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The present lectures are a practical guide to the calculation of radiative correc-
tions to the Green functions in quantum field theory. The appearance of ultraviolet
divergences is explained, their classification is given, the renormalization procedure
which allows one to get the finite results is described, and the basis of the renormal-
ization group in QFT is presented. Numerous examples of calculations in scalar and
gauge theories are given. Quantum anomalies are discussed. In conclusion the proce-
dure which allows one to get rid of infrared divergences in S-matrix elements is de-
scribed. The lectures are based on the standard quantum field theory textbooks, the
list of which is given at the end of the text.

These lectures were given to the 4th year students of the Department of General
and Applied Physics of the Moscow Institute of Physics and Technology (Technical
University). '

Ka3zaxos . U.
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Ka, peHOPMIpylid U BCC TAKOE B IPUMEPAX B KBAHTOBOH TOpHH nonst: Yueb.
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HacTtosume nexunu ABAAIOTCS NPAKTHYECKHM PYKOBOACTBOM TIO BHIYHCIIEHHIO
paaHanuonHbIX NONPaBoK K GynkuMAM IpiHa B KBaHTOBOI Teopun mons. OfbacHs-
€TCA, KAK BOHUKAKT yJbTPadHONETOBbIE PACXOAHMOCTH, Qa€TCs HX KIAcCH(bHKa-
uus. Takke oriMcama ripoueAypa NEPEHOPMHDOBKH, MO3BOMNAIOMAS TMOMY4aTh
KOHEYHBLIE OTBETBI, H H3JI0XKCHBI OCHOBbI YNkl nepeHopMuposok B KTIL. Tpuse-
A€Hbl MHOIOYHCIICHHBIE NPUMEPbI BEIYHCICHHH B CKaNAPHBIX H KAIHMGPOBOUHBIX
TEOpHSX € HCIIONIb30BAHHEM pasMepHoit perynapusanui. O6cyRaal0Tcs KBAaHTOBbIE
aHOMaNkK. B 3aKio1eHue onycana npoteypa H3bapieHHs 0T HHOPAKPACHLIX pac-
XOJAHMOCTEH, BO3HHKAIOIMX PH BBIYHCIACHHH JIEMCHTOB MaTPHIBI paccesnys. M3-
JIOXeHHE OCHOBBIBAETCS HA CTAHAAPTHRIX Y4eOHHKAX NO KBAHTOBOH TEOPHH Mo,
CINCOK KOTOPLIX NPHBEACH B KOHLE TEKCTA.

Jlexuun bl NpouHTaHb! cTyaeHTaM 4-ro kypea kadenpbl «DHU3HKa dnemMeH-
TapHEIX YacTHL (akybTeTa oblueit u npuknannoil dbusnkn MOTH.
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10.2 The quark distributions and the splitting functions . . . . . . . 100 functions off mass shell, as exemplified by scalar and gauge theories. In connec-
10.3 The finite answers . . . . . . .. ... ... L 103 tion with the renormalization procedure we describe also the renormalization
| group formalism in QFT. As for the infrared divergences, in the literature one
11 Afterword 106 ‘ can find mainly the discussion of the IR divergencies in quantum electrody-
References 108 | namics. In non-Abelian theories as well as in QED with massless particles the

situation is much more involved as there arise collinear divergences as well. In
{' the last lecture, we show how one can get rid of these divergences using the
methods developed in quantum chromodynamics. One more topic also related
to divergences is the so-called anomalies. They also lead to unwanted ultravi-
olet divergent contributions. Therefore, a separate lecture is dedicated to the
axial and conformal anomalies.

The presented text overlaps with many textbooks and is partly borrowed
from there. However, the composition of the material and most of the calcula-
tions belong to the author, so we omit the direct references to any textbooks. It
should be admitted that the style of presentation in different textbooks varies
very much and the reader can choose the book according to his preferences.
We mostly used the classical monograph by N.Bogoliubov and D.Shirkov when
describing the renormalization theory and more modern book by M.Peskin and
D.Schireder which we followed when discussing the infrared divergences.

