C-89.9

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ЛАБОРАТОРИЯ ТЕОРЕТИЧЕСКОЙ ФИЗИКИ

4 - 8343

СТОЯНОВ Чавдар Пенев

ВЗАИМОДЕЙСТВИЕ КВАЗИЧАСТИЦ С ФОНОНАМИ В ЧЕТНО-ЧЕТНЫХ СФЕРИЧЕСКИХ ЯДРАХ

Специальность - 01.04.16 - физика атомного ядра и космических лучей

А втореферат диссертации на соискание ученой степени кандидата физико-математических наук

(Диссертация написана на русском языке)

Работа вылолнена в Лаборатории теоретической физики Объединенного института ядерных исследований.

Научный руководитель доктор физико-математических наук профессор

В.Г.СОЛОВЬЕВ

С.И.ДРОЗЛОВ

Е.П.ГРИГОРЬЕВ

Официальные оппоненты: доктор физико-математических наук доктор физико-математических наук

Ведущее научно-исследовательское учреждение - Институт теоретической физики АН УССР, Киев

Автореферат разослан " "_____ 1974 года

Защита диссертации состоится " _____ 1974 года в Лаборатории теоретической физики Объединенного института ядерных исследований, г. Дубна.

С диссертацией можно ознакомиться в библиотеке ОИЯИ.

Ученый секретарь Совета

P.A.ACAHOB

4 - 8343

СТОЯНОВ Чавдар Пенев

ВЗАИМОДЕЙСТВИЕ КВАЗИЧАСТИЦ С ФОНОНАМИ В ЧЕТНО-ЧЕТНЫХ СФЕРИЧЕСКИХ ЯДРАХ

Специальность - 01.04.16 - физика атомного ядра и космических лучей

А втореферат диссертации на соискание ученой степени кандидата физико-математических наук

(Диссертация написана на русском языке)

Объзданенный анстанут мерных асследований БИБЛИОТЕКА В последнее десятилетие при описании структуры ядра широко используется полумикроскопическая сверхтекучая модель атомного ядра, интенсивная разработка которой началась после работ В.Г.Соловьева^{/1/} и С.Т.Беляева^{/2/}. Сверхтекучая модель атомного ядра, как впрочем и весь полумикроскопический подход, возникла в результате синтеза мощных математических методов и новых физических идей. Большую роль в ее создании и развитии сыграли теории сверхтекучести^{/3/}, сверхпроводимости^{/4,5/}, теория ферми-жидкости^{/6/}. Благодаря им была понята исключительная важность парных корреляции сверхпроводящего типа в ядрах^{/7/}, а позднее, используя метод приближенного вторичного квантования^{/3/}, удалось учесть дальнодействующую часть остаточных ядерных сил.

Сверхтекучая модель ядра объяснила огромное количество экспериментальных фактов, касающихся низколежащих ядерных возбуждений /84 щель в энергетическом спектре четно-четных атомных ядер, природу вибрационных состояний в четно-четных ядрах, моменты инерции деформированных ядер и многие другие. В последние годы пытаются развить аппарат сверхтекучей модели для описания такои "необычной" для нее области как возбужденные состояния вблизи энергии связи нуклона (9/.

Еще много неясностей остается, однако, в свойствах низколежащих состояний, особенно в ядрах сферических. Мы полагаем, что не все возможности сверхтекучей модели в этом отношении использованы.

Настоящая диссертация посвящена исследованию в рамках сверхтекучей модели влияния взаимодействия квазичастиц с фононами на структуру низколежащих состояний в четно-четных сферических ядрах. На первом этапе (глава I) на основе взаимодействия квазичастиц с фононами учитывается перемешивание только коллективных состояний.

В главах П и Ш учитывается смещивание коллективных и неколлективных состеяний. Представлены расчеты некоторых характеристик 2^+ -и 3⁻-состояний в изотопах *Cd*, *Sn* и Те и изотонах с $\mathcal{N} = 80,82,84$. Исследована также фрагментация коллективных и неколлективных компонент по истинным ядерным уровням (глава П). В главе Ш рассматривается влияние взаимодействия квазичастиц с фононами на свойства 4⁺,6⁺,8⁺,5⁻,7⁻ состояний в изотопах *Sn* и изотонах с $\mathcal{N} = 82$.

