ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

ЛАБОРАТОРИЯ ВЫСОКИХ ЭНЕРГИЙ

M-482

1 - 4411

Н.Н.Мельникова

ИЗУЧЕНИЕ РЕАКЦИЙ С РОЖДЕНИЕМ СТРАННЫХ ЧАСТИЦ В П⁻Р-ВЗАИМОДЕЙСТВИЯХ ПРИ 4,0 ГЭВ/С

Специальность 040 - экспериментальная физика

Автореферат диссертации на соискание ученой степени кандидата физико-математических наук

Работа выполнена в Лаборатории высоких энергий Объединенного института ядерных исследований.

Научный руководитель: кандидат физико-математических наук

Официальные оппоненты: член-корреспондент АН СССР

М.Г. Мещеряков

А.А. Кузнецов

кандидат физико-математических наук Е.П. Кузнецов

Ведущее научно-исследовательское учреждение: Институт теоретической и экспериментальной физики.

Автореферат разослан 1969 г. Защита диссертации состоится 1969 г. на заседании Ученого совета Лаборатории высоких энергий Объединенного института ядерных исследований.

Адрес: г. Дубна, Московской области, Объединенный институт ядерных исследований.

С диссертацией можно ознакомиться в библиотеке ЛВЭ.

Ученый секретарь Совета

С.В. Мухин

1 - 4411

Н.Н.Мельникова

ИЗУЧЕНИЕ РЕАКЦИЙ С РОЖДЕНИЕМ СТРАННЫХ ЧАСТИЦ В 77-р-ВЗАИМОДЕЙСТВИЯХ ПРИ 4,0 ГЭВ/С

Специальность 040 - экспериментальная физика

Автореферат диссертации на соискание ученой степени кандидата физико-математических наук

Cobellachans unchany LACTURE RECREASED SKENNOTEN.

Изучение реакций с рождением странных частиц в ядерных процессах играет важную роль для выяснения характерных особенностей сильных взаимодействий.

За последние годы проведено большое количество экспериментальных исследований, посвященных как процессу рождения странных частиц, так и изучению характеристик вторичных взаимодействий. Особенно много данных о рождении странных частиц получено в К -нуклонных взаимодействиях $^{/1/}$. Значительно меньший объем информации имеется в π -N -взаимодействиях. Трудности в изучении процессов рождения странных частиц в π -нуклонных взаимодействиях, с одной стороны, объясняются малостью эффективных сечений этих процессов, с другой – большим числом каналов реакций.

В связи с отсутствием теории сильных взаимодействий, экспериментальные данные, относящиеся к рождению странных частиц в мезон-нуклонных взаимодействиях, обычно сравниваются с различными теоретическими моделями, /2-4/. Однако ни одна из них не может пока объяснить всей совокупности имеющихся экспериментальных данных. Поэтому дальнейшее накопление экспериментальных результатов, более полная информация о процессах, сопровождающихся рождением странных частиц и резонансов, является в настоящее время исключительно важной задачей.

Настоящая диссертация посвящена изучению процессов с рождением странных частиц в *п*р -взаимодействиях при

4,0 Гэв/с. В основу диссертации положен цикл работ, выполненных в ЛВЭ ОИЯИ с помощью 24- литровой пропановой пузырьковой камеры ^{/5/}. Работы были опубликованы в виде препринтов и статей ^{/6-12/} и доложены на международных конференциях по физике высоких энергий в Дубне (1964), Беркли (1966), Гейдельберге (1967) и Вене (1968) ^{/13-16/}.

Диссертация состоит из четырех глав и трех приложений. <u>Первая глава</u> посвящена описанию техники эксперимента и методики анализа данных по рождению странных частиц в π^- -р -взаимодействиях. Пропановая пузырьковая камера ПК-4, помещенная в постоянном магнитном поле напряженностью 14400 эрстед, была облучена в пучке π^- -мезонов с импульсом 4,00 ± 0,06 Гэв/с на синхрофазотроне ОИЯИ /17/. Для анализа использовалось 228000 фотографий.