Our experience in giving lectures on quantum field theory, the renormal-
ization theory and the renormalization group tells us that this material is still
complicated for perception and is not always presented clearly enough. One
often meets with the lack of understanding of the complicated structure of the
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field theory which manifests itself in renormalization theory. Sometimes the
nonrenormalizable theories are simplistically treated as the field theories with

a dimensional coupling constant which otherwise liave no difference from the |

renormalizable ones. The collinear divergences arising in theories with mass-
less particles, despite a long history, have not also become the well-known part
of the QFT course. Here we make an attempt of a simplified presentation of
this comnplicated material. Of course, this means that one has to sacrifice some
rigorousness and completeness. We hope that together with the existing liter-
ature the present lectures will serve the goal of clarification and mastering of
quantum field theory and its applications to particle physics.

1 Lecture I: Radiative corrections. General

analysis of divergent integrals

1.1 Radiative corrections

The formalism of quantum field theory, being the generalization of quantum
mechanics to the case of an infinite number of degrees of freedom with non-
conservation of the number of particles, allows one to describe the processes of
scattering, annihilation, creation and decay of particles with the help of the set
of well-defined rules. As in quantum mechanics the cross-section of any process
is given by the square of the modulus of the probability amplitude calculated
according to the Feynman rules for the corresponding Lagrangian integrated
over the phase space. Since the exact calculations of the probability amplitudes
seem to be impossible, one is bound to use the perturbation theory with a small
parameter - the coupling constant - and get the result in the form of a power
series. The leading terms of this series can be presented by Feynman diagrams
without loops, the so-called tree diagrams. The examples of such diagrams for
some typical processes in QED are shown in Fig.1.

Y P37 53°
y< p1-p3
p2 p4
e” e e e’
a) b) c)

Figure 1: The examples of tree diagrams of different processes in QED: a)
the Compton scattering, b) the Mueller scattering, c¢) the annihilation of the
particle-antiparticle pair. Shown are the momenta of external (real) and inter-
nal (virtual) particles

All the diagrams shown in Fig.1 are proportional to the square of the cou-
pling constant 2. They are constructed according to the well-known Feynman
rules and do not contain any integration over momenta (when working in mo-
mentum representation) since due to the conservation of four-momentum all
momenta are defined uniquely.



The situation changes when considering the next order of perturbation tle-
ory. As an example, in Fig.2 we show the corresponding diagrams for the
Compton scattering.

B

Figure 2: The one-loop diagrams for the process of the Compton scattering

They got the name of radiative corrections since in electrodynamics they
correspond to the emission and absorption of photons. This name is also ac-
cepted in other theories for perturbative corrections. All these diagrams are
proportional to the fourth power of the coupling constant e* and, hence, are the
next order perturbations with respect to the tree diagrams. However, contrary
to the tree diagrams, they contain a closed loop which requires the integration
over the four-momenta running through the loop. Any loop corresponds to
the bifurcation of momenta similarly to the bifurcation of the electric current,
according to the Kirchhoff rules, so that the total momentum is conserved but
the momentum running along each line is arbitrary. Therefore, one has to
integrate over it.

1.2 Divergence of integrals

Prior to calculating the radiative corrections let us consider the behaviour of
the integrand and the integral as a whole. As an example we take the diagrams
of the Compton scattering shown in Fig.2. The integral corresponding to the
diagram shown in Fig.2.a) has the form

B(p— k i
(k2 + ie][(p — k)? — m? + i¢]
where the photon propagator is written in Feynman gauge and the integration
takes place in Minkowskian space. We shall not calculate explicitly this integral
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now (we shall do it later) but consider the integrand from the point of view
of the presence of singularities as well as the behaviour at small and large
momenta.