В <u>первой главе</u> диссертации (§ I) кратко изложены физические и математические приближения, лежащие в основе сверхтекучей мрдели^{/8/}, а также обсуждаются использовавшиеся в расчетах параметры. Как известно, гамильтониан сферического ядра в сверхтекучей модели записывается в виде:

$$H = H_{so} + H_{opir} + H_{coll}.$$
 (I

Здесь через $H_{s.p.}$ обозначено среднее поле ядра; через H_{pair} силы, приводящие к парным корреляциям сверхпроводящего типа, а H_{coll} - мультиполь-мультипольные силы. После U, V -преобразования Боголюбова и пережода к операторам фононов, в приближении случайных фаз гамильтониан (I) можно представить в виде:

$$H = H_{ph} + H_{qpph} =$$

$$= \sum_{\substack{n \neq i}} \omega_{ni} \, Q_{n \neq i}^{\dagger} \, Q_{n \neq i} - \sum_{\substack{j \neq j \\ j \neq j}} \Gamma(j_{i} j_{2} \pi i) \times$$

$$\times \left\{ \left[(-1)^{n - \mu} Q_{n \neq i}^{\dagger} + Q_{n - \mu i} \right] B(j_{i} j_{2} \pi - \mu) + h.c. \right\},$$
(2)

Здесь $Q_{n\mu i}^{\dagger}$, $Q_{\mu\mu i}$ - операторы рождения и уничтожения фонона с моментом и проекцией πM , номером і и энергией ω_{ni} ; $\Gamma(j_{1}j_{2}\lambda i)$ зависит от величины одночастичного матричного элемента мультипольного оператора, U, V -коэффициентов преобразования Боголюбова и энергии фонона^{/8/}. Оператор $B(j_{i,j_2}; n_{j_1})$ имеет вид

$$B(j_{j_{2}j_{2}}, \lambda \mu) = \prod_{m_{i}m_{2}} (-1)^{j_{2}+m_{2}} \langle j_{1}m_{1}j_{2}m_{2} | \lambda \mu \rangle d_{j_{1}m_{1}} d_{j_{2}-m_{2}}$$

где $d_{jm}^{\dagger} d_{jm}$ - операторы рождения и уничтожения квазичастицы с моментом j и проекцией m, энергию которой обозначим $<j_1m, j_2m_2 | n_M >$ - коэффициент Клебша-Гордона. Член H_{qpph} в (2), которым обычно пренебрегают в первом приближении, описывает взаимодействие квязичастиц с фононами.

При описании среднего поля ядра мы использовали потенциал Вудса-Саксона с параметрами, взятыми из /IO/. Константы парных сил G_{ν} и G_{z} выбирались, следуя процедуре, описанной в /II/. Константы квадруполь-квадрупольных и октуполь-октупольных сил выбирались таким образом, чтобы рассчитанные (с учетом взаимодействия квазичастиц с фононами) энергии 2_{1}^{+} и 3_{1}^{-} состояний совпадали с экспериментом.

С § 2 первой главы диссертации начинается изучение влияния члена $H_{q,pph}$ на свойства нижайших состояний в четно-четных сферических ядрах. Учесть этот член можно, используя метод разложения пар фермионных операторов по бозонам. Мн использовали технику, развитую в/13/, ограничившись при этом простейшим вариантом, который приводит к появлению в гамильтониане членов не выше третьего порядка по числу фононов. Тогда оператор $B(j_i j_2; n_j)$ принимает вид:

$$B(j_{1}j_{2}; n\mu) = \sum_{\substack{n, \mu_{1} \\ n_{2} \neq 2}} (-1)^{j_{1}+j_{2}+n} [(2n_{1}+1)(2n_{2}+1)]^{1/2} \times (-1)^{n_{1}-\mu_{1}} \langle n_{1}, n_{2}, \mu_{2} \mid n_{1} \rangle \langle n_{1}, n_{2} \rangle \langle n_{1} \rangle \langle n_{1}, n_{2} \rangle \langle n_{1} \rangle \langle n_{1}, n_{2} \rangle \langle n_{1}, n_{2} \rangle \langle n_{1} \rangle \langle n_{1}$$

(3)

Здесь $\begin{cases} \lambda_1 \ \lambda_2 \ \lambda_3 \\ j_1 \ j_2 \ j_3 \end{cases}$ — 6j. символ. Операторы A⁺ и A в (3) имеют вид:

$$A^{\dagger}(j, j_{2}; \lambda M) = [A(j, j_{2}; \lambda M)]^{\dagger} = \sum_{m_{1}m_{2}} \langle j, m, j_{2}m_{2}|\lambda M\rangle d_{j,m_{1}}^{\dagger} d_{j,2}^{\dagger} m_{2}$$
(4)

и в рассматриваемом подходе считаются бозонными операторами. Когда момент и четность операторов A⁺ и A в (4) равняются 2⁺ и 3⁻, эти операторы можно выразить через операторы фононов.

