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1 Introduction

Intermediate Energy Physics deals mainly with the interaction of elementary particles
electrons, photon, muon, neutrino, pion, nucleon, etc.) with nuclei, but also problems
of pure elementary particle physics are subject of investigations. One can give a gross
subdivision of the field: ' o ’

(a) Use of elementary particles as a probe to'investigate nuclear structure. Scat-
tering experiments using particles of a few hundred MeV kinetic energy up to
a few GeV allow the investigation of some aspects of nuclear structure which
are not amenable with the usual classic methods of nuclear spectroscopy (elec-
tromagnetic transitions, Coulomb excitation, etc.). In this case one has to
assume that the interaction between the projectile and the individual nucleon
in the nucleus is sufficiently well known and in addition that one has a reliable
scattering theory to treat the scattering on a composite target (nucleus). In
such cases experimental data can give information on nuclear structure (i.e.
electron scattering on nuclei at higher energies can give information on certain
form factors of nuclei, etc.)

(b) Investigation of the properties of the projectile itself or of the basic interaction
between projectile and nucleon.

In such cases the structure of the target nucleus has to be known sufficiently
accurate. '
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Examples:

investigation of hydrogen like atoms constituted of p=, 7=, K~, %7, p, etc.
and a nucleus. Investigation of the transition energies gives information
on the projectile masses, the fine structure allows the determination of the
magnetic moment of projectiles with spin, etc:

Pion - nucleus scattering where a short - living resonance (A, with ma ~ 1232
MeV ) can be studied.
In photon - nucleus scattering one can study the p - meson (77 - resonance)
‘production (m, ~ 765 MeV ). . '
4~ - capture on light nuclei could probably be used to investigate the
question of a finite neutrino mass (i.e.,u™+3He — d+n+v, , p~+5Li —
t+t+u,).

(c) Investigation of multiply scattering theories.

One has {o assume that nuclear structure as well as the elementary interaction
between projectile and nucleons are sufficiently well known. This is particularly
interesting for projectiles with strong interactions.

Examples:
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pionic atoms ( scattering of pions at very low energies ), sbatteringof; pions
* off nuclei at intermediate and high energies. ‘

gAééqrding to the large variety of phenomena to be investigated, theoretical interme-

. diate energy physics needs many tools from various different fields: Nuclear Physics (.

nuclear structure, nuclear models, nuclear reactions ), knowledge from elementary par-

ticle physics ( strong, weak and electromagnetic interactions ). The basis of all these =
investigations is of course quantum mechanics, in particular relativistic quantum mechan- 2

ics.: For many purpdses at least some rudimentary knowledge of quantum field theory is
very useful These tools will be developed during the course as far as is necessary.

In the following th most important subfields of theoretical intermediate energy physics
_are listéd. ' ) -

. 1. Scattering of strong interacting projectiles on-nuclei at intermediate and high en- :;_,

ergy :
Multiple scattering in nuclei, -
Fikonal methods, '
A - resonance in nuclei,
dispersion relations in particle - nucleus scattering.
2. ‘Exotic atoms with hadrons ( 7=, K=, p, L™, ete. - atoms )
nuélear structure effects,
multiple scattering at low energies,

optical pbténtialé at low energies. -
3. Strong interactions and nuclei:
» plon - absorption.
‘ 4.‘_Leptons and nuclei:
§~ - atoms and nuclear structure
_electron scatlering. ) :
= 3. \Veavk interactions and nuclei:

o~ - capture,
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v - scaltering on nuclei.

6. Photons and nuclei:

low energy theorems applied to nuclei,

photoproduction of particles and resonarices in nuclej



Part I

1. Short introduction into scattering tbvheor'y‘

1.1 Potential scattering

We restrict ourselves here to the scattering of two structureless particles with masses
m, and m; interacting through a potential V() , £3) with each other. Spins are not
considered and we assume that non relativistic quantum mechanics is valid. In addition
we assume that the potential depends only on the difference &) — &3 and that it has a
finite range. The stationary Schroedinger equation of this two - body problem is then

K? h? W . o = I
—ﬁvlz - EVQ;) + V(I] —IEQ) \I’(I],IEQ) = Etot \I/(Il,.’tg) (11)

Introducing relative - and center of mass coordinates we are able to separate the center

of mass motion from the rest.

- = — - =g m -
=112 Zy = Rem + 7775557 S
(1.2)
1'2' my £ +me Ty = fé my_ oz
cm my+ma 27 Tem T mytma

Introducing these variables into (1.1) together with

mm
12 (reduced mass)

oAF, Rom) = U(Z1(Z, Rom), T2(Z, Bem))  and mreq =
(1.3)

my + my

leads to

K? K2
.__—ﬁv'.’ -
[ 2(7721 + m2) Rem -

This allows one to make a product ”Ansatz” for (%, Rem).

where ¢em(R.r) is a solution of

c

V2 + V@) 9(& Ben) = Eiot 9(Z, Fim)

$(Z, Bom) = bom(Bom) $(2)
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E= Etot —Een
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~ 2 2 k
K, (my t mz)Ec,,1 = (ms +2m2) CE,_.,,. = 2(py + p2)ecm (1.10)
h h
The quantltles =, 6= %l are the masses and energies measured in units

(length)™, usually f*. In absence of the interaction potential also ¥(Z) will be a plane
wave

| - 1 .
U(F) = ™ or o (1.11)
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with
R =2, 04€ (1.12)

A remark on the normalization:

(a) finite normalization volume V,, ail physical quantities must be independent on

V-

(b) normalization to a § -function.

In case the potential V(Z) has a finite range, one looks for scattering solutions of (1.7)
with asymptotic form (| Z|— o0 )"

U 4)(F) reliee Eﬁ [ei’-"f+ f() e-:r] (1.1,3)

[

which is a superposition of the incoming plane wave ( describes the beam ) and an ;-

outgoing spherical wave. In this asymptotlc region, outside the range of the potential V,
the influence of the interaction is given by a modulation f(?) of the outgoing wave.

f(9) is called the scattering amplitude. This plcture has been borrowed from classical
wave optics.

Starting from the Schroedinger equation one can derive an expression for the particle

current density. We multiply (1.7) by ¥* and the complex conjugate equation with ¥ and.

subtract both expression from each other ( for stationary solutions we can also: substitute

EV by zh - ) and obtain:

2
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'

V¥ VY - wvY] —zfz—(\ll )

This allows one to define the current density J through

;:

T3

21, g

UV — ¥"V¥) = Re { _h
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Together with the particle density ( probability density ) p = -y
continuity equation )

i

[

Vi +

Current density of the incoming particles

ap
=0

1

(1.14)

G

(1.15)

7 satisfies a

If we take the z - axis parallel to the direction of the i incoming particle beam,
for planc waves

Using

~ = —
Urel = U ~ U2 =

one obtains
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we get



Current density of scattered particles

Starting from the asymptotic form of the wave function we get the scattering wave.

¥, = d f(Q)z—'iz {(1.20)
Vil
and
vy, = f(Q)—— e -*+£0f(9) 540 1.21
T ’ T A av ea+r251n19(9c,a () ev (1.21)
and . / .

- h
jsc = Re {\ T : ‘I’-scv\l’sCE =
UMyed )

Myeg M, eqr3sind

1 —ihfr2 ihfSL '
v,{ rzlf(Q)I +Re[ = sig, % g, (1.22)

For very large values of r the first term dominates and one gets

= Q) P = jin ,I (@ )| (1.23)
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Scattering cross section

One calculates now the number of particles dn going through the surface element dS'”

of the detector placed at a distance r from the target.

dn = .;scds: = ;;Crdea_ = jinl f(Q) Izdn (1'24) V

dn

T =l SO S a)

the differential elastic scattering cross section is then defined as

do 1 dn

=L@ (1.26)

and, being a physical measurable quantity, is independent of the normalization vol-
ume.

Relation between interaction potential and scattering amplitude

To obtain the relation between V(%) and the scattering amplitude, we first put the
Schroedinger equation (1.7) into the form of an integral equation. We rewrite (1.7) in the
following form:

(V2 + &2)U(F) = U(Z)U(Z) (1.27)

with
. zmred

U@ =

V( - (1.28)
Introducing a 6 - function on the right side of (1.27) leads to
(V2 + k1) U(3) = / PEEO(F - F)U(F)U(F)

A formal, particular solution to this equation is given by

Lprd(@) = / PE(V* +62)16(E — 2V (E)U(E) (1.29)



The Green function of this equation
Go(Z,2) = (V2 + &5 18(2 - 1) (1.30)
is a solution of

(V2 + £2)Go(3,7) = 8(% — &) (1.31)

Performing a Fourier transformation on both sides of equ.(1.31) leads to

Go(Z -1 = / dBEGo(F)eFE-5) (1.32)

In order to obtain particular solutions to (1.39) such as outgoing or incoming or
standing waves, one has to choose particular paths in the complex k - plane. For the
present purpose we choose however a quicker way to obtain the desired Green funetion.
Consider the spherical symmetrical solution to (1.31) in a region ¥ #. #":

(V* + k)Go(R) =0 (1.33)
This may be solved with the ansatz (R =| 7 — 7' |)

Go*™(R) = GoR?e*™® | a=—1

Co can be determined by comparison with (1.32°) and we obtain the well known result

10

‘(‘ 1(5"_ Sy inlE-F ’ C '
o (fT—1)= m (1.34)

The positive sign in the exponent leads to outgoing waves, the negative sign to incom-
ing waves. In order to obtain the full solution of (1.27) we have to add to Voore (1.29)
a solution of the homogencous equation { a plane wave ). The ful} qca.ucrmg soiution,
describing otitgoing spherical waves is then given by

V) = - [c"“"*/‘d“f'i"—c(f')w"*’("’) 1
SMENTHE R TR "

(,onqdermg very large distances from the seattering center well outside the interaction
region, i.e.outside the range of the potontlal U(F) (V()). one may expand the exponent
in l,h( fo]lowmg way: -

| &~ & |=VZ £ 77 - 277 =| 7 |

L, i
=171~ (1.36)
Defining &' through . :
O L T I SRS I g ! '
. T e
ICI = hm 5 I‘C’z 2 (l JT)

. 2m)2p 1 e .

pit) F N ( ) Hred . 3=t gm sy g sy () Lo B

(;r) éx() ‘ e @i T & F L (F)V(FV () (li‘))
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Comparing this result with (1.13) gives us the scattering amplitude.

frats) = - B [ g @@ (@) (1.40)

The integral in (140) is usually called T - matrix element. Therefore one has

.,-_/d’ @)WV (F) (1.41)
and
cm — (2”)2”7'64 cm
Jer(Q) = -5 — &z (1.42)

In general it is sufficient to know ‘I'f;)(f) in a region | #' |< R ( R is here the range of
the potential ) to determine (.

The optical theorem

We calculate now the total current density (1.15) using the asymptotic form of the wave
function ¥ (1.13). With

1 o iE ] ei:cr . ei:cr af_‘ . eixr ﬂ-'
W [HCE o ( T ) ot a0 + risind 643%

one gets

j= h ne{ivvw} =

inr —uu-hnv
Re {:c —ie” R f(0) [———— +ins ] —i A

R

2
Meed Vol r

. e~ iRE+inr af e—inr+ill 'e—inr 2 —ixr ixe"" . af_. i .af }
Y sing a¢°‘° +Ef -t V- r? + = A F I r%m@f
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One may decompose j now into various parts

l J =jin +jsc +jin.t
Incoming current density :

- hE 1

Current density of the scattered particles  only the dominant term for large r).

DT TURS, | Ty b - ¥

R
+ hi&
-sc = Q .
Joe = I ) & (1.44)
: v éb Sy TR : ]
Interference term : ' o
.7:'11.: = Re é‘rff(n)cixr(l—cosﬁ) + Efa(n)e—ixr(l—cosﬁ) +... (145)
Myeq Vor r -
E :_::.;‘!"r \ Yy 5:‘):‘\:‘ L

i

If we integrate j over the whole solid angle ) = 4x, there will be no contribution from
Jin to this 1ntegral For asymptotically large values of r there will be also no contribution
coming from jin; except from a very small angular range dQ around.d = 0.. This is so
because for large r the integrand oscillates very rapidly. One can estimate this contribution
by setting all the smoothly varying parts equal to their values at § = 0. Using

IKT

o=66 - . 1 . el'sr . .
/ sinfdger<r1-0%) - j o dpet ) s (e e =
=0 ) coss@

FE [ R T T AN FE PP R S A S B it

. ’i ST .‘xsii!“ LIRS T
. == +.,o0scillating terms,
‘KT e

A O L Sy

and K€, = cosfk ~ k we get
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. o R
/rzdﬂjimé‘,. _ VLRP,{ h /dﬂrz {i:_f(o)emr(l—caw) + Eerft(o);e—mr(l—cas())] }
ol

red

4Arh Imf(0)

mrcdv;l

1
= V—OlRe

{ 2nhrrs

My egkr?

(f(0) - f‘(0))} -

If we integrate now the continuity equation (1.16) over the whole space, taking into
account that for stationary states %-‘f = 0, we obtain

/dsz*vf:/d§f=/r’dna,mn+f,c+f,-,.,]=

hx
Myea Vol

[/ 010 7 - Etmso)] =0

The total scattering cross section is defined as

am=/dQI IoYs /dQ (j;) | (1.46)

and we get the optical theorem

Ttot = — -4'6—7rImf( ) (1.47)

Physically the optical theorem means the following:

The shadow cast by the target into the forward direction leads to a decrease of the
intensity of the beam proportional to the total scattering cross section. This decrease
arises because of destructive interferences between the incoming and the scattered waves
and is a direct consequence of the conservation of probability. :

14

Partial wave expansion of the scattering amplitude : .

One may try to solve the Schroedinger equation (1. 7) (or (1.27)) directly. In order to
do sq we’ mtroducc sphcrxca] coordmates and gct ' S o L

1 a J P2 R
2
vi= 2 or < (')r) 2 (148)
St ey 1 ey T
P=— — | sind— ) + ——— :
[sinO 20 (“’"oao) pexT ao'z] (1-49)
The cigenfunctions of 2 ( operator of the squarv‘of the orbital anéu]ér hl(mu'nfiuﬂl )
arce the udual spherical harmonics Yim () which satisly . - . v
PYin () = {1+ 1)Yim(Q) 1=0,1,2,3,... —[<m <+
* . R - . 1 L R }
i LY () = mYy, l-——ii 1.50
‘ zEIm HpT IR Ea FrS 4 e . ( 3 )

If the potential V(Z) ( or U( ) ) depends ouly on r =| '] one. can usc the following
separation ansatz for Wz(Z): ‘ o

Z(‘m YR () ¥ () (1.51)

This leads for each partial wave to a radial Schroedinger equation of the form

3

Ld [ ,d , '
[r_‘zé}f (;2(‘7) + &% — S ”] Ri(r) = U Ri(r) (1.52)

[N

or il the new variable p = w7 is introduced.



