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J-J'j. 
1 Introduction 

Intermediate Energy Physics deals mainly with the interaction of elementary particles 
electrons, photon, muon, neutrino, pion, nucleon, etc.) with nuclei, but also problems 
of pure elementary particle physics are subject of investigations. One can give a gross 
subdivision of the field: 

(a) Use of elementary particles as a probe to investigate nuclear structure. Scat­
tering experiments using particles of a few hundred MeV kinetic energy up to 
a few GeV allow the investigation of some aspects of nuclear structure which 
are not amenable with the usual classic methods of nuclear spectroscopy ( elec­
tromagnetic transitions, Coulomb excitation, etc.). In this case one has to 
assume that the interaction between the projectile and the individual nucleon 
in the nucleus is sufficiently well known and in addition that one has a reliable 
scattering theory to treat the scattering on a composite target (nucleus). In 
such cases experimental data can give information on nuclear structure (i.e. 
electron scattering on nuclei at higher energies can give information on certain 
form factors of nuclei, etc.) 

(b) Investigation of the properties of the projectile itself or of the basic interaction 
between projectile and nucleon. 
In such cases the structure of the target nucleus has to be known sufficiently 
accurate. 

Examples: 

investigation of hydrogen like atoms constituted of µ-, 1r-, I{-, I;-, p, etc. 
and a nucleus. Investigation of the transition energies gives information 
on the projectile masses, the fine structure allows the determination of the 
magnetic moment of projectiles with spin, etc, 

Pion - nucleus scattering where a short - living resonance(~, with mi:,.~ 1232 
MeV )" can be studied. 

In photon - nucleus scattering one can study the p - meson (1r1r - resonance) 
production (mp~ 765 MeV ). 

µ- - capture on light nuclei could probably be used to investigate the 
questionofafiniteneutrinomass (i.e.,µ-+ 3He-. d+n+vµ , µ-+ 6Li-. 
t + t + Vµ ). 

( c) Investigation of multiply scattering theories. 

One has to assume that nuclear structure as well as the elementary interaction 
between projectile and nucleons are sufficiently well known. This is particularly 
interesting for projectiles with strong interactions. 

Examples: 
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pionic atoms ( scattering of pions at very low energies), scattering of: pions 
off nuclei at intermediate and high energies. 

: According to the large variety of phenomena to be investigated, theoretical interme­
diate enl:!rgy physics ,needs many tools from various different fields: Nuclear Physics ( 
nuclear structure, nuclear models, nuclear reactions ), knowledge from elementary par­
ticle physics ( strong, weak and electromagnetic interactions ). The basis of all these. · 
investigations is of course quantum mechanics, in particular relativistic quantum mech;m­
ics .. For many purposes at least some rudimentary knowledge of quantum field theory is 
very useful These tools will be developed during the course as far as is necessary. 

In the following the most important subfields of theoretical intermediate energy physics 
are listed. . . . . 

1. Scattering of strong interacting ,projectiles on nuclei at intermediate and high en­

ergy: 

Multiple scattering in nuclei, 

Eikonal methods, 
... 

~ - resonance in nuclei, 

dispersion relations in particle - nucleus scattering. 

2. 'Exotic atoms with hadrons ( 71"-, 1(-, p, ~-, etc. - atoms ) : 

nuclear structure effects, 

multiple scattering at low energies, 

optical potentials at low energies. 

3. Strong interactions and nuclei: 

pion - absorption. 

4. Leptons and nuclei: 

µ- - atoms and nuclear structure 

electron scattering. 

5; \Veak interactions and nuclei: 

µ- - capture, 

.---..------..-----------~ 
};:°tu;.:H:W~l.\tX':J'(w'i.'H'!V'{Otil 

ft•• ,_.,,~,•,,.3·:i, j,'-l,;."'(~;; f -.r~.;,,. .. \.# ....... (ljJ\.,; "'"' .,: J 
-,i·•·• ~~·r, J 

.. lr'ii,110:~f. ... ) 2 
L .. .. . . .. _..___...-

v - scattering on nuclei. 

6. Photons and nuclei: 

low energy theorems applied to nuclei, 

photoproduction of particles and resonances in nuclei. 
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Part I 

1. Short introduction into scattering theory 

1.1 Potential scattering 

We restrict ourselves here to the scattering of two structureless particles with masses 
m1 and m2 interacting through a potential V(x'i , i2) with each other. Spins arc not 
considered and we assume that non relativistic quantum mechanics is valid. In addition 
we assume that the potential depends only on the difference i 1 - i2 and that it has a 
finite range. The stationary Schroedinger equation of this two - body problem is then 

[ 
h

2 
.--, 2 h

2 
2 ( - - )] ,T,(- - ) --vi - -'v2 + V X1 -X2 '>' X1,X2 

2m1 2m2 
E1a1 w(i1,i2) (1.1) 

Introducing relative - and center of mass coordinates we are able to separate the center 
of mass motion from the rest. 

X = Xi - X2 XJ =Rem+ _!!l:L_i;' m1+m2 

R - m1X1+m2Z1 X - R - _____!!!i_x 
cm - m1+m2 2 - cm m1+m2 

Introducing these variables into ( 1. 1) together with 

cp(i,Rcm) = w(i1(i,Rcm),i2(i,Rcm)) 

leads to 

and 

4 

m1m2 
fired = mi + m2 

} (1.2) 

( reduced mass) 

(1.3) 

-----'v2 h 2 _ . 
[ 

h2 2 • 

2(m1 + m2) Rem - 2mred 'v + .v(x)] 'P(i,Rcm) Etot cp(i, Rem) (1.4) 

.This allows ~e to m~ke a 'product "A~s~tz'' for cp(i, Rem), 
. . ,:· ! •• .: . '. ': :_ . •. . 

cp(i, Rem) <Pem(Rcm) ip(i) (1.5) 

where <Pem(Rem) is a solution of 

h2 ~~v2 ,I, 
2(m1 + m 2) Rcm'r'em = Ee~ <f,cm. ' ' ,, {1;6) 

·'.' j, f, '.': ·-:·: ., •• ,,,.,,:' .' '•,•i\'. 

For \ll(i) we obtain the equation 

1•ll 

[ _ _!!___v2 + V(x)] w(i) = E w(x) 
.. . ,2m,.ed/ .,1' ~.~I'. '! •r'.:,:1. , .... ,.1' ' ,. (1.7) 

~, . ~ ., ,f . : ; • ' 

, 1 l,, : •). () '; ~- f,. 1; l ( '1 

together with 

. \. 

E = Etot -Ecm (1.8) 

•·t. j,;, 1)1~- ,,: .••• ,,·1 t'i.1 ,. ,;;,;, '.1'~(-1.,.', 'i ;l L. ;·.,, ;,. , '·1,~'1 • 1 ., 

'l'he. center of, mass, mptiqn ·is._then. accorp.ing, ( 1.6) described by a. plane ,wave. ,, , . .,, 
•• f ; : ' ' ' ' t ~ ' ; ' ' . ~' ': I ,,; • I, ' : ' ' : I. ·., \ : '. \ ,' l : : ', • . ; ' ~ • ; ' t ' I 

.•,1 •</Jc,;.(Rcm) :::;,c.liKc"'.1;1.m or L,eil?,m~•-
~ (21r)• 

'.·•''• .• '(t:9) 
:!1c, 

with,,-,,' , . h ) / " I/ > ' I • f ' • • ~ I , , f ) , ' •; ) , _ :~; . . ,) , ",-

'l!\l :·','! j :·,!' 
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}:;-2 _ 2(m1 + m2)E _ 2(m1 + m2)1ic _ 2( ) 
~cm - n,2 cm - n,2 E:cm - µ1 + µ2 Ccm (1.10) 

The quantities. µ; = mt , f; = ~ are the masses and energies measured in units 
(lengtht1 , usually J;;.1 • In absence of the interaction potential also \Jl(.i) will be a plane 
wave 

1 iKX 
\Jl(.i) = y1¥;e 

1 . 
or .. --e';.; 

(2:ir)½ 
(1.11) 

with 
K-2 = 2µredE: (1.12) 

A remark on the normalization: 

(a) finite normalization volume V0 1, ail physical quantities must be independent on 
i,;,,. 

(b) normalization to a 6 -function. 

In case the potential V(i) has a finite range, one looks for scattering solutions of (1.7) 
with asymptotic form ( I .i I-+ oo ) 

,T, (-) •=l~-00 1 [ iU f(n) ei"r] 
'¥(+) X - --3 e + H -

(2:ir)• r 
(1.13) 

which is a superposition of the incoming plane wave ( describes the beam ) and an 
outgoing sphericaf wave. In this asymptotic region, outside the range of the potential V, 
the influence of the interaction is given by a modulation f(U) of the outgoing wave. 

f(f!) is called the scattering amplitude. This picture has been borrowed from classical 
wave optics. 

Starting from the Schroedinger equation one can derive an expression for the particle 
current density. We multiply (1.7) by q,• and the complex conjugate equation with \JI and 
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subtract both expression from each other ( for stationary solutions i,ve can also substitute 
E\JJ by iii ~1~ ) and obtain: 

-~V[\Jl"V\JI- \JIVIII"] = ifzaa ('11"\JI) 
2rn,ed I 

This allows one to define the current density J through 

J = ~ [\JIV\JI" - lll"V\JI] = Rr {~111·v~} 
2mrcd Zmrcd 

Together with the particle density ( probability density ) p = \JJ"\JJ 
continuity equation 

- ilp 
Vj +,, = 0 

ut 

Current density of the incoming particles 

( 1.14) 

(1.15) 

J satisfies a 

{1.16) 

If we take the z - axis parallel to the direction of thP incoming particle' lwam. WP g<'I 
for plane waves 

-, R { fz -iU ·- iU} J It~ I /11,, _ 
}in= C --e z,r, C - = --- = ---t·, 

. imrcd . V,,, 111rcd Vol , mrcd Va, 
• ''. • t ~' • • • ' ' • • , • • ' • 

( 1.17) 
' 

Using 

Vrcl = V1 - v2 = Pl :._ P2 = fi m2k1 - rnik2 = _!!_ (m2k1 - m1k2) 
m1 1n2 1n1m2 . mrrd 111 1 + 1112 

,;• ' . ' ' ' ·' '·' ,, . ,·-. 

Ii -n 
111rnl 

{1.18) 

one obtains 
- In; -

-! 1'rd _ --, c, 
Jin = i~,l - 111.rrd i•ol ( I.I!)) 
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Current density of scattered particles 

Starting from the asymptotic form of the wave function we get the scattering wave. 

Ill _ 1 · 
5C - - J(O) Ziff 

~ r 
( 1.20) 

and 

1 [ a (eiKT) eiKT Q e'KT f) ] 
Vlll,c = ~ J(O) fJr -;:- · e, + -;y q,Jf(O) · e,1 + r 2sim'J fJr.pf(H) · e.,, (1.21) 

and 
- { ft ) j,c = Re '-.--w•,cvw,c ~ = 

zrn,,d J 

=- --"'-IJ(O)l2- +R a,1- - a.,, -1 { ft r-iftJ•ll. iftJ*ll ] } 
2 

e, e 
3 

e,1 
3 

. e.,, 
Vo1 m,edr m,edr m,edr szni'} 

( 1.22) 

For very large values of r the first term dominates and one gets 

.., ~ 1 ft,,, I I !(") 12 - . i I f( ) 12 -J.c = -V, -2 " e, =]in2 n e, 
ol mu~d'T T 

(1.23) 

Scatteri_l!g_ cross~c:_tion 

One calculates now the number of particles dn going through the surface element d.'i 
of the detector placed at a distance r from the target. 

dn = },cdS = },cr2d0e, = ]inl J(O) J
2dn (1.24) 
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dn 
dO = J;nl J(O) J

2 (1.25) 

the differential elastic scattering cross section is then defined as 

du 1 dn 
dO = ]indn = I J(n) 1

2 (1.26) 

and, being a physical measurable quantity, is independent of the normalization vol­
ume. 

Relation between interaction potential and scattering amplitu_de 

To obtain the relation between V(x) ~nd the scattering amplitude, we first put the 
Schroedinger equation (1. 7) into the form of an integral equation. We rewrite (1. 7) in the 
following form: 

with 

(v2 + ,,,2)w(x) = U(x)w(x) 

U(x) = 2m;edV(x) 
ft 

Introducing a o - function on the right side of (1.27) leads to 

(V2 + 11:2)\Jf(.i) = J d3x'o<3>(x - x')U(x')W(~') 

A formal, particular solution to this equation is given by 

Wpart(x') = J d3x'(V2 + 11:2)-10(.i - x')U(x')w(x') 

9 

(1.27) 

(1.28) 

(1.29) 



The Green function of this equation 

Go(x,x') = (v'2 + 11:
2t 1o(x - x') 

is a solution of 

(v'2 + ,,,2)G0 (x,x') = 8(x - x') 

Performing a Fourier transformation on both sides of equ.(1.31) leads to 

Q (x - x') = - 1-f d3 kG (k)eik(i'-i'') 
0 (211")3 0 

1 
Go(k) = - -,;2 _ -;,2 

( 1.30) 

( 1.31) 

( 1.32) 

In order to obtain particular solutions to (1.39) such as outgoing or incoming or 
standing waves, one has to choose particular paths in the complex k - plane. For the 
present purpose we choose however a quicker way to obtain the desired Green function. 
Consider the spherical symmetrical solution to (1.31) in a region x f=. i': 

(v' 2 + 11:
2 )Go(R) = 0 ( 1.33) 

This may be solved with the ansatz (R =Ix - x' I) 

Go±(R) = CoR0 e±iKR , a= -1 

C0 can be determined by comparison with (1.32') and we obtain the well know11 result 

10 

Go±(i- x') = 
c±iKli'-i''I 

411"/i-i'/ ( 1.34) 

The positive sign in the exponent leads to outgoing waves, the negative sign to incom­
ing waves. In order to obtain the full solution of (1.2i) we have to add to \Jtpart (1.29) 
a solution of the homogeneous equation ( a plane wave ). The full scaiicring soiution. 
describing olJtgoing spherical ,vai.·es is then given by 

\Jt~+\i) = -·-, ciiii' - . ,Pi' C _;_ - . U(x')'P~+)(i') I [ J' . . +iKli-i''I ] 
K (211")2 411"/:r-x'/ K 

(1.35) 

Considering very large distances from the scattering cente_r well outside t lw interact ion 
region, i.e.outside the range of the potential U(x) (V(i)). onp may expand the rxponent 
in the following way:_ · 
,, ,•JI,.; ' ,, , : ' I .• 

')--, -12· •. (' ' -'--,,) ' ..., _ _ _:r:r .r _ .r.r 
/x-x l= ✓i2+i'2 -2xi'=/x/ 1 /I-~+~~/.r/ 1-~ = 

Ix I I .r I I .r I 

er' 
=/il-i°~I (I.:!6) 

Defining if.' through 
. "'' . ' ' .. " _, ~r 

" = "m if.12 = -;_2 ( 1.37) 

and replacing in the denominator / i - .r' / hy / x / l<"ads. to t lw n•sult.. , 
' . ' . 

•,,,(+)(-)=_I_ [·iiii' _ (211")
2

/Lrcd CiKr !dJ-,_1 _ .-iii'i"\"( ~')•'•(+)( ~')] 
°¥• X ., C X , I .r -.,, .I 

K (211")'i' he 1· • • (2ir)'r · K 
(I.:l~) 

or int~oducjng: I.he n~rmafoicd plant• waV<.- <P,;i(:r) ~ (r;); >ii_i' to: 

,, ,,,(+)(-) _ -'-•(-) '- (2ir)
2

/Lrcd I ,.i.r ·f d"·-'-'-* (-')u(-')•'•(+)(.~') 
•. 'V.. .L - "PK X 1. :1 J V'K' .r " .r "'"'!' .l .. .. K_:· · '-·, .• _ 1c (211")t r · ' (I.:l!l) 
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Comparing this result with (1.13) gives us the scattering amplitude. 

f;.,,.(fl) = (211{:red J d3.i'cp~,(.i')V(.i')W~+\t) 

The integral in (1.40) is usually called T - matrix element. Therefore one has 

and 

t~'{',. = J d3.i'cp~,(.i')V(.i')'11~+l(.i') 

In(n) = (2ir )
2 
µ,,d t~'{',. 

he 

( 1.40) 

( 1.41) 

( 1.42) 

In general it is sufficient to know 'V~+\i) in a region I .i' l:'.S R ( R is here the range of 
the potential ) to determine t~':';.-

The optical theorem 

We calculate now the total current density (1.15) using the asymptotic form of the wave 
function IV (1.13). With 

1 [ •• a (eiKT) eiKT aJ eiKr aJ ] 
v'IV = V,,1 iie'"x +far -;:- e, + ~ al8 + r2sin0 a/,t, 

one gets 

~ h { 1 } h { . [ i"' e;"'] e-iU+i•r of J = --Re -:-w·vw = ---Re K. - ie_,;u /(H) --2 + iK- e, - i--2--i,-
m,.d I m,ed V., r r r fJ(J 

e-iill+i•r 8/ e-i•r+iU e-i•r [ -iitr i1tei••1 i fJ/ i fJ/ } 
i----i.,,+ir----i--1112 ---+-- e --r-i,---r-i.,, 

r2sin(J 8</> r r r 2 r ' r 3 f}(J r 3sin9 8</> 

12 

One may decompose J now into various parts 

} = }in + }sc + }int 

Incoming current density 

hi 1 
}in ~ •m ·d V,,1 '' , , 1 re 

(1.43) ,· 

Current density of the scattered particles ( only the dominant term for larger). 

\\ \ 

\ 

J _ hi 
SC - m,,dr2V,,1 I J(n) 12e, 

~ ! 1 .th ~ ! 

Interference term 

' \ 

lint = _fi_Re {e,~ f(fi)/":il-~o,~8) + ~f~(~)e-i"r(I-c;,8; ; •. '.•:}· 
m,,dV,,1 r r 

(1.44) 

(1.45) 

l I !·' I_ '.·) ·. ' ; ; l\, \ 

If we integrate Jover th~ whole solid angle n = 4ir, there will be no contribution from 
}in to this integral. For asymptotically large values of r there will be also no contribution 
coming from jint except from a very small angular r11,nge,.qf! ,arnund O = .O. This,is so 
because for large r the integrand oscillates very rapidly. One can estimate this contribution 
by setting all the smoothly varying,pai;ts, eqtial to their values at O = 0. Using 

18=88 · 11 iKT 
sin0d0ei"r(I-cos8) = . , . dµei,;r(I_--:-,lf) .:= ,~ { e-i1rco~8~ _ -e-:i~~) := 

8=8 cos88 ii.r 

•. ~ Ji., ',,' I 

' i . ' 
.-:-:-, +, , oscil/atfrig .terms. 
KT . . ' · 

1,.1'. 'd( 

f<s,1·,· · 

and Ke, = cosOi. ~ K we get 

', 13 



J 
r2dnJintCr = 2-Re {-h-J df!r2 r~ f(O)ei"r(l-co,8) + x:e,j*(O)~e-i"r(l-cosO)]} 

¼1 m,,d r r 

= 2._Re {
2
1rht.r

2

~(f(O)-f*(O))} = _ __±0__/mf(O) 
¼1 m,,dKr m,,d¼I 

If we integrate now the continuity equation (1.16) over the whole space, taking into 
account that for stationary states ~ = 0, we obtain 

d3xVj = dSj = r d!le,(j;n + j,c + j;nt = J ➔ j ➔➔ j 2 ➔ ➔ ➔ I 

hKV [! d!ll f(!l) 12 - 4,r lmf(o)] = 0 
m,,dVo/ K 

The total scattering cross section is defined as 

Utot = J d!ll f(!l) 1
2 = J dn (!~) 

and we get the optical theorem 

4,r 
Utot = -Jmf(O) 

K 

Physically the optical theorem means the following: 

( 1.46) 

(1.47) 

The shadow cast by the target into the forward direction leads to a decrease of the 
intensity of the beam proportional to the total scattering cross section. This decrease 
arises because of destructive interferences between the incoming and the scattered waves. 
and is a direct consequence of the conservation of probability. 

