ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ лаборатория высоких энергий

<u>C346</u> M-215

1 - 4429

T. GROXNHyeby D.W.

Э.И.Мальцев

ИССЛЕДОВАНИЕ НЕКОТОРЫХ РАСПАДНЫХ СВОЙСТВ К + -МЕЗОНОВ

Специальность 040 - экспериментальная физика

Автореферат диссертации на соискание учёной степени кандидата физико-математических наук

Дубна 1969

Работа выполнена в Лаборатории высоких энергий Объелиненного института ядерных исследований.

Научный руководитель:

доктор физико-математических наук И.В.Чувило Официальные оппоненты: доктор физико-математических наук Р.М.Рындин,

кандидат физико-математических наук Э.О.Оконов

Ведущее научно-исследовательское учреждение: Институт теоретической и экспериментальной физики.

Автореферат разослан Защита диссертации состоится дании Учёного совета Лаборатории высоких энергий Объединенного института ядерных исследований.

Адрес: Дубна, Московской области, Объединенный институт ядерных исследований.

С диссертацией можно ознакомиться в библиотеке ЛВЭ.

Учёный секретарь Совета

Monsaref

С.В.Мухин

1 - 4429

Э.И.Мальцев

ИССЛЕДОВАНИЕ НЕКОТОРЫХ РАСПАДНЫХ СВОЙСТВ **К⁺** -МЕЗОНОВ

Специальность 040 - экспериментальная физика

, Автореферат диссертации на соискание учёной степени кандидата физико-математических наук

Успех теории универсального V-А - взаимодействия в интерпретации слабых взаимодействий без изменения странности, таких как распады нуклонов, пионов и мюонов и захват мюона в значительной степени стимулировал расширение исследования слабых процессов, для которых странность не сохраняется. Из всех распадов, обусловленных слабым взаимодействием с $\Delta S \neq 0$, распады К -мезонов выделяются широким кругом имеющихся возможностей проверки различных аспектов теории. Поиск псевдоскалярных, скалярных и тензорных связей, исследование типа лептонной связи с адронными токами, проверка принципов и-еуниверсальности, исследование правил отбора | ΔI | = 1/2 и $\Delta Q = \Delta S$, оценка эффектов нарушения T-и CP -инвариантностивот далеко неполный круг вопросов, которые могут быть решены при тщательном изучении распадных свойств К -мезонов. В настоящей диссертации излагаются результаты исследования некоторых распадных свойств К⁺ -мезонов, а именно, экспери-

ментальное изучение формфактора $\xi(q^2)$ в распаде $K^+ \rightarrow \mu^+ \pi^0 \nu$, оценка вида энергетической структуры формфакторов $f_{\pm}(q^2) =$ = $f_{\pm}(0)(1+\lambda_{\pm}q^2/\pi_{\pi}^2)$ из этого же распада; результат поиска слабоэлектромагнитных распадов по каналу $K^+ \rightarrow \pi^+ \pi^0 \gamma$ в области больших энергий π^+ -мезона и, наконец, поиск возможного процесса прямой эмиссии фотона в распаде $K^+ \rightarrow \pi^+ \pi^0 \gamma$ при малых энергиях π^+ -мезона.

Диссертация состоит из пяти глав и приложения. В первой главе дается краткий обзор распадных свойств К -мезонов и приводятся основные экспериментальные данные настоящего, времени, относящиеся к полулептонным $K \to \pi + \ell + \nu_{\phi}$ и слабоэлектромагнитным $K \to \pi + \pi + \gamma$ распадам.

Во второй главе описывается постановка задачи и основные предположения данного цикла работ. Глава III содержит описание всех трех наших экспериментов, включая аппаратуру и методику обработки материала. В главе IV проводится анализ полученных экспериментальных данных по всем трем задачам. В последней, пятой главе делается краткое заключение об итогах эксперимента. В приложении приведены основные программы, употреблявшиеся при анализе данных.

