О- 927-ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ЛАБОРАТОРИЯ ВЫСОКИХ ЭНЕРГИЙ

1 - 6183

Л.С.Охрименко

ИССЛЕДОВАНИЯ СПЕКТРОВ ЭФФЕКТИВНЫХ МАСС СИСТЕМ ИЗ П^о-мезонов И Гамма-квантов с помощью КСЕНОНОВОЙ ПУЗЫРЬКОВОЙ КАМЕРЫ

Специальность 01 040 экспериментальная физика

Автореферат диссертации на соискание ученой степени кандидата физико-математических наук

(Диссертация написана на русском языке)

Дубна 1971

Работа выполнена в Лаборатории высоких энергий Объединенного института ядерных исследований.

Научный руководитель: доктор физико-математических наук З.С.Стругальский.

Официальные оппоненты:

доктор физико-математических наук В.А.Шебанов, доктор физико-математических наук Ю.А.Будагов.

Ведущее научно-исследовательское учреждение: Московский Ордена Ленина инженерно-физический институт, г.Москва.

Автореферат разослан "_____ І972 г. Защита диссертации состоится "_____ І972 г. на заседании Ученого совета Лаборатории высоких энергий в конференц-зале ЛВЭ ОИЯИ, г.Дубна, Московской области.

С диссертацией можно ознакомиться в библиотеке ОИЯИ.

УЧЕНЫЙ СЕКРЕТАРЬ СОВЕТА

С.В.МУХИН

1 - 6183

Л.С.Охрименко

ИССЛЕДОВАНИЯ СПЕКТРОВ ЭФФЕКТИВНЫХ МАСС СИСТЕМ ИЗ П^о-МЕЗОНОВ И ГАММА-КВАНТОВ С ПОМОЩЬЮ КСЕНОНОВОЙ ПУЗЫРЬКОВОЙ КАМЕРЫ

> Специальность 01 040 экспериментальная физика

Автореферат диссертации на соискание ученой степени кандидата физико-математических наук

(Диссертация написана на русском языке)

GGBCHERSE DECORET D

Многие проблемы физики элементарных частиц связаны с изучением распадов нейтральных бозонов на π° -мезоны и гамма--кванты. Это, например, вопрос о существовании новых нейтральных мезонов /I/, проверка следствий SU(6)-симметрии /2/, проверка возможной С,Т неинвариантности в электромагнитных распадах сильно взаимодействующих частиц /3/. Исследование распадов долгоживущих К^о-мезонов на два π° -мезона оказалось весьма эффективным для понимания механизма нарушения СР инвариантности /4+?/. С точки зрения классификации частиц очень важно получить более полные сведения о нейтральных каналах распада таких частиц как γ° , ω° , χ° , f° . Некоторые частицы, нак например, s° мезон /8/, могут быть лучше всего обнаружены по их распадам на π° -мезоны.

Однако исследование резонансных систем из нескольких \mathfrak{T}° -мезонов и гамма-квантов очень затруднительно методически, так как требуется, в большинстве случаев, зарегистрировать одновременно несколько гамма-квантов с эффективностью, близкой IOO%, а также измерить направления эмиссии и энергии этих гамма-квантов. Кроме того, важной задачей является правильная оценка вклада фона в распределение эффективных масс.

3

Диссертация посвящена разработке методики исследования взаимодействий элементарных частиц, сопровождаемых гамма-квантами, и исследованию систем из нескольких π° -мезонов и гамма-квантов. В частности, подробно описано исследование спектра эффективных масс систем $\pi^{\circ}\pi^{\circ}$ и распадов ω° -частицы типа $\omega^{\circ} \rightarrow \pi^{\circ}\delta$, $\omega^{\circ} \rightarrow \gamma^{\circ}\delta \rightarrow \Im^{\circ}\delta$ и $\omega^{\circ} + \pi^{\circ}\pi^{\circ}\delta$.

