М- 268 ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

C341.3+C343

ЛАБОРАТОРИЯ ЯДЕРНЫХ РЕАКЦИЙ

15 - 5181

Б.Н. Марков

ИССЛЕДОВАНИЕ СВОЙСТВ СПОНТАННО ДЕЛЯЩИХСЯ ИЗОМЕРОВ ПЛУТОНИЯ И АМЕРИЦИЯ, ОБРАЗУЮЩИХСЯ В РЕАКЦИЯХ С ГАММА-КВАНТАМИ И ТЕПЛОВЫМИ НЕЙТРОНАМИ

Специальность 055 - физика атомного ядра и космических лучей

Автореферат диссертации на соискание учёной степени кандидата физико-математических наук

Дубна 1970

Работа выполнена в Лаборатории ядерных реакций Объединенного института ядерных исследований.

Научный руководитель:

кандидат физико-математических наук, старший научный сотрудник Ю.П. Гангрский

Официальные оппоненты: член-корреспондент АН СССР Ф.Л.,Шапиро доктор физико-математических наук Л.Е. Лазарева

Ведущее научно-исследовательское учреждение: Физикоэнергетический институт.

Автореферат разослан 1970 года Защита диссертации состоится 1970 года на заседании Объединенного Учёного совета ЛЯР и ЛНФ ОИЯИ, Дубна, Московской области, конференц-зал.

С диссертацией можно ознакомиться в библиотеке ОИЯИ

Учёный секретарь Совета

Э.Н. Каржавина

15 - 5181

Б.Н. Марков

ИССЛЕДОВАНИЕ СВОЙСТВ СПОНТАННО ДЕЛЯЩИХСЯ ИЗОМЕРОВ ПЛУТОНИЯ И АМЕРИЦИЯ, ОБРАЗУЮЩИХСЯ В РЕАКЦИЯХ С ГАММА-КВАНТАМИ И ТЕПЛОВЫМИ НЕЙТРОНАМИ

S

6

10

N

Специальность 055 - физика атомного ядра и космических лучей

Автореферат диссертации на соискание учёной степени кандидата физико-математических наук

Стеменный инстатут якразых всследований Библисстена Открытие К.А. Петржаком и Г.Н. Флеровым в 1940. году самопроизвольного деления атомных ядер^{/1/} явилось началом большого этапа экспериментальных исследований свойств тяжелых элементов.

Знание систематики периодов полураспада ядер при спонтанном делении из основного состояния позволило надежно идентифицировать в 1962 году новое явление – спонтанное деление из возбужденного (изомерного) состояния /2/.

Существование спонтанно делящихся изомеров не было предсказано теорией. Считалось, что обычные изомерные состояния в ядрах с Z < 100 не могут иметь малые времена жизни относительно спонтанного деления, поскольку этот вид распада сильно подавляется конкурирующими с ним у -переходами. Однако обнаружение делящихся изомеров показало, что в ядрах при энергии возбуждения значительно ниже порога деления существуют изомерные состояния необычного вида: с резко увеличенной вероятностью спонтанного деления и сильным запретом к испусканию у -квантов.

Возник вопрос о природе таких состояний. Основным источником сведений о них служат различные ядерные реакции, сопровождающиеся возникновением ядер-изомеров. До сих пор экспериментальные исследования проводились с помощью реакций с заряженными частицами (тяжелыми ионами – протонами) и быстрыми нейтронами.

Преимущество использования тяжелых ионов проявляется в тех случаях, когда эксперименты направлены на поиск новых спонтанно делящихся изомеров ^{/3/}. При одном облучении можно получить целый набор изотопов, сильно отличающихся по своим свойствам,

Изучение реакций с легкими частицами приводит к более определенной интерпретации результатов измерений. Взаимодействия ядер-мишеней с этими частицами позволили идентифицировать большинство изомеров. Установлено, что с уменьшением массы и заряда бомбардирующих частиц возрастает сечение образования ядер в изомерном состоянии, что объясняется сокращением числа каналов конкурирующих реакций.

Представляет интерес в этом отношении использование реакций с гамма-лучами и нейтронами малых энергий, поскольку отсутствие кулоновского барьера дает возможность получать составные ядра с низкой энергией возбуждения сразу после поглощения частиц.

Диссертационная работа и посвящена первым экспериментальным исследованиям реакций типа (у,п), а также радиационного захвата тепловых нейтронов, направленным на получение спонтанно делящихся изомеров ^{240,242,244} Am, ²⁴¹ Pu. и определение их свойств.

