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General description of the work 

Relevance of the topic 

Transition metal oxides {TMOs) form probably one of the most interesting classes of solids, 

exhibiting a wide variety of structures and properties. The unique electrical and magnetic properties 

of TMOs have attracted the interest of theoretical physicists and technology developers for their 

applicability. Recently, experiments have provided observable evidence of many exotic phenomena 

occurring in TMOs, such as charge density waves {CDW) (e.g. K0_3Mo03), charge orde~ing (e.g. 

Fe304), and defect ordering {e.g. Ca2Mn205 , Ca2Fe20 5 ). TMOs can range from ferromagnetic 

{e.g. Cr02,· Lao.sSr0.5Mn03) to antiferromagnetic {AFM) (e.g. NiO, LaCr03).· Many oxide 

cotnpounds have switchable orientation states such as ferroelectric (e.g. BaTi03, KNb03) and 

ferroelastic [e.g. Gd2(Mo04)3]. Some TMOs have metallic properties (e.g. Ru02, Re03, LaNi03), 

while others have highly insulating properties (e.g. BaTi03). Several oxides exhibit co-existence 

of metallic and non-metallic properties (e.g. Lu2Rh207 ). Among them, the phenomenon of high­

temperature superconductivity {HTSC) in cuprates is one of the issues of interest to solid-state 

physicists. 

The unusual properties of TMOs are clearly due to the unique nature of the outer d or f 

electrons. The d electrons are localized, their wavefunctions are restricted in a small space around 

the atom. They are distributed inside a sphere with small radius, this makes the chance of electrons 

meeting each other higher than other bands, the on-site Coulomb interaction (CI) is thus larger. 

Therefore, many TMOs belong to strongly correlated materials which have incompletely filled 

d- or £-electron shells with narrow energy bands. In these materials, transition metal .can easily 

combine with oxygen to form covalent bond. It gives all s electrons and some d electrons to oxygen, 

there are only d or f electrons remafning in its outer shell .. If TMOs contain the alkaline or rare 

earth elements, they can provide additional electrons to;oxygen. Depending on atomic radius, 

they can distort the lattice structure. Therefore, the basic electronic structures of TMOs origin 

from transition metal d bands as frontier bands, oxygen p bands the second most energetic bands 

staying at the Fermi level, other bands haye less significant impact to the electronic properties of 

these materials. 

The theoretical understanding of the properties· of various TMO materials is' one of· major 

challenges to the modern condensed matter theory. The behavior of electrons and spinous in these 

materials cannot be effectively described by traditional one-electron theories, it requires more 

modern methods to treat these strongly correlated systems which are the reason for the very 

rich physical properties in TMOs and represented by complicated phase diagrams. Many th~ories 

have been proposed to describe corelation electrons in TMOs, among them the dynamical mean 

field theory (DMFT) is a numerical method that has proved to be very effective. ·In addition, 

the Hubbard model is a simple, but very useful model for the general description of corelated 

materials. In the limit'of strong correlations, the Hubbard model can be reduced to the·t- J 

model with the intersite Coulomb repulsion V, the so called t- J- V model, which turns out to 
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be an effective model for cuprate HTSC. Therefore understanding of physical properties of highly 

correlated systems and study microscopic models of strong correlations are the actual tasks. 

Purpose and objectives of the thesis 

The goal of the dissertation is the theoretical study of several properties of TMOs based 

on models of strongly correlated electron systems: the metal-insulator transition (MIT) in the 

ionic Hubbard model (IHM), static and dynamic charge fluctuations (CFs) and HSTC within the 

microscopic t - J - V model. 

To achieve these goals, the following tasks have been formulated and studied: 

1. Obtaining the phase diagram of the half-filled IHM with the on-site Coulomb repulsion U 

and the ionic energy A by mean of the coherent potential approximation (CPA). When the 

system is in the metallic phase a dependence of the de conductivity on the model parameters 

is calculated. 

2. Calculation of the static charge susceptibility (SCS) and the dynamic charge susceptibility 

(DCS) in strongly correlated electronic systems within the two-dimensional t- J- V model. 

The spectral density and the spectrum of charge excitations as functions of doping and 

other model parameters are obtained with the use of the equation of motion method for the 

. relaxation functions in terms of the Hubbard operators (HOs). 

3. Application of the extended t - J - V model where the intersite Coulomb repulsion and the 

electron-phonon interaction (EPI) are taken into account to investigate electronic spectrum 

and superconductivity in cuprate HTSC. The Dyson equation for the normal and anomalous 

(pair) Green functions (GFs) is used in the special form where the self-energy is taken in 

the self-consistent Born approximation (SCBA). Superconducting Tc dependence on EPI and 

spin-fluctuation interaction is studied. 

. Scientific novelty 

Phase diagram in IHM was studied by using CPA. The equaions of local GFs of sub-lattices 

were derrived, the solutions were then found by developing numerical calculations. The obtained 

results partially contribute to the debates about the phase diagrams of related materials. They 

are in good agreement with the results of previous publications. 

CDWs have been studied in the t- J- V model, where compared to the original t - J model, 

the intersite CI between electrons has been introduced. Using the memory function method, SCS 

and DCS were calculated. Numerical methods are developed to show the dependence of the above 

quantities on the parameters of the model. 