14 

J>art.i_al wave expansion of the scattering__amri_litude, 

One may try to solve the Schroedinger equation (1.7) {or (1.27)) directly. In order to 
do sq we· introduce spherical coordinates and 'gel 

v2 1 a ( 2 a) r = r 2 ar r ar - r 2 (1..18) 

fi = - -- sinO- +----· [ 1 iJ ( ' a ) · i a2 
] 

-~inO ao ao si11 20 i}<})2 (1.49) 

' ' • I •c , r '' '-• 

The elg<'nfunct.ions of r ( operator of th<· squarc of th(' orbital angular l!lOlll('ntum ) 
arc q1e usual spherical harmonics Ytm(n) ~hich satisfy 

PYim(n)=l(l+l)Yim(H) i=0,1,2,3, .. , -1::C::m::C::+/ 

. \ 

l,Yim(n) = mYi,h ( /_ = -i.!!_) - 1)6 ( 1.50) 

If the po\c1,1tial V,(x) ,( or. l!(x).) dcpe11d~ only Qll 7" =I T. I onc,can US(' the follo~ving 
separation arisat.z for ljl ;:(.i)': · · 

IJ1,1(;r) = LC1,,.(i7)H1(1·)}<i,,,(n) (l}il) 

This leads for each partial w,wc to a radial Schrocding<'r <'quation oft he form 

[
_]___<!_(,id) .2 l(l+I)] . ,-id,. 1 dr. +K. --,.-2 - R1(r)=l·(r)H1(r) ( I .f>2) 

or if t.hc new variable p = ""' is int.rodnc<'d. 

15 



d
2
R1(p) + ~dR,(p) + (1 _ l(l~ l)) R,(p) = :

2
U(r)R1(p) 

dp2 p dp p 
{ 1.5:J) 

The homogeneous equation. i.e. the equation for free particles is then just the differen­
tial equation for the spherical Bessel functions {j,{p), n,{p), hf(p) or hl 1\p) and hl2>(p) ). 
We use here the definitions given in Messiah, Quantum Mechanics, vol.I, North. Holland 
{1961). 

regular solution ( for r -> 0) i,(Pl = -ffA+½{Pl 

irregular solution n1(p) = { - 1 )1 {i;J -(I+½ i(p) 

( spherical Neumann function) 

spherical Hankel function hl±){p) = n1(p) ± ij,(p) 

hl->(p)= h/+l•(p) 

spherical Hankel function of h/1>(p) = -ihl+>(p) 

the 1. and 2. kind hl2){p) = ihl->(p) 

For large p, p » 1, these function have the following asymptotic behaviour: 

j
1
(p} = sin(p _ 12!.) P-= - 2_ 

p 

n
1
(p) = cos(p _ 12!.) P-= - 2 __ 

p 

(±) . e±ip 
h, (p) =P-= (R, ± iS,)­

p 

16 

(1.54) 

(1.55) 

(1.56) 

(1.57) 

I i•-'(l.+s)!(!)' 
R,+ iS1 = L 2•s!(l - s)! P 

s=O 

(1.58) 

j, and n1, or hf or hp> and h/2> are pairs of linearly independent functions. We can 
now write down the solution of the homogeneous equation to (1.53): 

R1 = C1
1(,c)j1(p) + C12(,c)n,(p) (1.59) 

or 

:t- R, =·D[1>(,c)h/+>(p) + n[2>(,c)h/->(p) (1.60) 
~ 

~ 
l 

~ 

To investigate the asymptotic behaviour of the solutions of the inhomogeneou_s ~qua­
tion (1.53) we start with th~ an~atz ,, 

R,(p) = <P1hf . (\.61) 
: .. ' 

where we assume that «I>,(p) is a function smoothly varying with p (this because 
we know that far outsi~e the rang of the I_>O,tential the homoge~eous equation should 
·approximately be valid. 'Combining (1.53) and,(1.6_1) one gets 

«I>fhj±>+2«I>}(hf±l' +~), ·I:· 
· · ·- · . - · · = -'-Uhf 

if:, I . .. . ' - ,c2 . ' 
· (L62) 

Since «I>, was assumed to be a slowly varying function, one can neglect the term .;r. 
• I 

One then has , \ 

Hayqeo•TeXBll'leCK&B 
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and 

<I>' U h(±J U h(±l 
_J_~ I _ I 
<l>1 ~ 2x: (±)1 h(±) - 2x:2 (l+l)h(±) (±) 

h, +~ ~-h1+i 

<1>; ~ U h/±l 
~ =p-oo - 2x:2 (±) 

I h1+1 
(1.63) 

where use has been made of a recursion relation for h, ( h; = J_ h1 - h1+1 ) If one uses p 

now the asymptotic forms (1.58} for the Hankel functions, one gets for large p 

h± I~±·( 1) h± = . i 1 + 0( ~) 
l+l p-oo p . 

( 1.64) 

and 
<I>; U . ( I ) · ~~ --

2 2
z 1+0(-) (±1} 

I p-oo x:. P 
(1.65} 

Integration leads to 

<l> 1 JP ( 1) · . lg<I>~~ _- 22 U(r)(±i) 1+0(-) dp 
I p-oo X: p 

(1.66) 

PO 

For potential~ decreasing stronger then ~ for r ·..:.+ oo (i.e.· I U(r) I< ,~. , f > 0 ) 
the ,integral on the right hand side of (1.66} becomes independent on p ( p ~ I ) and 
approaches a constant value. We may set · 

8,(x:) = -2~2 j Vir) (1 +o(~)) dp 

Po 

r----·~,~---·----·--r 

lua.x::-;:2iz..1.~_".ux .. ti''r:._)~J.--\{n,fi J 
n >! ~ r o ;-rn, c:a-u1 I 

----~~--~._J 
· 18 

. · (1.67) 

and get 
ct>, = ct>?c±ih,(,) ( 1.68) 

and 

R/±l(r) ~ 1/±l(p) ±io,(") ~ c±i(p-'fH,(•l) r-oo / C = ____ _ 
p 

( 1.69) 

' . , L ' ' ' . ,, 

Thus in 'the asymptotic range, the influence of .the potential manifests, itself only 
through a phascshift. If U is a complex potcnti~I, then also bi(x:} will bl' c~mpl~•x. · · · 

The general solution.( L51) will _,be described in the asymptotic rang<>. by a linear 
combination of the ll{. This linear c'ombiilation has to be such, that it is the asymptotic 
form of the exact solution, behaving regularly at tll<' origin, i.e. 

r-oo h(+)Pi61 h(-) -i61 · ( I />(·) ~ (' .,. C· -., t; SIii. p-2!:+ti) 
t/ r ~ ,1m . = C . 2 \ I 2z ,.· Im , , . .-. p 

/ ( I. 70) 

The plane wave c;;u, which is also a s~lution of the homogeneous equation li;is.thc 
well known partial wave decomposition 

eii?x ~ ,ci'KZCosO = f (2/ + I )i1j,(x:r)I1( m~O) = E Om,oi1J(2/ + l )47rj1(Kr) }i.., (!2)' (I. 7 I) 
l=O Im ' , i 

Therefore we can use the following relation t.o dcterminr thr scattering amplit udr: , 

[ e;"'] [ ~ cirr] IV~~~F).~,-ooA e;u + /(!2)-:-;:- = A. ~ 8m,oi1J47r(2l + l)j,(,tr)Y,m(!l) +,/(!l)y· ·_-::= 

[ 

. h(+)e;s, _ 1,(-)e-ih1 ] , 1,(+\.2ih1 :_ h(-) . . . . 
l . l"l ,. _ " ,J :I• , .-,br .· A ,~Ct,n · ,· }1m --A~C""' , . I )1,,,(!?) .~ ~. ~-- b 

~ . ~ . 

(1.72) 
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Comparing the coefficients of the incoming waves ( hj-l ~ ,-~- >) on both sides of 
(1.72) leads to 

Gtm = Dm,oi 1 ei 61 ✓41r(2[ + 1) (1.73) 

Using this expression and comparing then the coefficients of the outgoing wave e'" 

leads to the following expression to determine /(0): r 

2::>m oi/✓41r(2/ + 1)(-i)I Y,21.m + J(O) = L G1me-i61 (-i·le2i61 Yim 
' ZK I ZK 

~ m ' 

or 

. J(O) = L 8m,oJ41r(2l + 1) ( e
2i~·i: l) Yim(O) = 2::::(2/ + l)f1(K)P1(cos0) 

Im I 

(1.74) 

with 
e2i61(K) _ 1 S1(K) - 1 

ft(K) = 2iK = ~ (1. 75) 

Equation (1.74) is the partial wave expansion of the scattering amplitude /(0). /1 
is the partial wave amplitude for the !'th partial wave and S1 is the S ~ matrix element. 
From the optical theorem ( 1.4 7) we get 

41r 41r 2:= 
Utot = -lmf(O) = - (2[ + l)/m/1("-) 

K, K, 
l=O 

(P1(l) = 1) ( 1. 76) 

Next we calculate the total reaction cross section. We write the wave function 'll~+>(x) 
as follows: 

r-oo [ eiKr] [ eiKr S1 - 1 ] 
\ll~+>(x) ~ A e;;u + /(0.)-:;- = A ~ i1(2l + l)j1P1 + -r- ~(21 + l)~Pt = 
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[ 
e-iKT eiKT] 

A G;n(O)-r- + Gout-:;- (1.77) 

with . 1 00 . . . 

Gin= --
2

. L(-1)\2/ + l)P1(cos0) 
ZK 

(1.78) 
l=O 

. 1 00 

Gout= -
2

. L(2l + l)S1(K)Pi(cosll) 
ZK 

l=O 

(1.79) 

The current density J is then given ( up to terms of the order O (;:\-) by 

/ 

.., ~ . I Gout 1
2 

- I Gin 1
2 + 6 (2-) 

J :::; er)in r2 r3 (1.80) 

dnnonel = -Jd§ = -Jerr2d0. S'! iin(I G;n 1
2 

- I Gout l
2)d0, 

nnonel = f dnnone/ = iin f (I G;n 12 
- I Gout 12}dn ' (1.81) 

nnonet is the number of all those particles that have been· removed from the entrance 
channel, which therefore do not co~tribute to elastic scatteri~g. 

r = nnonel _ J (IC· 12 - IC 12)d0, O'tot - . - in out 
)in 

(1.82) 

u;
0
t is called the total reaction cross section' { sometimes it is also called non elastic 

cross section) Using (1.78) and (1.79) leads to 
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T 1!""' 2 7l""' 2 (]'tot= 2 L..J2l + 1)(1 - I S1 I ) = 2 L..J2l + 1)(1 - 771 ), 
K. l K. l 

( 1.83) 

where we have introduced a new quantity, the inelasticity 7/1· One may allow for 
complex phase shifts 61 = 81 + ic;mag. 

Si = e2;i, = e2;s,-2s;m•• = 771 e2;s1 ( 1.84) 

Using this, we rewrite the expression for the elastic cross section: 

J Jd0 00 2 

O'e/ = dOI J(n) 1
2 

= 41,,2 I L(2l + 1) [771e2
i
5
, - 1] P1(cos0) I 

l=O 

"' 2 "' (2/ + 1) 2 = 4,r L..,(21 + l)l /1(1,,) I = 47r L.., --2-[1 + 771 - 2771cos28i] = 
l I 4K. 

2,r "' ,r "' = 2 L..,(21 + 1)(1 - 771cos28i) + 2 L..,(21 + l)(77i - 1) 
K. I K. l 

(1.85) 

or 

O';,/ = 2: L(2l + 1)(1 - 771cos28i) - ,r2 2)21 + 1)(1 -:-:-,7/n. 
K. l • . , K. l . , : 

(1.86) 

From the optical theorem we obtain 

2,r"' 
O'tot = -;; L.,(21 + 1)(1 - 771cos281) 

I 

(1.87) 

Therefore we have 
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O'tot = O'e! + u;ot 

O'tot :::>: O',I 

lmf1(1,,) :::>: 1,,J fi(i.) l2 

The value of the inelesticity may vary between O and 1. 

1/l =0 maximal absorption , 

1/1 = 1 pun, elastic scattering 

f1 = 2:K ( pure imaginary ) 

ue1 = ;i 1:(21 + I) = a;01 = ½utot 
I 

u;ot = 0 

O'tot = O',t = ~ I:;(2/ + 1 )( l - cos28i) = 
l 

= ~ I:(2/ + 1 )sin281 
l 

(1.88) 

1.2 High- energy approximation in potential scattering- Glauber 
theory 

We will derive a form of scattering theory valid for high energies ( i.H ~ I . H is the 
range of the interaction ). One assumes that all partial waves behavr in a similar way, 
namely that all 81(1.) arc sufficiently smooth functions of l. In this ms<' ont• ca11 replact' 
the sum over all partial amplitudes /1(1.) by an integral over l: 

f(H) = L(2/ + 1 )fi(i.)P1(co.,O) = 
l 

00 

e2i6, _ I J "2;~, _ I , 
= °"(21 + 1)-.-Pi(cosO)"~ d/(21 + 1.)-.-_ -P1(co.,O) 

L.., 2zi. 211. 
. l o 

'(Um) 

We substitute now 21 + 1 ~ 21.b (b ... colli~ion p~ranwthr) in ( 1.89). 
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00 00 

J(D) ~ ~ J db b ( e2i51 
- 1) P"b_1( cosO) = ~ J db b ( e2ix(b) - 1) P"b_i(cosO) 

l 2 l 2 
( 1.90) 

I I 
~ ~ 

with 
x(b) = 8i(,.:) = 8"b_i(11:) 

2 
(1.91) 

If 1 approaches very large values, we may use an asymptotic formula ( given for example 
in Abramowitz and Stegun, pg. 362 ): 

}~~ [pv-µ (cos~) rµ] = Jµ(x) , x ~ 0, µ ~ 0 

In our case here we have µ = 0 and 

lim Pv (cos=) = Jo(x) 
r-oo ll 

For large v we may write 

X x 2 

cos-~ 1- -
V 2v2 

If we define x to be given by 

then one has 

x = 211:bsin; = (2v + l)sin; 

1
. x 

2 
. 0 I . 0 . 0 

1m - = szn- + -szn-::::: 2szn­
•>1 V 2 V 2 2 

24 

24 

( 1.92) 

and 
X . 20 0 cos- ::::: 1 - 2sm - = cos 
V 2 

Therefore we may replace P1(cosO) by J0 (x) = J0 (211:bsin~) and obtain the following 
approximation for J(D): 

J(n)::::: -iK J db b (e2ix(b) - 1) pxb-½(cosO)::::: T J db b (e2ix(b) -1) Jo (211:bsinn 

L o 
2• 

(1.93) 

Below we will derive this approximation of the scattering amplitude once again for 
the case of potential scattering, rising a different method. x(b), the phase will be explic­
itly expressed through the potential V and we will see that ii,~+) has to be known only 
inside the range of V. We assume in the following again that we are dealing with high 
energies, therefore with very large momenta 11: and small scattering angles. _One can then 
approximate 11' ,.( .i) by 

11',.(.i) ~ Ae;",;;¢(x) , KT> 1 , 0 ~ 1 (1.94) 

where ¢(x) shall be a slowly varying function of x ( I¢" l~I ¢'I, I¢ I). If we write 
{1.94) in the form 

11' ,.(x) ~ Aei~(x) = Ae;<,.,;;+~(x)l (1.95) 

then ~(x) is slowly varying with x (A is a normalisation factor). 

v'11',.(.i) = Aiei~v'4> = Aiei~(i + v'~) 

and 
v'211',.(.i) = A[iv'24> _ (v'4>)2]e;~::::: -A(v'4>)2ei~ 
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We have neglected V 2<I>. If we use this result now in the Schroedinger equation (1.27), 
we obtain the approximate result: 

(V<I>) 2 = K2 
- U(r) = n 2 (x)K 2 ( 1.96) 

and 
V<I>(x) ~ ±n(x)ii: = ii:+ V<I>(x) (1.97) 

The solution of this equation is then given by 

X X · J V&(x')dx' = &(x) - &(xo) = J dx'(n(x') - l)ii: ( 1.98) 

io io 

As initial condition we choose <T>(x0 ) = 0. x0 can be shifted to-oo without any 
restriction. If O is small, one may replace ii:x by ~ K I x 1-

x z 

</J(x) = ii:x + <I>(x) = ii:x + J dx'ii:(n(x')-1)::,;:: ii:x + 1,,Idz1((n(x1
) -1) (! .!J!J) 

i'o zo 

On the other hand we have 

( ( -) l) ;· 2 2µredV(-) lii-oo [l µred''(-)] K, n :r - = \ K, - -,- X - 1,,· ::,;:: K - ~ V X - o· 
ne neK 

- µr,d V(i) = _ __:_ V(.i) 
he K Vrct he 

If we use this in (1.99) we get 
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e 
<I>(x) ::,;:: KX - Ure[ !, V(x') dz'= ii:x - µr,d j' 

he "' 
zo=-oo zo=-oo 

V(i') dz' 
he 

(1.100) 

The vector x' can be decomposed into the components b (in the xy plane) z'e, (i' = 
( b', z') ). Therefore one has: 

[ . - ' ] [ ' \,'.;; ,') ] i KX-~ J ~dz' i KX-....!...... f ~dz' 
" he "rd tu: 

IV;;(i)~Ac -~ =Ae -~ (1.101) 

One secs immediately that this approximation will not be a good solution in the 
whole space, since it contains no outgoing spherical waves ( analogeous to classical ray 
optics). Inside the interaction range Ix I~ R the function 111.(:r) givl:'n ·in (1.101) may 
be a reasonable approximation. The scattering amplitude can be obtained by using this 
approximate IV;;(x) in equation (1.40). We will use here the o - function normalisation 
(A = (2irj~i) and obtain 

f(fl) = (2ir)2µr,d/ 3_
1
(1)½ .. ,., · (l)½ i[i<x--,S.-f,•~dz"] -- d X - -IK X ll( _,) t,-rr hr 

he 2ir c v x ? c -~ _,r 

The integration is done using cylindrical coordinates (d3:r' = d2 bd:;'; .r' = b+ c2 :;
1
): 

_ µred 
2 

... 4 , -i_!_ V(b+z"T:) ,, ·1 +oo ,' -
J(fl)---.-2 dbjdz'c•q(b+zr,)V(b-+ ,-) •rd f he ,lz irne z t:, c -~ · 

whereq= ii:-ii:'. In thecascofclasticscat.tcringwchavc I it l=I ii: I and, I ii= 2,..,i11£. 
For scattering into small values of O one has approximatPly qr, ~ 0 and t.ll('r<'forp also 
ci;j,',z' ::,;:: 1. This leads to 
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+= , 

f(
n) _ µred J 

2 
J 

1 
. - _ _,_L_ J, V(b+,",,) ,, 

- - 21rhc d b dz e'ql,V( b + z'e, )e v,,, -= he dz 

. += ( ,' ) - zµredVret J 2 J . -d _,_L_ J V(b+,"',)d " - ---- db dz' ,ql, 'rel he z 

21rc e dz' e -oc 

-00 

- __ ..:_::.: d2 b iqb t1,-e1 he z 
Z/LredVrel J . ... -i-S- J V(b+z"~z)d II . ( += ' ) 

21rc e e -= - 1 

The socalled eikonal phaseshifts x(b) arc defined through 

+oo 
x(b) = __ c_ J V(b + ze,) 

2v,.c1 he dz 
-oo 

Using this in f(f!) we get 

f(f!) ~ i µred Vrei J d2be'qb (1 - e2ix(b)) 
2-;r C 

(1.102) 

(1.103) 

For spherical symmetric potentials V(x) = V(I x I) one has also x(b) = x(I b I)= x(b). 
With d2b = bdbd<f> one gets 

00 

J(D.) ~ iµred V~ef j dbb (1 - e2ix(b)) Jo(qb) (1.104) 

0 

where we have used 
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:.1 

ii 

' 1 ·12 .. . 
Jo(qb) = - d</Jeiqbco•¢> 

2-;r 
0 

If we finally use~=-"- and qb = 21,,bsinf
2

, we obtain 
C µred 

f(B) ~ iK l db b (1 - e2ix(b)) Jo (21,,bsinn 
0 ' .,,. . t • .• • ; ";! 

