet(UV) 
divergences and do not describe quark confinement. Satisfactory results in 
these models can be obtained only for light mesons and interactions at low 
energies in the range of 1 GeV. In order to overcome these restrictions, it 
is necessary to consider nonlocal versions of these models which allow us to 
remove UV divergences and describe the quark confinement. 

A lot of models of this type were proposed in the last few yea;s. Unfortu­
nately, we cannot give here the full list of references concerning this activity. 
Therefore, we will concentrate only on the direction connected with the non­
local quark interaction motivated by the instanton theories [3, 4].Recently, a 
few nonlocal models of the this type were proposed [5, 6]. In these models the 
nonlocal kernel is taken in the separable form where each quark line contain 
form factor following from instanton theories. These form factors naturally 
remove UV divergences in quark loops. Thus, in [5] a nonlocal form factor 
was chosen in the Gaussian form f (p) = exp(-p2 

/ A 2 ) where A is the cut-off 
parameter1 • In (6] it was proposed to use an additional condition for the form 
factor f (p) ( quark mass function m(p ), respectively) which lead to the absence 

1Here and further all expressions are given in Euclidean domain. 
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of the poles in the quark propagator. Namely, it is supposed that the scalar 
part of the quark propagator is expressed through the entire function 

m(p) 1 
p2 + m2(p) = µexp (-p2/A2), (1) 

where µ is an additional arbitrary parameter. 
In this work an analogous condition will be used . However, we will take 

into account that each quark line contain square of the form factor which is 
expressed through the quark mass 

m(p)f2(p) ➔ m
2
(P) =exp{-p2/A2). 

p2 + m2(p) p2 + m2(p) 
(2) 

As a result, we obtain a simpler solution for the mass function than in [6]. 
In our model m(O) and the cut-off parameter A have a simple connection 
in the chiral limit m(O) = A; the function m(p) contains only one arbitrary 
parameter. We fix this parameter by weak pion decay. Then, for F1r = 93 
MeV we have m(O) =A= 340 MeV. This leads to reasonable predictions for 
the scalar meson mass and widths of the decays p ➔ 1T1T, a1 ➔ p7r. 

Our model is based on the SU(2) x SU(2) symmetric action 

S(q, q) = j d4x { ij(:i:)(i8x - mc)q(x) + ~1r (J;(x)J;(x) + Ju(x)Ju(x)) 

. - ~P J;a(x)J;a(x) - G;' J/:/(x)J/:ia(x)}, (3) 

where q( x) = ( u( x ), d( x)) are the u and d quark fields, me is the diagonal 
matrix of the current quark masses. The nonlocal quark currents h( x) are 
expressed as 

h(x) = f d4x1d4 x2 f(x1)f(x2) q(x - xi) r1 q(x + x2)­

where f(x) is formfactor. The matrices r1 are defined as 

r = 1 ra = i-v5Ta rµa = -VµTa rµa = -v5-vµTa 
U , 7r / , p I ' a1 I I ' 

where Ta are the Pauli matrices and 1 µ, 1
5 are the Dirac matrices. 

(4) 

In this report, we mainly consider the strong interactions. The electroweak 
fields may be introduced by gauging the quark field by the Schwinger phase 
factors (see, c.f. [4,5]). 
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After bosonization the action becomes 

S(q,ij,u,1r,p,a)= J d4 x{ij(x)(i8x-me)q(x) 

- 2~-rr ( 7ra(x)2 + &(x )2) + 2~p (pµa(x ))2 + 2L, ( a~ia(x ))2 

+ J d4x1d4 x2 f(x - x1)f(x2 - x) ij(xi) 

X (a-(x) + 1ra(x)i·/ra + pµa(x)'yµTa + ai' 0 (x)'y 5
1 µra) q(x2)}, (5) 

where & , 7r, p, a are the u, 1r, p, a1 meson fields, respectively. The field & has 
a nonzero vacuum expectation value < & >o= u0 -:/- 0. In order to obtain 
a physical scalar field with zero vacuum expectation value, it is necessary to 
shift the scalar field as & = u + u0 • This leads to the appearance of the quark 
mass function m(p) instead of the current quark mass me 

(6) 

where mdyn(P) = -u0 f2(p) is the dynamical quark mass. From the action, eq. 
(5), by using (oS/ou) 0 = 0, one can obtain the gap equation for the dynamical 
quark mass 

(7) 

Equations (6),(7) have the following solution: 

m(p) =me+ (mq - me)J2(p), (8) 

where mq = m(0). 
In order to provide quark confinement we propose the anzatz given by 

eq,(2) for the quark mass function m(p)(in the chiral limit). It worth noticing, 
the form of the left-hand side of eq.(2) coincides with the integrand in the gap 
equation (7). From eq.(2) we obtain the following solution 

(9) 

here we have only one free parameter A; m(p) does not have any singularities 
in the whole real axis and exponentially drops as p2 -+ oo in the Euclidean 
domain. From eq.(8) follows that the form factors have a similar behavior 
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that provides the absence of UV divergences in our model. At p2 = 0 the 
mass function is equal to the cut-off parameter A, m(0) = A. The pole part 
of the quark propagator also does not contain singularities that provide quar~ 
confinement 

1 _ l -exp(-p2/A2
) 

m2(p) + p2 p2 
(10) 

Let us consider the scalar and pseudoscalar mesons. The meson propaga­
tors are given by 

1 g;,1r(P2) 
Du,1r(P2) = -G;l + IIu,1r(P2) = p2 - M;,1r' (11) 

where Mu,rr are the meson masses, 9u,rr(p2) are the functions describing renor­
malization of the meson fields and Ilu:rr(p2) are the polarization operators. 
The meson masses Mu,rr are found from the position of the pole in the meson 
propagator IIu,rr(M;,rr) = G;1 and the constants 9u,rr(M;,rr) are given by 

g- 2 (M2 dII ( 2 u,rr u,rr) = u,rr p ) dp2 lp2=M2 • "·" 
(12) 

Let us consider this model in the chiral limit. The pion constant is not 
depend on parameter A arid takes the form 

-2( ) Ne (3 ((3)) 9rr 0 = 
4

7r2 S + -
2
- , 9rr(0) ~ 3.7 

here ( is the Riemann zeta function. 
The gap equation and quark condensate take the forms 

GrrA2 = 21r2 

N' e 

Ne Joo m(u) 
(qq)o=-47r2 duuu+m2(u)" 

0 ' 

(13) 

(14) 

The Goldberger-Treiman relation is fullfield in the model of this kind [4-6] 

Frr = mq 
9rr · 

(15) 

From eq.(15) the value A = mq = 340 MeV is obtained for F,, = 93 MeV. 
Then, from eq.(14) we obtain Grr = 56.6 Gev-2

, (qq)0 = -(190 MeV)3 
• 

-- L,. 
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We get for sigma meson Mff = 420 MeV and 9u(Mu) = 3.85. The total 
decay width is r(u--+n) = 150 MeV. Comparing these results with experimental 
data one finds that Mu is in satisfactory agreement with experiment; however, 
the decay width is very small. This situation can be explained by the fact that 
for a correct description of the scalar meson it is necessary to take into account 
the mixing with the four-quark state [8) and the scalar glueball [9). Moreover, 
it has recently been shown that the 1/ Ne corrections in this channel are rather 
big [10). 

Similary we can describe the vector and axial-vector mesons. The constants 
Gp,a, are fixed by physical meson masses and numerically equal Gp = 6.5 
Gev-2

, Ga, = 0.67 Gev-2
• 

The amplitude for the process p ➔ 71"71" is A(p--+n) = 9(p--+n)(q1 -q2 )µ, where 
q; are momenta of the pions. We obtain 9(p--+n) = 5. 7 and the decay width 
r(p--+n) = 135 MeV which is in qualitative agreement with the experimental 
value 149.2±0.7 MeV [7]. The amplitude for the process a1 ➔ p7r is A(;,--+p1r) = 
·a(a,--+p1r)9µ,v + b(a,--+p1r)Pv qµ, where p, q are momenta of a 1 ,P mesons, respectively. 
We obtain ll(a,--+p,r) = -1.26 GeV, b(a1--+p1r) = 26.8 Gev- 1

. As a result the 
decay width is equal to r(a,--+p1r) = 170 MeV. This value has the same order 
as experimental data 250 - 600 MeV [7). Note that the width of the decay 
a1 ➔ p7r strongly depends on mass of the a1 meson. Indeed, for Jl;f01 = 1.3 
GeV we have r(a,--+p1r) = 260 MeV. . 

In our model like in all models of this kind 7r - a 1 transitions can be 
neglected. 

The authors thank A. E. Dorokhov for fruitful collaboration. The work 
is supported by RFBR Grant no. 02-02-16194 and the Heisenberg-Landau 
program. 
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Abstract - A relativistic 3-fluid 3D hydrodynamic model has been devel­
oped for describing heavy-ion collisions at incident energies between few 
and ~ 200 A-GeV. In addition to two baryon-rich fluids which simulate 
mutually decelerating counterflows of target and projectile nucleons, the 
new model incorporates evolution of a third, retarded baryon-free fluid 
created by this decelerated baryonic matter. Different equations of state, 
including those with the deconfinement phase transition, are treated. A 
reasonable agreement with experiment is illustrated by proton rapidity 
spectra, their dependence on- collision centrality and beam energy. 

1 Introduction 

297 

During past twenty years, hydrodynamics proved to be quite a reasonable 
' tool for describing heavy-ion collisions .at moderate energies ( see for example 
references in [1)). From general point of view this application of hydrodynamics 
seemed to be more successful at higher energies when the number of produced 
particles gets larger. However, as it has been noted by D.I. Blokhintsev [2) in 
the beginning of the multiple-production era, the uncertainty principle intro­
duces certain restrictions to this extension. Though a general conclusion of 
Ref. [2), that the very beginning of the expansion stage should be considered 
quantum-mechanically, is valid till now, the modern quark-gluon picture of 
interactions shifts the results of Blokhintsev's simplified estimate to far ultra-

. relativistic energies. On other hand, it became clear that non-equilibrium 
processes are very important at this stage and that only a part of the total 
collision energy can be thermalized. In this respect the standard one-fluid de­
scription assuming instantaneous local equilibrium seems to be quite limited. 

In the present paper we demonstrate first results of a relativistic 3-fluid 
3-dimensional hydrodynam'ic code developed for describing highly relativistic 
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nucleus-nucleus collisions, i.e. up to energies reached at the CERN SPS where 
a partial deconfinement of hadrons may occur. Below, basic features of the 
hydrodynamic model will be presented and a numerical solution of 3-fluid 
hydrodynamics will first be compared with observables. · 

2 3-Fluid Hydrodynamic Model 
A specific feature of the dynamic 3-fluid description is a finite stopping 

power resulting in a counter-streaming regime of leading baryon-rich mat­
ter. This counter-streaming behavior is supported by experimental rapidity 
distributions in nucleus-nucleus collisions and simulated by introducing the 
multi-fluid concept. The basic idea of a 3-fluid approximation to heavy-ion 
collisions (3, 4] is that at each space-time point x = (t,x) the distribution 
function of baryon-rich matter, fh(x,p), can be represented by a sum of two 
distinct contributions 

fb(x,p) = fp(x,p) + ft(x,p), (1) 

tl 
tl 
e1 

F 
p 
ti 
fl 
fi 
S, 

n 
h 

initially associated with constituent nucleons of the projectile (p) and target I I 
( t) nuclei. In addition, newly produced particles, populating the mid-rapidity / t 
region, are associated with a fireball (f) fluid described by the distribution 1 

function fr(x, p). Note that both the baryon-rich and fireball fluids may consist 
of any type of hadrons and/ or partons ( quarks and gluons ), rather then only 
nucleons and pions. However, here and below we suppress the species label at 
the distribution functions for the sake of transparency of the equations. 

Using the standard procedure for deriving hydrodynamic equations from 
the coupled set of relativistic Boltzmann equations with the above-introduced 
distribution functions f 0 ( o: =p, t, f), we arrive at equations for the baryon 
charge conservation 

8µJ~(x) = 0, (2) f 

I 
( for o: =p and t) and the energy-momentum conservation of the fluids I 

8µT;:V(x) 
8µTt'v(x) 
8µTjv(x) 

-F;(x) + F(p(x), 
= -F((x) + Fa(x), 
= F;(x) + F((x)- F(p(x) - Fa(x). 

(3) 
(4) 

'' (5) 

Here JJ: = n 0 u~ is the baryon current defined in terms of proper baryon density 
n 0 and hydrodynamic 4-velocity ui normalized as u0 µu~ = l. Eq. (2) implies I 

i 
_--I,,..,_ 
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that there is no baryon-charge exchange between p- and t-fluids, as well as 
that the baryon current of the fireball fluid is identically zero, Jf = 0. The 
energy-momentum tensors T/:V in Eqs. (3)-( 4) are affected by friction forces 
r;, F{, F(p and Fa. Friction forces between baryon-rich fluids, F; and F{, 
partially transform the collective incident energy into thermal excitation of 
these fluids (JF; - F{I) and give rise to particle production into the fireball 
fluid (F; + F{), see Eq. (5). F(p and Fa are associated with friction of the 
fireball fluid with the p- and t-fluids, respectively. Note that Eqs. (3)-(5) 
satisfy the total energy-momentum conservation 

(6) 

In terms of the proper energy density, €a, and pressure, P0 , the energy­
momentum tensors of the baryon-rich fluids ( a: =p and t) take the conventional 
hydrodynamic form 

(7) 

get For the fireball, however, only the thermalized part of the energy-momentum 
lity tensor is described by this hydrodynamic form 
IOn 

(8) ,ist 
nly 
at Its evolution is defined by the Euler equation with a retarded source term 

om 
:ed 
'On 

(2) 

ity 
1es 

j d4 x''54 (x - x' - UF(x')r) [F;(x') + F((x')] 

F(p(x)- Fft(x), 

where T is the formation time, and 

(9) 

is a free-streaming 4'-velocity of the produced fireball matter. In fact, this is 
the velocity at the moment of production of the fireball matter. According to 
Eq. (9), the energy and momentum of this matter appear as a source in the 
Euler equation only later, at the time uir after production, and in different 
space point x' - U F( x')r, as compared to the production point x'. 

The residual part of Tt' (the free-streaming one) is defined as 

'T'(es)µv _ 'T'l'V _ 'T'(eq)µv 
1 e - 1 e 1 e • (11) 
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The equation for r?q)µ,v can be easily obtained by taking the difference between 
Eqs. (5) and (9). If all the fireball matter turns out to be formed before freeze­
out ( which is the case, in fact), then this equation is not needed. Thus, the 
3-fluid model introduced here contains both the original 2-fluid model with 
pion radiation [3, 5, 6] and the (2+ 1 )-fluid model [7, 8] as •limiting cases for 
T ➔ oo and T = 0, respectively. 

The nucleon-nucleon cross sections at high energies are strongly forward­
backward peaked. Since the involved 4-momentum transfer is small, the Boltz­
mann collision term can be essentially simplified and in this case the friction 
forces, F; and F::, are estimated as 

F; = PpPt [(u~ - u~) Dp + (u~ + uO DE], (12) 

o: =p and t, p =t and t =p. Here, Pa denotes the scalar densities of the p- and 
t-fluids, 

DP/E = mN V,~[ UpjE(Spt), (13) 

where mN is the nucleon mass, Spt = m'iv ( u; + ur) 2 
is the mean invariant 

energy squared of two colliding nucleons from the p- and t~fluids, v;.~f = 
[spt( Spt - 4m'iv )]1/2 /2m'iv is their mean relative velocity, and up; E( Spt) are de­
termined in terms of nucleon-nucleon cross sections integrated with certain 
weights (see [3,5,9] for details). 

Eqs. (2)-( 4) and (9), supplemented by a certain equation of state (EoS) and 
expressions for friction forces F", form a full set of equations of the relativistic 
3-fluid hydrodynamic model. To make this set closed, we still need to define 
the friction of the fireball fluid with the p- and t-fluids, F(p and Fa, in terms 
of hydrodynamic quantities and some cross sections. 

To estimate the scale of the friction force between the fireball and baryon­
rich fluids, similar to that done above for baryon-rich fluids, we consider a 
simplified system, where all baryon-rich fluids consist only of nucleons, as the 
most abundant component of these fluids, and the fireball fluid contains only 
pions. At incident energies from 10 (AGS) to 200 A-GeV (SPS) the relative 
nucleon-pion energies prove to be in the resonance range dominated by the 
.6.-resonance. The resonance-dominated interaction implies that the essential 
process is absorption of a fireball pion by a p- or t-fluid nucleon with formation 
of an R-resonance (most probably .6.). As a consequence, only the loss term 
contributes to the kinetic equation for the fireball fluid. After momentum 
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en integrating this collision term weighted with the 4-momentum p", we get [1] 
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F[a(x) = Dro _c_o_ Pa , 
Uc 

where transport coefficients take the form 

(14) 

(15) 

Here, V..~1 = [(sea - mh - m;) 2 
- 4mim;]112/(2mNm,,-) denotes the mean 

invariant relative velocity between the fireball and the a-fluids, sro = ( m,,. uc + 
mNUa )2, and O'f;,[➔R( s) is the parameterization of experimental pion-nucleon 
cross-sections. Thus, we have expressed the friction Ffcx in terms of the fireball­
fluid energy-momentum density Tc°", the scalar density Pa of the o: fluid, and a 
transport coefficient Dro, Note that this friction is zero until the fireball pions 
are formed, since T/eq)Ov = 0 during the formation time T. 

In fact, the above treatment is an estimate of the friction terms rather than 
their strict derivation. As it is seen from Eq. (13) for the excited matter of 
baryon-rich fluids, a great number of hadrons and/or deconfined quarks and 
gluons may contribute into this friction. Furthermore, these quantities may 
be modified by in-medium effects. In this respect, DP/E and Dro should be 
understood as quantities that give a scale of this interaction. 

3 Simulations of Nucleus-Nucleus Collisions 
The relativistic 3D code for the above described 3-fluid model was con­

structed by means of modifying the existing 2-fluid 3D code of Refs. [3, 5, 6]. 
In actual calculations we used the mixed-phase EoS developed in [10, 11]. This 
phenomenological EoS takes into account a possible deconfinement phase tran­
sition of nuclear matter. The underlying assumption of this EoS is that un­
bound quarks and gluons may coexist with hadrons in the nuclear environment. 
In accordance with lattice QCD data, the statistical mixed-phase model de­
scribes the first-order deconfinement phase transition for pure gluon matter 
and crossover for that with quarks [10, 11]. A det~il of all the used EoS's can 
be found in [12]. 