Диссертация состоит из шести глав, введения и заключения.

<u>В первой главе</u> приводятся современные данные о спонтанно делящихся изомерах и рассматривается их связь с особенностями структуры барьера деления. Известно, что изомерные состояния с аномально короткими периодами полураспада относительно спонтанного деления (10^{-9} сек $< T_{1/2} < 10^{-2}$ сек) возбуждаются в широкой области изотопов от урана до берклия (табл. 1).

Отмечается, что для изомерных уровней известны лишь полные времена жизни, т.к. нет сведений о других видах распада, кроме спонтанного деления. К настоящему времени насчиты-

	Спонта	HHO (<u>деляц</u>	цеся	LI30/	yepbi		-		Mað,	nuya	1
1					98 КАЛЦФОРНЦЦ		244	245	246	247	248	
Чч						97 Берклий		243	244	245 .2 нсек	246	247
ארו סרצ	96 КЮР 95 Америций 10 неж			5 КЮРИ	_ن	240	241 20 нсек.	242	243 40 <i>нсек</i>	244	245	246
DHOLLOC				237 10 нсек	238 65 нксек	239 160 нсек	240 0,9 мсек	241 1,5 мксек	242 14 мсек	243 6,5 мксек	244 1,1 Мсек	245
20	94 mym	онии	235 20 нсек	236 34 нсек	237 900 <i>нс</i> ек	238 6,5 <2нсек	239 8 мксек	240 4нсек	241 25мксек	242 50 нсек	243 60 <i>нсек</i>	244
93 I	Henmyhuú	233	234	235	236	237	238	239	240	241	149	150
92	УРАН	232	233	234 35 носк?	235 20 <i>нс</i> ек?	236 110 нсек	237	238 300нсек	239	240	·	
		140	141	142 4	143 uc,no	144 Heump	145 1040в	146	147	148		•

вается уже более 20 спонтанно делящихся изомеров. Есть указание^{/4/}, что в некоторых изотопах плутония существует по два изомерных уровня в одном ядре.

Спонтанно делящиеся изомеры отличаются сравнительно высокой энергией возбуждения (около 3 Мэв) и повышенной вероятностью (в среднем 10²⁵) спонтанного деления относительно основного состояния.

Спин изомерных состояний мал, однако, они характеризуются большим запретом (более 10¹⁰) по отношению к радиационным переходам.

Отмеченные свойства нельзя объяснить обычными представлениями об изомерии атомных ядер. Они, вероятно, указывают на качественно новый вид проявления изомерных состояний – "изомерию формы" ядра. Ядра, находящиеся в таких состояниях, должны иметь сильно увеличенную равновесную деформацию.

Возможное объяснение "изомерии формы" связывается с существованием дополнительного минимума в потенциальной энергии тяжелых ядер в седловой точке, впервые предсказанного расчётами В.М. Струтинского ^{/5/} (модель двугорбого барьера деления (рис. 1)).

В этой модели первый, более глубокий минимум относится к основному состоянию ядра. Изомерное состояние связано с нижним уровнем во второй яме.

Внутренний барьер, разделяющий оба состояния, препятствует у -переходам из одной ямы в другую. Относительно малые высота и ширина внешнего барьера способствуют увеличению вероятности спонтанного деления с изомерного состояния.

В главе I перечисляются и другие вероятные причины возникновения делящихся изомеров.

Здесь же рассматривается ряд явлений, проявляющихся в подбарьерной области энергий некоторых ядер, как, например, модуляция делительных резонансов⁶⁶, угловая анизотропия осколков при фотоделении⁷⁷, которые не укладываются

Рис. 1. Схема одномерного двугорбого барьера деления. U(x) - энергия деформации, x - параметр деформации.

в рамки прежних представлений о капельном барьере деления и могут быть также объяснены на основе гипотезы В.М. Стру-/5/ тинского

Во второй главе описываются методы регистрации спонтанного деления ядер с короткими периодами полураспада и различные варианты экспрессных методик, применявшиеся для фиксирования продуктов распада делящихся изомеров вблизи облучаемой мишени.

Основная задача эксперимента сводится к тому, чтобы надежно установить сам факт запаздывающего деления на больщом уровне фоновой активности. Это накладывает определенные требования к постановке опытов по исследованию спонтанно делящихоя изомеров.