В этой же главе подробно описывается система обработки экспериментальных данных: просмотр, отбор и измерение событий т-р взаимодействий, сопровождающихся рождением подной или двух V⁰-частиц, а также система программ, применявшихся для кинематического анализа /9,18/.

Оценка точности измерений показала, что наиболее вероятное значение ошибки измерений импульсов заряженных частиц в камере равнялось 10%, а ошибки в измерении углов составляли ~30°.

При идентификации заряженных частиц в камере использовались данные ионизационных измерений, позволившие проводить разделение π^{\pm} -мезонов от К[±]-мезонов до импульсов частиц 0,8 Гэв/с, а π^{+} -мезонов от протонов до импульсов 1,1 Гэв/с $^{/6/}$.

Идентификация нейтральных странных частиц проводилась с помощью метода χ^2 , визуальной картины распадов, данных измерения ионизации и измерения энергии δ -электронов на следах вторичных частиц /8/. Обсчет всех отобранных случаев производился на ЭВМ М-20 и БЭСМ-4 Лаборатории вычислительной техники и автоматизации ОИЯИ.

Для физических исследований, выполняемых с помощью пропановой пузырьковой камеры, важно найти способы выделения отдельных каналов ядерных реакций. Этому вопросу посвящена <u>вторая глава</u> диссертации, в которой подробно описывается разработанная методика выделения каналов реакций π^- р взаимодействий.

Для выбора наиболее вероятной гипотезы о каком-либо процессе использовались результаты расчета по программе идентификации каналов реакций 10-10 /18/. Гипотезы для событий характеризовались определенными предположениями о массах вторичных частиц в соответствии с законами сохранения электрического, барионного и странного зарядов. Оценка вероятности данной гипотезы проводилась с помощью метода χ^2 . События с идентифицированными Λ^0 -гипероном или К 0 -мезоном относились однозначно к одной из гипотез, если χ^2 для событий с одной степенью свободы был меньше 2,7, величина χ^{2} для событий с четырьмя степенями свободы была меньше 13 (рис. 1); квадраты недостающих масс для соответствующих гипотез о незарегистрированных частицах находились в определенных интервалах эначений (рис. 2), а ионизационные измерения и измерения энергии δ -электронов позволяли однозначно идентифицировать заряженные частицы и не противоречили выбранной гипотезе.

В результате применения этих критериев отбора для двухлучевых событий, сопровождающихся рождением Λ⁰-гиперонов, удалось однозначно идентифицировать ≈80% событий; для слу чаев с идентифицированными К⁰-мезонами процент однозначно идентифицированных событий составлял ≈ 60%. В этой же главе диссертации исследуются причины неоднозначной идентификации событий и их влияние на физические результаты.

15

13 12

[•] Рис.1. χ²-распределения для событий, удовлетворяющих гипотезам с одной степенью свободы (а) и с четырьмя степенями свободы (б).

В <u>третьей главе</u> диссертации приводятся экспериментальные ланные по сечениям рождения странных частиц в различных реакциях. При определении сечений вводились поправки, связанные с эффективностью просмотра, потерей V^0 -частиц, распадающихся по нейтральной моде, а также с потерей V^0 -частиц из-за ограниченных размеров камеры. Кроме этого, учитывались поправки, связанные с примесью квазисвободных взаимодействий π^- -мезонов и с примесью других частиц (μ -мезонов, электронов и др.) в первичном пучке. Результаты приведены в таблице 1.

<u>Четвертая глава</u> диссертации посвящена исследованию процессов с рождением странных частиц в реакциях с двумя, тремя и четырьмя частицами в конечном состоянии, выделению квазидвухчастичных процессов в различных каналах, а также

Рис.2. Распределение по величине квадрата недостающих масс для событий, удовлетворяющих гипотезе с вылетевшей нейтральной частицей π⁰ -мезоном и К⁰-мезоном для реакций π⁻p → K⁺π⁻ Λ⁰ π⁰ и π⁻p → π⁺π⁻ Λ⁰ K⁰ соответственно.