In Fig. 1 global dynamics of heavy-ion collisions is illustrated by the energy­
density evolution of the baryon-rich fluids (eh = ep + et) in the reaction plane 
of the Pb+Pb collision at E1ab = 158 A-GeV. Different stages of interaction at 
relativistic energies are clearly seen in this example: Two Lorentz-contracted 
nuclei (note the different ·scales along the x- and z-axes in Fig.I) start to 
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interpenetrate through each other, reach a maximal energy density by the time 
~ 1.1 fm/c and then expand predominantly in longitudinal direction forming 
a "sausage-like" freeze-out system. At this and lower incident energies th~ 
baryon-rich dynamics is not really disturbed by the fireball fluid and hence 
the cases T = 0 and 1 fm/ c turned to be indistinguishable in terms of cb-

Time--evolution of cb in Fig.I is calculated for the mixed phase model. 
Topologically results for EoS of pure hadronic and that of two-phase models 
look very similar. Due to essential softening the equation of state near the 
deconfinement phase transition, in the last case the system evolves noticeably 
slower what may have observable consequences [10, 11]. 

The energy released in the fireball fluids is of an order of magnitude smaller 
than that stored in baryon-rich fluids and depends on the formation time. At 
realistic values of the formation times, T ~ 1 fm/c, the effect of the interaction 
is substantially reduced. It happens because the fireball fluid starts to interact 
only near the end of the interpenetration stage. As a result, by the end of the 
collision process it looses only 10% of its available energy at E1ab = 158 A-GeV 
and 30%, at E1ab = 10.5 A-GeV. Certainly, this effect should be observable 
in mesonic quantities, in particular, in such fine observables as directed.and 
elliptic flows. The global baryonic quantities stay practically unchanged at 
finite T [1]. 

To calculate observables, hydrodynamic calculations should be stopped at 
some freeze-out point. In our model it is assumed that a fluid element decouples 
from the hydrodynamic regime, when its energy density c and densities in the 
eight surrounding cells become smaller than a fixed value C:Jr· A value £Jr= 

0.15 GeV/ fm 3 was used for this local freeze-out density which corresponds to 
the actual energy density of the freeze-out fluid element of~ 0.12 GeV/ fm3

• 

To proceed to observable free hadron gas, the shock-like freeze-out [14] is 
assumed, conserving energy and baryon charge. 

Proton rapidity spectra calculated for Au+ Au collisions are presented in 
Fig.2 for Ebeam =6, 8 and 10.5 A· GeV. One should note that hydrodynamics 
does not make difference between bounded into fragments and free nucleons. 
In the results presented the contribution from light fragments ( d, t, 3He and 
4 He) has heen subtracted using a simple coalescence model [15]. This proce­
dure allows one to reproduce reasonably evolution of the spectra shape with 
changing the impact parameter b for all the energies considered. Some discrep­
ancy observed for peripheral collisions near the target and projectile rapidity 
are mainly due to a not-subtacted contribution of heavier fragments. As seen, 
the rapidity spectra are only slightly sensitive to the EoS used. The same con-

:J" 

. I , J 
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Figure 1: Time evolution of the energy density, Eb = Sp+ Et, for the baryon-
. rich fluids in the reaction plane (xz plane) for the Pb+Pb collision (E1ab = 

158 A-GeV) at impact parameter b = 2 fm. Shades of gray represent different 
levels of i::b as indicated at the right side of each panel. Numbers at this palette 
show the Eb values (in GeV /fm3

) at which the shades change. Arrows indicate 
the hydrodynamic velocities of the fluids. 
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Figure 3: Rapidity spectra of protons from Pb + Pb collisions for the mixed 
phase and hadron gas EoS. Solid and dashed lines are calculated for impact 
parameters 2 and 4 fm, respectively. Experimental points are from (16]. 

clusions can be drawn from Fig.3 for higher CERN SPS energies. One should 
notice that a general agreement here for central collisions is much better than 
that reached in any other 2-fluid hydrodynamic model. This originates mainly 
from larger energy-momentum transfer in (12) rather than from the account 
for the third fireball fluid. 

4 Conclusions 

In this paper we have developed a 3-fluid model for simulating heavy-ion 
collisions in the range of incident energies between few and about 200 A-GeV. 
In addition to two baryon~rich fluids, which constitute the 2-fluid model, a 
delayed evolution of the produced baryon-free (fireball) fluid is incorporated. 
This delay is governed by a formation time, during which the fireball fluid 
neither thermalizes nor interacts with the baryon-rich fluids. After the for­
mation, it thermalizes and comes into interaction with the baryon-rich fluids. 
This interaction is estimated from elementary pion-nucleon cross-sections. Im­
plementation of different EoS, including those with the deconfinement phase 
transition, may open great.opportunities for analysis of collective effects in rela-
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tivistic heavy-ion collisions. Unfortunately, in spite of reasonable reproduction 
of observable proton rapidity spectra in the wide range of bombarding ener­
gies and centrality parameters we are unable to favor any of considered Eo~. 
Analysis of more delicate characteristics is needed. This work is in progress 
now. 
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Abstract - The astrophysical data are considered as an evidence of 
conformal-invariant unified theory, where the dilaton module w plays 
the role of the Higgs mass in the Higgs potential of Standard Model 
of elementary particles. The identification of conformal variables and 
coordinates (including conformal time, conformal temperature, running 
masses) with observational quantities in the field space of events helps us 
to solve problems of homogeneity, horizon, cosmic initial data, singular­
ity, particles, and their cosmological creation from a physical vacuum and 
to describe the latest astrophysical data on the Supernova luminosity­
distance - redshift relations Hol(z) = z + z2 /2, primordial nucleosynthe­
sis m(77) = mo(1+2Ho(77-770)) 1

/
2 value of Cosmic Microwave Background­

temperature (Mfi,Ho) 113 2.7. K, baryon asymmetry nb/n-y ~ Xcp 10- 9 

and energy budget of the universe, including the visual baryon matter 
Ob ~ a/ sin2 0w. The cosmic evolution of the dilaton masses forms galax­
ies and eliminates the need to assume the hidden masses in galaxies. 

1 Introduction 

309 

New data [1,2) for distent Supernovae at large redshifts z ~ l, z = 1.7 
testify that our universe is mainly filled with mysterious substance called 
Quintessence [3, 4). The primordial nucleosynthesis and the chemical evolu­
tion of the matter in the universe [5) point out to a definite equation of state 
of the matter in the universe. This equation helps us to determine a kind of 
~atter taking part in the cosmic evolution of the redshift. 

The visible baryon matter gives only 0.03 part of the critical density Per 
of the observational cosmic evolution [6). The data on the Cosmic Microwave 
Background radiation with the temperature 2.7 Kand its fluctuations [7) give 
us information about the evolution of the early universe. 

Beginning with the pioneer papers by Friedmann [8) and ending with the 
last papers on inflationary model [9) of the Hot Universe Scenario [10], all ob­
servational data are interpr:eted in the theoretical cosmology as some evidence 
of the expanding universe. 
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In the papers [11-16] these new data are considered as evidence of confor~ 
mal symmetry of the laws of nature that do not depend not only on initial 
data but also on the units of their measurement. In conformal-invariant 
theory all measurable quantities are identified with the conformal variables 
and coordinates (including conformal time 'f/, temperature Tc, running masses 
m('fJ), coordinate distance), so that the z-history of temperature becomesthe 
z-history of masses. 

The purpose of the present paper is the description of the results :and 
consequences of the relative measurement standards which expand tog~ther 
with the universe. 

2 Astrophysical data in the relative units 
The interval (8] 

ds}HEORY = dt 2 
- a2(t) [(dx 1

)
2 + (dx2 )2 + (dx3)2], (1) 

plays important role in theoretical cosmology. Here a(t) is a scale factor while 
xi are space and time coordinates of 4-D manifold. It uses the measurement 
standard that is not expanding together with the universe there are comoving 
coordinates. Observational conformal cosmology uses with the conformal in­
terval of the space-time 

dsissERVATION = dsiHEORYI a2(t) = (d'fJ) 2 
- (dxi)2 (2) 

of the cosmic photons flying on the light cone to an observer. This interv~l is 
given in terms of the conformal time d'f/ = dt/a(t) and coordinate distance. 

In terms of the relative standards and the conformal interval (2) we reveal 
that the measurable spatial volume of the universe is a constant ¼,, while.all 
masses including the Planck mass are scaled by the cosmic scale factor. 

It was shown [11-13] that the relative units give a completely different 
physical picture of the evolution of the universe than the absolute units of 
the standard cosmology. The spectrum of photons emitted by atoms from 
distant stars billion years ago remains unchanged during the propagation and 
is determined by the mass of the constituents at the moment of emission. When 
this spectrum is compared with the spectrum of similar atoms on the Earth 
which, at the present time, have larger masses, then a redshift is obtained. The 
temperature history of the expanding universe in the relative units looks like 
the history of evolution of masses of elementary particles in the cold universe 
with a constant temperature of the cosmic microwave background. 
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As it was shown in [12], in the case of the relative units, both the epoch 
of chemical evolution and the recent experimental data for distant supernovae 
[1,2] are described by the square root dependence of the cosmic factor: 

a(ry) = (1 + 2H0 (77 - 770 ))
112

• (3) 

Other consequence of the relative standard of measurement is the redshift 
independence of the cosmic microwave background temperature [13, 14]. This 
is at the first glance in a striking contradiction with the observation [17) of 
6.0 K < TcMBR(z = 23371) < 14 K. However, the relative population of 
different energy levels EI from which the temperature has been inferred in 
this experiment follows basically the Boltzmann statistics with the same z­
dependence of the Boltzmann factors for both the absolute standards and 
relative one [12]. Therefore, the experimental finding can equally well be in­
terpreted as a measurement of the z-dependence of energy levels (masses) at 
constant temperature. The abundances of nuclear species is also mainly gov­
erned by the Boltzmann factors with the z-dependence which is invariant with 
respect to the theoretical interpretation . 

Thus, one more argument in favor of the relative units is the sharp simpli­
fication of the scenario of the evolution of the universe. Astrophysical data in 
the relative units can be described by a single epoch with the dominance of 
the Scalar Quintessence, while the same data in the absolute units require the 
scenario with three different epoches (inflation, radiation, and inflation with 
the dark matter). And the astrophysical data in the relative units testify to 
the hidden conformal symmetry of the Einstein general relativity and Standard 
Model [18, 19]. . 

We have shown [11-16) that the conformal-invariant version of general 
relativity and Standard Model with geometrization of constraint and frame­
fixing with the primordial initial data r.p1 = 104 GeV, H1 = 2.7 K = 1029 H0 

(determined by a free homogeneous motion of the Scalar Quintessence, i.e., its 
electric tension) can describe the following events: creation of the "empty" uni­
verse (77 = 0), creatibn of vector bosons with a temperature T = (M2 H0 ) 113 ~ 
2.7 K (0 < 71 ~ 10-12 s ), formation of baryon asymmetry with nb/n-y ~ Xcp ~ 
10-9 (10- 12 s < 71 < 10-11 

-;- 10-10 s ), decays of vector bosons into CMB ra­
diation (77 ~ 10-10s), primordial chemical evolution of matter (10-10s < 77 < 
1011s), recombination or separation of CMB (77 ~ 1011 s), formation of galaxies 
by cosmic evolution of the dilaton ( 77 ~ 1015 s), hep experiments and Super­
nova evolution, H0l(z) = z + z2 /2 (1017 s < 71), experiments and Supernova 
evolution (1017 s < 71), see [20). 
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3 Cosmic evolution as a superfluid motion of the dilaton masses 

The fixation of the dilaton w(x0
, xi) = MP!anck(3/871') 112 leads to the con-I 

ventional GR and SM with the running volume V = V,(t) and to all problems1 to 
that are solved by the inflationary scenario or the reference on the future M­
theory [21]. The fixation of the volume V = V,, with the running masses 

tic 
tu 

m 
tb w( x0 , xi) = cp( x0 ) corresponds to the choice of the relative units and conformal 

variables of the observational cosmology and quantum field theory. The iden­
tification of these conformal variables with observables is just the new point 
proposing in the present paper. It was shown [11, 12, 18, 19] that the identi­
fication of the dilaton with the evolution parameter in the field world space 
(cplF] solves key problems of cosmology (energy, time, homogeneity, horizon, 
cosmic initial data, singularity, particles, and their cosmological creation from 
vacuum) by analogy with the solving the similar problems for a relativistic 
particle (see Fig. 2 from [20]), without any additional hypothesizes of the type 
of inflation [13]. . 

Averaging exact equations over the spatial volume gives the conformal ver• 
sion of the well-known cosmological equations [19], so that the homogeneity 
is the consequence of the averaging. Flatness is a consequence of a choice of 
the initial data. Horizon is a consequence of a superfluid motion of the dilaton 
masses cp( "l ). The corresponding variable plays the role of the field time in the 
field space of events [cpJF], and its canonical momentum is the energy of the 
universe. The causal quantization of the superfluid dilaton motion describes 
the creation of the Universe with a positive energy in the field space of events, 
where the universe moves along its world hypersurface. The conformal time is 
the measure of the geometric interval on the hypersurface. Therefore the time 
measured by an observer was created with the universe. 

4 Conclusion 

The relative measurement standard opens out the well-known truth that 
the universe is an ordinary physical object with a finite volume and finite 
lifetime. 

Results of theoretical description of the finite universe depend on the choice 
of a frame of reference and initial data like the results of solution of the New­
ton equations depend on initial positions and initial velocities of a particle. 
Creation of the universe has taken place in a particular frame of reference 
which was remembered by the cosmic microwave radiation. We remind that 
the "frame of reference" is identified with a set of the physical instruments for 
measuring the initial data needed for unambiguous solving differential equa-
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lions of theoretical physics. These differential equations are invariant struc­
tural relations of the whole manifold of all measurable quantities with respect 
to their transformations. 

The relative units reveal that a symmetry group of the whole manifold of 
measurable physical quantities in the world includes conformal symmetry of 
the Faraday-Maxwell electrodynamics, and the field nature of matter should 
also be supplemented by the field nature of space and time. 

'The relative units lead us to the "kingdom of freedom" of initial data. This 
"kingdom" includes also last dimensional absolute of modern quantum field 
theory and those initial data of creation of the universe, for which an observer 
does not carry any responsibility, as he at this moment existed only as an 
intention. Who has carried out this experiment of creation of the universe? 
Who has determined the initial data of this creation? Whose notebook is the 
wave function of the universe? 

The authors are grateful to D. Blaschke, N.A. Chernikov, V.V. Papoyan, 
M.V. Sazhin and A.A. Starobinsky for fruitful discussions. This work was 
supported in part by the Bogoliubov-Infeld Programme. 
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Abstract - The well known fact of the light velocity constancy is taken 
into account in the Galilean problem about the movement of a particle 
free from non-gravitational forces and its fall onto the ground. 

315 

The question about taking into account the light velocity constancy in the 
Galilean problem has been raised by Einstein in [1]. Here we shall provide an 
answer to this question. In the Galilean problem the earth surface look like 
a fixed euclidean plane, the tension of the gravitation field above the earth 
surface is characterized by a positive constant, called the free fall acceleration, 
usually denoted by g. Concretely this is the same problem, considered in the 
school program. As in each problem, the consideration of the light velocity 
constancy in the Galilean problem is reduced to the replacement of the Euclid­
ean geometry in the velocity space with the Lobachevsky's geometry, since 
the light vlocity c, entering the Lorentz trasformations, turns out to be the 
Lobachevsky's parameter in the velocity space. The notion of velocity space 
for the case of Euclidean geometry in this space was introduced by Hamilton 
in [2]. The notion of velocity space for the case of Lobachevsky's geometry 
in this space was intpoduced by Kotelnikov in [3]. The transition from the 
Galilean to the Loretnz transformations leads to the transition from Euclid­
ean to Lobachevsky's geometry in the velocity space ( on this subjet see [4]). 
According to [5], in the 4-dimensional spacetime M of events m E M there 
exist two affine conpections: the field connection r~n and the background 
connection f'~n. Their difference 

is called the tensor of gravitational field. Only in the case of the gravitational 
vacuum the tensor (1) equals to zero at each point m E M. 

Further we develop our results, published in [6 - 8]. In the considered 
problem the space of events in regard to the background connection is the 
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4-dimentional affine space with map (x1,x2,x3 ,x4 ), in which all t~,;.'~qual 
to zero. The notion of a fixed plane (let's denote it by E2 ) deman_ds the 
[ntroduction in the space of events of the structure of a direct multiplication 
M = P x T of the 3-dimensional affine space P _with the affine time lin~ T. 
The coordinates x 1 = x, x 2 = y, x3 = z are the affine coordinates in P, the 
coordinate x 4 = t is the affine coordinate in T. The history of the fixed plane 
E2 is represented by the hyperplane z = 0 in M with the following metric 

czd:;-2 = c2dt2 - dxz - dy2 . : (2) 

The gravitational field is considered in the domain z > 0, where the field 
metric equals 

( 
gz)z c2dr2 = c2 1 + 2 dt2 - dx2 - dy2 - dz2 . (3) 

The field connection r~n is the Christoffell connection for this metric. The 
particle's equations of motion are the geodesic equations for this connection. 
In the considered case they can be transformed to the following form 

d dx 
dr dr = O' 

d dy = o, 
drdr 

d dz ( gz) ( dt) ( dt) 
dr dr + g 1 + 2 dr dr = O ' 

d [( gz) dt] g dz dt - l+- - +----0 
dr c2 dr c2 dr dr - · 

On the particle's world line the equation 

c
2 (1 + ~:)\j!f - (~;r - (~~r - (~;r = c2 

is fulfilled. From there follows that 

dt 1 

dr - Jvz - v2/c2 ' 

where 
V = 1 + gz 

c2 ' 
v2 = (dx)z (dy)z (dz)z. 

dt + dt + dt 

(4) 

(5) l 

(6) 

(7) 

(8) 

(9) 
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The homogeneous Lagrangian equals 

[ 
. x2 + i/2 + z2] 2 dx 

L = i - (Vt)2 
- c2 c , where x = dr . (10) 

As a consequation of (6) the energy E (energy of particle, divided by its 
rest mass) 

is conserved. 
The second order system of equations (4)-(6) splits up into the following 

couple of first order equations 

(12) 

1 (dx) 2 (dy) 3 (dz) 4 ( gz)(dt) 
u = dr ' u = dr . ' u = dr ' u = 1 + 2 dr . (13) 

Integrating (12) we find 

_Ul = Ul ' U2 = U2 ' (14) 

u3 = U3 cosh :: - cU4 sinh :: , 
C C 

cu4 = cU4 cosh :: - U3 sinh :: , 
C C 

where ua is the value of ua at t = 0, and s = gt is rapidity of the particle. It 
is important that the rapidity is proportional to the time t with a coefficient 
of proportionality equal to g. 

From here it is not difficult to find the world line of the particle. Indeed, 
from (13) and (14) it follows that · 

ui = dx 
dr' 

s . s d [(c2 
) s] U

3 = u3 
cosh C + cu

4 
smh - = dr g + Z cosh ~ , 

(15) 
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cU4 = u3 sinh ~ + cu4 cosh ~ = t [ (; + z) sinh ~] . 