Методика била разработана на экспериментальном материале, полученном при помощи 26-литровой ксеноновой пузырьковой камеры ЛВЭ ОИЯИ, однако некоторые результаты разработки могут найти применение при исследованиях, проводимых с помощью пузырьковых камер, наполненных другими тяжелыми жидкостями, а также при исследованиях с помощью электронных установок.

Настоящая диссертация состоит из введения, пяти глав, заключения и приложений.

В первой главе дана постановка задачи и формулируются основные физические проблемы, связанные с изучением распадов нейтральных частиц на π -мезоны и гамма-кванты. В частности, большое внимание уделено проблеме существования резонансов в системе двух π -мезонов, особенно S° или \in ° мезона. Отмечается, что некоторые противоречия результатов исследования, происходящие из-за применения разных неадэкватных методик исследования, можно устранить, используя методику ксеноновой пузырьковой камеры. Также отмечается, что эта методика позволяет более полно исследовать нейтральные каналы распада ω °-частицы.

Во второй главе излагаются результаты разработки методики исследования распадов нейтральных частиц на П²мезоны и гамма--кванты с помощью ксеноновой пузырьковой камеры. Такие распады в ксеноновой пузырьковой камере удается исследовать благодаря уникальным свойствам этой камеры как детектора гамма-квантов. Эффективность регистрации по наблюдаемым электронно-позитронным парам любого гамма-кванта с энергией свыше IO Мэв близка IOO%. Координатн точки конверсии гамма-кванта определяются в камере с точностью $\Delta X = \Delta Y = 0.1$ мм и $\Delta Z = 0.4$ мм. Угол вылета гамма-кванта относительно трека первичной частицы измеряется с точностью (0.5 + 2)°. Энергии гамма-квантов определяются по суммарному пробегу ливневых электронов и позитронов с точностыми от IO% до 30% в диапазоне значений энергий IO + 3000 Мэв. Наибольшая точность достигается при измерении полного пробега электронов и позитронов в ливнях, полностью развивающихся в области камеры.

Кроме того, анализ распадов частиц облегчен тем, что на стереопаре фотографий ксеноновой пузырьковой камеры картина регистрируемого события представлена с большой полнотой и наглядностью (рис. 1).

Для восстановления пространственной картины зарегистрированного события был выбран способ, в котором используются реперные точки на плоскостях, ограничивающих объем камеры, перпендикулярных к оптическим осям объективов стереофотоацпарата /9, IO/.

Разработанный способ определения знергий Е_х гамма-квантов основан на зависимости от энергии гамма-кванта суммарного пробега $\sum R_i$ ливневых электронов и позитронов в ливне, вызванном этим гамма-квантом:

 $E_{r} = \underline{k} \sum R_{i}$.

(I)

Коэффициент пропорциональности К был определен экспериментально/Ц. Было показано также, что этот коэффициент можно считать постоянным по величине в границах точности измерения $\sum R_i$. Процедура определения Е 🛪 сводится к измерению полного пробега ливневых частиц ΣR_i на некоторой длине развития ливня d_i . По значениям ΣR_{i} и d_{i} находится E_{x} из набора калибровочных кривых $E_{r} = f(\Sigma R_{i}, d_{i})$. Набор калибровочных кривых был получен экспериментально/12/.

С целью оценки точности определения энергии гамма-квантов отбирались П-мезоны из П'Хе взаимодействий, сопровождаемых одной вторичной заряженной частицей, след которой останавливается в камере, и двумя гамма-квантами. Источником таких JT-мезонов можно считать реакцию типа П⁺+n→П+ р /13/.