(1.53)

PR(p) | 2dRip) () MDY o L
o), 20 4 (- ) o) = GUIRA)

The homogeneous equation. i.e. the equation for free particles is then just the differen-

tial equation for the spherical Bessel functions (ji(p), ni(p), A (p) or h p) and hm( ) )
We use here the definitions given in Messiah, Quantum Mechanics, vol 1, North. Holland

(1961).

regular solution ( for r — 0) Jilp) = 2Lp']l+%(p)

\/>J a+1(P)

irregular solution n(p) =

(spherical Neumann funclion)

spherical Hankel function hfi)(p) = ny(p) £ i5i(p) (1.54)
K7 (o) = B (p)
; ; Wy — _p(H)
spherical Hankel function of hy (p) = —ih;"'(p)
the 1. and 2. kind R (p) = ih{)(p) )
For large p, p 3> 1, these function have the following asymptotic behaviour:
. In
sin(p— <
3P} =p=co sinfp—5) (1.55)
0
in
cos(p— T
u(p) =p-co coslp =) (1.56)
)
ei:ip
B (p) =pe (R £851)— (1.57)

16
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[} »
o 2 (lts) (1
Ri+iSi= 3 _—2=s!(1-s)l(p) | | (1.58)

ji and ny, or AE or h(l) and h(z) are pairs of linearly independent functions. We can
now write down the solut1on of the homogeneous equatxon to (1.53):

= Ci(x)ii(p) + Cf(x)ru(p) (1.59)

or

R = DO 5) + DO RIH ) (1.60)

To investigate the asymptotlc behaviour of the solutions of the inhomogeneous equa-
tlon (1.53) we start with the a.nsa.tz . co R

Ri(p) = ®,hF _(1.61)

where we assume that ®(p) is a function smoothly varying with p (this because
we know that far outside the rang of the potentla.l the homogeneous equation should
‘approximately be valid. ‘Combining (1.53) and: (1.61) one gets

(1)
<1>"h<*’+2<1>' (h‘*’ A ) [
ot Lok
T L

: (i;ﬁ?)

R R

Since ®; was assumed to be a slowly varymg functlon, one can neglect the term %‘-
One then has b i

VoL
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¢l U h(:t) f _ U hfi)
- ()
QRN i

and ' L 7 ‘, \

! U h®
I~ . 3
Sy gy (1.63)

! 1+1

where use has been made of a recursion relation for h; ( b} = % hi — hy41 ) If one uses
now the asymptotic forms (1.58) for the Hankel functions, one gets for large p

* 1
Mon gy (1 +,0(;)) (1.64)
i p—o0 14
-and ) ‘ o .
1 : o
%, Y, (1 + 0(-)) (£1) (1.65)
O e 262 p
‘Integration leads to
. q‘)> 1 i "41. o .
i, - )
2o U(r) (& 1+0-)d S (1.66)
b=~ 5a VO ) (10d)) o

Po

For potentials decreasing stronger then ! for:r = oo (i.er| U(r) < M, e>0)
the .integral on the right hand side of (1.66) becomes independent on p ( p > 1 ) and
approaches a constant value. We may set

a,(n)=—2‘7fu() (1+0(%)) dp o (167)

po
;..; e e
REXnopw ﬂnﬁ’k‘ﬁﬂ“gvﬁ
E':ﬁ?ﬁﬁ‘lb‘ md §

-~ 18

and get ) s
o, = (I,?Ci"‘t(") (1.68)
and ( 1 ( )
) cxi(p— T +6i(x)
R ) b)) 2 e (1.69)

T
Thus in the asymptotic range, the mﬂuence of the potentlal mamfesls 1tse][ only E
through a phaseshift. If U is a complex pote ntial, then also &i(x) will be complex.

The general solution (1.51) will be described in the asymptotic range- by a linear
combination of the {* This linear combmahon las to be such, that it'is thc asymptotic
form of the exact solutlon behaving regularly at the origin, i.e.

h(+) LT X o B N Ty . T+ 6 o,
R[(T) (;(m — 22,“ - — = (‘lm HE (P P «l) . R I-_ (170)

The plane wave ¢**#, which is also a solution of the homogencous cquation has. the
well known partlal wave decomposition

e =, L"‘z”s” . Z(?l + l)z ]l(xr)[’l(coeﬂ) Z&m 0l - ()l + l)47r11(n1))1,,, Q) ( 71)

=0 im

Therclore we can use the following relation to deterniine the scattering amplitude:
()= ;i et . o irr
V@), LA [e Tt (Q)T] = A[-Z Eim0i' /A (2 + 1)ji(wr)Yim(Q) + f (ﬂ)e—';‘J' =
im e R

(+) sy h

: h(+) b h( )ity e . -
A I;Z Clin'_—‘_‘——_é:—_ im AZ(lm ‘—“'ylm(n) i “’-)')

Im Im



Comparing the coefficients of the incoming waves ( hf—) ~ i:——))

on both sides of
(1.72) leads to :

= b0l e'5‘ 4r(20 + 1) (1.73)

Using this expression and comparing then the coefficients of the outgoing wave e':

leads to’ the followmg expression to determine f(Q)

l 2:61

Z&mon/ @I+ 1)(~i ""+f( ZCL‘“" Yim

or

im

with o ’
¥l 1 Si(k) -1

fi(x)

ik 2tk

Equation (1.74) is the partial wave expansion of the scattering amplitude f(Q). fi
is the partial wave amplitude for the I’th partial wave and 5 is the S - matrix element.
From the optical theorem (1.47) we get

oo

owe="Trmp) = TS @t nmpe) (BQ)=1) (176)

=0

Next we calculate the total reaction cross section. We write the wave function ll'g)(:i')
as follows:

lIlH')( ) NOOA [eiif+f

inr S
] [Z‘:zl 204+ 1)j,P + Z(zl+1)¢2—P, =

20

Z 5mo\/4ﬂ’(2l +1) (62‘;; 1) Z (21 + 1) fi(k) Pi(cosh) (1.74)
{ .

= 2 . o)

A [C.‘n(Q)e—:w + C,,.,f:r] - (1.77)

with - o . . . B .
Cim = —~2-:—~ ;(—1)‘(21 + 1)P,(cosb) 3 o (L78)
Cout = Z(zz+ l)Sl(fc)P,(cosa) (1.79)

The current density J is then given ( up to terms of the order 0 (rl—,) by

-, LA
v .

i | ‘“2 : . - ]
.ml_cgu_Ll_cﬂl_w (%) (180

r2 3

? =
VY]

Anonet = —1d5 = —7&,r2dQ = jin(| Cin [P = | Coue |2)d2

Nnonel = /dnnoncl = jin /(I Cl'n ’2 b I Cout lz)dn ' (1~81)

" Tyonet 15 the number of all those particles that have been’ removed from the entrance
channel, which therefore do not contribute to elastic scattering.

r _ Nnone V o R s
Otot = J ‘=/(|C'." lz_lcaut Iz)dn (1.82)

o?,, is called the total reaction cross section ( sometimes it is also called non elastic
cross section ) Using (1.78) and (1.79) leads to

2



G = 23 2@+ =15 ) = T3+ 1)1 - ), (1.83)
4

K2
i

where we have introduced a new quantity, the inelasticity 7;. One may allow for
complex phase shifts b =6+ z&'m“g

. N .o opimag .
S[ — 6216( — 6216, 26, — me'h&, (184)
Using this, we rewrite the expression for the elastic cross section:

2

”=/mumw=/ Y (@14 1) [me®® — 1] P(cost) | =
=0 -

2041
=4r 2(21 + l)] fl(lc) ‘2 =4z Z ( ™ )[l + 17,2 — 21]1603261} =

_—’25221+1)1—q,cos25,) ”Z(21+1)( ~1) (1.85)
ST ,

[

or
2 T
O .= —ZZ 21+ 1)( 1—mcos25,) - ?Z(2l+ 1)(1 —17,) . (1.86)
i . - . Lo oo : . .

From the optical theorem we obtain

2%
a,ot=§;(21 +})(’l—mcos261) - (;.87)

Thercfore we have

<22

Otot = Ot + Oy . (1.88)
dto! Z Oel ' : )
Imfi(x) 2 &) fi(r) |

The value of the inelesticity may vary between 0 and 1.

m =0 : mazimal absorption , fi = # ( pure imaginary)
Tel = :(12' 2(21 + l) :40;{01 = %b’lot"\: %
[
=1 : pure elastic scallering - 0, =0

Orot = 0t = 2 37 (2L 4 1)(1 — cos28;) =
I

SO )sin?s
!

1.2 High - energy approximation in potential scattering - Glauber
theory

We will derive a form of scattering theory valid for high energies ( kR > 1 . R is the
range of the interaction ). One assumes that all partial waves behave in a similar way,
namely that all §(x) are sufficiently smooth functions of L. In this case one can replace
the sum over all partial amplitudes fi(x) by an integral over [:

f@) =3 2+1) Sl )P,(mo)

L

oo

P(cos0) = /dl(‘zl +1)°

0

218

—1 ; .
Pcoi0)  <(1.89)

We substitute now 2! + 1 = 2«b (b... collision }iéfamol.ﬁr) in (1.89).



OER / db b (% — 1) P,,_1 (cosl) = ~ / dbb (¥ — 1) Py_1(cos0)  (1.90)
1 2 2

1

3=
s

with
x(6) = 8(K) = 643 (x) (L91)

If 1 approaches very large values, we may use an asymptotic formula ( given for example
in Abramowitz and Stegun, pg. 362 ):

lim [P,,"‘ (.cosf) r“] = Ju(z) -z 20, p20 (1.92)

r—o0

In our case here we have g =0 and

T—00

lim P, (cos%) = Jo(2)

For large v we may write

If we define x to be given by
o, o,
z= 2xbsin—2- = (2v + l)szni
then one has

h 1—2'0 ! 'g"‘Zsine
r])l}};— szn~2—+uszn2~ 3
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and

Y
cosf 1 — 2sin®= = cosf
v 2

Therefore we may replace Pi(cosf) by Jo(z) = Jo (2f;bsin§) and obtain the following
approximation for f(f2):

f() ~ —ix

1

yl—\S

A 7 : 0
db b (*X® 1) P, 1(cos0) ~ 2 / db b (*X®) _ 1) J (2fcbsin§) :
(4] .

(1.93)

Below we will derive this approximation of the scattering amplitude once again for
the case of potential scattering, using a different method. x(5), the phase will be explic-
itly expressed through the potential V and we will see that \Ilg) has to be known only
inside the range of V. We assume in the following again that we are dealing with high
energies, therefore with very large momenta x and small scattering angles. One can then
approximate Wz(Z) by

V() ~ AeEP(Z) , kr>1, 01 (1.94)

where ¢(Z) shall be a slowly varying function of £ (| ¢” <] ¢'], | ¢ [). If we write
(1.94) in the form

Wa() ~ Aci®@ = g ilR2+d() (1.95)
then §(Z) is slowly varying with & (A is a normalisation factor).
V¥(Z) = Aie’®Ve = Aie™®(R + V)
and

V2Wx(7) = AV — (VO)]e® ~ —A(VE)%e®
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We have neglected V2®. If we use this result now in the Schroedinger equation (1.27),

we obtain the approximate result:

(V@)? = k* - U(r) = n*(D)&? (1.96)
and i
V&(Z) = £n(Z)R = £ + VO(7) (1.97)
The solution of this equation is then given by
- / Vo(F)dZ = B(Z) — &(Z,) = / d7'(n(3") — 1) (1.98)
E R oo :
As initial condition we choose (i)(fq) = 0. Zo can be shifted to—oo without any
restriction. If # is small, one may replace K7 by ~ « | T |.
H(F) = RZ + ®(F) = RT + / dZ'R(n(3") = 1) = &Z + r:,/.dz'((n(f’) -1 (1.99)

On the other hand we have

2 . HEred o |£]—o0 ored <,y - .
k(n(Z) ~1) = 4 [k2 — 2—}{(—:—\/(1) BV P hc,;v (1)} —

L maV@ e V@

he & vy e

If we use this in (1.99) we get
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= 2= ¢ f V(&) ¢ =o Pred [ V(f,) '
O(7F) ~ KT — — / e dz' = R — " / e dz (1.100)
Z0=—00 2=—00

The vector Z’ can be decomposed into the components & (in the zy plane) 2’¢, (&' =

(¢,2'} ). Therefore one has:

i[zf—ﬁgm h ﬂf‘(—"zdz"] i[’??—v—"c—‘ h '-’(:;'C'de']
Wa(2) = Ac - = Ae - (1.101)

One secs immediately that this approxitnation will not be a good solution in the
whole space, since 1t contains no outgoing spherical waves ( analogeous to classical ray
optics). Inside the intcraction range | £ |< R the function Wz(F) given in (1.101) may
be a reasonable approximation. The scattering amplitude can be obtained by using this
approximate Wz(Z) in cquation (1.40). We will use here the & - function normalisation
(A = (2x)~7) and obtain

’
:
N v Vv s
3 [xr— £ —L——l:: dz"}
€

NGO EN TR %—ii’f’ o 1Y el
s@) = -0kt [z () e v (o

—oo

The integration is done using cylindrical coordinates (%' = d2bdz' ; ¥ = b + ¢.='):

© l i Ca P g - —i"—‘:—' . ﬂ;Lh’:i’-il’l:u
f(Q) = red /d2b / d2' i (b2 r,)v(b+ 2'(1)(‘ ret J i
-0

" 2rhe

where § = £—#'. In the casc of elastic scattering we have | &/ |=| % | and, | § |= 2xsing.
For scattering into small valucs of @ one has approximately §¢; ~ 0 and therefore also
N a
ez A~

e = 1. This leads to
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I3
z -
V(b42' e,
e z

Hred 2 / n, e
— 42h q
@ " 2rhe / / de'e (b i )

’
2
e s
Y(b+2"E2) , o
f Re dz

.
1;1 Edv [ d e
r re /d2 /d ’ ui'b - e o
Z

. f vgb+z"r11d "
_ _Z/Lredvrel/dgbe,‘q*[; e rel _
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The socalled eikonal phaseshifts x(5) are defined through

+oo -
- c V(b+ 2¢;)
= | "%y
x(b) =~ / he

Using this in f(f2) we get

2r ¢

F() = iﬂ-”—"l/d% i@ ( eﬂx(’;))

For spherical symmetric potentials V(Z) = V(| £ |) one has also x(b) =
With d?b = bdbd¢ one gets ' '

— "X Jy(gb)

where we have used

(1.102)

(1.103)

x(1B1) = x(b).

(1.104)

Lm
Jolah) = 5 [ dgeites
0

If we finally use 2=t = i and gb= 2fcbsin%, we obtain
- - - . . )
f(6) =ix / dbb (1 — et Jy (2nbsin§> (1.105)
0 B L AT RSN T PR I TR BRI RS

which is exactly the expression obtained earlier (1.93) from the partial wave expansion

1.3 The eikonal approximation in hadron - nucleus scattering

o et LA
Wit ) E N R

In the theory of potential scattering the interaction potential of a projectile with a nucleus
is given as the sum over the potentlals between pl‘O_]eCtlle a.nd all the md1v1dua.l nuclffons

NIRRT o R T T .
[P T O TE ST ROPE IR i _,q AR R R AT ;--K‘ - [T RS L P PO ST 4

TS 14 »..nr! s

V(a':') Z Vi@ — 7;) (1.106)

A

T

v

From (1.102) follows then that the eikonal phaseshift x(g) for the projectile - nucleus
scattering, is given.by.the sum of the phaséshifts of:the scattering.on the'individual:nu-
cleons.. Remember, however; that-normallyphaseshifts of potential scattering: theory 'are
not addxtwe T}ns a.ddltlvxty of phases'is a partlcular property of the elktmal method i

S L R SE S P T DN TR N LR R P S F AT ) [RET 1S CE

RS T B S TS TR

+oo 4 :
(k) ‘ C / Z VJ(b_ SJ ’ z)dz —_ ZXJ([) 6 ) (1107)

2v
!rel J_l ey \‘ ) J“l

The following coordinates have been introduced

e i . IR
(YERVREE B .‘! - [ IR R R



=b+ 2€,

8

- 4o @ o
Z; = (%,€,)€, + 3; = z;€, + 5;

In the integrals we finally substituted 2’ = z — z;.

Another important property of the eikonal method is the fact, that the scattering
amplitude is a simple Fourier transform of the so called profile function F(b)

I‘(b) =1- e2x® (1.108)

This allows one to determine the eikonal phase ( or profile function ) without the use

of the potential V(Z), provided the elementary scattering amplitudes are known.