Electronic spectrum and superconductivity have been studied in frame work of the extended 

t - J - V model. Using the projection method we obtain the Dyson equation for the GF. The 

norm~! and . supercond ucting states are considered. A numerical program is used to show the 

dependence of the spectral function and the self-energy on the model parameters. The obtained 

l 
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results are in good agreement with the previous theoretical and experimental results and can be 

used as a reference for further studies on superconductivity. 

The main results of the thesis submitted for defense: 

1. The phase diagram was investigated using CPA in the half-filled kmic Hubbard model (IHM). 

The metallic phase was proved to be sandwiched between the band insulator (BI) phase and the 

Mott insulator (MI) one. The maximum value of the temperature dependent conductivity O"max(T) 

as a function of on-site Coulomb repulsion U occurs near to U ;::j 2/::;. and O"max(T) decreases with 

increasing T. 

2. The behavior of static and dynamic charge susceptibility have been considered in the 

framework of the t - J - V model with the Green function (GF) technique. It is shown that 

with increasing the intersite Coulomb repulsion 'V, the static charge susceptibility x(q) grows 

without limit (i.e. 1/x(q) vanishes), and charge density waves arise in the system either along the 

diagonal of the unit cell or along the edge of the unit cell. 

3. Within the t - J- V model, the damping of dynamic charge fluctuations derived from the 

calculated imaginary part of the lllemory function and the GF technique was analyzed for a large 

range of doping 8, 0 < (j :::; 0.3. The behavior was obtained to change from a broad spectrum of 

overdamped charge fluctuations at 8 ;::j 0.1 to the Fermi-like behavior for (j > 0.1. 

4. The extended t - J - V model with the electron-phonon interaction was applied to study 

electronic spectrum and superconductivity for strongly correlated electron system. The Dyson 

equation for the normal and anomalous GFs was derived in term of Hubbard operators and the 

self-energy was obtained in the self-consistent Born approximation. 

5. Within the approach defined in the point 4 and applied for normal electronic properties, 

the calculated GFs revealed a transition from well defined quasiparticle electron excitations to 

overdamped broad excitations. The sharp Fermi surface in the mean-field approximation in the 

form of hole pockets at low doping is accompanied by the transformation to arc Fermi surface. 

6. The statement on the dominance of the kinematic interaction in the spin fluctuation mechanism 

of superconducting pairing, earlier obtained in t:- J model, was reexamined in the framework of the 

extended t- J- V model including electron-phonon coupllng "'g. The statement was confirmed 

in a wide range of physically significant parameters V and g. 

Approbation of the thesis 

The results of the dissertation were presented personally by the author at the seminars of 

the Laboratory of Theoretical Physics (BLTP), JINR as well as at conferences: 

1. The XXII International Scientific Conference of Young Scientists and Specialists (AYSS-2018), 

23-27 April 2018), JINR, Dubna, Russia. 

2. Meeting of the Programme Advisory Committee for Condensed Matter Physics, 14-15 June 

2018, Dubna, Rusia. 

3. XXII Scientific School of Young Scientists and Specialists of JINR (LIPNYA 2018), 20-22 July 

2018, Dubna, Russia. 
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4. XXII Training Course in the Physics of Strongly Correlated Systems, 1-12 October, 2018, 

Vietri sui Mare (Salerno), Italy. 

5. The XXIII International Scientific Conf~rence of Yo~ng Scientists and Specialists (AYSS-

2019), 15-19 April 2019, JINR, Dubna, Russia. 

6. Autumn. School on Correlated Electrons: Topology, Entanglement, and Strong Correlations, 

21-25 September 2020, Forschungszentrum Jiilich- Online-Edition. 

7. The XXIV International Scientific Conference of Young Scientists and Specialists (AYSS­

jo20), 9-13 November 2020, Dunba, Russia. 
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Personal contribution of the author 

The content of the dissertation and the provisions submitted for defense, reflect the personal 

contribution of the author. The author took an active part in all stages of the work. His contribution 

was decisive in carrying out the analytical and numerical calculations, the development of algorithms, 

as well as the preparation and writing of articles with the supervisor. All results submitted for 

defense were obtained personally by the author. 

Confidence level 

The reliability of the results obtained is based on the use of widely recognized and proven 

theoretical methods, such as CPA, memory function, projection method, etc., which have been 

used to study strongly correlated systems previously. The similarity of the obtained results with 

the results of previous studies is a good reason for their reliability. 

The structure and amount of the thesis 

The dissertation consists of introduction, 3 chapters, conclusion, bibliography and 7 appendices. 

The general 'volume of the dissertation is 84 pages, including 53 figuress and 1 table. The bibliography 

includes 198 titles on 10 pages. 
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Content of the work 

In Introduction we demonstrate the relevance of the disertation, determine the main purpose 

and objectives of the research, argue about the novelty and practical significance of the work, and 

the reliability. Results are approved at conferences, scientific seminars, lists of publications. The 

brief description of the disertation structure is given. 

