C 341.19 C -792

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ЛАБОРАТОРИЯ НЕЙТРОННОЙ ФИЗИКИ

3 - 5799

М. С тэмпиньски

СПЕКТРЫ *а* - РАСПАДА НЕЙТРОННЫХ РЕЗОНАНСОВ

С пециальность 0.1 0.55 физика атомного ядра и космических лучей

Автореферат диссертации на соискание ученой степени кандидата физико-математических наук

Дубна 1971

Работа выполнена в Лаборатории нейтронной физики Объединенного института ядерных исследований.

Научный руководитель:

кандидат физико-математических наук, старший научный сотрудник Ю.П. Попов.

Официальные оппоненты: доктор физико-математических наук, старший научный сотрудник

К.Я. Громов,

кандидат физико-математических наук, старший научный сотрудник В.П. Вертебный.

Ведущее научно-исследовательское учреждение: Институт атомной энергии им. И.В. Курчатова.

Автореферат разослан "" 1971 г. Зашита диссертации состоится" 1971 г. на заседании Объединенного Учёного совета ЛЯР и ЛНФ ОИЯИ.

Адрес: Дубна, Московской области, ОИЯИ, конференц-зал. С диссертацией можно ознакомиться в библиотеке ОИЯИ.

Учёный секретарь Совета

Э.Н. Каржавина

М. С тэмпиньски

СПЕКТРЫ *а* - РАСПАДА НЕЙТРОННЫХ РЕЗОНАНСОВ

С пециальность 0.1 0.55 физика атомного ядра и космических лучей

Автореферат диссертации на соискание ученой степени кандидата физико-математических наук

 \mathcal{O}

0

8

×

Обледяненный пиституя	
SECTIFIE RECREACED ATEL	
	1

Исследование *a*-распада возбужденных состояний атомных ядер открывает новые возможности как для получения сведений о структуре возбужденных состояний и их спинах, так и для изучения самого процесса *a*-распада. Наиболее интересным является, по-видимому, изучение вероятности образования *a*-частицы на поверхности ядра, характеризуемой приведенной *a*-шириной для различных состояний возбужденного ядра. Одним из способов получения высоковозбужденных состояний ядра является захват медленных нейтронов – предмет исследований нейтронной спектроскопии.

Нейтронная спектроскопия дает возможность четко разделять близколежащие возбужденные уровни с энергией возбуждения примерно 5-9 Мэв. Резонансные реакции (п, а) можно рассматривать как процесс образования и *a*-распада составного ядра. Характеристики упомянутого типа *a*-распада определяются структурой распадающегося состояния ядра. Однако оказалось, что наблюдать *a*-распад резонансных состояний довольно трудно, поскольку он подавляется другими, более "быстрыми" видами снятия возбуждения ядра (в основном испусканием *y*-лучей и нейтронов). Из-за малой проницаемости кулоновского барьера для *a*-частиц в области средних и тяжелых ядер, реакция (n,*a*) идет с очень малыми сечениями, на 5-9 порядков меньшими сечений радиационного захвата, что создает принципиальные трудности в исследовании реакции

(n, a) в упомянутой области ядер. Поэтому исследования такого рода проводились . до недавнего времени только на тепловых нейтронах, а в последнее время также исследовались полные а-ширины в отдельных резонансах /1-3/. Первые исследования спектров а -частиц после захвата тепловых нейтронов были проведены с плохим разрешением по энергии а -частиц. Заметное улучшение энергетического разрешения было достигнуто Макфарланом и др. 14/ Однако следует отметить, что изучение а -спектров после захвата тепловых нейтронов часто дает результаты, интерпретация которых затрудняется из-за отсутствия сведений о вкладе отдельных резонансов в тепловое сечение реакции (п,а). Значительно больший объем физической информации можно получить, исследуя спектры а-частиц из целого ряда изолированных резонансных состояний отдельного ядра. Такие исследования являются по сути дела двухмерными, позволяющими не только получить парциальные вероятности (а -ширины) отдельных переходов, но и проследить. как меняются парциальные а-ширины от резонанса к резонансу. а также в зависимости от спина состояния компаунд-ядра. К сожалению, из-за малого эффективного сечения реакции (п,а), значительного фона конкурирующей реакции (п, у), а также малых интенсивностей резонансных нейтронов у современных источников нейтронов, эксперименты подобного рода до последнего времени не проводились.