(1.105) 

which is exactly the expression obtained earlier (1.93) from the partial wave expansion 

.;_!'! 1, 
1 

l"·:'. ~I· I I 

j ;1' ,t ;, l ", •• ~ l \' ,: ; ; !, \: ,• 

1.3 The eikonal approximation in hadron - nucleus scattering 

.\ i 
1•·, 

In the theory of potential scattering the interaction potential of a projectile with a nucleus 
is given as the sum over the potentials between projectile and all ~he individual nucleons. 

• ,, ! 1 i-, . t , •:- .' t: J,;,.' '. : I'.;!~! '., ) , .!·_, '· ! : ': ,1:: 1:,, ! " '11\.! '.,,.:, ► ;·: t• .,· 1 •. ~ ••I·: "', "t ,'! ',· <", •. I 
·• i·/ )!'.stl'. •· "1:• )'.1_ ),.· ,•.I'•.')'.';!,.,,, J.,,[

1
H , ; r•, ~; ! , ' : ,.- , . 'rt • / • .' 

A 

V(x) = L ½(x - xi) (1.106) 
.~.:-,·i J=l . I, 

From (1.102) follows then that the eikonal phaseshift x(b) for the projectile - nucleus 
scattering, is given,.by,,the sum .of the· phaseshifts oUhe ,scattering.on the•individual;nu­
cleons.,Remember, however; that normally,j:>haseshifth,f potential scattering theory 'are 
not additive. This additivity of.phases· is a particular property. of the eikonal method;"'' 

.,,. ,, .i·~,, r:• l'•·; \ 11 1·1·•: c'."i• ' 1;!~.,,,,. '!,,:·.~!~.ih,~~, ·~1-,L· ;i1"·~i 

:-~: .' ;---.:,if •1' 'f, d,,'.1 .,_;J, /, ;,!l;~ ·:.;:-

+ooA - _ A . 

x(k) = _ _£_ j L ½(b-si' z)dz = Exlb-6;) 
. . 2Vrel . . lie .·. · . . 
f ' , ,. ''; > ..,.co' J,_=l <d ',,\·;{~••I ! ·.-, • \ · J=l : ,\.\;,. f " 

(1.107) 

The following coordinates have been \ntroduced 

•'- ·, -:, ~-
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x = b+ze, 

x; = (x;e,)e, + s; = z;e, + s; 

X - Xj = b - Sj + e,(z - z;) 

In the integrals we finally substituted z' = z - z;. 

Another important property of the eikonal method is the fact, that the scattering 
amplitude is a simple Fourier transform of the so called profile function f(b): 

_ f(b) = 1 _ e2ix(b) ( 1.108) 

This allows one to determine the eikonal phase ( or profile function ) without the use 
of the potential V(x), provided the elementary scattering amplitudes are known. 

f; --+ r; --+ x; - x = L x; --+ r--+ /(O) 
j 

From this one concludes that the eikonal method to determine approximately the 
scattering amplitude may be valid even under less restrictive conditions. To illustrate 
this we consider the scattering of a spinless particle on a nucleus. One assumes the 
elementary scattering amplitudes for scattering on an individual nucleon to be known 
(/;). Starting with f; one calculates I'; be inverting the Fourier transform: 

. ~, 1 j ·ii• a ( . c··) iKI'~(b) = 2ir e-•q J;(if)a·if= iK 1- e2,x, b) 

e;ix,(b) = 1- _l_-Je-ifbfi(ij)d2ij 
2iri11: 
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One integrates over those q's with constant energy ( or -constant 1,, ). For very large 

energies;this is ap_proximately a plai'1e~ Frof!l x = L Xi follows 

•• ) ,I • ) 2i I::x,(b-s, , TI '2ix,(b-i'., 
2ix(b) - c' , . , = e_ ,, '·. ,. C - • 

j=I 

A 

l'(b) = l _ c2ix(b) = 1 _ TI e2ix,(b-,,l 

j=J 

and 

F(ij) = ~:J d2b e;qi (i _ n e2ix,!b-;,J) 

J=I 

( 1.109) 

This is the projectile - nucleus scattering amplitude and it still depends on all nucleon 
coordinates. In the space of nuclear states F(ij) is still an operator. Consid<'ring a 
transition from initial state I i > to the final state I f > we obtain 

I'J;(ij) =< f I F(ij) Ii>=~: J d2b/fb < f I (1 -11 r 2
i\,(b-i'.,)) Ii> ( I. 110) 

Explicit calculation of the product, in (1.J 10) using c2ix, = I - l'j(b.~ ). lrads to 

A A n (1 - r;) = I - L I'; + L f; rj - L I';l'; I\+ ... + (-I)'1l'i 1'2 ••• I',t 
i=I j=I i<j i<j<k 

I'j(b- -~) = 2);~ J d2ij'1·-iq"(b-.;,) fj(ij') 

} (I.Ill) 

This is a polynomial in the amplitudes fi(if), whew terms with I amplitmlr ( single 
scattering ), 2 amplitudes ( double scattering ), etc ... , and a trrm with maximal :\ am­
plitudes /if2 ••• JA (A - fold scattering) occur. Sinrr in all these products i fc I,. rte .. 
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one secs that the projectile is scattered on each target nucleon only once. This is a con­
sequence of the approximations made. \Ve assumed small scattering angles. :\lultiplP 
scattering on one and the same nucleon would require at least once scattering through a 
large angle. In deriving equ. (1.110) we made implicitly the assumption that all nucleons 
have fixed positions; we have " frozen in " the nucleons inside the nucleus during that 
time the projectile interacts with the nucleus. We have. neglected the so called Fermi 
motion of the bound nucleons and ev~fuated all multiple scattering terms at one and the 
same momentum transfer. 
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2 Formal scattering th~ory: 
'~ 

In this chapter the dynamics of a quantum system will be studied from a more general 
point of view, 'the· time evolutioh 'operator' playing the' c~ntr'al' role:· The 'considerations 
will be valid in both the relativistic and the nonrelativistic case. We will develop the 
relation between the time evolution operator and the scattering matrix, which is the 
central object to be studied in scattering theory. W,e:1vill also investigate Green's operators 
( propagators ) and the Lippma~n - Schwinger equation for the T - matrix and give some 
general formulae to calculate decay - probabilities and cross sections from the T - matrix. 

,\I \ 

2.1 The time evolution operator 
'i ,. .,, ': ,, j ,,:, 

I ::, l:" 1'') •:i.' .. ,. ,,,'.>) i"•.:;,· 

We start with the derivation of the time evolution operator in the Schroedinger pic­
ture. The dynamical equation describing the time evolution of a quantum system is the 
Schroedinger equation. . , , . , 1 '; , .\ • I , ,. 

,,•;:,,·,' ,, .,,, '' ' [) , .... ·ff.1.(i) ~'in w.(t) 
' :•tnc·ot,,: 

., 
(2.1) 

,,\1 ;,.,,11,j' 

., ,} 

The index s stands for Schroedinger picture. In this picture observables or dynamic 
variables are represented through time independent Hermitian operators ( an explicit time 
dependence is of course possible). The state vector \11,(t) of the system is time dependent 
and evolves according th~ Schr~edihger\e4u!l-tioil (2'.l) and 'a: given initial condition. We 
define the time evolution operator U,(t, t0) through 

·:1,: ,-.,, I.',.; b,t .J ,_· ;- \• \I • ~ \ J 

\11,(t) = U,(t, to)IJl.(to) (2.2) 

' with the initial condition 
'. I 

u.(to, to) = 1 (2.3) 

: ', ; \; 1 ' ) ; · \ '_ ," ~ • I· I 

Inserting this into the Schroedinger equation gives us 
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8U.(t, to) = H,U.(t, to) in at (2.4) 

It is easy to show from (2.2) that U, has multiplicative group properties. 

u.( t, to) = u.( t, t')U.( t', to) (2.5) 

u.-1 (t, to)= U(to, t) (2.6) 

The conservation of probability requires< w.(t) I 111,(t) >=< ll!,(to) I lll,(t0 ) > from 
which follows the unitarity of U.: 

u:(t, t0 )U.(t, t0 ) = U,(t, t0 )U:(t, t0 ) = 1 (2.7) 

U. is unitary since H. is hermitian. H. is the generator of an infinitesimal time 
translation U.(t + lit, t0 ). A formal integration of (2.4) together with the initial condition 
(2.3) leads to 

t 

U,(t,to) = 1 + (-¼) / H,U,(t',t0 )dt' (2.8) 

to 

If H, does not-explicitly depend on t, one can find a closed expression for the solution 

U.(t, to) = e-l.H,(t-t0 ) (2.9) 

and 

w.(t) = e-1.JI,(t-to)w.(to) 
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In the Heisenberg picture the quantum system is described through time independent 
state vectors and time dependent operatofs. The transition' from one picture to the next 
is given by the transformation 

,\JJ11 =;c u:(t,to)IJ!.(t) = U.(t 0 ,t)w.(t) (2.10) 

Oop,11(1) = u:(I. to)Oop.,U(t, lo)·: (2.1 IJ 

If the Hamiltonian JI, can be split into an" unperturbt-d " (or" free") part J/0 and 
a", perturbation " ( or " interaction ") V; i't i~ con'vei1ienl to use the interaction picture 
to describe the dynamics of the system. In this interaction picture th<' ''fr<'<'" motion 
corresponding to Ho is separated from that of the whole system. This s<>paration is 
performed in such a way that the time evolution of the observables is determim•d throiigh 
ll0 , whereas the state vectors havr a time e\'olution drtcrmi1wd through the> intrraction 
V. lu order to formulate the interaction picture, one JH•rforms a unitary transformation 
on the Schroedinger state v¢ctors. 

! 
' 

lll(t) =eklfo(t-tolw,(t) (2.12) 

\Jl(t) is the state vector in the interaction picture. From the Schroedinger c>quation 
I • , '. • • I' ) ' l • • . '' t ,- • , · ' -, ; , ; ~ 1 • 

we obtain 

with 

JI.w.(t) =(Ho+ ,V)\JJ.,(t) = iii iJ\JJ,(t) 
' ' ' ' ' iJt 

. 8\JJ(t) = V(t)\JJ(t) zlii)t Tomonaga 
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V{t) = ekHo(t-to) V e-kHo(t-to) (2.15) 

The Tomonaga-Schwinger equation describes the time evolution of the state vector 
iv(t) in the interaction picture. One easily shows that the time evolution of all observables 
is determined by H0 ( one says also that the observables have only a kinematical time 
dependence, whereas the state vector llt(t) has the dynamic time dependence determined 
through the interaction V(t) ). This splitting of the dynamic time evolution from the" 
trivial " one is particularly useful in scattering theory. We define now a time evolution 
operator in the interaction picture through 

with 

llt(t) = U(t, t')llt(t') 

U(t,t) = I 

U(t, t")U(t", t') = U(t, t') 

u-1(t, t') = U(t', t) 

The Tomcinaga-Schwinger equation gives us 

. oU(t,t') = V(t)U(t,t') zh ot 

and formal integration leads to 

t 

} 

U(t, t') = 1 + ( ~i) J V(t")U(t, t")dt" 

t' 

The conservation of probability leads as before to the unitarity of U: 
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(2.16) 

(2.17) 

(2.18) 

(2.19) 

u+(t, t') = u-1(t, t') = u(t', t) (2.20) 

From (2.16) and (2.12) one easily obtains the relation between U(t,t') and U.(t,t'): 

U(t, t') = e-kHo(Ho) u.(t, t')e~-/;llo(t'-to) (2.21) 

and in particular for not time dependent ll, one gets 

U(t, t') = ekllo(t-to) e-:-/;H,(t-t') e--/;Ho(t'-to) (2.22) 

Expectation values of operators are of course in all pictures the same. 

2.2 The scattering matrix ( S - matrix ) 

This chapter is devoted td the development of a rigorous formalism to describe a quantum 
collision process. The basic ideas are very simple. One assumes that in the past, at 
t = -oo, a beam of free particles was prepared in the asymptotic region, by fixing the 
experimental conditions ( the projectiles have a certain energy, spin, direction of motion). 
At time t = 0 the interaction between the projectiles and the target takes place. The 
scattered particles are detected at time t = +oo with detectors placed in the asymptotic 
region ( i.e. far away from the scattering center ). We therefore have to investigate the 
time evolution· operator at 3 different times, ·t = -oo; 0, +oo. The following· limiting 
procedure for operator·functions given by Gell - Mann and Goldberger will turn out to 
be very useful for the further discussion. 

lim F(t) = lim {f/00

_e-<t' F(t')de} 
t-+.cX) e-o+ 

a. . . 

(2.23) 
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lim F(t) = lim {i: /
0 

e'1' F(t')dt'} 
t--oo t:-+O+ 

-oo 

(2.24) 

One convinces oneself by partial integration from the correctness of this relation pro­
vided F(t) has proper limits F(±oo) at t = ±oo. If F(t) however oscillates at large I t I, 
then the exponential factor will damp these oscillations. It is important to note that 
first one has to perform the integration and then to take the limiting value for i: -+ o+. 
This limiting procedure may now be applied to the collision operator U(t, t') and one may 
define the following 4 operators 

U(t, -oo) = Jim {i: /
0 

e<t'U(t, t')dt'} 
t-+O+ 

-oo 

U(t,+oo) = lim {1:/00 

e-<t'U(t,t')dt'} 
t:-+O+ 

0 

U(+oo,t) = lim {i:/
00 

e-<t'U(t',t)dt'} 
t:-+O+ 

0 

U(-oo,t) = Jim {i: /
0 

e<t'U(t',t)dt'} 
f-+0+ 

-oo 

(2.25) 

We note without proof that U(t,±oo) and U(±oo,t) satisfy the same differential 
equation as U(t, t') and have the same multiplicative group properties. They are, however, 
not necessarily unitary since the inverse operators have not yet been defined. They satisfy 
however the relations u+( +oo, t) = U(t, +oo ), etc. 

In the following we will investigate the scattering problem (2.13) and assume that 
there exists only one way of splitting the hamiltonian H,. The generalisation to many 
arrangement channels ·is not very difficult and will be given later. We start from 

H, =Ho+ V (2.26) 
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and denote the eigenstates of 1!0 by <l> 0 • It is assumed that H0 has no bound states. 
In the next step we define the socallcd 1\Ioeller operators ( or wave operators ) by 

11(±) = U(O,::i=oo) and n<±J+ = lf(=fCXJ,0) (2.27) 

They transform the eigenstates { 0 0 } of H0 into the eigenstates IV~±) of the full hamil­
tonian 1!, at time I = 0 

I 1V~±l >= n<±J I <I>" > and ; < 1V~±> I=< <I>" I 11(±)+ (2.28) 

From this we can calculate the matrix elements of the Moeller operators and obtain a 
useful representation of these operators. 

< <f>,3 I n<±J I <I>" > = < <I>,, I w),±l > 

< <I>,3 I n<±J+ I <I>,, > = < IV~±> I <I>., > } (2.29) 

The set of functions I IV" > may be assumed to be a complete set of orthogonal func­
tions. J\s a conscqurncr ~ve Ciill derive immediately a rcpn·se11tat.io11 of the ~loellcr oper­
ators. 

n(±) = I: I 111\±l > < ,i,,, I 

n<±i+ = I~ I <I>,, > < w\±l I } (2.:lO) 

Using the operator expression (2.25) for U(O, -oo) allows OIH' to obtain on <'xplicil 
rcprci;c11tation of n±. \\'c assunw again that /{, has 110 explicit time depc11dc11c,·. \\"it h 

U(l, t') = ,:tllo(!-to) 
1
.--k)l_,(t-t') c-kllo(t'-t0 ) 
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we get from (2.25): 

U(O,-oo) = Jim {f /
0 

e'1'U(O,t')dt'} 
c.-o+ 

-oo 

= Jim { f Jo e<t' e-kHoto ekH,t' e-kHo(t'-to) dt'} 
c.-o+ 

-oo 

If one sets t0 = 0 this reduces to 

U(O, -oo) = Jim {f /0 

e'1' ekH,t' e-kHot' dt'} 
c.-o+ 

-oo 

Using the same steps in the calculation of U(O, +oo) one gets also 

U(O,+oo) = Jim {E/00 

e-<t' ekH,t' e-kHot' dt'} 
c.-o+ 

0 

If we use now the completeness of the free states I <I> 0 > we find 

U(O, 'FOO) - .".':\ { "' T , .... ,,,,,,. ~ I $. > < $. I ,-iE.•' dt"} 

Jim'°' ±E 
,-o+ L., ±E + i(H _ E ) I <I>a > < <I>a I 

0 ft -' Q 

or 
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n<±) = Jim LE ±;1) ± . I <I>a > < <I>a I 
~-o+ 0 - • ZT/ a 

(2.31) 

With this we obtain for the scattering solutions I Ill~±) > the simple expression 

. ±iTJ I <I>a > I ,T,{±) > = n<±) I <I>a > = limo+ E - H. ± i1) 
WO ~- Q 

(2.32) 

The functions {I Ill~±) >} are eigenstates of the full Hamiltonian and therefore orthog­
onal 

H; I w~±) > = Ea I w~±) > 

< wt> I w~±) >= Of3a (2.33) 

This allows us to obtain another property of the Moeller operators: 

n(±J+n(±) = L I <I>a > < w~±) I w~±) > < <I>/3 I= L I <I>a > < <I>a I= 1 (2.34) 
a/3 a 

n<±Jn(±J+ = L I w~±) > < <I>a I <I>/3 > < w~±) I= L I w~±) > < w~±) I (2.35) 
a/3 a 

The full hamiltonian H, may have bound stats I WB >. The completeness of the 
eigenstates of H, is therefore given by ' 

1 = L I w~±> > < w~±> I + E I wB > < wB I= E I w~±> > < w~±> I +AB (2.36) 
a B a 
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n<±Jn<±J+ = 1 -AB (2.37) 

The Moeller operators are therefore only unitary operators, if_ H0 and H, have no 
bound states. Next we show 

and therefore 

E"' I w~±J > = H, 1 w~±J > = H,n<±J I <I>"' > 

Eo, I Ill~±)>= n<±)Eo, I <l>o, > = n<±)Ho I <I>o > 

H,n<±J = n<±J Ho 

n(±J+ H, = Hon<±J+ 

n!±J+ I w B >= o => n<±J+ AB ~ o 
} (2.38) 

After having discussed the properties of the Moeller operators we introduce the concept 
of the scattering operator S. This operator is constructed in such a way, that it connects 
the free states at time -oo with the free states at time t == +oo, after the interaction has 
taken place. This operator S is defined through · 

S = U(+oo,0)U(0,-oo) = n<-J+n<+J (2.39) 

and it acts by construction on the asymptotically free eigenstates I <I>0 > of H0 • The 
S - matrix elements are then given by 

< <I>/3 I s I <I>"_> == < <I> I n<-i+ n<+J I <I>" > == < w1-' I w~+i > (2.40) 
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The S - matrix elements are time - independent and they re(-resent the probability 
amplitude to find the system after a measurement in the state I Ill 13-J > if it was originally 

in state I q,~+) >. I q,~+) > is obtained by time evolution from the state I <I> 0 >, whereas 
I I{/~-) > goes by time evolution into the state I <l>13 >. We note that the definition of the 
S - matrix does not rely on a particular splitting of the hamiltonian H,. It is a unitary 
operator and it commutes with Ho: 

s+ s = s s+ = 

[S,Ho] = 0 
} (2.41) 

In the next step we calculate the S - matrix explicitly. 

< <1>13 I s I <I>" > = < w~-, 1 w~+l > = [ < w~+l I -( < iv\tl I - < w~-l I ) ] 1 w~+l > 

b13°' - [ < iv1+l I - < ivtl I ] I w~+l > 

I .,.(+) I .,.(-) - 1· . [ 1 I ] I "" 
"'/3 > - "'/3 > - Im z11 E' fl . + E fl . .,, ii > 

~-o+ ',fl - s + ZTJ O/j - s - 1-1/ 

Jim 
~-o+ 

2iTJ(E13 - fl_,) I ,.,. _ 
1
. 2i11(/,'11 - llo - V) I ,.. 