In the First Chapter we discuss on MIT in the IHM on a bipartite lattice (sub-lattices A 

and B) which has the Hamiltonian: 

H = -t L [c;';A" +cj"e;"J +U.L:n;"n;u+EALn; +c:B Lni- fl. .L:n;, (1) 
iEA,jEB,a i iEA jEB 

where e;"(ct) annihilates (creates) an electron with spin cr at site i, n;" =etc;" and n; = 2:::" n;" 

is the electron number operator at site i. U is the on-site Coulomb repulsion, t is the nearest 

neighbor hopping parameter, EA = t. and EB = -t. are the ionic energies. The chemical potential 

/1-A = fl.B =fl. is chosen so that the average occupancy equal 1 (half-filling), as a result fl. = U /2. 

Using alloy approach, we can' rewrite the Hamiltonian (1) as the one-particle Hamiltonian with 

disorder: 

where 

H = -t L [atbi" + bj"a;"] + L EA,"ata;" + L EB,"bj"bi"' 
<ij>a 

E .- {c:a- U/2 
o:,u- ' 

, Ea + U/2, 

iEA,a jEB," 

with probability 1 - na,u 

with probability na,"' 

(2) 

(3) 

here a = A, B, and na," is the average occupation of electrons with spin cr in a sub-lattice. 

Introduce retarded anticommutator GFs G~"(t- t') = ((a;"(t);a~"(t'))) and G~M(t- t') = 

( (bi"(t); aJ"(t')) ), writing down equations of motion for the GFs, using semi-density of state (DOS) 

function p0 (c:) = 2/(7rW2)VW- c:2 , we obtain 

GM(w) = : 2 b (1- J1- : 2

), (4) 

and similar for GB"(w) where a= w- L:M(w) and b = w- L:B"(w), L:a(w) is the self-energy of the 

a sub-lattice, W is half-width of the band to be set as the energy unit. The CPA demands that the 

scattering matrix at site l, 'Il(w) = 1 :.i~)b(w) vanishes on average, where Vj(w) = E""'- L:""'(w) 

is perturbation potential at site l. This yields 

1 2 ) 1 [ 2 U
2

] 

16 
Ga(w)Ga(w + 2(Ea- w)Ga(w)Ga(w) + (c:a- w) - 4 Ga(w) 

1 u 
+-G-(w) + c: - w- -(n - 1) = 0 

4 a a 2 a · (5) 
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Fig. 1: DOS p(w) and ps(w) with Ll = 0.1, U = 1.4. 
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Fig. 2: Conductivity as a function of U for T = 0 and different values of Ll. 
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Equation {5) must be solved with nA + ns = 2, where n, = -2/7r J! ImG,(w)dw. The 

solution can be used to determine the local one-particle DOS p,(w) = {-1/7r)JmG,{w), the 

staggered charge density n8 - nA and the charge gap as functions of the model parameters U; Ll 

and temperature T. 

Figure 1 shows DOS ps(w) and the average DOS p(w) = ~[PA(w) + Ps(w)] as functions of 

energy with Ll = 0.1 and U = 1.4. For fixed Ll "there is a gap bet'Yeen the two bands for small U, 

the material is considered to be in the BI state. As U increases, it affects the displacement of the 

energy bands, at U = 0.85 there is overlap of two energy bands into a single region, the material 

becomes metal (p(O) > 0). Keep increasing U the material becomes MI, two more energy bands 

appear and there is a gap between the regions. 

The conductivity corresponding to the metailic phase with three values of Ll is plotted in Fig. 

2. It is interesting to note that for intermediate and large Ll the largest conductivity occurs near 

the special value U = 2.:1 as one might expect from the atomic limit case. Similar behavior of the 

conductivity in the half-filled IHM was also found in determinant quantum Monte Carlo {DQMC) 

studies [1,2]. In addition, the lar.gest conductivity amax(Ll) decreases with increasing Ll. The main 

results of this chapter are published in Ref.1 from the List of publications above. 

In the Second Chapter we consider the t- J- V model where in addition to the conventional 

hopping t and exchange interaction J terms the intersite Coulomb repulsion V is taken into 

account. It is convenient to use the HO technique [3, 4] and to write the model as follow (see.~ 
e.g., [5]): ' 

H = Ht + HJ +He=- L t;iXf0XJa -J.L Lxra 
ifj,u ia 

+ ~ L Jij (Xi'' xr- xra Xj") + ~ L V;,jNiNj, 
iij,a iij 

{6) 

where the HOs x:f! = lio:) (i.BI describe the transitions from the state li, .8) to the state li, a:) on the 

lattice site i for the three electronic states with spin a/2, a= ±1 {it= -a): the unoccupied state 

(a:, .B = 0) and two singly occupied states,{o:, .B =a). Here l;j = toj,i+a, + t'8i,i+a2 + t"Oj,i+a3 where 

t, t', t" are the hopping parameters between the first a 1 = ±ax, ±ay, second a2 = ±(ax± ay), 

and third a3 = ±2ax, ±2ay neighbors, respectively (ax = ay - are the two-dimensional" lattice 

constants). J;i = Joj,i+a, is the exchange interaction for the nearest neighbors. The intersite CI 

V;i = V18j,i+a, + V28j,i+a2 where Vi and the V2 are CI between the first and the second neighbors, 

respectively. The number and spin operators in HO representation read 

N; 

S'! . 
""""'X'!a 
L.J • ' 

xru, s: = (a/2) (xra- x[u). 