При изучении реакций с тепловыми нейтронами и у -лучами применялся метод активации. Он заключается в том, что исследуется осколочная активность, наведенная в самой мишени. Из-за малого времени жизни спонтанно делящихся изомеров в методе активации, как правило, прибегают к использованию импульсного потока бомбардирующих частиц. За время импульса происходит накопление ядер-изомеров, в паузах между импульсами проводится контроль за их распадом.

В наших экспериментах детектором осколков деления служил . многонитевой искровой счётчик. Впервые он был применен Розенблюмом^{/8/} для счёта *а* -частиц, а в дальнейшем использовался и для регистрации осколков деления.

Механизм работы искрового счётчика еще не совсем ясен, а его свойства недостаточно исследованы. Была выполнена работа ^{/9/}, целью которой явилось изучение некоторых характеристик счётчика, существенных для его использования в экспериментах по получению спонтанно делящихся изомеров, а именно – определение эффективности регистрации осколков деления, временных и дискриминирующих свойств счётчика при наполнении его различными смесями газов. В диссертации имеется описание конструкции детектора и механизма его работы. В 3-5 главах рассматриваются особенности применения искрового счётчика и способы измерения выходов осколков в каждом конкретном случае.

<u>В третьей и четвертой главах</u> описываются эксперименты по исследованию фотоядерных реакций (у,п), приводящих к образованию спонтанно делящихся изомеров²⁴⁰Am, ²⁴²Am /10/ (3-я глава) и ²⁴¹Pu /11/ (4-я глава).

Источником у -квантов служило тормозное излучение электронов. Опыты проводились на микротроне Института физических проблем АН СССР с 17 орбитами^{/12/}.

Первые измерения с америциевыми мишенями показали, что между импульсами микротрона наблюдается осколочная активность, спадающая со временем.

Идентификация изомеров ²⁴⁰ Am и ²⁴¹ Pu проводилась по их периодам полураспада (см. таблицу 1), а в случае ²⁴² Am – косвенным путем.

На рис. 2 для примера приведены полученные нами экспериментальные значения выходов запаздывающего и мгновенного деления Y(E₀) в зависимости от энергии электронов для реакции ²⁴²Pu+y. Для других реакций эти зависимости имеют подобный вид.

При торможении электронов, как известно, образуется непрерывный спектр у -квантов. Наблюдаемый выход осколков деления (мгновенных или запаздывающих) связан с сечением реакции соотношением:

$$Y(E_0) = k \int_{E_n}^{E_0} \sigma(E_{\gamma}) \Phi(E_{\gamma}, E_0) dE_{\gamma}, \qquad (1)$$

где E_0 – энергия электронов, E_n , σ (E_y) – порог и сечение реакции, Φ (E_y , E_0) – тормозной спектр y –квантов, причем

 $E_n \leq E_\gamma \leq E_0$

9

 k - коэффициент, связанный с геометрией опыта и количеством вещества облучаемой мишени.

Рис. 2. Зависимость выхода осколков мгновенного от граничной энергии E_{γ} (или энергии электронов E_{0}) в реакции²⁴² $Pa + \gamma$. 1 – рассчитанная кривая при T = 1,5 Мэв и энергии порога $E_n = 9,1$ Мэв. 2,3 – при T = 1,5 Мэв, $E_n = 8,3$ Мэв (2) и 9,5 Мэв (3). В 4-й (и частично в 5-ой) главе подробно обсуждаются методы обработки результатов измерений при фотоядерных реакциях. Предложен интегральный способ нахождения выходов реакций Y (E₀) по их известным сечениям.

Используя соотношение (1), мы проинтегрировали функцию возбуждения $\sigma_f (E_0)$ фотоделения ²⁴¹ Am , определенную в опытах Каца и др. ^{/13/}. Полученная кривая хорошо согласуется с экспериментальными точками зависимости выхода $\Upsilon_f(E_0)$ осколков мгновенного деления для того же ядра.

Аналогичным способом "проинтегрированы" и функции возбуждения $\sigma_1(E_0)$ реакций, идущих с образованием спонтанно делящихся изомеров ²⁴⁰Am , ²⁴²Am и ²⁴¹Pu .