‘

Ji—=Ti— xi — x=ZXj —-TI'— f(Q)

From this one concludes that the eikonal method to determine approximately the
scattering amplitude may be valid even under less restrictive conditions. To illustrate
this.we consider the scattering of a spinless particle on a nucleis. One assumes the
elementary scattering amplitudes for scattering on an individual nucleon to be known
(f:). Starting with f; one calculates I'; be inverting the Fourier transform:

. = 1 s : , .
ikl(b) = 2_7;/6—::;‘!» f_,'(é)d21f= i (1 _ p2ix;( ))

- . 1
2ix;(b) _ 1=
€ Imik

| / e;*ﬁfj<®é’<i

One integrates over those ¢'s with constant cnergy (‘ or -constant - ) For very large

onergxes thls is approx1mately a planc From X = Zx, follows
i

2i Zx,(b—sl) A

2!x(b) _ (, n o H 2lx1(b—1,)
- A -
(8) = 1 — 0 = | — [ -5
=1

and

Y Y T |
F(@§) = %/ & 7 (1 - He“’“"”> . (1.109)

i=1

This is the projectile - nucleus scattering amplitude and it still depends on all nucleon
coordinates. In the space of nuclear states F(q) is still an operator. Considering a
transition from initial state | ¢ > to the final state | f > we obtain

A

1) <f|F(:i)|z>— /(ﬂ ""”<f]( He“x'(‘?-":)) ti>  (1.110)

1=1

Explicit calculation of the product in (1.110) using ¢ =1 — I,(l_)'C'J) leads to

A
ma-r; _1_21“ AN = 8 DT+ (=D)AL T,

i=1 1<y 1<j<k (l]“)

N6~ 5) = gl [ AT TER ()

2min

This is a polynomial in the amplitudes f;{§), where terms with | amplitnde { single
scattering ), 2 amplitudes (double scattering ), cte..., and a term with maximal A am-
plitudes f;fa... fa (A - fold scattering) occur. Since in all these products 7 # k. ete,
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one sees that the projectile is scattered on each target nucleon only once. This is a con-
sequence of the approximations made. We assumed small scattering angles. Multiple
scattering on one and the same nucleon would require at least once scattering through a
large angle. In deriving equ. (1.110) we made implicitly the assumption that all nucleons
have fixed positions; we have ” frozen in ” the nucleons inside the nucleus during that
time the projectile interacts with the nucleus. We have neglected the so called Fermi
motion of the bound nucleons and evaluated all multiple scattering terms at one and the
same momentum transfer.
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2 Formal scattering theory .. ..

In this chapter the dynamics of a quantum system will be studied from a more general
point of view, the time &volution operator ‘playing the' central tole.” The ¢onsidérations
will be valid in both the relativistic and the nonrelativistic case. We will develop the
relation between the time evolution operator.and the scattering matrix, which is the
central object to be studied in scattering theory. We will also investigate Green'’s operators
( propagators ) and the Lippmann - Schwinger equation for the T - matrix and give some
general formulae to calculate decay - probabilities and cross sections from the T - matrix.

[

21 The time evolutlon operator

R AR R R R AU STPUN FRU S SIS

We start with the derivation of the time evolution operator in the Schroedinger pic-
ture. The dynamical equation describing the time evolution of a quantum system is the
Schroedinger equation.

The index s stands for Schroedinger picture. In this picture observables or dynamic
variables are represented through time independent Hermitian operators ( an explicit time
dependence is of course possible ). The sta.te vector W,(t) of the system is time dependent
and evolves according the Schroedinger’ equa.tlon {2:1) 4nd a given initial condition. We
define the time evolution operator U,(t,#p) through

¢ . N i . i H I i . . P N E
IR T S P O E S 0 S L T TS T LR T TP UEOE SEPUNIL N VS TSIV ELT FURY TS IR IO R RS P L B

U, (t) = Uy(t, to) ¥, (to) ’ (2.2)

" with the initial condition

Ul (to,to) = 1 | 23

P it

Insertlng this into the Schroedlnger equa.tlon gives us



ihaU,(t,to)

o = HU.(1, k) (2.4)

It is easy to show from (2.2) that U, has multiplicative group properties.
Us(t,t0) = Us(t, tYUs(t', t0) (2.3)

U7 (¢, to) = Ulto, t) (2.6)

* The conservation of probability requires < W,(t) | ¥ () >=< U,(tp) | ¥ (o) > from
which follows the unitarity of U,:

Ut (t, to)Us(t, to) = Uy(t, t)U (8 t0) =1 (2.7)

U, is unitary since H, is hermitian. H, is the generator of an infinitesimal time
translation U,(t + 6t,1p). A formal integration of (2.4) together with the initial condition
(2.3) leads to

Us(t,to) = 1 + (‘%) / HU( t)dt! (2.8)
Ctp )
If H, does not.explicitly depend on t, one can find a closed expression for the solution

Us(t,to) = e™FHs(t=0) | (2.9)

and

U, (t) = e~ xHelt=0) g (1)

In the Heisenberg picture the quantum system is described through time independent
state vectors and time dependent operators. The transition from one picture to the next
is given by the transformation

Wir = UF (1) Ws(0) = Uy (o ) Ws(2) - e (210)

it

(211

-

Oupt(1) = U (1.16)O0p sl (1,10} 1y -+ v -

”

(or ” free ") part Hg and
( or ” interaction ")V, it is convenient to use the interaction picture
to describe the dynamics of the system. In this interaction picture the “frec™ motion
corresponding to My is separated from that of the whole system. This separation is
performed in such a way that the time evolution of the observables is determined through
Hy, whereas the state vectors have a time evolution determined through the interaction
V. In order to formulate the interaction picture, one performs a unitary transformation
on the Schroedinger state vectors. s

If the Hamiltonian H, can be split into an ” unperturbed

a’™ perturbation ”

Eow(t) = iy ) (2.12)

i i

W(t) is the state vector in the interaction picture. From the Schroedinger equation

o, (1
H9,(t) = (Ho + V)¥,(0) =.ih.( (')t( ) (2.13)
we obtain
ihazgt) V()¥(t) Tomenaga — Schwinger equation (2.14)

et L

with



wt) — g Holt—ta) V e~ ntolt-to) (2.15)

‘ The Tomonaga-Schwinger equation describes the time evolution of the state vector
W(t) in the interaction picture. One easily shows that the time evolution of all observables
is determined by Hp ( one says also that the observables have only a kinematical time
dependence, whereas the state vector ¥(t) has the dynamic time dependence determined
through the interaction V(t) ). This splitting of the dynamic time evolution from the ”
trivial ” one is particularly useful in scattering theory. We define now a time evolution
operator in the interaction picture through

W(t) = U(t, ') ¥(t) ' ~(2.16)
with
Ut,t) =1
Ut "\ U, t') = U(t, t') (2.17)

Ut ) = U 1)

The Tomonaga-Schwinger equation gives us

ihaU(t,t)

5 = VUt (2.18)

and formal integration leads to

t

Ut,th =1+ (%i)/V(t")U(t,t”)dt” (2.19)

¢

The conservation of probability leads as before to the unitarity of U:
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U, t) = U=t t) = Ut 1) (2.20)

From (2.16) and (2.12) one easily obtains the relation between U(t,t’) and U,(¢,t'):

Ut t') = extolt=)y (4 ¢)e™ kHo(t'~t0) (2.21)

and in particular for not time dependent H; one gets

U(t,t') = enflo(t—to) e—;%ll,(t—t‘) e~ wHo('~t0) (2.22)

Expectation values of operators are of course in all pictures the same.

2.2 The scattering matrix ( S - matrix )

This chapter is devoted to the development of a rigorous formalism to describe a quantum
collision process. The basic ideas are very simple. One assumes that in the past, at
t = —o00, a beam of free particles was prepared in the asymptotic region, by fixing the
experimental conditions (‘the projectiles have a certain energy, spin, direction of motion).
At time t = 0 the interaction between the projectiles and the target takes place. The
scattered particles are detected at time ¢ = +oo with detectors placed in the asymptotic
region ( i.e. far away from the scattering center ). We therefore have to investigate the
time ‘evolution' operator at 3 different times, t = —o0;0,+00. The following: limiting
procedure for operator-functions given by Gell - Mann and Goldberger wﬂl turn out to
be very useful for the further discussion. o

hm F(t) = hm c/e'“’ F(t')‘dt,' : (2.23)
e—0t
0 : . : ’ Lo
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0

e/edmwﬁ' (2.24)

-00

lim F(t) = Ilm

t——co

One convinces oneself by partial integration from the correctness of this relation pro-
vided F(t) has proper limits F(+o00) at ¢ = Zoo. If F(t) however oscillates at large | ¢ |,
then the exponential factor will damp these oscillations. It is important to note that
first one has to perform the integration and then to take the limiting value for ¢ — 0.
This limiting procedure may now be applied to the collision operator U{t,t') and one may
define the following 4 operators

U(t,—oc) = lim

«—0+

c‘/qe U(t,t')dt’

U(t,+oo)=£lix;1 {e/e‘“u (t t)dt}

U(+oo,t) = lim { ¢ ”UUQM

U(—oo,t) = lim

e—0+

e/euat (2.25)

We note without proof that U(t,+o00) and U(Zoo,t) satisfy the same differential
equation as U(t,t') and have the same multiplicative group properties. They are, however,
not necessarily unitary since the inverse operators have not yet been defined. They satisfy
however the relations U*(+o0,t) = U(t, +o0), etc.

In the following we will investigate the scattering problem (2.13) and assume that
there exists only one way of splitting the hamiltonian H,. The generalisation to many
arrangement channels is not very difficult and will be given later. We start from

H =Hy+V (2.26)

and denote the eigenstates of fiy by ®,. It is assumed that H, has no bound states.
In the next step we define the socalled Moeller operators ( or wave operators ) by

0 = U(0,F00) and OHT = U(F00,0) (2.27)

They transform the cigenstates {d,} of Hp into the eigenstates \I'((,i) of the full hamil-
tonian H, at time { =0

W >= 05 0, > and ;<P =< @, [ QW7 (2.28)

From this we can calculate the matrix elements of the Moeller operators and obtain a
useful representation of these operators.

<P QB | b, > =< by | UE >

<O | OO0, > =<0 0, >

The set of functions ] YV, > may be assumed to be a complete set of orthogonal func-
tions. As a consequence we can derive immnediately a representation of the Moeller oper-
ators.

O =Y wE s <o, |

QB =Y, > < U |

Using the operator expression (2.25) for .I/(0, —oco) allows one to obtain on explicit
representation of QF. We assume again that 11, has no explicit time dependence. With

U(t, 1) = extlali=to) (=3 Holi=t) (=3Ho(~t0)
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we get from (2.25):

0
U(0,—00) = lirg'i {c/ e"lU(O,t')dt’}

—00

0
= lim {E/ e:t’ e—;;—Holu eAlH,l' e‘i‘”"("“to) dtl}
e—0t

If one sets to = 0 this reduces to

0
U(0,—o0) = lim+ {e/ et enflst! o= iHot’ dt'}
e—0
Using the same steps in the calculation of U(0, +00) one gets also

e—0+
o

U(0,+00) = lim c/ =t enHst’ g=iHot dt'}

If we use now the corﬁpleteness of the free states | ®, > we find

Foo
U(Q,Foo) = [l_i’rgx+ {?e/ etet’ ehHot! Z } @, > < &, 4 ¢~ wEat’ dt'}

0 a

+e i
Jm > Ter i(H —Ey | T 7 <%l |

o

or
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Q(i) = lim Z.E——ilzf_nﬂ:_n] I b, > < P, I (231)

n—0+
With this we obtain for the scattering solutions | U > the Simple expression

+i
® > =W @, > = lim ———t— .
| > | 20 > ,,l_l.r(ﬁEa-—H,iin | ®a > (2:32)

The functions {| i) >} are eigenstates of the full Hamiltonian and therefore orthog-
onal '

H; | ¥® > =E, | &) >

< T 0D >= g, ; (2.33)

This allows us to obtain another property of the Moeller operators:

a®TO® =3 10, > < UE (U > <@y |=) ] [@a><Bal=1 (234)
’ aff a ’

AW =3 0B > < @, [ B> <UF =) [P > < W] (235)

af a -

The full hamiltonian H, may have bound stats | ¥g >. " The completeness of the
eigenstates of H, is therefore given by ‘

1= (U@ ><¥@® |+ > [Up><Upl= DU > < u® | +Ap (2.36)
a B a )
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QBB =1 A (2.37)

The Moeller operators are therefore only unitary operators, if Hy and H, have no
bound states. Next we show

E ¥ > =H, | &) > =H0 |0, >

E U > = a®E, [0, >=0FH, |, >

and therefore

HQ® = &) Hy
ot 7, = Ho®* _ (2.38)

QD [Up>=0 = Ot Ag=0

After having discussed the properties of the Moeller operators we introduce the concept
of the scattering operator S. This operator is constructed in such a way, that it connects
the free states at time —oo with the free states at time ¢ = +oo, after the interaction has
taken place. This operator S is defined through '

S = U(+00,0)U/(0, ~00) = T+ (2.39)

and it acts by construction on the asymptotically free eigenstates | @, > of Hy. The
S - matrix elements are then given by - '

<®|5|®a>=<0|00" aW [, > =< v)) v > (2.40)

42

The S - matrix elements are time - independent and they represent the probability

amplitude to find the system after a measurement in the state | \Pﬁ_) > if it was originally

in state | ¥4 > | ¥4 > is obtained by time evolution from the state | ®, >, whereas
| \IJE,—) > goes by time evolution into the state | 5 >. We note that the definition of the
S - matrix does not rely on a particular splitting of the hamiltonian H,. It is a unitary
operator and it commutes with [fy:

StS =85t =1
' (2.41)
[S,}I()] =0

In the next step we calculate the S - matrix explicitly.

<P |S by >=< U)W > = [<w§,+’|—(<wf,”1—<\v§;’|) (W) >

= Gpo— [ <P =< WS | ] U >
T s — 9 > = lim ap ! + s |<1> ,>
e f e Eg—H,+in  Es—H, iy !

o 2in(Eg — H,) (s = 1y = V)
Sim, (Es — H 42 | ®> = lim (s — 1) + 2 | ®a >

—21y

= eV | &g > = —2ixd(Ls— H)V | Dy >
Syt (Eﬁ_llg)2+7]2 ] 8 > ¥ ( It ) I a8

<UD - < u§) ] W S = 2ir < @y | V 6(Ey — 1) | ¥ >



= 2in8(Eg— E) < ®p | V | ¥ >

With this we obtain

<P | S| Po>= 8pa—2mi6(Es—E,) <®p| V | TP > (2.42)

In a similar way one obtains also

<8 | S| 0> = bpo—2mib(Ey~E,) <¥) |V |0, > (2.43)

If E5 = E, (” on the energy shell ” or simply ” on - shell ”) one has therefore

<P | VI¥H>=<0D |V |0, > (2.44)

For Eg # E, this is not the case. Comparing (2.44) with (1.40) and (1.41) shows
the relation to the definition of the T - matrix and the scattering amplitude of potential
scattering. However, in our present case we have not yet separated the center of mass
motion and in particular we have not made any restriction to a two - body scattering
problem. The equation (2.42) ... (2.44) play a central role in scattering theory.

In the next steps we will generalize all the considerations developed so far to the
case where the Hamiltonian H, can be split in various ways into ” unperturbed ” and
” perturbation " part. We call the various possible splittings of H,, determined by the
- number and nature of the particles participating in a collision process, "arrangement
channels ” ( sometimes they are also called fragmentation channels ). In each of these
arrangement channels ¢ one has therefore

H = H, +V, (2.45)

Each of these channels ¢ contains many ordinary channels differing bei all the possible
quantum numbers v of fragments in that channel. We denote the asymptotic ” free ”

states in a given arrangement channel ¢ by ®. .. These functions are eigenfunctions of H,
with energy E. ., and represent only a subset of the full complete set of eigenstates of H..