В диссертации представлена разработка методики спектрометрических измерений *a*-распада резонансных состояний ядер, дано описание созданного автором спектрометра *a*-частиц с большой площадью мишени, способного работать в интенсивных полях слабоионизирующих частиц, а также результаты первых измерений спектров *a*-распада резонансных состояний, проведенных для ядер-мишеней ¹⁴⁵Nd и ¹⁴⁷Sm .

4

Глава I диссертации содержит обзор некоторых теоретических представлений об *а*-распаде, его закономерностях и исследованиях возбужденных состояний, получаемых после захвата тепловых и резонансных нейтронов.

Глава II содержит обсуждение требований, предъявляемых а -спектрометрам для исследования а'-распада нейтронных резонансов на пучке нейтронов от импульсного реактора и результаты разработки методики измерений. Рассмотрение характеристик а -спектрометров, работающих на основе известных в настоящее время принципов, показало, что для данных измерений могут быть перспективными только сцинтилляционный спектрометр с газовым сцинтиллятором или ионизационный спектрометр.

Разработанный нами сцинтилляционный а -спектрометр с применением электрического поля^{//} оказался непригодным, так как невозможно было достичь требуемой разрешающей способности по энергии а -частиц и достаточно малой чувствительности к у -квантам. В дальнейшем было проведено исследование различных вариантов ионизационной камеры, отличающихся геометрией, системой электродов, условиями работы и геометрией ее расположения относительно нейтронного пучка^{/6,7/}. В результате исследований построен ионизационный а -спектрометр, который состоит из:

1) набора ионизационных камер с сеткой;

 радиотехнических схем для усиления, формирования, отбора и стабилизации импульсов по амплитудам;

3) системы откачки и наполнения рабочим газом.

5

Одна из камер - большая многосекционная камера с площадью мишени 9000 см², и была применена в измерениях для исследования спектров *а*-распада нейтронных резонансов, рас-

положенных по времени от 400 мксек и дальше после возникновения импульса мощности в реакторе. Вторая ионизационная камера представляет собой практически одну секцию большой камеры с собственным кожухом, но с иным расположением электродов. Эта камера совместно со щелевым коллиматором позволила исследовать спектры а -распада нейтронных резонансов, расположенных по времени от 100 мксек и дальше после нейтронной вспышки импульсного реактора при больших потоках нейтронов. Ионизационный а -спектрометр обладает следующими параметрами: максимальная полезная площадь мишени S = 9000 см², разрешающая способность по энергии а -частиц Δ E ≈ 100 кэв для Е а ≈ 5 Мэв вне пучка и 200-400 кэв для Е а ≈ 10 Мэв в пучке нейтронов от импульсного реактора, собственный фон. в интервале энергии 5 - 10 Мэв составляет 120 имп/час. Облучение камеры γ -квантами с N $_{\gamma}$ = 6.10 7 γ /сек от источника ¹³⁷ Св приводит к ухудшению разрешающей способности ионизационного *а*-спектрометра со 100 до 230 кэв при Е_{*a*} ≈ 5 Мэв. При этом возможна также регистрация у-квантов из-за многократных наложений импульсов от электронов. При пороге выше 5 Мэв регистрация у -квантов идет со скоростью <<1 имп/мин. В той же главе детально обсуждается влияние различных факторов на разрешающую способность а -спектрометра. Особое внимание уделяется исследованию и обсуждению его работы в интенсивных полях слабоионизирующих частиц.