Форма кривой функции возбуждения вблизи порога реакции описывается выражением, полученным из статистической теории ядерных реакций применительно к σ_{1} (E₀) :

$$\sigma_{i} = \sigma_{f} \Gamma_{n} / \Gamma_{f} \eta_{i} (1 - e^{-\Delta E / T}).$$
 (2)

Здесь σ_i - соответствующее сечение фотоделения, Γ_n и Γ_f нейтронные и делительные ширины, η_i - вероятность образования изомерного состояния, ΔE - энергия возбуждения ядра, отсчитываемая от порога реакции, T - ядерная температура. В расчётах использовались значения T = 0,7 и 1,5 Мэв; различие полученных кривых Y_i (E₀) невелико.

В случае ²⁴¹ Ат использовались значения сечений σ_r , приведенные в ^{/13/}; для ²⁴³ Ат относительное изменение σ_r с энергией получено из наблюдаемого нами выхода осколков мгновенного деления $Y_r(E_0)^{10/}$. Сечение мгновенного деления реакции ²⁴² Ри + у рассчитывалось из $Y_r(E_0)$ методом "разности фотонов". Эти сведения по σ_r для ²⁴³ Ат и ²⁴² Ри в измеряемом диапазоне E_γ в литературе отсутствовали.

Совмещая определенные таким образом зависимости выходов осколков запаздывающего деления от энергии у -квантов

с экспериментальными данными для трех ядер (для ядра²⁴¹ Ри см. рис. 2), можно установить пороги реакций, приводящих к спонтанно делящимся изомерам.

Эти пороги оказались равными:

9,85<u>+0,15</u> Мэв для реакции ²⁴¹ Am(y,n) ^{240 mf}Am, 9,45<u>+0,15</u> Мэв – – – ²⁴³ Am(y,n) ^{242 mf}Am, 9,10<u>+0,15</u> Мэв – – – ²⁴²Pu (y,n) ^{241 mf}Pu.

Пороги реакций, ведущих к образованию основного состояния ²⁴⁰, ²⁴² Am и ²⁴¹ Pu , совпадают, очевидно, с энергиями связи нейтронов для ядер-мишеней, которые известны.

Разницу порогов, можно, по-видимому, рассматривать как энергию возбуждения E_1^* изомерных уровней. Результаты сведены в таблицу 2.

Τа	блиг	ıa	2
	C.I.I.I.		-

Изомер	Период полу- распада	Энергия изомерног уровня, Мэв	р Реакция
^{240 m} ^f Am	0,9 мсек	3, 15 <u>+</u> 0, 25	²⁴¹ Am (γ, n)
	•	3,15 <u>+</u> 0,25	²⁴¹ Pu (p, 2n)/14/
^{242 mf} Am	14 мсек	3,20 <u>+</u> 0,20	²⁴³ Am (γ , n)
		2,90 <u>+</u> 0,40	243 Am (n, 2n) / 15/
^{241 mf} Pu	25 мксек ^{х/}	2,90 <u>+</u> 0,15	²⁴² Pu(J.n)

Из таблицы видно, что наши результаты по Е * для ^{240,242} Am совладают с данными других работ.

Величина Е * для ²⁴¹Рв определена впервые. У

Выбор этого изотопа объектом наших исследований не был случайным. В ядре ²⁴¹ Ри наблюдается изомерное состояние, распадающееся путем деления /4/, и проявляется четкая картина

x'Наши данные – Т_{1/2} = 23±1 мксек, данные⁴ ~ 27 мксек. В таблице приводится среднее значение. делительных подбарьерных резонансов⁷⁶⁷. Интерпретируя оба явления на основе модели двугорбого барьера деления, можно оценить одни и те же параметры такого барьера. Сравнение этих оценок проводится в главе 6.

В опытах с у -квантами были определены отношения сечений образования изомерного и основного состояний $\frac{\sigma_1}{\sigma_t}$ (парциальное изомерное отношение), а также $\frac{\sigma_1}{\sigma_t}$. Получены абсолютные значения сечений σ_t для двух реакций. Эти сведения размещены в таблице 3. В случае ²⁴³ Am (γ , n) ^{242 m f}Am такие данные не представлены из-за отсутствия абсолютных величин σ_t и $\frac{\Gamma_t}{\Gamma_n + \Gamma_t}$.

Для сравнения в таблице приведены результаты по другим реакциям. Видно, что изомерное отношение не зависит от вносимого углового момента. Это, по-видимому, указывает на то, что механизм образования изомерного состояния не чувствителен к спину составного ядра /19/.