'¥{3 > - Jill , . '¥1J > 
(E13 - H,)2 + 112 ~-o+ (/\i - 1/_,)2 + T/2 

Jim 
11-0+ 

-2i11 
(Eµ _ /l.,)2 + 

71
2 V I <I>µ>= -2irrli(E11 - Jl,)V I <I>,1 > 

[ < w1+) I .... < iv1-) I ] 1 w~+) > = 2irr < <I>1i I V li(/,'r1 - II.,) I w!,+l > 
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= 2ir.o(Ep - E") < <I>p I v I w~+l > 

With this we obtain 

< <I>p Is I <I>" > = op" - 2r.io(Ep - E") < <I>p I v I w~+i > {2.42) 

In a similar way one obtains also 

< <I>p I s I <I>" > = op" - 2r.io(Ep - E") < w1-l I v I <I>" > {2.43) 

If Ep = E" ( " on the energy shell" or simply" on - shell ") one has therefore 

< <I>p I v I w~+l > = < w1-i I v I <I>" > (2.44) 

For Ep ,f. E" this is not the case. Comparing (2.44) with (1.40) and (1.41) shows 
the relation to the definition of the T - matrix and the scattering amplitude of potential 
scattering. However, in our present case we have not yet separated the center of mass 
motion and in particular we have not made any restriction to a two - body scattering 
problem. The equation {2.42) ... (2.44) play a central role in scattering theory. 

In the next steps we will generalize all the considerations developed so far to the 
case where the Hamiltonian H, can be split in various ways into " unperturbed " and 
" perturbation " part. We call the various possible splittings of H., determined by the 
number and nature of the particles participating in a collision process, "arrangement 
channels " ( sometimes they are also called fragmentation channels ). In each of these 
arrangement channels cone has therefore 

H, = He + Vc (2.45) 

Each of these channels c contains many ordinary channels differing bei all the possible 
quantum numbers 1 of fragments in that channel. We denote the asymptotic " free " 
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states in a given arrangement channel c by <I>c,-y• These functions are eigenfunctions of He 
with energy Ec,-y and represent only a subset of the full complete set of eigenstates of He-

Hc<Pc,-y = Ec,-y<Pc,-y (2.46) 

To distinguish the <I>c,-y from the full set ~f eigenstates of He we call the latter <I>~. 
In the following we shall use the following short hand notation. A general state I in 
arrangement channel c will be denoted by n = { c, 1 }. The initial state o: in the initial 
arrangement channel c = i will be denoted by a = { i, o:} and similar for the final state (3 
in the final channel c = f by b = {!, (3}. Next we define for each arrangement channel c 
a time evolution operator Uc (to= 0). 

Uc(t, t') = ekHct e-kH,(t-t') e-kHct' (2.4 7) 

All the equations (2.25) remain valid when applied to Uc(t, =foo) and Uc(,=oo, t). We 
introduce now the socalled" channel projection operator '/ Ac, projecting on the" channel 
space " Re, spanned by the state vectors <I>c,-y belonging to the channel c. 

Ac = L I <I>c,-y > < <I>c,-y I= A";; (2.48) 
'Y 

The Moeller operators for channel c are then defined as 

ni±l = Uc(0, ,=oo )Ac (2.49) 

o!±J+ = AcUc(=foo, 0) 
C 

(2.50) 

The wave function IV~±) = wi~ of the whole system at time t = 0, originating from 
the " free " wave functions <I>n = <I>c,-y are then defined as previously 
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I IV~±) >= ni±) I <l>n > (2.51) 

In particular, we have in the initial and final channels (with a= i, a and b = J, fJ) 

J IV~±) >= nj±l I <l>a > 
I 1Vi±> >= nt> I <lib > 

The Moeller operators can be determined as before by 

} 

n<±) = Jim 
C t-+=f'.00 

{Uc(O, t)Ac} = Jim {efH,t e-kH,t Ac} 
t-+~oo 

= Jim { ,=f /'foo e±<t e k H,t e - k H,t dtA } 
t:-+O+ C 

0 

Performing the integral leads to 

±. 
ni±) = Jim LE ; ± . I <l>c-y >< <l>c-y I 

,,-o+ ,.,, c-, - • 177 

=Ac+ Jim L E ~ ± . V., J <lie-, >< <lie-, J 
,,-o+ ,.,, c-, - • 177 

and we obtain for the full scattering solution as before 

±. 
I 1V<±> >= n<±> I <1> >= Jim 

177 I <1> > 
c-, c c-, ,,_o+ Ee-, - H. ± i17 c-, 

1 
= I <lie-, > + Jim E H ± . V., I <lie-, > 

,,_o+ c-, - • 177 
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(2.52) 

(2.53) 

(2.54) 

(2.55) 

We remind again that the set of function <I>c-, is not complete and that functions related 
to different arrangement channels are not necessarily orthogonal ( < <l>c,-,' I cI>c-, >=/- 0). 
Therefore in general we will have Ac,Ac c/ 0. The solution of the full problem belong 
however to a complete orthogonal set: 

< ,r,(±) I IV(±l >= b ,b , 
'i' c'--y' c-y cc "Y 'Y 

(2.56) 

In the following we shall derive a few properties of the Moeller operators : 

n 1±l+ n1±J = '""' I <I>c,-,' > < <I>c-r, I 
c1 C L....,,, ..,,.., 

Jim 
rJ'-o+ 

:,:i,7' ±i 

E 
. Jim 'I I"' ,.. 

,,..,, - JI, 'f 111' ,-o+ Ee-, - H, ± i'I "'c-r > < "'c-r I 

= L J cl>c'-y' >< IV~~\ J ivi~) >< cI>c-, J= bee' L J <l>c-, >< <l>c-, J= AA•c 
..,,.., .., 

n(±)+ n(±l = A b, (2.57) 
,l {.c1 C C C' C 

n(±ln(±J+ =" I IV(±l >< <1> I <1> >< w(±) I=" I w(±l >< w!±l I= c1 . (2.58) 
C C ~ c-y1 C"'/ 1 

C"y C"'Y £__J c--y C")' (c 

-y'-y .., 

The operator Qc projects into the space spanned by t.hc vcdors I '11~:;,l >- This is a 
subspace of the space spanned by all the <•igcnstatcs J ir,~±) > of the fulr lla1i1iltonian. 
These subspaces are all mutual orthogonal to each other. Summing over all s11bspan·s we 
get the full space of the scattering solutions of H •. Adding t.o it the space spamH'd by 
the genuine bound states { all particles of t,hc system bound ) we get the fnll space of 
eigenstates of_ H •. Therefore 

L n~±)n~±)+ = L qr= J - AH (2.59) 
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:1 

! 
with 

AB= LI 'VB>< 'VB I 
B 

Equation (2.59) is the completeness relation for the eigenstates of H.. \Ve also can 
easily derive the relation 

H.n~±J = r,,~±J He 

ni±J+ AB= 0 } (2.60) 

At this stage we can generalize the concept of the S - operator to the case where there 
is more than one arrangement channel. Instead of one S - operator we have now a set of 
S - operators defined by 

S, =nc-J+nc+J 
CC c' .l Gc (2.61) 

With particular reference to the initial and final channels we are interested in calcu­
lating the matrix elements of 

S1; = n~->+ nj+> (2.62) 

taken between the asymptotic eigenstates <1> 0 = <I>;,0 and <I>b = <I> f,(3 of the correspond­
ing channel Hamiltonian H; and Hi: 

< <Pb J Sfi J <I>a >=< <I>f(J J Sfi) <I>ia > (2.63) 

Using (2.52) we obtain 
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< <Pb I S1; I <I>a >=< <I>u1 In}-)+ nl+) I <I>;a >=< w1-) I wi+l > (2.64) 

Next we shall prove the unitarity of the multi - channel S - matrix. As a first step we 
calculate 

~ s' ,,s ,,+ = ~n(-)+n(+)n(+)+n(-) = ~n(-)+Qc',n(-) 
~ cc cc ~ c' c11 c11 c -~ c' ,lt,c 
c" 

and similar 

c" c" 

n<->+(1-AB)n<-> = n<->+nc-> = A 8c' 
c' c d c c c 

L s-:;,c,Sc"c = Ac8c'c 
c" 

. (2.65) 

(2.66) 

Taking the matrix element of (2.66) or (2.67) between the states I <I>c'd > and I <I>c,..,, > 
we obtain for example 

< <I>c17 1 J L S"J,c,Sc"c J <I>C"f >= 8c1c8..,,,..,, (2.67) 
c" 

On the other hand we may introduce into the left hand side a complete set of functions 
I <I>;' >. Since both S - operators contain the projection operator Ac", only the functions 
J <I>c"d' > remain and we have 

E < <I>c1"11 I s-:;,c, I <I>c117" >< <I>c""f" I Sc"c I <I>C"f >= 8c1c8..,,,..,, 
c"ry" 

E < <I>c'"f' J Sc'c" J <I>c117" >< <I>c117 11 J S!,, J <I>C"f >= 8c1c8..,,,..,, 
c"'Y" 
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i, , These relations are the unitary relations for the multi - channel S - matrix. We proceed 
in -gi;ing a more explicit representation of the S - matrix. We start from (2.55). 

1 
I w<±) > = nf(±) I 4>b > =I q>b > + Jim E H ± . V1 I q>b > 

b ,i-o+ b - s ZTJ 

1 
I w<±> > = n\±> I «I>a > =I «I>a > + Jim . V; I «I>a > 

a 
1 ,i-o+ Ea - H, ± ZTJ 

(2.69) 

and get 

< 4>b I S1;·14>a > = < w1-> I wi+l >= [ < w1+) 1-( < wi+) I - < w1-> I) l I wi+l > 

= Cba - [< wi+) 1 - < w1-> I] I wi+l > 

< wi+> 1- < w1-> I=< «I>b I V1 '11!.'J;+ [Eb_~. - i11 - Eb - ~. + i11] 

= < «I>b I V1 lim (E ;
11
)2 2 = 27l"i < «I>b I V16(Eb - H,) 

11-0+ b- s +TJ 

and 

< <Pb I S1; I «I>a >= Cba - 21l"i6(Eb - Ea) < q>b I V1 I wi+l > (2. 70) 

or 

< q>b I S1; I 4>a >= Cba - 21l"i6(Eb - Ea) < w1-> I V; I 4>a > (2.71) 
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On the energy shell (Eb= E0 ) we have therefore 

< q>b I V1 I wi+) >=< w1-> I V; I 4>a > (2.72) 

In case we have only one arrangement channel (V1 - V; = V) we obtain the result 
given in (2.44). 

2.3 The Lippmann - Schwinger equation, T - matrix, propa­
gators 

Propagators (Green functions, Green operators): 

Looking back at equation (2.69) we see that the full solution of a scattc•ring problem 
was obtained using a Green operator (or Green function, or propagator): 

c(±l(E) = '11!.~\ E _ Jl, ± i1i - E - H. ± i11 (2.73) 

We suppress from now on the symbol of taking the limiting value of this <·xpn·ssion. 
implicitly it is however always implied. Propagators for other Hamiltonians such as li;, 
H1, He, etc. can be defined in a similar way. 

c(±>(e) = lim E _ lJ ± i1J - E - lie± i11 C ,,-o+ ..,1 C 

In the special case of frec> particles we have 

G(±l(E) = Jim E _ Jiu± i11 
0 11-0+ .1 
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/,' - /10 ± i11 
~> 

(2.7-1) 

(2. 75) 



where Ho consists only of the sum of the kinetic energies of the particles or in the 
relativistic case of the sum of the kinetic energies and masses. Since the operators Ho, 
He,, H, are all hermitian operators, we have 

c<±><+\E) = c<=i=> etc. 

Some useful combinations between the various propagators can be constructed by 
using the following operator identities: 

A-1 
- B- 1 = A- 1(B - A)B-1 (2.76) 

A-1 
- B- 1 = B- 1(B - A)A-1 (2. 77) 

Choosing for example A = E .:_ H, ± i11 and B = E - He± i11 ( H, = He+ Vc) we derive 

c<±l(E) = Gi±) + c<±l(E)VcGi±>(E) (2. 78) 

c<±>(E) = G~±J + G~±l(E)v;,G<±l(E) (2.79) 

In case there is only 1 arrangement channel( we may call this a direct process, H, = 
Hd + vd) we have 

c<±>(E) = c~±)(E) + ct)(E)Vdc<±>(E) = c~±)(E) + c<±>(E)Vict>(E) (2.80) 

If we choose A= E- He± i11 and B = E -H0 ± i11 we obtain 

c~±>(E) = c~±> +c~±1(E) (V -Vc)ci±1(E) = ct1(E)+ci±1(E) (v -Vc)ct>(E) (2.81) 
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Lippmann - Schwinger equation, T - matrix, S - matrix 

Using (2.55) and (2. 79) we obtain for the scattering solution in channel c: 

1 w~> > = I cI>c-y > +c<±>v;, I cI>c-y > = (1 + c<±>v;,) I cI>c-y > 

(1 +(Ci±>+ ci±>v;,c)Vc) I cI>c-y >= (1 + ci±>v;,(1 + c<±>v;,)) I cf>c-y > 

or 

I w<±> >=I cf> > +c<±1(E) v. I w<±> >=I cf> > + 1 
, V, I w<±> > (2.82) 

C'Y · C'Y c e C'Y C'Y E - He ± iTf e C'Y · · · 

This integral equation for the full scattering solution in channel c is called the Lipp­
mann - Schwinger equation. It is completely analogous to (1.35), the solution of the 
simple problem of potential scattering. The main part of the S-matrix < cf>b I Si; I cf>" > 
derived in equs. (2.70) - (2.72), ~ere the mat;ix element~ < cf>b I Vi I IV~+) > and 

<,w1-1 I ½ I cf>a >. We may,write 

< cf>b I V1 I wi+l >=< cf>b I V1(I cf>a > +a<+)½ I cf>a >) =< cf>b I Vj + Vic<+)½ I cf>a > 
(2.83) 

< w1-1 I½ I cf>a >=< cf>b I (1 + V1c<-l+)½ I cf>a >=< cf>b I ½+Vic<+)½ I cf>a > (2.84) 

This allows one to define transition operators 'Tj; and 'Ij; (sometimes called Lovelace 

- operators): 

'Tj;(E) = ½ + V1c<±l(E)½ 
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! 
']j;(E) = V1 + V1G(±l(E)V; (2.85) 

Both T - operators give on - shell (E = Ea = Eb) the same value for the matrix 
element. 

< <I>b I V1 I wi+l > = < <I>b I 'Fj;(E) I <I>a > = < w1-> I V; I <I>a > 

= < <I>b I Tj;(E) I <I>a > for E =Eb= Ea (2.86) 

To prove this one has to show that on - shell < <I>b I V1 I <I>a >=< <I>b I V; I <I>a > is 
valid (using the hermiticity of the operators H, and V1 ). With the aid of the operator 
relation for the propagators one can derive integral equations satisfied by the Lovelace 
operators Tj; and 'Fj;: 

a) Tj; = V; + V1G(+>V; = V; + V1(G}+> + G}+>v1G(+l)V; 

= V; + V,G}+)V; + V1G}+>v1c<+)V; = V; + V1G}+)(V; + V1G}+)V;) 

= V; + V1G}+>Tj; 

b) 'Fj; = V, + V1G(+)V; = V1+ V1(G)+) + c<+>V;c!+>)V; = V1+ V1G)+)V; + V1G(+>V;c)+)V; 

= V1 + V1G)+lV; + ('Fj; - V1 )G)+>V; = V1 + 'Fj;G)+lV; 

Tj;(E) = V; + V1G}+l(E)Tj;(E) (2.87) 

'Fj;(E) = V1 + 'Fj;(E)G)+l(E)V; (2.88) 

The S - matrix is then given by 

< <.f>b IS~; I <I>a > = Oba - 21rio(Ea - Eb) < <.f>b I Tj;(Eb) J <I>a > 
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T 
l 

' i ,, 
:I 
i ·, 
.I 

I 
J 

' 
l 

l 

Oba - 21rio(Ea - Eb) < <.f>b I T1;(Ea) I <I>a > (2.89) 

2.4 Transition probabilities, decay probabilities, cross sections 

According to our discussion after equ.(2.40) we can define the total transition probability 
for a genuine transition as 

Wba =I< <.f>b J S1; I <I>a > -Oba 12= (21r)2(o(Eb - Ea)) 2 I< <.f>b I TJ; I <I>a >12 (2.90) 

We may use the foH?wing definition of the o - function: 

{ 

+" } 
2 

• T 1 'E Et . T 
o(Eb - Ea)= Inn -2" -! e•( ,.- a) dt = hm {-2 Ii oE •. E.} 

T-+cx:> Jr fl T T-co 1r l, 
T -, 

in (2.90) we obtain 

2 {T• } 2 Wba = (21r) o(Eb - Ea) Jim -hoE,,E. I< <I>b I T1; I <I>. >I 
T-+CO 27r 

(2.90') 

The basic qua1itity to calculate decay probabilities and cross sections is th<' t ra11sit.ion 
probability per unit time which can be defined as follows: 

Wba = lim 
T-00 

Wba = 21r o(Eb - Ea) I< <I>b I T1; I <I>. >/ 2 

T h . 
(2.91) 

where we have made use of the fact o(Eb.:.. E.)oB.,E. = o(/,'b - Ea)- Th<' dim<'nsion of 
Wba is [wba] = sec-I. 

Whenever the interaction is translationary invariant. the transition matrix Ti, (T1;) 
contains an overall momentum conserving o - function which can I)(' <·xt.racl<'d from t lw 
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T - matrix element. This is best shown in the coordinate representation. We use as an 
example a system which in the initial channel consist of n; composite particles interacting 
with each other. In the final channel we may have a different number n f of composite 
particles. The asymptotic wave functions for the initial and final channel can be written 
in the following form: 

_ rrn, (-1- ;~•)fi;•) ,1,int) _l_ 
<Pa - ~e '1'a1 -/J: 

j=l V Yo/ 

(2.92) 

n1 ( ) 1 II 1 ;fl_/) ii1J) </rt --
<I> b = 'v'.e fJ. ,JTj 

k=l V Yo/ 

(2.92') 

</J~~t and ¢t1 are the normalized internal wave functions of tire composite particle j 

and k in the initial and final channel. RY) describes the center of mass of particle j 

and ft) is its center of mass momentum in the initial channel i and Rif) and fif) are 
the corresponding quantities for particle k in the final channel f. The quantities J; and 
11 are the corresponding Jacobians when going from the usual Cartesian coordinates to 

internal and center of mass coordinates. The sets of the center of mass coordinates RY) 
and Rif) may for example again be transformed into sets of Jacobi coordinates. Among 
this Jacobi coordinates is one, which is the center of mass coordinate of the whole system. 
Let tf}i) and ~J) be those Jacobi coordin<j,tes. We have then 

n, ni n1-l n.--1 '°' k-c;iR-Cil - '°' k-CiiR- + '°' k-Cil' ::{iJ - ,;(il R- + '°' k-(il' ::{iJ L i i - L i CM L i Pi - ncM cM L i Pi 
i=I i=I i=I i=I 

and a similar expression for the final states. The T-matrix element can now be written 
as follows: 

< <Pb I 7j; I cf>a >= j dr<I>'i7j;<Pa 
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11 

I 

l 
1 

i 
f 

j 

e k k . t* e int nf ( -i'f1.J)n,J) ) n; ( ;~•ld;•l . ) l j dr ll y1v:i <PP. 7i}] v'Vo, <Pa; .jJ;J; 

d3R e . d '-- IT e ,i,mt• T,- IT _e __ ,1,mt 
·1 _ iRcm(K~:/.-RH./) J J nrl ( -ikj_Jl'f.f) . ). _ ·n,-1 ( ;"f!./J'f-;•l . ) 

cm V, T r,:y ITT 'l'fJ. f• ITT 'l'a· 
ol y J1J; k=I V ½,1 j=l V ½,1 

1 

J is the Jacobian of the transformation from the Cartesian coordinates to the total 
center of mass Rem and some other set of remaiming coordinates which needs not to be 
specified for the present discussion. We may rewrite the expression for the T - matrix 
element once more to prepare it for a continuum normalisation of the wave functions. 