Глава I

Наиболее интересными распадами К -мезонов являются так называемые "полулептонные" распады по схемам

 $K \rightarrow \pi + e + \nu_e$,

 $K \rightarrow \pi + \mu + \nu_{\mu}$

и "слабоэлектромагнитные" переходы вида

Исследование полулептонных распадов позволяет изучать вид связи, ответственной за эти переходы, проверять эффекты, связанные с нарушением Т- и СР -инвариантности, исследовать структуру формфакторов, описывающих вклад от сильного взаимодействия, получать информацию о величине угла Каббибо. Кроме этого, сравнение формфакторов и частот распада нейтральных и заряженных К -мезонов обеспечивает проверку правил $|\Delta I| = 1/2$ и $\Delta Q = \Delta S$. Особо интересен для сравнения с предсказанием формфактор $\xi(q^2) = f_{-}(q^2)/f_{+}(q^2)$. С исследованием этого параметра связано решение нескольких вопросов. Нарушение Т -инвариантности в полулуптонных распадах приведет к появлению фазы ξ , отличной от 0 или 180°. Правило $|\Delta I| =$ = 1/2 дает соотношение между ξ_{\pm} и ξ_{0} в распадах нейтральных и заряженных каонов - $\xi_{0} = \xi_{\pm}$. Если величина ξ известна, то сравнение формфакторов f_{+}^{e} и f_{+}^{μ} из распадов K_{e3} и $K_{\mu3}$ может быть использовано для проверки принципа μ - е универсальности, при выполнении которого $f_{+}^{e} = f_{+}^{\mu}$.

С исследованием слабоэлектромагнитных переходов типа К - А + В + + + + у также связан ряд интересных проблем. Фотон в таких распадах может возникать двумя путями - с помощью обычного тормозного излучения и от возможного процесса прямой эмиссии. Так называемая "прямая" эмиссия до сих пор не была обнаружена экспериментально, но как раз с этим механизмом возникновения фотона связан ряд интересных проблем. Прежде всего, само подтверждение существования прямых переходов позволило бы сделать предварительные заключения о структуре К -мезона. Далее таким же образом, как и в полулептонных распадах, при исследовании слабоэлектромагнитных процессов можно провести прямую проверку Т -инвариантности. Более того, при изучении распадов К → π π у могут быть, в принципе, замечены эффекты, связанные с нарушением СР -инвариантности, при сравнении парциальных частот $\Gamma(K^+ + \pi^+ \pi^0 \gamma)$ прям. Эмиссия= = Γ(K⁻→π⁺ π^o γ) прям. эмиссия или энергетических спектров этих сопряженных реакций. Современные данные, полученные при экспериментальном исследовании полулептонных и слабоэлектромагнитных распадов, приводят к следующим заключениям:

 За полулептонные распады ответственно векторное взаимодействие. Примесь скалярных и тензорных связей не превышает
 15% по амплитуде.

2. Величина формфактора $\xi(q^2)$, получаемая из отношения частот распадов К₀₃ и К_{µ3}. равна $\langle \xi \rangle = 0,6\pm0,2;$ по поляризационным измерениям в распадах К_{µ3} Re $\xi = -1,0\pm0,2.$

3. Экспериментальные данные не противоречат принципу локального ($\lambda_e = 0$) рождения лептонной пары

$\lambda_{e} = 0,011 \pm 0,012$.

4. He замечено отклонения от предсказаний правила ΔI = 1/2 $R = \frac{\Gamma(K^{0} \rightarrow \pi e \nu)}{\Gamma(K^{+} \rightarrow \pi e \nu)} = 1.94\pm0.08$ (R предск. = 2.024).

5. Возможная примесь амплитуды с $\Delta Q = \Delta S$ не превышает 10%.

6. Экспериментальные результаты согласуются с выводом о сохранении Т –инвариантности: $(Im \xi = 0)$

• $Im \xi = -0.014 \pm 0.066$.

7. Получены указания на нарушение зарядовой симметрии в распадах нейтральных каонов

> $R_{\mu} + / R_{\mu} - = 1,0081 \pm 0,0027$ $(\Gamma_{e^{+}} - \Gamma_{e^{-}}) / (\Gamma_{e^{+}} + \Gamma_{e^{-}}) = (2,24 \pm 0,36). \ 10^{-3},$

что впервые указывает на возможное нарушение СР –инвариантности в полулептонных распадах К –мезонов.