<u>Пятая глава</u> содержит описание опытов по наблюдению делящихся изомеров ²⁴² Am и ²⁴⁴ Am, образующихся в реакциях радиационного захвата тепловых нейтронов,

 Эти реакции удобны для анализа. Как правило, энергия, спин и другие характеристики образующихся уровней в составном ядре известны.

 Важно было проследить корреляцию между процессами образования изомеров и вынужденным делением.

3. Представлялось интересным сравнить сечения образования спонтанно делящихся изомеров при захвате нейтронов на состояния с различными делительными ширинами.

Уровни в ядрах ²⁴² Am и ²⁴⁴ Am , возбуждаемые при захвате тепловых нейтронов, лежат на \approx 0,9 Мэв ниже барьера деления, имеют одинаковые спины и чётности (2⁻ или 3⁻), но сильно при этом отличаются по Г

Первые опыты с тепловыми нейтронами были поставлены в 1965 году $^{/20/}$ с целью получить $^{242ml}A_m$. Эксперименты не

Таблица	З
---------	---

Реакция	Энергия частиц, (Мэв)	Ср.момент, вносимый в ядро, е(к)	Сечение образования изомера (см ²)	Изомерное отношение б: б ₃	6: 6,
²³⁸ U(^{II} B,α3n) ^{242mf} Am	60	15	6.I0 ⁻³²	(4,3 <u>+</u> I,5).10 ^{-4/I6/}	
$^{243}Am(n, 2n)$ "	I4	6,0	I,5.I0 ⁻²⁸	≈ 4.10 ⁻⁴ /17/	-
$^{24I}Am(n,\gamma)$ "	I , 0	0,5 🕔	I,5.I0 ⁻²⁹	≈ 2.10 ⁻⁴ /18/	(2 <u>+</u> 0,3).10 ⁻⁵
²⁴³ Am(J,n) ^{242mj} Am	12,5	I , 0	· · · ·		(1,3 <u>+</u> 0,4).10 ⁻³
^{24I} Am(r, n) ^{240m} Am	13,0	I , 0	I,5.10 ⁻²⁸	(5 <u>+</u> 1,2).10 ⁻⁴	(1,0 <u>+</u> 0,25).10 ⁻³
²⁴² Pu(J,n) ^{24Imf} Pu	12,5	I , 0	3,4.10-28	(9 <u>+</u> 3).10 ⁻⁴	(2,5 <u>+</u> 0,5).10 ⁻³

дали прямых указаний на образование изомера, была лишь оценена верхняя граница сечений, из которой следовало, что изомерное отношение $\sigma_i / \sigma_g < 5 \cdot 10^{-7}$, т.е. на три порядка меньше, чем в реакциях на быстрых частицах.

Более поздние попытки других авторов синтезировать ^{242mf} Ат оказались безуспешными.

Наши опыты с более интенсивными потоками тепловых нейтронов были продолжены в 1968-69 г.г. ^{/21,22/}. Впервые был чётко зафиксирован распад изомера америция-242^{/21/}. В^{/22/} для получения пульсирующего пучка нейтронов (~ 10⁸ n / 22/ использовался изохронный циклотрон Лаборатории ядерных реак ций. Замедление нейтронов происходило в парафиновом блоке переменной толщины, что позволяло менять энергетический спектр частиц. Выделение участка спектра тепловых нейтронов проводилось с помощью фильтров из кадмия. Эксперименты ^{/22/} также имели целью получение делящихся изомеров ²⁴² Аm и²⁴⁴ Am в реакциях с быстрыми нейтронами.

Результаты даны в таблице 4. Приведенные сечения показывают корреляцию между мгновенным делением (σ_t) и образованием изомерного состояния (σ_1). Оба процесса наблюдались для ядра ²⁴¹Am и не обнаружены (имеется оценка верхних границ) для ²⁴³Am при облучении их тепловыми нейтронами. При этом в случае ²⁴²Am делительная ширина $\Gamma_t \approx 2 \cdot 10^{-4}$ эв (при захвате нейтрона), в случае²⁴⁴Am - $\Gamma_t < 10^{-5}$ эв.

Таким образом, можно сказать, что чем выше сечение деления этих ядер, тем с большей вероятностью образуется изомер. Или, другими словами, для заселения изомерного состояния необходимо возбудить колебательные степени свободы. Сказанное справедливо, по-видимому, для энергий возбуждения ниже барьера деления.