< <Pb I 7j; I <Pa>= ~I j d3 RemeiRcm(K~:/.-K~!,/) n;ff2 

((27r)i) 
j=l v'¼z 

j dr'Int 

Int= -- IT ----¢mt• Ti. II e 
1 1 <Pint 

J nrl (e-;r-,.n';f-,!l . ) n;-1 ( ;-;!.•l'f•l ) 

.jY;J; k=I (2ir)i fJk Ji i=I (2ir)! a; 

If the interaction is translationary invariant, then the inner integral J dr' ... does no 
longer depend on Rem and the outer integral can be performed leading to a factor 8K, K' . 
The final result is then cm' cm 

< <I>b j 7j; I <I>a >= 8K, i n ·((2ir)3) n;+~,-2 
• cm1 'j(Cm ,a l/,: . ol 

(2.93) 

n,a is sometimes called the reduced T - matrix element. According to its definition, 
3 n,a has the dimension MeV(JJ;r,+nr2 • Inserting (2.93) into (2.91) one gets for the 

transition probability per unit time the expression 
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2,r Wba = - /i(Eb _ E ) /j . I 2 ((21r)3)n;+n,-2 1i a J?U) ,?(•) na I ~-
cm, cm , 'Vaz (2.94) 

One may also consider the differential transition probability to measure the final re­
action products with momenta lying in the interval (k1,k1 + dk1)- in this case one has 
to multiply (2.94) with the corresponding probability, i.e. with the available phase space 
n1 (..!'..L) ➔/ • }J (2,.p d3ki. The result 1s: 

n1 ( V, ) 2 V:i/i.-,, ~· ((2 )3)n;-1 n1 
dw = w II _ol_ d3f! = _!!__li(E -E) 0 l\cm,X~m _1r_ IId3P IT ·12 ba ba (2 )3 J 1i b a ( 2 )3 V, J b,a 

j=I ,r ,r ol i=I 

(2.94') 

We consider next the two most important cases with n; = l (decay probability) and 
n; = 2 (reaction between to composite particles). 

a) Decay probability. 

We obtain for n; = l: 

2,r . V.,1 Iii?, J?, IIn, ➔(1·) 
dwb = - /i(Eb - E ) cm, cm IT, 12 d3k. 

a fi a ( 271" ) 3 ba J 

i=I 

If we go now to the continuum normalisation we have to take the limiting value for 
Vo1 ----+ oo. With 

[
V.,1/i.-,, .-,, ] () ➔/ ➔-r "cm,"cm = Ii 3 (K _ K' ) 

Vo11~ 00 {21r)3 cm cm 

we obtain 
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" 

7 
' 

1 .I 

l, 

1 
I 

n1 

dwba = 2; li(Eb - E.)8(3)(1(!,n - f(~m) I Tba 12 II d3fY) (2.95) 
i=I 

With E = he[ = hck0 we can also write 

n1 

d = 2,rc <(4)( l'/ - ,,; ) I"' 12 IId3f(Jl Wba (hc)2 u 1\cm 1\cm 1 ba J (2.95') 
j=I 

We see that this result is again independent from the normalisation volume. The 
transition rate for the decay a -+ bis obtained from (2.95') by integration over.TT d3kf 

J 
and the total decay - rate is obtained by summing over all the final states. 

Wtotal = L Wba = L j dwba 
b b 

The decay width's are given by 

I'1o, = hw,0 1a1 = L hwba = L l\ 
b b 

. b) Cross section of reactions 

\1\/c consider a reaction with n; = 2 com posit.<' particles in t lw entrance d1anm·I. The 
current density of the incoming particles is }in = ~ (sec cqu.( 1.17)) and th<' diffen•nt.ial 
cross section is then defined by 

Vat {; 'f '• V, (2,r):l . "J · ➔ 
_ dwba _ 2,r '( [,' _ F ) /,,.,.,/\cm o/ __ I '/' 11 II d'I ~,J 

dab,. - -. - - h u ,b · 'a . ('J ):l ,. V ba ; 
]in ... :Tr urrl ol j=I 
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(27r)4 Va18_h'1 .h'• n1 -1 
- 8(£ - £ ) cm, cm J T, 12 II d3k n, b a (2 )3 ba 1 

Vrel 7l" j=l 

where we have used (2.94'). Going over to the continuum normalisation one obtains 

( 
4 n1 

_ 27!") (3) >f >i 2 II 3-1 daba - -n- 8(Eb - E.)8 (licm - hem) J n. J d kj 
Vrel j=l 

(2.96) 

or 

do- = (27!")4 5(4)(/{f - /{i )....':_ J T, J2 IInf d3fJ 
ba (n )2 cm cm ba 3 

C ~el j~ 
(2.96') 

We note that the wave functions used in n. have been normalized in a non covariant 
way. The volume elements d3x and d3k are not Lorentz - invariant and therefore also n. ( 
or I n. J

2 
) is not invariant under Lorentz transformations. On the other hand one knows 

that daba is necessarily an invariant quantity. It will therefore be very useful to write the 
expressions for the decay probability and the cross section in a manifest covariant form, 
i.e. to express all expressions through relativistic invariants. First we note that the four 
- dimensional 8 - function is invariant under Lorentz transformations. Next we note that 
for any Lorentz transformation Aµv we have 

and 

k'µ = LA"v kv 

I o(k10,k'1,k'2,k,3) I 
o(k0,k1,k2,k3) l=I detA I= 1 

Therefore also d4 k is an invariant quantity. 

d4k' _,1 o(k'o, k'l k'2 k'3) I - , , 4 

o(k0 ,k1,k2,P) Id k = d4k 
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(2.97) 

(2.98) 

~ 

The transformation property of d3 k we show best by using a special Lorentz transfor­
mation along the z - axis. 

(' 00 _,) ,/1-iF ,/1-iF 
Aµ_ 0 1 0 0 V 

/3=-v- O O 1 0 C 

--=L_ 0 0 - 1 -
,/1-iF ,/1-iF 

(2.99) 

This gives us 

k'o = ko-/3k3 ,/1-iF ' k'l = kl ' 

k'2 =k2, k'3 _ -/3ko+k3 _ -f3#¥+k3 
- ,/1-iF - ,/1-iF } (2.100) 

From these equations we immediately get the Jacobian for the transformed momentum 
3 - vectors: 

I o(k'1, k'2, k'3 ) I k0 - f3k3 k'o 
I o(k1,k2,k3) I= ko~ = ko 

and consequently one has 

Therefore 

I "'(k'l k'2 k'3) I k'o 
d3 k' =I u ' ' I d3k = -d3k 

o(k1,k2,k3 ) k0 

d3k' d3k 
k'° = kO 

(2.101) 

(2.102) 

(2.103) 

is an invariant quantity. If we integrate equ.(2.90') for the total transition probability 
Wba over a small momentum range in channel a and band use (2.103) we obtain 
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Wba = L f c21r)26(Eb - Ea). 
o,13 

. ( T ) 2 ((2ir)J)n;+n,-2 nr ( V.1 3-/) n; ( V.1 -;) . t:.1! 21rli {jRlm,K~m Ina I V.1 D (21r)3d k; }] (2,r)3d3kk 

_ r V.1cT (2ir)2 (•l ,J . nr I n, . 
. ,~ ~2 - Vo1}~00 ((21r)•/iJ ~ ~ f {j (/\cm-I(;,_) J] f; 7i,. !] fj. I nr cflkf n; cflki 

II 7 II 7 
j=l J k=I k 

(2.104) 

Since the total transition probability is by definition a Lorentz invariant quantity, also 
the only remaining quantity 

n1 n; 

Mba = ' I II (~f) na II (i) 
fk (2.105) 

i=l k=I 

must be Lorentz invariant. An analogous investigation may be applied to the S -
matrix element. Mba is called the invariant amplitude. Using this form of the invariant 
amplitude and the invariant phase space factors in (2.96') we can.rewrite the expression 
for cross section dcrba 

(2 )4 • • n, d3k-1 
_ 7r (4) f i C 2 II i 

dcrba - (n )2 D (J<cm - J{cm)--;-; I Mba I -J-
C Vrelf1 E2 i=I (j 

(2.106) 

· The quantities t;, f~ and t{ are on - sheil quantities. They are the zero - components 
of the momentum four vectors of the corresponding particles. In order to bring (2.106) 
into a fully manifest covariant form we still have to show that the factor _c_, -, can be 

, · Vrc:lC1C2 

represented by invariant quantities. Since dcrba is invariant, we can be sure that at. least 
in the labor_atory - system (L - system) we will be able to express this factor through 
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invariants. We note that in the L - system one has v2 = 0 , v,e1 = v1 , t; = µ; and 

c; = ✓kj2 + µ\ 2 
= ~ and f; = ff; ~- Therefore we have in the L - system: 

yl-/JJ yl-µj 

and 

C 

Vrd t:jt:; 

v,e1 = I v1 I = I ff; I= I f} I 
C C ti 

(~ ------= 
I f; I t\ (2 - I f; I (~ - I kj I /l~i) 

(Lab.s) (2.lOi) 

Consider next the relativistir invariant s ( it is one of the socalled '.\landelstam -
variables): 

-(k; k;)2-k;2 k;2 2k;k;- ;2+ ;2+ 9 ;; ·>,:;,:;_(;. ;.)2 
S= 1+ 2 - I+ 2 + I 2-/l1 Jl2 -t1<2-~"1"2- <1 +t2 (2.108) 

We characterize quantities referring to the center of mass system ( CM - system ) by a 
star. In th~ Lab. - system _we have · 

;2 + ;2 + •) i i 
S = /Li /1 2 -f1/l2 

Using the three invariants k;2, kt2 and .s one ran construct another invariant ,\( s. 11\ 2 ,112 
2
). 

The socalled triangular function,\ is defined as ,\(:r2 ,J/,.::-2) = (:r2 -y2 - .::- 2 ) 2 - -IJ,2.::- 2 

,\( ;2 ;2) ( ;2 ;2)2 I ;2 ;2 1[(k;k;)2 ;2 ;2] S,JL1 ,Jl2 = s-µI -JL-1 -•Jl1 /12 =• 0

1 2 -Jl1 /12 (2.IO!J) 

In the Lab. - system one has 

· 2 · 2 -· 2 · 2 
,\/,nb. { ,s, Jl; /I~ ) = '1 I k; I /I~ 
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11 
' ·1 

and therefore (2.107) can be rewritten as 

C 

Vre1fif2 = I k\ I A 
2 

.\(s,A2,µi
2

) (k{k;)2- µ{ 2 µi 2 
(2.110) 

Next we shall make the same considerations for the CM - system. We start from the 

quantity I 5;,1 i Etfi*: 

I k i• k i• I i• +· i• 

I - I i• ;. I - .:.,. I i• ;. ;. i• I I 2 I ;. ;. I - I f1 f2 I - I r;; Vrel f
1

f
2 

= v
1
-v

2 
f 1 f 2 =ct1 f 2 -,---,- =cf1 f 2 K; -.-.-=c K; yS 

fj* f2* fj*t:2* 

In the above expression we have used f[• = -f;• = K;. We have therefore in the CM 
- system 

C 1 

I v;e1 I ti• f~- I K; 1../s 
(2.111) 

If we evaluate ,\(s,µ{2,µ; 2
) in the CM - system we obtain 

,\ ( ;2 ;2) _ 4[(k;*k;*)2 _ ;2 ;2] _ 4[( ;. ;. _ k-;.k-;*)2 _ ;2 ;2] 
cm c, µ1 , µ2 - 1 2 µI µ2 - f1 f2 I 2 µI µ2 

4(( -2 ;2)(-2 ;2) 2-2 i• ;. (-2)2 ;2 ;2] = K; + µ 1 K; + µ 2 + K; f 1 f 2 + K; - µI /l2 

4 -2r
2

-2 
2 

i• i• ;2 ;21 4-2 
K; K; + f 1 ( 2 + µ 1 + µ 2 = K; S 

Therefore we have also in the CM - system 
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, ( ; 2 ; 2) 4[(k;.k;*)2 ; 2 ; 2) 4 -2 Acm C, µI , µ2 = i 2 - µ! µ2 = K; S (2.112) 

or 
C 1 

r v;e1 I l{*Ei* = . l(kf•k;*)2 - µ{ 2µi 2 
(2.113) 

exactly as for the Lab. - system. If we replace in (2.106) -v. c, , _by the socalled 
rel cl !2 

relativistic flux factor J . . 1 
2 . 2 , we have achieved our goal to write the expression 

(ktk2*) 2 -µi µ2 
for the cross section in manifest covariant way. 

- (2,r)4 (4) I ; 
duba - (1ic)2 8 (J<cm - J<cm) 

f Mba [2 ni d3kf 

( ki•ki•)2 _ ;2 ;2 IT f/ 
• 2 µl µ2 J=l J 

(2.114) 

In this form we can calculate duba in any arbitrary Lorentz frame. One should note 
that for arbitrary v1 and v2 in a general Lorentz frame the expression --".~. is certainly 

Vreff1 f2 

not a relativistic invariant. 
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3 Multiple scattering theory and optical potentials 

This chapter is devoted to the investigation of the scattering process of a projectile on 
a system of A bound nucleons, as for example scattering of hadrons on nuclei. We shall 
confine this investigation to the treatment of elastic scattering only. The target nucleons 
in the initial and final state will therefore be described by the fully antisymmetrised 
ground state wave function <I>~. All considerations will be based on the use of potential 
scattering theory, a fact that limits the validity to low and intermediate energies up to 
a few hundreds of MeV. The interaction of the projectile with the target nucleus is then 
given by 

A 

V(x) = L ½(x - x;) (3.1) 
i=l 

Let HA be the Hamiltonian of the target nucleons and r;;n be the kinetic energy 

operator of the projectile. We look for a scattering solution q,~l of 

Hw~> = Ew~> (3.2) 

where 

H =HA+ r;;n + V(x) =Ho+ V(x) (3.3) 

A 

HA= I:rr + ~ I:v(ij) 
j=l #i 

(3.4) 

The formal solution of this problem is given by the Lippmann - Schwinger equation 

q,~l = <l>E + G~+l(E)Vlll~l (3.5) 
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where 

a~+)(E) = (E - Ho+ i17)- 1 (3.6) 

and <I>E is the solution of the homogeneous problem (without the term V(x) )).<I>E is 
a product of the plane wave describing the undisturbed motion of the projectile with the 
nuclear ground. state wave function <I>~ of the target nucleus. Using the definition of the T 
--matrix(equ.2.86) and (3.5) we get the Lippmann - Schwinger equation for the T-matrix 

< <l>1 IT I <l>E >=< <111 IV I q,~l > 

and 

< <I>1 IT I <I>E >=< <I>1 I V[I <I>E > +a~+>(E)V I wt>>]=< <I>1 I [V+vc~+\E)TJ I <I>E > 

or 
T(E) = V + va~+)(E)T(E) (3.7) 

The operator G~+)(E) is a very complicated many body operator. The main goal of 
our investigation will be to understand the projectile - nucleus scattering problem as a 
sequence of collisions of the projectile with the individual nucleons of t Ill' target n11de11s. 
To obey the Pauli principle the nuclear wave function must be fully antisymmrt rised. 
Depending at which step of the development. antisymnwt.ry is introduced, one ·gets two 
different theories, namely the Foldy - Watson theory ( FW ) and the Kerman - l\k :\!anus 
- Thaler theory ( KMT ). The KMT - theory is formulated in such a way that it works 
exclusively in the restricted Hilbert space of antisymmetric target. wave functions. In 
contrtast to this the FW-theory is formulalt>d in the entire Hilbert space and only initial 
and final target states are antisymmetric. In. the following we shall develop both t heorics 
in a formal way, i.e. without use of wave fun ct.ions. In principle one could try to soln· (:J. 7) 
through iteration obtaining an expansion in terms of the pot.rntial \/. This expansion is 
called the Born - series and it would be convergent. only for wcak pot.ent.ials. It is however 
possible to obtain a much better convergence by reordering of I.hr various t.erms of this 
expansion. One tries to combine all terms containing I.he interact.ion with one and the 
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same nucleon ( i.e. terms of the form ½G~+)½G~+) ... ). In this way we describe fully 
the scattering process on this nucleon and obtain then a series of consecutive scattering 
process on the various target nucleons. 

3.1 Foldy - Watson theory 

We start from equ.(3. 7) and insert (3.1) to obtain 

A A 

T(E) = E ½ + E ½G~+\E)T(E) (3.7') 

i=l i=l 

Next we define an auxiliary operator .Tr 

Ti = ½ + ½G~+l(E)T (3.8) 

which satisfies 
A 

T = ETi (3.9) 

i=l 

The right hand side.of (3.8) may be reformulated in such a way as to isolate Ti. We 
obtain 

T - V + v-a<+>r. + va<+> "Tk 1- J JO J JO L.., . 
kh 

or 

(1 - va<+>)r - v + va<+> '°'Tk JO 1- J JO L.., 

kf.j 

or 
T· - (1 - v-a<+>)-1 V- + (1 - v-a<+>)-1v-a<+> "T 1- JO J JO 10L..,k 

- (3.10) 
kf.i 
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or 

Next a new quantity ti is defined by 

t. = (1 - i,:.a(+l)-1 V:· 
J - J O J 

With this operator ti we convert (3.10) into the form 

T; = t; + tp~+> Erk 
kf.i 

Multiplying (3.11) from the left by (1 - viG~+)) we obtain 

(1 - i,:.a(+l)t · - Vi 
J O J - J 

t; = ½ + ½G~+\ 

(3.11) 

(3.12) 

(3.11') 

This equation had exactly the form of a Lippmann - Schwinger e(uation for the scatter­
ing of the projectile on the single isolated nucleon j, if in place of G/l the free propagator 
g~+) would occur. G~+l is however still a complicated many - hotly propagator. Usually 
one calls ti the " in - medium " T - matrix for the scattering of the projectile on the 
nucleon j. It is the T - matrix for the scattering projectile on nucleon j which is bound 
in the target nucleus. The propagator G~+) describes the" medium effects ", i.e. it takes 
into account the interaction between the target nucleons. We may now insert (3.12) into 
(3.9) and obtain the Watson - series. 

A A A 

T= Et;+ Et;G~+>Etk+ Et;G~+>I:tkG~+>Et1+ ... (3.13) 
i=l i=l kf.j j=l kf.j lf.k 

Each term in this series expansion describes a sequence of multiple collisions: single 
scattering, double scattering, triple scattering, etc. Usually one uses the Watson series 
as a starting point for various approximations ( i.e. terminating the series after a certain 
order, replacing t; by the free t - operators t§'« ( impulse approximation ), etc. ). In the 
next step we introduce the concept of the optical potential to describe elastic scattering. 
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It will allow to bring the Watson series into a different form. We remember once more that 
in the Foldy Watson theory the full Hilbert space is used. For our purpose it is sufficient 
to think that the ground state of the nucleus can be described by a Slater determinant. 
This is nothing else than a linear combination of A! products of A single nucleon wave 
functions. All A! such products are degenerate with respect to the ground state energy. 
We call Pw the projection operator on the space spanned by these A! product wave 
functions. The projection operator Qw projects on to the rest of Hilbert space, such that 

Pw +Qw = 1 (3.14) 

The basis functions from which Qw is built up are not contained in the set of the A! 
products of the ground state ware function. They are members of the set of "excited" 
states. With this we may now reorder equation (3.12) writing 

T . - t · ·(P Q )G(+l '°' T - · -c<+> n T -c<+>Q '°' T -c<+>p T· 
1 - J + tJ w + w O L.J k - t3 + tJ O rw + t3 0 w L.J k - tJ O w J 

or 

or 

kjl . kjj 

(1 +tp~+) Pw}Tj = t; + t; G~+) Av T + tiG~+>Qw LTk 
kjj 

We define a new t - operator t1 by 

t'- = (1 + tG(+) P, )-1t · 3- JO W J 

t , - t. t -c<+>p t' - u. "-c<+>Q t' j - J - J O W j - VJ+ VJ O IV j 

We use this now in equ.(3.15) and obtain 

'_·_ ;, ~ (+)· ;:, ';· (+) ,: .,·, 
, .. ., 'fJ•:~ !i + (;Go _Pw'f;ttllo. 9w L.Tk. 