8. За распады $K^+ \rightarrow \pi^+ \pi^0 \gamma$, $K^+ \rightarrow \pi^+ \pi^- \gamma$ и $K^0_S \rightarrow \pi^+ \pi^- \gamma$ ответственно внутреннее тормозное излучение, возможная примесь амплитуды прямой эмиссии не превышает 12%.

9. Верхний предел прямых магнитных переходов M1 в распаде $K_{L}^{0} \rightarrow \pi^{+}\pi^{-}\gamma$ соответствует относительной частоте $\leq 4, 2.10-4$.

10. Не замечены эффекты нарушения T --инвариантности при экспериментальном исследовании распада $K^+ \to \pi^+ \pi^0 y$.

Глава II. Постановка задачи и основные

предположения данного эксперимента

Настоящий эксперимент был выполнен в два этапа и предназначался для решения следующих задач:

I часть (1962 - 1965 г.г.)

1. Исследование полулептонного распада $K^+ \to \mu^+ \pi^0 \nu$:

а) определение величины формфактора $\xi(q^2);$

б) исследование энергетической структуры формфакторов f $_+$ (q²).

2. Поиск слабоэлектромагнитных переходов $K^+ \to \pi^+ \pi^0 \gamma$ с детектированием всех γ – квантов и π^+ –мезона распада при больших энергиях π^+ –мезонов.

Ш часть (1966-1969 г.г.)

1. Исследование слабоэлектромагнитных переходов $K^+ \pi^+ \pi^0 \gamma$ при малых энергиях π^+ -мезона в плане выявления возможной прямой эмиссии γ -кванта.

К моменту начала 1-ой части эксперимента ситуация в рассматриваемых вопросах была неопределенной. Появившиеся после начала нашего эксперимента работы впервые указывали на наличие векторного варианта взаимодействия, но были противоречивы в выводе о величине формфактора ξ ; $\xi_1 = 2$,

В отношении слабоэлектромагнитных переходов типа $K^+ \cdot \pi^+ \pi^0 \gamma$ положение было еще более неопределенным. Само существование таких распадов не было доказано, имелись лишь примеры "аномальных" распадов $K^+ \cdot \pi^+ \pi^0$ с энергией π^+ -мезона, меньшей энергии π^+ из обычного $K^+_{\pi 2}$ -распада, причём γ -кванты вообще не наблюдались.

Наш эксперимент был выполнен на ксеноновой пузырьковой камере^{/1/} 55 х 28 х 17 см³, обладающей большой эффективностью к регистрации у -квантов и большой тормозной способностью по отношению к заряженным частицам вплоть до импульсов 500-600 Мэв-с⁻¹.

7

I часть эксперимента

Основные предположения:

1. Имеет место инвариантность относительно обращения . времени.

2. Взаимодействие локально.

3. Взаимодействие в конечном состоянии пренебрежимо мало.

Основные критерии отбора:

Распады целиком лежат в выделенной рабочей области.
 Трек к⁺ - мезона имеет характерные признаки останов-

ки.

4. Вторичная заряженная частица имеет чётко выраженный распад с электроном.

Контрольный эксперимент при исследовании распада $K^+ \rightarrow \sigma^+_{\mu\nu}$ состоял в определении варианта взаимодействия по всем используемым при анализе распределениям/2/.

II часть эксперимента

Основные предположения те же, что и в I-ой части, с добавлением следующих:

а) формфакторы g_{e_1} и g_{m_1} в распаде $K^+ \rightarrow \pi^+ \pi^0 \gamma$ постоянны;

б) тормозное излучение в исследуемой области энергий π^+ -мезона $0 \leq \Gamma_{\pi^+} \leq 60$ Мэв мало;

с) амплитуда магнитных переходов мала по сравнению с амплитудой электрических переходов (|M1| << |E1|).Контрольные эксперименты – определение относительных частот следующих распадов:

8

1. $K^{+} \to \pi^{+} + \pi^{0}$. 2. $K^+ \rightarrow \pi^+ + \pi^0 + \pi^0$.

3. $K^+ \to \pi^+ + \pi^- + \gamma$, 4. $K^+ \to \pi^+ + \pi^0 + \gamma$ (при больших энергиях π^\pm -мезона).