Для идентификации **П°-**мезонов использовалась функция распределения случаев взаимодействий указанного типа по углу Θ_{xx} между гамма-квантами. Распределение идентифицированных таким способом π° -мезонов по эффективным массам, вычисленным при помощи формулы $m_{\gamma\gamma} = \left[E_{\gamma} E_{\gamma} (1 - \cos \Theta_{\gamma\gamma})^{2} \right]$, показано на рис. 2. Среднее значение массы равно $m_{\chi \chi}$ = I32 Мэв, средняя ошибка $\Delta m_{yy}/m_{xx} = 21\%$. В эту ошибку, кроме ошибки $\Delta E_x/E_x$, внесла вклад ошибка определения угла между направлениями эмиссии обоих гамма-квантов. Ошибка $\Delta E_{\chi} / E_{\chi}$, определенная по приведенному значению $\Delta m_{yy}/m_{xy}$ с учетом ощиски $\Delta \Theta_{yy}/\Theta_{yy}$, составляет в среднем 27%. Величина ошибки **△** Е_х /Е_х может быть уменьшена до 12 + 15%, если для анализа брать случаи, в которых наблюдаемые ливни полностью развиваются в области камеры/14/.

Во второй главе диссертации излагаются также результати исследований, посвященных вопросу определения эффективности регистрации гамма-квантов определенной энергии при условии, что энергия этих гамма-квантов может быть определена с точностью, не меньше некоторой заданной $\delta = \Delta E_x/E_s$. Зависимость вероятности Р регистрации гамма-кванта с энергией Е 🛪 от заданной потенциальной длины конверсии L и заданной точности определения энергии выражается формулой:

$$= 1 - e^{-\mu (E_{s})[L - d_{s}(E_{s})]}, \qquad (2)$$

где $\mathcal{M}(\mathbf{E}_{\mathcal{F}}) = \lambda (\mathbf{E}_{\mathcal{F}})$ и $\lambda (\mathbf{E}_{\mathcal{F}})$ - средняя длина конверсии гамма-кванта с энергией Е т. d (Ет) - длина развития ливня в камере, на которой можно измерить полный пробег ливневых частиц и определить энергию ливня с ошибкой, не превышающей значение 8. Зависимость $d_{s}(E_{T})$ была найдена экспериментально/15/: $d_{s}(E_{s}) = 10^{\left[\left(\log E_{s} - \alpha_{s}/b_{s}\right)\right]^{0,25}}$

где a_{δ} и b_{δ} - параметры, значения которых даны в таблице I.

Таблица I.

. A.					
	8	30%	20%	10%	
	as	I.6I0	·I.489	I.425	
	65 B	0.581	0.056	0.052	

Вероятность регистрации гамма-квантов при условии $\Delta E_{\chi}/E_{\xi}$ 30% для исследуемого экспериментального материала заключается в пределах от 80 + 90%. Оказалось при этом, что с помощью ксеноновой пузырьковой камеры можно исследовать события, распадающиеся на несколько TT[°]-мезонов и гамма-квантов. Эффективность регистрации таких событий достигается на основе метода определения эффективности регистрации каждого гамма-кванта^{/16/}.

Точность определения эффективной массы M(K S) из комбинации К гамма-квантов зависит от точности определения E_S и точности определения угла между направлениями эмиссии гамма-квантов. Средняя ошибка определения значения M(K S) в зависимости от К соответствует значению от 15 до 20% и получена из экспериментальных данных.

Анализ методических возможностей ксеноновой пузырьковой камеры для исследования распадов частиц на Л²-мезоны и гаммакванты был выполнен с использованием специальных программ обработки данных эксперимента на электронно-вычислительных машинах.

Оценку фона в распределениях эффективных масс систем из нескольких \mathfrak{M}° -мезонов и гамма-квантов удается сделать довольно просто, так как имеется возможность исследовать в одном эксперименте события с разным числом гамма-квантов K = I,2,..., m и строить для событий, например, с k < m гамма-квантами, распределения эффективных масс комбинаций из K = m-I, K = m - 2,...гамма-квантов, учитывая таким образом вклад ложных событий в исследуемое распределение/16/. Третья глава диссертации содержит сведения об экспериментальных данных по исследованию спектров эффективных масс систем. из нескольких \mathfrak{M}° -мезонов и гамма-квантов. Сведения были получены в результате просмотра и анализа 500 000 фотографий ксеноновой пузырьковой камеры, облученной в пучке \mathfrak{M}^{+} -мезонов с импульсом 2,34 Гэв/с от синхрофазотрона ОИЯИ.