!, 1i •:,., ,:, • ktj' _,;' 

·10 

(3.12') 

(3.15) 

(3.16) 

(3.17) 

(3.12'.') 

Inserting this into equ.(3.9) and iterating the 3rd term in (3.12") leads to a new 
formulation of the scattering problem. We obtain 

T(E) = U0 p1(E) + Uopt(E)G~+\E)PivT(E) (3.18) 

with 

A A 

Uopt(E) = L ti+ L tjG~+)(E)Qw Lt~+ ... (3.19) 
j=I j=I kjj 

U~pt(E) as well as Tare operators symmetric with respPct. of interchanging any two of 
the nucleon coordinates. Taking the matrix e!Pment bet.ween.correctly ant.isymrnetrized 
initial and final nuclear stats leads therefore to correct physical results. Since G~+) is 
diagonal with respect to the target states, we may replace Pw by Po I <I>~1 >< <I>~ I 
(A Pw A = Po). We see that in Foldy - Watson theory we use a set. of nonsymrnet rizrd 
intermediate states in constructing a symmetrical operator Uopt, which can then he used 
in the Lippmann - Schwinger equation for the T matrix: 

T(E) = Uopt(E) + Uopt(E)ct+\E)PoT(E) {3.18') 

3.2 Kerman - Mc. Manus - Thaler theory 

In the KMT - theory we start from the following T - operator 

T = V + va~+)AT (:!.:20) 

where A is a projection operator project.ing on to the space of fully ant.isynmwt rizcd 
target states. Initial and final state arc also fully antisymrnetrized. W1· proceed as in cast• 
of the FW theory by writing 
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With 

or 

A A A 

T = L½ + L½G~+)AT= LTj 
j=I j=I j=I 

Ti = Yi + ½G~+lATj + ½G~+l AL Tk 
ktj 

Tj = (1 - v;c~+iAt'v; 

T; = v; + v;c~+i AT; (3.21) 

we obtain 

T,. - T· + T·G(+)A·"°' T· 1-, 10 L__,;J 
jti 

and 

A A A· 

T =LT;+ LT;c~+iA LTj + LT;G~+iA LTjci+iA LTk + ... (3.22) 
i=I i=t jti i=I jc/ci kc/cj 

This T - operator leads to the same physical answer as in the FW - theory provided one 
uses correctly antisymmetrized initial and final state wave functions. However, now we 
have also antisymmetric inte~11;edi~te stat~~, sq that_ we ~~n ma~~ forthe~ ~\mpli~cation~. 
First we note that the matrix elements of all Tf s are identically the same. We have for 
example 

< <I>A I L Tj I ~~ >= (A - 1) < <I>A I 
jc/ci 

A 
fJ A-1 0 "°' fJ T1 I <f> A >= ~ < <f> A I L Tj I <f> A > 

j=t 

We can use this fact in (3.22) and see that all the summations can be done without 
any restrictions j ,f:. i, etc. The error made by such a procedure is just compensated by 
the numerical factor A,:i-t. In such a way we obtain from (3.22) the expression 
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A A 1 A A (A 1)2 A A A 

T = ~ T; + -j-~ T;G~+l A~ T; + ~ ~ T;G~+) A~ T;G~+) A?; Tk+• .. 

This series expansion is however nothing but the iterated equation 

If we define now 

and 

we obtain from (3.23) 

or 

A A 1 A 
T= LT;+ ---LT;G~+)AT 

i=I A i=I 

T' =A-I A 
-~LT; 

j=l 

T'= A-IT 
- A 

T = AA T1 + T1G~+) AT 
-1 

T' = T' + T1G~+l AT' 

(3.22') 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

This is a fully symmetric operator, commuting with A. Knowing that we work entirely 
within the space of antisymmetrized states, A could in principle be omitted. In full 
analogy to the FW-theory one can construct an optical potential U. We introduce the 
two projection operators Po =I <I>1 >< <I>1 I and Q = 1 - Po. Starting from (3.22') 

T = V + VG~+) A(Po + Qo)T = V + VG~+) AP0T + VG~+) AQ0T 

we obtain by iterating the term VG~+) AQ0T the optical potential U. 

T = U + UG~+l APoT (3.27) 
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or 

U = V + vc&+> AQoU 

To determine U we use the same procedure as before with T: 

A A A A 

u =LU;= L ½+ L V;c&+> AQo Lui 
i=l i=I i=l i=I 

U; = V; + V;c&+> AQoU; + ¼G&+> AQo L Uj 
#-i 

(1 - V;G~+) AQ0 )U; = V; + V;G&+> AQo L Ui 
#i 

Define now f; by 

We then have 

•. - (1 TJ:cc+>AQ )-h~ - •~ + T/.c<+>AQ •. Ti = - Yi O O Vi - Vi Yi o oTi 

Ui = fi + fie&+> AQo L Uk 
kti 

Iterating Uk and summing over all i we obtain 

A A A . . 

U= LUi= Lf;+ Lf;G&+>AQoL(fi+f;G&+>AQoLUk) 
j=l i=l i=l j,tci k,tcj 

A A A 

(3.28) 

(3.29) 

(3.30) 

(3.29') 

u_ = L Tj +Lip&+> AQo L Tk + L Tjc&+> AQo L fkc&+> AQo L f, + . . . (3.31) 
i=I i=I k,tcj . j=l k,tcj 1# 
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Using the antisymmetry of the states one can again perform all sums without the 
restrictions and use the counting factors to correct for the errors: 

A A A 2A A A U - "'· A - I"'· c<+>AQ "'· (A - 1
) "'. c<+>AQ "'. c<+>AQ "'. (3 3 ') - ti' T;+~ f;;:_ Tj o of;;:_ Tj+ ~ ti' T; o of;;:_ Tj o o -t: Tk+... . } 

This cxpa11sion for U may summed and gives 

,I A- I A 

u = L f; + -:;i-- L f;c&+> AQoU 
i=l i=l 

We may introduce the following quantities 

and 

•I A - l .4 

T = -:;i-- L T; 

U' = A- IU 
A 

i=l 

1''- A- l 
- -A T 

to obtain from (3.32) the following result: 

U' = f' + f'G&+> AQoU' 

7'' = U' + U'G&+> l'u'l'' 

From the definitions of Tj a11d fi ((:l.21 ),(:J.:lO)) Olll' obtains t'aRily 
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(3.32) 

(:J.33) 

(3.:H) 

(:U5) 

(:Ufi) 



jl 

I: 
" 

• - c(+)A". Tj - Tj - Tj o roTj (3.37) 

In principle one can also establish a relation between the t;'s of FW - theory and the 
T's of KMT - theory. To do so, we first eliminate V; from the defining equation of the T;'s 
(3.21 ). From (3.11) we obtain 

V; = (1 - V;G~+l)t; = t;(l - G~+lV;) (3.38) 

Then we write (3.21) in the form 

Tj = V;A + V;G~+) AT; (3.21') 

where we have replaced V; bei V;A. Bef~re it was unnecessary to do this, since we 
where entirely working within the space o antisymmetric states. Inserting (3.38) into 
(3.21 ') gives 

Tj = t;(l - c~+>V;)A + t;(l - c~+>V;)AG~+>T; 

t;A - t;G~+) V;A + t;G~+) AT; - t;G~+)V;AG~+)Ti 

t;A - t;G~+)(V;A + V;AG~+)T;) + t;G~+) AT; 

t;A - t;G~+)T; + t;G~+) AT; 

or 
T; = t;A + t;G~+)(A- l)T; (3.39) 
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The basic idea of multiple scattering theories is to reduce the calculation of the pro­
jectile nucleus amplitude to the knowledge of the "elementary" free projectile - nucleon 
amplitude. In the frame of potential scattering theory the free scattering matrix satisfies 

t{ree(E') = V; + V; y~;i(+)(E') t{'ee(E') (3.40) 

where 
1 (i)C+)(E') ---;:~- k' . 

Yo = E' _ Tkin - T- m + ZI] 
pr ' 

(3.41) 

The energy E' can here be considered to be an arbitrary parameter. Since both, t;(E) 
and t{re•(E') satisfy a Lippmann Schwinger equation with the same interaction, one can 
establish a connection between t; and t{re•. We eliminate V; from (3.11) and obtain: 

and 

V; = t{ree(l - Y~i)+ V;) 

t . _ tfree(l _ (i)+ T/:) + tfree(l _ (i)+ T/:)c<+lt. , - , Yo v; ; Yo v; o , 

t free - tfree (i)+ TJ: - tfree (i)+ TJ:c(+)t· + tfreec(+)t· 
; i Yo v; ; Yo v; o • ; o , 

- tfree - tfree (i)+(T/: + TJ:c(+)t·) + tfreea(+)t· 
- i i Yo Vi Vi o , , o , 

- tfree - tfree (i)+t· + tfr••c<+>t-
- I i 9o I i Q I 

One gets therefore the required relation in the form 

t;(E) = t{ree(E') - t{ree(E') [ y~i)+ (E') - G~+)(E)] t;(E) 

77 

(3.42) 



I 
i 

The energy E' is usually chosen such as to make (96;)+ (E') - G~+)(E)] as small as 
possible. One has then the hope that the Watson - series will converge sufficiently rapid. 
We assume that t{re•(E') is known from experiment. How to chose in an optimal way the 
quantity E' has been discussed at length in the literature. ( S.A. Gurvitz, J.P. Dedonder 
and P.D. Amado, Phys.Rev. C19(1979)142; H. Feshbach, Theoretical Nuclear Physics, 
Nuclear Reactions; J. Wiley and Sons Inc. (1992), pg.142). 
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Part II 

4 Elementary introduction to relativistic quantum 
mechanics 

4.1 Nonrelativistic classical mechanics versus nonrelativistic 
quantum mechanics 

Classical nonrelativistic mechanics describes a system of N mass points by the Lagrange 
equations. In case the forces between the mass points arc conservative, t_hcse C"quations 
arc 

d (BL) BL 
dt Bq; - Bq; = O i = 1,2, ... ,3N ( 4. I) 

3N is the numbers of degrees of freedom of the system and the Lagrange function L 
is in this case given by 

L(q,q,t)=T-l! (4._2) 

N ~ 2 

where T(q, q, t) = L m•;• is the total kinetic energy of th<' system and ll(q. I) = 
k=I 

U(i,,x2, ... ,iN,t) the total potential energy. The Lagrange equations arc the Euler -
Lagrange equations of a variational principle, namely of Hamilton•~ principle. In short. 
this principle says, if we can associate with a mechanical sysl<'m a Lagrange function 
L(q, q, t), the latter being a continuous function and at least two times diff<'r<·ntiahl<' in 
q,q, then the physical trajectories q;(t),q;(t) with the boundary conditions qi(/ 1).qi(/ 2 ) 

make the integral 
12 

s = I L(q(l),q(l),t)dl (•U) 

t, 

cxt.wrnal. 
E,S= 0 (LI) 
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However, the Lagrange function is only determined up to the total differential of a 
function of the coordinates. The form L = T - U is called the "natural form" of L. If L 
is two times continuous differentiable, one can locally resolve the equations 

· ' oL 
Pk=-

0
. (q,q,t) 
qk 

k = 1,2, ... ,3N (4.5) 

for <ik- The quantities Pk are called the generalised momenta. Let <ik = <ik( q, p, t) be 
these solutions. Then the Legendre transform of L(q, q, t) (.C * L(q, q, t)) is a function of 
the coordinates { q, p, t}: 

3N 

H(q,p, t) = .c * L(q, <i, t) = L <ikPk - L(q, <i, t) ( 4.6) 
k=I 

H(q,p,t) is called the Hamilton function of the system and in the present case of 
conservative forces it is identical with the total energy of the system H = T + U. The 
Legendre transformation can be uniquely inverted. (qk,Pk) are called "canonical conjugate 
" variables. From the total differential dH and the Lagrange equations ( 4.1) we obtain 
easily the set of Hamiltonian's equations: 

oH 
Oqk = -pk 

oH 
Opk = <ik 

dH oH 
dt ot 

oL 
at (4.7) 

These also called " canonical equations " are completely equivalent to the original 
Lagrange equations. From ( 4. 7) we see that in case H does not explicitly depend on the 
time t (dd~ = o)' His a constant equal to th~ total energy H = Etot• In Hamiltonian 
mechanics one uses quite frequently Poisson's brackets. Let f(q,p, t) and g(q,p, t) be 
two functions supposed to be at least once continuously differentiable with respect to the 
variables q and p. The Poisson bracket is then defined as 

( 
of a9 of og) . 

{J, g} Poisson = L Oqk Opk - Opk Oqk 
k 

(4.8) 

It is easy to show the validity of the following relations: 

80 

df - of+ {f,H}Poisson 
dt - ot 

of 
{ qk, f} Poiuon = Opk 

of 
{pk,f}Poisson = - oqk 

{qk,qk,}Poisson = {pk,Pk'}Poisson = 0 

{ qk, Pk'} Poisson = {jkk' 

oH 
<ik = {qk,H}Poi,son = Opk 

oH 
Pk = {Pk, H} Poisson = - Oqk 

(4.9) 

(4.10) 

( 4.11) 

(4.12) 

( 4.13) 

( 4.14) 

{ 4.15) 

Usually canonical transformations are applied to the system to facilitate the solution of 
the equations of motion. A canonical transformation is defined as a transformation of the 
variables and the Hamilton function such that the new variables satisfy again Hamilton's 
equations. A necessary and sufficient condition to achieve this is, that Hamilton's principle 
is valid for the old and the new variables. This is the case if the Lagrange functions differ 
only by the total derivative with respect to time of a function of the old and / or new 
variables. We choose here the following transformation: 

qk = q,c(ij,p,t) with ifk = ifk(q,p,t) 

Pk =pk(ij,p,t) 

M = S(q,p,t)- L,i/k(q,p,t)jh 
k I ( 4.16) 
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and request: 

J
t2 Jt2 [- . dAf] 

8 L(q,q,t)dt = 8 L(ij_,ij_,t) + dt dt = 0 

t1 t1 

If we introduce H and fI instead of L and compare the integrands we obtain 

or 

~ · H ~ ~ __ - dM 
Lqkpk- = Lqkpk-H+-

k k dt 

(4.17) 

~ · ~ - ~ ( as . as ) as ~ ~ 
L dqkPk - H dt = L dfoh - H + L 8 dqk + o=-dfh + i}t dt - L dij_kfik - L ij_kdjh 
k k k qk Pk k k 

Comparing the coefficients of equal differentials leads to: 

as 
Pk= aqk ' 

as 
fI=ll+75t, 

as 
ij_k = Ufik (4.18) 

Now we may request the ,ww variables to be cyclic variables. Cyclic variables are 
defined ~uch that the Lagrange function is independent of them (in our CiL'ie L should be 
independent of iJk ). In this case we have 

oL 
th= aq: ·. _ _<!_ (al) = aL = 0 

Pk - dt aih iJijk 

Therefore fh = Ok =const. The condition H 
satisfies the differential equation: 
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0 can be fulfilled if S( q, fi n,1) 

fI = 11 (qk, as, t) + as(qk, ok, t) = 0 
aqk at 

(4.19) 

Equation (4.19) is called Hamilton - Jacobi equation. The function S has also an 
interesting physical meaning: 

dS as as. as 
dt = ai + L aq qk =a,+ LPkC/k = -H + LPkrik = L(q,q,t) 

k k k k 

t 

S(t)- S(to) = j L(q(l'),q(l'),t')dt' (4.20) 

to 

Sis seen to be the action integral evaluated along the dynamic ( physical ) trajectories. 

The transition from classical mechanics to quantum mechanics is formally performed 
by replacing the canonical conjugated variables q and p by opt•rators. These oprrators 
shall satisfy the usual commutation relations. The Poisson brackets have to he rq>laced 
by the corresponding commutator expressions. In the following we list thesr analogies 
between classical Hamilton mechanics and quantum mechanics. 
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Classical mechanics 

qk ' Pk 

E1oi 

,;: Il(%Pk.t) 

fl( _ as as qk,pk - cJq•'t) +at= 0 

{qk,Pk' }Poisso,,= fjkk, 

} 
,')ff 

(Jk = { qk, fl Poisson = Bpk 

D/1 Pk = {pk, ff} Poisson = - 3qk 

dF = ij_E_ + { F, JI} Poisson di, at 

==> Quantum mechanics 

k k · t iJ qop , Pop = -Z!l .,----) k 
t qop 

·1i a Etot,op = l 8t 

H0 p(q!p, p~P' t) 

[ H0 p( q!p, p~P' t) - iiift]IJ!( q, p, l) = 0 

I [ k k' l ' ih qop, Pop = (Jkk' 

q·k I [ k H] aHop_ 
op ;f;. qop' Pp op 

P
•k l[ k }J l Bflop 
op in Pop, op -~q• 

op 

~ - ~ + l[F II l dt - Dt ih op, op 

The two formal conditions: qk, Pk =} q~P' P~p = -in Bqa• and { qk, Pk'} Poisson = Okk, => 
op 

;t[q~P' P~p] =_likk' are completely equivalent to each other. They are called the "canonical 
quantisation rules:'. This. formal analogy between classical mechanics and quantum me­
chanics is kept as far as possible also in relativistic quantum mechanics and in quantum 
field theory. 

4.2 Relativistic mechanics of a free particle 

As is well known, the Hamilton function of a relativistic particle with rest mass mis given 
by 

Ho= Jc2p2 + (mc2)2 ( 4.21) 

However, unlike to classical mechanics, the Lagrange function L0 is not equal to the 
kinetic energy T. This can easily be verified. 
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mc2 2 
2 ~~---=- me T = Jc2p2 + (mc2)2 - me = ~ 

p= mv 
~-/=v'vT 

(fJ= ~) 
C 

One can use the Lagrange formalism to obtain a suitable Lagrange function. If L0 is 
the Lagrange function of the free particle, we request: 

8L . mvi 
0 ·---8vi =p-~ 

Integration gives us: 

8Lo = o 
8xi i=l,2,3 

I 8Lo • I -mv; . I d 
Lo= 8vi dv' = ~dv' = -mc2 . dvi J1 - /Pdv; == -mc2J1 - fJ2 

Lo= -mc2~-/= T (4.22) 

Using this L0 we obtain' of course the right Hamilton function J/0 • 

8L mc2
.i. [ /32 

] mc2 

Ho=~ v' av~ -L0 = ~ v' Jl _c2/J7 +mc\/1=7P = mc2 Jl _ /32 + J1 - /32 = Jl _ /3
2 

4.3 The relativistic particle in an electromagnetic field 

A particle with mass m and charge q experiences in an electromagnetic field the Lorentz 
force. 
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.:. .:.. q -· - q a A q · · · - •. d, 
KL = qE + -iJ X B = -q'vcJ> - --a+ -iJ X (v' X A) = -d ,Pmech 

C C t C t 
(4,23) 

Here we have used Maxwell's equations E = -'vcl>-, ~~ and B = 'v x A. We observe 
that . ' , 

\ ·l . ·-r 

iJ X (v' X A).= 'v(iJA) - (iJ'v)A 

dA ~ aii + (iJ'v)A 
di'- at 

and obtain from (4.23) the following expression: 

dfimech qaA q , __ . - · qdA, q __ 
, --, ·=-q'vcJ> ,:_- __ . + -[v'(1,1A)~ (iJv')A} = --- ;- q'vcJ>+ -'v('PA) 

dt c at c· ., . c dt · c , . 

or 

d (- q -) ( q -) dt Pmech :-1:- ;;,:!. -:=:=, -;-v' q<l> ;:-,;ciJA (4~24) 

If we request ( 4.24) to be the Lagrange equations of the system, we have to set 

! . 

i aL p = - - i q .· 
avi - Pmech + -A' 

C 

, I ,, 

Li:•,.d td.";~~~·uf•tt·,·d·-, Hi', di ,_,r~r,{,-~q .{t".'l,f!;~*(}~ ":-d:r! 
- . aL a ( q _ -) 

axi = - axi qcJ> - cvA 

)';! •• ! 