The presence of poles in the propagators for momentum equal to the mass
squared does not create any problem for the integration since according to
the Feynman rules the denominator contains the infinitesimal imaginary term
~ ¢ — 0, which defines the way to bypass the pole. The choice accepted in
(1.1) corresponds to the causal Green function.

Consider now the case of k, — 0, the so-called infrared behaviour. Despite

{ the presence of k? in the denominator, the singularity is absent due to the

measure of the 4-dimensional integration which is also proportional to k*. This
is true for all such integrals. The singularities appear only for certain exter-

1 nal momenta which are on mass shell and have a physical reason. Off shell

the singularities are absent. For this reason we shall not discuss the infrared
behaviour of the integrals so far.
Consider at last the case of k, — oo, the so-called ultraviolet behaviour.

1 Notice that in the denominator one has 4 powers of momenta, while in the

numerator one has 1 plus 4 powers in the measure of integration. Hence one

| has 5-4=1, i.e. the integral is linearly divergent as k, — co. Is it the property

of a particular integral or is it a general situation? What happens with the
other diagrams?
Consider the integral corresponding to the diagram shown in Fig.2.6). One

] has, according to the Feynman rules

/d4k7"(ﬁl — k) + m)v (B2 — k) + m)y* 12)

K [(py — k)* — m?)[(p2 — k)? —m?]

We are again interested in the behaviour for k, — oo. The counting of the
powers of momenta in the numerator and the denominator gives: 6 in the de-
nominator and 2 in the numerator plus 4 in the integration measure. Altogether
one has 6-6=0, i.e., the integral is logarithmically divergent as k, — co.

Here we met the difficulty called the ultraviolet divergence of the integrals
for the radiative corrections. The examples considered above are not excep-
tional but the usual ones. The corrections are infinite, which makes perturba-
tion theory over a small parameter meaningless. The way out of this trouble

| was found with the help of the renormalization theory which will be considered

later and now we try to estimate the divergence of the integrals in a theory
with an arbitrary Lagrangian.

1.3 General analysis of ultraviolet divergences

Consider an arbitrary Feynman diagram G shown in Fig.3. and try to find out
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L - the number of loops

n_b - the number of external boson lines

n_f- the number of external fermion lines

Figure 3: An arbitrary diagram containing L integrations

whether it is ultraviolet divergent or not. For this purpose we have to calculate

the number of powers of momenta in the integrand: each internal loop leads to
integration d'p that gives 4 powers of momenta; each derivative in the vertex
gives the momentum in p-space, i.e., 1; each internal line gives a propagator
which behaves as p''/p?, i.e., r; — 2 powers of momenta, where r; = 0,1,2 for
various fields. Combining all these powers together we get the quantity called
the indez of divergence of the diagram (UV)

WG =4L+ Y s+ Y.

vertices internal lines

(r —2), (1.3)

where L is the number of loops and §, is the number of derivatives in a vertex
.

The absence of the ultraviolet divergences means that w(G) < 0. However,
one has to be careful, there might be subdivergences in some subgraphs. Hence,
the necessary condition for finiteness is

The finiteness condition (UV): w(y;) <0, Vv CG,

where 7; are all possible subgraphs of the graph G including the graph G itself.

There exists, however, a simpler way to answer the same question which
does not need to analyse all the diagrams. Onme can see it directly from the
form of the Lagrangian. To see this, let us introduce the quantity called the
indez of the vertez (UV)

3
wo= b+ byt Sf—4, (1.4)

where 6,,b, and f, are the number of derivatives, internal boson and fermion
lines, respectively. Then the index of a diagram (1.3) can be written as

3
W@ = Y w4y L (1.5)

vertices
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where w!"*" corresponds to the vertex where all the lines are internal, n,, and
ns are the number of external boson and fermion lines, and we have used the
fact that usually r;(boson) = 0 and r;(fermion) = 1.