Таблица 4	4
-----------	---

Энергия нейтронов	^{24I} Am +	n		²⁴³ Am + n			
(эв) .	6i/6f	б ғ (барн)	б: (мкбарн)	5: 6 ₊	б ғ (барн)	б: (мкбарн)	
<0,4	(1,0 <u>+</u> 0,3).10 ⁻⁴	3,13 ^x	300 <u>+</u> 100		<0,05 ^x	<10	
≈106	(0,2 <u>+</u> 0,06).10 ⁻⁴	I , 2	24 <u>+</u> 6	(0,3 <u>+</u> 0,1).10 ⁻⁴	I , 4	42 <u>+</u> 15	

х) Сечение для тепловых нейтронов

<u>В шестой главе</u> сделана попытка оценить некоторые параметры двугорбого барьера для выбранных ядер плутония и америция, опираясь на данные, полученные из приведенных выше реакций.

1. Энергия изомерного уровня рассматривается в модели двугорбого барьера как разница по энергии положения второго минимума потенциальной кривой U (x) над первым. В обозначениях рис. 1 это означает $E_1^* = U_{II} - U_{I}$. Числовые значения E_1^* указаны в таблице 2. Для ядра ²⁴¹ Pu, как известно, $E_1^* = 2,9$ Мэв. Анализ делительных резонансов в том же ядре приводит к эначениям $U_{II} - U_{I} = 1,7$ – 2,1 Мэв^{6,23/}. Вычисления здесь проводились из соотношения плотностей ρ_{II} и ρ_{I} двух классов уровней во второй и первой потенциальных ямах.

По поводу различия в величинах Е^{*} и U_{II}-U_I можно высказать два предположения: либо наблюдаемое изомерное состояние в ²⁴¹ Pu лежит выше (на ≈ 800 кэв) дна второй ямы, либо параметр плотности уровней а для сильно деформированных состояний имеет аномально большое значение (≈ 40).

С другой стороны, может оказаться, что оба явления имеют различную природу, или картина одномерного двугорбого барьера является слишком приближенной.

2. В ряде работ излагается способ применения статистической модели для описания процессов, связанных с образованием делящихся изомеров. Использование такого подхода для ядер, имеющих двугорбый барьер деления, основано на том, что при достаточной глубине второго минимума в нем проявляются системы различных уровней. Предполагается также, что в ядре, попавщем во вторую яму, устанавливается термодинамическое равновесие.

В^{/24,25/} приведены выражения, позволяющие получить соотношение между сечением σ_i образования изомерного состояния и сечениями реакций, приводящих ядро в основное сос-

тояние (о,) или к делению (о,) . Применительно к реакциям (п, у) и (у, п) , исследованным в наших работах /10,11,22/ эти соотношения можно записать в следующем виде:

для реакции (n, γ)

 $\begin{cases} \frac{\sigma_{1}}{\sigma_{g}} = \frac{\Gamma_{\gamma 2}}{\Gamma_{\gamma 1}} \frac{\rho_{\Pi}}{\rho_{I}} \frac{N_{A}}{N_{A} + N_{B}}; \quad (3) \\ \frac{\sigma_{1}}{\sigma_{f}} = \frac{\Gamma_{\gamma 2}}{\Gamma_{f 2}}; \quad (4) \end{cases}$

для реакции (γ, п)
$$\begin{cases} \frac{\sigma_1}{\sigma_g} = \frac{\Gamma_{n2}}{\Gamma_{n1}} \frac{\rho_{II}}{\rho_I} \frac{N_A}{N_A + N_B}; \\ \frac{\sigma_i}{\sigma_g} = \frac{\Gamma_{n2}}{\Gamma_{n2}}. \end{cases}$$

(5)

(6)

В этих формулах N_A и N_B - число открытых каналов для данного процесса в промежутке от вершины первого (А) или второго (В) барьеров до величины энергии возбуждения Е* состав-

ного ядра, т.е. $N_A = \int_0^{E^* - U_A} \rho_A(\epsilon) d\epsilon$ и $N_B = \int_0^{E^* - U_B} \rho_B(\epsilon) d\epsilon$,

где $\rho_{\rm A}$ и $\rho_{\rm B}$ - плотности уровней при деформациях, отвечающих расположению барьеров.