В § 2 первой главы мы изучали влияние взаимодействия только коллективных мод возбуждений на свойства 2⁺ и 3⁻-состояний в изотопах Sn и Te^{/12/}. Для этого в бозонном разложении оператора $B(j, j_2; 2\mu)$ (3) оставлялись лишь те операторы A⁺ и A, которые имеют момент и четность 2⁺ и 3⁻. А выражая эти операторы через операторы фононов, мы ограничивались только коллективными фононами (т.е. i =I). Рассчитанные затем энергии состояний, квадрупольные моменты и вероятности $E\Lambda$ -переходов в основное состояние продемонстрировали лишь качественное согласие с экспериментом. Сильно завышенными оказались энергии 2⁺ уровней и $B(E2, 0^+_{g,5} \rightarrow 2^+_2);$ знак $Q_2(2^+_i)$ совпадает с экспериментом лишь в 50% случаев. Такие результаты вполне согласуются и с расчетами других авторов/^{I4/}, использовавших то же самое приближение. Во <u>второй главе</u> диссертации исследуется влияние на свойства 2⁺ и 3⁻ состояний неколлективных примесей. На существование таких примесей указывалось в ряде работ/^{15/}. Их пытались учесть в рамках феноменологической модели (Алага и сотрудники), а для деформированных ядер исследование проводилось и в рамках сверхтекучей модели/^{16/}. В § I были получены все необходимые уравнения, причем использовалась волновая функция следующего вида/^{17/}: $\Psi_{v}(TH) = \{ \sum_{i} \mathcal{R}(T_{i}v) Q_{THi}^{+} + \sum_{i=1}^{n} P_{\lambda_{i}i}^{\lambda_{i}}(Ty) < \lambda_{i}M, \lambda_{2}M_{2} | \lambda_{M} > X \}$

$$\begin{aligned} \Psi_{y}(JN) &= \left\{ \sum_{i} \mathcal{R}(J_{i}v) \mathcal{Q}_{JNi}^{+} + \sum_{\substack{\lambda_{2}i_{2}M_{2} \\ \lambda_{1}i_{1}M_{1}}} \mathcal{P}_{\lambda_{1}i_{1}}^{\lambda_{2}i_{2}}(Jv) < \lambda_{1}M_{1}\lambda_{2}M_{2} \mid \lambda_{M} > x \\ &\times \mathcal{Q}_{\lambda_{1}M_{1}i_{1}}^{+} \mathcal{Q}_{\lambda_{2}M_{2}i_{2}}^{+} \right\} \mid 0 > \rho h \quad . \end{aligned}$$

$$(5)$$

Здесь 10>рh означает фононный вакуум.

Гамильтониан системы имел вид (2), а оператор $\mathcal{B}(j_1 j_2; \mathcal{I}_M)$ вид (3).

Но теперь, когда мы выражали операторы A^+ и A, входящие в (3) и имеющие момент и четность 2^+ и 3^- через операторы фононов, мы использовали и фононы с i > 1 (т.е. и неколлективные). Таким образом, мы получили возможность смещивать коллективные состояния с неколлективными. Используя вариационную процедуру для энергии состояния \mathcal{N} , мы получили следующее уравнение:

$$det\left\{\left(\omega_{\tau i}-\eta\right) \mathcal{J}_{ii'}-\mathcal{K}(ii')\right\}=0.$$
(6)

Здесь $\mathcal{K}(ii')$ -некая линейная комбинация матричных элементов оператора $\mathcal{H}_{q\rho\rhoh}$ от фононных волновых функций/17/. Были также получены выражения для коэффициентов \mathcal{R} и ρ .

Анализ уравнения (6) показал, что учет неколлективных состояний приводит к улучшению описания 2[±] и 3⁻ состояний по сравнению со случаем, когда учитывались только коллективные компоненты. Кроме того, выяснилось, что смешивание коллективных и неколлективных мод возбуждений в свойствах низколежащих состояний должно проявиться наиболее четко в полумагических и соседних с ними ядрах.