Integration of the second one of these equations gives us 
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.I 

1, = - (qcI> - ~vX) + f(v) 

where f(iJ) is an arbitrary function. It can be determined from the equation defining 
pi. 

aL q , df ; q , -a. = -A + -d. = Pmcch + -A 
V1 C vi - C 

df . . 
-. == ,' 1nv' dv• lmcch - --cc-- _ 2 d ~ - -me du•~ 

From this we obtain by integration 

f(iJ) = -me\/I~ = Lo (Lagrange fu11ctio11 of /he free parliefr) 

The Lagrange function of the interacting syst.cm is I hPrc>forc> given by 

L = Lo - ( qcJ> - ~vX) = -mc\/1=-/P - ( qcJ> - ~iill) 

and the Hamilton function by 

H ~ ;BL L -- q_A_ 2 r;--:;;f2 ("' q_-t) = L V -a. - = VfJmech + -v + me VI - 1,- + q..., - -1•: 
. ~ C C 

1 

mil2 mc2 

~ + me2
~ + q<l> = ~ + q<l> 

V • - 1r I - /-J2 

,- c,1;;;,.,.,1, + (mr-)2 + q<l> 

87 

(•1.25) 



or 

, . fl~ Ho+ q<f{= Jc2ii;,.~c~· -{(mc2)2 + q<T> :,,, c/cfi.:.... ~-A.)2 +' (mc)2 + q<T> (4.26) 

Maxwell's equation are invariant under gauge transformations of the fields <f> , A: 
' 

<f> -+ <f>' = <f> - ~ oA 
. C Ot 

A-+ A'= A+ VA 
'•I. 

Also the equation of motion ( 4.24) is invariant under this gauge transformation, L and 
H are not invariant. 

. . ... •q ' .. , ·, . . . . , . .( • .. 'q . . . iJ(oA; , ': ) 
L' = -mc2 -../1=7i2- (q<T>' - ~j;fi) ~ -mc2 J1 - {i2 - qiP - ~vA) + ~ at+ iJV A 

From 

j I 

we obtain 

L' = L+ <j_dA 
C dt 

ff = V vL' = V vL + <J. VA = fi + <J. VA 
C C 

H' = p'v - L'''= vfi +'ivv' A - L - <J. ([)A+ vV A) 
C . C Ot 
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( 4.27) 

~/ 

or 

H'=H-<j_[)A 
C Ot ( 4.28) 

It is very easy to show that H - q'P and fi - ;A are gauge invariant quantities: 

, , H q [)A ( 1 [)A) H - q'P = - -- - q cp - -- = H - q'P 
cot' cot. (4.29) 

_, qA-' - q"A q(A-+ "A) - qA-P -- =p+-v -- v =p--
c C C C 

(4.30) 

From these two gauge invariant quantities one can construct a four vector: 

with 

( H~q~ ,p- ;A) ~ (JJ" - ;A") 

(IY" - ;A") (p,. - ;A,.) = (mc)2 l ( 4.31) 

4.4 The electromagnetic field 

We give here only a summery of the basic equations (we use the cgs .. system and electro­
static units). 
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Max well' s equations : 

- 4,--t + 1at "\l X B = -;-)tot c 8t ' "vB=O, B=vxX 

VxE=-1a11 
C 8t ' 

VE:::: 411'Ptot' E = -"v<I> - 1aa,i C I 
( 4.32) 

;r 
"v}tot+ ~ = 0 

_, ,1 ... ,, .• at, ,·.·· , 

RL = qE + ~v x i3 

.. . 
Coin_pletely equival~nt t~ Maxwell's equations are· the equations satisfied by the fields 

<I> and A: 

, I ~ 

- 4.- 7 (1 Ml -) □A= 7Jtot - "v -;; 81 + "v A 

'□<I>~ 4~Ptot +·Hi H~~ +vAr· J 
In four - vector n~tation using Jiot = ( Cfltot, }tot) and A" ~ (<I>, A) we have 

l 

□A" = 1lc1'" + 8"(8 A") _ c tot. . 0 ,. ; ! } 
a,,ifot = o 

' ' (4.:p) 

( 4.34) 

As already mentioned, the Maxwell equatio~~ 'It~~ gii.~g~ 'itvi::ta~t.1 Th~ 'sa~
1~

1is tr~e;. 
for the equation (4.33) or (4.34). (A"-+ A'"= A" - 8"A). The equations (4.34) can be 
written in different form, using the also gauge invariant, antisymmetric field tensor F"v. 
The'F"·"·'s·are'definedby· ·'' .,, .... ,· .. ·.,,,,.,:,,,',, .,,,.,,. •.,.:, ,_..,_ .'/ 

i',!',) 

F"v = -Fv" = 8"Av - av A" 

F,,.v = -Fv,, = a,,Av - BvA,, } (4.35) 

and the equation ( 4.34) acquires the form: 
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a,,pv = 7i:'ot 

BvBµF"v = 7Bvitot = 0 
} (4.34') 

Below we give the F"v 's in explicit form. 

( O. -i•. -E'. -E' ) 
F"v=-Fv''= E', ·o, -B

3
, B 2 

E2, JJ3, 0, -B' 
E3, -B2, B1, 0 

( 0, E', E', E' ) 
, . - E1, 0, - B:I, IJ2 

fµ.v = -Fvµ. = -E2, B3, 0, -B' 
-E3

, -JJ2, B', 0 

( 0, E', 1'', E' ) 
F" _ _ F"fi _ E1, 0, If\ -IJ2 

v - 9v{I - E2, -B3, 0, B' 
£3, /J2, -B', 0 

( o, -e', -1'', -JC' ) 
F v _ _ pov _ -E1

, 0, lfl, -IJ2 

1• - 9µ.a - -£2, -Jf', 0, JJI 

-E3, B2, -/J 1, 0 

Energy density of the field: 

u = t;U~i5 + 11 B) = t;(ELf2 + 1t1i2J m case jj = cl~ and fj = 1tll 
(,l,;l(i) 

(11 = ( = I i11 11tlClllll1IJ 
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Poynting vector: 

- C - -s =-(EX H) 
471' 

( 4.37) 

4.5 Transition to quantum mechanics 

, 

4.5.1 Relativistic i:iarticle in .the electromagnetic field and the question of 
gauge invariabce in quantum ·,mechanics 

As a first step we try to perform the same replacement of the canonical conjugate variables 
by the corresponding q'pera\ors a~•-in relativistic quant\1m me~hanics. 

I , ' ' ,, '. t ' 
i ,, 

Eop = in-ft = cp~P = nck~P 

1 'Pop~ ':.._in"v';;,. nko~· } 
,\ 

or ·;\ 

pµ ~ 'in8µ:::!::in( a0 , -'v') 
. \ ~ '. t 

Pµ .=!'inaµ~in( Bo, v'} 
,•,1 

} { 4.38) 

Before going into the details of the problems created by the relativistic form of the 
Hamilton function or Hamilton operator ( square root form'); 1wJ;hall''deal'with'the 
question of gauge invariance in quantum mechanics. In chapter 4.3 we have seen that 
the relativistic Lagrange function and the relativistic Hamilton function are not gauge 

invariant, but instea.d t?~ foµ,r - v~?tor ( "741 ,P-.~A) w.~ an gauge i_nvar~a~t quantity. 
In quantum tlie<1ry, however, 'we r~quire tli'at '., · , ' -,, '' - ',\ \, · " . , . ' '· 

,.', ! . 

H'w' = in aw' and Hw = in aw at at 
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describe the same physics. Since H is not invariant, we look for a relation between 'It' 
and W which guarantees us that both equations describe the same physics. We start with 
the Ansatz 

w' = <fa\JI ( 4.39) 

and investigate the action of the operator H' - qiI>' on w'. 

(H' - qiI>') w' = (in!!_ - qiI>') q:,' = (in!!_ - q<I> + <J.. BA) <PW= at at cat 

= <fa (in!!_~ qif>) w + (in 8<P + <J..
8A <fa) w at at c at 

or 

(H' - qiI>') w' = <fa[H - q<I>]w + [in~!+~~~ <fa] w (4.40) 

The second term in ( 4.40) can be used as a condition to determine <fa by requesting 

. 8</J q8A 
zh-+--</1 = 0 at cat ( 4.41) 

The solution of this equation is 

lp = eifcA{i',t) (-1.42) 

where the integration constant has been set arbitrarily equal to 1. The difference 
between, W' and \JI is therefore a pure phase factor. 
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I}!' = ei;r;A(i',t)l}I (4.39') 

From (4.40) we have also 

[H' - q<l>']IJ!' = ei;r;A[H - q<l>]IJ! ( 4.43) 

Using (4.39') we are able to investigate also the transformation law of the momentum 
components. We get: 

(i1-!A') '11' = (-i1iV-!A-!vA) '11' = ei;;'l;A (-i1iV -!A) w 

or 
[i1 - ! Ar I}!' = ei;r;A [i1 - ! Ar I}! ( 4.43') ( 4.43') 

for arbitrary powers n. If we consider c ✓ (ft- !A) 
2
. + (mc)2 to be defined by the 

corresponding power expansion, we have also: 

C ✓ (-i1iV - !Af + (mc)2 1}1
1 = ei;r;Ac ✓ (-i1iV - !Ar+ (mc)2 I}! ( 4.44) 

One may define the following operators: 

D1 = cDo = (}i + if<I>) D"' = 8"' + ifcA"' 
OT 

fl.= ( v - ifcA) n,,.= a,,.+ i,tA,,. } (4.45) 

They are called the " covariant derivatives " and have the following transformation 
properties 
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n;1V 1 = ei-/!cADtlV (4.46) 

JJ'IV' = ei-/!cA DIV (4.47) 

Summary: 

If we perform a gauge transformation on the fields Aµ, such that A"' --+ A'µ = Aµ_'._aµ i\, 
corresponding to A'= A+ 'vi\ and <l>' = <l> - ~~~,and if we perform on the wa\'c function 
simultaneously tlw transformation IV' = ci-/!cA(:i,t) IV, then 

H'IV' = cif~A lJIV - <_J_ a/,. /-/!cA IV 
- C iJf 

· aljl' i-'--A · aljl q {Ji\ i-'--\ zh- = (' he zh~ - --(' he' IV at a1 c a, 

or 

lJ - zh- IV = e h, II - zh- IV= 0 ( , . a) , i-'--A ( . a) 
at a, 

,md 1/1
1]!' = ih il3<11' and 1/ljl = i/!'11<11 dt'.scrilw the same physics. In addition w,· han~ t ,, 

ihl>'''ljl' = ('i~A ih!Y'IJJ (I. I~) 

and 

I IV' 12=1 IV I (1.-19) 

Operators containing the dcri\'atives V and fh arc not gaug,· im·ariant. .\n ,·xamplc 
is the operator of the current density of non rclatfrist.ic quantum theory: 
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J ~ (\Jl*v'\JI - v'\Jl*\JI). One obtains gauge invariant expressions if one replaces the 
derivatives v' and "ft by the corresponding covariant derivatives (DtD). For example 

]' ~ \JI'* D'\Jt' - (D 1 \Jt1)*\Jt' = \JI* DIV - (D\Jt)*\Jt ( 4.50) 

is a gauge invariant expression. The gauge invariance of Maxwell's equations and of 
(H - q4>) remains valid in quantum mechanics, provided we perform the transformation 
on the fields and wave function: 

A"-+A'"=A"-o"A 

IV -+ IV' = eifcA(i',t)IJI } (4.51) 

Any wave equation containing the operators o"(oi,) can be made gauge invariant by 
replacing the derivatives o"(oi,) by the corresponding covariant derivatives. 

o" -+ D" = o" + i,t A" 

8" -+ Dµ = 8µ + i,t Aµ 
} ( 4.52) 

If this latter substitution is performed in the equation for the free particle, one gets 
automatically the corresponding equation for the particle moving in the field A". 

The gauge principle 

One can reverse the foregoing arguments and request the theory to be invariant under 
local phase transformations (i.e. the phase depends on x and t): 

\Jt(x, t)-+ \Jt'(x, t) = eia(i',t) \Jt(x, t) 

One notices then that this requirement cannot be fulfilled by a free theory. The theory 
must be a theory with interaction, where the interaction with the particle is described by 
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a four vector field. The form of the interaction is completely determined up to a gauge 
transformation: 

A" -+ A'" = A" - 8" A if IV -+ IV'= eifcA(i',t)IJI 

This is very easy to show since in our case we know already the answer. We first 
investigate the time dependence. 

In full generality we can set 

IV'= eia IV 

8\Jt' = eia [.i ioa] IV 
at at+ at 

oa = f(4> - 4>') 
at " 

where 4> and 4>' are two scalar functions and the factor f has been added, since we 
want to obtain a= ,tA. We obtain in this way for arbitrary powers n: 

( _i + /!..qi'). n \V1 = eia (.i + if qi) n IV at n · · at ri 

Next we consider the dependence on the space coordinates: 

Pop'V 1 = (-in'v) ( ei
0 w) = -ini0 

[ v' + iv'a] Ill 

Again we can set in full generality. 
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q - :. . q 
v'a = -(A' -A)= -v'A 

lie lie 

and obtain 

(-iii\? - ~x,r q,' = eia (-iliv' - ~xr IJI· 

This shows that 8
8~' i= eia ~~ and e Jv;v + (m0e)2 Ill' = in 88~' is not invariant under 

local gauge transformations. The invariant quantity is 

e 1' (Pop_ 1A)2 +'(me)2 q, = in (a.f). + i1<1>) Ill 
e · ,, t Ji 

where the vector field satisfies the transformation 

-, - ne• .· 
A -A=-,-v'a=v'A 

' 'q 

<1>'-~:~~~80' 18A 
. . qBt = ~;,at 

The presence of the vector field A~ which acts in a universal, prescribed manner on 
a particle with charge q · is enforced by the requif-eme~'t of local .phase invariance of the 
wave function Ill -+ 11'' '== eiaq,_ Such ~ vector field introduced to guarantee local phase 
invariance of Ill is called " gauge field ". The principle to enforce the presence of on 
interaction by requesting local.phas1.1 (g11,_ug~) invariancE: is _caUed" gaug!; principle.'\· 

One may decompose Ill into its real - and imaginary part Ill= llln.+ ilJ!f. We have 
then 

Ill'= ei0 '11 =(Ill~+ illl~) = cosaWn - sinaW1°+i(sinbWn + eosaw,) 
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or 

Ill~ = eosaw R - sinalJ! I 

'111 = sina'1111 + cosalJ!, 

We see from this that Ill -+ Ill' = ei"IJI corresponds to some kind of rotation in the 
(Ill 11, W 1) plane ( This plane is a kind of internal space and the underlying symmetry is 
called an internal symmetry). The invariance under· local gauge transformations corre­
sponds to the invariance under rotations in the internal space. Here, in the case of the 
electromagnetic field, all such transformations form a commutative group (Abelian group), 
in this case U(l), the group of unitary one - dimensional matrices (UU+ = u+u = 1), We 
have dealcd with the problem of gauge invariance in surh an elaborate manner because 
the gauge principle is fundamental to all modern elementary particle physics although 
the uqdcrlying internal symmetry spaces in strong and weak interactions are murh more 
complicated than the simple case of the electromagnetic field. The relevant symmetry 
groups (gauge groups) arc then no longer commutative {they are non - Ahelian) .. 

I • • 

4.5.2 Relativistic wave equations 

4.5.2.1 The Klein - Gordon equation 

a) Free particles 

We start the discussion with the free particle Hamilton fun ct.ion 110 ( 4.21 ), whirh ·providPs 
us with the correct energy - momentum relation. 

Ho = Jc2p2 + (mc2)2. = E (4.21) 

Since we w_ant to follow the usual quantisation procedure (s1·1• (,1.:JS)), we would haw 
to deal with the square root of ~n operator function. To avoid this proh!Pm 'om; t ak<'~ t lw: 
square of (4.21): 
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( ~) 

2 

=pi+ (mc)
2 ( 4.53) 

or with p0 =Po= r 

p,,p" = (mc)2 ( 4.54) 

ff now the replacement p" -> iha" (E ⇒ ihft = ihca0
) is performed, one arrives 

immedi~tely at the Klt,in - qordon equation for the free particle .. The wave fum;tion Ill in 
this case.is a scala~ function. 

p,,p"W.= (mc)2 '11 

If we set µ ~ ";.c arid a,,a" =,; □ (there should be' no confusion in using the same greek 
character for mass (measured in Jm-1 and the indicesµ). 

, ' , I ~ t 

(□+ µ2)'11 = 0 ( 4.55} 

In contrast to the Schroedinger equation of nonrelativistic quantum mechanics is the 
Klein - Gordon equation ( 4.55} Lorentz invariant. From the fact that we squared Ho to 
derive (4.55) there arises immediately a problem. The Klein - Gordon equation must have 
solutions corresponding to positive and negative energies: 

E = ±c Jp2 + (mc}2 ( 4.56} 

We note already at this point that n~gative energy solution 'will be associated with 
antiparticles. As in nonrelativistic quantum mechanics one can derive expressions for a " 
probability current density". The procedure is exactly the same: take the Klein - Gordon 
equation for Ill and multiply byw• and subtract from it the complex conjugated equation 
for w•, multiplied by Ill and obtain: . , 
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~~ (~ aw· w - ~ aw w·) + V(w·vw - wvw*) = o 
cat C at C at 

From this equation we can define a current density J and a density p: 

J = ~ (w·vw - wvw·) 

P = J, (w1a,i,• - w•1a,i,) 
, c at cat 

} (4.57) 

where we have added arbitrarily the factor 7- The solutions of the Klein - Gordon 
equation for the free particle will be plane waves. 

W = N'e-ik,,x" (4.58} 

The normalisation factor will be specified later. With this form for Ill we obtain from 
( 4.57} : 

J = 2fc IN 12 

p = 2k0 IN 12 } ( 4.57') 

From the last of this two equations ( 4.57') we see that the " probability density " has 
the sign of the energy. p is therefore not a positive definite quantity. Therefore it can not 
be identified with a probability density. With j 0 = cp we obtain from ( 4.57'): 

i" = ~ fwo"w* - w*o"w] 
z 

( 4.57"} 

and the continuity equation is as usual a conservation for the four current density j" 

8µj" = o (4.59} 
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i 
,I 

To each k there are two s?lution k0
: 

ko = ±tk =_±Jf2+ µ2 ( tk > 0) ( 4.60) 

Our plane wave solutions will therefore be of the form 
¥ • ' • ,' ~ : ; 

~± = jj± e'fi<;; ikx; ( 4.61) 

, I 

To avoid the problems with the none positive definite p we consider the electric charge 
density and electric current density. Integration of (4.59) leads then to charge conserva­
tion. We multiply jµ, with e ( e > 0) and obtain for ~(+) 

-el ec [ :r; {Jo:r;. :r;. {Jo:r; ] 2 I ., 12 
CP(+) '."' -:- '½'(+) '½',(+) - '½'(+) _ '½'(+) = ectk JV(+) 

•, i, I .' .,1 <, '. ,z ,I ' . ( 
1

: : , ! ,, ,' • 1 
, I ., 

1 
'' 

( 4.62) 

and for ~H 

-el ec [ :r; {Jo:r;. ; :r;. {Jo"' , ]. . 2 , I ., 12 
cp(-) =-:- '½'(-) "'(-) -;'½'(-) '½'(-) = - ectk JV(-) z . , . 