Глава III посвящена описанию экспериментальной установки в целом и условий проведения эксперимента, приводятся результаты измерений. Кратко описан метод спектрометрии нейтронов по времени пролета и принцип многомерного анализа результатов эксперимента. Приводятся графики зависимости счёта *а*-частиц в реакциях ¹⁴⁵ Nd (n, α) ¹⁴² Ce и ¹⁴⁷ Sm (n, α) ¹⁴⁴ Nd от времени пролета нейтронов, а также спектры α -распада двух резонансов ¹⁴⁵ Nd и двенадцати резонансов ¹⁴⁷ Sm . Описана методика обработки результатов измерений и получения характеристик резонансов (полных и парциальных α -ширин).

Глава IV содержит обсуждение результатов и полученные выводы.

В результате измерений $^{7-9/}$ получены значения полных *а*-ширин для 20 резонансов и даны верхние пределы *а*-ширин еще для четырех резонансов ¹⁴⁷ Sm. Зависимость счёта *а*-частиц от времени пролета нейтронами базы 100 м показана на рис. 1. Усредненная по 20 резонансам полная *а*-ширина равна $<\Gamma_a>=$ = (2,11±0,46) мкэв. Ожидаемая средняя *а*-ширина для этого ядра по статистической модели $<\Gamma_a>_{\rm CT}$ = 4,6±1,0 мкэв.

Распределение экспериментальных полных а -ширин разумно описывается теоретическим распределением, рассчитанным в предположении случайных и независимых флуктуаций приведенных а -ширин в отдельных выходных каналах реакции (фиксированных конечными состояниями и эначениями орбитального момента ℓ). На основании этого распределения с вероятностью > 0,99 резонансам 160,8; 183,7; 190,8 и 221,6 эв приписан спин 3- /10/

Измерены спектры *a*-частиц распада 12 резонансов ¹⁴⁷ Sm и 2-х резонансов ¹⁴⁵ Nd. На рис. 2 показаны *a* -спектры распада 12 резонансов ¹⁴⁷Sm. Для обоих ядер существование *a* -перехода в основное состояние конечного ядра (0⁺) свидетельствует о том, что спин распадающегося резонансного состояния равен 3⁻, так как этот переход (*a*₀) из резонансных состояний со спином 4⁻, получающихся после захвата s -нейтронов, запрещен

7

œ

Рис. 1. Зависимость счёта *а* -частиц от времени пролета нейтронов. Стрелками указаны положения резонансов, энергия которых определена по измерению реакции (n, y) с лучшим разрешением, чем для реакции (n, a).

Рис. 2. Спектры а -частиц распада 12 резонансных состояний и спектр фона между резонансами 3,4 и 18,3 зв. Сверху дается шкала знергии а -частиц в Мэв; стрелками показаны ожидаемые положения групп а -частиц, соответствующих переходам в состояния конечного ядра ¹⁴⁴ Nd

правилами отбора. По наличию а ₀-переходов определены спины десяти резонансов ¹⁴⁷ Sm и обоих исследованных резонансов ¹⁴⁵ Nd. Надо отметить, что спины трех резонансов ¹⁴⁷ Sm, определенные по распределению полных а -ширин, подтверждены существованием переходов в основное состояние; для четвертого резонанса (190,8 эв) спектр не измерялся.