В процессе просмотра были выбраны фотографии событий с одной вторичной заряженной частицей, след которой заканчивался в камере без признаков ядерного взаимодействия или распада. Отобранные случаи можно отнести к реакциям типа/15/: $\pi^+ n \rightarrow \chi^{o} + p$, где χ^{o} – любая частица, распадающаяся на π^{o} -мезоны и гамма-кванты. Распределение этих случаев, в зависимости от числа К гамма-квантов, дано в таблице П. Кроме количества непосредственно наблюдаемых событий, в таблице приведено число случаев после учета эффективности регистрации гамма-квантов.

Таблица П.

and the second	and the second	
Число событий		
Наблюдаемое	С учетом эффект. регистраций	
746	1052	
230	44I	
306	657	
29	70	
51	126	
	<u>Число с</u> Наблюдаемое 746 230 306 29 51	

В каждом классе событий были получены спектры эффективных масс.

В событиях с $k \ge 2$ выделялись пары гамма-квантов, источником которых могли быть π -мезоны или η -мезоны. С этой целью были вычислены спектры эффективных масс $m_{\pi\pi}$, комбинаций по два гамма-кванта и определено количество π -мезонов в каждом событии. В построенном для каждого класса событий распределении по $m_{\pi\pi}$ наблюдается пик при значении массы π -мезонов, и число случаев в пике равно ожидаемому числу π -мезонов.

В этой главе даны результаты исследования влияния геометрии ксеноновой пузырьковой камеры на полученные экспериментальные данные, а также результаты анализа статистической зависимости зарегистрированных гамма-квантов в отобранных событиях.

Приводятся и энергетические, и угловые спектры вторичных протонов и гамма-квантов, а также спектры эффективных масс систем ГГ, П°Г, Л°Г, Л°ПЛ, Д°ЛП, полученные на экспериментальном материале ксеноновой пузырьковой камеры ЛВЭ ОИЯИ, облученкой П⁺-мезонами с импульсом 2,34 Гэв/с.

В четвертой главе диссертации проведен анализ экспериментальных данных по исследованию спектра эффективных масс ПП-системы/17/, а в пятой главе подведены итоги работы.

Среди случаев с четырымя гамма-квантами, удовлетворяющих критериям просмотра, было выделено I70 событий, которые можно трактовать как случаи взаимодействия π^n , содержащие в конечном состоянии два π° -мезона и один протон. Распределение эффективных масс М ($\pi^\circ \pi^\circ$) для этих событий показано на рис.3. ЗаштрихоПолученное экспериментальное распределение эффективных масс M(N°T), после вычитания вклада событий от реакции с тремя T-мезонами, сравнивалось с распределением эффективных масс случайных комбинаций двух T°-мезонов. Распределение этих случайных комбинаций по эффективным массам было получено для фиктивных событий с четырьмя гамма-квантами, составленных при помощи метода Монте-Карло, с использованием экспериментальных угловых и энергетических спектров гамма-квантов исследуемых 170 событий/¹⁸/. Нормировка спектров была сделана к полному числу событий в диапазоне значений M(T°T°) от 270 до 500 Мэв (рис.4).

На рис.5 показано распределение $M(\mathcal{T}\mathcal{T}\mathcal{N})$ после вычитания вклада от событий с 3 \mathcal{T} -мезонами и вклада случайных комбинаций $\mathcal{T}\mathcal{T}\mathcal{I}$. Наблюдаются две группы событий над фоном: при значении $M(\mathcal{T}\mathcal{T})$ в интервале от 600 до 900 Мэв и в интервале от 1000 до 1300 Мэв. Группу случаев, приходящихся на второй интервал значений эффективных масс, можно отнести за счет распада $f^{\circ} \rightarrow 2 \mathcal{T}^{\circ}$. Случаи, приходящиеся на интервал значений эффективных масс 600 + 900 Мэв, как показал подробный анализ, приведенный в диссертации, можно отнести за счет связанной системы $\mathcal{T}\mathcal{T}\mathcal{C}$.