Equation (1.5) tells us that the finiteness (w(G) < 0) can take place if
w, < 0 and the number of external lines is big enough. Prior to the formulation
of conditions when it happens, let us consider some examples.

Example 1: The scalar theory L = —Ap?.

In this case 6, =0, f. =0, b, =4 and, hence, w*" = 0. Thus, according
to (1.5), w(G) = 4 — ny — 3ny and everything is defined by the number of
external lines. The situation is illustrated in Fig.4.

w(G)=0 w(G)<0

w(G)=2

w(G)=4

Figure 4: The indices of divergence of the diagrams in the scalar theory

We see that there exists a limited number of divergent structures in the ¢*
theory. These are the vacuum graphs, the two- and four-point functions. All
the other diagrams having more than 4 external lines are convergent (though
may have divergent subgraphs).

Example 2: Quantum Electrodynamics Lin; = ez,Z_J/Ah,ZL

In this case 8, = 0, fy = 2,b, = 1, w™* = 0. Hence, w(G) =4 —np — %nf
and the situation is similar to the previous example, everything is defined by
external lines. Divergent are the vacuum diagrams (w(G) = 4), the photon
propagator (w(G) = 2), the electron propagator (w(G) = 1) and the triple
vertex (w(G) = 0). All the other diagrams are convergent.

Example 3: Four-fermion interaction L = Grpp.

Here 8, = 0, f, = 4,b, = 0, w"** = 2 and, hence, w(G) = 2Ngepumm — %nf.
Therefore, increasing the number of vertices we get new divergent diagrams
independently of the number of external lines. The number of divergent struc-
tures happens to be infinite.

Thus, the key role is played by the maximal index of the vertex. All the
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theories may be classified according to the value of w2~ :

< 0 Finite number of divergent diagrams,
0 Finite number of divergent structures,
>0 Infinite number of divergent structures.

max
wl. =

(1.6)

Below we show that for the first two types of theories we can handle the ultra-
violet divergences with the help of the renormalization procedure. The theories
with w'™ = 0 are called renormalizable, the theories with wy'™ > 0 are called

nonrenormalizable, and the theories with w < 0 are called superrenormaliz-
able.

1.4 The analysis of dimensions

The property of a theory with respect to ultraviolet divergences can be refor-
mulated in terms of dimensions. Consider for this purpose an arbitrary term
of the interaction Lagrangian which is the product of the field operators and
their derivatives

:L') =g H Wz

Consider the action which is the four-dimensional integral of the Lagrahgian
density

)0p;i(z (1.7)

A=/fﬁux (1.8)
and find the dimensions of parameters in eq.(1.7). As a unit of measure we take
the dimension of a mass equal to 1. Then the dimension of length [L] = —1,
the dimension of time is also [T'] = —1, the dimension of derivative [9,] = 1,
the dimension of momenta [p,] = 1. Since the action is dimensionless (we use
the natural units where & = ¢ = 1)

[A] =0,
the dimension of the Lagrangian is

[‘C] :4’ (D_

in D dimensional space.)

This gives us the dimensions of the fields. Indeed, from the kinetic term for
the scalar field one finds

(s =4 8=1, (2=

in D dimensional space),
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for the spinor flield

[QdY] =4 — [¥] = ;, ( in D dimensional space),

for the vector field

(0,4, — Oy 4,) =4 - [4] =1, (D —Z in D dimensional space).

This allows one to find the dimension of the coupling constant in (1.7)

.
=46, - b(' — T f == I'IIII.T. (19)
lgl=4-3 5 fe=—wi
Then the classification of interactions (1.6) can be written as
> 0 Superrenormalizable theories,
[g] = 0 Renormalizable theories, (1.10)

< 0 Nonrenormalizable thoeries.

Consider which category various theories belong to. For this purpose we

have to calculate the dimensions of the couplings.