(7) 

{8) 

The chemical potential IL in {6) is determined from the equation for the average number· of 

electrons: 

n=l-8=(N;), {9) 



8 

where t5 is hole doping, ( ... ) is the statistical average with the Hamiltonian (6). 

The HOs satisfy the completeness condition 

xjlO + x;u + xt" = 1 , (10) 

which rigorously preserves the constraint of no double occupancy of any quantum state li, a) 

on· ~ach lattice site i. From the multiplication rules for HOs Xf13 Xi8 = 8p7 Xf8 follow the 

commutation relations: 

[xf13 xJ"L = 8;j (t5137Xf8 ± 8&,X?13
), {11) 

where the upper sign refers to Fermi-type operators such as xpu, while the lower sign refers to 

Bose-type operators such as the number (7) or the spin (8) operators. 

To study the dynamic charge fluctuations (DCF), we consider the two-time retarded GF [6] 

Xq(t- t') = -((Nq(t)INq(t'))) = iB(t- t')([Nq(t),N-q(t')]), (12) 

1 
Nq = VN 2: N;exp(-iqr;), 

' 

(13) 

where [A, B] = AB - BA, Nq(t) = eiHt Nqe-iHt (we take n = 1) and B(t- t') is the Heaviside 

f~~ction. The DCS Xq{w) is given by the Fourier transform of the GF (12) 

Xq{w) = -((NqiN-q}}w = i 1oo dteiwt([Nq(t), N_q]). (14) 

To calculate GF (12) we consider the density-density relaxation function 

<I>q(t- t') = ((Nq(t)IN-q(t'))) = -iB(t- t')(Nq(t), N_q(t')), (15) 

where 

(A(t), B) = 1f3 d>.. < A(t- i>..)B >, (16) 

is Kubo-Mori scalar product, fJ = k~T' The Fourier transform of the density-density relaxation 

function is given by 

<l>q{w) = ({Nq!N-q))w = -i 100 

dteiwt(Nq(t), N_q). {17) 

The DCS Xq{w) is related to SCS Xq and the relaxation function <l>q(w) by the equation 

Xq(w) = Xq- w<I>q(w). (18) 

Using the equation of motion method for the time-dependent relaxation function (15), we can 

write the relaxation function (17) in the form 

w- wMq{w)/mq 
<l>q{w) = Xqw2 _ n~- wMq(w)jmq (19) 

. 
j, 

"' 

9 

where correlation function mq and the charge excitation energy n~ are given by 

n2 
q 

mq 

X 

(iNq 1- iN_q) = ( [iNq, N_qj) 

~ 2: [ t(q')- t(q'- q)](X~P X~?), 
q' 

mq_{-Nq,N-q) "" 
Xq - (Nq, N_q) = L [t(q')- t(q- q')J 

q' 

(t(q')- ~J(q) +2V{q)) (X~PX~?). 

(20) 

{21) 

The memory function Mq(w) is given by the irreduccible part of the force-force relaxation function 

Mq{w) = {(Fq!F-q)):.;-r, 

where the force Fq = (djdt)jq = Nq = -[[Nq, H], H]. 
Therefore the DCS {14) ca11 be written in the following form 

ffiq 
Xq(w) = Xq -w<I>q(w) = m +wMq(w)jmq -w-· 

q 

The spectral density of CFs is determined by the relation: 

, mq2Wfq{w) 
lq(w) = Imxq{w + ie) = [n2 + 2wf> (w) _ w2)2 + [2wr q{w)]2' 

.q q 

where we introduce the imaginary and real parts of the memory function: 

r q{w) = -{1/2 mq)ImMq{w + ie), Llq{w) = (1/2 mq)ReMq{w + ie). 

The CF correlation function (NqN-q) in the mean-field approximation (MFA) is given by 

( 1
00 dw 1 . ) ffiq• nq 

NqN-q}= ( /T)- Imx(q,w+u =r:;-coth 2T. 
_ 00 exp w 1 7r 2"q 

{22) 

(23) 

{24) 

(25) 

{26) 

The spectrum of the charge excitations n~ along the main directions in the Brillouin zqne (BZ) 

f{O, 0) -+ X(1r, 0) -+ M(1r, 1r) -+ r{O, 0) is shown in Fig. 3 for hole dopings t5 = 0.1 and t5 = 0.3 

with the standard model parameters Vr = 0.3 and V2 = 0.2 and the temperature T = 0.02 ~ 90 K. 

At the center of the BZ r (0, 0) the excitation energy tends to zero, n~ ex q2
• At the boundary 

of the BZ at the point M {1r, 1r) the maximum is observed, and its intensity increases when hole 

doping decreases. The dispersion of the spectrum depends on the model parameters. It weakly 

depends on the exchange interaction J but shows a strong variation with the CI parameters Vr 
and \12. 

Fig. 4 shows the dependence of x;;-1 on the parameter Vr at a fixed V2 = 0.2. As the parameter' 

V1 increases, the maximum of the SCS (minimum of x;;-1) shifts from the point X ( 1r·, 0) to the point 

M (1r, 1r). At Vr 2; 0.5 the inverse charge susceptibility becomes negative near this point, which 
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indicates instability of the uniform charge distribution and formation of the CDW. Therefore, 

depending on the CI parameters Vi and V2 , which have different symmetries, CDWs can arise 

either along the direction r(O,O) -t M(n,n) as V1 increases, or along f(O,O) -t X(n,O) as V2 
increase. 

