ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ЛАБОРАТОРИЯ ЯДЕРНЫХ ПРОБЛЕМ

12-306

926720

Demitkhanov RA-1963

Р. А. ДЕМИРХАНОВ

МАССЫ И ЭНЕРГЕТИЧЕСКИЕ ХАРАКТЕРИСТИКИ АТОМНЫХ ЯДЕР

ДУБНА 1963

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ЛАБОРАТОРИЯ, ЯДЕРНЫХ ПРОБЛЕМ

Р. А. ДЕМИРХАНОВ

МАССЫ И ЭНЕРГЕТИЧЕСКИЕ ХАРАКТЕРИСТИКИ АТОМНЫХ ЯДЕР

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени доктора физико-математических наук

ДУБНА 1963

Работа выполнена в Физико-техническом институте Государственного комитета по использованию атомной энергии СССР

АННОТАЦИЯ

Работа посвящена измерению масс атомных ядер. Разработана масс-спектроскопическая установка с разрешающей способностью $80\,000-100\,000$. Исследованы систематические ошибки масс-спектроскопического метода определения масс. Измерены массы атомных ядер в области матических чисел Z=82, N=50, 82 и 126, редкоземельных деформированных ядер, а также тория, урана и плутония. Относительная погрешность измерений масс равна $\Delta M/M=5\cdot10^{-7}$. $\div 2\cdot10^{-7}$. Рассмотрена систематика энергий связи двух последних нейтронов. В данной работе массы изотопов даны в кислородной шкале.

1. Представление о строении атомного ядра тесно связано с изучением масс ядер. Массы ядер являются фундаментальными константами, знание которых необходимо для определения основных характеристик ядра: энергии связи на нуклон, энергии присоединения последних протона и нейтрона, парных энергий протонов и нейтронов и др. Любая модель, описывающая структуру ядра, должна отвечать на вопрос: каковы энергетические параметры ядра и как они связаны друг с другом в соседних ядрах. В этом смысле массы атомных ядер являются теми необходимыми величинами, по которым может быть проверена правильность той или иной модели ядра. Кроме того, при построении схем распада и определении Q-величин реакций часто необходимо знать массы исходного и конечного ядер.

Точность, с которой должны быть известны массы ядер, в каждом конкретном случае определяется кругом исследуемых вопросов. Для решения большинства проблем массы ядер должны быть известны с достаточно высокой точностью. Например, для исследования немонотонности энергетических параметров в области так называемых магических чисел или энергии парного взаимодействия в области деформированных ядер необходимо, чтобы относительная погрешность $\Delta M/M$ определения масс не превышала 5 · 107.

Действительно; чтобы установить скачок в энергии связи, равной 3 *Мэв*, при переходе от заполненной оболочки к незаполненной (A = 208) хотя бы с точностью до 5%, соответствующие массы должны быть измерены с относительной погрешностью $\Delta M/M$, меньшей 5 · 10⁻⁷.

В настоящее время известно, что деформированные четно-четные ядра наблюдаются только в трех узких полосах периодической системы в пределах участков ротационного возбуждения. В рамках современных моделей ядра существование трех областей деформированных ядер с резкой границей перехода от сферической к эллипсоидальной форме [1, 2] объясняется влиянием парного взаимодействия нуклонов. При переходе к деформированным ядрам парная энергия убывает, падая до минимума в середине области деформиро-

ванных ядер, и вновь возрастает к концу области. Проследить за изменением энергетических характеристик ядер в этой области и, в частности, исследовать немонотонности в изменении парного взаимодействия при переходе от сферических к деформированным ядрам можно лишь при условии, если известны соответствующие массы с относительной погрешностью, не превышающей 3 - 5 · 10-7.

Однако до последнего времени измерения масс проводились с такой точностью, которая не позволяла проследить детально немонотонности энергетических характеристик ядер в этих областях периодической системы.

Др 1959 г. из общего числа 46 стабильных изотопов в диапазоне 174 < 4 < 239 значения масс были измерены только для 14 изотопов. Массы средних и тяжелых ядер были определены непрямым сравнением со вторичными стандартами, ошибка при этом достигала 2 *Мэв*, а относительная погрешность измерений 10⁻⁴ [3-7].

Настоящая работа была начата с целью измерить массы средних и тяжелых ядер с относительной погрешностью 5.10⁻⁷ + 10⁻⁷. В программу исследований входили участки периодической системы, включающие магические ядра (с ичислом нейтронов N, равным 50 и 126 и протонов Z, равным 50 и 82), а также область N = 110 + 145, в пределах которой расположена верхняя граница перехода от сферических к деформированным ядрам для 150 < A < 190 и траница перехода ж деформированным ядрам начиная с A <222.

Были измерены массы стабильных изотопов в области средних масс от стронция (Z=38, N=46) до рутения (Z=44, N=60) и в области тяжелых масс от гафния до плутония 174 < A < 240. Область от спронция до рутения представляет интерес в связи с выяснением закономерностей вблизи магического числа N = 50 (40Zr50⁹⁰). Массы значительной части изотопов в этой области до сих пор масс-спектроскопически не измерялись (Zr⁹⁰, Zr⁹², Mo⁹⁵, Ru⁹⁸ и др.). Значения масс изотопов Ru¹⁰⁰ и Ru¹⁰¹ были измерены впервые. Всего в этой области было измерено 25 изотопов стронция, иттрия, щиркония, инобия, молибдена и рутения. Для этого потребовалось исследовать 60 дублетов, так как массы большинства изотопов

В диапазоне 174 < A < 240 были измерены массы 42 стабильных изотопов лафния, вольфрама, тантала, рения, иридня, осмия, платины, золота, ртулн, таллия, свинца, висмула и б изотопов пория, урана и плутония с относительной погрешностью 10⁻⁷...5.10⁻⁷. Всего было исследовано 82 дублета.

Для решения поставленной задачи выбор масс-спектроокопической системы двойной фокусировки с линейной шкалой масс и малой апертурой пучка (10-5) в сочетании со «светосильным» ионным источником был признан наиболее многообещающим. Уменьшение апертуры пучка в ионно-оптической системе двойной фокусировки помимо понижения уровня аберрационных ошибок приводит к существенному, увеличению «глубины резкости ионно-оптического изображения». Реализация такой ионно-оптической системы потребовала разработки нового типа ионного источника с большой плотностью тока эмиссии и малым разбросом ионов по скоростям.

Разработка и сооружение масс-спектроскопической установки заняли время с 1951 по 1955 г. главным образом изза необходимости изучения причин возможных систематических ошибок измерения и повышения разрешающей способности установки до значений 100 000. Первые надежные результаты были получены в 1956 г.

Работа содержит восемь глав, включая первую вводную главу, в которой расматриваются имеющиеся экспериментальные данные по измерению масс ядер и дается постановка задачи.

2. Во второй главе проводится описание масс-спектроскопической установки, методов юстировки ионно-оптической системы и методов исследования дисперсионных констант шкалы масс.

Ионно-оптическая система масс-спектрографа выполнена в основном по схеме двойной фокусировки Бейнбриджа — Иордана. Из оптических параметров этой схемы были изменены: угол раствора цилиндрического конденсатора (со 127° до 63°38′) и угол между плоскостью фотопластины и главной оптической осью (с 24°48′ до 31°8′).

При уменьшении угла раствора конденсатора до 63°38' сокращается время пребывания ионов в электростатическом поле и оптические узлы пучка (участки пучка с относительно высокой плотностью зарядов) оказываются вынесенными за пределы конденсатора. Это в значительной степени улучшает условия автокомпенсации объемного заряда пучка. В схеме Бейнбриджа — Иордана геометрическому месту точек, удовлетворяющему условиям фокусировки по направлениям, соответствует линия, образующая с главной оптической осью угол 24°48'. Только на малом участке фокальной линии шкала масс является линейной. В то же время под углом 31°8' к главной оптической оси проходит линия, удовлетворяющая на относительно большом участке условию линейности шкалы масс. На масс-спектрографических установках с относительно большим апертурным углом, плоскость фотопластины не может быть ориентирована под углом 31°8', так как при малой глубине резкости изображения незначительные отклонения от угла 24°48" могут привести к

.**A**

нарушению угловой фокусировки. При малых апертурных углах регистрирующая фотопластина может быть установлена под углом 31°8′. В новом положении пластины из-за большой глубины резкости изображения уширение линий будет практически неощутимым.

В качестве источника ионов применен источник анодной плазмы в аксиально симметричном исполнении. Электростатическая линза представляет собой цилиндрический конденсатор с углом раствора 63°38' и средним радиусом кривизны 300 мм. Расстояние между обкладками 10,000±0,005 мм. Высота обкладки 100 мм. Вход и выход ионного пучка в конденсатор диафрагмированы. Напряжение между обкладками (2000—3000 в) приложено симметрично, и поверхность нулевого потенциала совпадает с центральной поверхностью конденсатора.

Цилиндрическая магнитная линза выполнена в виде 60-градусного секторного магнита с межполюсным зазором 3 мм. Радиус кривизны траекторий ионов в магнитном поле равен 300 мм. «Эффективная граница» магнитного поля отстоит от границ полюсных наконечников примерно на 2 мм. Кардинальные точки электростатической и магнитной линз расположены симметрично.

Формирование ионного пучка производится отбором ионов из источника через круглое одверстие диаметром 0,15 мм. Величина ускоряющего напряжения $35 \div 50$ кв. Входная щель шириной $5 \div 10$ мк находится на расстоянии 8 мм от эмиссионной поверхности источника. На расстоянии 212 мм от входной щели расположена апертурная щель размером 30×1000 мк. Апертура пучка составляет $5 \cdot 10^{-5}$. На выходе цилиндрического конденсатора находится щель размером 80×6000 мк. В плоскости изображения цилиндрической линзы расположена диафрагма со щелью шириной от 200 до 500 мк. Входная щель магнитного анализатора имеет размеры 200×1000 мк.