H®,., = E.,%., (2.46)

To distinguish the @, from the full set of eigenstates of H, we call the latter ®.
In the following we shall use the following short hand notation. A general state v in
arrangement channel ¢ will be denoted by n = {¢,7}. The initial state a in the initial
arrangement channel ¢ = i will be denoted by a = {¢, a} and similar for the final state g
in the final channel ¢ = f by b = {f, 8}. Next we define for each arrarigement channel ¢
a time evolution operator U. (to = 0).

Us(t,t) = enHet o= RHlt=t) = jHe! (2.47)

All the equations (2.25) remain valid when applied to U.(t,Foo) and U (Foo,t). We
introduce now the socalled ” channel projection operator ” A., projecting on the ” channel
space ” R., spanned by the state vectors @, belonging to the channel c.

Ac= Z [ ey > < Doy |= Af (2.48)
]

3

The Moeller operators for channel c are then defined as
Q&) = U.(0,F00)A. ‘ (2.49)
O®* = A U.(Fo0,0) (2.50)

The wave function U3 = lIlg%,) of the whole system at time ¢ = 0, originating from
the ” free ” wave functions ®, = @, are then defined as previously
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vl >= 0 | ¢, > (2.51)

In particular, we have in the initial and final channels (with ¢ = ¢, and b = 5LB)

o >= 0 | o, > 2.52
|92 5= 0l | g, > (2.52)
The Moeller operators can be determined as before by
(£ _ g = I iHgt ~iH
O = lim {U0,0A) = lim {etft et g}
Foo
= Hm {Fe [ e enflet ek Het gip, (2.53)
e—0+
)
Performing the integral leads to
. +in
Qi) = -_ "
¢ ,,B(?w‘;Eﬂ—H,:tin | @ >< 0cy |
1
=A:+ ki =5V
+n13(1)1+; oy el [ By >< Bey | (2.54)
and we obtain for the full scattering solution as before
[ o >= 0 @, >= lim — 1 | Doy >
i 4C n—0t Ec.Y - H, =+ i7] 7
. 1 ‘
=&, >+ lim ———— V. | O, > (2.55)

o0t By — H, £ 17
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We remind again that the set of function &, is not complete and that functions related
to different arrangement channels are not necessarily orthogonal (< ®cy | @y > 0).
Therefore in general we will have AgA. # 0. The solution of the full problem belong
however to a complete orthogonal set:

< WS | W) >= 6.6, . (2.36)

In the following we shall derive a few properties of the Moeller operators :

+ ; Fin' i tin P> <
AT =3 ey > < b | Nim s U BT H T %o ol

L]

Iy

= By >< W B S b [= b Y | B >< Oy |= Ak
¥

¥y

Q(f)*’n&i) = Abwe (2.57)

Bt =S 1) >0 | 0, >< VB =3 U s< vl = Q0 (259)

¥y ¥

The operator Q. projects into the space spanned by the’ vectors'| lll‘(-ﬁ) >. "l'his is a
subspace of the space spanned by all the cigenstates | V& S of the full Hamiltonian.
These subspaces are all mutual orthogonal to each other. Summing over all subspaces we
get the full space of the scaticring solutions of H,. Adding to it the space spauned by
the genuine bound states ( all particles of the system bound ) we get the full space of
cigenstates of. H;. Therefore

Sa®a®t =", =1 - Ay (2.59)

< c
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with
ABZZi\I’B><\I’B‘
B

Equation (2.59) is the completeness relation for the cigenstates of H;,. We also can
casily derive the relation

Hs z(::t): <(::t) c
Qe = O, (2.60)

" Ap =0

At this stage we can generalize the concept of the S - operator to the case where there
is more than one arrangement channel. Instead of one S - operator we have now a set of
S - operators defined by

See=0"am (2.61)

With particular reference to the initial and final channels we are interested in calcu-
lating the matrix elements of

Sy = Q7 Q) (2.62)

taken between the asymptotic eigenstates ®, = ®;, and @, = 9,5 of the correspond-
ing channel Hamiltonian H; and H;:

<‘I)1,IS,"I(D¢ >=< (I),g[S,;[(I);a> (2.63)

Using (2.52) we obtain

<@ | S| @0 >=< 55 | AN |2 >=< U [ UM > (264)

Next we shall prove the unitarity of the multi - channel S - matrix. As a first step we
calculate

}: Suren St = Z Qﬁ,"”gﬁ,‘,‘)ngfy?‘“ng" = Z Q£7)+Qc,,ng—)

= 0071 - A = 00 ) = AS,. o (2.65)

and similar

E S} Sene = Aeboe (2.66)

e

Taking the matrix element of (2.66) or (2 67) between the states | ®p .+ > and | &, >
we obtain for example

<@y | Y ShiSene |<1> >= 8ucbyy (2.67)

cu

On the other hand we may introduce into the left hand side a complete set of functions
| (DEYH >. Since both S - operators contain the projection operator Ag, only the functions
] ®.v4n > remain and we have

E < q)cl., I Sc"c‘ [ q)c" n >< @cﬂa," ‘ SCH ‘ @ > 6cl 6.,.'
i (2.68)
Z < @07 ‘ Sc 1ot ' @cn n >< ch.yu I Scc,, l Q >= 6:! 67—7 .

ety

49



i1 ; These relations are the unitary relations for the multi - channel S - matrix. We proceed
in gi\"ing a more explicit representation of the S - matrix. We start from (2.55).

() 5 _ g —|® im—— 1 v, |®
|9 > =07 | & > =| v >+ lim E,,—H,iinvfl b >
1

| 0@ > =0 | ¢, > =| @, > + lim

— V.| B, 2.
a0+ E, — H, +1 Vil e (2.69)

and get

<O S| B> =< U BB 5= (<P [ (< WP |- <w )] U >

= b — [< ¥ |- < ¥ || ¥ >

1 1
<IN < v =<, | V; 1 - :
o | A A iy il s

% '
=<®| V, lim il =2mi < &, | V;6(E, — H,)

n—ot (Ep — H)? +n?

and
<y | Spi | Ba >= e — 2mib(Ey — E) < @y |V | ¥ > (2.70)
or
< By | Spi | @0 >= by — 2mib(Ey — Eo) < UL | Vi | @, > (2.71)
50

On the energy shelt (E, = E,) we have therefore

<@ |V ¥ s=< 0TV |0, > (2.72)

In case we have only one arrangement channel (V; = V; = V) we obtain the result
given in (2.44).

2.3 The Lippmann - Schwinger equation, T - matrix, propa-
gators '

Propagators (Green functions, Green operators):

Looking back at equation (2.69) we see that the full solution of a scatiering problem
was obtained using a Green operator (or Green function, or propagator):

. 1 1
noot E— Ity E—H,+iy

Q
oA

5
l
i

(2.73)

We suppress from now on the symbol of taking the limiting value of this expression,
implicitly it is however always implied. Propagators for other Hamiltonians such as H;,
Hy, H., etc. can be defined in a similar way.

1 !
S = 1 = 2.74
GHE) =l T =% — . (2.74)

In the special case of free particles we have

1 i
B(E) = 1 = 2.75
Go™(E) = lim, E-Iyxin E~Hyki (2.75)
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where Hp consists only of the sum of the kinetic energies of the particles or in the
relativistic case of the sum of the kinetic energies and masses. Since the operators Hj,

H., H, are all hermitian operators, we have

c®M (g = g elc.

Some useful combinations between the various propagators can be constructed by
using the following operator identities:

AT'—-B'= A" (B- A)B! : (2.76)

A™' - B! = BB - A)A™! | (2.77)

Choosing for example A = E- H,t+imand B=FE—H.+in (H, = H.+V.) we derive
GH(E) = G 1+ GH(E)V,GH)(E) (2.78)

GENE) = G¥) 4+ GENE)WV,GH(E) (2.79)

In case there is only 1 arrangement channel( we may call this a direct process, H, =
Hy + Vy ) we have

.

GEE) = G(E) + G EW.GHNE) = GEN(E) + GEEW,GENE)  (2.80)

If we choose A = £~ H. +in and B = E — Hy + in we obtain

GH(E) = G +GE(E) (V-V.)GH(E) = G (E)+ GEV(E) (V - V.)GE(E) (2.81)
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bt g oo S ST

Lippmann - Schwinger equation, T - matrix, S - matrix

Using (2.55) and (2.79) we obtain for the scattering solution in channel c:

|0 > = | @y > +GHV, | @ > = (14+GHWV.) | 0 >

= (14 (G® + GHEV.G)V,) | 0oy >= (1 + GHPV(1 + CHVY)) | &, >

or

—_— (£) 2
E_H.Lin Vo |95 > (2.82)

|0 > =] @y > +GE(E) Ve | ¥R > = | @0, > +

This integral equation for the full scattering solution in channel c is called the Lii)p—
mann - Schwinger equation. It is completely analogous to (1.35), the solution of the
simple problem of potential scattering. The main part of the S-matrix < @3 | Syi | a >

derived in equs. (2.70)4 - (2.72), were the matrix elements <@ | V| ¥t 5 and
<\‘I’£_) | Vi| ®. >. We may:write : - _ )

<O | V) | U =<y | Vy(| @0 > +GDVi | 80 >) =< &, | V] + V,GDVi | @, >
, (2.83)

<UD | Vi | B0 >=< 0y | (1+ VGO Wi | €, >=< 8 | i+ V,GHPV; | 0, > (2.84)

This allows one to define transition operators Ty; and 77; (sometimes called Lovelace

- operators):

Tyi(E) = Vi + V,GH (E)V;
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T(E) = Vi + ViGB(E)V; (2.85)

Both T - operators give on - shell (E = E, = E,) the same value for the matrix

element.

<OV > =<0, | TH(E) | 0> =< V) | Vi | &, >

=< & |TH(E)| > for E=E,=E, (2.86)

To prove this one has to show that on - shell < &, | V; | &, >=< &, | V; | @, > is
valid (using the hermiticity of the operators H, and V; ). With the aid of the operator
relation for the propagators one can derive integral equations satisfied by the Lovelace
operators Ty; and Tp;:

a) Tpi =V + V;GWV: = V; + V(G + G{PV,GD);
= %+ VGV + VGGV = Vi VG (V4 V64V
= Vi + V60T,
b Tpi = Vi+ VGOV = Vi+ V(G + GOVGIW = V; + VGOV V66,
= Vi+ViGPVi+ (T = V)GV = V; + 1,60V,

Tji(E) = Vi + V,G (E)Ti(E) (2.87)

Ti(E) = Vi + T(E)GP(EW; (2.88)

The S - matrix is then given by

<Oy | Spi| 0> = 60— 27mi6(Eq — By) < Oy | Tri(By) | 0 >

U N—

s it

= 6o — 27i6(E, — Ey) < &y | Tri(EL) | 00 > (2.89)

2.4 Transition probabilities, decay probabilities, cross sections

According to our discussion after equ.(2.40) we can define the total transition probability
for a genuine transition as

Wia =|< @y | Spi | @0 > —61a [*= (27)(8(Es — Ea))? |< @ | Tpi | B, >)? (2.90)

We may use the following definition of the & - function:

+5
T 1 (B T
_ — 1 - -—(Iy,,—Ea)tdl — i L5
§(By—Eo) = lim (557 / e lim {27rh6E°'E“}
3
in (2.90) we obtain -

. T . )

Wia = (20)6(B, — Ea) lim {éw_h‘”’b"“‘-} < @ | Ty | @, > (2.90')

The basic quantity to calculate decay probabilities and cross sectjons is the transition
probability per unit time which can be defined as follows:

Wi, 2 ' _ ' ‘
wye = lim :%6(1;,,—1«,;)|< @ | Tpi | 0 > (2.91)

T—00 T

where we have made use of the fact §(L = E,)ég, .z, = 6(I — Ea). The dimension of

Wa 15 [Wpe] = sec™L.

Whenever the interaction is translationary invariant the transition matrix Ty, (7})
contains an overall momentum conserving é - function which can be extracted from the
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T - matrix element. This is best shown in the coordinate representation. We use as an
example a system which in the initial channel consist of n; composite particles interacting
with each other. In the final channel we may have a different number n; of composite
particles. The asymptotic wave functions for the initial and final channel can be written
in the following form:

N o ) I
— — 5 — 2.92
H(m % ) 5 (2:92)

ny
I mgnaw 1
¢b — H ( - eikkl R,‘” ¢1ﬁ~,’1‘:) _\/7_7_ (2921)

¢;’;‘ and qS;,’;' are the normalized internal wave functions of the composite particle j
and k in the initial and final channel. I_Z‘_(:) describes the center of mass of particle j
and 1;,(") is its center of mass momentum in the initial channel ; and I-ZY) and E,ﬁf) are

the corresponding quantities for particle k in the final channel f. The quantities J; and
J; are the corresponding Jacobians when going from the usual Cartesian coordinates to
internal and center of mass coordinates. The sets of the center of mass coordinates I§§')
and R‘(f) may for example again be transformed into sets of Jacobi coordinates. Among
this Jacob1 coordmates is one, which is the center of mass coordinate of the whole system.
Let ;3( and p; /) be those Jacobi coordinates. We have then

n;—1 n;—1
Z (') Z k(')R + Z k(‘ -(‘) = 1{(‘) R our + Z k(')' —( )
i=1 i=1 =1 j=1

and a similar expression for the final states. The T-matrix element can now be written
as follows:

<, I 7},‘ l o, >=/ dT‘D;TﬁQa
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ny _gE“)R(” n; e;g‘)ﬁg‘) ) 1
g ¢) T ( — ¢:,";>
/ kl;ll < V : Jl;‘! Vol i/ J/Ji

' ,Rm(,gg,g‘_ 24 nml YD mm RO
3D - mt" . int
= /”““ /d’mn ) T L\~

j=1

J is the Jacobian of the transformation from the Cartesian coordinates to the total
center of mass Ry and some other set of remaiming coordinates which needs not to be
specified for the present discussion. We may rewrite the expression for the T - matrix
element once more to prepare it for a continuum normalisation of the wave functions.

[t

SR P - 0 LAY dr'Int
< | Tji| B >= 7 [ d*Heme 11 Vo o

ol i=1

ndfEAD ni-1 e;;;y')',;s_‘) _
LT (S 51T e
J!J, 7 k . (27[')5 ’

i=1

If the interaction is translationary invariant, then the inner integral [d7’... does no
longer depend on fim and the outer integral can be performed leading to a factor 4/ Ri -
The final result is then

ni+ng~2

27 )3 ‘
<O T |90 >= 5y g, Ton(F) (299)

Vo

Tb,q is sometimes called the reduced T - matrix element. According to its definition,

Ty has the dimension MeV(f,:”:)""*'"l". Inserting (2.93) into (2.91) one gets for the
transition probability per unit time the expression
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27 2r)3\ M2
Wpa = + §(Ey — E,) 6R£'fn)ﬁg')1 | Ty |? (%) (2.94)

One may also consider the differential transition probability to measure the final re-
action products with momenta lying in the interval (ky, k; + dk;). in this case one has
to multiply (2.94) with the corresponding probability, i.e. with the available phase space
I ((TV:;j) dak_{. The result is:

j=1

- ng n;—1 7y
Vat 7y 2m Verbgt, Rin (277 \™ 2
due = wia [ ((—W) Pk = F8 BB —5 53 Vu [ % 1T |
Jj=1 @ j=1
(2.9¢)

We consider next the two most important cases with n; = 1 (decay probability) and
n; = 2 (reaction between to composite particles).

a) Decay probability.
We obtain for n; = 1:

27 d ‘/al JR{m'Rgm 2 A 3—.(])
dwy, = T §(Ey — E',,)"(2—7r)3-—' | Tha | Hd k_,'

j=1
If we go now to the continuum normalisation we have to take the limiting value for
‘/01 — Q. With

. [VaHsRI Ri
lim m_em

(2r)? ] = 5(3)(Rc,m - 1;’2,,.)