( 4.63) 

Fqr the electric current densities we obtain: 

''. •'h . '. ,, 
' : ; . ' . . . \ . :;- . . ' ,·, '/•; 

"'el ec - - - - ~ -
ic+) = i I W(+)v'Wc+) - Wc+iv'W(+) l = 2eck I Ni+) 1

2 ( 4.64) 

' .. ·~' ,1,_. 

;::el ec - ...., ,,._, - ..., - - ....., 
ic-) =-;- [ w(-)v'Wc-) - Wc-iv'W(-) l = 2eck I Ni-> 12= -2ec(-k) I .Ne-) 12 

, , , • ~, Z , ~ e '., : , , • - i ', • I ' I ' \ • ·. ·"\ ; , , l • • , • ',, ) , '•. ; , , 

(4.65) 

_ , We see that P(~) and P(~) can be interpreted as charge densities for positive and 
negati've charged particles, both, however with' positive energy k0 = +tk. A similar 
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interpretation is possible for the current densities. We have however to deal with a minor 
difficulty (as seen from (4.65)), - the solution for negative charge and positive energy 
occurs with momentum (-k) instead of k. If we write the expressions in four vector 
notation, we have 

](~) = 2ec(tk, k) I Ni+) 12= 2eck" I Ni+) 12 

and 

J,~i' = 2ec(-tk,k) I Ni-) 12= -2ech, -k) I Ni-) 12 

For a particle with negative charge and positive energy we would how:ever expect: 

J;~) (-e) = -2ec( ff, k) IN(+) 12= 2cc(-tk, -k) I JVi+> 12= 2ec(-kµ,) I Ni+l r= le~) ( +e) 

To obtain this result we have to choose for We-)= Ni-l eiko,"-ikx_ With tlw definition 

.,. : • r , ·k ,,. 
'i'± = JV± C! ,.x ko = k0 = +tk > 0 (4.66) 

we obtain the desired result. This choice of solution leads to the same results for the 
charge densities as before. The normalisaion factor is obtained by integrating equation 
( 4.57) ( charge conservation )_. One obtains 

and 

l 
I.Al+ 1

2
=1.A!- 1

2
= 2<kV01 

. kµ e. , •· 
it= ±2eck'' I }I± 1

2= ±cc-V, = ±:__V, (c,v) 
(k of ol 

{,1.67) 

The two solutions \JI± correspond physically t.o part.irle and antipartir!P. 111 principle­
it is completely irrelevant, which of both is treated as partirlr or antipartirl1·. Tlw s,mu· 
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interpretation of the current density'jµ can be applied to neutral particles. In this case 
one has to choose the wave function to be real. In this case jµ = 0 and there is no con­
servation law. Relativistic quantum theory leads us obviously to new degrees of freedom, 
the charge degree of freedom. In the present case of the motion of a particle with spin=0 
and momentum k, we see that there are 3 charge degrees of freedom (±e and 0). In 
nature this is approximately realized for the 1r mesons ( 1r±, 1r0 ) if we neglect the small 
mass difference between 1r± 's and 1r0 • 

b) Spinles~~ charged particle in an electromagnetic field 

The Klein - Gordon equation for the motion of the particle in an electromagnetic field Aµ 
is obtained from the free Klein_ - Gordon equation by _replacing all derivil,tives aµ by the 
corresponding-~ovari~nt' derivatives D". From . ·. ·. · 

(8,18µ+ µ 2 )\JI= 0 

one obtains 
( DµD": + µ2)\JI = 0 . (4.68) 

or 

( aµ + i ;c Aµ) ( aµ + i le Aµ). \JI + µ2 \JI =:; 0 

or 
( □ + µ 2 )\JI= -. v;~w (4.69) 

with' 

v;G = i liqc (8µAµ + Aµ8µ) - (liqJ
2 

A.0

µAµ"= 2Aµaµ' + iJµAµ (4.70}' 

If we go to the non relativistic approximation of ( 4.69), we obtain the usual Schroedinger 
equation for a spinless particle moving in the electromagnetic field Aµ. 

4.5._2.2 The Dirac equation 

a) The free Dirac - particle 
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In order to avoid the problem of the not positive definite probability density, Dirac chose 
a different way. Corresponding to the Schroedinger equation H\JI = iii~~, he postulated 
the existence of a wave equation linear in 8

8~. Relativistic covariance then requires also 
linearity in V. Dirac postulated the following equation: 

iii~! = C [-ilia'\! + fimc] \JI = C [-int ai a!j + fimc] \JI ( 4. 71) 

with yet to be determined quantities ci, fi. They can be determined if one imposes 
the following conditions: 

1. The correct relation between energy and momentum must be preserved 

E = c ✓i1. + (mc)2 

2. The equation should be covariant under Lorentz transformations. 

In,order that condition 1) be satisfied, one can request that \JI should also be a solution 
of the Klein - Gordon equation. Squaring ( 4. 71) leads to 

(iii :t) 2 

\JI= c2 (-inaV + fimc)(-inaV + fimc)\JI 

[ 

3 • 3 ] 
= c2 (-ili)2 ~(o:;)28;8; + (-ili)2 ~(o:io:i + aio:;)8;8; - ilicm ~(o:ip +Pai)&;+ (mc)2,8

2 
IP 

(4.72) 

If .\JI satisfies also the Klein - Gordon equation we have also 

( 
a )2 3 

-in at w = -(Tic)2 E a;a;w + (mc
2

)
2w 

,=1 
(4.73) 
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The quantities a; and {3 can no·w be determined by compari~g the 'coefficients of equal' 
derivatives in ( 4. 72) and, (4. 73). It is immediately' clear that the a; arid (J can not be 
ordinary numbers', but must be matrices. It turns out that the smallest rank of these· 
matrices is 4. Therefore also IV has to be a four component object ( it' is c~lled 'a four 
component spinor ). If we do the comparison mentioned above, we get the following 
algebra for the matrices: 

ai(J + (Jai = 0 i=l,2,3 ( 4. 7 4) 

"i , ;( ),1 ;. I' 

aiai + aiai = 0 i,j=l,2,3, i-/-j (4.74') 

:. J ;·· 

(ai)2 = (32 = 1 i = 1, 2, 3 (4.74") 

In order to make the 'Hamiltonian H Hermitian,· also the ·matrices ci and (J have to 
be Hermitian. These matrices are determined up to a unitary transformation. Below we 
give the socalled standard representation: · 

, ,, 

0 i = ( Q_, S. ) 

<J';, Q_ 
j•'I 

( 

l, 
(J -

. Q_, 

where the <J'; are the usual 2 x 2 Pauli - spin matrices: 

Q_ \ 

-1.) ~, 

r.1; 

~ '(' 0;•'1•)< ,··,1· _,.(:·o'•~i )' .'1._ 1 ~ ( 

<J'1 - , <J'2 - , (]'3 -

1 0 i 0 

1 ,o 

0 -1 

(4.75) 

r (4. 76) 

. ' ,· / . I . "J - : • l . / . ' ' ' " . ~ .... l : '\ ' ; I , ., ' . l ... • ~·, ' ' ~ l l 
Usually a different set of matrices, --,t , -y5 is used, which we present below also in 

their standard representation ( see Bjorkcn aud Drell, Relativistic Quantum l\Iechanics, 
New York, l\IcGraw - Hill (1964)): 

, •· 1 ,. 11 l ', ':. \ ~• _.' •,\' ., 
' 
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7 = /30 , ,y° = f3 , -y"~(-y°, f) , "'(5 = i-y0-yl-y2-y3 ( 4. 77) 

With (4.75) one finds their explicit form: 

( Q, el ) 1' = ( l, Q ) 
1' = c• l) -y' = (4. 7i') 

-<J';, Q_ Q_, -1 l, Q_ 

The -y mat.rices obey the commutation relations: 

-y"-y"' +-y"'-y" = 2g""' ( 4. 78) 

A very often used combination of -y matrices is 

z (]',..., = 2 b",1"'l (.J.79) 

In explicit form: 

<J'ii = -½ [<J';,<J'j}l= <J'kl i,j,k cyclic 

U. ·( 0 ~) . 5 (J' '= z = !<J'; -y 
' <J'; 0 

} (4.7!)') 

Writing the Dirac equation (4.71) in terms of the -y mat.rices leads to 

Ho;, = hc-y0 (fkop + ,,1) = c (opop + -y0mc) (·l.80) 

or 

llv;,llJ = hc-y0 (-i-yiai + 111)'11 = ihciJ0 w = ihcilc.,111 
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or 

0 

~CHvir\J! = (-i-yiaj + µl)IJ! ~ i-y08o\J! 

or finally 

(i-y?" - µl)IJ! = ~: [ih :t -Hv;,] 1J! = 0 ( 4.81) 

Usually (4.81) is called Dirac equation. 

In order to find the plane wave solution of the Dirac equation; corresponding to a free 
particle, we make the following Ansatz: 

1 -ik,.x" w 
"' - e 'Jl = ~ ( 4.82) 

where w is a four - component spinor still to be determined. One can write w in the 
form 

( 

Wup ) 

W = W/ow 

( 4.83) 

! 
where Wup an1 WJow are t\l{O 2 - component spinors. Using this Ansatz in the Dirac 

equations, one obtains · 

('Y"kµ - µ1)w = 0 ... , .. ,,. (4;84) 

In matrix notation one has 

-y"kµ =. ( 

'' 

kol , 

;;f' 

-af) 
---:kol• · 
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and from (4.84): 

or 

( 

(ko-:)l, 

uk, 

-af 

-(ko + µ)l )( :::) 
(ko - µ)wup - (uk)w1ow = 0 

(uk)wup - (ko + µ)w1ow = o } 

=0 

Eliminating for example w,0 ,.,, we get from the second equation ( 4.85) 

af 
· W/ow = ---Wup 

ko+µ 

and 

{ 

Wup } 
w= 

,:!µWup 

Inserting W/ow into the first equation (4.85) we get 

[
(ko - µ)l - (uk)(uk)] ko + µ Wup = Q 

which with (uk)(uk) = k2l transforms into 

(
k5-µ2 _ k2) 

ko+ µ lwup = 0 

From this we see that k5 = fl + µ2 or 
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(4.85) 

{4.86) 

( 4.87) 



I , I 
! 

ko = ±Ek = ± ✓ f2 + µ2 ( 4.88) 

As we could have expected, we are back to the problem of negative energies. Let us 
consider first the case of positiv_e e~~rgies k0 =. +Ek. In the rest frame of the particle 
(k = 0) we obtain for w: · · 

{ 

Wup } 

w,~, - 0 

, . . . . . .• ., . , • ' :1 ·. : .· .. . . ' ' . . 
In the rest frame we can use for w,,; the usual two component spin or x( s) known from 

nonrelativistic quantum mechanics: o, ·., 

Wup = X(s) = { 
{ ~) 

'(~} 

s = +1 : 
' 1 

s·= -1 

! .;' • ,, 

} ( 4.89) 

where s = + 1 and -1 describe the two spin states of the particle. These form of w,,P 
can now be used in ( 4.86) and we have 

w-{ x(s) }' 

uk 
ko+µX(s) 

for ko = +✓f2 + µ 2 

The spinor may be normalised: 

w+w= ( af ) { x+(s),x+(s)ko+µ i1k '• ·~ x+(s) . 1 + (uk)(uk) 
x(s) } 

~+,x(,) · [, .. (<..+ µ)' l x(,t~ 

-.·,1110 

x+(s) 1 + --- x(s) = x+(s)x(s) -- = --[ 
k2 ] 2ck 2fk 

( Ek + µ )2 lk + µ lk + µ 

The normalized, positive energy spinor is therefore given by 

{;iii{ u(k,s) = W(+) = V ¼ 
x(s) } 

ak 
,.+wx(s) 

s = ±1 (4.90) 

Next we consider the negative energy solutions (k0 = -fk). In the rest frame we have 
Wup = 0. For W/ow we choose again a two - component Pauli spinor. To get consistent 
description of antiparticles we choose 

W/ow = x(s) = { (:) •:+I 
( 0 ) $--1 } (4.91) 

This choice is based on the following idea. In Dime's interpretation of antiparticles in 
the ground state all the negative energy states arc filled. If a negative energy part ide is 
excited above the ground state, a hole is left in the " filled sea". 

It is the absence of a negative energy, negative charged, spin down st.ate that corre­
sponds to a antiparticle with positive energy, positive charge and spin up. This rat.her 
artificial reasoning is avoided in quantum field theory. If in (-1.85) we eliminate w,,,. we 
get for w (ko = -4 < 0, W/ow = x(s)): 

w= ( 
;;f .( ) - '•_+,,X .s) 

\(.s) 

This wonld correspond t.o a particle with four moment.um (-c ;;, k). \V1· expect how1·,·1·r 
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as we did in case of the Klein - Gordon equation, that the antiparticles should have a 
four momentum ( -t;;, -k). Therefore we define the normalised spinor by the above given 

expression, however k changed into (-k): 

v(k,s)=w(-)= ✓t;;+µ { 
2t;; 

The plane wave solutions are then given by 

,;LHs) } 
x(s) 

s = ±1 

I ~ µ ~ } IV(+)= m- e-• µx u(k,s) particle 
V 'ol 

1 . µ -\JI{-)= p,;j e+•kµx v(k,s) antiparticle 

(4.92) 

( 4.93) 

Now the probability density and current density concept may be worked out. We start 
from the Dirac equation , 

ih ~~ = c(-ihav'\JI) + , 0
mc

2
\JI 

and the Hermitian conjugate equation ( ,o+ = , 0 
, a+ = a): 

- ih alJI+ = cihv'IJl+a + 1J1+1°mc2 

at · 

( 4.94) 

( 4.95) 

Multiplying ( 4.94) from the left with IJI+ and ( 4.95) from the right with \JI and subse­
quent subtraction leads to 

ih :t (\Jl+IJI) = -ihcV(IJl+alJI) 

Since IJl+IJI is positive definite, it can be interpreted as probability density. 
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p = (IJl+IJI) > 0 (4.96) 

We can also define a current density J by 

J = clJl+alJI (4.97) 

which can be interpreted as probability current density. p and J satisfy the continuity 
equation , 

ap ~ 
-+Vj=O at 

Usually one uses the adjoint spinors instead of 111+. 

ii,= IJl+,o adjoint spinor 

In four vector notation we have j" = (cp,1): 

j" = cili,"111 

and the conservation law 
aµj" = 0 

Using (4.93) we are led to the explicit form of the current density: 

. •µ c k" 1 
1(+) = -v;' - = -(c,ii) 

ol fk Vo1 

•µ _ c k" 1 
1(-) - V,- = -(c ii) 

ol ff V.,1 ' 
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(4.98) 

(4.99) 

(4.100) 

(4.101) 

( 4.101') 



ln•contrast to the Klein - Gordon equation, where we had 

ic-i .• l+ I e I) =ic+i .• l-1 e I) 

'we see from ( 4.101 ') that this is not true for the Dirac equation. Therefore, if we want 
to interpret the negative energy solutions of the Dirac equation as antiparticles of positive 
energy, one has to introduce by hand a minus sign in ( 4.101 '). The presence of this minus 
sign is proved in field theory. It is theni'<:lue to the fact that the·current density operator 
jl' is defined by a" normal product" N{\Jl(x),"lll(x)}. There is a anticommutator be­
tween fermion operators involved which gives authomatically the minus sign. 

b) The spin ½ particle in an electromagnetic field , 

As in case of the Klein - Gordon equation we will obtain the Dirac equation for the 
particle in the field A" by replacing all .a" 's by the corresponding D" 's. For the free 
particle we have: 

H'jyir = hc-y° [-i·/o; + µl] = ihco0 ( 4.102) 

In the field A" we have 

hc-y° [ -i'-/ D; + µl] = ihcDo 

= hc,
0 

[-·:-l(o;+ihqcA}+tl] =ih~(oo+,i;CA0
) 

\, 1' . ' J. j '' ., '., \ > '.' ,, • ' 

or 

•;/. hc,
0 [-i·-/8; + µl:+ :c 7iA1] = ~hcoo - qA0 

or 

hc,0 [-i-/o; + pl] +q-/'·-/1; +qA0 = ihcoo 
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With 

llZir = hc-y° [-i-·/O; + µl] and q·y°·/A; + qAo = q,o,,. A,.= q(Ao - ,of A) 

we get 
Hoir = HZir + q(A0 

- ,
0f A)= ihcou ( 4.103) 

From ( 4.99) one sce's that the four vector 

j~~ = cq,u," (4.104) 

can be interpreted as the currc-nt. density operator. From (4.103) with (-1.10-1) we 
obtain 

l 
Ilvir = HZir + -j~~A,, = i!,ciJu 

C 

4.5.2.3 The free electromagnetic field (massless spin=l photons) 

( 1.105) 

The free electromagnetic field outside of charge and current distributions is dt>srribed 
according to ( 4.34) by 

□ A''= iJ''(iJ ... A") 

As a convenient gauge we can use the Lorentz gaug<> and obtain th<>n 

□ A'' =0 

oaA"·= 0 

The solutions to ( 4.107) arc then plane waves of the form 

A'' = N c1' c-ikr 
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(-1.106) 

(·l.107) 

(4.108) 

(,1.109) 



N is a normalisation constant and fµ the polarisation vector. The electromagnetic 
field is a massless field. Therefore we have · ', 

k2 = k"' k0 = k02 
- p = 0 (4.110) 

The Lorentz gauge gives us 

00 A"' = NE"'o0 e-ikx = (-i)N e-ikx E"'k
0 

= 0 

or 
E°'kc, = 0 (4.111) 

We can perform a further gauge transformation on the field, such that also the new 
field satisfy the Lorentz condition: 

A'µ=Aµ-8µA (4.112) 

l ., ; ; , . 1- • ~ 
a A'µ = a Aµ - a aµ ti. = -□A 

,._l!,,,,,F ,.• .. ,11!,.•.,,,1,'/ ~'-1i: •,:~'1, 1;:1t11/(> •. ' •, • ·; ~ •,. r 't , ' l 

In order to lead to 
1 (i, ,.·., .~;•:,, ' j.; 

8µA'µ = 0 

A must satisfy the equation 
,,,.1' 

l' l I 
A=,o8µA=O • . .□ ... '., µ,,,. . , ' , 

.,,~p this case also A is a plane wave which qm,be written in the form 

! ,,,;, '!):, 'A;;,· A~ e-ik:rl·, ' : , ,.,, (4.113) 
:,•,,, 
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Using this in ( 4.112) we.obtain 

N'l'µ e-ikx = NEµ e-ikx - iAokµ e-ikx 

If we set N' = N and define /3 = -iA0 / N, we get 

/µ = (.µ + /3 kµ ( 4.114) 

Since A'µ satisfies also the Lorentz condition, one has also 

(.Iµ kµ = (.µ kµ + /3kµkµ = 0 ( 4.115) 

One can choose /3 such that: 

f.'0 = O ( 4.116) 

In this case the Lorentz condition is reduced to a condition amongst ordinary three 
dimensional vectors: 

l'k = 0 (4.117) 

The meaning of this is, that there are only two linearly independent polarisation 
vectors, transversal to the momentum vector. If we choose 

kµ = (k0 ,o,o,k0
) ( 4.118) 

the two independent polarisation vectors are given by 
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,,= o) and <,= u) ( 4.119) 

corresponding to 

<t= u) and ~=u) (4.120) 

This situation corresponds to linear polarisation. If one choose the standard represen­
tation in the form 

~A = +1) = - ~ (l ) and 
. 1 -i 

( 
1 ) e(-X = - 1) = v'i o (4.121) 

then one has circular polarisation. In our envisaged case of a perturbation treatment 
of scattering processes the meaning of the plane wave solution is the following: 

or 

Aµ(x) =NEµ(,\) e-ikx 

Aµ(x) = N f•µ(,\) eikx 

incoming photon 

outgoing photon 

The polarisation vectors satisfy the following orthogonality relation: 

i'*(-X') 2(-X) =cu,. 

E•µ(-X') t:µ(-X) = -8;.,>. 

} ( 4.122) 

(4.123) 

(4.124) 

We note that the presence of only two independent polarisation vectors, despite the 
fact that photons are spin = 1 particles, is basically a consequence of the fact that they 
are massless particles. 
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