Таблица 1

Сечения различных каналов реакций с участием

Реакции		Сечен	ие м кб
$\pi^- \rho \to \Lambda^\circ K^\circ$	98,2	<u></u> ±	17,8
$\Lambda^{\circ}K^{\circ}\pi^{\circ}$	97,3	±	22,4
K.K. n	26,7	±	7,5
$\rho K K^{\circ}$	67	±	I5
K IN A°	89	±	II
$\pi^+\pi^-\Lambda^{\circ}K^{\circ}$	I54	±	I4
$K^{\dagger}\pi^{-}\Lambda^{\circ}\pi^{\circ}$	98	±	10
$K^{\dagger}\pi^{-}\overline{K}^{\circ}n$	I47	±	18
K T + K°n	I26	±	17
pKK°x°	63	±	II
PIKKK2	39	±	20
p IT-K' K'	9	<u>+</u>	3 .
A°K° x+x-x°	85	±	21
- K.K. p. T. T.	6	±	4
$K^{\circ}\overline{K}^{\circ}\pi^{+}\pi^{-}n$	10	ι±.	5

рождению резонансов с участием странных частиц и исследованию механизма их образования.

Анализ неупругих двухчастичных реакций играет большую роль в понимании процессов сильных взаимодействий, так как дает возможность исследовать механизм этих процессов и служит для проверки различных теоретических моделей, применяемых в описании взаимодействий при высоких энергиях. В частности, представляет интерес изучение неупругих процессов, связанных с обменом зарядом или странностью (а), и квазидвухчастичных реакций с образованием резонансов в промежуточном состоянии, распадающихся на п частиц в конечном состоянии, где $n \ge 2$ (б).

К процессам типа (а) относится реакция

 $r^- p \rightarrow \Lambda^0 K^0$ (1)

Результаты исследования этого процесса изложены в §1 четвертой главы диссертации. Показано, что дифференциальное сечение реакции (1) в зависимости от квадрата четырехмерного переданного импульса описывается экспоненциальной зависимостью вида $d\sigma/dt = \exp b |t|$ с коэффициентом b , равным - 8,2+1,2 (Гэв/с)⁻². Для изучения механизма этой реакции был проведен расчет на основе модели полюсов Редже. Как видно из рис. 3, ход дифференциального сечения этой реакции хорошо описывается двухполюсной моделью Редже //16/ , в которой в качестве "реджионов" брались частицы K* (890) и K* (1420) с квантовыми числами Y=1 и I = 1/2, принадлежащие к октетам 1⁻ и 2⁺ соответственно.

В этой же главе дается оценка поляризации Λ° -гиперонов, образующихся в реакции (1). Для среднего значения коэффициента поляризации αP получена величина, равная 0,16+0,24 /11/.

В следующем параграфе данной главы приводятся результаты исследований реакций вида:

$$\Lambda^{\circ} K^{\circ} \pi^{\circ}$$
 (2)

(4)

(5)

$$\pi^{-} p \rightarrow \Lambda^{0} K^{+} \pi^{-}$$
(3)

$$-p \rightarrow pK - K^{\circ}$$

$$\pi \overline{p} \rightarrow K_{1}^{0} K_{1}^{0}$$

x)

Символ $|\Lambda|$ относится к реакциям с рождением $\Lambda^{o}_{-\mu} \Sigma^{o}_{-\mu}$ гиперонов.