Assuming that at T = 0 coordinate t of the particle takes zero value, and a!s9 
the coordinates x,y,z take values X, Y,Z, from (15) we find 

X = X + U1
T , y = Y + U2

T , 

c2 s c2 c2 s 
(- + z) cosh- = - + Z + U3T, (- + z) sinh- = cU4r. 

g C g g C 

These formulaes give the world line of the particle. 
From (17) it follows that 

h
gt cU4gT 

tan - = ------ , 
c c2 + gZ + U3gT 

c2 + gz = J( c2 + gZ + gTU3 ) 2 - (grcU4)2 . 

Taking into consideration that according to (7), (13) and (14) 

cU4 = ✓c2 + ljlljl + u2u2 + lj3lj3 , 

(16) 

(17) 

(18) 

(19) 

(20) 

from (19) we find the dependence of the particle's coordinate z on its timer 
in the following form 

c2 + gz = (21) 

= J(c2 + gZ)2 + 2U3(c2 + gZ)gT - (c2 + ljlljl + U2U2)(gr)2. 

The function (21) reaches its maximal value H at T = To, where 

. (c2+gZ)U3 

gTo = c2 + ljlljl + lj2lj2 ' (22) 

c2 H - (c2 + gZ)cU4 
+ g - J2 + u1u1 + u2u2 (23) 

At T = To the function (18) takes the following value 

gi U3 

tanh- =-. 
c cU4 

(24) 

According to (14), in this case u3 = 0. 

_l 
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In accordance to (23), for the energy E we have 

c2 + E = (c2 + gz)u4 = (c2 + gZ)U4
, (25) 

✓ u1u1 + u2u2 
c2+E=(c2+gH) 1+ c2 

(26) 

From the condition z 2 0 it can be found that the time T of the particle's 
flight above the ground is restricted by the roots of the following quadratic 
equation 

g(c2 + U1U1 + U2U2)r2 = 2U3 (c2 + gZ)r + 2c2Z + gZ2 . (27) 

This equation is obtained by setting up z = 0 in (21 ). With the help (20), (22) 
and (23) it can be derived 

where 

gro - J75.. :S gr '.S gro + J75.. , 

(c2 + gH)2 - c4 
6.=------­c2 + u1u1 + u2u2 

(28) 

(29) 

. Let us now clarify the geometrical meaning of the dependence of the 4-
velocity of the partice on the time t. Poincare found in [9] that on the hy­
perboloid the Lobachevsky's geometry is realized. In our case the role of the 
Poincare's hyperboloid is played by the hypersurface (20) in the Minkovski 
world. Its interior geometry is given by the following metric 

(30) 

the Lobachevsky space, where 

2 4 4 (U 1dU 1 + U2dU2 + U3dU3)2 

cdUdU = c2+u1u1+u2u2+u3U3. 

The equation U1 = 0 determines on the upper half of the hyperboloid (20) the 
Lobachevsky plane,' and the couple of equations U1 = 0, U2 = 0 determines 
the Lobachevsky straight line. According to (14), the particle's velocity moves 
steadily on a equidistant, remaining from this straight line at a distance u, 
determined by the expression 

~ _ ✓ U1 U1 + U2 U2 
_ c

2 + E 
cosh - 1 + 2 - 2 H . 

C C C + g 
(31) 
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There are two assertions in the modern cosmological science· which are 
beyond question. 

First. The Universe expands, the expansion accelerated, the expansion 
obeys the Hubble law 

cz = Hr 

Here c is the light velocity, z = ~).. is the quantity of the redshift of observed 
spectral lines, His the Hubble constant equal to 55-65 M;;:,ec, r-is the distance 
from the Earth to an observed object of the Universe. The redshift is connected 
with the Doppler effect. Though it is well known that the Doppler effect 
functionally depends on the velocity of objects z = ~).. ~ ~ (this relation :'alid 
for nonrelativistic velocities v), where vis the radial velocity of the observed 
object, and for the Hubble iaw ~).. ~ r,(but not v), nevertheless it is stated 

t- that if we use the right value of the coefficient of the proportionality H, the 
Hubble formulae "may be used for definition of the distance r if we measure 

_ the redshift of galaxy or if we calculate ( from this redshift) the velocity of the 
galaxy remove v = cz" [1]. The same statement was made in review paper by 
A.D. Chemin:" At each moment of the world history the recession velocity of 
an object, the distance of which from us is r, is proportional to r: v = Hr, 

s where H is the constant coefficient. This dependence is only a consequence of 
the similarity and the isotropy of the Universe ... " [2]. An analogous statement 
was made by I.D. Karachent_sev and D.I. Makarov : " ... Distribution of these 
galaxies relative to distances and radial velocities is given in Fig.I... The line of 
regression v = HD, given in Fig. I, through the origin of the coordinate system 
corresponds to the local value of the Hubble "constant" H = (64 ± 2)Mkm ... " pc.s 

[3]. · Karachentsev and Makarov found out nonisotropic field of velocities of the 
local Group of galaxies. "·:·peculiar velocity is found to be described with a 
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tensor of local Hubble parameter having the principal axis 81:62:48 .Mkm with 
pc.s i 

a standard error~ 4Mkm each" [4]. ; 
pc.s 

Apparently, due to the anisotropy of the Hubble stream, in the phrase! 
"Hubble constant" the word" constant" was taken by Karachentsev and Makarn 
in the quotation mark. I 

The presence of anisotropy of the local Hubble stream requires a correction\ 
of the definition of similarity and isotropy of the Universe and a correction ofi 
using the Hubble law to definition of distances to distant galaxies. 

1 

The main conclusion from the above mentioned passages consists in that, 
exchanging the dependence of redshift on the velocity of an observed object by· 
the dependence on the distance of observed objects the authors not only distort 
the physical contents of the Doppler effect, but also make from this distortion 
unfaithful conclusion about the expanding of the Universe and this conclusion 
leads to a pill of hypotheses about possible properties of cosmological vacuum. 

The remark about of the pile of hypotheses do not refer to the papers of 1 

Chemin, and Karachentsev and Makarov - it mostly refers to the established: 
views on modern science which have roots stretching back into the 20th century ! 
when the special theory of relativity, quantum mechanics and relativistic field· 
theory arose. 

The second statement accepted in the modern cosmology can be formulated 
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as follows: vacuum is not an emptiness. The hypothesis of the Big Bang in 
the emptiness would lead to the delay of the expansion of the Universe, but 
the delay is not observed as it follows from the unfaithful interpretation of i ·. 

the Hubble law. And then it was supposed that vacuum is not emptiness,· 
and a number of unusual properties was assigned to it to solve the problem 

1 
neut 
This 
well-

1 
elec1 of expanding the Universe. One appeals to using the idea of virtual processes 

which it was used in the Lamb shift calculations of the levels of hydrogen atom 
or the anomalous magnetic moment of the electron. Of course, the agreement 
of the theory with the experiments in these calculations is fantastic, but it I 
was obtained because some mathematical artifices like the renormalization of . 

I 

mass, charge and others were used. Very prominent scientists did not trust the i 
renormalization procedure and, for instance, Dirac wrote:" J am inclined to 

• suspect that renormalization theory is something that will not survive in the 
future, and that the remarkable agreement between its and the experiments 'i 

should be looked on as a fluke" [5]. i 
In the modern field theory the vacuum is defined by the expression a-lo) = , 

0, where a--an operator of annihilation of quantum of any field. The operator 1 
a-, acting on the vacuum state jO) gives zero and, therefore, there are no any [ 
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particles in the vacuum, the vacuum is emptiness. The quantum numbers of 
the vacuum such as momentum, energy, electrical charge and others - all equal 
zero [6]. 

If somebody obtains nonzero energy, momentum, charge and mass from 
"nothing" using virtual physical processes and mathematical artifices, then 
this somebody deceives us. 

The fundamental scientific philosophical statement that it is impossible to 
introduce the unity of the metric system in the emptiness is forgotten now. 
Here it is appropriate to remember the quotation of Feynman:" ... When you 
follow of our physics too far, you find that it always gets in some kind of trou­
ble,.." [7] and farther:" ... There are so many things about elementary particles 
we still don't understand ... " [8]. 

Today the so-called international community of science about all the above 
mentioned "some kind of trouble" "turn a blind eye", because we have not 
another theory. 

In this work I advocate that the emptiness does not exist but there is 
real physical medium which uniformly fills all the world space - the \[I-ether 
[9]., Thus postulate homogeneity and isotropy of the space. The \[I-ether 
being a homogeneous medium ensures the unity of measure and number in the 
Universe, the Maxwell spoke about at the end of the 19th century. 

. The W-ether is defined as the Bose-Einstein condensate of neutrino- anti­
neutrino pairs of Cooper type and it is a carrier of the electromagnetic field: 
This definition of the W-ether can easily be seen from a simple chain of the 
well-known formulae. 

The vector A and scalar cp potentials are related with the strengths of the 
electric E and magnetic ii fields by [10] 

ii= rotA 

- 1aX 
E = -~ at - gradcp 

No attention is paid in textbooks or monographs to the fact that thus 
introduced auxiliary electromagnetic potentials A and cp are equated to the 
physical observables ii and E. This is impermissible in physics. If we make 
use of the Lorentz condition 

d. A- l.ocp 0 zv +-- =. 
Cot 
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and combined the vector A and scalar cp potentials into one four-dimensional 
vector W;,the Maxwell equation can be written in the form 

LJ\ll;(x, t) = 0 

I define these equations as equations for the real \JI-ether. 
The Klein-Gordon operator LJ can be represented as a product of two com­

muting matrix operators of the first order, each acting on spinor function of 
neutrino. Thus, we establish the connection of the electromagnetic field with 
the spinor particles-neutrinos. Neutrinos and antineutrinos can form a com­
bination with the spin 1 ( electromagnetic field) and spin O (it is natural to 
suppose that there may exist combinations with higher values of the spin). 

We conclude that the electromagnetic potentials A and cp are not auxiliary 
functions, as it is written in all textbook for University students, ~ut they one 
connected by some definite relations with physical reality - the \JI-ether. 

It can be assumed that the sc.alar component of the \JI-ether takes the 
properties of a carrier of gravitational forces. 

So, I state that the light is not a substance but a process going on'in a i 

substance, as was affirmed by Maxwell, Lorenz, Poincare at the end of the XIX 
- beginning XX centuries. · · 

The whole visible known Universe is immersed in the all-penetrating IIJ­
ether, and it lives and develops according to its laws. The \JI-ether is an , 
abyss in which the known physical world negligible as compared to the ether · · 
is immersed. The world of the \JI-ether has no neither top, nor bottom, nor ' 
left, nor right. 

The relict radiation can now be interpreted as age-long luminescence of the f 

weakly excited world \JI-ether, or in other words, as eternal oscillations of vii~ i 
pairs forming the either. Naturally, the relict radiation has to by isotropic, it 
goes to the Earth with equal intensity and its spectrum influence the radiation i 
of the spectrum of the black body. In the world \JI-ether gigantic magnetic 
fields and axes can naturally arise, and the light which comes to the Earth 
from Universe may have a definite kind of polarization. · 

The \JI-ether is a single candidate for its definition as an inertial coordinate 
system. " .. .It is self-evident ( and this was always supposed even before the 
creation of the theory of relativity) that there exists at least one reference 
frame, which is inertial as concerns mechanics and in which at the same time 
the Maxwell equations is valid ... " [11). 

Sometimes the relict radiation is connected with the inertial system of 
coordinates. However, as has been mentioned above, the relict radiation is 
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al considered here as eternal oscillation of the weakly excited world W- ether. 
The inertial system is defined by the distribution of matter in the Universe 
[12] and the W-ether is thus the only candidate for the definition of the inertial 
system of coordinates, or the privileges system of coordinates in the Universe, 
as it is defined by V.A. Fock (13]. 

It was justified above that the electromagnetic field has the discrete struc­
l- ture - it consists of neutrino-antineutrino pairs. Therefore, as philosophers 
)f 
h say,"bad infinity" is interrupt when constant properties of any physical ob-

ject, including the electromagnetic field, are preserved, even under unlimited 
}-

division of its size up to zero. 
0 Let us call the cooper neutrino-antineutrino pairs, of which the electro 

magnetic field consists, psions ( a derivative of the word W-ether ). · There is a 
Y limit for the existence of electromagnetic waves of a small size when the length 
e of a free path of psions becomes smaller than the distance between them. 

The smallest length may be defined from maximal energy of ,-quanta coming 
e from cosmos to the Earth. This energy approximately equals :S 10+23eV. 

The frequency v of these quanta approximately equals ~ 1038 ..L, and the 
a = wavelength >. ~ 10-28 cm. 
( The density of psions in lcm.3 determines the reliability of information 

accepted and transferred by the W-ether. If two or more impulses come to a 
psion, gained information will by distorted in further transmission. 

1 As concerns large wave lengths, the limit for the existence of electromag­
r netic waves sets in when large wavelengths of the W-ether lose their wave config­
r oration becoming a chaotic motion of huge masses of the W- ether ("noises").The 

largest lengths of radiowaves amounts to ~ 1010 meter and may be even larger, 
~ and the frequency of such waves ( the lowest frequency) is v ~ 3. 10-2 .!c. 

So, when the wave properties of the W-ether come to an end, our cognition 
of secrets of the Universe by means of optical instruments and radiotelescopes 
ends to. The man does not "hear" the full voice of the Universe, the man 
becomes "blind" and "deaf" in the Universe. 

Evidently, there exist phenomena whose description requires studies of the 
microscopic properties of constituents of the W-ether, psions. 

So, the light considered by us as the vibration of the W-ether in the process 
of propagation in the Universe will lose the energy. The propagation of light 
can be considered as propagation of waves in an elastic medium. Therefore, 
the loss of the energy in process of propagation of the light in the Universe 
will be extremely small. 

Two models of the loss of the energy of the light wave are considered here. 
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Let us an energy oflight quanta equal hv. 

The first model. Suppose that the relative loss of ,-quantum energy is l di 
proportional to the distance r passed by ,-quantum in the \JI- ether. The 
initial frequency of ,-quantum equals v0 and the final one equals v (v < 11o). 
Therefore, ov = v - Vo < 0 

ov ov oA 
-- =a· r; -- = - = z I Tl Vo Vo A 

So: 

z = a•r 

The coefficient a is determined from experiment. It is natural propose that 
a = !!.., where H - is the Hubble constant in Mkm , and r is the distance in 

C ~-Mpc. Hence, we get the known expression for the Hubble law · 

cz = Hr 

Thus, the redshift is related to the distance r only. 
The second model is the model of exponential loss energy of ,-quanta. 

dv =a· V· dr 

After integration we get 
V = Vo. e-ar-r 

Under the condition a· r « l we have A~ Ao· (l +a· r) and 

A- Ao ~A 
--- =-=z=ar 

Ao Ao 

and in this case we put a = If and get the same expression for the en~rgy 
loss of the light wave ·· 

cz = Hr 

The law of energy loss of light quanta in both the model is the same as in 
the region ar < l, r < ¼- This value r is defined from the inequality 

C 3QQQQQkm 
r < _ ~ sec 

H 60~ 
Mpcsec 

Up to 5000M pc we cannot distinguish between the linear law of energy loss and 
the exponential one. But if r ~ 6500Mpc, exponential loss is approximately 
twice larger then the linear one. 
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The critical value of r, at which the linear law of energetic loss begins to 
IS differ from the exponential one is defined by the Hubble constant. 

he Now the law of redshiff has to be written in the form 
i), 

V H 
Z full = ZDoppler + Zip = ( - )Doppler + ( -r )Psi 

C C 

The correct Doppler redshift has the Usual form 

V 
Z full - Zip = ( - )Doppler 

C 

The redshift in the Hubble diagram from the work by Karachentsev and 
m Makarov (see Fig. 1) will now have the form (see Fig. 2) 

• From Figure 2 we can see that of 145 galaxies of the local Group approx­
imately one half has a redshiff ( A; > 0), and the other half has a blue shift 
(f < 0). One half of Galaxies moves away from the Centre of the Local 
Group of Galaxies and other half of Galaxies comes to the Centre of the Lo­
cal Group of Galaxies. So, we observe streams of Galaxies in some directions 
with respect to the Centre of the Local Group approximately with the velocity 
N 100km. 

at 

y 

n 

:l 
y 

sec 
We have no grounds to think that the law of motion of Galaxies in the 

Universe at distances far from the Centre of the Local Group of Galaxies 
differs from the law of motion of Galaxies of the Local Group and, therefore, a 
general picture of the motion of Galaxies in the Universe do not look like the 
expansion of the Universe. 

So, we have a different point of view on the problem of the evol:ution of the 
Universe. But it is clear that an unfaithful interpretation of the redshift in the 
Hubble law led to many false problems which are now very actively discussed 
in many scientific papers. 

And if we admit the fault in the interpretation of the Hubble law then 
the problem of the monotonous expanding of the Universe changes to the 
problem of studying vivid dynamics of the nonrelativistic motion of Galaxies 
in the Universe, and modern cosmological science turns to real problems of the 
evolution of the Universe. 
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Weakly interacting particles and the Universe 
evolution 

V.M. Koryukin 

Mari State Technical University, Russia 

Abstract - On the basis of hypotheses, that a density of weakly inter­
acting particles in the Universe has an order of nuclear matter density 
or more the Lagrangian is offered, through which one can be obtained a 
propagator of a vector boson with a non-zero rest-mass. The dependence 
of vector bosons masses on the time allows to explain the availability of 
the hot stage of the Universe evolution, not using to the hypothesis of the 
Universe expansion. 

329 

Following Blokhintsev [1] which considered that it is impossible to describe 
physical systems in the deterministic manner let's consider the Boltzmann hy­
pothesis of the Universe birth owing to a gigantic fluctuation not in a empty 
space but in medium which consists.of weakly interacting particles character­
ized by zero temperature and forming the Bose condensate. Certainly, if the 
particles are fermions they should be in the coupled state. For the description 
of such state of the Universe matter (this state we shall consider pure one) it is 
necessary to introduce an amplitude of probability T3 with components !3~ ( w) 
(a,b,c,d,e,f,g,h = 1,2 ... ,r) dependent from points w of a manifold M~ (not 
excepting a limiting case r ➔ oo ). In this case we can not define the metric 
but for its definition we need a density matrix p(T3) (the rank of which equals 
to 1 for a pure state), determining its standard mode !3!3+ = p(f3f3+) (p = 1, 
p+ = p, the top index "+" is the symbol of the Hermitian conjugation). 