Fig. 5 demonstrate the damping at the charge excitation energy f(q,w = rlq)· The largest 

damping occurs at X(n, 0) and M(n, n) points of the BZ. The damping is greatly increased at low 

hole doping as shown for (j = 0.1 where electron correlations are strong. In that case the damping 

r( q, w) becomes of the order of the charge excitation energy rlq that results in a broad spectrum 

of the spectral density J(q,w). For larger hole• doping, in particular at (j = 0.3, the damping is 

much weaker, f(q,w) ~ 0.5, and a sharp peak in J(q,w) emerges at high energy of the order 

of the charge excitation energy r!q = 1 - 1.5. Similar maximum in CFs was found in the QMC 

simulation for the Hubbard model in Ref (7] (see Fig. 4.2(b)]. 

3 g 

(0,0) (q..q,) (n/2.n/2) 

Fig. 6: Spectral density I((qx, qy = qx), w = 0.05) along the direction f(O, 0) -t M(n, n) at 

temperature T = 0.02 for (j = 0.3 (blue, solid line), (j = 0.2 (brown, dotted line), (j = 0.1 

(black, dashed line). 

The dispersions of low-energy charge excitation for w = 0.05 ~ 20 meV are shown in Fig. 

6 along the directions f(O, 0) -t M(n, n). We observe a maximum in excitations at small wave­

vectors which are found at low doping and sharper and more intensive at smaller doping. The 

intensity of excitations along f(O, 0) -t X(n, 0) is higher in comparison with the diagonal direction 

f(O, 0) -t M(n, n) due to weaker CI in the latter case V2 < V1• In experiments for various cupr~tes, 
the charge density mudulation is observed, along the C"!-0 bonds which is explained by a stronger 

coupling along the bonds. The main results of this chapter are published in Refs.2,3 from the List 

of publications above. 

In the Third Chapter we consider electronic spectrum and superconducting pairing in the 

extended t - J - V model on a square lattice. To study strong electron correlations in the singly 

occupied sub band of the t-J model one has to use the projected electron operators, as a:!a = a["(1-
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N;u)· Here a!.,, is a creation electron operator on the lattice site i with spin a/2, a= ±1 (a= -a) 

and N;u = aiuaiu is the number operator. The t-J model in the conventional notation reads [8): 

H = - L t;ia"tai" + ~ L J;i ( S;Si - ~ N;Ni) + Hc,ep• 
. i;<j," ifj 

(27) 

where Sf = (1/2) Ls,s' a~a~,,ais' are spin-1/2 operators, a~ •• is the Pauli matrix. Here tij is the 

hopping parameter between i and j lattice sites and J;j is the AFM exchange interaction. The 

intersite Cl V;i for electrons and EPI 9ii are taken into account by the Hamiltonian: 

1 
Hc,ep = 2 L V;jNiNj + L 9ijNi Uj, 

i::fij i,j 

(28) 

where ui describe atomic displacements on the lattice site j for phonon modes. 

The unconventional commutation relations for the projected electron operators result in the 

kinematical interaction. For instance, if we consider commutation relation for the projected electron 

creation a}" and annihilation a;" operators, 

--t -t- '( I a;"ai" + ai"a;" = u;i 1- N;" 2 + aSi), (29) 

we observe that they are Fermi operators on different lattice sites but on the same lattice site they 

describe the kinematical interaction of electrons with charge N;" and spin Sf fluctuations. This 

kinematical interaction was considered in calculation of the self-energy at first in Ref. [9) and later 

in Ref. [10). 

It is convenient to describe the projected electron operators by the HOs, as, e.g., a"t = Xf0
• 

Using the HOs, we write the Hamiltonian (27) in the form 

H - L t;jXf0XJ"- J.L l:Xf" 
i-fj,u ia 

+ 1 "' J (X"uXu" X""Xua) + H 4 L.....t ij i j - i j c,ep1 

ifj," 

(30) 

where we introduced the chemical potential J.L. To discuss the electronic spectrum and superconducting 

pairing within the model we consider the retarded two-time GF [6): 

8ij,"(t- t') -iB(t- t')( { ll!;"(t), wj"(t')}) 

((w;"(t) lwj"(t'))), 

where {A, B} = AB + BA and we introduced HOs in the Nambu notation: 

(Xo") 
Wier= xfo ' w+ = (X?'o xoa) 

10' 1 I • 

Introducing the Fourier representation in (k, w)-space for the GF (31) 

~ 1 100 . (t t') ~ G;i"(t- t') = -
2 

dte-ow - G;i"(w), 
7r -oo 

~ 1"' ~ G;i"(w) = N L., exp[k(r;- rj)] G"(k,w), 
k 

(31) 

(32) 

(33) 

(34) 
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Fig. 7: Dispersion of the electron spectrum 

for 8 = 0.05 (red, dash-dotted line), 8 = 0.1 

(black, dashed line), 8 = 0.2 (brown, dotted 

line), 8 = 0.3 (blue, solid line). 