Для устранения эффекта электростатической поляризации диафрагмы изготовлены из платиновых пластин, снабженных вспомогательным устройством для периодического прогрева в вакууме при температуре 900°С. Установлено, что при этом эффект поляризации исключается и масс-спектральные линии принимают правильную форму.

Ионно-оптический преобразователь, расположенный в непосредственной близости от плоскости фотопластины, дает возможность визуально наблюдать спектр масс, устанавливать исследуемую группу линий в центре фокальной плоскости и следить за качеством спектра во время экспозиции по крайним линиям.

Регистрация масс-спектральных линий производится на фотопластинах размером 6×18 см.

В масс-спектроскопических устройствах, удовлетворяющих условиям двойной фокусировки, параметры электрической и магнитной линз строго связаны определенными соотношениями. В частности, в случае симметричного расположения кардинальных точек центральные радиусы кривизны электрической и магнитной линз должны быть равны и необходимо, чтобы угол входа пучка нонов в линзы был равен строго 90°.

Механическая юстировка не позволяет осуществить эти условия с достаточной степенью точности. При измерении вариации расстояний, очень малых по сравнению с расстоянием между кардинальными точками (порядка нескольких микрон), возникают методические трудности. Малые отклонения от угла 90° могут остаться незамеченными, так как даже при очень узких щелях в диафрагмах (в пределах незначительных изменений ускоряющего напряжения и напряжения, приложенного к цилиндрической линзе) пучок может пройти через ионно-оптическую систему со средним радиусом кривизны, отличающимся от расчетного значения, и условие фокусировки по скоростям будет нарушено.

Для получения необходимой точности измерения в работе применена новая методика прецизионной юстировки массспектрографа с помощью измерений малых отклонений контрольного ионного, пучка от «идеальной» траектории.

В работе определены требования, предъявляемые к режимным параметрам установки. Показано, что действие объемного заряда пучка нарушает фокусировку по скоростям в «идеальной» системе. Это сказывается не только на сдвиге кардинальных точек ионно-оптической системы, но и приводит к нарушению дисперсионных свойств отдельных ее узлов. Изменяются положение и величина ионно-оптического изображения, и в результате возникают систематические ошибки измерения масс.

Распределение ионов по энергиям в пучке определяется элементарными процессами ионообразования, расположением зон генерации ионов и характером электрического поля. В ионных источниках анодной плазмы зона генерации ионов электронами выделена достаточно четко и расположена на некотором расстоянии от поверхности эмиссии. В анодной плазме, заряженной положительно (относительно электрода с отверстием отбора), по мере приближения к поверхности эмиссии ионизация электронами становится все реже. В граничный слой плазмы, непосредственно примыкающий к электроду со щелью эмиссии, ионы главным образом поступают из зоны генерации электронами. Ионы, начиная свое движение с тепловой скоростью, ускоряются полем (отрицательного анодного падения) в сторону поверхности отбора. Экспериментально было показано, что часть ионов доходит до ще-

6

ли эмиссии без столкновения и поэтому покидает плазму с максимальной энергией, соответствующей разности потенциалов зоны генерации и поверхности отбора. Другая часть нонов в результате перезарядки не доходит до поверхности отбора. Особенно эффективно перезарядка происходит в тонком слое газа в районе щели эмиссии. Ионы, появившиеся в результате перезарядки в области щели эмиссии, покидают плазму с относительно малой энергией, образуя энергетически четко выделенную группу.

Пучок ионов атомарного водорода также имеет «тонкую структуру». Он состоит из трех четко выделенных по начальным энергиям групп протонов.

При таком разбросе ионов по энергиям необходимо, чтобы средние значения энергии ионов, составляющие дублетную пару, были близки. В противном случае при высокой дисперсии электростатической линзы каждый сорт ионов может быть выделен в пучок, сдвинутый в той или иной мере относительно оси конденсатора. Селективное воздействие поля объемного заряда на исследуемые ионы приводит к нарушению дисперсионных свойств электростатической линзы и соответственно к систематическим ошибкам измерений.

В работе были исследованы энергетические спектры ионов, составляющих масс-спектроскопические дублеты и найдены соответственно оптимальные режимные параметры ионного источника.

3. В третьей главе рассматриваются методы обнаружения малых систематических ошибок измерения $\Delta M/M \sim 10^{-7}$.

При определении масс ядер, после того как измерены с необходимой точностью расстояния между разрешенными масс-спектральными линиями, серьезные трудности возникают в переводе этих расстояний в соответствующие разности масс. Именно здесь могут иметь место систематические ошибки, устранение которых связано с большими экспериментальными трудностями.

Отклонения от «идеальной системы», в которой строго удовлетворялись бы условия двойной фокусировки, могут возникнуть вследствие ряда причин, нарушающих в той или иной степени равенство дисперсий электрической и магнитной линз. Поэтому в каждом конкретном случае должно быть установлено, что с необходимой точностью функционирует двойная фокусировка, а также тщательно изучены дисперсионные константы по всей рабочей части шкалы масс.

Отсутствие метода обнаружения малых систематических ошибок измерения $\Delta M/M < 10^{-5}$ исключало возможность повышения точности измерения, так как небольшие нарушения системы двойной фокусировки оставались вне контроля.

В работе показано, что с помощью дублетов с различными характеристиками начальных энергий ионов, например типа H_2 —D и H_3 —DH или N_2 —CO и CNH_2 — N_2 , можно обнаружить малые систематические ошибки $\Delta M/M \sim 10^{-7}$, вызванные нарушением системы двойной фокусировки. Энергетические характеристики дублетов, принятых в настоящей работе в качестве контрольных (для юстировки оптической системы и обнаружения систематических ошибок), были предварительно изучены с помощью специальной масс-спектрографической установки с высокой разрешающей способностью 50 000, но без системы фокусировки по скоростям.

Так как при этом положение линии на фотопластине определяется величиной массы иона и его начальной энергии, то расстояние между дублетными линиями (в 10⁻³ а.е.м.), отличается от значения, определяемого только дефектом масс ядер. Знак отклонения зависит от расположения в дублете линии иона с избыточной энергией. В работе показано, что величина этого отклонения возрастает по мере увеличения числа осколков в ассоциативном комплексном ионе. С ростом давления нейтрального газа в разряде избыточная энергия ионов уменьшается из-за увеличения числа столкновений с атомами и ионами плазмы и уменьшения величины отрицательного анодного падения. Однако даже при относительно высоких давлениях в источнике величина отклонения остается слишком большой, чтобы можно было отказаться от системы фокусировки по скоростям.

Одной из основных и наиболее трудных задач, возникающих при выяснении систематических ошибок, является достижение так называемого «внутреннего согласия» результатов измерения. Значения и разности масс исследуемых ядер, полученных при помощи дублетов с различными энергетическими характеристиками, должны совпадать в пределах статистических ошибок измерения. В принципе это означает, что должна удовлетворительно функционировать двойная фокусировка.

В настоящей работе для предварительного исследования «внутреннего согласия» были избраны дублеты с различными энергетическими характеристиками, включающие ядра: С¹², С¹³, N¹⁴ и N¹⁵.

$$\begin{array}{ccc} {\rm C}^{12}{\rm N}^{14}{\rm H}_2 - {\rm N}_2^{14} & {\rm N}^{15}{\rm H}_2 - {\rm OH} & {\rm N}^{14}{\rm H} - {\rm N}^{15} \\ {\rm C}^{12}{\rm N}^{14}{\rm H}_2 - {\rm C}^{12}{\rm O} & {\rm N}^{14}{\rm H}_3 - {\rm N}^{15}{\rm H}_2 \\ & {\rm N}_2^{14} - {\rm C}^{12}{\rm O} \\ {\rm C}^{12}{\rm H} - {\rm C}^{13} \\ {\rm C}^{12}{\rm H}_5 - {\rm C}^{13}{\rm H}_4 \end{array}$$

2 3ak. 2184

Указанные дублеты удобны в том отношении, что из них могут быть составлены комбинации, равные соответственно нулю и $M(C^{12}H_4-0)$, что может явиться дополнительной проверкой отсутствия систематических ошибок:

1)
$$M(C^{12}N^{14}H_2 - N_2^{14}) + M(N_2^{14} - C^{12}O) - M(C^{12}N^{14}H_2 - C^{12}O) = 0;$$

2) $M(N^{14}H_3 - N^{15}H_2) + M(N^{15}H_2OH) - M(C^{12}N^{14}H_2 - C^{12}O) = 0;$
3) $M(N^{15}H_2 - OH) + M(N^{14}H_3 - N^{15}H_2) + M(C^{12}N^{14}H_2 - N_2^{14}) = M(C^{12}H_4 - O^{16});$
4) $M(C^{12}N^{14}H_2 - C^{12}O) + M(C^{12}N^{14}H_2 - N_2^{14}) = M(C^{12}H_4 - O).$

На окончательно налаженной масс-спектрографической установке с помощью этой системы контрольных дублетов и циклов было достигнуто «внутреннее согласие» в пределах статистических ошибок измерения $\pm 1 \cdot 10^{-6}$ а.е.м.

Для разности масс контрольных дублетов получены: 1) $M (C^{12}N^{14}H_2 - N_2^{14}) = (12, 579 \pm 3) \cdot 10^{-3}$ а. е. м.; 2) $M (C^{12}N^{14}H_2 - C^{12}O^{16}) = (23, 818 \pm 3) \cdot 10^{-3}$ а. е. м.; 3) $M (N_2^{14} - C^{12}O^{16}) = (11, 238 \pm 3) \cdot 10^{-3}$ а. е. м.; 4) $M (N^{15}H_2 - O^{16}H) = (13, 023 \pm 3) \cdot 10^{-3}$ а. е. м.; 5) $M (N^{14}H_3 - N^{15}H_2) = (10, 796 \pm 3) \cdot 10^{-3}$ а. е. м.; 6) $M (N^{14}H - N^{15}) = (10, 796 \pm 3) \cdot 10^{-3}$ а. е. м.; 7) $M (C^{12}H - C^{13}) = (4, 473 \pm 3) \cdot 10^{-3}$ а. е. м.; 8) $M (C^{12}H_5 - C^{13}H_4) = (4, 472 \pm 3) \cdot 10^{-3}$ а. е. м.; 9) $M (C^{12}H_4 - O^{16}) = (36, 3975 \pm 0.5) \cdot 10^{-3}$ а. е. м.