Vot— oo

we obtain
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o S o -
dwy, = 7” 8(Ey — BE)SORL, - Ki) | Tha 2 J[ £E (2.95)
j=1
With E = hece = hck® we can also write
2n¢ S WA
— @/ - 2 37.() ’
dwy, = (hey? §(KL, — KL,) | Tha P[] 2R, (2.95")

j=1

We sce that this result is again independent from the normalisation volume. The

transition rate for the decay @ — b is obtained from (2.95") by integration over‘H d3l-.:f
. j
and the total decay - rate is obtained by summing over all the final states.

Wyotal = E Whe = E / du"bai
b b

The decay width’s are given by

1‘lnt = h“)tolal = E hu"bn = § l‘b
b b

b) Cross section of reactions

We consider a reaction with n; = 2 composite particles in the entrance channel. The
current density of the inconiing particles is j;, = %zl (sce equ.(1.17)) and the differential
cross section is then defined by - S :

ny

Vot 5,"/ o Vi ("7!')3 2 37
S Wam ML, Yol \& D ined
(B — 1) — | Tha |2 []

dwp, 2m 5
(27 vea Va

d a = =
e ~Jin h

j=1
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(2m)* Vorbgy, R : ] 37S
= —2 §(E —FE))———miem " 43k
Frongg 0 B0~ ) g T FIIeE

j=1

where we have used (2.94°). Going over to the continuum normalisation one obtains

_ (2”)4 @) if 2 2 - 37.f
doy, = o 8(Ey — E)ENK! — K )| T | jl—ll d*k; (2.96)
or
_@2m)* yer i C : 7T a7f
Ao = Govz 80U, — Kip) o | Tia | [] 2 - (29)

j=1

We note that the wave functions used in T}, have been normalized in a non covariant

way. The volume elements d3% and d®k are not Lorentz - invariant and therefore also Tha (
or | Ty, |* ) is not invariant under Lorentz transformations. On the other hand one knows
that day, is necessarily an invariant quantity. It will therefore be very useful to write the
expressions for the decay probability and the cross section in a manifest covariant form,
i.e. to express all expressions through relativistic invariants. First we note that the four
- dimensional ¢ - function is invariant under Lorentz transformations. Next we note that
for any Lorentz transformation A* we have

K =A%k

and I 0 11 142 143y |
. a(kl kl kl kl)

. S B L S A PO Al= 2.97

| S ) =] deth =1 (2.97)

Therefore also d*k is an invariant. quantity.

| a(klo kll k,Z k,3) | .
417 3 ) ) 47 _
= ) | k= (298)

The transformation property of d* we show best by using a special Lorentz transfor-

mation along the z - axis.

00 —=£
1-62 1-42
0 10 0
8o —_—
Av= 0 01 0 A=
—8 0 0 1

This gives us

k/O K —-gr k}l — kl

E? = k2. pd o BROHR B E2 42443
=k?, =

Vi-2 /1@

(2.99)

(2.100)

From these equations we immediately get the Jacobian for the transformed momentum

3 - vectors:

ok, k%, k) K —pBK®  k°
| (KL, k2, k3) I= ko /T—pg2 ko

and consequently one has

- | a(kll kﬂ k:3) | . k:o o
1317 — b L] E=—d%k
4K =| Ik, k2, k3) | @ k° @
Therefore . .
&Lk Pk
i

(2.101)

(2.102)

(2.103)

is an invariant quantity. If we integrate equ.(2.90°) for the total transition probability

Wia over a small momentum range in channel a and b and use (2.103) we obtain
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Wia=)" / (27)*8(Ey — E.) -
af

T P\ N
cdim (== )6z 4 | T P (22X k] 5K
i, (5er) eV 70 (0) ™ T (i) 11 (5520

ny
HdmIHq
i=1 k=

Since the total transition probability is by definition a Lorentz invariant quantity, also
the only remaining quantity

o ot T (27)? ) ; ,pk! i d“l'c"
e R f -k

J

(2.104)

ny Ny .
H eg»f) Tha H ei') (2.108)
J=1 k=1 .

must be Lorentz invariant. An analogous investigation may be applied to the S -
matrix element. M,, is called the invariant amplitude. Using this form of the invariant
amplitude and the invariant phase space factors in (2.96") we can rewrite the expression
for cross section dos,

27 )4 i e ' dakf
doy = EL s i w5

L LK) —S | M, | _ (2.106)

. The quantities €}, €, and ef are on - shell quanfities. They are the zero - components
of the momentum four vectors of the corrésponding particles. In order to bring (2.106)
into a fully manifest covariant form we still have to show that the factor l(,c, can be

Vrel€3 €2

represented by invariant quantities. Since dos is invariant, we can be sure that at. least
in the laboratory - system (L - system) we will be able to express this factor through
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invariants. We note that in the L - system onc has t = 0, ¥,q = o} , c; =y} and

=k 4 pi?= \/—%1'_;‘—7 and K} = Ji— 4 \/__.7 Therefore we have in the L - system:
1

Urel l 3} i Ei
= ”ﬂﬂh‘ﬂ
c c €]
and
; H 1 1
UL s WO S S - Lab.s 2.107
it (1)
R I B T S A N S B )

Consider next the relativistic invariant s ( it is one of the socalled Mandelstam -
variables):

[—

s= (k)P = k2 k4 2Kk = % 4l 26 — 2R = (e 4 ) (2.108)

We characterize quantities referring to the center of mass system ( CM - system ) by a
star.’ In the Lab. - system we have

2 P2 500
=y +pr 260,

Using the three invariants k'2 k"2 and s one can construct another in\arianl A(s pi?, %),
The socalled triangular functlon X is defined as A(a?,y?,2%) = (2% — y? — 27)% — 1y2:2

iz 2 i2 i? i2 2 i ‘2 i2 .
Aoy iy )= (5= =iy )2 =4 1y = Al(kky)? = (2.109)

In the Lab. - system onc has

i2 i2 iz ,i?
Arae (s, 0y 15" ) =4 | Ky [* ta
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and therefore (2.107) can be rewritten as

¢ ! 2 = ! (2.110)

R A IRV CL ey

Next we shall make the same considerations for the CM - system. We start from the

quantity | 7, | € 62

| pix ie
i i te _in kl k i i | 61 + 62 —c I R; | \/—

|ﬁ:ell€;-€;‘= 171-'5; € €2 =CE€ 6 |“‘ cey | Ri | —

& e
In the above expression we have used I?i' = —E; = K;. We have therefore in the CM
- system
e 1 C(2111)
| Or leres &V

If we evaluate /\(s,y'iz,,ugz) in the CM - system we obtain
ix i .2 ix 1w Tim Tiny2 i2 2
Aem (c, /‘17/‘2)=4[k k3 ) —l‘] Hal= 4[(5152“k1 k) = ]

=2 i% i%

= 4[(&? +u'i2)('??+;t§2)+2~ e+ (R2)? — i’y

= 4'-9‘?[2'—512' + 25'1‘62‘ + l‘] + l‘z l 4K;s

Therefore we have also in the CM - system

i2 42 ix i. i2 P
Aem(C 8y, 15" ) = 4[(k; kz B K2 ]= 4“?3 (2'112)

or
c 1

[ O7e | fi“;‘ (k:f‘k;')z

(2.113)
i2i2
—
exactly as for the Lab. - system. If we replace in (2.106) VAT ”_ - by the socalled
relativistic flux factor W, we have achieved our goal to write the expression
R

for the cross section in manifest covariant way.

(2r)’ 5(4)(1< ~Ki)

daba -
he i i i i
(he)? (kivkir)? — i

7 (2.114)
]

| My I 1"_’[ k!

In this form we can calculate doy, in any arbitrary Lorentz frame. One should note
that for arbitrary ¢; and o, in a general Lorentz frame the expression ﬁ?— is certainly
rett1t2
not a relativistic invariant.
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3 Multiple scattering theory and optical potentials

This chapter is devoted to the investigation of the scattering process ‘of a pr.ojectile on
a system of A bound nucleons, as for example scattering of hadrons on nuclei. We shall
confine this investigation to the treatment of elastic scattering only. The target nucle:ons
in the initial and final state will therefore be described by the fully antisymmetrised
ground state wave function ®%. All considerations will be based on the use of Potential
scattering theory, a fact that limits the validity to low and intermediate energies up to
a few hundreds of MeV. The interaction of the projectile with the target nucleus is then
given by

A
=3 V(@ - &) (3.1)

=1

" Let- Hy be the Hamiltonian of the target nucleons and T:,f" be the kinetic energy

operator of the projectile. We look for a scattering solution \Dg) of
HY) = Eold (3.2)
where

H=Hp+TE"+V(Z) = Ho+ V() (3.3)

Hy = ZTJ’“" 5 ZV i) (3.4)

J#

The formal solution of this problem is given by the Lippmann - Schwinger equation

v = o + G (E)V LY (3.5)
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where

GY(E) = (E — Ho+ i)™ (3.6)

and @z is the solution of the homogeneous problem (without the term V(%) )).0r is
a product of the plane wave describing the undisturbed motion of the projectile with the
nuclear ground state wave function @Y of the target nucleus. Using the definition of the T
--matrix(equ.2.86) and (3.5) we get the Lippmann - Schwinger equation for the T-matrix

<O |T|®g>=< b, |V |V >

and

<Oy | T|0p>=< @ | V[| x> +G(EW | WP S =< &, | [V+VGP(E)T] | 05 >

or

T(E) = v+v0<+’( EYI(E) (3.7)

The operator G(()+)(E) is a very complicated many body operator. The main goal of
our investigation will be to understand the projectile - nucleus scattering problem as a
sequence of collisions of the projectile with the individual nucleons of the target nucleus.
To obey the Pauli principle the nuclear wave function must be fully antisymmetrised.
Depending at which step of the development antisymmetry is introduced, one gels two
different theories, namely the Foldy - Watson theory ( FW } and the Kerman - Mc Manus
- Thaler theory ( KMT ). The KMT - theory is forinulated in such a way that it works
exclusively in the restricted Hilbert space of antisymmetric target wave functions. In
contrtast to this the FW-theory is formulated in the entire Hilbert space and only initial
and final target states are antisymmetric. In_the following we shall develop both theories
in a formal way, i.e. without usc of wave functions. In principle one could try to solve (3.7)
through iteration obtamlng an expansion in terins of the potential V. This expansion is
called the Born - series and it would be convergent only for weak potentials. It is however
possible to obtain a much better conve rgence by reordering of the various terms of this
expansion. One tries to combine all terms containing the interaction with one and the
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same nucleon ( i.e. terms of the form V_,-Gf,HV_,-GE,H ... ). In this way we describe fully
the scattering process on this nucleon and obtain then a series of consecutive scattering
process on the various target nucleons.

3.1 Foldy - Watson theory

We start from equ.(3.7) and insert (3.1) to obtain

A
T(E) =Y Vi+ > V;GH(B)T(E) (3.7)

=1 i=1

Next we define an auxiliary operator Tj:

T, =V;+v,GHET (3.8)

which satisfies

) .
T=>T (3.9)

The right hand side.of (3.8) may be reformulated in such a way as to isolate T;. We

obtain
T, = V;+ V;iGHT; + VG )T
' k#3
or ) L
(1 =VGT =V +VGP 3 T
. . k#j
or S ’ )
T, = (1- V;G$) 'V + (1 - V;GE) G D T - (3.10)

ki

Next a new quantity ¢; is defined by

t;=(1- VG, S (31

With this operator t; we convert (3.10) into the form

Tj=t; +4;G" Y T (3.12)
k5 (

Multiplying (3.11) from the left by (1 - ijf,")) we obtain

(1= ViGN = V5
or ’ . .
t;=V; + V;G{M, (3.11')

This equation had exactly the form of a Lippmann - Schwinger ecéua.tion for the scatter-
ing of the projectile on the single isolated nucleon j, if in place of Go+) the free propagator
g((,+) would occur. G((,J') is however still a complicated many - body propagator. Usually
one calls ¢; the ” in - medium ” T - matrix for the scattering of the projectile on the
nucleon j. It is the T - matrix for the scattering projectile on nucleon j which is bound
in the target nucleus. The propagator Ggﬂ describes the ” medium effects 7, i.e. it takes
into account the interaction between the target nucleons. We may now insert (3.12) into
(3.9) and obtain the Watson - series.

A A ' A
T= th + Zt,(;g” Ztk + thGgH E thg+) Zt; +... (3.13)

j=1 i=1 k#; =1 k#j £k

Each term in this series expansion describes a sequence of multiple collisions: single
scattering, double scattering, triple scattering, etc. Usually one uses the Watson series
as a starting point for various approximations ( i.e. terminating the series after a certain
order, replacing ¢; by the free ¢ - operators tfm ( impulse approximation ), etc. ). In the
next step we introduce the concept of the optical potential to describe elastic scattering.
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1t will allow to bring the Watson series into a different form. We remember once more that
in the Foldy Watson theory the full Hilbert space is used. For our purpose it is sufficient
to think that the ground state of the nucleus can be described by a Slater determinant.
This is nothing else than a linear combination of A! products of A single nucleon wave
functions. .All ‘A! such products are degenerate with respect to the ground state energy.
We call Py the projection operator on the space spanned by these A! product wave
functions. The projection operator Qw projects on to the rest of Hilbert space, such that

Py +Qw =1 (3.14)

The basis functions from which Qw is built up are not contained in the set of the A!
products of the ground state ware function. They are members of the set of "excited”
states. With this we may now reorder equation (3.12) writing

Ty = t; + t;(Pw + Qw)GSP Y T =1 +t G‘+)PWT+t GSQw S T — LGS PwT;

k£l kst
(3.12))
or
(1 +t,GS Py Ty =t +1; G(+) Pw T +1; G‘”QWZTk - (3.15)
' ) : k3tj i
We (ieﬁne anew ¢ - operator &} by.
t = (14 4G50 Pw) ™, ' ST (3.16)
or
t; =1; — tjG((]+)Pwt;- =V %-r‘VjG((f)th; ) (317)
We use this now i equ.(3.15j and obtain
L o . T,— u_+t G(+)PWT+t G(+)szTk N A
AT P R B SUE I e SR SRR T P YRR AT IR k;éj‘ RUEES cathf e
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Inserting this into equ.(3.9) and iterating the 3rd term in (3.127) leads to a new
formulation of the scattering problem. We obtain

T(E) = Upp( E) + Unu( E)GS (E) Pw T(E) (3.18)

with

A - A
Uope Z ZLG“’ EQw Y ti+... (3.19)

k#j

Usp(E) as well as T are operators symmetric with respect of interchanging any two of
the nucleon coordinates. Taking the matrix element between.correctly antisymmetrized
initial and final nuclear stats leads thercfore to correct physical results. Since G((,H is
diagonal with respect to the target states, we may replace Py by Py | &% >< 09 |
(APw A= F). We sec that in Foldy - Watson theory we use a set of nonsymmetrized
intermediate states in constructing a symmetrical operator Uy, which can then be used
in the Lippmann - Schwinger equation for the T matrix:

T(E) = Upp( E) +u,,,,,(E)Gf,+’(E) »T(E) (3.18")

3.2 Kerman - Mc. Manus - Thaler theory
In the KMT - theory we start {rom the following T - operator

T =V +vaeiPar : (3.20)

where A is a projection operator projecting on to the space of fully antisymmetrized
target states. Initial and final state arc also fully dnhsymmotn/( d. We proceed as in case
of the FW theory by writing
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A A
Z +ZVG‘+’AT ZT

T; = V; + V;G§") AT, +VG(+)AZTk

k#j
With
r=(1- Ve
or
= Vi + ViGSP A, (3.21)
we obtain
Ti=n+ T,G(HAZ T
o : J#E
and : . . . ‘ 4 .
A A A o . ) p R
T=Yn+Y wGPAY 5+ Y n6HWAY rn6HAY n+ .. (3.22)
i=1 =1 FE3 i=1 J# k#j .