Далее, $\rho_{_{\rm I}}$ и $\rho_{_{\rm II}}$ - плотности уровней, соответствующие энергиям возбуждения относительно U_1 и U_{11} (рис. 1); $\Gamma_{\gamma 1}$, $\Gamma_{\gamma 2}$ - радиационные и Γ_{n1} , Γ_{n2} - нейтронные парциальные ширины переходов ядра в первую или вторую яму соответственно. На опыте были определены отношения σ_i / σ_g и σ_i / σ_f (таблицы 3 и 4), остальные члены формул (3)-(6) находились из расчёта $\frac{N_A}{N_A + N_B}$ и Γ_{12} (делительная ширина во второй яме) приводили к оценкам пара-

метров барьеров. Принималось, что ћ ω = ћ ω.

Для реакций радиационного захвата нейтронов вычисления указывали на высоты U_B вторых барьеров ²⁴² Am и ²⁴⁴ Am. близкие к величинам энергий связи нейтронов в этих ядрах. В подобной ситуации следует, по-видимому, полагать, что известные из эксперимента пороги деления определяются высотами первых (внутренних) барьеров.

Данные из реакций (у, n) дают сведения о барьерах для ядер ²⁴¹⁻²⁴³ Ат и ^{241,242} Ри. Общий результат такой: при одном и том же значении параметра плотности уровней ($a_{\tau} = a_{\tau\tau} \approx$ ≈ 28 Мэв⁻¹) величины обоих барьеров получаются примерно одинаковыми по высоте.

Чтобы согласовать оценки высот вторых барьеров для ядра ²⁴² Ат при захвате тепловых нейтронов и для ²⁴¹ Ри в случае делительных резонансов нам приходится увеличивать параметр а п для системы уровней во второй яме.

Рассуждения относительно структуры барьера деления имеют явно приближенный и схематичный характер, что объясняется несовершенством существующей теории и недостатком сведений о природе спонтанно делящихся изомеров.

Основные результаты диссертационной работы сводятся к следующему:

1. Сконструирован и изготовлен искровой счётчик осколков деления. Рассмотрен механизм его работы. Определена его эффективность регистрации частиц, а также изучены дискриминирующие и временные свойства, существенные для изучения делящихся изомеров.

2. Для исследования спонтанно делящихся изомеров применены фотоядерные реакции типа (у,п). Такие реакции расширяют круг изучаемых ядер и позволяют проводить надежную интерпретацию полученных результатов.

3. Из реакций с гамма-квантами получены сведения об энергии возбуждения изомерных состояний в ядрах 240 Am , 242 Am и ²⁴¹Pu , определены изомерные отношения, а также измере-

ны отношения сечений образования изомеров σ_1 к сечениям вынужденного деления σ_1 . Для ^{240 m f}Am и ^{241 m f} Pu даны абсолютные значения сечений σ_1 . В реакциях с у -лучами зафиксирован максимальный выход спонтанно делящихся изомеров по сравнению с другими реакциями.

4. Изучены реакции радиационного захвата тепловых нейтронов, приводящие к образованию изомеров^{242mf} Am и ^{244mf} Am. Измерены сечения реакций σ_i и отношения сечений σ_i / σ_f при взаимодействии ядер мишеней как с тепловыми, так и быстрыми нейтронами.

5. Замечена корреляция между процессами образования делящихся изомеров и мгновенным делением. При облучении ядер ²⁴¹ Am и ²⁴³ Am тепловыми нейтронами оба процесса наблюдались для ядра ²⁴² Am и не обнаружены в ядре ²⁴⁴Am.

6. Для ядра ²⁴² Ат показано резкое отличие в поведении отношений σ_1 / σ_g и σ_i / σ_f в реакциях при переходе от быстрых нейтронов (1 Мэв) к тепловым. Величина σ_i / σ_f меняется слабо, в то время как изомерное отношение σ_i / σ_g уменьшается на три порядка. Результаты экспериментов обсуждаются в рамках модели двугорбого барьера деления.

7. На основе имеющихся данных о свойствах спонтанно делящихся изомеров и представлений о механизме заселения изомерных уровней сделаны приближенные оценки параметров другорбого барьера деления некоторых ядер.

Диссертация написана по материалам опубликованных работ /3,9-11,19-22/

Отдельные результаты исследований докладывались на XIX и XX Всесоюзных Совешаниях по ядерной спектроскопии и структуре ядра (г. Ереван, 1969 г., г. Ленинград, 1970 г.) на XI Совещании по ядерпой спектроскопии нейтронодефицитных изотопов и теории деформированных ядер (Дубна, 1969 г.).

Литература

1. К.А. Петржак, Г.Н. Флеров. ЖЭТФ, 10, 1013 (1940).