Соответственно для масс ядер С¹², С¹³, N¹⁴, N¹⁵ получены, следующие значения:

 $M(C^{12}) = 12, \ 0038150 \pm 5 \ a. e. m.;$ $M(C^{13}) = 13,0074885 \pm 5 \ a. e. m.;$ $M(N^{14}) = 14,0075267 \pm 2 \ a. e. m.;$ $M(N^{15}) = 15,0048763 \pm 2 \ a. e. m.$

В настоящее время имеются масс-спектрографические и ядерные данные, позволяющие вычислить с высокой точностью массы С¹², С¹³, N¹⁴, N¹⁵. Приведенные в настоящей работе значения этих масс хорошо согласуются с данными Миннесотской [8] и Брукхейвенской лабораторий и данными, вычисленными Эверлингом, Кёнигом, Маттаухом и Вапстра посредством усреднения методом наименьших квадратов величин, полученных из ядерных реакций и спектроскопических измерений [9, 10].

4. В четвертой главе приводятся результаты измерения масс атомных ядер от гафния до висмута.

В работе развита методика использования дублетного метода для измерения массы изотопов с $A \sim 200$. Показана возможность использования тяжелых органических соединений для образования дублетов.

Исследуемая область включает стабильные ядра 40 изстопов гафния (A = 174, 176, 177, 178, 179, 180) тантала (A = = 181), вольфрама (A = 180, 182, 183, 184, 186), рения (A = = 185, 187), осмия (A = 186, 187, 188, 189, 190, 192), иридия (A = 191, 193), платины (A = 192, 194, 195, 196), золота (A = = 197), ртути (A = 196, 198, 199, 200, 201, 202), таллия (A = = 203, 205), свинца (A = 204, 206, 207, 208) и висмута (A = = 209).

Для 22 изотопов из этого числа, а именно для Hf¹⁷⁴, Hf¹⁷⁷, Hf¹⁷⁹, Re¹⁸⁵, Os¹⁸⁷, Os¹⁸⁸, Os¹⁸⁹, Ir¹⁹¹, Ir¹⁹³, Pt¹⁹², Au¹⁹⁷, Hg¹⁹⁸, Hg¹⁹⁹, Hg²⁰⁰, Hg²⁰¹, Hg²⁰², Te²⁰³, Te²⁰⁵, Pb²⁰⁴, Pb²⁰⁶ и Bi²⁰⁹, до настоящей работы (1956—1959 гг.) масс-спектроскопических значений не имелось, а массы остальных изотопов были измерены с точностью 10⁻⁴.

Измерение масс производилось с помощью изотопических и молекулярных дублетов, в которых в качестве эталонных масс используются ионы молекул органических соединений известной массы. В первом случае определяется разность масс изотопов, отличающихся на один или два массовых числа. Во втором случае определяется разность масс между ионом неизвестной массы и молекулярным ионом известной массы. Величина массы, определяемой из молекулярного дублета, является опорной величиной, связывающей ядра изотопических дублетов со субстандартами.

В работе показано, что совместное использование изотопических и молекулярных дублетов на средних и тяжелых массах значительно повышает точность измерений. Такой метод исключает накапливание ошибок измерений, так как позволяет определить массу исследуемого ядра, минуя большое число промежуточных ступеней для сравнения массы ядра с массой 0¹⁶. Кроме того, исключаются осложнения, связанные с получением ионных пучков многозарядных ионов с малым апертурным углом. Ионы тяжелых органических молекул могут быть получены с помощью источника анодной плазмы. В источнике анодной плазмы зона генерации ионов находится в поле отрицательного анодного падения, расположенного непосредственно у щели эмиссии. Время жизни ионов в плазме настолько мало, что вероятность многократ-

 2^{*}

ного столкновения с электронами также становится малой и некоторая доля тяжелых молекул ионизуется относительно низкоэнергетичными электронами без последующей диссоциации.

В работе показано, что при идентификации линий молекулярного дублета следует иметь в виду линию C¹²_{m-1}C¹³₁H_{n-1} очень близкую к эталонной линии С12 Н1. Если разрешающая способность масс-спектрографа недостаточно велика, линия «сателлита», содержащая С¹³, может привести к несимметричному уширению основной углеводородной линии и соответственно к систематической ошибке измерения. В кажлом отдельном случае необходимо правильно идентифицировать эталонную линию, что может быть выполнено только в случае, если линия «сателлита» разрешена. Поправка, вводимая на присутствие «сателлита», является в какой-то стелени неопределенной и в ряде случаев может послужить источником ошибки. В наших измерениях во всех случаях линии «сателлитов» четко разрешались. Разрешающая способность масс-спектрографа в 80 000-100 000 была достаточна для разрешения дублета С₁₉H₁₀—С₁₈С¹³H₉.

Ионы исследуемых изотопов получались введением в область анодной плазмы источника паров металла при помощи испарителя специальной конструкции. Подобным образом в газоразрядную область вводились также органические соединения. При этом основной разряд в ионном источнике поддерживался на гелии.

При вычислении массы эталонных молекул использовались следующие значения масс субстандартов [10]:

$$n_0 = 1,\ 0089861 \pm 0,4$$
 a. e. m.;
 $H^1 = 1,\ 0081456 \pm 0,1$ a. e. m.;
 $D^2 = 2,\ 0147425 \pm 0,1$ a. e. m.;
 $C^{12} = 12,\ 0038150 \pm 0,2$ a. e. m.;
 $C^{13} = 13,\ 0074883 \pm 0,5$ a. e. m.;
 $N^{14} = 14,\ 0075262 \pm 0,5$ a. e. m.;
 $O^{16} = 16,\ 0000000 \pm 0,0$ a. e. m.

Всего для данного диапазона масс в настоящей работе изучено 72 изотопических и молекулярных дублета. Относительная погрешность измерений масс исследуемых ядер не превышает 5 · 10⁻⁷. В течение 1960—1961 гг. результаты наших измерений, выполненных в 1956—1959 гг. [11—14], были подвергнуты дополнительному анализу и исследованиям. Вновь были изучены систематические и статистические ошибки измерения отдельных дублетов. При этом из рассмотрения пришлось исключить 11 дублетов. В работе приводятся результаты новых исследований. - Принятую в работе методику масс-спектрографических

Принятую в работе методику масс-спектрографических циклов можно показать на примере измерения масс изотопов гафния и осмия.

Ионы гафния и органических молекул получались испарением хлорида гафния и органического соединения стильбена (C₁₄H₁₂) в разряде гелия.

Для измерения масс изотопов Hf¹⁷⁶, Hf¹⁷⁷, Hf¹⁷⁸, Hf¹⁷⁹ и Hf¹⁸⁰ была принята схема, в которой изотопические дублеты

привязаны к субстандартам тремя опорными массами с помощью молекулярных дублетов

$$\begin{array}{c} C_{14}H_{10}-Hf^{178}\\ C_{14}H_{11}-Hf^{179}\\ C_{14}H_{12}-Hf^{180} \end{array}$$

Масса изотопа ${\rm Hf^{174}}$ была измерена с помощью дублета $C_{14}{\rm H_6}{\rm --Hf^{174}}$

Схема измерения масс изотопов приведена на рис. 1. Результаты измерений приведены в табл. 1 и 2.

Величины для опорных масс, полученные из различных молекулярных дублетов в пределах ошибок измерения, хорошо согласуются между собой.

Условие «внутреннего согласия» для замкнутого цикла

$$| M(C_{14}H_{12}) - M(C_{14}H_{12} - Hf^{180}) | - | M(Hf^{180} - Hf^{179}) + + M(C_{14}H_{11}) - M(C_{14}H_{11} - Hf^{179}) | = 0.$$

выполняется с точностью 15 · 10⁻⁶ a.е.м.

Для цикла

$$| M (C_{14}H_{12}) - M (C_{14}H_{12} - Hf^{180}) | - | M (Hf^{180} - Hf^{179}) + + M (Hf^{179} - Hf^{178}) - M (C_{14}H_{10}) - M (C_{14}H_{10} - Hf^{178}) | = 0$$

величина расхождения 42 · 10⁻⁶ а.е.м. находится в пределах ошибок измерения. Высокая точность (6 · 10⁻⁶) масс-спектроскопических измерений разности масс атомов, отличающихся по массовым

мерении разности масс атомов, отличающихся по массовым числам на единицу, для изотопов гафния, вольфрама, осмия, платины, свинца и ртути была достигнута Джонсоном и Бано в 1957 г. [15] на 15-сантиметровом масс-спектрометре Мин-

несотского университета. В том же университете в 1959 г. Бенсоном, Дамероу и Ризом на 40-сантиметровом масс-спектрометре с высокой точностью были измерены массы изотопов ртути и свинца [16].

Рис. 1. Схема измерения масс изотопов гафния.

В 1960 г. Бано, Джонсоном и Ниром [17] были представлены результаты измерений 61 масс дублета от гадолиния до золота. Пользуясь другими данными, полученными в Миннесотском университете, и значениями энергий ядерных реакций и распадов, они составили таблицу масс для стабильных и радиоактивных изотопов от самария до радона.