%

This T - operator leads to the same physical answer as in the FW - theory provided one
uses correctly antisymmetrized initial and final state wave functions. However, now we
have also antisymmetric intermediate states, so that we can make further simplifications.
First we note that the matrix elements of all /s are 1dent1cally the same. We have for
example

. o A__
<p;1§:1j|¢ﬁ>=(/1—1)<¢”r,|q>ﬁ>= 1
J#i

A
5 Y 7 | 94>
j=1

We can use this fact in (3.22) and see that all the summations can be done without
any restrictions j # i, etc. The error made by such a procedure is just compensated by

the numerical factor %. In such a way we obtain from (3.22) the expression
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A
T= ZT.+——ZT.G”AZ ( >IZT.G(+>AZTG<+’AZT,‘+

i=1 i=1 =1 i=1
(3.22")
This series expansion is however nothing but the iterated equation
A A1 i
= 4 272 Nelss!
T = ;‘r + ;r.Go AT (3.23)
If we define now
A
A-1
= > (3.24)
i=1
and
A-1
T's——T
= (3.25)
we obtain from (3.23)
A
T= 7' +7GAT
or
T = 7'+ r'GS) AT (3.26)

This is a fully symmetric operator, commuting with 4. Knowing that we work entirely
within the space of antisymmetrized states, A could in principle be omitted. In full
analogy to the FW-theory one can construct an optical potential &. We introduce the
two projection operators P =| ®% >< 95 | and @ =1 — Py. Starting from (3.22")

T =V + VGO AP+ Qo)T =V + VGV ART + VG AQoT

we obtain by iterating the term VG((,H AQqT the optical potential U.

T =U+UGH ART (3.27)
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U=V +VGHPAQU
To determine U/ we use the same procedure as before with 7T

A A

| . )
U= U= Vit Y VG AQ Y U
i=1 i=1

i=1 i=1

Us = Vi + ViGH AQo: + ViGEP AQo S U;
I

(1 = iG§P AQo)ts = Vi + ViGED AQo Y U;
J#i

Define now 7; by

5 = (1 - ViGD AQo)™V: = Vi + ViGEP AQo:

We then have
Uy =17+ ‘f'jG((]HAQo z U
k3

Iterating U, and summing over all ¢ we obtain

=1 i=1 i=1 FE

or

A
U= i i+ i 759 AQo D + > #G§ AQo E #G§ AQo Z fit...
i=1

i=1 ki - =1 ks

74

. A o s
U= U= 7+ #GPAQY (7 + #GNAQ Y " Us)

(3.28)

(3.29)

(3.30)

(3.29")

(3.31)

Using the antisymmetry of the states one can again perform all sums without the
restrictions and use the counting factors to correct for the errors:

A 4 4
. A= . A=-1\2 A il A
= ) o) - - -
u Z‘ Tt Zl #Go AQo Y 7+ (T) D HGEP AQo > #659.4Q, D het.. (331
= 1= J=1 i=1 i=1 k=1
This expansion for U may summed and gives
A A ] A
= s _ = (+) q q¢
U= § fit = ;nao AQold | (3.32)
We may introduce the following quantities
A1
= A i (3.33)
=1
and A-1 A1
T T'= =T 33
u y ) y (3.31)
to obtain from (3.32) the following result:
U =+ + G AQU’ (3.35)
T =U+UGH P (3.36)

From the definitions of 7; and 7; ((3.21),(3.30)) onc obtains casily
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# =15 — 1;G5D APo#; (3.37)

In principle one can also establish a relation between the t;’s of FW - t}}eory and th’e
's of KMT - theory. To do so, we first eliminate V; from the defining equation of the 7;’s
(3.21). From (3.11) we obtain

Vi = (1= V,G§t = ti(1 - GSPV) (3.38)

Then we write (3.21) in the form

7 = Vid+ ViGSP A, (3.21)

where we have replaced V; bei Vi A. Before it was unnecessary to do this, sincé' we
where entirely working within the space o antisymmetric states. Inserting (3.38) into
(3.21°) gives

7 = (1 = GSPV)A + (1 = GSIV)AGS T,
= tA- t,-"Gg’f"‘/.-A + 46D Ar; — t:GSPVAGTH T
= LA — G (VA + VLAGSHT) + GSD A,
= ;A -G + 1G5 A

" ni=tA+ tiG((,+)(A -n (3.39)
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The basic idea of multiple scattering theories is to reduce the calculation of the pro-
jectile nucleus amplitude to the knowledge of the "elementary” free projectile - nucleon
amplitude. In the frame of potential scattering theory the free scattering matrix satisfies

t{rce(El) =Vi+V g((’i)('i')(E.,) t{ree(El) (340)

where

H(+) 1
o (B =

= . - 4
EI - T:;n — I}klﬂ + in (3 1)

The energy E' can here be considered to be an arbitrary parameter. Since both, t;(E)
and t{"*(E') satisfy a Lippmann Schwinger equation with the same interaction, one can
establish a connection between ¢; and t{"*. We eliminate V; from (3.11) and obtain:

V=t (1 g V)
and . -
ti= (1= )" Vi) +tl(1- g0" V)Gt
- t{res _ t{rec g(()i)"’ ‘/‘ _ t{rce g((;')"‘ ‘/‘G((,-'-)t‘ + t{rccG§)+)t'_

— t{rce _ t{ree g((,')+(V. + MG(()-”tg) + t{rech+)ti

ot
= t;free — t{ree g((;) t + t{r“G(()-‘-)ti

One gets therefore the required relation in the form

(B) = (") — o] r“‘(E') (68" (B) - G§P(B) | u(B) (3.42)



The energy E' is usually chosen such as to make [g ! +( E") ~ G$P(E)] as small as
possible. One has then the hope that the Watson - series will converge sufficiently rapid.
We assume that t/"**(E’) is known from experiment. How to chose in an optimal way the
quantity E' has been discussed at length in the literature. ( S.A. Gurvitz, J.P. Dedonder
and P.D. Amado, Phys.Rev. C19(1979)142; H. Feshbach, Theoretical Nuclear Physics,
Nuclear Reactions; J. Wiley and Sons Inc. (1992), pg.142).
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Part 11

4 Elementary introduction to relativistic quantum
mechanics

4.1 Nonrelativistic classical mechanics versus nonrelativistic
quantum mechanics

Classical nonrelativistic mechanics describes a system of N mass points by the Lagrange
cquations. In case the forces between the mass points are conservative, these equations
are :

d (dL\ aL '
R A . i =1,2,...,3N 4.
(aq.-) E” 0 =12 (4.1)

3N is the numbers of degrees of freedom of the system and the Lagrange function L
is in this case given by

L(g,q,t)=T~-U (4.2)

where T(q,¢,t) = 2 ——5—*— is the total kinetic encrgy of the system aud U(q.l) =

U(%y,%2,...,%n,1) the total potential energy. The Lagrange oquatlom are the Buler -
Lagrange equatlons of a variational principle, namely of [lamilton’s principle. In short,
this principle says, if we can associate with a mechanical system a Lagrange function
.(q,¢,t), the latter being a continuous function and at least two times differentiable in
4,4, then the physical trajectories g¢;(t},¢i(¢) with the boundary conditions ¢;(1). ¢:(12)

make the integral
t2

S = / L(q(1), §(1), t)dt ' (1.3)

extremal.

8S=0 - : (1.1)
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However, the Lagrange function is only determined up to the total differential of a
function of the coordinates. The form L = T — U is called the "natural form” of L. If L
is two times continuous differentiable, one can locally resolve the equations

C gL
P = o (0:d:t)  k=12...3V (4.5)
Og '

for gi. The quantities p; are called the generalised momenta. Let ¢e = di(q,p,t) be
these solutions. Then the Legendre transform of L(q,¢,t) (£ * L(g,q,t)) is a function of
the coordinates {q,p,}:

H(q,p,t) = L+ L(q,4,1) Z‘Ikpk" (9,4,) - (4.6)

H(q,p, 1) is called the Hamilton function of the system and in the present case of
conservative forces it is identical with the total energy of the system H = T'+ U. The
Legendre transformation can be uniquely inverted. (g, px) are called "canonical conjugate
" variables. From the total differential dH and the Lagrange equations (4.1) we obtain
easily the set of Hamlltonlan s equations:

OH . oH dH _9H 4L

=—px , :9;;=qk, TR THRr TS (4.7)

These also called ” canonical equations ” are completely equivalent to the original

Lagrange equations. From (4.7) we see that in case H does not explicitly depend on the
time ¢ (‘-1ﬂ = 0) H is a constant equal to the total energy H = Eiy. In Hamiltonian
mechanics one uses quite frequently Poisson’s brackets.  Let f(q,p,t) and g(g,p,t) be
two functions supposed to be at least oncé continuously differentiable with respect to the
variables ¢ and p- The Poisson bracket is then defined as

{fvg}Poisson (48)

!
-

A~~~
|
|

|
|
&
~—

Oq: Opr  Opi Oqi

It is easy to show the validity of the following relations:

df _ af

5= o T U Hpoisson (4.9)
{gxs [} Poisson = gTi (4.10)

{px, f}Poisson = —g—i (4.11)
{qks Qi }Poisson = {Phy P} Poisson = 0 (4.12)
{9k, Pr} Poisson = i (4.13)

Gk = {qr, H} Poisson = g—i (4.14)

Pe = {Pks H} Poisson = —g—z (4.15)

Usually canonical transformations are applied to the system to facilitate the solution of
the equations of motion. A canonical transformation is defined as a transformation of the
variables and the Hamilton function such that the new variables satisfy again Hamilton’s
equations. A necessary and sufficient condition to achieve this is, that Hamilton’s principle
is valid for the old and the new variables. This is the case if the Lagrange functions differ
only by the total derivative with respect to time of a function of the old and / or new
variables. We choose here the following transformation:

9k = qk(qvﬁrt) with g = qk(‘])ﬁ,t)
Pr = Pk(q1ﬁ1t) (416)

M= S(qvﬁvt) - ;qk(q)ﬁ;t)ﬁk
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and request:

7 7 dM
- 1
s [ uaina=s [lo@io+ G a0 (1)
ty £y

If we introduce H and H instead of L and compare the integrands we obtain

dM

Zk:ékpk-—H =Zk:§kpk H+*"ﬁ—

or

Comparing the coefficients of equal differentials leads to:

as o as s - .
-2 —H+Z ) = 4.18
PE= g =1+ a7 o (4.18)

Now we may request the new variables to be cyclic variables. Cyclic variables are
defined such that the Lagrange function is independent of them (in our case L should be
independent of g ). In this case we have

5 __OL B _d(a_L>_§£‘_0
T %0 T w\e. ) T o

Therefore pp = a4 =const. The condition H =0 can be fulfilled if S(q,p = o, t)
satisfies the differential equation:
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H=H ( %S— t) PRI N (4.19)
k

Equation (4.19) is called Hamilton - Jacobi equation. The function S has also an
interesting physical meaning:

dS 65
dt Z

+ Zpqu —-H+ ZPUIk L(g.4,1)

t

S(t) — S(te) = /L(q(t'),rj(t'),t')dt' (4.20)

to

S is seen to be the action integral evaluated along the dynamic ( physical ) trajectorics.

The transition from classical mechanics to quantum mechanics is formally performed
by replacing the canonical conjugated variables ¢ and p by operators. These operators
shall satisfy the usual commutation relations. The Poisson brackets have to be replaced
by the corresponding commutator expressions. In the following we list these analogies
between classical Hamilton mechanics and quantum mechanics.



Classical mechanics = Quantum mechanics
k ko h 0
9x .+ Pk dop > Pop =~
Ezuz Etol,op = ih%
N t Ho(gk ot 1)
S H{gk, pr.t) op(Gops Phys 1)
H{qe,pr = qu t) + =0 [Ilop(qu,pfp,t) — ih&%]\ll(q,p, )y=10
{qkapk’}Poisson = 6kk’ %[(]fp,[lé;] = 6kk’
S __aH -k _ oM,
qr = {(]k, 1{}[)0155071 = By qu - {qop’ I{] - E{g’f
. OH.,
Br = {prs H } Poisson = g;i P, = vk, Hop) = — T
dF dFy, ary,
.dT - Ot + {14 }I}Pmsson ’_,1’[& = WE + i[Fopy {{o'p}
The two formal conditions: gx, px = qu,pfp = —iﬁ% and {qk,]}k'}r);isson = b =
. . op

11h[qu,p§p] = b4 are completely equivalent to each other. They are called the ”canonical
quantisation rules”. This formal analogy hetween classical mechanics and quantum me-
chanics is kept as far as p0551ble also in relativistic quantum mechanics and in quantum

field theory.

4.2 Relativistic mechanics of a free particle

As is well known, the Hamilton function of a relativistic particle with rest mass mn is given

by
Hy = /2p? + (mc?)? (4.21)

However, unlike to classical mechanics, the Lagrange function Lo is not equal to the
kinetic encrgy T. This can easily be verified.

mc?

N mc® (B= %)

T =+/c?p? + (mc?)2 — mc? =

my

vy

£V,T

One can use the Lagrange formalism to obtain a suitable Lagrange function. If Lg is
the Lagrange function of the free particle, we request:

0Ly : my' OLo

WP T im0 e

=0 i=1,2,3

Integration gives us: : N

3Lo i_ | ; 2 [ d i
Lo = d m = —mc /.E\/l-ﬂﬂ’dv = —mc?/1 — 32

AVI-B2#T (4.22)

Using this Ly we obtain of course the right Hamilton function H.

Hy = 6[,0

g
E \/__ﬂ_zi-mC\/l—ﬂ’ mc? —\/—l:_—-ﬁ{-\/l—ﬂ’ =—i\/—=ﬁ7

4.3 The relativistic particle in an electromagnetic field

A particle with mass m and charge g experiences in an electromagnetic field the Lorentz
force.
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2 i 95w B o T2 PR SR 4.23
L”—“‘IE‘FEUXB—"‘IV‘I’ c6t+ (VXA) dtpmech ( )

Here we have used Maxwell’s equationsﬂEﬁ =-Vo-1 aA and B = V x A. We observe

that St
vx(VxA) V(vA)—(z'fV) IR
j dA‘ 0A |
. + "VA 3
PRl TG CI
and obtain from (4.23) the following expression: T R RN
dprnech qu _ _29_’2‘;_ Avai V(A
Bl N St b 2 [ (vA) (FV)A} = car TIVet (74)
or '
d
v (et i) =V (oo tad) 0 a2
If we request (4.24) to be the Lagrange equations of the system, we have to set

P — =7 ZA
P vt Pmech + c

EES

;a’l“i rf*‘"'Hiﬁ_{'in'”"i?"'?,i" {5 {83 Sff?{»;«; ~{31"V,§!p;f‘}§ 'fig'
aL 0 (
dzt dzt

R T T T AR I N R B T O

c

Integration of the second one of these equations gives us

:86

P

L=-— (qq> - gaff) + f(7)

where f(¥) is an arbitrary function. It can be determined from the equation defining

df i q 4
go =N g T Pmean A

df ; mv'

(Tl; = Poech = ﬁ =

d
2
mc e 1

From this we obtain by integration

J(#) = —mP/1 -2 =L,

(Lagrange function of the free particle)

The Lagrange function of the interacting system is thercfore given by

L=Lo~ (q<1> ~ QM) = —met/T— §2 - (q¢ - 317/?)
c c
and the Hamilton function by
q._
22 = 1 — 32 -1z
'H= Zv L = ppech + v/l + mc*y/1 /f + (qd) rl .1)

me 2

= \/1—1 = e+ qd
\/1_7+mr P +q m q

+ (me)? + qd

~2
= C\/ Ponech



or ) ,

Maxwell’s equation are invariant under gauge transformations of the fields @ , A:

rog_ LOA
R q)_’q) = ‘¢ Ot

e

/{—r/i’:/i.-f-VA N T D P |

Also the equation of motion (4.24) is invariant under this gauge transformation, L and
H are not invariant. “

From

i e ¢

=Vl =V.L+2va =5+ lva
c
we obtain

r_ e to g 9 Y | a_A
H—pv—L_vp+ct7VA . 'c<6t+WA)

or

‘ r_pg_99A
H=H-Z (4.28)

It is very easy to show that H — ¢® and r— %/i‘ are gauge invariant quantities:

OA 10A
P-th =gl LA on =514 (4.30)

From these two gauge invariant quantities one can construct a four vector:

< e

(22225~ 24) = (- 14%)
with (4.31)

(7 = £4%) (pu — 2A,) = (me)?