Fig. 8: Fermi surface (FS) in the quarter of the 

BZ for 8 = 0.05 (red, dash-dotted line), 8 = 0.1 

(black, dashed line), 8 = 0.2 (brown, dotted line), 

8 = 0.3 (blue, solid line). 

we represent it as the matrix 

~ ( G"(k,w) F"(k,w) ) 
G"(k,w)= FJ(k,w) -Ga(-k,-w)' (35) 

where G"(k,w) and F"(k,w) are the normal and anomalous parts of the GF (31). 

By differentiating the GF (31) over the times t and t' we can obtain the Dyson equation in the 

exact form 

G;j"(w) = G?iAw) + L G?kAw) Q-1 iSkl"(w) Gli"(w), (36) 
kl 

where Q = 1- n/2. Here the zero--order GF in generalized MFA (GMFA) has the form: 

Go(k ) ·= Qwfo + c(k)f3 + ~"(k)f1 
" , w w2 - E2(k) ' (37) 

where fo, f1, f3 are the Pauli matrices and E 2 (k) ~.c2 (k) + ~~(k) is the energy of quasiparticle 

(QP) excitations in the superconducting state. The self-Bnergy operator iSkl"(w) is given by the 

proper part of the scattering matrix that has no parts connected by the single zero-order GF: 

iSij"(w) = ((Z;~rr> 1 zJ;;r>+))~roperQ-1 = (~ijAwl . <l>;j"(w)) 
<l>ii"(w) - Mija(w) · · 

(38) 

The functions M;i"(w) and <l>;j"(w) denote the respective normal and anomalous (pair) components 

of the self-energy operator. Therefore, for the single-Blectron GF ( 35) we obtain an exact representation: 

G"(k,w) = Q{wf0 - E"(k)- i5"(k,w)}~ 1 . 

The normal state GF in the GMFA is given by the GF (39) 

G0 (k,w) = ((X~IXk'0))w = ___9_ __ . 

Here the electronic energy is determined by the relation: 

c(k) 

w(cl(k) 

-4t a1(k)- 4t' f3!'(k) -4t" f3!"(k) +w(c)(k)- J.L, 
1 . 
N L V(k- q)N(q), 

q 

(39) 

(40) 

(41) 

(42) 
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Fig. 9: Spectral density A(k, w) for 8 = 0.1. Fig. 10: Energy dispersion for 8 = 0.1. 

where1(k) = (1/2)(coskx+cosky), 1'(k) =coskxcosky, 1"(k) = (1/2)(cos2kx+cos2ky) and 

the hopping parameters are given by t' = O.lt, t" = 0.2t. We take t = 0.4 eV as the energy unit. 

The hopping parameters are renormalized by the short-range AFM correlations given by the 

parameters: 

a = Q(1+Ct/Q2
), ;3=Q(1+C2/Q

2
), (43) 

which depend on the spin correlation functions for the first and the next neighbors: 

c1 
1 

(S;Si±axfay) = N L /(q) Cq, 
q 

c2 = (S;Si±ax±a) = ~ L l'(q) Cq. (44) 
q 

For the spin correlation function Cq = (SqS-q) we take the model: 

CQ 
cq = 1 + e11 +l(q)J' 

(45) 

where the parameter CQ is defined from the normalization condition (SiSi) = (3/4)n = (1/ N) Z::q Cq. 

This renormalizati(.m of the spectrum results in the well defined electronic spectrum shown in 

Fig.7 which changes with hole doping since the AFM correlation functions (44) strongly depends 

on the electron concentration. The corresponding FS c:(kF) = 0 is also transforms .with doping 

from the four hole pockets form at low doping to the large FS as shown in Fig.8. By taking into 

account the self-energy contribution in the GF (39) instead of the well defined in the GMFA 

electronic spectrum in Fig.7 we observe a diffuse spectral density. At the same time, the FS in 

Fig.8 in the form of closed pockets for low doping transforms to open arcs representing the parts 

of the FS close to ( 7r /2, 7r /2) point of the BZ which do not shift considerably with doping. This 

transformation is observed in angle-resolved photoemission spectroscopy (ARPES) experiments 

[1~-13]. 
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Fig. 11: Energy dispersion for 8 = 0.3. 

The self-energy (38) is determined by the many-particle GFs where the normal and anomalous 

(pairs) components are given by: 

M;i"(w) 

<I>;j"(w) 

(1/Q) (([X?",H]I[H,Xj0]))w, 

(1/Q) (([X?", H]I[Xf", H]))w· 

(46) 

(47) 

Using the the spectral representation we represent them in terms of the time-dependent correlation 

functions which are calculated in the SCBA where propagation of Fermionic and Bosonic excitation 

on different lattice sites is assumed to be independent: 

(x;;;o Bt"•IX?"' (t)Bi""'(t)} = (x;;;o X?"' (t))(Bt"•Bi""'(t)) , 

(X~0Bi<><>'IX(0 (t)Bi""'(t)) = (X~0X(0 (t)) (Bi""'Bi""'(t)). 

(48) 

(49) 

Calculation of the corresponding single-particle correlation functions in these equations results in 

the self-energy 

+oo 
_ 1 ""jdz (+) M(k,w)- NL., 'll"QK (w,z,k,q)[-Im]G(q,z), 

q -oo • . 