Let as a result of a fluctuation the disintegration of the Bose condensate will 
begin with formation of fermions (for their description we shall introduce an 
amplitude of probability Ill) and with an increase of pressure in some local area 
of Universe (in addition some time the temperature of the Universe particles 
could remain equal or close to zero point - so-called the inflation period). As 
a result the rank of the density matrix p will begin to grow that characterizes 
the appearance of mixed states. An inverse process of relaxation ( characterized 
by the formation of the Bose condensate and by the pressure decline) should 
go with an energy release which will go on heating of the Fermi liquid with 
formation of excited states - of known charged fermions ( quarks and leptons). 
From this moment it is possible to introduce the metric and use the results 
obtained for the hot mod·el of Universe interprdin,g the Universe evolution 
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as the process charact'eriied by the increase of the entropy S = -(plnp). 
Now Universe is at that stage of an evolution when the dominating number of 
particles has returned to the Bose condensate state. They are also display~~ 
only at a weak interaction with particles of a visible matter. . 

For the description of a matter it is convenient to use differentiable fields 
given in a differentiable manifold Mn which one we shall call as a space-time 
and the points x of which one will have coordinates xi (i,j,k,l ... = 1,2 ... ,n). 
Probably the rank of the density matrix p equals n, but it is impossible to 
eliminate that the generally given equality is satisfied only approximately when 
some components of a density matrix can be neglected. In any case we shall 
consider that among fields B the mixtures II~ were formed with non-zero vac­
uum means h~ which determine differentiable vector fields (~ ( x) as: 

rr; = 8 b 1:i 
a a '>b (1) 

for considered area On C Mn (field (~(x) determine a differential of a projection 
d1r from Or C Mr in On)- It allows to define a space-time Mn as a Riemannian 
manifold, the basic tensor g;;(x) of which we shall introduce through a reduced 
density matrix p'(x). 

So let components pf of a reduced density matrix p'( x) are determined by 
the way: 

pf = e+i P~ et 1 (e+1cP~e}). (2) 

and let fields 
ii = r/(ip{) (g'm'Tllm) (3) 

are components of a tensor of a converse to the basic tensor of the space-time 
Mn. By this components g;;(x) of the basic tensor must be the solutions of 
following equations: yii 9ik = c5{ (Hereinafter 'Tlii are metric tensor components 
of a tangent space to Mn and 'Tlik are determined as the solution of equations: 
'Tlij 'Tlik = c5{) 

The influencing of the macroscopic observer will display in an approxima­
tion of the transition operator T by the differential operators &; . First of all 
we shall require that for fermion fields deviations Xa(\JI) = Ta(\JI)- (!&;\JI were 
minimum in the "mean" [2]. For this purpose we shall consider a following 
integral 

A= J C(\Jl)dn V = f K Xa(\JI) p~(x) Xb(\JI) dn V (4) 
fln fln 

(t. is a constant, £(\JI) is a Lagrangian; the bar means the Dirac conjugation 
that is to be the superposition of Hermitian conjugation and the spatial inver- i 

, 
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,). 
of sion) which is the action. Let the action A is quasi-invariant at infinitesimal 
~d substitutions xi -+ xi+ oxi = xi+ owae~(x), w -+ W + ow = w + 8waTa('11) 

of Lie local loop Gr, the structural tensor components cib of which satisfy to 
:ls Jacobi generalized identity [2]. The given requirement causes to introduce the 
ie full Lagrangian (instead of a Lagrangian .C(w)) recording it as 

). Lt= .C(w)+<F~bJ="fe[ tad( s~s}-vs~sj )+tbe( s,s~-vs~s1 )+ucJ( tadtbe -vtabtde)]/ 4 
;o (5) 
m (ti:~, v are constants). In addition intensities .Fgb(B) of the boson (gauge) fields 
JI B~(x) will look like 

,re ec (Ili a Bd Ili a Bd + =d ) .r ab = d a i b - b i a ~ab , (6) 

) where 

n 

n 

d 

V 

'=b _ (Be T e 5c T e) 5b 5c 5e Cb ~ad - a Cd - d ca e - a d ce · (7) 

Hereinafter a selection of fields Ilf () and /3~ are limited by the relations: 
II~ IIi = Ji /Ja t:i = hi (8~ are Kronecker deltas) 

J a J, c S.a c J • 

If s~ = 8~, tab= TJab, Uab = T/ab (TJab are metric tensor components of the 
flat space and T/ab are tensor components of a converse to basic one) then the 
given Lagrangian is most suitable one at the description of the hot stage of the 
Universe evolution because it is most symmetrical one concerning intensities 
of the gauge fields Fib- What is more we shall require the realization of the 
correlations: Tab T/cd + Ta~ TJcb = 0, that the transition operators Tab generate 
the symmetry, which follows from the made assumptions. In absence of fields 
II~(x) and W(x) at earlier stage of the Universe evolution the Lagrangian (5) 
becomes even more symmetrical (.Ct ex 8 4

), so that the formation of fermions 
(the appearance of fields W in a full Lagrangian .Ct) from primary bosons is a 
necessary condition (though not a sufficient one) of the transition of Universe 
to the modern stage of its development with a spontaneous symmetry breaking. 
Only the fcjtmation of the Bose condensate from pairs of some class of fermions 
(the neutrinos of different flavors) has resulted in a noticeable growth of rest­
masses of those vector bosons (W+, w-, Z 0

), which interact with this class 
of fermions. In parallel there could be a growth of rest-masses and other 
fundamental particles, though and not all (photon, directly with a neutrino 
not interacting, has not a rest-mass). 

Let's connect non-zero vacuum means /3! of gauge fields B~ with a sponta­
neous violation of a symmetry, which has taken place in the early Universe and 
which is a phase transition with a formation of Bose condensate from fermion 
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pairs. The transition to the modern stage of the Universe evolution for which 
it is possible to suspect the presence of cluster states of weakly interacting 
particles will be expressed in following formula for tensors s~, tab, Uab and h't: 

b t:i hb + (:C b 8 a = S ':,a i ':,a t£' tab = t ta· i. r,(i)(j) + ta i r,ffi 
(,) (J) ., £ 4 ., ' 

t:i t:i he hd + t;c t:4 ha h(j) a (8) Uab = U ':,a ':,b i j 'T]cd ':,a ':,b 'T]f!!., i = i t(j) 

((i), (j), (k), (l), ... = 1, 2, ... , n; g,_,fl.,f.,d.,f. = n + l, n + 2, ... , n + r.; r./r « 1), 
where fields h?>(x), taking into account the relations (8), are determinated 
uniquely from equations: h% h~ = of. Similarly tensors 'T](i)(i), 'T]!!i are deter­
mined from equations: 'T](i)(k)'TJ(j)(k) = om, 'T]!!Q.'T]f!!. = of, while tensors 77(i)(j), 'T]!Yl 

are determined as follows 'TJ(i)(k) = 'T]ab <:f;) ttk)• 'TJ!!i = 'T]cd t~ { We shall connect 
constants tfo, tf with a selection of the gauge fields II't (x) recording. them by in 

the form II't = <I>ij) tfo + <I>t tf and let tf = 0. Besides we shall apply the de­
composition of fields Bg(x) in the form B~ = (t II~ +(g A~, where A~= Bg e~. 
In addition components of intermediate tensor fields {!(x), e~(x), (t(x), (t(x) 
should be connected by the relations: (tet = of, (te~ = 0, (get = 0, ef(g = of 

Let n = 4, r. = 1, v = 2, tu = s2, Cf'i = (Ctctqd + O;(:)e~. t(k) ;;;, 
T a b T (i) a T (k) raT (k) rr, (k) raT (k) d 

cbt(k) = C(k)t(i)• iU) = ':,j au)' .1£.U) = "!c au) an 

T (i) 'Yl(j)(k) + T (j) r,(i)(k) _ c£ tb r,(i)(j) 
a(k) ·1 a(k) ·1 - '-a _ ·1 • 

As a result we can receive the vector boson propagator in the form 

D;j(P) = -g;i/(lPk - m 2
) 

(9) 

(10) 

(we use the Feynman calibration), where l is the 4-momentum, and mis the 
mass of the vector boson, which is defined by the formula [3] 

m 2 = 31-1t!/(1-0 7]!!!!) - g1kCj!Ck!. (11) 

So, the transition to the hot state of Universe was connected with the 
destruction of the Bose condensate and the increase of the Fermi gas pressure 
accordingly. In addition some time a temperature of background particles 
of Universe could remain equal or close to zero (the stage of the inflation). 
As a result the rest-mass of w+, w-, Z 0 bosons have decreased ( t!!. = 0) 
so, that the weak interaction has stopped to be weak and all (or nearly so all) 
particles from a ground (vacuum) state started to participate in an installation 
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of a thermodynamic equilibrium. The given phenomenon also has become the 
cause of an apparent increase of a density of particles in the early Universe. 
Suggesting, that mean density n 0 of particles in the Universe did not vary at 
the same time and the script of the hot model in general is correct, we come 
to its following estimation n 0 ~ m! ~ 10-3 GeV3 (m" is a mass of a 7r meson; 
hereinafter the system of units are used h/(27r) = c = 1, where h is the Planck 
constant, c is the speed of light). This result allows to give explanation to 
a known ratio [4] H0 /GN ~ m!, if to consider, that the Hubble constant H0 

gives an estimation 1/ H0 to the length l ~ l/(n0 a11 ) of a free run of particle in 
"vacuum" on the modern stages of the Universe evolution ( a II is a scattering 
cross-section of neutrinos on a charged particle) and to take into account the 

· estimation given earlier [5] for the gravitational constant G N ( G N "' a 11 ). Thus 
the gravitational constant GN is inversely proportional to the time of a free run 
of a charged particle in the neutrinos medium characterizing a kinetic phase 
of a relaxation process in the Universe. 
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Spacetime Bag Model 
• 

Ivanhoe B.Pestov 
Bogoliubov Laboratory of Theoretical Physics, 
Joint Institute for Nuclear Research, 141980 Duhn~, Russia, 

Abstract - The relativistic spacetime bag model is formulated. The 
Dirac and the Maxwell equations for the particles in the spacetime bag 
are presented and some consequences are analyzed. In particular, it is 
shown that the electrostatic potential for the charged particles in the bag 
has a form of the strong potential, which is in agreement with experiment. 

1 Introduction 

The quark bag model is well-known and its great positive role in the hadron 
physics and quantum chromodynamics is widely accepted (see for example 
review articles [1], [2] and references therein.) It is shown here that a bag 
model has a new reading due to rotations. In general case particle is doomed 
to rotates if constraint 

x2 + y2 + z2 + u2 = a2 (1) 

hold valid. In the physics of relativity we have additional time variable. In 
view of this, we introduce the five-dimensional Minkowski spacetime Mf 4 with 
Cartesian coordinates xi Ci = 0, 1, 2, 3, 4) and metrics ' 

ds2 = 'f];;dxidxi = (dx0 )2 - (dx 1
)
2 - (dx2)2 - (dx3

)
2 

- (dx4 )2, 

where as usually, x0 = ct, x1 = x, x2 = y, x3 = z, x4 = u. After that we accept 
that spacetime background for strongly interacting particles is defined by the 
Mf 4 and constraint 

' 

T/ijXixi = (x0
)

2 
- (x1)2 - (x2)2 - (x3)2 - (x4 )2 = -a2, (2) 

where a is the radius of gyration. Thus, we put forward the idea that the 
form of physical laws at subnucleus realm is defined by the representation 
of rotations in given form. In this report we consider one Dirac field and 
electromagnetic field in the spacetime bag (2) since other interacting fields 
poses no new problems once the vector and spinor theories are understood. 

I 
I 

~--
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2 The Dirac field in the spacetime bag 
We will use the scalar product (X, Y) = T/iiUiVi for any vector fields 

X = Ui[)i and Y = Vio; in the five-dimensional Minkowski spacetime. The 
vector fields 

P; = of8k, M;j = (x;oj- Xjo:}8k, 

where x; = T/ijXj, are generators of the Poincare group of the five-dimensional 
Minkowski spacetime. All vectors fields M;j are orthogonal to the radius-vector 
R = xkok, but this is not the case for the vector fields P;. Representing P; as 
the sum of the component aligned with the direction of the radius vector R 
and the component orthogonal to this direction, we obtain the vector fields 

l k l k 
M; = aP; + -(R, P;)R = (ao; + -x;x )8k, 

a a 

which are tangent to surface (2) (relativistic bag), because from (2), it follows 
that (R, Mi) = 0 at each point. The vector fields M; and M;j are generators 
of the group of spacetime symmetry of a bag because we have 

[M;, Mj] = -M;j, [M;, Mjk] = T/ijMk - T/ikMj, 

Let us now introduce the operators ( vector fields) 

(3) 

It is straightforward to see that the vector fields X 0 , X 1, X 2,._and X 3 are 
continuous and do not vanish at any point of the spacetime bag. Because 
(Xa,Xb) = 0 for a-=/- b, a,b = 0, 1,2,3 and 

2 2 
a + x 0 , 

the vector fields X 0 , Xi, X 2 , and X 3 are linearly independent at each point 
of the bag. Thus, it is shown that the spacetime bag in question has a spinor 
structure. 

lFrom (3), it follows that 

[Xo,Xµ] = 0, [Xµ,X,,] = 2eµ,,,\X.\, µ,v,>. = 1,2,3, 

where eµv>-. is the completely antisymmetric Levi-Civita symbol specified by 
the equality e123 = 1. In this way, we have proven that the our bag admits a 
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simply transitive group of transformations whose generators are given by"(4) 
and which has only the following nonzero structure constants: 

li3 = fl1 = !f2 = 2. (5) 

In our case this group play the role of the group of translation in familiar 
Minkowski spacetime. 

In accordance with the original Dirac equation and consideration given 
above, we write the Dirac equation for the rotating particles in the form 

,c Pc'lj; = µ'lj;, (6) 

where 

''f°'l + ,.,/1a = 2ryab, zqa ab ( . ) Pc=Xc+TcAc, 77 = 1,-1,-l,-l. 

Here q is the charge of a particle,· and Ac are the components of the vector 
potential of the electromagnetic field in the basis Xa. In the spacetime bag we 
have 

µ = mca/n, 
since operators ( 4) are dimensionless. 

In general, [Xa, Xbl = Jibxc. Thus, in the spacetime bag we have 

[Pa, Al= JibPc + i:: Fab, 

where 
Fab = XaAb - XbAa - JibAc (7) 

are the components of the strength tensor of the electromagnetic field in the 
basis Xa and fbc are given by (5). . 

When the wave equation is established it is not difficult to derive the equa­
tions of electromagnetic field. The Jacobi identity [Pa[A, Pel]+ [A[P.,, P0 ll + 
[Pc[Pa, Al]= 0 results in the first four Maxwell equations 

X f ab + ~fb fad = 0 a 2 ad · (8) 

where ftc take the values (5) and frab = ½eabcd Fed, where eabcd are components 
of the antisymmetric Levi-Civita unit tensor in the basis Xa. In view ofthe 
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known dual symmetry of the Maxwell equations, from (8) it follows that the 
remaining Maxwell equations are of the form 

X pab ~;b pad_ 47l"a ·b 
a + 2Jad - J ' 

.C 
(9) 

where l are components of the current vector in the basis X0 • 

Now we will write the Maxwell equations in the spacetime bag in the three­
dimensional vector form. Before doing so it is useful to introduce an intrinsic 
coo_rdinate system in the spacetime bag, which is defined by the vector field 
X0• In accordance with the definition of X 0 we have the following system of 
ordinary differential equations for integral curvatures of this vector field 

dx0 

- = 1 + (x0 )2/a2, 
cdr 

dxb 
- = x0xb/a2, b 1 2 3 4 = , , , . 
cdr 

Under the condition x 0 (0) = 0, we have the solution in the following form 

CT 
x0 = a tan-, 

a 

aub 
Xb_ ---­

- cos(cr/a)' 

where ub, b = 1, 2, 3, 4 are constants of integration. It is easy to see that 
intrinsic time variable r and ub define intrinsic coordinate system in the space-
time bag. In this coordinate system we have for the operator X 0 · 

a a 
Xo = --. 

car 

To write the Maxwell equations for E and fI, we put as usual 

j 0 = (cp,J), Aa = (cp, -A), 

µ,v,.X = 1,2,3. 

Then from (7) we obtain 

E = -~~A - "vcp, H = rotA = "v x A - 2A. 
car 

where"v=("v1, 'v2, "v~), 'vµ.=Xµ., µ=1,2,3. 
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Considering that div A= E!=i v7 µAµ, we can recast the Maxwell equations 
{8) and (9) into the familiar vector form 

a f) -
-~~H = rotE 

UT , 
divH = 0, 

- a 8 - 41ra -
rotH = --E + -j, 

COT C 
divE = 41rap. (11) 

To have more concrete representation about spacetime bag it important to 
derive eigenvalues E of the Dirac Hamiltonian of the free particle in the bag 
and to find also electrostatic potential as a solution of the Maxwell equations 
{10), {11). Consider the first problem. Squaring equation (6) and using (5), 
we obtain the following equation for E 

c2li,2 
E2 1P = m 2c4'lj,, - -

2 
(6 + P)"P, 

a 

where P = :E1v71 + :E2v72 + :E3v73 and ~µ = ½eµ 11.x,",.x. Since D. + P = 
-P(P + 1), where D. is the Laplacian on a three-dimensional sphere, then 

c2n2 
Ez = m2c4 + p(p + l)-2, 

a 

where pis an eigenvalue of the operator P. It can be shown that p = ±3, ±4, .... 
For the energy, we then have · 

. c2n2 . ).2 
E 2 = m2c4 + n(n + 1)-2 = m2c4 {1 + n(n + 1)2 }, (12) 

a a 

where n = 2,3, ... and A= n/mc. Formula {12) is nothing else but the energy 
of rotation which gives the quantum-mechanical value of the energy of the 
relativistic rotating particles. Consider it in more details. At large a, the 
moment of inertia / = ma2 is also large, so that the angular velocity is small. 
Therefore, the nonrelativistic limit can be found from the condition a» A. In 
this limit it follows from (12) that E = mc2 + L2 /21, where L2 = n(n +. l)n2 

and / = ma2. The last relation corresponds to the formula E = mc2 + P 2 /2m 
for the kinetic energy of the free particles in the limit v » c. We also see that 
in the spacetime bag, separation of the energy of a particle to the 
internal and rotational parts has no strict sense as it is evident from 
the relation (12), E ➔ mc2 only when a ➔ oo or/ ➔ oo (no rotation). 

3 On the Coul~mb law in the spacetime bag· 

Let us now consider the Coulomb law for the rotating particles. The electro­
static potential can be derived as a solution of the equations of electrostatics, 

L.,_ 
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which is invariant under the group of Euclidean motions, including rotations 
and translations. In the case being considered, we will seek a Coulomb po­
tential in an analogous manner. From (10) and (11), it follows that for a 
electrostatic field div E = 41rap, E = - v' cp, and consequently, cp obeys the 
Poisson equation 

6-cp = -41ra2 p. 