9

Анализ⁴⁷углового распределения продуктов распада резонанса К* (890) в системе координат, связанной с этим резонансом, позволил получить значения коэффициентов матрицы плотности, которые равнялись $\rho_{0,0} = 0.326 \pm 0.075$, $\rho_{1,-7} = 0.024 \pm 0.069$ и $\text{Re} \rho_{1,0} = -0.078 \pm 0.044$. Расчет, проведеннный на основе предположения об обмене К -полюсом Редже, показал, что значение коэффициента матрицы плотности $\rho_{0,0}$ определяется вкладом К -мезонного полюса Редже. Параметризация амплитуды этого процесса делалась в соответствии с данными работы ^{/20/}. Траектория для К -полюса выбиралась линейной с параметрами, равными параметрам π -полюса Редже.

Для реакций (2) и (3) был определен также вклад процесса с рождением резонанса K^* (1420). Сечение реакции $\pi^- p \rightarrow K^{*0}_{1420} \Lambda^0$ оказалось равным (34,5±8,5) µкб. Процесс рождения резонанса K^{*0} (1420) также носит периферический характер.

Изучение реакций (4) и (5) позволило выделить квазидвухчастичные реакции и оценить сечения этих процессов. В табли-

df [mb/(gev/c)2]

04

Рис.3. Ход дифференциального сечения реакции π⁻р → Λ⁰ K⁰ в зависимости от квадрата четырехмерного переданного импульса t . Приведенная пунктирная кривая вычислена на основе модели полюсов Редже в предположении обмена двумя полюсами K* (890) и K* (1420).

Анализ спектра эффективных масс ЌN -комбинаций в - реакциях (4) и (5) позволил выделить квазидвухчастичные процессы, связанные с рождением резонанса Y*⁰ (1520), распадающегося по схемам Y*⁰→K⁰n и Y*⁰→pK⁻. Сечения этих процессов приведены также в таблице 2. Было показано, что, как и в случае реакций (2) и (3), механизм рождения резонансов в KK-и KN -системах имеет периферический характер.

Последний раздел главы 4 посвящен исследованию резонансов, образующихся в четырехчастичных конечных состояниях п - р - взаимодействий т р уКп и п р у ККN п (12). Анализ спектров эффективных масс комбинаций различных

частиц в реакциях

И

$$p \rightarrow \pi^{+}\pi^{-}\Lambda^{0}K^{0}$$
 (6)

$$\pi^{-} p \rightarrow K^{+} \pi^{-} \Lambda^{0} \pi^{0}$$
(7)

показал, что эти реакции характеризуются рождением резонансов, связанных с низко возбужденными состояниями Λ° -гиперона и K° -мезона, а именно с рождением Y*(1385) и K* (890) резонансов. В таблице 3 приводятся данные о сечениях рождения резонансов с различными зарядовыми состояниями в этих процессах.

В этом же разделе диссертации проводится сравнение экспериментальных данных о сечениях процессов типа $\pi^- p \rightarrow Y^*K \pi$ и $\pi^- p \rightarrow YK^* \pi$ с результатами других экспериментов при

13

0,11

Q.10

0,09

0,08

Q07

0,06

Q05 0,04 0,03 0,03

Редже.

Реакции	Сечение мко	
$T^{p} \rightarrow \Lambda^{+} K^{*o}_{pgo} ; K^{*o}_{pgo} \rightarrow K^{\circ} \pi^{\circ} + K^{+} \pi^{-}$	67,7 ± 15,3	
A+K+420 · K+420 K 52°+K 52 +	34,5 ± 8,5	
$(K_{1}^{\circ}K_{1}^{\circ})_{1070} + n$	$10,2 \pm 4,8$	
$n + A_2^\circ$; $A_2^\circ \rightarrow K_1^\circ K_1^\circ$	8,7 ± 3,6	
$n + fo$; $f_o \rightarrow K_1^\circ K_1^\circ$	3,5 ± 2,I	
$n+f'$; $f' \to K^*_1 K^*_1$	≤ I,6 ± 2,0	
K+ Y1520; Y1520 Kn	$2,8 \pm 1,2$	
K+Y+520; Y+520 - pK	$12,2 \pm 4,9$	
$p + A_2 : A_2 \to K^{\circ}K^{-}$	9,3 ± 3,7	
YISHS + KEDO; Y-AST; K +K TT	4,6 ± 3,I.	
Y 1385 K 890; Y + 1 50°; K + K + 55	4,I ± 3,7	

Сечения квазидвухчастичных процессов

Таблица 2

близких значениях энергии первичного *т* -мезона ^{/22,23/}. Как видно из рис. 5, наблюдается интересная особенность в поведении сечений всех этих процессов независимо от канала реакции в области первичных импульсов от 3,2 до 3,3 Гэв/с. В диссертации обсуждается возможная интерпретация этой особенности.