На основании определенных из спектров относительных интенсивностей а -переходов вычислены парциальные а -ширины перехода в основное, первое, второе и неразрешенные третье + четвертое возбужденные состояния конечного ядра в реакции ¹⁴⁷ Sm (n, a)¹⁴⁴Nd и в основное и первое возбужденные состояния в реакции ¹⁴⁵ Nd (n.a) ¹⁴² Ce. Наблюдаемый большой разброс парциальных а-ширин перехода в основное состояние в распаде резонансов ¹⁴⁷ Sm (выходной канал с ℓ = 3) свидетельствует в пользу предположения Портера-Томаса о случайном распределении амплитуд парциальных приведенных ширин в резонансных реакциях. Согласно этому предположению, для парциальных а -ширин перехода в основное состояние ожидается распределение х-квадрат с $\nu = 1$. Из экспериментальных данных получается $\nu_{3K} =$ = 0,7 ± 0,2. Парциальные а -ширины перехода в первое возбужденное состояние (для 147 Sm (n, α) 144 Nd) имеют более узкое распределение, чем для $\nu = 1$ ($\nu_{3K} = 5+2$ для резонансов с I^π = 3⁻). Эти а -ширины являются суммой парциальных ширин, соответствующих трем значениям орбитального момента (l = 1, 3, 5), которые в данном эксперименте невозможно разделить. Сужение их распределения можно объяснить компенсацией независимых флуктуаций отдельных слагаемых, что сглаживает флуктуации суммы. Физически этот результат, по-видимому, означает, что распределение вылетающих а -частиц по орбитальным

10

моментам проходит до их вылета из ядра и в каждом резонансе по-своему. При предположении независимых и случайных флуктуаций приведенных *а* -ширин для отдельных ℓ ожидается, что для обсуждаемого распределения значение $\nu \approx 2$.

Интересно отметить, что переходы во второе возбужденное состояние (4) наблюдались только в двух резонансах. По-видимому, в остальных они значительно ослаблены (или отсутствуют). В то же время а -переходы в следующие состояния 3 и 2 (неразделенные), лежащие примерно на 200 ков выше, проявляются по крайней мере в семи резонансах. Возможно, что это объясняется усилением перехода в состояние 3, для которого оптическая модель в этой области предсказывает максимум а -частичной силовой функции (переходы с чётными значениями l)/11/ Недавно появилась работа , являющаяся первой попыткой связать структуру резонансных состояний ядра с парциальными ширинами а - и у -распадов. Основываясь на предположениях этой работы и результатах настоящей, можно, по-видимому, считать, что резонансное состояние 183.7 эв отличается от других сравнительно большим вкладом простого двухквазичастичного возбуждения типа частица - частица.

В работе $^{/12/}$ предсказывается увеличение в среднем приведенной *а* -ширины перехода в однофоновное возбужденное состояние конечного ядра по сравнению с переходом в основное. Повидимому, первое возбужденное состояние ядра ¹⁴⁴Nd (2⁺) является однофононным. Если не учитывать в усреднении аномальной ширины $\gamma_{a_0}^2$ резонанса 183,7 эв, то наши результаты измерений согласуются с этими выводами, так как

$$\frac{\langle \gamma_{a_{1}}^{2} \rangle}{\langle \gamma_{a_{0}}^{2} \rangle} = \frac{\langle \Gamma_{a_{1}} \rangle}{\langle \Gamma_{a_{0}} \rangle} \frac{(P_{3})_{0}}{(\sum_{\ell} P_{\ell})_{1}} \approx 3.$$