В § 2 и § 3 второй главы представлены результаты расчетов свойств нижайших 2⁺-и 3⁻-состояний в рамках описанного формализиа. Рассчитаны энергии, квадрупольные моменты и величины

 $B(E2, 0_{g.5}^{+} \rightarrow 2_{i}^{+}), (i = 1, 2, 3)$, $B(E2, 2_{i}^{+} \rightarrow 2_{f}^{+}), (i = 2, 3)$ и $B(E3, 0_{g.5}^{+} \rightarrow 3_{i}^{-}), (i = 2, 3)$ для изотопов Cd, Sn и Те и изотонов с N = 80, 82, 84. Часть результатов представлена в таблице I.

В ядрах с $\mathcal{N} = 80,82,84^{/18},20^{/}$ получилось удовлетворительное согласие с экспериментом для энергий 2^+_2 состояний. Энергии 2^+_3 -состояний получились в среднем заниженными.

В изотонах с N=82 структура состояний оказалась довольно простой, она сводится, как правило, к какой-либо одной однофононной компоненте Q_{Ti}^{+} . Причина этого – слабое взаимодействие квазичастиц с фононами. Двухфононная компонента Q_{21}^{+} , Q_{21}^{+} в этих ядрах достигает заметной желичины (IO-20%) только в волновой функции 2_{3}^{+} - состояния, да и то липь в ядрах Md и Md и Md и

Структура волновой функции 2⁺-состояний в изотонах с $\mathcal{N} = 80$, 84 более интересна. Взаимодействие квазичастиц с фононами здесь довольно сильное, и в волновой функции 2^+_2 - состояния перемешиваются как неколлективные, так и двухфононные компоненты. В некоторых ядрах, однако, компонента Q^+_{2i} Q^+_{2i} оказывается подавленной, что приводит к нереалистически маленькой величине $\mathcal{B}(\mathcal{E}2, 2^+_2 \rightarrow 2^+_1)$.

37-состояния в изотонах с N =80,84 оказываются более чистыми, чем 2⁺, хотя в некоторые 37 -состояния дает заметный вклад

Таблица I Расчетов для некоторых состояний с $J^{\pi} = 2^+$ и 3⁻

Ядро	$E(2_i^{+})$ Seci.	<i>Мэв</i> теор.	В(Е2,0 [†] →2 эксп.	2;) <i>e²6²</i> reop.	Q2(2 ⁺ энсп.) <i>e6</i> 180p.	B(E2,2;- эксп.	·2;)e ² 6 ³ reop.	Е (3 _i - эксп.) МэЬ теор.	В(ЕЗ,0 ⁺ эксп.	.→J _i)e²6³ reop.	Q ₂ (3;)eb Teop.
¹²⁰ Sn	I.I72 2.36I 2.735	I.188 2.394 2.563	0.20 0.002 -	0.19 0.001 3.10 ⁻⁴	0.U9 - -	-0.18 0.08 0.01	-	0.0I3 0.008	2.408 3.467 -	2.423 3.382 4.107	0.069 - -	0.056 I'IO ⁻⁵ 0.008	-0.24 0.20 0.20
¹²⁴ Te	0.602 1.325 2.038	0.604 I.499 I.625	0.53 0.0I7 -	0.48 0.025 3.10 ⁻⁵	-0.08 - -	-0.40 0.26 -0.44	0 .3 4	0.13 0.005	2.294 -	2.27I 2.536	-	0.II 0.002	0.20 -0.80
¹²⁶ Te	0.666 1.420 2.190	0.649 I.I44 I.665	0.47 0.004 -	0.46 3.10 ⁻⁴ 4.10 ⁻⁵	-0.16 	-0.II 0.I5 -0.4I	0.17	0.15 0.008	2.320	2.288 2.591	-	0.10	-0.34 0.45
¹³⁶ BQ	0.818 1.551 2.081	0.815 1.711 1.858	0.42	0.42 0.06 7.10 ⁻⁴	-0.43	0.46 -0.12 -0.15	-	0.04 2.10 ⁻⁴	2.532	2.510 3.230	=	0.II 0.002	0.67 0.32
142 Nd	I.576 2.385 2.583	I.576 2.380 2.405	0.39	0.47 0.003 0.002	-	0.32	-	1.10 ⁻⁵ 0.002	2.084	2.04I 3.I49	0.44	0.19 0.001	0.59 0.39
Ht Na	0.697 1.576	0.704	+ 0.5I 5 -	0.3I 0.16	-0.23 -	-0.39 0.17	-	0.03	1.510 2.776	1.505 2.995	0.26 -	0.18 0.001	0.68 0.40

ø

компонента Q_{2}^{+} Q_{34}^{+} . Экспериментальная информация о $3\frac{1}{2}$ состоянии слишком скудна, чтобы проводить последовательное сравнение с экспериментом. В эти состояния основной вклад дают, по нашим расчетам, неколлективные фононы.