№ п/п	Дублет	Разность масс в а. е. м.	№ п/п	Дублет.	Разность масс в а. е. м.
п/п 1 2 3 4 5 6 7 8 9 10 11 12	$\begin{array}{c} C_{14}H_6 = Hf^{174} \\ C_{14}H_{10} = Hf^{178} \\ C_{14}H_{12} = Hf^{179} \\ C_{14}H_{12} = Hf^{180} \\ Hf^{177} = Hf^{180} \\ Hf^{177} = Hf^{177} \\ Hf^{179} = Hf^{177} \\ Hf^{179} = Hf^{179} \\ C_{13}H_{11}N = Ta^{181} \\ C_{12}H_{10}N_2 = W^{183} \\ C_{12}H_{11}N_2 = W^{183} \\ C_{12}H_{11}N_2 = W^{183} \\ C_{12}H_{11}N_2 = W^{184} \\ \end{array}$	B a. e. M. $0,106744\pm50$ $0,134431\pm50$ $0,140084\pm50$ $0,147124\pm60$ $1,002919\pm100$ $1,000662\pm44$ $1,002520\pm60$ $1,001119\pm40$ $0,141212\pm50$ $0,136212\pm70$ $0,142003\pm60$ $0,140126\pm50$	n/n 32 33 34 35 36 37 38 39 40 41 42	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	B a. e. M. $0,125234 \pm 100$ $0,102194 \pm 150$ $0,107312 \pm 200$ $0,121603 \pm 90$ $0,127400 \pm 100$ $0,135058 \pm 200$ $2,002000 \pm 250$ $1,002362 \pm 100$ $1,000475 \pm 120$ $0,117572 \pm 100$
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	$\begin{array}{c} C_{12} r_{112} r_{12} \cdots w_{1} \\ C_{15} H_6 &- W^{185} \\ C_{15} H_5 &- Re^{185} \\ C_{15} H_7 &- Re^{187} \\ C_{20} H_{10} &- Os^{186} O_4 \\ C_{15} H_7 &- Os^{186} O_4 \\ C_{15} H_8 &- Os^{188} O_2 \\ C_{20} H_{12} &- Os^{188} O_4 \\ C_{15} H_9 &- Os^{189} O_2 \\ C_{19} H_9 &- Os^{189} O_3 \\ C_{18} H_5 &- Os^{189} O_3 \\ C_{19} H_9 &- Os^{189} O_3 \\ C_{18} H_6 &- Os^{190} O_2 \\ C_{18} H_8 &- Os^{192} O_2 \\ C_{18} C_{13} C_{13}^{13} H_{11} &- Os^{192} O_2 \\ C_{18} C_{13} C_{13}^{13} H_{11} &- Os^{192} O_2 \\ \end{array}$	$0,149136\pm 50$ $0,092637\pm 50$ $0,006117\pm 60$ $0,098899\pm 30$ $0,144659\pm 100$ $0,98892\pm 80$ $0,106640\pm 100$ $0,085549\pm 100$ $0,158347\pm 70$ $0,112236\pm 100$ $0,090949\pm 100$ $0,127472\pm 90$ $0,115199\pm 80$ $0,098630\pm 65$ $0,111363\pm 40$ $0,143223\pm 30$	43 44 45 46 47 48 49 50 51 52 53 51 52 53 54 55 56 57	$\begin{array}{l} Hg^{198} - Au^{197} \\ Au^{197} - Pt^{196} \\ C_{16}H_6 - Hg^{198} \\ C_{13}H_{11}O_2 - Hg^{199} \\ C_{16}H_8 - Hg^{200} \\ C_{12}C^{13}H_{11}O_2 - \\ Hg^{200} \\ Hg^{201} - Hg^{200} \\ C_{16}H_{11} - Hg^{202} \\ Hg^{199} - Hg^{198} \\ Hg^{200} - Hg^{199} \\ Hg^{201} - Hg^{200} \\ Hg^{202} - Hg^{201} \\ C_{16}H_{13} - Tl^{205} \\ C_{16}H_{14} - Pb^{206} \\ C_{15}H_{11}O - Pb^{207} \\ \end{array}$	$1,000544 \pm 120$ $1,001814 \pm 120$ $0,080219 \pm 50$ $0,107674 \pm 30$ $0,094300 \pm 50$ $0,110950 \pm 100$ $1,002284 \pm 20$ $0,107659 \pm 20$ $1,001828 \pm 60$ $1,000382 \pm 60$ $1,0002284 \pm 60$ $1,000650 \pm 30$ $0,127190 \pm 50$ $0,135080 \pm 50$ $0,105153 \pm 30$
28 29 30 - 31	$\begin{array}{c} Os^{187} \longrightarrow Os^{186} \\ Os^{188} \longrightarrow Os^{187} \\ Os^{189} \longrightarrow Os^{188} \\ Os^{199} \longrightarrow Os^{189} \end{array}$	$1,002320 \pm 50$ 1,000330 \pm 50 . 1,002589 \pm 100 1,000590 \pm 100	58 59 60 61	$\begin{array}{c} C_{14}H_8O_2 - Pb^{208} \\ Pb^{207} - Pb^{206} \\ Pb^{208} - Pb^{207} \\ C_{14}H_{13}N_2 - Bi^{209} \end{array}$	$0,075840 \pm 50$ $1,001750 \pm 60$ $1,001060 \pm 60$ $0,127516 \pm 40$

Т	а	б	л	и	ΤÌ.	a	Ĵ.	2
	•••	~	•••	**		ч		~

№ п/п	Изотоп	Данные настоя- щей работы в а. е. м. (1962 г.)	№ п/п	Изотоп	Данные настоя- щей работы в а. е. м. (1962 г.)
1	Hf ¹⁷⁴	$173,995552 \pm 100$	19	Os ¹⁹²	$192,022455\pm40$
2	. Hf ¹⁷⁶	$175,997554 \pm 120$	20	lr ¹⁹¹	$191,021593\pm100$
3	, Hf ¹⁷⁷	176,999773±100	21	Ir ¹⁹³	$193,024526 \pm 150$
4	Hf ¹⁷⁸	$178,000435 \pm 100$	22	Pt ¹⁹²	$192,022500 \pm 200$
5	Hf ¹⁷⁹	179,002928±100	23	Pt ¹⁹⁴	$194,024500 \pm 90$
6	Hf ¹⁸⁰	180,004033±100	24	Pt195	$195,026862 \pm 50$
7	Ta ¹⁸¹	181,005511±50	25	Pt ¹⁹⁶	196.027337 ± 100
8	W ¹⁸²	$182,006080 \pm 50$	26	Au ¹⁹⁷	$197,029151 \pm 100$
9	W ¹⁸³	$183,008431\pm50$	27	Hg ¹⁹⁸	198.029695 ± 50
10	W ¹⁸⁴	$184,009443\pm50$	28:	Hg ¹⁹⁹	199.031523 ± 30
11	• W ¹⁸⁶	186,013460±50	29	Hg ²⁰⁰	200.031905 ± 50
12	Re ¹⁸⁵	$185,011836\pm80$	30	Hg ²⁰¹	201.034189 ± 20
13	Re ¹⁸⁷	$187,015346 \pm 30$	31	н ²⁰²	202.034839 + 20
14	Os ¹⁸⁶	$186,013097 \pm 100$	32	TI205	205.039690 + 50
15	Os ¹⁸⁷	$187,015352\pm80$	33	Ph ²⁰⁶	206.039940 ± 50
16	Os ¹⁸⁸	188.015718 ± 100	34	Pb207	207.041690 + 30
17	Os ¹⁸⁹	$189,018331 \pm 100$	35	Pb208	208.042750 + 50
18	Os ¹⁹⁰	190.018962 ± 30	36	Bi ²⁰⁹	209.041855 ± 27
			1.52		

В работе Бано, Джонсона и Нира в качестве единственной опорной величины для изотопов гафния принята масса M (Hf¹⁷⁶) = 175, 997725 ± 100 а. е. м.,

полученная измерением дублета

16

 $M(C^{13}C_{12}H_{19} - Hf^{176}) = 210, \ 310 \pm 40 \cdot 10^{-3}$ a. e. m.

Расхождение со значением для $M(Hf^{176})$, полученным в настоящей работе, составляет $150 \cdot 10^{-6}$ а.е.м. при суммарной ошибке измерения $180 \cdot 10^{-6}$ а.е.м.

Значения для разностей масс изотопов, полученные с помощью молекулярных и изотопических дублетов, согласуются с относительно высокой точностью $\pm 30 \cdot 10^{-6}$ а.е.м. Хорошо согласуются также в пределах ошибок измерения значения для разностей масс, полученные в настоящей работе и в работе [18]. Вместе с тем наблюдается постоянный сдвиг значений [17] на величину ($+150 \div 200$) $\cdot 10^{-6}$ а.е.м. По всей вероятности, происхождение этого сдвига следует объяснить ошибкой в измерении массы опорного изотопа в [17]. Из сравнения масс-спектроскопических величин с соответствующими ядерными значениями для разностей масс изотопов гафния можно заключить, что исследованные в работе [19] (γ , n)-реакции не представляют переходов к основному состоянию. Значительно лучше согласуются с масс-спектроскопическими данными новые значения для этих реакций, приведенные в работе [20] (за исключением | H[¹⁷⁷ (γ , n) H[¹⁷⁶]).

Для измерения масс изотопов осмия использовались окись осмия (OsO₄) и органические соединения терфенил (C₁₈H₁₄) и перилен (C₂₀H₁₂). При этом для исследования масс была принята схема, в которой изучаемые изотопы привязаны к субстандартам пятью опорными массами Os¹⁸⁶, Os¹⁸⁸, Os¹⁸⁹, Os¹⁹⁰, Os¹⁹² с помощью следующих молекулярных и изотопических дублетов (рис. 2):

$C_{20}H_{10} - Os^{186}O_4;$	$C_{18}H_6 - Os^{190}O_2;$
$C_{15}H_7 - Os^{187};$	$C_{18}H_8 - Os^{192}O_2;$
$C_{15}H_8 - Os^{188};$	$C_{18}C_{1}^{13}H_{11} - Os^{192}O$
$C_{18}H_4 - Os^{188}O_2;$	$Os^{187} - Os^{186};$
$C_{20}H_{12} - Os^{188}O_4;$	$Os^{188} - Os^{187};$
$C_{15}H_9 - Os^{189};$	$Os^{189} - Os^{188};$
$C_{18}H_5 - Os^{189}O_3;$	$Qs^{190} - Os^{189}$.
$C_{14}C_1^{13}H_9-Os^{190};$	
	and the second

Результаты измерений приведены в табл. 1 и 2. Для проверки масса осмия-188 определялась также с помощью дублета Hg²⁰⁴—Os¹⁸⁸O, исследование которого привело к следующему значению для разности масс:

 $M(\text{Hg}^{204} - \text{Os}^{188}\text{O}) = 0,022584 \pm 50$ a. e. m.