As it is well known, the electron Coulomb potential 

e 
<Pe(r) = -

r 

(13) 

is the fundamental solution to the Laplace equation 6-</> = div grad</> = o. In 
framework of our consideration the Coulomb potential for the charge particle 
can be derived as follows. Consider the stereographic projection S 3 from point 
(0,0,0,-a) onto the ball r 2 = x2 + y2 + z2 :=; a2 

: 

x 1 = fx, x 2 = fy, x 3 = f z, x 4 = a(l - f), 

where f = 2a2 /(a2 + r 2
). Then, it follows that the element of length on the 

three-dimensional sphere can be represented in the form 

and hence the Laplace equation on S3 can be written as follows 

6-</> = r 3 div(fgrad </>) = 0. 

We seek the solution to this equation that is invariant under the transformation 
of the group S0(3). This subgroup of the S0(4) group is determined by fixing 
the point (0, 0, 0, -a). Let us put 

Since 

6-</> = r3(r d'ljJ + 3'1jJ) = r-2 r3.:!:._(r3'1jJ), 
dr dr 

then r3'1jJ = c1 = constant. Thus, we have 
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and hence 
l r 

'7>q=c1(-2r+2a2)+c2. (14) 

Now we have the electrostatic potentials '7>e outside the bag and electrostatic 
potential (14) inside the bag. We should demand that electrostatic potential 
is continuous function and hence put 4>e( a) = q>q( a), so that c2 = e/ a and 
the Coulomb potential for particles in the spacetime bag can be presented as 
follows 

l r e 
<7>q(r) = q(-2 - -2 2) + -, (15) 

r a a 
where q is the charge of particle. 

It should be noted that our expression (15) coincides with the 
strong potential [3]( which is in agreement with experiment) and 
exhibits clearly its electrodynamical nature. We also see that the 
boundary condition 4>e(a) = q>q(a) does not fix the charge q of particle 
in the spacetime bag (leaving it as a free parameter) and hence our 
consideration does not contrad

0

ict the standard QCD nomenclature. 
In conclusion it is useful to put together the Hamiltonian for the electron 

and for the particle in the spacetime bag. The electron Hamiltonian has as 
usual the following form: 

He= c(a,Pe) +p3mec2, 

where Pe = iii v7. For the particle in the bag we have 

Hq = c( a, P q) + p3mqc
2

, 

where 

Here, 

iii a 2 - r 2 r 
Pq = -(r x v7 + --v7 + -(r, v7)). 

a 2a a 

iii 
Pq = -X, X = (X1,X2,X3) 

a 
and X 1,X2 ,X3 are expressed through the stereographic coordinates. 
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1 O6'be,n:nHeHHbIH HHCTHTYT H,D;epHbIX nccJie,n:oBaHnii, 141980 Ily6Ha, 

pep 

Abstract - .IIaHo KpaTKoe, HO ,11ocTynHoe npe,11cTaBJ1em1e o npo6ne1i1ax, 

KOTOphle BO3Hl!Ka!OT np11 aCl!MIITOT11'1eCKOM mpe,1111HrepoBCKOM KBaHTO­

BaHl!SI HeJil!Heii:HbIX raMl!JlbTOHOBhlX CllCTeM 11 COCTOllT B orpaHl!'1eHl!SIX 

Ha TOIIOJIOrl!IO KOHqmrypan110I1Horo npocTpaHCTBa, Hel!HBap11aHTHOCTll 

KBaHTOBoro raMl!JlbTOHl!aHa OTHOCl!TeJibHO npeo6pa3oBaHl!ii: Koop,1111HaT 11 

npo113Bona npamrna ynopsi,11O-qemrn np11 no.11cTaHOBKe onepaTOpOB KaHoH11-

'1ecK11 conpsiJKeHHbIX KOOp,111rnaT 11 llMIIYJibCOB B IIOJll!HOMllaJihHbie Ha6JII0-

,11aeMhle. B cny-qae npocTeii:meii: HeJI11Heii:Hoii: c11cTeMhl - -qacTl!Uhl B KJiac­

c11-qecKoM CMhlCJie ,IIBlllKYIUeii:csi no reo,11e311'1eCKoii: Jll!Hllll pl!MaHOBa npo­

CTpaHCTBa (B CTaTl!'1eCKOM r_paBl!TaUl!OHHOM none), OIIl!CaHo, KaK MOJKHO 

npeo,11OJieTb IIOCJie,IIHlle ,IIBe 113 3Tl!X TPY.IIHOCTeii:. 

I. 'Bae,n:emrn Cpe.n:n Hay-.:iHbIX IlHTepecoB n.n:. bJIOXIIHI:(eBa Bll,UHOe Me­

CTO 3aHHMaJIIl BOIIpOChI CBH3Il reoMeTpllll npocTpaHCTBa-BpeMeHil Il KBaHTOBOH 

Teop.IIII. ABTopy HaCTOHII:(eii CTaThll 3aIIOMHIIJIOCh TaK2Ke, KaK OH opIIeHTHpo­

BaJI CBOIIX y-.:ieHIIKOB Il COTPY.D:HIIKOB Ha TO, 'IT06hI "pa3o6paThCH" (nMeHHO 3TO 

CJJOBO OH ynoTpe6JIHJI) B KaKOH-JIII6o II3 3Ha'IIITeJihHhIX Hay-.:iHhIX rrpo6JieM, T.e. 

IlOHHTh rny6HHHble KOpHil npo6JieMbI Il Il3Y'IllTh B ,n:eTaJIHX ee COBpeMeHHbIH 

CTaTyC II nepcneKTilBbI peIIIeHIIH. B '!aCTHOCTH, B 6hITHOCTh Il.lf. ,n:npeKTO­

pOM Jla6opaTopnII TeopeTII'IecKoii q>Il3HKH OM.5IM HM 6bIJIII no,n:,n:ep2KaHbI 3K3o­

TJ!qecKne ,UJIH Toro BpeMeHII IIOIIbITKil ( C y-.:iaCTIIeM aBTOpa ,n:aHHOH CTaThll) 

pa3o6paThCH B rrpo6JieMe CO'IeTaHHH KBaHTOBOH TeopIIH II o6meii TeopIIH OT­

HOCIITeJihHOCTII. B pe3yJihTaTe 3TII IICCJie,UoBaHHH .D:aJIII 3aMeTHhIH Ha'IaJihHbIH 

TQJiqoK TOMY Bne-.:iaTJIHIOII:(eMy nporpeccy B CO'IeTaHHII KOCMOJIOrllll Il TeopnII 

)JieMeHTapHbIX -.:iaCTIIU, KOTOphIH na6mo,n:aeTCH ceii-.:iac. HacTOHIIJ:aH cTaThH 

HBJIHeTCH .D:OCTyIIHhIM o-.:iepKOM HeKOTOphIX IIOCJie,UHIIX pa6oT aBTopa [1,2], npo­

~OmI<aIOII:(IIX ynoMHHYTbie IIOIIbITKil "pa3o6paThCH" c HeCKOJihKO .n:pyroii TO'IKII 

lpeHIIH. Pe-.:ih rroii,n:eT O IIpIIJI02KeHHII COBpeMeHbIX rrpe,n:cTaBJieHIIH O KBaHTO­

BaHIIII CllCTeM C KOHe'!HbIM 'IllCJIOM CTerreHeii CB06o,n:bl K "Be-.:iHoii" rrpo6JieMe 
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IlOCTpoemur KBaHTOBOH MexaHIIKII B n-MepHOM p1IMaHOBOM KOHqmrypaU:IIOHHOM 

rrpocTpaHCTBe Vn, CBH3aHHo.ii c 1IMeHaM1I Il1IpaKa, Illpe,n:1IHrepa, IIo.n:onbcKoro, 

IleBIITTa, a TaK)Ke MHOrlix .n:pyr1Ix, He CTOJih II3BecTHhIX 1Iccne,n:0BaTeneft. 

KaK II3BeCTHO, KBaHTOBaHIIeM Ha3bIBaIOTCH MaTeMaTII'leCKIIe IIOCTpoem1.i:, 

KOTOpbie CTaBHT B COOTBeTCTBIIe KJiaCCII'leCKIIM .D:IIHaMII'leCKIIM CIICTeMaM n 
IIX 0606m;eH1IHM KBaHTOBble aHanOrlI, xapaKTeplICTII'!eCKIIM CBOHCTBOM KOTO­

pbIX HBJIHeTCH HeKOMMyTaTIIBHOCTh (q>II31I'leCKIIX) Ha6n10.n:~eMbIX. K CO)IGUie­

HIIIO, KBaHTOBaHIIe BCTpeqaeTCH co 3Ha'!IITeJihHbIMII TPY.D:HOCTHMII, KaK M~­

TeMaTII'leCKIIMII, TaK II B qacTII COOTBeTCTBIIH HeKOTOpbIM ycTaHOBIIBIIUIMCi 

q>II31I'!eCKIIM nplIHU:IIIlaM 3a IICKJIIO'leHIIeM cnyqax JIIIHeHHbIX raMIIJihTOHOBhlX 

CIICTeM. (B 3TOM acneKTe O CTaTyce CTaH,n:apTHOH KBaHTOBOH MexaHIIKII 'la­

CTIIU:bl B IlOTeHu;IIanbHOM none CM. HII)Ke B pa3,n:.3). IlplIBe.n:eM BHaqane caMhle 

Heo6xo,n:1IMble 06m;1Ie CBe,n:eHIIH O KJiaCCII'leCKIIX .n:1maM1I'leCKIIX CIICTeMax II llX 

rnpe,n:IIHrepOBCKOM KBaHTOBaHIIII. 

2. Hcxo,nHhle npe.n:noJIO)KeHHll o KJiaccHqecKHX cHcTeMax. IIpo­

cTeftrnyro KriaCCII'leCKJIO "CTapTOBJIO nnoma.n:Ky" .D:JIH KBaHTOBaHIIH COCTa­

BJIHIOT CIIMilJieKTII'leCKOeq>a30BOe npocTpaHCTBO P2n, {xA} E P2n, A, B, ... 
1, 2, ••• , = 2n, c 3a,naHHoii HeBblpO)Kj:J;eHHOH CIIMIIJieKTH'lecKoft qiopMoii l = 
lAB ( x )dxA I\ dx8 II HeKoTopax anre6pa sp2n no.n:xo.n:xm;Hx .n:eftcTBHTeJihHhlX 

q>JHKU:IIH na P2n C YMHO)KeHHeM, onpe,neJrneMhIM CK06KOH IlyaccoHa 

{f, g} d;f_ lAB8Af8Bg, f, 9 E 8P2ni llt:ABII d;f_ lllABll-1- (1) 

TaKaH anre6pa Ha3bIBaeTCH anre6po.ii Ilyaccona. Ilnx Ramero paccMoTpemrn 

6y.n:eT Ba)KHa cne.n:yromax u:eno'!Ka BJIO)KeHHhIX B o.n:Ha B .n:pyryro anre6p IIyac­

coHa: h2n C sp~~ C sp~':) C sp2n(C00
), r.n:e sp2n(C00

) - anre6pa 6ecK0He'!HO­

,n1Iq>q>epeHU:HpyeMhIX q>yHKU:HH Ha P2n, sp~':) - anre6pa noJIHHOMOB H3 onpe­

.n:eneHHhIX HH)Ke Koop.n:1IHa:T Ilap6y { xA} = {qi, Pi}, i, j, ... = 1, ... , n Ha P2n, 
(2) ~ · h def 

SP2n - anre6pa IIOJIHHOMOB He BbIIIIe BTOpOII CTeIIeHH TIO q'' Pi H 2n = 
span { 1, qi, Pi} ( T .e. JIHHe.iiHaH o6oJIO'!Ka yKa3aHHbIX :meMeHTOB) - anre-

6pa re.ii3eH6epra. KpoMe Toro, He 6y,neM TepHTh H3 Btt.n:y H a6eneBy anre6py 

JIII I P2n ( C00
) C o6bl'!HhIM IIOTO'le'!HbIM YMHO)KeHHeM C00

-qiyHKU:HH Ha Pin-
BcHKaH q>YHKU:IIH f(x) E SP2n nopo)K_naeT CHCTeMy ypaBHeHHH raMHJihTOHa 

d 
ds xA(s) = {xA, f(x)}(s) (2) 

H B 3TOM CMbICJie HBJIHeTCH KJiaCCII'leCKHM raMHJihTOHHaHOM. B TO )Ke BpeMi 

.D:JIH Ka)K.IJ;OH CIICTeMhI, onpe.n:eneHHOH KOHKpeTHbIM raMHJihTOHHaHOM f ( X), Bee 
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}leHCTBIITeJibHhle q>YHKUIIII Ha P2n C'IIITaIOTCH q>II3II'leCKIIMII Ha6JIIO,n:aeMbIMII. 

B ,n:ocTaTO'IHO MaJioft o6JiaCTII P' C P2n MO:lKHO BBeCTII yrroMHHYTbie Koop,n:II­

HaTbl Ilap6y ( IIX Ha3bIBaIOT TaK:lKe KaHOHII'leCKII-COIIpI!:lKeHHbIMII) qi, Pi, 
i,j, ... = 1, ... , n, B KoTophlx f = dp; I\ dqi. 

IlJIII ,n:aJibHeftmero o6cy:lK,n:eHIIH rrpo6JieMbl KBaHTOBaHIIH Mbl ClIJibHO cy3IIM 

H_arny "cTapTOBYIO IIJioma,n:Ky" .n:o P2n ~ Rn x R~, ( TpIIBIIaJibHOe KOKacaTeJib­

HOe paccJIOeHIIe C TOIIOJIOrH'leCKH TpHBIIaJibHOll 6a3oft)' 'ITO, B CBOIO oqepe,n:b, 

03Ha11aeT, 'ITO MO:lKHO BBeCTII Kop.n:nHaTbI Ilap6y TaK, 'ITO Koop,n:IIHaTbI l rro­

KpbIBaIOT Bee rrpocTpaHCTBO Rn, a KOOp.lJ:HHaTbl Pi rrpo6eraIOT rrpII '.HOM .lJ:BOll­

CTBeHHOe rrpocTpaHCTBO R~. IlpII 3TOM KOOp,n:IIHaTHbie JIIIHIIII qi OTKpblTbl II 

IIOJIHbl; B 3TOM CMbICJie qi O'leHb IIOXO)KlI Ha ,n:eKapTOBbl Koop,n:IIHaTbl. IloKa 

eme COBCeM He o6.&3aTeJibHO, HO JJ:JIH IIOCJie,n:y10mero y.n:o6HO rrpe.n:rroJIO)KlITb, 

'ITO Ha 6a3e Rn BBe.n:eHO IIOJIO)KIITeJibHO-OIIpe,n:eJieHHOe CIIMMeTpH'IHOe TeH-

30pHoe rroJie Wii ( q), IIrpa10mee poJib MeTpnqecKoro TeH3opa H orrpe,n:eJI.&10mee 

crroco6 lI3MepeHIIH rrpocTpaHCTBeHHbIX .lJ:JllIH II o6beMOB. TaKIIM o6pa30M Rn 
rrpeBpamaeTCH B TOIIOJIOrH'leCKII TpHBIIaJibHOe pIIMaHOBO rrpocTpaHCTBO Vn C 

= HeHyJieBoft KpIIBH3Hoft. IlJIH KBaHTOBoft MexaHIIKH ::JTO 03Ha'laeT, 'ITO C'IHTaeM 

cymecTBeHHblMII TOJibKO JIOKaJibHbie IIpOI!BJieHIIH KpHBII3Hbl 

3. IIlpe,n:HHrepOBCKOe KBaHTOBaHHe raMHJibTOHOBblX ClICTeM. IlycTb 

L2(Vn; C; ../w dnq)- rHJib6epToBo rrpocTpaHCTBO KBa,n:paTH'IHO-HHTerpnpyeMhIX 

110 BBe,n:eHHoft pIIMaHoBoft Mepe KOMIIJieKCHbIX <pyHKUHft Ha Vn . Tor.n:a B paMKax 

rrpHHI!TbIX orpaHII'leHnft mpe.n:nHrepoBCKOe KBaHTOBaHHe eCTb OT06paJKe1rne 1: 

Q ' 
. Q: SP2n 3 f ~ f (::ipMHTOBbl orrepaTOpbl B ), TaKoe, 'ITO 

(Ql) (1)" = 1 (e.n:HHH'!Hblll orrepaTop B L2(Vn; C; VW dnq)); 
(Q2) (J+g)"=f+g; 
(Q3) {J,g}" = in-1[],g] + O(n;f,g); r.n:e O(n;J,g) - neorrpe,n:eJieHHbllI 

IIOKa aCHMIITOTH'leCKHll IIO n, orrepaTop B L2 (Vn; C; ..jw dnq); OH aHTHCHMMe­

TpH'IeH H 6HJIIIHeeH IIO f Hg H HC'le3aeT rrpn n, ➔ O; 
(Q4) l/ =qi· i, Pi= -in(ai + ¼ai lgw) = w-¼3i · w¼. 
CJie,n:y.& KJiaCCH'leCKHM pa6oTaM IIO KBaHTOBaHIIIO (cM., HarrpnMep, [3], CTp 

425 - 475, n CCbIJIKH, rrpnBe,n:eHHbie TaM), HY:lKHO 6bmo 6bI B ycJIOBHII (Q3) rro­

JIO)KlITb O(n; J,g) = 0, H TaKoe Q 6bIJIO 6bl TeM, 'ITO Ha3bIBaIOT nOJl1lbUt (full) 
utpeOU1l2ep06C'/CUM 'l.6ll1lm06ll1lUCM. IJOJIHOe OHO B TOM CMhlCJie, 'ITO HCKOMOe 

I IlpHBO.llHMal! qiopMJJIHpOBKa llBJilleTCll 6oJiee rrpocToii Beprneii qiopMym1pOBKH, .naHHOii 

B pa6oTax [1, 2], KOTopall, B CBOIO oqepe.nh, rne.nyeT 6oJiee o6meii .neqiopMaIIHOHHoii qiopMy­
nHpOBKe a [4]. 
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Q onpe.nem1eT no e,n:IIHOMY npaBIIJIY KBaHTOBhie aHarrorII .nmc BceiI KaTerop1rn 

KJiaCCn:<IeCKIIX CIICTeM, o6pa3yIOIIJIIX arrre6py P2n-
K C02KaJieHIIIO, .[(OBOJihHO rrerKo IlOKa3aTh ' CM., HanpIIMep, [3], CTp 435 

- 439, 'ITO noJIHOe B 3TOM CMhICJie KBaHTOBaHIIe, BOo6me r0Bop11, 11,e cy111e­
cm6yem. HcKJIIO'IeHIIe cocTaBJ111eT TOJihKO crry'IaII, Kor.na sp·2n ~ h2n II sp2n N 

sp~~ , T .e. raMIIJihTOHIIaHhI He BhIIIIe BTOpoiI CTeneHII no KOOp.UIIHaTaM 1Iap6y 

l, Pi, n, crre,noBaTeJihHo, cooTBeTCTBYIOIIIIIe ypaBHeHII11 raMIIJihTOHa JIIIHeHHhl • 

B 3TOM crry-qae nOJIHOe KBaHTOBaHIIe .[(OCTaTO'IHO npo,neMOHCTpIIpOBaTh Ha 

npIIMepe 6a3IICa KBa,npaTII'IHhIX MOHOMOB .[(J111 n = 1: ( q 2
)" = q2, (p

2
)" = 

fi, (qp)" = ½(qp + pq). 8TII Bhlpa2KeHII1! 11BJ111IOTC11 e,nIIHCTBeHHO B03MO)K­

HhIMII 3pMIITII3aUII11MII C .neMCTBIITeJihHhIMII K03<pq>IIUIIeHTaMII npII no.n:cTa­

HOBKe onepaTopoB q, p B COOTBeTCTBYIOIIIIIe MOHOMhI. Ilocrre Toro KaK KBa­

.n:paTII'IHhie KBaHTOBhie raMIIJihTOHIIaHhI TaKIIM o6pa30M nocTpoeHhI, MO)KHO 

npe.nnoJIO)KIITh (Ho 3TO 6y,neT BOJieBOM aKT!), 'ITO a6erreBa Karrn6pciB0"9:Ha1! HH­

BapIIaHTHOCTh 0.[(IIHaKOBO peamnyeTC11 B KJiaCCII'leCKOM II KBaHTOBOM Teopnn: 

( p; - ~A;(q))" = p; - ~Ai(q). 
me me 

(3) 

Tor.na MhI npIIXO.UIIM K cTaH,napTHOM KBaHTOBOM MexaHHKe 3ap11.na BO BHenrneM 

3J.leKTpO_MarHIITHOM none n, B "9:aCTHOM crry-qae, B noTCHUHaJihHOM none, HO B 

ocHoBe nocne,n:HeiI, KaK MhI BR.UHM, .norr2KHa 6hITh Karrn6poBo"tJ:Ha11 CIIMMeTpIIJI. 