В области Cd, Sn и Te^{/19,20}/ рассчитанные энергии 2_2^+ , 3_2^- -состояний (последние измерены только в Sn) находятся в удовлетворительном согласии с экспериментом.

В изотопах Те в структуру 2_2^+ -состояний неколлективные состояния дают вклад 25-30%. Еще сложнее оказались состояния 2_2^+ в изотопах Sn. Вклад компоненты $Q_{2l}^+ Q_{2l}^+$ флюктуирует при переходе от изотопа к изотопу в пределах 20-50%, остальная часть приходится на неколлективные фононы. Несмотря на такие сильные изменения, вклад двухфононной компоненты довольно реалистичен, судя по разумному описанию величин $B(\varepsilon_2, \mathcal{O}_{g.s.}^+ \rightarrow \mathcal{Z}_2^+)$ и $B(\varepsilon_2, \mathcal{Q}_2^+ \rightarrow \mathcal{Q}_1^+)$.

В области Те и *Sn* взаимодействие квазичастиц с фононами сильно влияет и на структуру 3⁻ состояний. В Те состояния 3⁻/₂ оказались сложными, вклад двухфононной компоненты Q_{2}^{+}, Q_{31}^{+} достигает 40-50%. В *Sn* вклад этой компоненты в 3⁻/₂ \leq 10%.

В изотопах ζd взаимодействие квазичастиц с фононами оказалось слишком сильным, и результаты расчетов в целом неудовлетворительные. В этих ядрах велика энергетическая цель, и в волновую функцию (5) надо, по-видимому, включать и трехфононную компоненту $Q_{21}^{+} Q_{24}^{+} Q_{24}^{+}$.

Исследовалась также чувствительность результатов к выбору одночастичной схемы. Она оказалась весьма высокой.

Результаты, полученные в § 2 и § 3, сравнивались с расчетами, представленными в § 2 первой главы, где свойства состояний 2⁺ и 5⁻ рассчитывались без учета неколлективных компонент. Как и ожи-

Рис. I. Вклад некоторых компонент волновой функции (5) в первые пять корней уравнения (6) в ядре ¹²⁴ Хе

11

далось, включение неколлективных компонент заметно улучшило согласие с экспериментом.

Сложная структура нижайших 2⁺-и 3⁻-состояний позволила нам проиллюстрировать начальную стадию процесса, который в последнее время все больше и больше привлекает внимание теоретиков/9/ процесса фрагментации. В § 4 второй главы рассматривается распределение (фрагментация) однофононной коллективной компоненты $Q_{t}^{*}(\mathcal{I}^{\pi})$, неколлективной компоненты $Q_{t}^{*}(\mathcal{I}^{\pi})$ и двухфононных компонент $Q_{4}^{+}(2^{+})Q_{4}^{+}(2^{+})$ и $Q_{4}^{+}(2^{+})Q_{4}^{+}(3^{-})$ по первым пяти корням уравнения (6). В качестве примера были выбраны ядра ^{#2} Nd. ¹³⁴ Xe. ¹²⁴ Te. ¹²⁰ Sn. ¹¹⁶ Cd /21/. Результат для ¹³⁴ Xe показан на рис. І. Для всех рассматривавшихся ядер получилось, что коллективная компонента $Q_{4}^{+}(2^{+})$ практически не фрагментирована. Компонента Q'(3) также слабо размазана по истинным состояниям ядра. Наиболее сильно фрагментированы компоненты $Q_2(\mathcal{I}^{T})$ и двухфононные. Степень их фрагментации значительно колебдется от ядра к ядру, находясь в прямой зависимости от силы взаимодействия квазичастиц с фононами. Например, в ядре ¹⁴² Nd фрагментация очень слабая. Это опять-таки связано с тем, что взаимодействие квазичастиц с фононами ослабевает в изотонах И =82. В других ядрах эти компоненты сильно фрагментированы.