		-	TOUMN			20201010	
10111010	n	парци	19110000	· 🗛 · =	тирини	розонанс	SOB

₩№ ПП	Ео Эв	Г <u>с</u> мкэв	Г _{ас} [5] мкэв	Гло мкэв	Гос4 мкэв	Г _{ос 2} мкэв	Гос 3+4 МКэв	<u>Спины</u> Данная работа	резонанс. Другие авторы
I.	3,4	2,5 <u>+</u> 0,3	2,5 <u>+</u> 0,3	I,08 <u>+</u> 0,16	1,14 <u>+</u> 0,17		0,19 <u>+</u> 0,06	3	3 /16/
2.	18,3	0,28 <u>+</u> 0,06	0,24 <u>+</u> 0,03		0,080 <u>+</u> 0,02	0,18 <u>+</u> 0,04		4	4 /17/
3.	27,I	0,34 <u>+</u> 0,II		0,057 <u>+</u> 0,025	0,I3 <u>+</u> 0,05		0,08 <u>+</u> 0,03	3	
4.	29,7	0,45 <u>+</u> 0,I5	0,48 <u>+</u> 0,I3	0,23 <u>+</u> 0,08	0,08 <u>+</u> 0,04	 A second sec second second sec	0,I2 <u>+</u> 0,04	3	3 /16/
5.	32,I	0,36 <u>+</u> 0,I4	0,I6 <u>+</u> 0,06	0,011	0,24 <u>+</u> 0,I		0,05 <u>+</u> 0,03	÷.	eren er
6.	39,7	0 ,25<u>+</u>0, 04		0,01	0,10 <u>+</u> 0,02	0,I0 <u>+</u> 0,02			
7.	40,6	0,43	÷					3	,
പ 8.	49,3	0,I3 <u>+</u> 0,07	I,0 <u>+</u> 0,2	and a second			· ·	. •	
N 9.	57,9	0 , 27 <u>+</u> 0,07	0,6 <u>+</u> 0,2		0,22 <u>+</u> 0,06		0,043 <u>+</u> 0,03		
IO.	64,9	0,I6 <u>+</u> 0,I							
II.	76,0	0,33							
I2.	79, 8	4,8						-	
I3.	83,4	2,20 <u>+</u> 0,3	2,0 <u>+</u> 0,3	I,20 <u>+</u> 0,2	0 ,75<u>+</u>0, I6		0,1 <u><+</u> 0,08	3	
I4.	102,6	I,15 <u>+</u> 0,2		0,07 <u>+</u> 0,037	0,83 <u>+</u> 0,17		0,12 <u>+</u> 0,08	3	
15.	I06,8 I08,4	I,33 <u>+</u> 0,45	, r	0,093 <u>+</u> 0,093	0,66 <u>+</u> 0,26				
I6.	123,4	I,37 <u>+</u> 0,2		0,73 <u>+</u> 0,15	0,34 <u>+</u> 0,09		0,19	3	
17.	I40,0	0,67 <u>+</u> 0,28							
18.	I43,3	4,6						,) -	
19.	.151,3	0,70 <u>+</u> 0,2		1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -					. ·
					1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -				

New nn	E.	Г и ИКЪР	[2 ^[3]	Foc o	Fac 1	Tot 2	Ta 3+4	Спины резо- нансов
		MACB	мкэв	МКЭВ	мкэв	МКЭВ	мкэв	Данная Другие работа авторы
20.	160,8 163,6	3,85 <u>+</u> 0,73	an ch An t	2,70 <u>+</u> 0,70	0,6I <u>+</u> 0,26			3 ⁻
2I.	I83 , 7	15,4 <u>+</u> 1,2		I4,4+2				- z
22.	190,8	7,I <u>+</u> 4,2)
23.	198,0	5,5	•					
24.	221,6 225,3	3,15 <u>+</u> 0,56		I,24 <u>+</u> 0,3	I,20 <u>+</u> 0,40			3

IJ

Однако еще мал статистический материал, чтобы сделать окончательные выводы по этому поводу.

Результаты измерений и их анализ суммированы в таблице 1. Основные результаты настоящей диссертации были опубликованы в работах^{/5-10/}, а также доложены на конференциях:

 Международная конференция по структуре ядра в Токио (1967)^{/13/}.

2) Международная конференция по структуре атомного ядра в Дубне (1968)^{/14/}.

 Международная конференция по ядерным данным для реакторов в Хельсинки (1970)^{/10/}.

4) Ежегодная конференция по ядерной спектроскопии и структуре атомного ядра в Риге /15/.

Заключение

Настоящая диссертация посвящена исследованию тонкой структуры а -распада составного ядра, образующегося после захвата резонансных нейтронов.

Создание большого ионизационного а -спектрометра позволило провести первые исследования в этом направлении.