Глава III. Описание эксперимента

Облучение камеры медленными (P = 750 Мэв/с) K^+ -мезонами для двух этапов эксперимента производилось на двух различных каналах частии. 1-й канал – частично сепарированный пучок K^+ -мезонов, выведенный по углом 40° . Сепарация – в бериллиевом замедлителе. Число K^+ -мезонов в камере за цикл $\approx 0,15$, число π^+ -мезонов ≤ 15 . II-ой канал – с двухступенчатой сепарацией пучка, выведенного под углом' $\approx 0^\circ$. Сепарация производилась с помощью электростатического сепаратора и графитового замедлителя. Число K^+ -мезонов за цикл в камере ≈ 0.8 , число π^+ -мезонов ≤ 10 . В первой экспозиции получено около 8000 остановок K^+ -мезонов в камере, во второй – около 100000.

Просмотр проводился только физиками и был трехкратным. Измерения в первой части эксперимента велись на микроскопах, вс второй – на полуавтоматах. Контроль измерений, проведенных дважды для первого облучения и трижды – для второго, осуществлялся с помощью специальной программы "СЕЛЕКТОР". Ошибки измерений координат составляли

 $\sigma_v = \sigma_v = 0.100$ MM,

 $\sigma_{z} = 0,650$ мм.

Ошибки вычисления для пробегов не превышали

 $\Delta R/R \leq 3,5\%$.

Восстановление направления заряженной вторичной частицы производилось с учётом многократного рассеяния в среде. Далее в Ш главе описываются программы восстановления геометрических и кинематических параметров событий, программы моделирования и подгонки событий, а также ряд вспомогательных программ. Всего в эксперименте использовалось около 20 составленных нами программ обработки и анализа данных.

Глава IV. Анализ экспериментальных данных.

А. Исследование полулептонного распада $K^+ \rightarrow \mu^+ \pi^o \nu$

Критерии отбора и программы реконструкции прошло 232 события из ≈ 500 отобранных типа К⁺_{µ3}. Примесь от распадов налету найдена пренебрежимо малой. Примесь от r' - распада составляла 6 событий, от распада К⁺ → π⁺ + π⁰ не более 4-х событий.

Контрольное исследование варианта взаимодействия привело к следующим значениям χ^2 - вероятностей:

векторная связь $\chi^2 = 4,87$ р(χ^2) ≈ 84%, скалярная связь $\chi^2 = 22,30$ р(χ^2) < 1%, тензорная связь $\chi^2 = 34,70$ р(χ^2) << 1%,

Для величины отношения формфакторов f_ и f₊ , $\xi = f_{-}/f_{+}$ при построении общей функции максимального правдоподобия по всему статистическому материалу получено значение/3,4/.

$$\xi = -0,5 + 3,4 \\ -1,3$$

Исследование энергетической структуры формфакторов дало эначение^{/5/} + 0,046

 $\lambda = 0,045 + 0,046 - 0,032$.

Оба эти значения хорошо согласовались с данными 1964-1965 г.г. и не противоречат современным данным ($<\xi>$ = 0,6±0,2; $<\lambda>$ = 0,024+0,008).

В. Поиск слабоэлектромагнитного распада $K^+ \rightarrow \pi^+ \pi^- \sigma_y$

Среди полученных остановок K^+ -мезонов обнаружены 2 события с 3-мя у -квантами, у которых пробег вторичной заряженной частицы был больше максимально возможного пробега π^+ -мезона из распада $K^+ \rightarrow \pi^+ \pi^0 \pi^0$. Анализ/6,7/ данных распадов указал на то, что наиболее вероятной трактовкой этих событий является схема $K^+ \rightarrow \pi^+ \pi^- \circ \gamma^- / 8 / 2$. Другая возможная интерпретация зарегистрированных распадов – это схемы $K^+ \rightarrow \pi^+ \pi^- \gamma^- \gamma^- \kappa^-$ или $K^+_{\mu 3}$ налету с добавлением случайного γ -кванта. Однако вероятность таких конфигураций не превышает р $\cong 10^{-6}$.