<u>Третъя глава</u> диссертации посвящена изучению состояний с $\mathcal{J}^{\pi} = 4^+, 6^+, 8^+, 5^-, 7^-$ в четно-четных полумагических ядрах с $\mathcal{Z} = 50$ и $\mathcal{N} = 82$. Волновая функция этих состояний разыскивалась в виде/17/:

 $\Psi_{\mathbf{y}}(\mathbf{J}\mathbf{M}) = \left\{ \sum_{i,j_2} R(j_i j_2 \mathbf{J}\mathbf{y}) A^{\dagger}(j_1 j_2 \mathbf{J}\mathbf{M}) + \right.$

 $+ \sum_{\substack{\lambda_1,\mu_1 \\ \lambda_2,\mu_2 \\ \lambda_2,\mu_2 \\ \lambda_2,\mu_2 \\ \lambda_1,\mu_2}} P_{\lambda_1 i_1}^{\lambda_2 i_2} (J\nu) < \lambda_1 \mu_1 \lambda_2 \mu_2 |JM\rangle Q_{\lambda_1 \mu_1 i_1}^{\dagger} Q_{\lambda_2 \mu_2 i_2}^{\dagger} +$ + $\sum_{n_2 \mu_2 i_2} S_{s_1 s_2 L_1}^{n_2 i_2} (J_V) < L, H_1 n_2 \mu_2 | JH > A^{\dagger}(s_1 s_2 L_1, H_1) Q_{n_2 \mu_2 i_2}^{\dagger} \} | 0 >_{ph} | 0 >_{qp}$. 5, 5, L, H,

Здесь 1079р - вакуум квазичастиц.

Гамильтониан системы тот же, что и раньше, но операторы A⁺ и A, которые входят в формулу (3), сейчас могут иметь все моменты и четности, разрешенные правилами отбора. Когда их моменты и четности равны 2⁺ и 3⁻, операторы A⁺ и A следует выразить через операторы фононов.

В § I третьей главы, пользуясь техникой, развитой в^{/16/}, из уравнения (6) мы получим секулярное уравнение для энергии η состояния (7). Оно имеет вид^{/17/}:

$$det\left\{\left(\varepsilon_{j_{1}}+\varepsilon_{j_{2}}-\gamma_{\tau\nu}\right)\sigma_{j_{1}j_{1}}\sigma_{j_{2}j_{2}}-\mathcal{K}\left(\sigma_{j_{1}j_{2}}^{j_{1}d_{2}}\right)\right\}=0.$$
(8)

Член $\mathcal{K}\begin{pmatrix} jij_{2} \\ jij_{2} \end{pmatrix}$ получается из $\mathcal{K}(ii')$ в (6) при предельном переходе $\mathcal{W}_{\mathbf{z}i} \rightarrow \mathcal{E}_{ji} + \mathcal{E}_{j2}$ /16,17/. Аналогичным образом получаются уравнения для коэффициентов \mathcal{R}, \mathcal{S} и Р волновой функции (7)/17/.

В § 2 третьей главы рассчитаны свойства указанных выше состояний $\mathcal{J}^{\intercal} = 4^+, 6^+, 8^+, 5^-, 7^-$. Часть результатов представлена в таблице 2.

Результаты расчетов для изотопов Sn демонстрируют хорошее согласие с экспериментальными данными (особенно для 4⁺-состояний). Структура 4⁺-уровней оказывается весьма сложной. Двухфононная компонента Q_{21}^+ Q_{24}^+ сильно фрагментирована по размым

12

9770	Энергия	4 <mark>1</mark> Мэв	Энерги	я 6 <mark>1</mark> Мэв	$B(E2,6_{1}^{+} \rightarrow 4_{1}^{+})e^{2}\phi u^{4}$				
лдро	эксп.	теор.	эксп.	теор.	. эксп .	теор.			
1 ^{sc} Xe	1.695	I.774	I.892	I.836	0.53	39.2			
′ ³⁸ Ba	I.898	2.040	2.09I	2.050	2.0	I.28			
140 Çe	2.083	2.068	2.108	2.147	16.6	0.17			
¹⁴² Nd	2.IOI	2.101	2.209	2.255	0.90	1.12			
¹⁴⁴ Sm	2.19I	2.255	2.32	2.425	5.35	5.05			
⁴⁴⁶ Gd	2.658	2.348	2.982	2.600	II.3	2.70			
	Энергия	4† Мэв	Энерги	я 5 Мэв	Энергия 7 Мэв				
	эксп.	reop.	эксп.	теор.	эксп.	теор.			
	2.142	2.181	2.245	2.191	2.390	2.237			
•	2.528	2.328		2.270	3.478	3.199			
¹²² Sn	3.08I	3.222	3.084	3.204	-	3.266			
	3.237	3.269							
	3.313	3.444							
	2.390	2.285	2.367	2.321	2.890	2.690			
	2.526	2.463	-	2.79I	2.977	2.725			
. ¹¹⁶ Sn	2.787	2.926		•					
•	3.020	3.306				4			
	3.436	3.587							
	1		1						