В таблице 2 приведены сечения двухчастичных процессов, образующихся в реакциях (6) и (7). Сравнение этих результатов с экспериментами при других энергиях указывает на то, что сечения квазидвухчастичных процессов в реакциях (6) и (7) заметно уменьшаются с увеличением импульса *п* -мезона.

В спектрах эффективных масс $\Lambda^{o} K \stackrel{o}{\rightharpoonup} и \Lambda^{o} K^{+}$ -комбинаций в реакциях (6) и (7) наблюдалась концентрация событий в области эффективных масс ~ 1700 Мэв. Исследования показали, что наблюдаемое отклонение в этой области эффективных масс можно объяснить рождением (ΛK) -резонанса с T = 1/2, массой 1710 Мэв и шириной Г=220 Мэв. Сечение процесса, связанного с образованием этого резонанса, оказалось равным (32,2+ + 7,6) µкб. В пользу интерпретации этого эффекта как (ЛК)резонанса (1710), могут служить результаты фазового анализа, /24/ выполненного для реакции $\pi^- p \rightarrow \Lambda^0 K^0$ и показавшие. что наибольший вклад в процесс $\pi^- p \rightarrow \Lambda^0 K^0$ вносит нуклон-N * /2 (1710). Оценки показали, что отношение ная изобара N*/2 (1710) на АК-систему ко всем возвероятности распада можным неупругим модам распада составляет величину ~ 1,1%.

В §3 четвертой главы диссертации приводятся данные, касающиеся исследования рождения резонансов в КК-, КN и Кπ -системах в реакциях вида π р → ККN π . Результаты

исследований приведены в таблице 3.

Основные результаты и выводы диссертации.

 Проведена большая методическая работа по выделению различных каналов реакций *п* - р взаимодействий с образованием странных частиц в пропановой пузырьковой камере ПК-4:

Реакции	Сечение мко		
$\pi^{-}p \to K^{\circ}\pi^{-}Y^{*+}_{13,85} ; Y^{*+} \Lambda^{\circ}\pi^{+}$	15,3 <u>+</u> 4,7		
$K^{\circ}\pi^{+}Y_{1385}^{*-}$; $Y^{*-} \Lambda^{\circ}\pi^{-}$	II,4 ± 3,8		
$\Lambda^{\circ}\pi^{-}K^{*+}_{sso}; K^{*+} \to K^{\circ}\pi^{+}$	12,9 <u>+</u> 4,2		
Λ°K°p°; p°→π+π-	≤ I,I <u>+</u> 3,5		
$\Lambda^{\circ}\pi^{\circ}K^{*\circ}_{Pgo} K^{*\circ}K^{*}\pi^{-}$	34,5 <u>+</u> 5,9		
$\Lambda^{\circ}\pi^{-}K^{*+}_{\pi p} : K^{*+} \to K^{+}\pi^{\circ}$	3,4 <u>+</u> 4,2		
$K^{*}\pi^{}Y_{1385}^{*\circ}; Y^{*\circ} \Lambda^{\circ}\pi^{\circ}$	5,0 <u>+</u> 3,5		
К ⁺ π°Y +385; Y → Д° π-	5,4 <u>+</u> 3,6		
K л+ Y 1520; Y - R n	I6,I <u>+</u> 9,2		
K+ 7-Y +520; Y - Kn	13,9 <u>+</u> 10,2		
$\pi^{-}n A_2^{+}; A_2^{+} \to K^{+}\overline{K}^{\circ}$	15,3 <u>+</u> 10,4		
pT A2 ; A2 - KK	3,4 <u>+</u> I,7		
K' T Y'SZO; Y - pK	7,2 <u>+</u> 5,4		
PK-K \$90, K - K To	7,0 <u>+</u> 6,3		
(AK), 72+72-	32,2 <u>+</u> 7,7		