Относительная частота процесса K⁺, $\pi^+ \pi^0 \gamma$, вычисленная нами по двум случаям для $T_{\pi} + > 55$ Мэв, составляет R = = $\Gamma(K^+, \pi^+ \pi^0 \gamma, T_{\pi^+} > 55$ Мэв)/ $\Gamma \cdot (K^+ +$ все) = $(4, 4 \pm 4, 0) \cdot 10^{-4}$, что вполне хорошо согласуется с современными данными R= $(2, 2 \pm 0, 7) \cdot 10^{-4}$.

С. Исследование слабоэлектромагнитных распадов в области малых энергий "-мезона

Основные трудности при решении этой задачи были связаны с разделением у - квантов от разных распадов и отделением фона от распада K⁺→π⁺π⁰ π⁰. Первое затруднение снималось выбором загрузки камеры K⁺-мезонами. При наличии 0,8 K⁺ на кадр и при применении критерия отбора "отсутствует в области с $\phi = 30$ мм вокруг точки распада другая вершина остановки" вероятность смешивания У -квантов от разных распадов найдена равной Р = 5·10⁻⁵. Фон от r' - распадов отделялся с помощью специально созданной фит-программы "КВАРК". Данные контрольных экспериментов по определению относительных частот других распадов сведены в таблицу 1.

T	~			
1	aor	тип	а	- 1

Распад	Относит, частота по нашему эксперименту	Литературные данные	
$ \frac{K^{+} \rightarrow \pi^{+} \pi^{0}}{K^{+} \rightarrow \pi^{+} \pi^{0} \pi^{0}} \pi^{0} K^{+} \rightarrow \pi^{+} \pi^{+} \pi^{-} \gamma K^{+} \rightarrow \pi^{+} \pi^{0} \gamma , T_{\pm} > 55 $	$0,202\pm0,037$ $0,018\pm0,005$ $\leq 0,9\cdot10^{-4}$ $(2,7+2,7)\cdot10^{-4}$	$0,2084\pm0,0028$ $0,0169\pm0,0005$ $(10\pm4)\cdot10^{-5}$ $(2,2\pm0,7)\cdot10^{-4}$	

Критерии отбора прошли 65 событий из 85, которые могли быть интерпретированы как распад $K^+ \rightarrow \pi^+ \pi^0 \gamma$. Из них 51 событие полностью удовлетворяло требованиям точности измерений и было обработано по фит-программе. Исследование моделированных распадов $K^+_{\pi\pi\gamma}$ и τ' позволило^{/9/} установить критерии отбора по χ^2 и $|f_1|$ – точности выполнения уравнений связи (см. рис. 1+4). Они оказались равными: $\chi^2 \leq 5$; $|f_1| \leq 0,002\Gamma$ эв, $|f_2| \leq 0,0004 \Gamma_{\ni B}^2$. В данную выбранную область попадает 1,5 из 100 фоновых событий. Анализ реальных событий, предполагавшихся распадами $K^+ \rightarrow \pi^+ \pi^0 \gamma$, показал, что в эту же область попало 1 событие из 51. Таким образом, соотношение сигнал-фон равно 1:0, 785. Анализ реальных τ' – распадов привел к тем же соотношениям для событий, попавших в выделенные области, что и для моделированных случаев.

Полученный результат/10/ – одно событие при среднем уровне фона 0,785 – вновь, как и для распадов K_S^0 и K_L^0 -мезонов и K^+ – мезонов при T_{π^+} > 55 Мэв, указывает на малость амплитуды прямой эмиссии γ –кванта или ее полное отсутствие.

Глава V. Заключение

Результаты работ, входящих в данную диссертацию, можно кратко суммировать следующим образом:

 Наиболее важным итогом исследования является полученное впервые прямое доказательство существования переходов вида К⁺→π⁺π⁰γ.

2. Исследование полулептонных распадов, одновременно с рядом других работ, представленных на Конференцию по физике высоких энергий (Дубна, 1964), привело к окончательному выбору величины $\xi(q^2)$ и установлению предела величины энергетической зависимости формфактора $f_+(q^2)$. 3. Поиск переходов $K^+ \rightarrow \pi^+ \pi^0 \gamma$, идущих через прямую эмиссию γ - кванта в наиболее благоприятной для детектирования таких процессов области, привел к выводу о малости или отсутствии таких амплитуд, что практически лишает нас возможности проверок T- и CP - инвариантности с помощью изучения данных распадов.