4.4 The electromagnetic field

We give here only a suﬁlmery of the basic équations (we use the cgs - system and electro-
static units). : )
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Mazwell's equations :
VxB=1j, +12& 'yﬁzo, B=vVxA

8 VE= 47rp¢o;, E=-vo-124 (4.32)

Coin_pletely equivalént t;) Maxwell’s equations are the equétiéns satisfied by the fields
® and A:

, . (4.33)
00 = drmpu + 15 (%99,1 +V *)
In four - vector né)tation usiﬁé?& = (ciz,oi,;}'ol) and A = (Q,E) we have
‘ !
! OA» = 4258 +6“(6 A“) .
' o "' (4.34)
Ot =0
DAL RITI L IY S R L ‘i Lo
As already mentioned, the Maxwell equatlons are gauge ‘invariant. The same is true

for the equation (4.33) or (4.34). (A* — A™ = A* — 8*A). The equations (4.34) can be

written in different form, usmg the also gauge mvanant antlsymmetrlc ﬁeld tensor F hy,
The F** ’s:are’defined by ot A

coapiipied S

Sty i e

P = —Fo% = QHAY — 9°A*

(4.35)
P, =—F,, =0,A,—8,A,

and the equation (4.34) acquires the form:

920

OuFr = %j:ot
(1.34")
D0, = 429,54, = 0

Below we give the F*¥ ’s in explicit form.

I“qu — _Fuu —

. Fuu = ~gua FH8 —

v o_. v
F‘u - —gllﬂﬁ -

Energy densily of the field:

- =

u=L(ED+ [B)= L(ck?

+ /1172)

0, -E', —E% —E°
E', "0, -B% B?
E, B, 0, -B
E}, -B:, B, 0
0, £, E, E°
-E', 0, -B%, B?
~E*, B, 0, -B
—E%, B, B, 0
0, E'. E, B
E', 0, B, -B?
E} —-B%, 0, B
B3, B, -B'. 0

~E', 0, 11* e
—E:, -1, 0, 111

~-E3, B -1,

0, -—-E'. -2 -~ )

in case D = (,E: and B = [lﬁ .
(1.36)

(r=c=1 in vacuum)
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Poynting vector:

- C , = — '
§=(Ex ) (4.37)

4.5 Transition to quantum mechanics
4.5.1 Relativistic partlcle in the electromagnetlc field and the question of
gauge invariance in quantum: mechamcs

As a first step we try to perform the same replacement of the canonical conjugate variables
by the corresponding gperators as.in relativistic quantum mechanics.
| H [ .
! i i T, “ i .
{ ‘ k

iy N

E, =ik = cpd, = hck?,

palp = —th hkop

[N ",\

or

[ "‘—'zhau—zh(a -v) "
o o (4.38)

=ihd —m(ao,V)

Before going into the details of the problems created by the relativistic form of the

Hamilton function or Hamilton operator ( square root form"); wé shall deal’ with'the

question of gauge invariance in quantum mechanics. In chapter 4.3 we have seen that

the relativistic Lagrange function and the relativistic Hamilton function are not gauge

invariant, but instead the four - vector (”—c‘l—,p - EA) was an gauge mvarlant qua.ntlty
N . e RIS e , -,

In quantum theory, howeVer, we requ1re that

ov

and HY = zh—a—

1 I_'a‘p,
H'V' =1k 5

describe the same physics. Since H is not invariant, we look for a relation between ¥
and ¥ which guarantees us that both equations describe the same physics. We start with

the Ansatz

»

= ¢¥ . (4.39)

and investigate the action of the operator H' — q®' on ¥’

7 ' ! . d . a qu
H—qo) 0 =(itL _qo') v = (il _ q¢ _
( q®") (zhat q@) v (zhat q(I>+Cat) o

_ L 0 9¢ g 0A
—¢(zhat—q®) (zh + = T )\I/

or

(H'— q¥) ¥ = ¢[H — q®|¥ + [h%?q—g%[% ] v (4.40)

The second term in (4.40) can be used as a condition to determine ¢ by requésting

122 qu =0 (4.41)

The solution of this equation is
¢ = e'reh@) (4.42)

where the integration constant has been set.arbitrarily equal to 1. The difference

between ¥’ and ¥ is therefore a pure phase factor.
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¥ = RAEY (4.39)

From {4.40) we have also

[H —¢d ¥ =e h=A[H - q®]¥ (4.43)

Using (4.39") we are able to investigate also the transformation law of the momentum

components. We get:

(“ qA") v = ( —ihV — —A - —VA) = A (—iﬁV - ;[{)

> [p - —A'] U = A [;3‘— %/I]" v (4.43) (4.43)

N2
for arbitrary powers n. If we consider ¢ \/(ﬁ— %A) .+ (mc)? to be defined by the

corresponding power expansion, we have also:

N\ 2 . ] N2
c \/ (—iﬁV - %A’) + (me)? W = eiAe \/ (—zﬁV - %A) + (me)2 ¥ (4.44)
One may define the following operators:
Dy=cDo= (& +il®)  Dr=0*+iLA* ,
or (4.45)
b =(v-itd) Du=0,+i%A

” and have the following transformation

They are called the ” covariant derivatives

properties
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DIV’ = %A D,w (4.46)

PV = e'RA DY (4.47)

Summary:

If we perform a gauge transformation on the fields A#, such that A¥ — A™ = A#_gup|
corresponding to A’ = A+ VA and &' = ¢ — 1 18 and if we perform on the wave functlon

simultancously the transformation ¥’ = e'reAE ‘) ¥, then

HW' = ¢'mA [y — "a’\ '“\v
. CC

LAV ey OW gON
f———:' A , '1 ’\‘I/
Tar T e T car

or
- ih,(l - i ih—.(i Y=0
at ot

d(s(ub( the same ph) sics. In dddm(m we have

dlld [1"1" = 1h‘w and HVU = zh

iR = 'Rl ey (1.18)

and ) ‘ ’
R (1.19)

Operators. containing the derivatives ¥V and £ are not gauge invariant. An example
7t gaug I

is the operator ol the current density of non relativistic quantum theory
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a four vector field. The form of the interaction is completely determined up to a gauge

7 ~ (U*V¥ — V¥*¥). One obtains gauge invariant expressions if one replaces the .
transformation:

derivatives V and % by the corresponding covariant derivatives (D,ﬁ). For example

- - - A wo_ . : 2
7~ U DY — (D) = D — (DY) (4.50) Ao A= AN i U W = e RAEY

This is very easy to show since in our case we know already the answer. We first

is a gauge invariant expression. The gauge invariance of Maxwell’s equations and of . . .
investigate the time dependence.

(H — ¢®) remains valid in quantum mechanics, provided we perform the transformation
on the fields and wave function:

U =e W
A — A = A¥ — OHA .

(4.51)
U — P = e A @)y

R FTREF

aq: ia[a .3a] .

Any wave equation containing the operators 9¥(d,) can be made gauge invariant by

replacing the derivatives 3#(9,) by the corresponding covariant derivatives. ,
In full generality we can set

0% Dr =" ik A
(4.52) @=2(¢—¢')
8, > D, =8, +iL A, ot hY

where ® and @' are two scalar functions and the factor 1 has been added, since we

If this latter substitution is performed in the equation for the free particle, one gets . L X
p q p ’ g want to obtain a = ;LA. We obtain in this way for arbitrary powers n:

automatically the corresponding equation for the particle moving in the field A*.

The gauge principle . o 2 xFY o = o 2 90)
| ‘ 3t+lh . ¥ =¢ at-i—zE(I) 1\
One can reverse the foregoing arguments and request the theory to be invariant under ; . _
local phase transformations (i.c. the phase depends on  and t): Next we consider the dependence on the space coordinates:
U(E,t) o U'(Z,t) = @D (F,t) ; Pop¥' = (—ihV) (V) = —ihe™ [V 4 iVa | U
One notices then that this requirement cannot be fulfilled by a free theory. The theory f Again we can set in full generality.

must be a theory with interaction, where the interaction with the particle is described by
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he he

and obtain
: (—ihv - %,4")" O = e (—ihv B %5_)"- q}

This shows that 2% # e 2t and ¢ /P2, + (moc)? ' = k% is not invariant under

local gauge transformatlons. The invariant quantity is

— a8
c \/(,3:,,, - %A)gf“(mc){}y =ik (52 + z—%d)) ¥

where the vector field satisfies the transformation B AL BN

A'—A'=§9va=VA
q,
: o g hoa 10A
i TR e T et ‘

The presence of the vector field A% which acts in a universal, prescribed manner on
a particle with charge q'is enfdrced by the requli'ement of local phase invariance of the
wave function ¥ — ¥’ = ¢**¥. Such a vector field introduced to guarantee local phase
invariance of ¥ is called ” gauge field ”. The principle to enforce the presence of on
interaction by requesting local phase (gauge) invariance.is,’cal)ed " .gauge principle,” ;-

One may decompose ¥ into its real - and i 1magmary part ¥ = Wgn + :¥;. We have

then T A S CE FEE i S

U = eV = (U} +i¥)) = cosa¥p — sina¥ 4+ i(sina¥p + cosa¥;)’
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or

Uy = cosa¥r — sina¥;

¥, = sina¥p + cosa¥;

We sce from this that ¥ — ¥ = V¥ corresponds to some kind of rotation in the
(¥r, ¥;) plane ( This plane is a kind of internal space and the underlying symmetry is
called' an internal symmetry) The invariance under local gauge transformations corre-
sponds to the invarianice under rotations in the'internal space. Here, in the'case of the
electromagnetic field, all such transformations form a commutative group (Abelian group),
in this case U(1), the group of unitary one - dimensional matrices (UU* = UtU = 1). We
have dealed with the problem of gauge invariance in such an elaborate manner because
the gauge principle is fundamental to all modern clementary particle physics although
the underlying internal symmetry spaces in strong and weak interactions are much more
complicated than the simple case of the electromagnetic field. The relevant symmetry
groups (gaugngrroups) are then no longer commutative (they are non - Abelian).

4.5.2 Relativistic wave equations
4.5.2.1 The Klein - Gordon equation
a) Free ;;articles

We start the discussion with the free particle Hamilton function Hy (4.21), which provides
us with the correct energy - momentum.relation.

Ho=1/cpt + (m2)2 = B o (a2

Since we. want to follow the mua] quantisation procodur( (s( e (1.38)), we wonld lmw
to deal with the square root of an operator function. To avoid this pr()b]( m one !.xl\( s lh(,
square of (4.21):
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(_E_)2 - p'é + (me)? ) (4.53)

[

or withp":po:%:

pup* = (mc)? (4.54)

If now the replacement Pt — zha“ (E=> ihg 3 =:thcd®) i‘s’per.formed one arrives
xmmedlately at the Klein - Gordon equation for the free particle.. The wave function ¥ in
this case is a scalag fur}ctlon v

k]

Pl = (mo)Y

If we set u = z¢ and 9,6 = O (there should be no confusion in using the same greek
character for mass (measured in fm~! and the indices p).

@+ p>)¥ =0 | - (:1.55)

PR A 3
it n f E

In contrast to the Schroedinger equation of nonrelativistic quantum mechanics is the
Klein - Gordon equation (4.55) Lorentz invariant. From the fact that we squared Hp to
derive (4.55) there arises immediately a problem. The Klein - Gordon equation must have
solutions corresponding to positive and negative energies:

E = +c /p? + (mc)? (4.56)

We note already at this point that negative energy solution ‘will be associated with
antiparticles. As in nonrelativistic quantum mechanics one can derive expressions for a ”
probablhty current density ”. The procedure is exactly the same: take the Klein - Gordon
equation for ¥ and mult1ply by¥* and subtract from 1t the complex conjugated equatlon
for U, multiplied by ¥ and obtain: '

100

19 (100" 100 - -
252(;7 ———a—t—\I’>+V(\I’ V¥ —-9VE) =0

From this equation we can define a current density ; and a density p:

-

7 =< (UVY — UV
(4.57)

p= bV —vi2m)

c

where we have added arbitrarily the factor ¢. The solutions of the Klein - Gordon
equation for the free particle will be plane waves. ‘

U = N Hkue” (4.58)

The normalisation factor will be specified later. With thts form for ¥ we obtain from
(4.57) :

;=2l-c‘c|/\flz
4.57
p=2k| NP )

From the last of this two equations (4.57’)“we see that the ” probability density " has
the sign of the energy. p is therefore not a positive definite quantity. Therefore it can not
be identified with a probability density. With j° = cp we obtain from (4.57"):

g (P8 0* — "9 ) (4.57")

and the continuity equation is as usual a conservation for the four current density j#

Buj* = (4.59)
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To each ¥ therg_a;e two sglutiqn kog

K= teg=2\R+p? (>0 . (4.60)

Our plane wave solutions will therefore be of the form

¥

Ty = Ny eFintif2 (4.61)

R . N ,[i, te o S PR 1y . P T S L L .
To avoid the problems with the none positive definite p:we consider the electric charge
density and electric current density. Integration of (4.59) leads then to charge conserva-
tion. We multiply j# with e (e > 0) and obtain for ¥4,

el _ CC & O I I Y,
o B T PR - BT ] = (TP )
and for \i(_)
o ~e. ec = T~ “~t T I . A7
el = = [V =¥ ] = ~2ecez | M) 2 (4.63)

For the electric current densities we obtain:
rpes f il sl Al s v R W P

y,-_:el S

; ecb‘~A.‘”' < " //~.‘“ S
iy =7 [V V¥4 = UV | = 2eck [ Ny [ (4.64)

-el

]( )=_ [\p( ,w( )—w( )w( )]_Qeck|N( )12 - —2ec(- )|Kq~) P (4.65)

We see that p(+ and 5, can be interpreted as charge densities for positive and
negative charged partlcles, both, howevér with'positive energy ko = +¢;. A similar

N
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interpretation is possible for the current densities. We have however to deal with a minor
difficulty (as seen from (4. 65)) - the solution for negative charge and positive energy
occurs with' momentum (—k) instead of E. If we write the expressions in four vector
notation, we have i D : o

ol = 2ec(eg, k) | Ny IP= 2eck* | Ny IP

and

-

]f")‘ = 2ec(—ez, k) | Nio) [P= —2ec(ez, —k) | Ny |2

For a particle with ﬁcg:a.tivé'ch('a.rge and positive energy we would however expect: ‘

el, c 7 A7 o Y, ¢ Y el,
iy (—e) = =2ec(eg, k) | Ny '= 2ec(—eg, =) | My IP= 2ec(=k*) | Ny IP= 525 (+e)
To obtain this result we have to choose for ¥(.) = M, %o =ikZ \With the definition

vy = Ni éik“:“ .- ko = k° = +(,: > 0 (166)

‘we obtain the desired result. This choice of solution leads to the same results for the
charge densities as before. The normalisaion factor is obtained by integrating equation
4 57) ( charge comcrvatlon ): One obtains :

1
2__ 2
N P=IN P g
and .
4 = H2eck* | Ny P= deem = £ 57 0 T (167
e; Vor Vot

The two solutions Wy correspond physically to particle and antiparticle. In principle
it is completely irrelevant which of both is treated as particle or antiparticle. The same
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interpretation of the current- density j# can be applied to neutral particles. In this case
one has to choose the wave function to be real. In this case j# = 0 and there is no con-
servation law. Relativistic quantum theory leads us obviously to new degrees of freedom,
the charge degree of freedom. In the present case of the motion of a particle with spin=0
and momentum k, we see that there are 3 charge degrees of freedom (+e and 0). In
nature this is approximately realized for the = mesons (7%, 7°) if we neglect the small
mass difference between 7% ’s and . '

b) Spinless, charged particle in an electromagnetic field

The Klein - Gordon equation for the motion of the particle in an electromagnetic field A*
is obtained from the free Klein - Gordon equation by replacmg all derivatives au by the
corresponding’ covariant derivatives D*. From :

(B0 42U =0 +

one obtains

TS (DDt =0 L (468)
or
: 9 w3 9 s 2\ —
(6,,_-}-1}“:/1,,) (a -HhcA )q’+l‘ ¥=0
or °
. (O )= =VET e (4.69)
With‘ v : . R R N . it ': ‘ PR aat e
ver =il (0,4 + 4,0 — (L) A, 4% = 2449, + 8,4*  (470)
KG =1 C(u + Ay )_(ﬁ—c) AMA =2 w + Oy ( )

If we go to the non relativistic app}pximation of (4.69), we obtain the usual Schroedinger
equation for a spinless particle moving in the electromagnetic field A*.