- С.М. Поликанов, В.А. Друин, В.А. Карнаухов, В.Л. Михеев, А.А. Плеве, Н.К. Скобелев, В.Г. Субботин, Г.М. Тер-Акопьян, В.А. Фомичев. ЖЭТФ, <u>42</u>, 1464 (1962).
- Г.Н. Флеров, Ю.П. Гангрский, Б.Н. Марков, Нгуен Конг Кхань, Д.Д. Пулатов, Н.Х. Шадиева. Препринт ОИЯИ Р7-5018, Дубна, 1970.
- 4. S.M. Polikanov and G. Sletten. Preprint of the Niels
- Bohr Institute, Denmark (1970), to be published in Nucl. Phys. 5. V.M. Strutinsky. Nucl. Phys., <u>A95</u>, 420 (1967).
- 6. E. Migneco, G. Theobald. Nucl. Phys., A112, 603 (1968).
- Н.С. Работнов, Г.Н. Смиренкин, А.С. Солдатов, Л.Н. Усачёв, С.П. Капица, Ю.М. Ципенюк, ЯФ, <u>11</u>, 508 (1970).
- 8. W.V. Chang, S. Rosenblum, Phys. Rev., <u>67</u>, 222 (1945).
- 9. Ю.П. Гангрский, Б. Далхсурен, Ю.А. Лазарев, Б.Н. Марков, Нгуен Конг Кхань, ПТЭ, <u>2</u>, 63 (1970).
- 10. Ю.П. Гангрский, Б.Н. Марков, Ю.М. Ципенюк. ЯФ, <u>11</u>, 54 (1970).
- 11. Yu.P. Gangrsky, B.N. Markov, Yu.M. Tsipenyuk. JINR Preprint E15-5071, Dubna, 1970.Phys.Lett., <u>32B</u>, 182(1970).
- С.П. Капица, В.Н. Мелехин. Микротрон, Изд-во "Наука", Москва (1969).
- 13. L. Katz, A.P. Baerg, F. Brown, Second UN Intern. Conf. on the PUAE, Geneva, <u>15</u>, 188 (1958).
- 14. S. Bjornholm, J. Borggreen, L. Westgaard, V.A. Karnaukhov. Nucl.Phys., <u>A95</u>, 513 (1967).
- 15. G.N. Flerov, A.A. Pleve, S.M. Polikanov, S.P. Tretiakova, N. Martalogu, D. Poenaru, M. Sezon, J. Vilkov, N. Vilkov.
- Ю.П. Гангрский, Б.Н. Марков, С.М. Поликанов, Х. Юнгклауссен. ЯФ, <u>5</u>, 22 (1966).
- 17. A.F. Linev, B.N. Markov, A.A. Pleve, S.M. Polikanov. Nucl. Phys., <u>63</u>, 173 (1965).

- 18. G.N. Flerov, A.A. Pleve, S.M. Polikanov, S.P. Tretiakova,
 - I. Boga, M. Sezon, I. Vilkov, N. Vilkov, Nucl. Phys. A102, 443(1967).
- Г.Н. Флеров, Ю.П. Гангрский, Б.Н. Марков, А.А. Плеве, С.М. Поликанов, Х. Юнгклауссен. ЯФ, <u>6</u>, 17 (1967).
- Б.Н. Марков, А.А. Плеве, С.М. Поликанов, Г.Н. Флеров. ЯФ, <u>3</u>, 455 (1966).
- Ю.П. Гангрский, К.А. Гаврилов, Б.Н. Марков, Нгуен Конг Кхань, С.М. Поликанов, ЯФ, <u>10</u>, 65 (1969).
- B. Dalhsuren, G.N. Flerov, Yu.P. Gangrsky, Yu.A. Lasarev, B.N. Markov, Nguyen Cong Khanh, JINR PreprintE15-4744, Dubna, 1969, Nucl. Phys., <u>A148</u>, 492(1970).
- 23. J.E. Lynn. Preprint AERE-R5891, Harwell (1968).
- 24. Х. Юнгклауссен, А.А. Плеве. Препринт ОИЯИ Р15-3618, Дубна, 1967.
- 25. S. Jägare. Nucl. Phys., A137, 241 (1969).
- Е.В. Гай, А.В. Игнатюк, Н.С. Работнов, Г.Н. Смиренкин. Материалы Симпозиума по физике и химии деления, Вена, 337 (1969).

Рукопись поступила в издательский отдел 12 июня 1970 года.