Исследование спектров а-частиц, образующихся при распаде отдельных резонансных состояний атомных ядер, является новым направлением, позволяющим получить специфическую информацию как о структуре высоковозбужденных состояний и. их спинах, так и о самом процессе а-распада.

В диссертации исследовались полные и парциальные α -ширины на изотопах ¹⁴⁷ Sm и ¹⁴⁵ Nd . 1) Создан большой понизационный а-спектрометр, способный работать в интенсивных полях слабоионизирующих частиц с многослойной мишенью большой площади (0,9 м²) с энергетическим разрешением $\Delta E \approx 100$ кэв для $E_a \approx 5$ Мэв.

2) Получены значения парциальных и полных а -ширин для ¹⁴⁷ Sm и ¹⁴⁵ Nd

3) Получены спины двенадцати уровней составного ядра ¹⁴⁸ Sm

4) Полученные экспериментальные распределения парциальных а -ширин сравниваются с предсказаниями статистической теории. На основании такого сравнения получены сведения о формировании а -частиц с различными орбитальными моментами на поверхности ядер.

5) Показано, что распределения полных а -ширин для резонансов ¹⁴⁷Sm и ожидаемые распределения этих ширин на основании расчётов по статистической теории удовлетворительно совпадают.

6) Делается попытка на основании предположений работы / 12/ получить сведения о структуре резонансных состояний ядра ¹⁴⁸ Sm.

Литература

 J. Kvitek, Yu.P. Popov. Phys. Lett., 22, 186 (1966).
 И. Квитек, Ю.П. Попов. Письма в ЖЭТФ, 5, 365 (1967).
 И. Квитек, Ю.П. Попов. Препринт ОИЯИ РЗ-4982, Дубна, 1970.
 N.S. Oakey, R.D. Macfarlane. Phys. Lett., 24B, 142 (1967).
 И. Квитек, Е.И. Нечаева, Ю.П. Попов, И. Рибански, Р.Ф. Руми, М. Стэмпиньски. Препринт ОИЯИ РЗ-3904, Дубна, 1968.
 Ю.П. Попов, М. Стэмпиньски. ПТЭ, 6, 49 (1969).

15

- Ю.П. Попов, М. Пшитула, К.Г. Родионов, Р.Ф. Руми, М. Стэмпиньски, В.И. Фурман. Препринт ОИЯИ РЗ-5073, Дубна, 1970.
 Ю.П. Попов, М. Стэмпиньски. Письма в ЖЭТФ 7, 126 (1968).
- 9. И. Вильгельм, Ю.П. Попов, М. Пшитула, Р.Ф. Руми, М. Стэмпиньски. Препринт ОИЯИ РЗ-5553, Дубна, 1970.
- Ю.П. Попов, М. Пшитула, Р.Ф. Руми, М. Стэмпиньски, М. Флорек, В.И. Фурман, Conf. Nuclear Data for Reactors, vol. I, p. 669 (1970).
- А.А. Мартынов, Ю.П. Попов, В.И. Фурман. Тезисы докл. XX конф. по ядерн. спектроскоп. и структ. атомн. ядра (1970).
 V.G. Soloviev, JINR E4-5135, Dubna (1970).
- 13. Yu.P. Popov, J. Kvitek, M. Stempinsky, Contributions
- International Conference on Nuclear Structure, p.331, Tokyo, Japan (1967).
- 14.F.L. Shapiro. Symposium Nuclear Structure, Dubna, 1968.
- Ю.П. Попов, М. Стэмпиньски. Известия АН СССР т. ХХХП, N-12, сер.физ., 1968.
- 16. M.D.Goldberg, S.F.Mughabghab, S.N.Puronit et al., ENL-325, Second edition, Supplement 2, vol. II B and C (1966).
- 17. F.Poortmans, H.Ceulemans. Conf. on Study of Nucl. Structure with Neutrons, Antwerp. 1965.

Рукопись поступила в издательский отдел 3 мая 1971 года.