Принимая M (Hg²⁰⁴) = 204,038328 ± 9 а.е.м. [16], получаем M (Os¹⁸⁸) = 188,015745±60 а.е.м., что хорошо согласуется значениями, полученными с помощью молекулярных дублетов.

Во всех случаях отклонения от условий «внутреннего согласия» не выходят за пределы указанных ошибок измерений. Массы атомов находятся в хорошем согласии независимо от того, из каких экспериментальных данных они вычислены. Кроме того, полученные значения для масс изотопов гафния удовлетворительно привязываются к значениям масс изотопов рения и вольфрама.

Разность масс $M(\text{Re}^{187}) - M(\text{Os}^{187}) = 0,000006 \pm 80$ а.е.м. подтверждается распадом $\text{Re}^{187}(\beta^{-})\text{Os}^{187}$, для которого найдено $Q = 0,000004 \pm 4 \kappa \beta \beta$ [16].

17"

Рис. 2. Схема измерений масс изотопов осмия.

Иначе дело обстоит при сравнении результатов настоящей работы с данными Бано, Джонсона и Нира [17]. Здесь имеются большие расхождения абсолютных значений при превосходном совпадении величин разностей масс. Массы изотопов осмия, полученные в настоящей работе, отличаются от данных [17] на $(500-900) \cdot 10^{-6}$ а.е.м. в сторону больших значений. Все это указывает на то, что причину противоречий следует искать в ошибках измерений масс опорных изотопов. Действительно, в работе [17] используется только единственная опорная величина M (Os¹⁸⁶), не проверенная правилами «внутреннего согласия».

Измеренные в работе [17] два молекулярных дублета $C^{13}C_{11}H_{27}N$ —Os¹⁸⁶ и $C_{14}H_{22}$ —Os¹⁹⁰ приводят к значениям для масс изотопов

 $M(Os^{186}) = 186,012579 \pm 200$ a. e. m.

М (Os¹⁹⁰) = 190,0018843 ± 100 а. е. м.

не согласующихся между собой на $700 \cdot 10^{-6}$ а.е.м. К сожалению, это значение массы Os¹⁹⁰ [17] было отбраковано и в качестве опорной величины принята масса Os¹⁸⁶. Тогда, как видно из табл. 2, значение $M(Os^{190})$ является более достоверным и в пределах суммы ошибок измерений согласуется с данными настоящей работы и работы [18].

5. В пятой главе приводятся результаты измерений масс атомных ядер тория, урана и плутония: Th²³², U²³⁴, U²³⁵ и 'Pu²⁴⁰. Результаты измерений приведены в табл. 3 и 4. При измерении массы изотопа тория ионы дублетной пары получались испарением в разряде в атмосфере гелия металлического тория и 1,5-дифенил-3-метилпиразолина C₆H₁₆N₂.

Таблица З

№ п/п	Дублет	Разность масс в а. е. м.
1	$C_{16}H_{12}N_2$ —Th ²³²	0,062010±100
. 2	$C_{20}H_{10}-U^{234}O^{16}$	$0,042423\pm50$
3	$C_{19}H_7 - U^{235}$	0,010765±50
4	$C_{18}C^{13}H_{11} - Pu^{240}$	$0,035497 \pm 50$

- При измерении массы изотопа урана-235 использовалась окись урана, обогащенная до 70% изотопом U²³⁵. Дублет образовывался фрагментом перилена С₂₀Н₁₂. Для измерения массы мало распространенного изотопа U²³⁴ использовалась окись урана, обогащенная U²³⁴ до 1%. Этот изотоп измерял-

the state of the second state of the second state of the

ся в составе U²³⁴O¹⁶. Для образования дублета применялся осколок перилена с массой 250. При исследовании массы изотопа плутония Pu²⁴⁰ ионы дублетной пары получались испарением металлического плутония, обогащенного изотопом Pu²⁴⁰ до 10÷12% и перилена.

	and the second second	Таблица 4
№ и п	Изотоп	Данные настоящей работы в а. е. м. (1962 г.)
265.		
1	Th ²³²	$232,111830\pm100$
2 U ^s	U ²³⁴	$234,115330\pm50$
3	U ²³⁵	$235,118739\pm50$
4	Pu ²⁴⁰	240,130263±50

Сравнение полученных значений масс Th²³² и U²³⁵ с помощью величин Q реакции [21]

 $\begin{array}{ll} U^{235}(\alpha) \, \mathrm{Th}^{231}, & Q = 4660 \pm 150 \, \widetilde{\kappa} \, \mathcal{B} \, \mathcal{B}; \\ \mathrm{Th}^{232}(\gamma, n) \, \mathrm{Th}^{231}, & Q = -6350 \pm 40 \, \, \kappa \, \mathcal{B} \, \mathcal{B} \end{array}$

приводит к удовлетворительному результату. Разность масс $M(U^{235}) - M(Th^{232})$, вычисленная по данным настоящей работы, равна $3,006909 \pm 120$ а.е.м., тогда как по ядерным данным — $3,006840 \pm 180$ а.е.м.

Величина разности масс Pu^{240} —Th²³², вычисленная с помощью величин распадов Pu^{240} (a) U^{236} , $Q=4577\pm150$ кэв [21] н U^{236} (a) Th²³², $Q=5249\pm150$ кэв [21], составляет

 $M(Pu^{240} - Th^{232}) = 8,018302 \pm 250$ a. e. M.,

тогда как по данным настоящей работы

 $M(Pu^{240}) - M(Th^{232}) = 8,018433 \pm 120$ a. e. m.

Расхождение между этими двумя величинами почти в три раза меньше суммарной ошибки измерения. Такое совпадение результатов, полученных совершенно различными методами, указывает на надежность приводимого значения массы изотопа Ри²⁴⁰. До настоящего времени масс-спектроскопически массы изотопов плутония не измерялись. Измерение масс Th²³², U²³⁴ и U²³⁵, выполненное Станфордом и Дакворсом в 1951—1952 гг. [22, 23], содержат большие систематические ошибки. Данные Гюценга [6] и Станфорда, Дакворса [23] занижены. Например, расхождение значения, полученного в настоящей работе для Pu²⁴⁰, со значением, полученным в работе [6], превышает ошибку нашего измерения примерно в 20 раз. Однако, возможно, это расхождение объясняется ошибочностью массы опорного изотопа Pb208, использованного в работе [6].

Величина этой массы, равная 208,041640±1000 а.е.м. принятая за эталон при вычислениях, была взята из неточных масс-спектроскопических измерений Станфорда и др. [23]. Эта величина отличается примерно на 1100 · 10⁻⁶ а.е.м. от данных настоящей работы и работы Бенсона, Дамероу и Риза [16]. Если учесть эту поправку, то расхождения окажутся в пределах ошибок измерений.

6. В шестой главе рассматриваются результаты измерений масс атомных ядер от стронция до рутения. Исслелуемая область включает стабильные ядра 25 изотопов стронция (A=84, 86, 87, 88), иттрия (A=89), циркония (A=90, 91, 92)94, 96), ниобия (А=93), молибдена (А=92, 94, 95, 96, 97, 98, 100), рутения (А=96, 98, 99, 100, 101, 102, 104). Всего для данного диапазона масс в настоящей работе изучено 60 дублетов с точностью $\Delta M/M = 2 - 5 \cdot 10^{-7}$. Массы значительной части изотопов в этой области масс-спектроскопически не измерялись (Zr⁹¹, Zr⁹², Mo⁹⁸, Ru⁹⁸ и др.). Значения же масс изотопов Ru¹⁰⁰ и Ru¹⁰¹ измерены впервые. Результаты измерений приведены в табл. 5 и 6. Ионы стронция получались испарением металлического стронция в разряде источника анодной плазмы. Для получения молекулярных ионов использовались толуол C₇H₈ и изоамиловый спирт C₅H₁₂O. Ионы циркония получались испарением в разряде гелия хлорида циркония. Для молекулярных линий использовались ионы фрагментов анилина C₆H₇N и кумола C₆H₁₂.

При измерении масс изотопов молибдена использовались: хлорид молибдена, гептан C_7H_{16} и цикглогексанон $C_6H_{10}O$. Ионы рутения получались испарением в разряде гелия металлического рутения. Для получения мало распространенных изотопов рутения использовался хлорид рутения: Ионы органических соединений получались введением в разряд стирола C_8H_8 и гептана C_7H_{16} . Ионы иттрия получались испарением в разряде толуола C_7H_8 металлического порошка иттрия. Для сравнения использовалась линия осколочного иона C_7H_5 . Ионы ниобия получались испарением металлического ниобия. Для сравнения использовалась линия ионов анилина C_6H_7 (M=93).