Анализ спектра эффективных масс системы П П с использованием формулы Брейта-Вигнера дает следующие величины, харак-

IO

II

теризующие резонанс в системе TT: эффективная масса резонанса M $(TT) = 730 \pm 30$ Мэв и ширина $\Gamma = 170 \pm 90$ Гэв.

Используя сведения об интенсивностях рождения связанной системы $\pi^{\circ}\pi^{\circ}$ ч γ° -мезона в реакции типа $\pi \to \chi^{+}\rho$, полученные в одном и том же эксперименте, можно было определить соотношение между их эффективными сечениями: $6[\pi^{+}n \to (\pi^{\circ}\pi^{\circ})\rho] \simeq 0.16[\pi^{+}n \to \gamma^{\circ}\rho].$

Анализ распределений событий с тремя гамма-квантами типа $\mathcal{T}^{\circ}\mathcal{S}$ и $\mathcal{N}^{\circ}\mathcal{S}$, а также событий с пятью гамма-квантами типа $\mathcal{T}^{\circ}\mathcal{T}^{\circ}\mathcal{S}$, привел к следующим соотношениям для нейтральных каналов распада ω° -частицы: $N(\omega^{\circ} \rightarrow \mathcal{T}^{\circ}\mathcal{S})/N(\omega^{\circ} \rightarrow \mathcal{T}^{\circ}\mathcal{S}) = 22 \pm 8\%$, $N(\omega^{\circ} \rightarrow \mathcal{T}^{\circ}\mathcal{T})/N(\omega^{\circ} \rightarrow \mathcal{T}^{\circ}\mathcal{S}) = 16 \pm 13\%$.

Основные результаты диссертации заключаются в следующеи:

I. Разработана и систематически изложена методика исследования ядерных реакций, сопровождаемых несколькими \mathfrak{T}^{o} -мезонами и гамма-квантами, в частности:

а) дан способ восстановления пространственной картины
 событий, зарегистрированных в 26-литровой ксеноновой пузырьковой
 камере ЛВЭ ОИЯИ. Составлена программа обработки на ЭВМ результа тов измерения геометрии события;

б) разработан способ определения энергий гамма-квантов, зарегистрированных в камере по возникшим от них электронно-позитронным парам и электронно-фотонным ливням. Составлена программа обсчета результатов измерения на ЭВМ;

в) предложен и использован в анализе экспериментального
 материала способ учета эффективности регистрации гамма-квантов и

событий, сопровождаемых многочисленными гамма-квантами. Написана соответствующая программа расчетов на ЭВМ;

г) предложен и использован в эксперименте способ учета фона при анализе распределений эффективных масс, полученных из комбинаций гамма-квантов.

2. Написана программа моделирования случайных комбинаций нескольких гамма-квантов. Она применялась при анализе экспериментальных данных.

3. Были проанализированы спектры эффективных масс систем уу, П°Г, П°Г, Л°ГГ, Л°ГГ, полученные при исследовании взаимодействий с ядрами ксенона.

4. В результате анализа распределений эффективных масс систем ПП получено указание на присутствие резонанса с массой около 730 Мэв в системе ПП.

5. Определены соотношения между каналами распада ω° -мезона на π° \mathcal{K} , $\eta^{\circ} \mathcal{K}$ и π° π° \mathcal{K} .

Содержащиеся в диссертации материалы опубликованы в работах /9, IO, II, I4, I5, I6, I7, I8/ и докладывались на международных конференциях по физике высоких энергий в Беркли (I966 год), в Вене (I968 год) и в Киеве (I970 год).