+oo 
_ 1 "'fdz H <I>"(k,w)- N L., 7rQ K (w,z,k,q)[-Im]F"(q,z). 

q -oo 

The kernel of the integral equations is defined as 

+oo 
K(±l(w,z,k,q) = J dO tanh(z/2T) +coth(0/2T) 

27r w-z -n 

X {lt(qWimx.,(k- q,n) ± l9ep(k- qWimxph(k- q, n) 

± [IV(k- qW+ 1t(q)l2 /4] Imxc1(k- q,n)} 
+oo = J dO tanh(z/2T) + coth(rl/2T) ,\(±l(k, q, rl). 

27l" w-z- n 

(50) 

(51) 

(52) 
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Fig. 13: Spectral density A(k, 0) in 

quarter of the BZ for 8 = 0.05. 

the 

The spectral densities of bosonic excitations are determined by the dyn~mic susceptibility for spin 

(sf), number (charge) (cj), and lattice (phonon) (ph) fluctuations 

XsJ(q,w) 

XcJ(q,w) 

Xvh(q,w) 

-((SqiS-q))w, 

-((8Nqj8N_q))w, 

-((uqlu-q))w· 

(53) 

(54) 

(55) 

Let us consider the electronic spectrum in the normal state which is determined by normal 

state GF in Eq. (39) 

G(k,w) = ((X~"IXk'0 )) = Q _ (56) 

The normal state self-energy is given by Eqs. (50), (52). The spectral density of electronic excitations 

is determined by 

1 . -M"(k,w)/7r 
A(k,w) =-1rQimG(k,w + u) = [w _ c:(k) _ M'(k,w)]2 + [M"(k,w)]2' (57) 

Here we introduce the real, M'(k,w), and imaginary, M"(k,w), parts of the self-energy: M(k,w+ 

i£) = M' (k, w) + iM" (k, w). The renormalization parameter for the electronic energy close to the 

FS, w -t 0, reads: 

Zk(O) = 1- [8M'(k,w)/8w]~=o ::= 1 + A(k), (58) 

where A(k) is the coupling parameter. 

The self-energy and the spectral density are calculated by iteration. The results of the 1() .. 

th order of iterations for the spectral density for the electron interaction with spin-fluctuations 

A.J(k,w) (57) and the energy dispersion E'(k) along the main directions in the BZ, f(O,O) -t 

X (1r, 0) -t M (1r, 1r) -t r (0, 0), are presented in Figs. 9- 11. 

At low doping the spectral density shows a large incoherent background, in particular close 

to"the (1r, 1r)-point of the BZ, as shown in Figs. 9, 10 for 8 = 0.1. With increasing doping the 

025 
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~ 0.15 

0.10 

0.05 
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0 
020 

Fig. 14: (Color online) Solution of the gap 

equation (59) in the WCA, Z = 1, for 

T~P (black, dash-dotted ed line), T;f (blue, 

dashed line), and T;f+ep (red, solid line). 

The green dotted line show r;~+•v with zero 

CI, V(k- q) = 0. 
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Fig. 15: (Color online) Solution of the gap 

equation (59) in the SCA for T~P (black, 

dash-dotted line), T;f (blue, dashed line), 

and T;f+•v (red, solid line). The green 

dotted line show r;J+ep with zero CI, 

V(k- q) = 0. 

spin-fluctuation interaction becomes weak and the incoherent background decreases, as shown in 

Fig. 11 for 8 = 0.3. The spectrum of excitations in Fig. 11 is close to that one in the GMFA shown 

in Fig. 7. However, at low doping where the self-energy renormalization is strong the spectrum 

in the GMFA is quite different from those shown in Fig 10. In particular, a large intensity of 

excitations at the (1r, 1r)-point of the BZ appears at much lower energy than in the GMFA due 

to a shift of the excitation energy caused by the real part of the self-energy. Therefore, we can 

conclude that the self-energy effects are very important in studies of the QP excitations in the t-J 

model. 

The QP damping determined by the imaginary part of the self-energy (50) r(k, w) = 

- (1/7r)ImM,J(k,w) due to spin-fluctuation interaction is plotted in Fig. 12 at doping 8 = 0.1. 

For a larger doping, 8 = 0.3, the intensity of the QP damping decreases and the large FS emerges 

as in the GMFA. 

The results of spectral density close to, the FS AsJ(k, w = 0) (57) which determines the FS are 

presented in Figs. 13 for low doping. It reveals the arc-type form which transforms to the large 

FS for high doping as in the GMFA. This' FS transformation from the arc-type at low do'ping to 

the large FS at high doping is observed in ARPES experiments (see, e:g., Refs. (11-14]. Similar 

results were obtained using the cluster perturbation theory (CPT) for the t-J model in Ref. (15] 

and for the Hubbard model in Ref. [16]. 

Let us consider the superconducting state. The gap equation close to the FS, 4>u(k) = ¢" (k,w = 0), 

is given by the equation: 

</>u(k) = 1 "'f+oodz [V(k-q)-J(k-q) +K<->(o,z,k,q)] 
N~ 7r exp(z/T) + 1 

q -oo , 

</>u(q) 
x [-Im] Z~(O) [(z + i£)2- fl(q, z)]' (59) 
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Fig. 16: (Color online) Wave-vector dependence of the superconducting gap at the FS ¢>(q). 