Таблица 3 Сечения рождения резонансов с участием странных частиц в 4 частичных конечных состояниях

 а) выработаны критерии отбора для выделения каналов реакций;

б) показано, что с помощью этих критериев, а также данных ионизационных измерений на следах вторичных заряженных частиц можно однозначно выделить каналы реакций с идентифицированным Λ° -гипероном в 80% событий, в случае же идентифицированных K° -мезонов - в 60% событий двухлучевых π^{-} р взаимодействий;

в) оценена примесь дополнительных п^о -мезонов в выделенных каналах реакций.

2). Определены эффективные сечения различных каналов реакций с рождением странных частиц (см. таблицу 1).

3). Проведен анализ двухчастичной реакции π⁻р → Λ^o K^o. Показано, что ход дифференциального сечения этого процесса в зависимости от 4-импульса хорошо описывается двухнолюсной моделью Редже, учитывающей вклад К* (890) и К*(1420) полюсов Редже.

4). Выделены квазидвухчастичные процессы с рождением резонансов со странными частицами. Оценены сечения этих процессов (таблица 2) и показано, что величина сечений уменьшается с увеличением первичного импульса п⁻ -мезонов.

5). Подробно исследован механизм двухчастичного процесса $\pi^- p \rightarrow \Lambda^0 K^{*0}$ (890). Проанализированы распадные характеристики резонанса K* (890), определены коэффициенты матрицы плотности и проведено сравнение экспериментальных данных с теоретическими моделями – ОРЕА и моделью полюсов Редже.

6). Изучено рождение резонансов К* (890), К* (1420), Y* (1385) в реакциях с тремя и четырьмя частицами в конечном состоянии. Показано, что эти резонансы рождаются в периферических взаимодействиях. Оценены сечения рождения указанных выше резонансов (см. таблицу 2 и 3).

7). Исследованы спектры эффективных масс в $K\bar{K}$ и $\bar{K}N$ системах. Показано, что в реакциях $\pi^- p \rightarrow p\bar{K}\bar{K}^0$ и $\pi\bar{p} \rightarrow K_1^0 K_1^0$ п рождаются резонансы КК (1070), А ⁰/₂ -мезоны, f' -мезон и Y*⁰ (1520). Определены сечения рождения этих резонансов. 8). Получено указание на возможное образование резонанса с массой 1710 Мэв и Г=220 Мэв в ΛК[†] -системе. 9). Проведен анализ зависимости сечений процессов π⁻ p → Y.*K π и π⁻ p → YK* π от импульса первичных π⁻ -

мезонов.

44

10). Исследованы процессы с рождением резонансов в реакциях вида $\pi^- p \rightarrow K \overline{K} N \pi$.

Литература

 H.Kanada, T.Matsuoka, T.Suzuki. Suppl. of the Progr. of Theoret. Phys. Extra Number, p.219, 1967.
 J.I.D.Jackson. Rev. Mod. Phys., <u>37</u>, 484, 1965.
 SChan Hong-Mo. Topical Conf. on HEC of Hadrons, CERN, 68-7, v.I, p.380, 1968.

 4. A.Bialas. Topical Conf. on HEC of Hadrons, CERN,68-7, p.218, 1968.
 5. Ван Ган-чан, М.И. Соловьев, Ю.Н. Шкобин. ПТЭ 1,41,1959.