14

Таблица 2										
lекоторые	результаты	для	ядра	c∦	=82	И	₹ =50			

решениям уравнения (8), заметен также вклад состояний типа $\chi^{+}\chi^{+}Q^{+}$. В структуре низких 4⁺ преобладает вклад двухквазичастичных возбуждений. Только в $^{522}5n$ 4^{+}_{2} - состояние оказывается на 80% двухфононным. Структура состояний 6⁺,8⁺ двухквазичастичная, лишь в структуре $/ \mathcal{G}_{2}^{+} >$ состояний ядер $^{50-124}Sn$ велика примесь смещанной компоненты. Также практически чисто двухквазичастичными оказались и состояния 5⁻,7⁻, только в структуре волновых функций, соответствующих третьим и более высоким корням (8), появляются существенные компоненты типа $\chi^{+}\chi^{+}Q^{+}$. Для изотопов Snрассчитывались также вероятности Е2 и Е4 переходов.

В изотонах с N = 82 структура состояний существенно более проста, чем в изотопах олова. Изучавшиеся здесь состояния ($\mathcal{J}^{f}=4^{+},6^{+},5^{-},7^{-}$) оказываются преимущественно двухквазичастичными. Примесь двухфононной ксмпоненты становится заметной лишь для высоких корней. Причина этому – большая энергия (~ I.5 Мэв) и слабая коллективность $2_{1}^{+} > cocтояния в этих ядрах. Только в$ $и ⁴⁶ Gd примесь компоненты <math>Q_{21}^{+}Q_{21}^{+}$ в структуре первого 4⁺состояния достигает IO-20%. Согласие энергий 4⁺ и6⁺ уровней с экспериментальными удовлетворительное, чего нельзя сказать о 5⁻ и 7⁻ уровнях. Это связано, по-видимому, с ненадежностью экспериментальной информации, хотя некоторое улучшение теоретических результатов можно получить за счет изменения одночастичной схемы.

Для изотонов с $\mathcal{N} = 82$ рассчитаны также величины $B(E2,4_i^+ \rightarrow 2_i^+)$ и $B(E2,6_i^+ \rightarrow 4_i^+)$, (i = 1,2). Согласие рассчитанных величин с экспериментом носит нерегулярный характер. Так, если в ^{138}Ba , 142 Nd, 144 Sm согласие хорошее, то в ^{136}Xe и ^{140}Ce различие экспериментальных значений достигает порядка величины.

Решение уравнения (8) является довольно трудоемкой численной проблемой. В отдельных случаях ее можно упростить, пренебрегая в (8) недиагональными элементами $K\begin{pmatrix} d & d & d \\ d & d & d \end{pmatrix}$. В этом случае мы получаем вместо (8) следующее, гораздо более простое, уравнение:

 $\prod_{j\neq j_2} \left\{ \left(\begin{array}{c} \mathcal{E}_{j_1} + \begin{array}{c} \mathcal{E}_{j_2} - \begin{array}{c} \gamma_{_{\mathcal{I}\mathcal{Y}}} \end{array} \right) - \mathcal{H} \left(\begin{array}{c} j, j_2 \\ j, j_2 \end{array} \right) \right\} = 0 ,$

(9)

В конце § 2 третьей главы проведено сравнение результатов, полученных путем решения (8) и упрощенного (9) уравнений/23,24/. Получено, что в изотонах с \mathcal{N} =82 решения уравнения (9) правильно передают главные компоненты волновых функций. В изотопах Snситуация хуже. Здесь необходимо использовать уравнение (8).

Резимируя все представленные в диссертации результаты, можно сделать вывод, что взаимодействие квазичастиц с фононами является существенным фактором в формировании структуры нижайших возбуждений в четно-четных сферических ядрах. При этом абсолютно необходимо учитывать, наряду с взаимодействием только коллективных мод, их смешивание с неколлективными, в данном случае двухквазичастичными, возбуждениями. Удовлетворительное совпадение теоретических и экспериментальных результатов подтвердило, что многие характерные черты ядерной структуры правильно отражены сверхтекучей моделью ядра.