4. Acl:IMilTOTl:lqecKoe rnpe.nttHrepoBCKOe KBaHTOBaHl:le. llMeHHO 

.[(J111 Toro, "9:T06hl HMCTh B03M02KHOCTh KBaHTOBaTh B II3J10)KCHHOM CMhICJie Ka­

TeropHH raMHJihTOHHaHOB, 6orree o6mnx, 'ICM KBa,npaTH'IHhie, Mhl BBeJIII B 

ycJIOBHH (Q3) aCHMnTOTH'ICCKHM IIpOH3BOJI B BH,Ue "9:JieHa O(n; f,g). On .n:aeT 

.nonoJIHIITCJ1hHYIO CB06o.ny npH nocTpoeHHH Q, HO, KaK BhI1ICII11eTc11, -qpe3Mep­

ny10. 

ABTopy HaCT01!IIJeM 3aMeTKH H3BeCTCH TOJihKO O.[(HH cnoco6, KaK 3TOM CB0-

60.noiI pacnop11,nttThC11 .nn11 sp2n ( C00
): 

(CQl). 06paTHM BHHMaHHe, 'ITO .nn11 l,Pi II qi,pj, KOTOphie 6y,neM na3bI­

BaTh Teneph nep6U'l/,1lblMU ua6.!t100aeMblMU, ycJJOBHe (Q3) BhIIIOJ1H11CTC11 TO'IHO 

npH O(n; q,p) = 0 Bcne.ncTBHe ycnoBH11 (Ql), T.e. npe.nnonaraeTrn, 'ITO rnpe­

.UHHrepoBcKoe KBaHToBaHIIe .naeT onepaTopnoe npe,ncTaBnenue anre6phI fei'I-

3en6epra h 2n, 
2 

23aMeqaTenbHO, qTo 3TOT Ba)KHblll cpaKT HaXO.l{llT IlO.l{TBep)K,neune B anhTepHaTHBHOM 

no.nxo.ne [11] K IlOCTpoe!llllO KBa!ITOBOii Mexa!ll!KH B Vn KaK KBa3l!Hepen&THBllCTCKOii ac11M-

.J. 
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(CQ2). JI1060My raMHJibTOHHaHy f(q,p) Esp~':) (T.e . .srnm.110meMycH IIO­

JIIIHOMOM no qi H Pi) IIOCTaBHM B COOTBeTCTBHe KBaHTOBhlH raMHJibTOHHaH J, 
rrorry'IeHHhiii nyTeM rro,IJ;cTaHOBKH qi --+ qi, Pi --+ Pi H nocne,IJ;yromeii 3pMH­

T.1!3aUHH C ,IJ;eHCTBHTeJibHhlMH K03q>qrnuneHTaMH (ynopllao'IJ,e'H,UJ[ onepamopoB 

nepBU'IJ,'H,blX na6,11,10aae.MblX) Ka)K,IJ;OrO MOHOMa B IIOJIHHOMe. 

(CQ3). IloJib3YHCb IIJIOTHOCTbIO MHO)KeCTBa IlOJIHHOMOB npOH3BOJibHOH CTe­

rreHH B C00
' o6ofanHM nocJie,IJ;Hee rrpaBHJIO Ha SP2n( C00

), CM. [8). IlnH 3TOrO-TO 

ff HJ)KHbI orpaHH'IeHHl'I Ha TOilOJIOrHIO P2n H Ha BbI6op KOOp,Il;HHaT qi' BBe­

)leHHbie pa3,D;eJie 2. TaKHM o6pa30M 6y,IJ;eT IlOCTpoeHo OTo6pa)KeHHe Q ,Il;Jll'I 

/\0CTaTO'IHO lliHpOKOH KaTeropHH raMHJibTOHHaHOB, KOTopoe yMeCTHO Ha3hl­

BaTb acu.Mnmomu1J,ecnu.M mpeauu2ep0Bcnu.M nBanmoBanue.M. Ilpn 3TOM naM 

He HJ)KHO 3HaTb HBHO BHLI onepaTopoB O(h; f,g) B ycJIOBHH (Q3), a Hao6o­

poT HX MO)KJIO Bhl'IHCJIHTh, 3Hal'I onepaTOphl J,g H {J,g}". 3To O3Ha'IaeT, 

'ITO BMeCTO KOHKpeTH3aUHH ycJIOBHl'I (Q3) Mb.I 3a,IJ;aeM OTo6pa)KeJIHe anre6pb.1 

IP2n(C00
) na orrepaTOphl B L2(Vn; C; Jw dnq). 

0,IJ;HaKO HMeeTCl'I 6ecKOHe'IHOe MJIO)KeCTBO npoueL1yp yrropH,Il;O'IeHHl'I, CM., 

HarrpHMep, [6-8). B MaTeMaTH'IeCKHX pa6oTax, opHeHTHpOBaHHbIX, B OCHOB­

H0M, na ycTaHOBJienne cymecTBOBaHHl'I OTo6pa)KeJIHl'I Q, o6bI'IHO HCIIOJib3JIOT 

ynopll,D;O'IeHHe BeiiJill, ( cM. orrpe,D;eJieHHe, nanpnMep, B (8), cTp. 207); Bee 

rrpoqne BO3MO)KHOCTH paccMaTpHBaIOTCl'I KaK B orrpe,D;eJieHHOM CMhlCJie 3KBH­

BaJieHTHbie. 0,IJ;HaKo noJiyqaeMbie pa3HbIMH ynopH,Il;O'IeHHl'IMH KBaHTOBbie ra­

MIIJibTOHHaHhl HMeIOT pa3HbIC cneKTpbI H TIOTOMY <pH3H'IeCKH He3KBHBaJieHTHbI. 

Ilo-BHLIHMOMY, BHYTPII n106oro II3BeCTHoro qiopMaJIII3Ma KBaHTOBannH, HMeIO­

mero ,IJ;eJIO C ,Il;OCTaTO'IHO lliIIpOKHM KJiaCCOM CHCTeM HeT CilOC06a BbI,IJ;eJIIITb 

enHHCTBennoe "cpH3II'IeCKII npaBIIJibHOe" KBaHTOBanne, II Bcer,IJ;a OCTaIOTCll 

KaKall-JIH6o q>II3II'ICCKall neo,IJ;HO3Ha'IHOCTb IIJIH neTO'IHOCTb. 

5. KaHOHJl'IeCKOe KBaHTOBaHHe reo,IJ;e3H'leCKOro ,Il;BH)KeHHH. YTo6b.l 

JIY'lIIIe oueHHTb 3TY CIITyaUHIO rrpnMeHHM H3JIO)Kennyro cxeMy KBaHTOBaHH.SI K 

rrpocTeiirueii HeJIHHeii:noii: CHCTeMe, q>H3H'IeCKall H reoMeTpH'IeCKall HHTeprreTa­

UIIHll KOTopoii coBepruennno rrp03paqna. A nMeHno, paccMoTpHM raMHJihTO­

Hl!aH BII,IJ;a 

(4) 

IlTOTHKH O,llHO'laCTll'lHOro ceKTOpa KBaHTOBOll TeOpllll CKaJillpHoro IIOJill: 3,lleCb ycJIOBl!e (Q3) 
Bh!IlOJIHlleTCll B nepeJillTl!BllCTCKOll TeOpllll (c- 1 = 0). O.nnaKO 0110 napyrnaeTCll ,llJill rrep­

BH'!Hb!X na6JIK>,llaeMhIX qi' Pj B rrepBOM rropll,llKe no c- 2 ll T3Kl!M o6pa30M lllpemrnrepOBCKOe 

KBaHTOBa!ll!e ,llQJI)K!IO 6h!Tb rrep~CMOTpeHO IIpll yqeTe peJillTl!BllCTCKllX rrorrpaBOK. 
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OH onHChIBhieT KJiaccHtJecKoe ,n:BH)KeHHe TOtJetJHOH HenTpaJibHOH qacTHIIhI Bo 

BHenmeM CTaTH'leCK0M rpaBHTaIIH0HH0M Il0Jie B BH.L(e MeTpH'IeCK0ro Temopa 

Wij(q) HJIH, 'ITO T0)Ke caMoe, .D:BH)KeHHe no reo,n:e3HtJecKon JIHHHH B Vn . Ilpu 

npHMeHeHHH K Hw cxeMhI (CQl) - (CQ2) 0Ka3hIBaeTCH [1,2], 'ITO Bee B03MO~­

Hhle 3pMHTH3aIIHH C ,n:eHCTBHTeJibHhIMH K03<p<pHIIHeHTaMH C0CTaBJIHIOT O~HO-­

napaMeTpH'IeCK0e ceMeHCTBO: 

HA (t<) K, i3"( ') A A 2 - /'i, A i;'( ') A /'i, A A i3"( ') n
2 

A ( ) V("l( ) 
WI= 8mw q PiPj+ 4m p;w q Pi+smPiPjW q = -2mU(w) q + q q, 

(5) 
r.n:e K, -oo < K < oo, - npoH3BOJihHhIH napaMeTp, ~(w) - onepaTop Jlaimaca­

BeJibTpaMH Ha Vn , a ¼("l(q) - TaK Ha3hIBaeMbIH KBaHTOBhlll noTeHIIHaJI, 3a­

BHCHIIIHH T0JibK0 OT Wjj H ero qacTHbIX np0H3B0.L(HhlX H, 'ITO 0'leHb Ba,1rno, 

uemrnapua'l{,m1tb1u omuocumeJtbUO npeo6pa3oBauuu noopau'l{,am l (B 0TJIH'!He 

OT ~(w)), TaKHM o6pa30M, rnpe.n:HHrepoBCK0e KBaHT0BaHHe npHB0.L(HT K npo-­

THB0petIHIO c o6mepeJIHTHBHCTCKOH .n:orMOH o6meKoBapnaHTHOCTH ypaBHeHifM 

q>H3HKH H K 0ilHCbIBaeM0My napaMeTp0M K IIp0H3B0JIY. 
3 

6. Onpae,n:aHIIe HeK0BapIIaHTH0CTlI KBaHT0BaHml. HeKOBapuaHT· 

H0CTb KBaHT0BaHHH reo,n:e3HtJeCK0ro .L(BH)KeHHH aHaJiorH'!Ha H3BeCTHOH KOH· 

<popMHOH aH0MaJIHH B KBaHTOBOH TeopHH II0JIH H ee yMeCTH0 Ha3bIBaTb trnau­
mOBOU auo.MaJtueii, npocmpaucmBeUUblX auifjifje.Mopifju3.M06 ( C00-npeo6pa30BaH!lll 

KOOJ).D:HHaT ). OHa M0)KeT' 6bITb o6'bHCHeHa Ha 0CH0Be n.n:en K. PoBeJIJIH [9] 
06 0THocHTeJibH0CTH KBaHTOBon MexaHHKH ( relational qu'antum mechanics) B 

CMbICJie Heu36e)KHOro ( X0TH, KaK npaBHJI0, HeHBHoro) npHCJTCTBHH B KBaH• 

T0B0M 0IIHCaHHH CHCTeMbI llH<pOpMaIIHH 0 "Ha6JIIO,n:aIOmen" KJiaCCH'!eCKOH Cl!· 

CTeMe, BJIHHIIIeH Ha KBaHT0BJIO .D:HHaMHKy. CooTHOIIIeHHe HH<popMaIIHH 0 "Ha• 

6JIIO,n:aeMOH" H "Ha6JIIO.L(aIOmen" CHCTeMax, 3aBUCHT OT Bbl6opa IIOCJie~Heii. 

Bbr6op TOH HJIH HHOH CHCTeMbI K00p.D:HHaT { qi} 6 na'tecmBe ifju3U'tecnux ua-
6,11,waaeMblX eCTb q>OpMaJIH3aIIHH Bbr6opa CHCTeMbI, H3MepHIOIIIeH II0JI0MeHl!e 

TO'le'!HOH tJaCTHIIbI (11]. Koop,n:HHaTHhle JIHHHH M0)KH0 paccMaTpHBaTb KaK 

TpaeKT0pHH MHKp0CK0ilH'leCKHX qacoB, apH<pMeTH3JIOIIIHX Vn . 3TH TpaeK• 

T0pllH Cq>OpMHpOBaHbI ,n:eHCTBHeM Ha tJaCbI HeKOTOpOH BHeIIIHeH CHJibI, paBHOM 

BeKT0py nepBOH H0pMaJIH TpaeKT0pHH, CM, HanpHMep, [12], CTp. 18. llmpop­

MaIIHH 06 3TOH CHJie BKJIIO'!aeTCH B raMHJibTOIIHaH qepe3 Vj"l(q), Il0CK0JibKY 

3 B pa6oTe [10) YTBep)K,ZlaeTCll, 'ITO cpopMaJill3M, OCHOBaHHh!ii: Ha npuMeHeHllll aJire6p11 

Kn11cpcpop.11a npllBO,ZlllT B paccMaTpllBaeMOM qacTHOM cnyqae K e)lllHCTBeHHOMY raMUJ'lhTOIIII· 

any, a llMeHHO K (5) C vJ">(q) = 0. Ha 11am B3rJ1ll.ZI, 3TO YTBep)K,Z1e1111e llBJ'llleTCll CJ'le)ICTBl!eM 

3J1eMe11Tap11ofi onrn6Ku • 
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nocne.n:mi:ft H3MemreTC.ll npn: H3MeHeHn:H cn:cTeMhl Koop.n:1rna T. 

EcTb T0JibK0 0JJ:HH KJiacc CllCTeM K00p.D:HHaT, .n:mr K0T0pbIX nepBai:I Kpll­

Bll3Ha n:, C00TBeTCTBeHH0, nepBa.sI H0pMaJib paBHhl HYJIIO. 3To - 1top.MllJLb1lble 

pU.Mll1l06bl 'K:Oopauuambl (n:x Ha3BaIOT TaK:lKe 'K:6a3uae1,;apmOBbl.MU, CM., Hanpn:­

Mep, [12], cTp. 74). B HHX Koop.n:n:HaTHhIMH JIHHM.lIMH .lIBJI.lIIOTC.ll reo,n:e311qe­

CKn:e, BbIX0JJ:.lIIIIHe M3 o.n:Hoft ToqKn: (Haqana) { qb}, M Koop.n:n:HaTaMM ToqKn: X B 

Vn .lIBJI.lIIOTC.ll HanpaBJieHHe KacaTeJibHOH K reo.n:e3n:qeCKOH JIHHHM OX B { qn M 

paCCT0.lIHHe BJJ:0Jib Hee. TaKMM o6pa30M, KBa3n:.n:eKapT0Bhl K00p,n:n:HaTbl onpe­

,neJI.lIIOTC.ll T0JibK0 reoMeTpMeft Vn n: Bh!6opoM Haqana { qb} n: B 3T0M CMhICJie 

lIBJI.lIIOTC.ll npn:BeJin:rn:poBaHHhIMll. Mo:lKHO 0:lKH.D:aTb (n: 6bIJIO 6bI Ba:lKH0 JJ:0Ka-

3aTb), qTo HMeHH0 npn: MCilOJib30BaHMM TaKHX Ha6n10.n:aeMbIX npocTpaHCTBeH­

H0ro Il0JI0)KeHH.ll ll3BJieKaeTC.ll MaKCHMYM n:mpopMaIJHM 0 KBaHT0B0M .D:BM:lKeHHM 

'!aCTllIJbl. 