12

13

Литература

1. V.G.Grishin and G.I.Kopylov. Nuovo Cim., 37, 962 (1965).

2. S. Badier and G. Bouchiat. Phys. Lett., 15, 96 (1965).

3. G.Feinberg. Phys.Rev., 140, B1402 (1965).

- 4. L.Wolfenstein. Phys. Rev. Lett., 13, 380 (1964).
- 5. T.D.Lee, L.Wolfenstein. Phys. Rev., 138B, 1490 (1965).
- 6. T.T.Wu, G.N.Yang. Phys. Rev. Lett., 13, 380 (1964).
- 7. a) V.Barmin et al. Phys.Rev.Lett., <u>33B</u>, 377 (1970).
 - b) I.A.Budagov et al. Phys.Lett., <u>28B</u>, 211 (1968).
 - c) M.Banner et al. Phys.Rev., <u>188</u>, 2033 (1969).
- 8. a) J.Veillet et al. Phys.Rev.Lett., v. 10, No 1 (1962).
 - b) L.Durand, Y.Chiu. Phys. Rev. Lett., v. 14, NO 9 (1965).
 - c) E.J.Shibata et al. Phys. Rev. Lett., v.25, No 17 (1970).
 - d) M.Feldman et al. Phys.Rev.Lett, v.22, No 7 (1969).
- 9. Т.Канарек, Л.С.Охрименко, З.М.Косарева. PI-3487, препринт ОИЯИ, Дубна (1967).
- 10. Т.Канарек, Л.С.Охрименко. Р-2179 (1965), препринт ОИЯИ, Дубна.
- Л.П.Коновалова, Л.С.Охрименко, З.С.Стругальский.
 ПТЭ, <u>6</u>, 26 (1961).
- а) Я.Даныш, З.С.Стругальский, <u>О.Чижевский</u>.
 Р-II44 (1962), препринт ОИЯИ, Дубна.
 - б) А.С.Мартынов,

Препринт ОИЯИ, РІ-3349 (1967), Дубна.

13. a) Z.S.Strugalski. Nucl. Phys., <u>87</u>, 280 (1966).

T4

b) Z.S.Strugalski, T.Siemiarcuk. Phys.Lett., 13, 347 (1964)

- И.А.Ивановская, Т.Канарек, Л.С.Охрименко, Б.Словинский,
 З.С.Стругальский, И.В.Чувило, З.Яблонский.
 ПТЭ, 2, 39 (1968).
- 15. Л.С.Охрименко, Б.Словинский, З.С.Стругальский. Препринт ОИЯИ, РІЗ-З9І8 (1968), Дубна.
- Z.S.Strugalski, I.V.Chuvilo, T.Gemesy, I.A.Ivanovskaya,
 Z.Jablonski, T.Kanarek, S.Krasnovsky, L.S.Okhrimenko,
 G.Pinter, B.Slowinski. EI-5349 (1970).
- Z.S.Strugalski, I.V.Chuvilo, T.Gemesy, I.A.Ivanovskaya,
 Z.Jablonski, T.Kanarek, S.Krasnovsky, L.S.Okhrimerko,
 G.Pinter, B.Slowinski. Nucl. Phys., <u>B24</u>, 358 (1970).
- З.М.Косарева и Л.С.Охрименко.-БІ-І-4634 (1969), ОИЯИ, Дубна.

Рукопись поступила в издательский отдел 23 декабря 1971 года.

 $\begin{array}{c} 4 \\ 0 \\ N \\ 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 120 \\ 240 \\ 360 \\ M_{11} \\ M \\ eV \end{array}$

Картина события типа П +n -> 2 л°+р , зарегистрированного в 26-литровой ксеноновой пузырьковой камере.

Рис.2. Распределение эффективных масс пар гамма-квантов от идентифицированных П°-мезонов.

I9