Основные результаты диссертации опубликованы в работах /12,17-24/. Они докладывались на семинарах ЛТФ, ХШ Совещании по ядерной спектроскопии и теории ядра (1973 г.), УІ Летней школе по ядерной физике в Польше (1975 г.), ХХІУ ежегодном совещании по ядерной спектроскопии и структуре атомного ядра (1974 г.), П национальной конференции молодых физиков в Софии (1974 г.).

Литература

I. В.Г.Соловьев, ЖЭТФ 35, 823 (1958); 36, 1869 (1959).

2. S.T.Belyaev, Mat.Fys.Medd.Dan.Vid.Selsk. 31, No 11 (1959).

 Н.Н.Боголюбов "Лекции по квантовой статистике", Киев, Изд-во "Радяньска школа", 1947; Избранные труды в 3-х томах, т.2, Изд-во "Наукова Думка", Киев, 1970.

4. Н.Н.Боголюбов ЖЭТФ, <u>34</u>, 73 (1958).

- Н.Н.Боголюбов, В.В.Толмачев, Д.В.Ширков, "Новый метод в теории сверхпроводимости" Изд-во АН СССР, 1958.
- 5. J.Bardeen, L.Cooper, J.Schrieffer, Phys.Rev., <u>108</u>, 1175 (1957).
 6. Л.Д.Ландау. **ХЭТФ**, 35, 97 (1958).

7. Н.Н.Богольбов. ДАН СССР, II9, 52 (1958).

A.Bohr, B.Mottelson, D. Pines. Phys. Rev., 110, 936 (1958).

8. В.Г.Соловьев, Теория сложных ядер, М., Наука, 1971.

В.Г.Соловьев. Изв. АН СССР, сер.фив. <u>35</u>, 616 (1971).
 В.Г.Соловьев, ЭЧАН, <u>3</u>, 770 (1972).

IO. В.А.Ченурнов. ЯФ, <u>6</u>, 955 (1967).

K.Takeuchi, P.A.Moldauer, Phys.Lett. 28B, 384 (1963).

- II. Л.А.Малов, В.Г.Соловьев, И.Д.Христов, ЯФ, <u>6</u>, II86 (1967). А.И.Вдовин, А.Л.Комов, Л.А.Малов. Сообщение ОИЯИ, P4-5125, Дубна, 1970.
- I2. А.И.Вдовин, Ч.Стоянов, Н.Ю.Ширикова. Изв. АН СССР сер. физ. <u>37</u>, 1543 (1973).

I3. S.T.Belyaev, V.G.Zelevinsky.Nucl. Phys., 39, 582 (1962).

14. Р.В.Джолос. ОИЯИ, Р4-3757, Дубна, 1968.

S.R.Almoney, J.G.Borse, Nucl. Phys. A171, 660 (1971).

I5. Е.П.Григорьев, ЭЧАЯ, <u>3</u>, 479 (1972).
 К.Александер. ОИЯИ, Р6-3785, Дубна, 1968.

16

- I6. V.G.Soloviev, Phys.Lett., <u>21</u>, 320 (1966); Nucl.Struct., Dubna Symposium, 1968, p.101, IAEA, Vienna, 1968.
- 17. А.И.Вдовин, Г.Кырчев, Ч.Стоянов. ОИЯИ, Р4-7374, Дубна, 1973.
- 18. А.И.Вдовин, Ч.Стоянов, ОИЛИ, Е4-7812, Дубна, 1974.
- 19. А.И.Вдовин, Ч.Стоянов, ОИЯИ, Е4-7838, Дубна, 1974.
- 20. А.И.Вдовин, Ч.Стоянов. Тезисы II национальной конференции молодых физиков, София, 1974.
- 21. А.И.Вдовин, В.Г.Соловьев, Ч.Стоянов. ОИМИ, Р4-7814, Дубна, 1974.
- 22. Ch. Stoyanov, A.I.Vdovin, Proceed.Int.Conf. Nucl.Struct. and Spectr., Amsterdam, vol.1, p.231, 1974.
- 23. А.И.Вдовин, Ч.Стоянов. Изв. АН СССР, сер.физ. 37, 1750 (1973).
- 24. А.И.Вдовин, Ч.Стоянов. XШ Совещание по ядерной спектроскопии и теории ядра. ОИНИ, Д6-7094, Дубна, 1973.

Рукопись поступила в издательский отдел 24 октября 1974 года.