6. Б.П. Банник, Ким Хи Ин, А.А. Кузнецов, Н.Н. Мельникова, Б. Чадраа. Препринт ОИЯИ 2617, Дубна, 1966. V

7. Б.П. Банник, А.А. Кузнецов, Н.Н. Мельникова, Б. Чадраа. Препринт ОИЯИ 1-3096, Дубна, 1966. V

8. Б.П. Банник, Ким Хи Ин, А.А. Кузнецов, Н.Н. Мельникова,

Б. Чадраа. Препринт ОИЯИ Б-1-13528, Дубна, 1967.

9. Б.П. Банник, Ким Хи Ин, А.А. Кузнецов, Н.Н. Мельникова,

Б. Чадраа. Препринт ОИЯИ 1-3682, Дубна, 1968. 🗸

- М.Р. Атаян, Ж.К. Карамян, А.А. Кузнецов, Н.Н. Мельникова, Б. Чадраа. ПТЭ №6, 211, 1968. Препринт ОИЯИ 1-3779, Дубна, 1968.
- А.А. Кузнецов, Н.Н. Мельникова, Б. Чадраа, В. Болдеа,
 А. Михул, Д. Мумуяну, Т. Понта, С. Фелеа. Препринт ОИЯИ Р1-4049, Дубна, 1968.

19

- А.А. Куэнецов, Н.Н. Мельникова, Б. Чадраа, А. Михул,
 Д. Мумуяну, Т. Понта, С. Фелеа. Препринт ОИЯИ Р1-4336,
 Дубна, 1968.
- Б.П. Банник, Э.Г. Бубелев, Ким Хи Ин, А.А. Куэнецов, Н.Н. Мельникова, Г.Л. Резвая, Б. Чадраа. Международная конференция по физике высоких энергий, 682, Дубна, 1964.
- 14. E.G.Bubelev, B.Chadraa, Kim Hi In, A.A.Kuznetsov, N.N.Melnikova, G.L.Rezvaya, BV.Boldea, S.Felea, A.Mihul, D.Mumuianu, K.Myklebost. Proc. of the XIII Intern. Conf. on High Energy Phys., 321, 1966.
- B.P.Bannik, B.Chadraa, Kim Hi In, A.A.Kuznetsov, N.N.Melnikova, V.Boldea, S.Felea, A.Mihul, D.Mumuiani, T.Ponta. The Heidelberg Int. Conf. on Elem. Part., 508, 1967.
- B.P.Bannik, B.Chadraa, N.N.Melnikova, V.Boldea, S.Felea.
 A.Mihul, D.Mumuiani, T.Ponta. XIV Int. Conf. on HEP,
 p. 486 , Vienna, 1968.
- Ким Хи Ин, А.А. Кузнецов, В.В. Миллер. Препринт ОИЯИ 2092, Дубна, 1965.
- Н.Н. Говорун, В.И. Мороз, Г.Н. Тентюкова, В.Н. Шигаев.
 Препринт ОИЯИ 10-3627, Дубна, 1967.
- I.K.Kim. Phys. Rev. Lett., vol. 19, n.18, 1079, 1967.
 Б.М. Карнаков, А.Б. Кайдалов. ЯФ, т.6, вып. 1, 170, 1968.
 N.Barash-Smidt, A.Barbaro-Galtieri, L.R.Price, M.Roos, A.H.Rosenfeld et al. UCRL-8030, 1968.
- 22. D.H.Miller, A.Z.Kowacs, R.Mcllwain et al. Phys. Rev., <u>140</u>, B360, 1965.
- 23. O.I. Dahl, L.M.Hardy, R.I.Hess, I.Kirz, D.H.Miller. Phys. Rev., 163, N5, 1377, 1967.
- 24.S.R.Deans, W.G.Holladay, I.E.Rush. XIV Int. Conf. on HEP, p.144, Vienna, 1968.

·20

C.Lovelace, F.Wagner, I.Iliopoulos. XIV Int. Conf. on HEP, p.469, Vienna, 1968.

Рукопись поступила в издательский отдел 11 апреля 1969 года.