Разности масс Zr⁸⁶—Zr⁸⁴, Zr^{87—}Zr⁸⁶ и Zr⁸⁸—Zr⁸⁷, полученные в настоящей работе, хорошо согласуются с данными ядерных реакций [24]:

Rb ⁸⁴ (β^{-}) Zr ⁸⁴ , $Q = 909 \pm 8 \kappa_{38}$
${ m Rb}^{s_5}(\gamma, n) { m Rb}^{s_4}, \qquad Q = -10580 \pm 57 \; \kappa_{38}$
$Rb^{85}(p, n)Zr^{85}, \qquad Q = -1890 \pm 30 \ \kappa \Im s$
$Zr^{86}(\gamma, n) Zr^{85}, \qquad Q = -11500 \pm 300 \ \kappa_{36} \ [25]$

Таблица 5

№ п/п	Дублет	Разность масс в а. е. м.	№ п/п	Дублет	Разность масс в а. е. м.
1	$C_6H_{12} - Sr^{84}$	$0,180583 \pm 23$	18	$C_7H_8 - M_0^{92}$	$0,155804\pm 25$
2	$C_5H_8O - Sr^{84}$	0,144148±17	19	$C_6 C^{13} H_7 - Mo^{92}$	$0,151390 \pm 25$
3	$C_7H_2 - Sr^{86}$	0,106482±42	20	$C_7H_{10} \rightarrow Mo^{94}$	$0,173205 \pm 46$
4	$C_5H_{10} - Sr^{86}$	0,164039±24	21	$C_6H_6O - M_0^{94}$	$0,136652 \pm 70$
5	$C_5H_{11}O - Sr^{87}$	$0,172251\pm21$	22	C ₆ C ¹³ H ₉ -Mo ⁹⁴	0,168686±88
6	$C_7H_5 - Sr^{88}H$	$0,125822\pm80$	23	C ₇ H ₁₁ - Mo ⁹⁵	$0,180271\pm30$
, 7 ⁻	$C_7H_4 - Sr^{88}$	$0,125862 \pm 38$	24	C ₆ H ₇ O — Mo ⁹⁵	$0,143926 \pm 40$
8	$C_7H_6 - Zr^{90}$	$0,142323\pm21$	25	C ₇ H ₁₃ — Mo ⁹⁷	$0,195852 \pm 50$
9	C ₆ C ¹³ H ₅ —Zr ⁹⁰	0,137832±36	26	C ₆ H ₉ O — Mo ⁹⁷	$0,159530\pm50$
10	$C_6H_4N - Zr^{90}$	$0,129768 \pm 50$	27	C ₇ H ₁₄ — Mo ⁹⁸	$0,204173 \pm 50$
11	$C_7H_7 \longrightarrow Zr^{91}$	$0,149206 \pm 28$	28	$C_6H_{10}O - Mo^{98}$	$0,167715\pm50$
12	$C_6H_5N - Zr^{91}$	0,136626±37	29	C ₆ C ¹³ H ₁₃ Mo ⁹⁸	$0,199641 \pm 50$
13	$C_7H_8 - Zr^{92}$	0,157564±19	30	$C_7H_{16} - Mo^{100}$	$0,217721\pm31$
14	$C_6 C^{13} H_7 - Zr^{92}$	0,153118±25	31	C ₇ H ₁₅ — Ru ⁹⁹	$0,211593 \pm 100$
15	$C_6H_6N - Zr^{92}$	0,145006±29	32	$C_7H_{16} - Ru^{100}$	$0,221048 \pm 100$
16	$C_6H_6O - Zr^{94}$	$0,135558 \pm 22$	33	C7H5 - Y89	0,133303±70
17	C ₅ C ¹³ H ₇ N-Zr ⁹⁴	0,154877±28	34	C ₆ H ₇ N — Nb ⁹³	$0,151579 \pm 20$

Таблица б

		and the second		and the second states of	a waa ta a da ba a da ta a aya ah d
№ п/п	Изотоп	Данные настоя- щей работы в а.е.м. (1962 г.)	№ п/п	Изотоп	Данные настоя- щей работы в а.е.м. (1962 г.)
	的现在分词		1.1		State and the state of
ି 1 ୁ	Sr ⁸⁴	83,940078±15	14	Mo ⁹⁷	$96,936670 \pm 30$
2	• Sr ⁸⁶	85,936497±15	15	Mo ⁹⁸	$97,936630\pm50$
3	Sr ⁸⁷	$86,936426\pm21$	16	Mo ¹⁰⁰	99.939314 ± 31
4	Sr ⁸⁸ .	87,931432±16	17	Ru ⁹⁶	$95,938081 \pm 100$
5	Zr ⁹⁰	89,933257±15	18	Ru ⁹⁸	$97,936421 \pm 100$
6	Zr ⁹¹	90,934533±15	19	Ru ⁹⁹	98.937277 ± 100
7	Zr ⁹²	91,934290±15	20	Ru ¹⁰⁰	$99,935964 \pm 100$
8.	Zr ⁹⁴	$93,936232 \pm 28$	21	Ru ¹⁰¹	100.937272 ± 100
3 9 .4	Zr ⁹⁶	95,938876±44	22	Ru ¹⁰²	$101,936624 \pm 100$
10	M0 ⁹²	$91,936036 \pm 15$	23	Ru ¹⁰⁴	103.938379 ± 100
11	Mo ⁹⁴	$93,935024\pm50$	24	' Y ⁸⁹ '	88.934130 ± 70
12	Mo ⁹⁵	94,936017±18	25	Nb ⁹³	$92,935856 \pm 20$
13	M0 ⁹⁶	$95,935142\pm30$			
100			N		

откуда

и

 $\Delta M (Zr^{86} - Zr^{84}) = 1,996425 \pm 300$ a. e. M.

$Zr^{86}(n, \gamma) Zr^{87}, \qquad Q = 8417 \pm 18 n$	сэв [26];
$Zr^{87}(n, \gamma) Zr^{88}, \qquad Q = 11140 \pm 50$	кэв [26]
согласно которым	L 1

 $\Delta M (Zr^{87} - Zr^{86}) = 0,999947 \pm 20$ a. e. m., $\Delta M (Zr^{88} - Zr^{87}) = 0,997012 \pm 60$ a. e. m.

Для $M(Zr^{91}-Zr^{90})$ нет разногласий с ядерными данными: разность масс, вычисленная с помощью реакции Zr^{90} (d, p) Zr^{91} , для которой $Q=4960\pm50$ кэв [27], совпадает с результатом настоящей работы. Для $M(Zr^{92}-Zr^{91})$ ядерные реакции $Zr^{91}(n, \gamma)Zr^{92}$, $Q=8660\pm40$ кэв, $Zr^{91}(d, p)Zr^{92}$, $Q=6500\pm$ ±100 кэв [26] приводят к величинам, расходящимся с массспектроскопическим значением соответственно на 71 · 10⁻⁶ и 141 · 10⁻⁶ а.е.м.

В случае $M(Mo^{97}-Mo^{96})$ ядерные данные приводят к противоречивым значениям для разности масс. Q — энергии ядерных реакций $Mo^{96}(d, p)Mo^{97}$, $Q=4510\pm300$ кэв и $Mo^{97}(d, p)Mo^{96}$, $Q=-7100\pm300$ кэв измерены с большой ошибкой. Для $M(Mo^{98}-Mo^{97})$ расхождение с ядерными данными превышает сумму ошибок измерения. Величина полной энергии реакции $Mo^{97}(d, p)Mo^{98}$, $Q=6060\pm100$ кэв, по-видимому, ошибочна. К большим расхождениям с данными настоящей работы приводит реакция $Ru^{101}(d, p)Ru^{102}$, Q== 6220±60 кэв [27].

Сравнение разностей масс изотопов стронция, циркония, молибдена и рутения с теми же разностями масс, вычисленными по данным полных энергий ядерных реакций, показывает, что полученные значения масс хорошо согласуются между собой в пределах всего цикла.

Масс-спектроскопическое значение разности масс $M(Zr^{90}-Zr^{88})$, полученное в настоящей работе, равно 1,999825± ±20 а.е.м. Пользуясь данными ядерных реакций и распадов

$Zr^{88}(d, p) Zr^{89}$, $Q = 4260 \pm 70 \ \kappa \imath \imath \imath \imath$ [24];
$Zr^{89}(\beta^{-})X^{89}$,	$Q = 1463 \pm 10 \kappa$ 98 [24];
$Zr^{89}(\beta^{-}) X^{89}$,	$Q = 2843 \pm 7$ кэв [24];
$Zr^{90}(1, n) Zr^{89},$	$Q = -11780 \pm 90 \kappa 38$ [24],

имеем M (Zr⁹⁰—Zr⁸⁸) = 1,999838 ± 115 а.е.м.

По данным масс-спектроскопических измерений Исенсора, Барбера и Дакворса [28], величина этой разности масс составляет 1,999866±200 а.е.м. Расхождение с данными Ко-

линза, Джонсона и Нира [29] не превышает $130 \cdot 10^{-6}$ а.е.м. Масс-спектроскопическое значение разности масс $M(Mo^{92}-Zr^{92})$ равно 0,001746±20 а.е.м. Из цикла реакций [24] $Zr^{92}(d, p)Zr^{93}$, $Q=4430\pm40 \ \kappa 3 \ \beta; Zr^{93}(\beta^{-})Nb^{93}$, $Q=63\pm \pm 2 \ \kappa 3 \ \beta; Nb^{93}(p, n)Mo^{93}$, $Q=-1270\pm40 \ \kappa 3 \ \theta \ M Mo^{92}(d, p)Mo^{93}$, $Q=5630\pm50 \ \kappa 3 \ \theta$ имеем $M(Mo^{92}-Zr^{92})=0,001744\pm80$ а.е.м. Масс-спектроскопическое значение этой разности, полученное в работе Гейгера, Хогга, Дакворса и Дейднея [30], равное 0,001340±400 а.е.м. ошибочно.

Масс-спектроскопическое значение разности масс $M(Mo^{100}-Ru^{99})$ равно 1,002037±100 а.е.м. Цикл реакций [24] $Mo^{99}(\beta^{-})Tc^{99}, Q=1380\pm10 \ \kappa 3 \beta; Mo^{100}(\gamma, n)Mo^{99}, Q=-8100\pm \pm 300 \ \kappa 3 \beta, Te^{99}(\beta^{-})Ru^{99}, Q=293\pm2 \ \kappa 3 \beta$ приводит к значению 1,002080±300 а.е.м.