7. Y cTpaueutte ueo,nuo3uaquocTH rnpe,ntturepoBcKoro KBauTo­
BaHHJI reo,n:e3H'leCK0r0 .D:BH)KeHHJI. Ilonara.R HeB03M0:lKHbIM BbI,n:eJieHn:e 

e.n:HHCTBeHH0ro "npaBHJibHOro" ynop.R,n:oqeHM.ll nepBn:qnhIX onepaTopo:s BHYTPH 

cqmpMyn11poBaHnoro cpopMaJIM3Ma ( qTo, Boo6me roBopH, eme He cpaKT), cpaB­

HHM nonyqeHHbIH raMHJibT0HllaH C TeM, K KaK0MY raMMJibT0HHany .n:m1 TOH 

)!(e CllCTeMbl npHB0JJ:.lIT .n:pyr11e cpopMaJIM3Mbl KBaHT0Bamrn. EcTeCTBeHHO Q)Kll­

,naTb, qTQ pa31lble fPop.MaJLU3.Mbl aJLJI oauoii, U moil, J!Ce fPU3U'<leC'K:OU CUCme.Mbl1 

OOJLJ/C1lbl npuBoaumb, xomJI 6bl u npu6Jtu3umeJLb1lO, n COBnaaa101l{U.U pe3yJLb­

mama.u. B KaqecTBe TaKoro aJibTepHaTMBHoro cpopMamnMa B [1, 2] paccMa­

Tpn:BaeTc.ll KBa3MKJiaccnqecKoe KBaHT0BaHn:e IIeBMTTa [13]. OH 11cnoJib3yeT 

cne.n:y10mn:ft HepeJI.lITHBHCTCKMH nponaraTop JJ:JI.ll qacTHIJhI 4 B Vn -.: 

< q, tjqo, to > 

S(q, tjqo, to) (7) 

D(q, tjqo, to) (.n:eTepMn:HaHT BaH<PJieKa) 

PaccMaTpn:Ba.R npe.n:enbHhIH nepexo.n: t ➔ t0 ( q ➔ q0) BJoJLb 2eoae3u'<lecnou 

4 <1>aKTl!qecKI! q>OpMaJJl!3M lle BIITTa MO)KHO cq11TaTb yrrpomeHl!eM q>OpMaJ1113Ma 

BnaTTHepa-KocTa11Ta-CTepI16epra B reoMeTp11qecKOM KBaHTOBaHIIII, CM., narrp11Mep, [14], 
np11 rrpl!MeHeHl!I! K narneii qaCTHOH CIICTeMe. 
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.tl,UUUU, coeauuJI10'11WU q U qo, IleBHTT npHXO.QHT K KBaHTOBOMY raMHJihTOHHaHy 

He 1 
h

2 

( 1 ) iI(DW)(q) = -- ~w(q)- -Rw(q) + o(q - qo) , 
w 2m 6 (8)1 MeH 

r.ne R(w) - CKamrpHaH KpHBH3Ha no MeTpHKe Wij• 
KBa3HKJiaccn'!ecKHH KBaHTOBhlH noTemi;narr ( 6 ny.11,e60M npu6.11,u:J1Cel-iuu) 

VqDW d;j -(h2 /(12m))llw(q) BhirJIH.QHT KaK CKaJIHp5 , O.QHaKO BCJie.QCTBHe lIO­

CTpoeHHH, co.nep2Karn:ero npe,neJihHhIH nepexo.n HMeHHO B.QOJih reo,ne3II'lecKoii 

JIHHHH, OH IlOJIJ'IeH IIMeHHO .QJij{ KBa3H.QeKapTOBhlX KOop.nnHaT (3TO OTMe'leHo 

TaK:lKe B [15]). IloTpe6yeM Teneph, 'IT06hl ~(") = VDW a.tl,JI X:6ll3uaex:apm06blX 

x:oopauuam 6 ox:pecmnocmu ux na'IJ,a.11,a { q0}. 8To HMeeT MecTo npII "- = 0, 
T.e. KaHOHH'leCKHM KBaHTOBhIM raMHJihTOHHaH .QJij{ '!aCTHIIhI B Vn paBeH 3aMe­

'laTeJihHO CHMMeTpH'IHOMy Bhipa:lKeHHIO: 

iI(o) = _l_p;wii ( q)pj. 
w -2m (9) 

Ilo,n'IepKHeM o,nHaKo, t{TO TaKHM cnoco6oM Mhl ycTpaHIIJIH HeO,QH03HatIH0CTb 

IlOKa JIHIIIh B raMIIJihTOHHaHe. 8Toro, Ka3aJIOCh 6hl, .QOCTaTO'IHO, IlOCKOJihKY 

orrepaTophI qi, Pi H iI .na10T BCIO HH<popMaIIIIIO o .QBH:lKeHHH KBaHTOBOH 'la­

CTHIIhI. O,nHaKo, ecJIH 6hl Mhl 3aXOTeJIH 3HaTh orrepaTop J, COOTBeTCTB)"IO­

IUHM KaKoii-To HHoii: KJiaccII'!ecKoii: Ha6rr10.naeMon: f ( q, p) HO .QJIH TOH 2Ke c11-
cTeMhI ( T ,e_ TO'le'IHOH 'laCTHUhl), TO, IIO-BH.QHMOMY, rrpIIIIIJIOCh 6hr pacciia: 

TpHBaTh j ( q, p) B Ka'leCTBe raMHJihTOHHaHa HeKOTOpon: q>H3H'leCKOH CIICTeMh! 

H 3aHOBO 3aHIIMaThCH rrpo6JieMOM Bhr6opa yrropH.QO'leHHH rrepBII'IHhIX Ha6mo­

.naeMhIX, IIOCKOJihKY .QJij{ rrorry'leHHH pe3yJihTaTa (9) 6hIJI cyrn:eCTBeHHO' HC· 

IlOJih30BaH KBa3IIKJiaCCH'leCKHM rrporraraTop .QJIH reo,ne3H'leCKoro .QBH:lKeHHJI. 

CnTyaunH CKJia,QhlBaeTCH .QOBOJihHO CTpaHHM, XOTH q>OpMaJIH3M BrraTTHepa­

KocTaHTa-CTepH6epra, KOTOphln: HBJIHeTcH, ua HaIII B3rJIH,n, o6o6meHIIeM rro.n­

xo.na IleBHTTa, B03M0:lKHO TI03BOJIHT npnMeHHTh npe,ncTaBJieHHYIO 3,nech cxeMy 

.QJIH IlOCTpOeHHH j. 
OTMeTHM TaK:lKe, 'ITO ycTaHOBJieHHOe HaMH rrpaBHJIO yrropH,no'leHHH 

(K- = 0), .naeT O.QH03Ha'!HhlM OTBeT Ha .naBHIIM BOIIpoc B q>OpMaJIII3Me IIHTe­

rpnpoBaHirn ITO rryTHM: B KaKOM H3 TO'leK pe6pa peIIIeTKH HHTerpnpoBaHHJI 

- Ha KaKOM-TO H3 KOHIIOB HJIH r.ne-TO Me:lK,ny HHMH - Ha.no 6paTh 3Hati:eHHe 

IlO.QHHTerpaJihHOro Bhlpa:lKeHHH? OTBeT, IIOJIJ'leHHhlM B [1, 2], TaKOB: TO'IHO B 

cepe.nnHe. 

5
OTMeTHM 3aMetJaTeJibH0e C0BIIa)leHHe 3T0ro Bb1pa,KeHHll II0 <popMe C H3BeCTHbIM 'IJieHOM 

(I/6)R B o6mepeJil!THBHCTCKOH TeopHH CKaJillpHoro II0Jlll C KOH<pOpMHOH CBll3h!O [16] 
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8. 3aKJIIO•IeHHe. lhno:lKeHHhIH MaTep:rraJI npe.n;cTaBJIJ1eTcJ1 IlHTepecHhIM 
He TOJihKO TeM, 'ITO 3.n;ecb npll onpe.n;eJieHHhIX orpaHil'leHilJIX perneHa <pyH.n:a­
MeHTaJihHaJI npo6JieMa IlOCTpoeHilJI HepeJIJITilBilCTCKOH KBaHTOBOH MexaHilKil 
B CTaTil'leCKOM BHeIIIHeM rpaBilTaIIIlOHHOM none, HO Il npo.n:eMOHCTpllpOBaHo, 
KaKile cepbe3Hbie BOilpOChl O CTpyKType KBaii:TOBOH Teopllll BO3HllKaIOT npll 
Il0CJie.n;oBaTeJibHOM paccMoTpeHilll KOHKpeTHhIX HeJIIlHeHHhIX <pII3Il'leCKilX Cll­
creM, IlMeIOil!IlX JICHhIH <pll3Il'leCKilH CMhICJI. 
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Dirac-type operators on curved spaces 

Mihai Visinescu 
Department of Theoretical Physics, Institute 'for Physics and Nuclear 
Engineering, P.O.Box M.G.-6, Magurele, Bucharest; Romania 

Abstract - The role of the Killing-Yano tensors in the construction of the 
Dirac-type operators is pointed out. The general results are applied to the 
case of the four-dimensional Euclidean Taub-Newman-Unti-Tamburino 
space. Three new Dirac-type operators, equivalent to the standard Dirac 
operator, are constructed from the covariantly constant Killing-Yano ten­
sors of this space. Finally the Runge-Lenz operator for the Dirac equation 
in this background is expressed in terms of the forth Killing-Yano tensor 
which is not covariantly constant. 

1 Introduction 

In the study of the Dirac equation in curved spaces, it has been proved 
that the Killing-Yano tensors play an essential role in the construction of new 
Dirac-type operators.· The Dirac-type operators constructed with the aid of 
covariantly constant Killing-Yano tensors are equivalent with the standard 
Dirac operator. The non-covariantly constant Killing-Yano tensors generates 
non-standard Dirac operators which are not equivalent to the standard Dirac 
operator and they are associated with the hidden symmetries of the space. 

The general results are applied to the case of the four-dimensional Euclid­
ean Taub-Newman-Unti-Tamburino (Taub-NUT) space. The motivation.to 
carry out this example is twofold. First of all, in the Taub-NUT geometry 
there are known to exist four Killing-Yano tensors [I]. From this point of view 
the Taub-NUT manifold is an exceedingly interesting space to exemplify the ef­
fective construction of the·conserved quantities in terms of geometric ones. On 
the other hand, the Taub-NUT geometry is involved in many modern studies 
in physics. 

2 Dirac equation on a curved background 

_ In what follows we shall consider the Dirac operator on a curved background 
which has the form 

Ds = ,"f:Jw (1) 

In this expression the Dirac matrices '" are defined in local coordiriates'by 
the anticommutation relations { ,", ,"} = 29"" / and ◊" denotes the canonical 
covariant derivative for spinors. 
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Carter and McLenaghan showed that in the theory of Dirac fermions for 
any isometry with Killing vector Rµ. there is an appropriate operator [2]: 

X - "(Rµ.r1 1 µ. 11 R ) k - -l V µ. - 4, ')' µ.;v (2) 

which commutes with the standard Dirac operator (1). 
Moreover each Killing-Yano tensor fµ.v produces a non-standard Dirac op­

erator of the form 
D - . µ.(! 119 1 I/ Pf ) j - -l')' µ. II - 6, / µ.v;p (3) 

which anticommutes with the standard Dirac operator D •. 

3 Euclidean Taub-NUT space 
Let us consider the Taub-NUT space and the chart with Cartesian coordi­

nates xµ.(µ, v = 1, 2, 3, 4) having the line element 

(4) 

where x denotes the three-vector x = (r, 0, ip ), ( dx) 2 = ( dx 1 
)

2 + ( dx 2
)

2 + ( dx 3
)

2 

and A is the gauge field of a monopole div A= 0, B = rot A= 4m~. The 
real number m is the parameter of the theory which enter in the form of the 
functions f(r) = g- 1(r) = v- 1(r) = 4":.+r. 

In the Taub-NUT geometry there are four Killing vectors [1, 3]. On the 
other hand in the Taub-NUT geometry there are known to exist four Killing­
Yano tensors of valence 2. The first three are covariantly constan't 

4m 
f; = Sm(dx + cos 0dip) /\ dx; - Eijk(l + -)dxi /\ dxk, 

r 
0, i,j,k=l,2,3. 

The fourth Killing-Yano tensor is 

fy = Sm( dx + cos 0dip) /\ dr + 4r(r + 2m )(1 + _!:.._) sin 0d0 /\ dip 
4m 

having a non-vanishing covariant derivative 

hre•,n = 2(1 + _!:.._)rsinB. 
·~ 4m 

(5) 

(6) 

(7) 
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In Taub-NUT space there is a conserved vector analogous to the Runge­
Lenz vector of the Kepler-type problem (I, 3] 

1 ( 
2 

) ➔ ~- ~ •µ·v_- -t q r R - -RµvX X - p X J + - - 4mE ~ 
. 2 4m r 

(8) 

where the conserved energy is E = ½9µvxµxv. The components Kiµv involved 
with the Runge-Lenz vector (8) are Stackel-Killing tensors satisfying the equa­
tions Ki(µv;>.) = 0 , K;µv = K;.,µ and they can be expressed as symmetrized 
products of the Killing-Yano tensors f;, fy and Killing vectors (4, 5]. 

4 Dirac equation in the Taub-NUT space 

When one uses Cartesian charts in the Taub-NUT geometry it is useful to 
consider the local frames given by tetrad fields e(x), such that 9µv = o&/Jetee. 
The four Dirac matrices--)"'' satisfy {-)-&, ,tP} = 2J&/J and the standard Dirac 
operator is 

. . 
4 Ds = ~/v & = iv'V{- j5 + ~-y4P4 + :vfo14f•. B 

v-V 2 
(9) 

where 'v' & are the components of the spin covariant derivatives with local in­
dices 

'v'; = iv'VP; + -21 
Vv'VEijk~jBk, . .., 

n i . 
V4 = ~P l v'V 4 - 2vv'Vf•. B (10) 

These depend on the momentum operators P; = -i(o; - A;84 ) , P4 = -i84 

wh.ich obey the commutation rules [P;, Pj] = iEijkBkP4 and (P;, P4 ] = 0. 
The Hamiltonian operator of the massless Dirac field reads (6-8]: 

H = 1'5 D. = ( ;1r 
* 1 ) V1r Ofo 

This is expressed in terms of the operators 

iP4 
'Tr= ap-v, 

iP1 
1r* = ap + v, ap = iJ. p 

and the Klein-Gordon operator has the form L}. = -V µgµ"V., 
➔ 2 1 2 

VP + vP1. 

(11) 

(12) 

V 1r*1r = 

I 
I 
I , 

_--',.._ 
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. The conserved observables can be found among the operators which com­
mute or anticommute with D. and ,y5 [6, 9]. That is the case of the to­
tal angular momentum J = L + S where the orbital angular momentum is 
L = x x P - 4m! P4. 

Dirac-type operators are constructed from the Killing-Yano tensors f;( i = 
I, 2, 3) and fy using eq.(3). In the quantum Dirac theory these operators 
replace the supercharges from the pseudo-classical approach. The first three 

Q; = -if;&r/f°V~ (13) 

anticommute with D. and 75
, commute with H and obey the N = 4 superal­

gebra, including Q0 = iD. = i75 H [10]: 

{QA,QB}=20ABH2
, A,B, ... =0,l,2,3 (14) 

linked to the hyper-Kahler geometry of the_ Taub-NUT space. 
The concrete form of these operators depends on the representation of the 

Dirac matrices which can be changed at any time with the help of a non 
singular operator T such that all of the 4 x 4 matrix operators of the Dirac 
theory transform as X ➔ X' = T xr-1 • II\ this way one obtains an equivalent 
representation which preserves the commutation and the anticommutation re­
lations. In (8] we have used such transformations for pointing out that the 
convenient representations where we work are equivalent to an unitary one. 

Finally, using eq.(3), from the fourth Killing-Yano tensor N of the Taub­
NUT space we can construct the Dirac-type operator [6, 11-13] 

Qy= 4~ {H,( ~ -a~v-1 )}=i4~ [Qo,( ~ art-1 )] · (lS) 

The hidden symmetries of the Taub-NUT geometry are encapsulated in the 
non-trivial Stackel-Killing tensors I(µ,,, (i = 1, 2, 3). For the Dirac theory the 
construction of the Runge-Lenz operator can be done using products among 
the Dirac~type operators Qy and Q;. 

Let us define the operator [6]: 

N; = m {Qy, Q;} - J;P4 • (16) 

The components of the operator N commutes with H and satisfy the fol­
lowing commutation relations 

[N;, P4] 
[N;, Qo] = 

[N;, Ni]·= 

0, [N;, Ji]= it:ijkNk, 

0' [N;, Qil = ic:ijkQkP4' 

it;idkF2 + ½eijkQ;H (17) 
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where F 2 = P4 
2 

- H 2
• In order to put the last commutator in a form close to 

that from the scalar case (1, 3], we can redefine the components of the Runge­
Lenz operator, JC, as follows: 

K; = N; + ~H- 1(F- P4)Q; 
2 

having the desired commutation relation [6]: 

[K;, K;] = i€ijdkF2
• 
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Fermion Self-Energy during Inflation 

R. p._ Woodard 
Department of Physics 
University of Florida 
Gainesville, FL 32611 
UNITED STATES 

Abstract - I report on work done with Tomislav Prokopec (Heidelberg, 
CERN). We computed the one loop self-energy of a massless fermion dur­
ing inflation. When the fermion is free it experiences only a small amount 
of inflationary particle production owing to the conformal invariance of its 
classical action. However, when the fermion is Yukawa coupled to a mass­
less, minimally coupled scalar, there is copious production of fermions. In 
a more complicated model this effect might generate baryon asymmetry 
during inflation. 

1 Introduction 

Tomislav Prokopec and I have recently computed the one loop self-energy, 
during de Sitter inflation, of a massless fermion which is Yukawa coupled to 
a massless, minimally coupled scalar. The diagrammatic representation of 
what we did is given in Fig. 1. This would be a trivial exerdse in flat space, 
and a fairly uninteresting one. The inflationary background geometry makes 
the calculation both nontrivial and physically interesting. What we found is 
that inflation engenders copious production of scalars which then decay into 
fermion-anti-fermion pairs. The first fact was known but the second is novel 
and potentially quite significant. In a more complicated theory it may provide 
a mechanism for generating a baryon asymmetry during inflation. 

-+-0-+- < ~ ( ( D ( 

Figure 1: The one loop fermion self-energy. Fermion lines have an arrow, 
'\ scalar lines do not. The final diagram gives the contribution of field strength 
, renormalization. 

Most of the theoretical technology we used was developed in a previous 
computation, with Ola Tornkvist, of the one loop vacuum polariztion induced 
by massless scalar QED during inflation [1, 2]. However, the result is very 
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, I ; 

different. Whereas the photon develops a mass, which highly suppress~s the 
production of photons during inflation, we find copious production of Yukawa 
coupled fermions. I will therefore devote most of this talk to explaining tlie 
physics in very simple terms. In Section 2 I give a brief review of inflation. The 
largest part of the talk is Section 3. In it I explain why the direct production 
of massless, minimally coupled scalars occurs during inflation, and why there 
is no significant direct production of fermions. Section 4 presents the result, 
without giving the derivation, and shows how it implies fermion production. 

2 Inflation 

On the largest scales the universe is amazingly homogeneous and isotropic 
[3]. It also seems to be devoid of spatial curvature [4]. The spacetime geometry 
consistent with these three features is characterized by the following simple 
invariant element, 

ds 2 = -dt2 + a2(t)dx · dx. (1) 

The coordinate t represents physical time, the same as it does in flat space'. 
However, the physical distance between x and y is not given by their Euclidean 
norm, /Ix - YII, but rather by a(t)llx - YII- Because it converts coordinate. 
distance into physical distance a(t) is known as the scale factor. 

Although the scale factor is not directly measurable, three simple observ­
able quantities can be constructed from it, 

ao -1 
z = a(t) H(t) = ~ 

a 

aa . 
q(t) = -72 = -1 - .!!.._ a H2. (2) 

The redshift z gives the proportional increase in the wavelength of light emitted 
at time t and received at the current time, t0 . Redshift is often used to measure 
cosmological time, even for epochs from which we detect no radiation. The 
Hubble parameter H(t) gives the rate at which the universe is expanding. It's 
current value is, H0 = (71 :! ) 

5 
';:;;,c '.:::'. 2.3 x 10-18 Hz [4]. The deceleration 

parameter q(t) is less well measured. Observations of Type la supernova are 
consistent with a current value of q0 '.:::'. -.6 [5]. 