В приложении приводится ряд наиболее важных из использованных нами программ.

Литература

- T.J.Kanarek, E.I.Maltzev, T.Nagy, J.Nagy, A.Prokes,
 G.M.Stashkov, E.P.Ustenko, I.V.Chuvilo, U.N.Shkobin. Int.
 Conf. of High Energy Accel. and Instr. CERN 1959, p.508.
- В.С.Курбатов, Э.И.Мальцев, А.И.Маслаков, А.А.Стручков, А.И.Шкловская. Препринт ОИЯИ 1955, Дубна 1965.
- В.С.Курбатов, Э.И.Мальцев, А.И.Маслакова, И.В.Чувило, А.И.Шкловская. Межд. конф. по физике высоких энергий, Дубна, т. 2, 1966 стр. 122.
- В.Е.Комолова, В.С.Курбатов, Э.И.Мальцев, А.И.Маслаков, Г.А.Ососков, И.В.Чувило. Препринт ОИЯИ 2616, Дубна 1966.
- Б.С.Курбатов, Э.И.Мальцев, А.И.Маслаков, И.В.Чувило. Препринт ОИЯИ 2629, Дубна 1966.
- E.I.Maltzev, A.P.Karatsuba, T.Nagy, J.Nagy. Proc. of an Intern. Conf. on Instr. for High Energy Phys., 1960, p.113.
- В.С.Курбатов, Э.И. Мальцев, А.И. Маслаков, Г.М. Сташков, И.В.Чувило, А.И.Шкловская. Препринт ОИЯИ 1748, Дубна 1964; ПТЭ <u>5</u>, 61 (1965).
- 8. В.С.Курбатов, Э.И.Мальцев, А.И.Маслаков, И.В.Чувило, А.И.Шкловская ЯФ <u>1</u>, 277 (1965).

- В.С.Ваняшин, Э.И.Мальцев, Г.Д.Пестова, З.В.Солодовникова, Н.Г.Фадеев, Д.И.Хубуа, И.В.Чувило, Ш.С.Шошиашвили. Препринт ОИЯИ Р1-3594, Дубна 1967.
- Э.И.Мальцев, Г.Д.Пестова, З.В.Солодовникова, Н.Г.Фадеев,
 И.В.Чувило, Е.М.Лихачева, В.М.Карнаухов, Р.Г.Салуквадзе,
 Д.И.Хубуа, М Ш.С.Шошиашвили, М.А.Дасаева, И.И.Тулиани.
 Препринт ОИЯИ 1-4426, Дубна 1969; направлено в ЯФ.

Рукопись поступила в издательский отдел 17 апреля 1969 года.

Рис. 1. χ^2 -распределение 642 моделированных распадов К⁺- $\pi^+\pi^0\gamma$ без отбора по граничным условиям.

щих точности выполнения уровнений связи $m_k - E_{+} - \Sigma E_{\gamma_i}$ и $m_{\pi}^2 - 2E_i E_i (1 - \cos a_{ik})$ после выхода из итераций в фитпрограмме. Контуром отмечена выбранная граничная область $|f|| \le 0,002$ и $|f| \le 0,0004$, в которую попадает 68% всех событий (для распада $K^+ \to \pi^+ \pi^- \gamma$).

Рис. 3. χ^2 - распределение для правильной гипотезы 436 моделированных распадов $K^+ \rightarrow \pi^+ \pi^0 \gamma$, оставшихся после прохождения критериев отбора | f₁ | \leq 0,002 и | f₂ | \leq 0,0004. В область $\chi^2 \leq 5$ попадают 423 (или 93,6%) события.

٢.

Рис. 4. χ^2 - распределение 520 распадов $K^{+} \pi^{+} \pi^{0} \pi^{0} c$ одним неконвертировавшим γ -квантом для всех трех комбинаций $\gamma_1 + \gamma_k$. При $\chi^2 \le 10$ производился отсев по критериям $|f_1| \le 0,002$ и $|f_2| \le 0,0004$. В область $\chi^2 \le 5$ попало 1,5% случаев (8 событий).