Масс-спектроскопическое значение разности масс $M(Mo^{94}-Zr^{84})$ равно 9,994946±53 а.е.м. Вычисления с помощью ядерных реакций и распадов [24-27, 31, 32] приводят для этой разности масс к величине 9,994988±370 а.е.м.

7. В седьмой главе проводится сравнение результатов настоящей работы с другими масс-спектроскопическими данными. До последнего времени масс-спектроскопические измерения для области тяжелых масс не согласовывались как между собой, так и с ядерными данными. Поэтому расчет масс тяжелых атомов велся только по экспериментальным значениям энергий β-распадов и энергий ядерных реакций. За последнее время положение существенно изменилось. Для области тяжелых масс стало возможным совместное рассмотрение масс-спектроскопических и ядерных данных.

С появлением результатов настоящей работы [11, 12] и лаборатории Миннесотского университета [15—17] уменьшились расхождения между масс-спектроскопическими измерениями. Применяя более тщательный отбор энергий ядерных реакций, удалось сблизить массы, вычисленные с помощью Q величин и измеренные масс-спектроскопически.

Используя одновременно с ядерными данными (в качестве входных масс-спектроскопических величин) результаты настоящей работы, опубликованные в 1959 г., и результаты измерений Миннесотской лаборатории, Кёниг, Маттаух и Вапстра в конце 1961 г. методом наименьших квадратов вычислили массы изотопов для 176 $\leq A \leq$ 196 [18].

Сравнение данных [16, 17] с массами, вычисленными Кёнигом, Маттаухом и Вапстра; показывает, что удовлетворительное согласие обеих групп масс можно видеть только лишь для изотопов свинца и ртути (измерения, выполненные Бенсоном, Дамероу и Ризом на 40-сантиметровом масс-спектрометре): При этом почти все массы 176 < A < 196 расходятся с согласованными значениями на величину, превышающую ошибки измерения. Для области $184 \leqslant A \leqslant 196$ расхождения достигают большой величины (200—860) $\cdot 10^{-6}$ а.е.м.

Массы, полученные в настоящей работе, в пределах погрешностей измерения хорошо совпадают с согласованными значениями масс, полученных Кёнигом, Маттаухом и Вапстра. Это разрешает сделать вывод, что для исследуемой области масс между масс-спектроскопическими и ядерными данными нет никаких принципиальных противоречий. Относительно возможных причин расхождения результатов Бано, Джонсона и Нира можно сделать следующие замечания.

В работе Бано и других большинство масс ядер измерялось при помощи так называемых «изотопных дублетов». Эти дублеты позволяют вычислять разность масс на одну или две массовые единицы. Однако для того чтобы получить абсолютное значение величины массы, необходимо хотя бы на некоторых ядрах произвести сравнение данной неизвестной массы со стандартом О¹⁶ или субстандартными величинами Н, С¹² и D. Естественно поэтому причину расхождений в абсолютных значениях масс изотопов искать в определении «опорных» масс — дублетов с применением органических соединений. Это тем более верно, что изотопные разности масс в сравниваемых работах совпадают относительно хорошо.

Основными причинами расхождения, как нам кажется, является применение в работе [17] масс-спектрометра с малой разрешающей способностью (14 000). При такой разрешающей способности наиболее опасной примесью, способной приводить к систематическим ошибкам, является примесь с содержанием изотопа С¹³, для разделения которой в измеряемой области масс необходима разрешающая способность 40 000—45 000.

Анализ экспериментальных данных, полученных в работе [17], приводит к выводу, что большинство расхождений между результатами настоящей работы и работы [17] можно объяснить наличнем в молекулярных дублетах [17] неразрешенных примесей.

Опыт работы с тяжелыми органическими соединениями в нашей лаборатории показывает, что в плазменном ионном источнике кроме дублетов СН—С¹³ на любой массе и фрагментов вводимого органического соединения в спектрах присутствуют ионы ассоциативного происхождения типа A+H, $A+H_2$ и даже ионы типа $A+CH_M$, где M=1, 2, 3, 4, A — молекулярный ион первичного органического соединения.

В работе в качестве иллюстрации приведен спектр толуола C_7H_8 (M=92). На массах 91, 92, 93 и 94 присутствуют дублеты CH—C¹³. Кроме того, на массах 93, 94 имеются ионы типа A + H и $A + H_2$ достаточно большой интенсивности. Там, где интенсивность нонов, содержащих C¹³, довольно велика, могут присутствовать ионы типа C₅C₂¹³H₇, т. е. с содержанием двух атомов изотопа C¹³ и соответственно с двойным дублетом CH—C¹³ на данной массе.

Совершенно аналогичная картина наблюдается при использовании органических соединений с массой 150—200.

Присутствие ионов ассоциативного происхождения наряду с ионами, содержащими C^{13} и C_2^{13} , при условии, невысокой разрешающей способности может привести к систематическим ошибкам. Например, расхождение данных Бано и др. по массе Os^{186} с результатами настоящей работы можно объяснить присутствием [17] в неразрешенной примеси иона ассоциативного происхождения $C_{12}H_2N$ (использовался дигексиламин M = 185, $C_{12}H_{27}N$) наряду с основной линией $C_{11}C^{13}H_{27}N$, использованной для измерения массы Os^{186} . Присутствие этой неразрешенной примеси приведет к смещению центра линии в сторону тяжелых масс. Значение дублета по величине будет больше, значение массы Os^{186} — соответственно меньше (на $0,6 \cdot 10^{-3}$ а.е.м.). Это и наблюдается при сравнении с результатами настоящей работы. Аналогичная картина наблюдается при измерении масс W^{186} , Os^{190} , Ir^{191} .

В работе проводятся сравнения значений масс, вычисленных по полуэмперическим формулам Камерона и Леви, с экспериментальными значениями масс настоящей работы.

Для исследуемой области A > 174 формулы Камерона и Леви дают величины, отличающиеся от экспериментальных значений от $800 \cdot 10^{-6}$ до $3600 \cdot 10^{-6}$ а.е.м. К особенно резким отклонениям от экспериментальных значений формула Камерона приводит в области деформированных ядер. Здесь ошибка достигает $3600 \cdot 10^{-6}$ а.е.м. Столь большие отклонения, с одной стороны, объясняются неправильными исходными экспериментальными данными, принятыми Камероном при вычислении, с другой стороны, тем, что к деформированным ядрам нельзя применять обычную полуэмперическую формулу: от деформации зависят и кулоновская и поверхностная энергии ядра.

8. В восьмой главе рассматривается систематика энергии связи нейтронов и протонов. Для сопоставления экспериментальных значений масс ядер представляет интерес исследование изменения последней пары нейтронов и протонов в зависимости от массового числа A [34].

Давно было замечено, что если откладывать на графике экспериментальные значения энергий связи последней пары нейтронов и протонов в зависимости от массового числа, то точки, относящиеся к ядрам с одинаковым числом нейтронов и протонов, ложатся приблизительно на прямые линии и мы получаем сетку параллелограммов. Эти сетки параллелограммов можно рассматривать как систематику энергий присое-

:26

្នា

Рис. 3. Сетка энергий связи двух последних нейтронов для широкого диапазона ядер А=80÷252: O—экспериментальные точки данной р тальных дачных настоящей работы и результатов измерений Бано, Джонсона и Нира, совместно с данными ядерных реакций и распадов методом на

ки данной работы; 🌑 — данные Кёнинга, Маттауха и Вапстра, полученные уравновешиванием эксперименметодом наименьших квадратов; О— точки, построенные по данным систематики Ямада и Матумото.

динения последней пары нейтронов и протонов, аналогичную систематике энергий β-распада. Наличие линейных связей этих энергетических параметров от массового числа объясняется тем, что энергия связи ядра представляет квадратичную функцию от числа нуклонов в различных оболочках, а поэтому ее разности, которые определяют энергию присоединения последней пары нейтронов S 27 и протонов S 27, должны линейно изменяться в зависимости от числа нуклонов. В этом смысле изучение энергетических параметров ядра удобно начать с энергии связи последней пары нейтронов и протонов. Исследование систематики энертии связи ядра связано с некоторыми неудобствами, так как она является квадратичной функцией числа нуклонов. В случае систематики энергии связи последних нейтронов и протонов картина осложняется четно-нечетными колебаниями энергии связи. Удобство построения сетки S2n и S2p объясняется еще и тем, что разница масс часто известна с более высокой точностью даже тогда, когда известны сами массы. Имеется достаточно много реакций (ү, п) и (п, ү) и прецизионных масс-спектроскопических измерений изотопических дублетов.

Сопоставление экспериментальных значений S_{2n} и S_{2p} становится особенно наглядным, если экспериментальные точки нанести на соответствующую полуэмперическую сетку, охватывающую большое число ядер. С помощью такого построения можно проконтролировать сомнительные значения и установить, в каких местах допустима оценка неизмеренных величин. В работе приводится сетка энергий связи двух последних нейтронов для широкого диапазона ядер (рис. 3) $A = 80 \div 252$.

В целом картина изменения S_{2n} с ростом A обнаруживает некоторую тонкую структуру, которую нельзя непосредственно отождествить с признанными магическими числами. Следует ожидать, что с появлением новых достоверных экспериментальных данных картина будет все более уточняться. Однако уже сейчас можно видеть, что фактически получение каждой новой уточненной экспериментальной величины позволяет улучшить прямолинейность и плавность линий. Это обстоятельство сильно упрощает построение систематики. В области, где энергии связи известны с большой точностью, система параллелограммов наиболее симосталичи.

В настоящее время систематика энергии связи последних двух нейтронов может быть использована для определения неизмеренных значений масс. При этом можно считать, что погрешность вблизи экспериментально изученных участков сетки не будет превышать 150—200 кэв.