The first contribution in this equation given by the AFM exchange interaction J(k- q) is due 

to the GMFA and gives quite high Tc ~ 100 K as proposed by Anderson [8] and considered later 

in' many publications. However, if we take into account the intersite CI V(k- q) which is of the 

same order in cuprates as J(k- q), we obtain very low Tc ~ w-3 K .•Therefore, the Anderson 

theory cannot explain high-Tc in cuprates. Only consideration of spin fluctuation contribution can 

results in high-Tc as discussed below. 

Solution of the gap equation (59) in the weak-coupling approximation (WCA), Z(q) = 1, for 

T~ as a ,function of doping.is presented in Fig. 14. Solution of the ga;p equation (59) for Tc in 

the strong-coupling approximation (SCA) for Z(q) is shown in Fig. 15. To simplify the numerical 

_calculation we approximated the function Z(q) by its average over q values: Z = 2.5- 4J. The 

superconducting Tc in the SCA in Fig. 15 is an order of magnitude smaller than in the WCA in 

Fig. 14 due to suppression of the QP weight given by 1/Z( q). We note that the effect of CI, shown 

by the green dotted line, only weakly decreases the Tc both in th~ WCA and SCA. 

Comparison of Tc in the WCA in Fig. 14 and in the SCA in Fig. 15 shows that in both 

approximations the contribution from the EPI is noticeably smaller than those induced by the spin­

fluctuation interaction. We can explain this as follow: While in summation over q contributions to 

the normal self-energy come from all symmetry con:ponents of interactions, in the gap equation 

contributions are restricted only to the B 19 symmetry component of interactions determined by 

the sym~etry of the d-wave gap <Pu( q). In particular, a strong momentum-independent EPI gives 

no contribution to the gap equation but results in a large contribution to the normal self-energy 

and the parameter Z(q) in the gap equation that suppresses Tc (seealso Ref. [17]). Therefore, 

'the EPI can be quite strong and gives observable polaronic effects but has a small d-wave partial 

harmonic and plays only a secondary role in the d-wave pairing. This results in the weak isotope 

effect on Tc in the optimally doped cuprates. The same holds for the intersite CI since only d-wave 

partial harmonic gives a contribution to the gap equation as shown in Figs. 14 and 15. This 

explains why the strong single-site CI cannot destroy the superconductivity (see Refs. [5, 18]). 

The wave-vector dependence of the superconducting gap at the FS ¢>(q) at J = 0.2 is presented 

in Fig. 16 in the BZ. We see that the maximum values of the gap are shifted in comparison 
/ 
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with the model d-wave gap function ..p<0l(q) = q/0l(coskx- cosky) from the BZ boundary at 

(0, ±7r), (±7r, 0) points. Similar behavior was found in Ref. [19] in the t-J* model with hopping 

parameters between distant lattice sites. The main results of this chapter are published in Ref.4 

from the List of publications above. 

Conclusion The main results of the dissertation are given below: 

1. We have studied the metal-insulator, transition in the half-filled ionic Hubbard model using 

CPA. For a fixed and finite~ two transitions from BI via metal to MI are found by changing value 

of Coulomb repulsion U. The calculation of temperature dependent conductivity demonstrated 

that for intermediate and large ~ the largest conductivity occurs near the special value U = 2~ at 

all temperature. For a fixed ~ the region of finite conductivity [Uc1, Uc2J expands and its maximum 

decreases with increasing T. Our results are in "good agreement with the ones obtained, by the 

DQMC simulation. The calculation presented here can be extended to the optical conductivity. 

2. We have considered behavior of the static Xq and dynamics Xq(w) charge susceptibility in a 

system of electrons with strong correlations in the framework of the t-J-V model. We have shown 

that for a sufficiently strong intereite Coulomb repulsion, Xq increases without limit (x;;-1 vanishes), 

and CDWs arise in the system either along the diagonal of the unit cell (near the point M (1r, 1r) of 

the BZ) or along the edge of the unit cell (near the point X (1r, 0) of the BZ). The dependence on 

other model parameters including the AFM exchange interaction J, is weaker. Taking into account 

the damping of CFs described by the imaginary part of the memory function we have found out 

that at low hole doping, e.g., for J = 0.1 'due to strong correlations only a broad spectrum of 

overdamped CFs is observed. At large hole doping, the Fermi-like type behavior emerges and 

well-defined high-energy charge excitations appear close to M(1r, 1r) and X(1r, 0) points of the BZ. 

The dispersion of low-energy excitations demonstrates a maximum at small wave vectors with the 

higher intensity in comparison with experiments at high doping but with a weaker intensity at 

small doping in comparison with experiments. 

3. A detailed study of the electronic spectrum and superconductivity for strongly correlated 

electronic systems within the microscopic theory for the extend t - J model is presented. Besides 

the conventional AFM exchange interaction J, the EPI ahd the intersite Coulomb repulsion are 

taken into account. The projection technique was employed to obtain the exact Dyson equation 

for the normal and anomalous (pairs) GF's in terms of Hubbard operators. The self-energy given 

by many-particle GF's was calculated in the SCBA in the second order of interaction. The most 

important contribution is induced by the kinematical interaction for the HOs. It results in strong 

coupling of electrons with spin fluctuations of the order of hopping parameter t(q) much larger 

than the exchange interaction J(q). Therefore, we suggest that the spin-fluctuation pairing is the 

mechanism high-Tc in cuprates. 
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