4.5.2.2 The Dirac equation

‘

a) The free Dirac - particle

104:

In order to avoid the problem of the not positive definite probability den51ty, Dirac chose
a different way. Corresponding to the Schroedinger equation H¥V = h—ﬁ, he postulated
the existence of a wave equation linear in 3‘— Relativistic covariance then requires also
linearity in V. Dirac postulated the following equation:

OV L L~ ;0
zhﬁ =c[-thaV + fmc ¥ =¢ -—1h§a’5;+ﬂmc '} (4.71)

with yet to be determined quantities o', 3. They can be determined if one imposes
the following conditions:

1. The correct relation between energy and momentum must be preserved

E=c¢c \/pq2+ (mc)?

2. The equation should be covariant under Lorentz transformations.

In-order that condition 1) be satisfied, one can request that ¥ should also be a solution
of the Klein - Gordon equation. Squaring (4.71) leads to

ot

2
(iﬁz) ¥ = & (—ih@V + fmc)(—ih@V + fmc)¥

=c [ (—ih)? }:(a')’aa + (—:fl)2 E(a'or' + &/ a')8;8; — ihem Z(a'ﬂ+ Ba')d; + (me)*p ]

i=1 (>3] i=1

(4.72)
If ¥ satisfies also the Klein - Gordon equation we have also
—ih—a— ’ ¥ = —(he)? i 0¥ + (mc*)*¥ (4.73)
at =1
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* The quantltxes o and J can‘now be determined by comparmg the coefﬁcxents of equal . . o haf O = 01 2.3
derivatives in (4 72) and, (4.73). 'It is immediately’clear that the o' ‘and S can not be F=8a , =8, 2039 , ¥ =iy (4.77)
ordinary numbers, but rust be matrices. It turns out ‘that the smallest rank of these
matrices is 4. .Therefore also ¥ has to be a’ four com‘ponent object ( it is called a four With (4.75) one finds their explicit form:
component spinor ). If we do the comparison mentioned above, we get the following
algebra for the matrices:
' - . . ) Q, (o} l, _Q Q’ .];
af+Bai=0 i=1,23 (4.74) P=1 , = . Y= (4.77")
___aiv 0 01 ___l la Q
T S AL B I F EEE SRR A " R T
dad+alad =0 i,5=1,23,i#; 4 (4.747) The 4 matrices obey the commutation relations:
B T L R ot L A AL L BRI BT ) :
. ' uay VAl — 9 By . Q
(@)=p=1 i=1,23 (4.74") Y+ =2 (4.78)
R e . ; ‘ A fte d binati {~
In order to make the -Hamiltonian H-Hermitian,-also the matrices o and 3 have to very often used combination of 7 matrices is
be Hermitian. These matrices are determined up to a unitary transformation. Below we
give the socalled standard representation: .
i
e s S G e Gl e iy 0‘”:5[7“’77] (179)
_ 0, o 1, ¢ \ .
o = , 8= (4.75) In explicit form:
oi, 0 9, =1 /
it SR \ T
o = ¢t o5l = ol i1k cyclic
where the g; are the usual 2 x 2 Pauli - spin matrices: ilovaill=all ik eyelic
0 (1.79")
: % =i %) = ioy 7*
o . B P R “’)f' . N “ . e e ' al 0 '
A Y A% R L\ WL R SR L | M ‘/' cL 0N T
o) = C, o= ;03 = - (4.76) ,
10 i 0 0 —1 Writing the Dirac equation (4.71) in terms of the 4 matrices leads to
PN W AN B IS TS S A PR, S NS RS I AT S R C S B A L
Usually a different set of matrices, v# , +¥° is used, which we present below also in T oy e o 8
their standard representation ( see Bjorken and Drell, Relativistic Quantum Mechanics, Hpir = hey (Ykop + pl) = ¢ (@pop + 1 mc) (1.80)
New York, McGraw - Hill (1964)): ) ' or
o AP T Hpi ¥ = hey® (=177 0; + pl)W = ihed™ ¥ = ihedy¥
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or -

0 .
= Hpir U = (=i'8; + )Y = ir°0p¥

or finally
(iv*0 —pl)lllzlo ih—?——HD« =0 (4.81)
e he| ot 7 v s

) : i : !

H : .
t «
! M i t

Usually (4.81) is called Dirac equation.

In order to find the plane wave solution of the Dirac equation; cbrkéSpdnding' to a free
particle, we make the following Ansatz:

—tha (4.82)

where w is a four - component spinor still to be determined. One can write w in the

form/
Wyp * e ot
w= (4.83)
Wiow

i
!
3 O

; :
where wy, and wy,, are tw"o 2 - component spinors. Using this Ansatz in the Dirac

equations, one obtains i

(PR = pl)w =0 s (4:84)

In matrix notation one has

el
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and from (4.84):

(ko — mlL, "EE Wyp
. =0
dk N '—(ko + [l)l Wiow

or .
(ko — w)wup — (Fk)wion, = 0

(GF)wup — (ko + p)wtow = 0

Eliminating for example w0, we get from the second equation (4.85)

-

ak
s Wow = Wy
ko+p
and
wup
W= -
3k
kotpuvP

Inserting wio,, into the first equation (4.85) we get

(5k)(5F) 3
[(ko -p)l- ko—-’r;t] wyp =0

which with (&'I-c')(&'ic‘) = k2] transforms into

k?,—,ﬁ-k”? _
( ko+p Ly =0

From this we see that k% = k2 4 p? or
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(4.85)

(4.86)

(4.87)



ko =te; =+ \ k4 p2 (4.88)

As we could have expected, we are back to the problem of negative energies. Let us
consider first the case of positive che’;giqs ko = +¢€z. In the rest frame of the particle

(k = 0) we obtain for w:

Wrest =

(=113

In the rest frame we can use for w,;, the usual two component spinor x(s) known from
nonrelativistic quantum mechanics: S,

wyp =x(s) =< I (4.89)

where s = +1 and ~1 describe the two spin states of the particle. These form of Wap
can now be used in (4.86) and we have

xs) Y :
w= . for ko=+\/k~2+p2
7k

The spinor may be normalised:

1110

k2

251: _ 26k
(ck + p)?

Fs) 1+ =
X(){ &ty eatp

}ﬂﬂ=ﬂbhm

The normalized, positive energy spinor is therefore given by

oy x(s)
u(k,s) = wyy = | EE s ==+l (1.90)
| e
CE+HX
Next we consider the negative encrgy solutions (kg = —e¢g). In the rest frame we have

wup = 0. For wy, we choose again a two - component Pauli spinor. To get consistent
description of antiparticles we choose

Wiow = X(8) = (4.91)

This choice is based on the following idea. In Dirac’s interpretation of antiparticles in
the ground state all the negative encrgy states arg filled. I a negative cnergy particle is
excited above the ground state, a hole is left in the ” filled sca”.

It is the absence of a negative encrgy, negative charged, spin down state that corre-
sponds to a antiparticle with positive energy, positive charge and spin up. This rather
artificial reasoning is avoided in quantum field theory. If in (1.85) we climinate Wyp WE
get for w (ky = —& < 0 y Wiow = X($)):

This would correspond to a particle with four momentum (=cg, k). We expect however
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as we did in case of the Klein - Gordon equation, that the antiparticles should have a
four momentum (—¢;, —k). Therefore we define the normalised spinor by the above given

expression, however k changed into (-—l_c‘):

v(k,8) = w) = s =%l (4.92)
26; "
x(s)
The plane wave solutions are then given by
Yy = —\/lf e~*us* y(k,s)  particle
S ' (4.93)

Y= ﬁ e*kus* y(k,s) antiparticle

Now the probability density and current density concept may be worked out. We start
from the Dirac equation

ih%% = ¢(—thaV¥) + omct¥ (4.94)

and the Hermitian conjugate equation (%% =+°, Q+ = a):

+ ‘ .
= ahVI¥*a + UH'me? A v (4.95)

., ov
—mm

Multiplying (4.94) from the left with ¥* and (4.95) from the right with ¥ and subse-
quent subtraction leads to

m% () = —ihcV(THEY)

Since U+ is positive definite, it can be interpreted as probability density.
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p=(Tt¥) > 0 (4.96)

We can also define a current density ; by

J=cUtay , L (497)

which can be interpreted as probability current dénsify. p and J satisfy the contiﬁuity
equation : i . ] . . PR

dp .
5?+V] =0

Usually one uses the adjoint spinors instead of ¥*.

- ¥ =0ty°  adjoint-spinor : T (4.98)

*

In four vector notation we have j* = (cp, j):

§* = "V _ (4.99)

and the conservation law
d,5% =0 (4.100)

Using (4.93) we are led to the\explicif form of the current density:

N c kv 1

N 4.
](+) %l 6;’ ‘/al (C,l-/") ( 101)
ook _ 1 : - 4.101
OT Vg Val(c’m (4101

;113



- In:contrast to the Klein - Gordon -equation, where we had

j(—).el('*' | e I) = j(.{.),cz(" |e I)

*“we see from (4.101") that this is not true for the Dirac equation. Therefore, if we want
to interpret the negative energy solutions of the Dirac equation as antiparticles of positive
energy, one has to introduce by hand a minus sign in (4.101°). The presence of this minus
sign is proved in field theory. It is there due to the fact that the‘current density operator
j* is defined by a ” normal product ” A’ {¥(z)y*¥(z)}. There is a anticommutator be:
tween fermion operators involved which gives authomatically the minus sign.

b) The spin } particle in an electromagnetic field

As in case of the Klein - Gordon equation we will obtain the Dirac equation for the
particle in the field A* by replacing, all 8% ’s by the ‘corresponding D* ’s. For the free
particle we have:

Hpi = hey® [—ix'0i + pl | = ikicdy (4.102)

In the field A* we have

o

hc7°[—z'7'D,+pl] =thD0 v :

= hey’ [—7‘ (5«-’+%A.‘) + ;zl] = ihc (ao +ihq—cA°)

LSV, S L PR

or
0 . i q - o 0
hey [-—176;+pl+—~7A.-],_zhc60—qA
. fiq, h e
or

hey® [—iv'd; +pl] +1°7 Ai + gA° = ihedy

1114

With
U3, = hey® [=in'di+pl]  and  gv™7'Ai + qA° = g107* A, = ¢(A° — 1°5.4)
we get

Hpir = HY,, + q(A° = 1°FA) = ihedy (4.103)

I'rom (4.99) one sec’s that the four vector

b = cgr°* (4.104)

can be interpreted as the current density operator. From (4.103) with (1.104) we
obtain

1. o -
Hpir = ;. + ~JopAu = ihedy (1.105)

4.5.2.3 The free electromagnetic field (massless spin#l photons)

The free electromagnetic field outside of charge and current distributions is described
according to (4.34) by '

O A = 94(0a A%) " (4.106)
As a convenient gauge we can use the Lorentz gauge and obtain then
OA* =0 (4.107)

aA =0 ©(4.108)

The solutions to (4.107) arc then plane waves of the form

AF = N # o (4.109)
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N is a normalisation constant and ¢* the polarisation vector. The electromagnetic
field is a massless field. Therefore we have "

- 1
1 1

B = kk, =k — k=0 (4.110)

The Lorentz gauge gives us

0,A% = Ne® 0, ek = (=N e ke ke =0

or
,460]‘9,:9 e e e (4111)

We can perform a further gauge transformation on the field, such that also the new
field satisfy the Lorentz condition:- '

AT N N v .

A = A» — gPA , (4.112)
;AT =347 - 8,000 = S0A

tenio it v 5 PR Ry ITEISUR TR AP ATE A SRS PRIE AR PR

In order to lead to

[N P O T Y S
Tt P ST TIES TRV SR

A must satisfy the equation

cont

PSR N RN TR P A »DA F‘a“a;ugAso F T R S P e R L SRR A o

vt A B

. .In this case also A is a plane wave which can,be written in the form

e 'w;“JA ':=:‘}‘»0.-'e_|'hr", R I A A U TP (4113)
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Using this in (4.112) we_obt‘ain
N ez = Net emi2 _ jAgk” e~F*
If we set N’ = N and define § = —iAq / N, we get
=R (4.114)
Since A’* satisfies also the Lorentz condition, one has also
k= ky + Bk k. =0 (4.115)
One can choose 8 such that:
=0 o | (4.116)

In this case the Lorentz condition is reduced to a condition amongst ordinary three
dimensional vectors:

k=0 ; S @1y

The meaning of this is, that there are only two linearly independent polarisation
vectors, transversal to the momentum vector. If we choose

k* = (k°,0,0, k%) (4.118)

the two independent polarisation vectors are given by
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1 0

€= 0 and €y = 1 (4.119)
0

corresponding to

0 0
1 0

€ = 0 and €& = 1 (4.120)
0 0

"This situation corresponds to linear polarisation. If one choose the standard represen-
tation in the form

D=t)=-— 5 and E(A:—l):% <) e

then one has circular polarisation. In our envisaged case of a perturbation treatment
of scattering processes the meaning of the plane wave solution is the following:

A¥(z) = N e*(\) e=*=

tncoming photon

_ (4.122)
AB(z) = N e*#(A) e'** outgoing photon
The polarisation vectors satisfy the following orthogonality relation:
EN) &) = b _ (4.123)
or
6'“(A,) CM(A) = ~—5,\I,\ (4.124)

We note that the presence of only two independent polarisation vectors, despite the
fact that photons are spin = 1 partlcles is basically a consequence of the fact that they
are massless particles.
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