Результаты настоящей работы дают возможность видеть, в какой мере может быть повышена точность измерений масс

атомных ядер. Здесь необходимо четко различать точность определения расстояния между разрешенными масс-спектральными линиями от той, с которой мы умеем переводить эти расстояния в соответствующие разности масс. Измеряя с высокой точностью расстояния между центрами дублетных линий, мы не можем утверждать, что с такой же точностью определяем разность масс. В каждом конкретном случае должны быть тщательно изучены дисперсионные константы. Как было показано в настоящей работе, для этого должно иметь место «внутреннее согласие» результатов измерений. Значение и разности масс исследуемых ядер, полученных при помощи дублетов с различными энергетическими характеристиками, должны совпадать в пределах статистических ошибок измерения. Для этого особенно интересны дублеты, позволяющие составлять циклы, равные соответственно нулю или величине разности масс одного из хорошо изученных фундаментальных дублетов. Точность измерения определяется тем, насколько хорошо удовлетворяются эти условия. Несмотря на специфические трудности, которые осложняют постановку и проведение подобных экспериментов, можно считать, что при тщательной юстировке ионно-оптической системы и других режимных параметров масс-спектрографа здесь может быть достигнута точность в 1-2.10-6 а.е.м.

Новейшие успехи методов измерения расстояния между центрами масс-спектральных линий позволяют видеть, что и здесь ошибки измерения могут быть доведены до 1—2 imes×10-6 а.е.м. Таким образом, нет причин ожидать какого-либо ограничения для достижения еще более высокой точности измерения (в области тяжелых масс порядка 10-8) масс атомных ядер с ошибкой, не превышающей 3-5 кэв.

Результаты исследований настоящей работы опубликованы: «Атомная энергия»; 2; 21 (1956); 6, 544, (1957); 5, 469 (1957); ЖЭТФ, 35, 917 (1958); 37, 1217 (1959); ДАН АН СССР, 118, 1103 (1958); Изв. АН СССР. серия физ., 25, 124 (1961); ДАН СССР, 124, 301 (1959); ЖЭТФ, 40, 1033 (1961); 40, 1572 (1961); ДАН АН СССР, 146, 72 (1962) и доложены на всесоюзных конференциях по ядерной спектроскопии в 1960 г. (Москва), 1961 г. (Рига), 1962 г. (Ленинград) и в 1963 г. (Киев) и на Второй международной конференции по массам ядер (Вена), 1963 г.

ЛИТЕРАТУРА

- 1. Б. Л. Бирбранр и Л. А. Слив. Тр. Всесоюзной конференции поядерным реакциям при малых и средних энергиях. М., Изд-во АН СССР (1957) стр. 563.
- 2. D. R. Bes and Ź. Szymanski, Nuclear Physics, 28, $42 \div 62$ (1961).
- 3. B. C. Hogg, H. E. Duckworth. Canad. J. Phys., 30, 637 (1952).
- 4. B. C. Hogg; H. E. Duckworth: Canad! J. Phys., 31, 942' (1953).

- 5. B. C. Hogg, H. E. Duckworth Canad. J. Phys., 32, 65 (1954).
- 6. A. H. Wapstra. Physica, 21, 385 (1955). 7. J. R. Huizenga. Physica, 21, 410 (1955).
- 8. K. S. Quisenberry, T. T. Scolman and A. O. Nier. Phys. Rev. 102, 1671 (1956).
- 9. L. G. Smith. Phys. Rev., 111, 1606 (1958).
- 10. Ф. Эверлинг, Л. Кениг, Дж. Маттаух и А. Вапстра. • Nucl. Phys., 15, № 2 (1960).
- 11. Р. А. Демирханов, Т. И. Гуткин, В. В. Дорохов. Энергия связи ядер в области магических чисел по протонам 82 и нейтронам 126. «Ж. эксперим. и теор. физ.», 35, 91 (1958).
- 12. Р. А. Демирханов, Т. И. Гуткин, В. В. Дорохов. Массы изотопов и энергий связи ядер в диапазоне значений масс от 186 до 196. «Ж. эксперим. и теор. физ.», 37, 1217 (1959).
- 13. Р. А. Демирханов, Т. И. Гуткин, В. В. Дорохов. Массы тяжелых атомов и энергий связи ядер в области 174 ≤ M ≤ 239. «Изв. АН СССР, серия физ.», 25, 124 (1961).
- 14. Р. А. Демирханов, Т. И. Гуткин, В. В. Дорохов. Массы изотопов свинца. «Докл. АН СССР», 118, № 6 (1958).
- 15. W. H. Johnson (Jr.) and V. B. Bhanot. Phys. Rev., 167, 1669 (1957).
- 16. J. L. Benson, R. A. Damerow and R. R. Ries. Phys. Rev., 115, 1105 (1959).
- 17. V. B. Bhanot, W. H. Johnson (Jr.) and A. O. Nier. Phys. Rev., 120, 235 (1960).
- 18. L. A. König, J. H. E. Mattauch and A. H. Wapstra. New Relative Nuclidic Masses. Nucl. Phys., 31, 1 (1962).
- 19. R. Tobin, J. McElhinney, L. Cohen. Phys. Rev., 110, 1388 (1958).
- 20. Nuclear Data Sheets, Nuclear Data Group. Washington, D. C., 1958-1960.
- 21. B. M. Foreman (Jr.), G. T. Seaborg. J. Inorg. Nucl. , Chem., 7, 305 (1958).
- .22, G. Stanford, H. E. Duckworth, Bull. Am. Phys. Soc., 26, № 3, 38 (1951).
- 23. G. Stanford, H. E. Duckworth, B. G. Hogg, J. S. Geiger. Phys. Rev., 85, 1039 (1952).
- .24. F. Everling, L. A. König, J. H. E. Mattauch and A. H. Wapstra. Nucl. Phys., 25, 177 (1961).
- 25. P. E. Yergin and B. P. Fabricand. Phys. Rev., 100, 1269A (1955).
- 26. K. Way, R. W. Ring, C. L. McGinnis and Van Lieshaut. Nuclear Level Schemes, A=40 to 92. Atomic Energy Commission, T1D-5300, 69 (1955).
- 27. P. Mason, G. F. Flack and G. Parry. Proc. Phys. Soc., 73, 138 (1959).
- 28. N. R. Isensor, R. C. Barber, H. E. Duckworth. Canad. J. Phys., 38, 819 (1960).
- 29. T. L. Collins, W. H. Johnson, A. D. Nier. Phys. Rev., 94, 398 (1954).
- J. S. Geiger, B. G. Hogg, H. E. Duckworth and J. W. Dewdney. Phys, Rev., 89, 621 (1953).
 31. O. M. Van Patter and W. Whaling. Revs. Mod. Phys., 26, 402
- (1954).
- 32. Р. А. Демирханов, Т. И. Гуткин, В. В. Дорохов. Массы тяжелых атомов и энергий связи ядер в области 174 ≤ M ≤ 239. «Изв. АН СССР, серия физ.», 25, 124 (1961).
- 33. H. E. Dúckwortth, R. S. Preston. Phys. Rev., 82, 468 (1951).
- ,34. N. Zeldes. Proceedings of the International Conference on Nuclidic Masses (University of Toronto Press), Toronto (1960) 151.

28:

- 35. В. А. Кравцов. «Ж. эксперим. и теор. физ.», 36, 1225 (1959). 36. В. А. Кравцов. «Усп. физ. наук», '47, 341 (1962). 37. В. Шютце, Р. А. Демирханов, Т. И. Гуткин, О. А. Самадашвили, И. А. Карпенко. «Приборы и техника эксперимента». 92, № 4 (1960).
- 38. Р. А. Демирханов, Т. И. Гуткин; О. А. Самадашвили, И. А. Карпенко. «Изв. АН СССР, серия физ.», XXV, № 7 (1961).
- 39. Р. А. Демирханов, Т. И. Гуткин, В. В. Дорохов, А. Д. Руденко. «Атомная энергия», № 2 (1956).
- 40. Т. И. Гуткин. «Приборы и техника эксперимента», 46, № 5 (1957). 41. Р. А. Демирханов, Т. И. Гуткин, В. В. Дорохов. Массы изо-
- топов С¹³, N¹⁴, N¹⁵. «Атомная энергия», № 6 (1957). 42. Р. А. Демирханов, Т. И. Гуткин, В. В. Дорохов. Массы тяжелых атомов и энергия связи ядер в области 174 < М < 239. Докл.
 - на X Всесоюзном совещании по ядерной спектроскопии (Москва, 19—27 января 1960 г.). «Изв. АН СССР, серия физ.», XXV, № 1 (1961).
- 43. Р. А. Демирханов, Т. И. Гуткин; В. В. Дорохов. Массы: изотопов Th²³², U²³⁴, U²³⁵ и U²³⁸. «Докл. АН СССР», 124, 2 (1959).
- 44. Р. А. Демирханов, Т. И. Гуткин, В. В. Дорохов. Массы изотопа Ри²³⁹. «Ж. эксперим. и теор. физ.», 36, 1595 (1959).
- 45. Р. А. Демирханов, В. В. Дорохов. Массы изотопа Ри²⁴⁰. «Ж. эксперим. и теор. физ.», 40, 1033 (1961).
- 46. Р. А. Демирханов, В. В. Дорохов, М. И. Дзкуя. Массы изотопов и энергии связи в области от стронция до рутения. «Ж. эксперим. и теор. физ.», 40, 1572 (1961).
- 47. Р. А. Демирханов, В. В. Дорохов, М. И. Дзкуя. «Докл. АН СССР», 146, № 1, 72 (1962).
- 48. Р. А. Демирханов, Т. И. Гуткин, В. В. Дорохов. «Атомная. энергия», 5, т. 2 (1957). 49. Р. А. Демирханов, Т. И. Гуткин, В. В. Дорохов. «Атомная
- энергия», 6, т. 2 (1957).
- 50. M. Y a m a d a and Z. M a t u m o t o J. Phys. Soc. Japan, 16, № 8 (1961).

Children an

na di Charles di Alanda di Alan

365 A. S.

-0.15, K. (