Inflation is defined as a phase of accelerated expansion, that is, q(t) < 
0 with H(t) > 0. From the current values of the cosmological parameters 
one can see that the universe seems to be in such a phase now. However, I 
wish to discuss primordial inflation, which is conjectured to have occurred at 
something like 10-37 seconds after the beginning of the universe with a Hubble 
parameter 55 orders of magnitude larger than it is today. There are many 
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reasons for believing that the very early universe underwent such a phase [6]. I 
will confine myself to reviewing how inflation resolves the smoothness problem. 
This can be summed up in the question, why does the large scale universe 
possess such a simple geometry (1)? 

To understand the problem we need to compare the distance light can travel 
from the beginning of the universe to the time of some observable event, with 
the distance it can travel from then to the present. From the invariant element 
(1) we see that the radial position of a light ray obeys, dr = ±dt/a(t). The 
minus sign gives the past light-cone of the point xµ, = ( t0 , 0), whereas the plus 
sign gives the future light-cone of a point xµ, = ( t;, 0) at the beginning of the 
universe, . lto dt 

Rpast = --
lob, a( t) l

tob, dt 
Rruture = t, a(t) . (3) 

We can observe thermal radiation from the time of decoupling (zdec ~ 1089) 
whose temperature is isotropic to one part in 105

• Unless the universe sim­
ply began this way - which seems unlikely - equilibrium must have been 
established by causal processes. In other words, we must have Rruture > Rpast• 

Suppose that, during the period t 1 ::; t ::; t2 , the deceleration parameter 
is constant q(t) = q1 • In that case we can obtain explicit expressions for the 
Hubble parameter and the scale factor in terms of their values at t = t 1 , 

1 

and a(t) = ai(l + (l+q1)H1(t-ti)] i+i, (4) 

!These expressions permit us to evaluate the fundamental integral involved in 
d 

I 

the past and future light-cones (3), 
e 
e 

's 
n 

< 
rs 
I 

Lt 
le 
LY 

(5) 

Although q0 is negative, this is a recent event (z ~ 1) which followed a 
long period of nearly perfect matter domination with q = +½- Much before 
the time of matter-radiation equality (zeq ~ 3200) the universe was almost 
perfectly radiation-dominated, which corresponds to q = +l. To simplify 
the computation we will ignore the recent phase of acceleration and also the 
transition periods, 

{ 
v'f+z 

a(t)H(t).= aoHo _lli:_ 

~ 

\/ Z ::; Zeq 

\/ Z ~ Zeq 
(6) 
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The cosmic microwave radiation was emitted within about a hundred redshifts 
of Zdec < Zeq, so the past light-cone is, 

e 
2 { 1 1 } 2 

Rpast = a0H0 Jf+o - ✓1 +zdec ~ .aoHo · 
(7) I e 

The future light-cone derives from both epochs and it depends slightly upon 
the beginning redshift, Zbeg, 

R 2 { 1 1 } 1 {~ ~} () 
future= aoHo ✓l+zdec -~ + aoHo l+zeq ~ l+zbeg • S 

One maximizes Rcuture by taking Zbeg ➔ oo, but it isn't enough. Under 
the assumption of q = +1 before Zeq we are forced to conclude that the 
2-dimensional surface we can see from the time of decoupling consists of 
( Rpast/ Rruture) 2 ~ 2200 regions which cannot have exchanged even a photon 
since the beginning of time! So how did they reach equilibrium? 

This embarrassment resulted from the fact that the upper limit of integra­
tion dominates Rruture for positive deceleration. Inflation solves the problem 
by positing a very early epoch of negative deceleration. This makes the lower 
limit of Rruture dominate, so the future light-cone can be made as large as 
necessary by increasing Zbeg• 

3 Inflationary Particle Production 

3.1 Virtual particles in flat space 
To understand why certain kinds of virtual particles can be ripped out 

of the vacuum during inflation it is instructive to review what constrains the 
lifetimes of virtual particles in flat space. A particle with wave vector k and 
mass m has energy, 

. E(k) = ✓m2 + llkll2 • (9) 

According to quantum field theory, virtual particles are continually emerg­
ing from the vacuum with all different momenta. This process can conserve 
momentum if a virtual pair emerges with opposite 3-momenta, but it cannot 
conserve energy. Before the pair came into· existence the energy was zero, ·af­
terwards it was 2E(k). The energy-time uncertainty principle asserts that'we 
cannot detect this violation provided the pair annihilates in less than a time 
t::.t given by the inequality, 

['+L'>.t -
lt dt' 2E(k) ;S 1 =} 

1 
t::.t ;S 2E(k) . (10) 
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,s Of course the formalism of quantum field theory automatically incorporates 
these effects, without the need to invoke additional principles. However, the 
energy-time uncertainty principle allows one to understand many things. For 

') example, virtual electron-positron pairs polarize the vacuum the most because 
they are the lightest charged particles and hence have the longest time to align 

n themselves with applied fields. Similarly, it is long wave length virtual particles 
that survive the longest, which is one way of understanding long range forces. 

3.2 Virtual particles in cosmology 
n In a homogeneous and isotropic geometry ( 1) particles are still labeled 

Jby their constant, comoving wave vectors. However, because k involves an 
~r \inverse wave length it must be divided by the scale factor in computing physical 
1e 1quantities such as the energy, 
of 
)ll (11) 

a- Let us now reconsider the emergence of a virtual pair of such particles with 
m wave vectors ±k. If they emerge at time t, the energy-time uncertainty prin­
er ciple implies we will detect no violation of energy conservation provided they 
as annihilate within a time 6.t such that, · 

i
t+At _ 

t dt'2E(t',k) ;S 1. (12) 

What can increase 6.t? Obviously anything that reduces E(t',k). At fixed 
ut -wave vector k and time t' this is accomplished by taking the mass to zero. Zero 
he -mass simplifies the integrand in (12) to 2llkll/a(t). Up to a constant this is the 
r1d 

same expression as in the light-cones (3)! We have already seen that negative 
deceleration (and hence inflation) causes these integrals to be dominated by 

.9) their lower limits. Hence they cannot become arbitrary large as 6.t goes to 
rg- infinity. The most negative deceleration consistent with stability is q; = -1, 
:ve 1for which the uncertainty bound gives, 
tot 
af-
we 
me 

lO) 

m = 0 and a(t) = a;eH;t 

We therefore conclude that any virtual particle pair which emerges with llkll ;S 
H;a(t) can survive for ever. 

3.3 Conformal invariance is the kiss of death 
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One might imagine that the big obstacle to inflationary particle production 
is nonzero mass, but this is not so. At the enormous energy scales envisaged for 
for primordial inflation all the known particles are effectively massless. The it 
reason most of them still do not experience inflationary particle production is at 
that they possess a symmetry suppressing the rate at which virtual particles Cc 
emerge from the vacuum. 

The killer symmetry is known as conformal invariance. It rescales the fields 
which carry scalars (¢), spin ½ fermions ('ljJ), vectors (Aµ) and gravitons (gµv) 
by powers of an arbitrary function of space an~ time n(x), I Tl 

cp(x) ➔ n-1(x)¢(x) , Aµ(x) ➔ Aµ(x), 

'ljJ(x) ➔ n-½(x)'ljJ(x) , 9µv(x) ➔ n\x)gµ,,,(x). 

A simple, conformally invariant theory is electromagnetism, 

,C - 1 F. F ap flu r-::. 
EM - - 4 a(J pu9 g V -g, 

(14) 

U5l 

(16) 

where Fµv = 8µAv -8,,,Aµ- Since the vector potential is unaffected by a conf~r­
mal transformation, the Lagrangian's invariance follows from the combination 
of inverse metrics and the square root of the determinant, · 

9°P9fJu A➔ n-2
9°P. n-2gflu. n4F9 = g0 pg(Ju A. (11) 

The connection between conformal invariance and cosmology derives from 
the existence of a coordinate system in which the general homogeneous and 
isotropic metric {1) becomes just gµv = a27Jµv, 

dt = ad17 ==> ds 2 = a
2 (-d172 + dx · dx) = a217µ,,,dxµ dx,,, . (18) 

If we take a conformally invariant Lagrangian and express it in terms of the 
conformally rescaled fields with n = 1/ a, it is just as if the theory was in 
flat space! Some examples are the conformally coupled scalar, massless Dirac 
fermions, and electromagnetism, 

Cccs = - ~8µ¢8,,,cpgµv A -
1
~ ¢2 R..j="g 

,CDirac = 1faeµb,-/(i8µ - ~AµcdJcd)1PH 

- -~ ap (Ju -,CEM -
4 

Fa(JFpu9 g H -

1 - 28µ(acp)8,,,(acp)17µv, (19) 

3- 3 

(a 2'1jJ),.ti8µ(a 2 '1jJ), (20) 

-iFa(JFpu1]0 p1J(Ju. (21) 
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Physics does not depend upon local, invertible field redefinitions, so a con­
formally invariant theory cannot be different, in conformal coordinates, than 
it is in flat space. This applies to all physical quantities, including the rate 
at which virtual particles emerge from the vacuum, per unit conformal time. 
Converting back to physical time gives the stated suppression, 

dn dTf dn 1 ( ) - = -- = - flat space rate . 
dt dt dTf a 

(22) 

Therefore any conformally invariant, massless virtual particles which happen 
to emerge with l!kll ~ H;a(t) will become real, but not many will emerge. 

· 3.4 Massless minimally coupled scalars 
Most familiar particles become (classically) conformally invariant when 

their masses are taken to zero. The exceptions are gravitons and massless, 
minimally coupled scalars. The Lagrangian density for the later is, · 

(23) 

Integrating over space to obtain the Lagrangian, then using Parseval's theorem 
to convert to Fourier space, gives a form we can recognize, 

/ 

3 1 / d
3
k { 3 :.., - 2 - 2 - - 2} . 

LMMCS = d x.CMMCS = 2 (
2

1r)3 a (t)l¢(t, k)I -a(t)llkll 1¢(t, k)I . (24) 

Each wave vector k represents an independent harmonic oscillator with a time 
dependent mass, m(t) ~ a3 (t), and frequency, w(t) = llkll/a(t)! 

For the case of de Sitter inflation (a(t) = a;eH;t) the mode functions take 
a simple form, 

- - - t - 'H; ( ik ) ik ¢(t, k) = u(t, k)a(k) + u*(t, k)a (-k) where u(t, k) = /nG 1 - -H e 0 H,. 
v2k3 a ; 

(25) 
To understand the meaning of the operators a(k) and at(f), note that the 
minimum energy in wave vector k at time t is w(t). However, the state with 
this energy does not evolve onto itself. Indeed, this theory has no stationary 
states! A reasonable "vacuum" is the state that was minimum energy in the 
distant past. This is known as Bunch-Davies vacuum and it is defined by 
a(k)IO) = o. 
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For Bunch-Davies vacuum the 0-point energy in wave vector k is, 

Eo(t, k) = -2
1 

a3 (t)lu(t, k)l2 + -2
1 

a(t)llkll 2 lu(t, k)l2 = 2llk(II) + Hla_,(t) . (26) 
at 4llkll 

The first term on the far right represents the irreducible, minimum energy. The 
second term gives the extra energy due to inflationary particle production. 
Since the energy of a particle of wave number k is IJkll/a(t) we can easily 
compute the number of particles, 

N(t,k)= (H;aJt))
2 

2llkll 
(27) 

As one might expect from the preceding discussion, this is much less than one 
at very early times, and it becomes order one when the wave number just 
begins to satisfy the uncertainty bound (13). 

3.5 Scalar decay to fermions 
Although we have seen that inflation produces enormous numbers of mass­

less, minimally coupled scalars, the conformal invariance of the Dirac La­
grangian (20) implies that there can be no comparable, direct production of 
fermions. However, it is still possible to make lots of fermions during infla­
tion by allowing the scalars to decay into them. This can be accomplished by 
making scalars and fermions interact through a Yukawa coupling, 

.CYukawa = .CMMCS + .CDirac - f ¢-;jj'lj;FfJ, (28) 
1 2 3- 3 4 -= - 2a Oµ,<POv</n/"v+(a 2¢)''/ifJµ,(a 2¢)-fa ¢¢¢. (29) 

p1 

k 

p2 

Figure 2: Scalar decay into a fermion-anti-fermion pair. The initial state 
scalar has wave vector k. The final state fermions have wave vectors p1 =p 
and P2 = k- p. 

1 
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The decay process is depicted in Fig. 2. Just as with inflationary particle 
production, 3-momentum is conserved but energy is generally not, 

b.E(t) = [llill + Ilk - Pll - llkll] att) . (30) 

In flat space the decay would be only be allowed for the infinitesimal phase 
space in which three momenta are co-linear. However, just as for particle 
production, the inflationary expansion weakens the constraint imposed by the 
energy-time uncertainty principle so as to permit the decay over a large volume 
of phase space, 

ft+At 
it dt'b.E(t') ~ 1 

This is the physics behind our result. 

4 The Calculation 

[llill + Ilk - Pll - llkll] ~ Ha(t). (31) 

I now specialize to the de Sitter scale factor, a( t) = eHt = - l / H 77. It is 
useful to express the propagators in terms of the following conformal coordinate 
interval, 

(32) 

Owing to the conformal invariance of the free Lagrangian (20), the fermion 
propagator is a trivial rescaling of the flat space result, 

·s ( ') ( ')- ~ µ ·a { i i } i ij x; x = aa 2 'Yij i µ - 2 A 2 ( ) , 
41r ux x; x' 

(33) 

where a= a(t) and a'= a(t') are the scale factors evaluated at the two points. 
The free scalar is not conformally invariant so its propagator has an additional 
term, 

1 { (aa't
1 

1 } ib.(x;x') = - ---- - -H2 1n[H2 b.x2(x;x')] . 
41r 2 b.x2(x; x') 2 

(34) 

The </>~;1/Jj vertex and the fermion field strength renormalization are, 

-ira4o;i and ioZ2 (aa')½,0 i8µo 4 (x - x'). (35) 

Computing one loop diagrams in position space is easy. One simply mul­
tiplies the various vertices and propagators. There are no integrations. The 
two diagrams of Fig. 1 give, 

-i (;:Ei) ( x; x') = (-ira4o;k) iSke( x; x') (-ira'4oej) ib.( x; x') 

+ioZ2 (aa')½,0 i8µo 4(x - x'). (36) 
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Well, it isn't quite that easy! The actual calculation was done using the 
Schwinger-Keldysh formalism, which involves summing diagrams with slight 
variations in the it prescription of expression (32) (7, 8]. 

One must also account for the ultraviolet divergences which manifest as 
products that are not integrable functions of xµ. and x'µ.. One deals with these 
by partially integrating to reduce negative powers of .6.x2(x; x') until the re­
sult is integrable. This procedure can be implemented so as to segregate the 
divergence to a delta function that can then be.absorbed by oZ2 • Doing this 
rigorously requires the use of a regulator. We employed dimensional regular­
ization, which makes slight changes in the fermion propagator (33) and the 
vertices (35), and major changes in the scalar propagator (34) (9]. 

Most of the formalism has been discussed in print (2] so I will confine myself 
to quoting the fully renormalized result, 

[;~j] ( x; x') = ;~: ( aa') ½ , 0 ioµf)4 
{ 0(.6.17 )0(.6.17-.6.x) (ln [µ 2 (.6.1,2-.6.x2

) ]-1 )} 

-2~:2 ln( aa')( aa') ½ /ij ioµo4( X - x') 

· -r: H: (aa')½10 ioµo 2 
{ 0(.6.17)0(.6.17-.6.x) ln[H2(.6.172 -D.x2

)]}. (37) 
2 7r . . . 

The first line is the conformally rescaled flat space result.· Note that it involves 
a renormalization scaleµ. The second line is the well-known contribution from 
the conformal anomaly. The intrinsic de Sitter result is on the third line. It is 
distinguished from the other two terms by its extra factor of aa'. 

The self-energy gives quantum corrections to the Dirac equation, 

a½ 10ioµ(a½1Pi(x)) + J d4 x'[;~i](x;x')1Pi(x') = 0. (38) 

Note that the flat space part of the one loop self-energy (37) has the same 
number of scale factors as the tree order differential operator. Perturbation 
theory only makes sense if the coupling constant is small, so we may assume 
r2 « 1. This means that the flat space part of the one loop self-energy can 
be ignored. So too can the conformal anomaly, which is only enhanced by a 
factor of In( a). However, we cannot necessarily ignore the de Sitter correction'. 
Although it is also down by r2, it is enhanced by a scale factor, which becomes 
enormously large during inflation. It therefore makes sense to keep only the 
de Sitter contribution of (37). 
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Because the background is spatially translation invariant it also makes sense 
to look for plane wave solutions, 

•1, ( ~) _ ;i_ ( ) ik-x 'Yi TJ, x = a 2 Xi TJ e , (39) 

Because the self-energy conserves helicity, we may as well also specialize to 
2-component helicity eigenstates, 

Xi(TJ) = (XL(TJ)) 
xn(TJ) 

with k · axL,n = ±kxL,n. (40) 

For the left-handed spinor the result of performing the spatial integrations is, 

o = (i8o ± k)xL(TJ) 
ir2 H2 1T/ . [ 12kAr, e±i-r -1] +-

8 2 
a dTJ'a'XL(TJ')e'f•kAr, 2ln(2H~TJ)+l+ dr--- .(41) 

W rn O T . 

To obtain the result for a right-handed spinor with ± helicity, simply change 
the signs of ±k, ~ik~TJ and ±ir. 

Recovering the full time evolution of this sort of nonlocal mode solution 
requires numerical integration. However, it is straightforward to get the as­
ymptotic behavior for late times; In this regime the physical 3-momentum has 
redshifted to essentially zero, so we can simplify ( 41) by setting k = 0. This 
obliterates the distinctions between left and right handedness, and between 
different helicities. The equation can be further simplified by transforming 
from conformal time TJ to cO:.moving time t, 

r2 H 2 ri , 1 
8ix + 

4
w

2 
lo dt'x{ln[2e-Ht - 2e-H1

] + 2} ~ o. 

Now factor the leading exponential out of the logarithm, 

ln[2e-Ht' - 2e-Ht] =-Ht'+ ln(2) + ln[l - e-HAt] . 

( 42) 

(43) 

It is an excellent approximation to retain only the term - Ht'. Acting another 
derivative results in a local equation, 

r2H2 . 
8;x -

4
w2 Ht X ~ 0, (44) 

whose approximate solution can be obtained by the WKB method, 

3 [ r 3] X ...'.....-+ (Htti exp 
3

w (Ht) 2 • (45) 
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