Ilustration
L= —Ap® = [\ =1, Super Ren.
qu = —\p? =" [A] =0, Ren.
Lopp = epy* Ay o = [e] =0, Ren.
Egauge = iFﬁy = —i [8#14?/ — BVAZ =+ gf A”AV] = [g] = 07 Ren.
ﬁYukawa = y¢<ﬂ¢ = [y] =0. Ren.

Thus, all these models are renormalizable.

L= —he® = [h] = ~2, Nonren.
ﬁ =GyyYy = [G]= -2 Nonren.

= rpd,V,p = [k]=—1 Nonren.
C vdpv'h = [y] = —1. Nonren.

All these models on the contrary are nonrenormalizable. Notice that -they
include the four-fermion or current-current interaction which was previously
used in the theory of weak interactions.

Hence, we come to the following conclusion: the only renormalizable inter-
actions in four dimensions are:

i) the * interaction;

ii) the Yukawa interaction;

13



w(G)=2 w(G)=0
Figure 5: The only divergent diagrams in the ¢° theory

iii) the gauge interaction;

iv) the theory ¢® is superrenormalizable. It contains only two divergent

diagramns shown in Fig.5.
If one looks at the spins of particles involved in the interactions, one finds

out that they are strongly restricted. The renormalizable interactions contain

only the fields with spins 0, 1/2 and 1. All the models with spins 3/2, 2, etc.
are nonrenormalizable. The latter include also gravity. Indeed, the coupling
constaut in this case is the Newton constant which has dimension equal to
[G] = —2, i.e., quantum gravity is nonrenormalizable.

Since we do not know how to handle the nonrenormalizable interactions be-

cause the ultraviolet divergences are out of control, there are only three types |

of interactions which are used in the construction of the Standard Model of fun-
damental interactions, namely the ¢* the Yukawa and the gauge interactions
with the scalar, spinor and vector particles.

Here one has to make a comment concerning the vector fields with M #0.
Remind the form of the propagator of the massive vector field

— ,L'gI“’ — kllkl’/]\l2

V.V, = .
i M2 — k2 —qe

It gives r; = 2, which leads to some modification of the formulas used above
and finally to the nonrenormalizability of the theory. The only known way to
avoid this difficulty is the spontaneous breaking of symmetry. In this case,

— 9w — k,,k,,/k2

W=t e e

that gives r; = 0 and the theory happens to be renormalizable. This mechanism
is used in the Standard Model to give masses to the intermediate weak bosons
without breaking the renormalizability of the theory.

2 Lecture 1I: Regularization

The divergences which appear in radiative corrections are not yet a catastrophe
for a theory (remind, for example, the infinite self-energy of an electric charge
in its own Coulomb field) but require a quantitative description. To get a finite
difference of the two infinite quantities, one has to give them some meaning.
This can be achieved by introducing a kind of regularization of divergent inte-
grals. The most natural way of regularization is to cut off the integral on the
upper or lower bound of integration. There are also different ways of regulariza-
tion based on a modification of the integrand or of the measure of integration.
Below we consider three most popular kinds of regularization: the ultraviolet
cutoff in Euclidean space (A-regularization), the Pauli-Villars regularization,
and the dimensional regularization.

2.1 Euclidean integral and the ultraviolet cutoff

All the integrals in quantum field theory are written in Minkowski space; how-
ever, the ultraviolet divergence appears for large values of modulus of momen-
tum and it is useful to regularize it in Euclidean space. Transition to Euclid-
ean space can be achieved by replacing the zeroth component of momentum
ko — k4, so that the squares of all momenta and the scalar products change
the sign k2 = k% — k> — —k2? — k> = —k% and the measure of integration be-
comes equal to d*k — id*kg, where the integration over the fourth component
of momenta goes along the imaginary axis. To go to the integration along the
real axis, one has to perform the (Wick) rotation of the integration contour by
90° (see. Fig.6). This is possible since the integral over the big circle vanishes
and during the transformation of the contour it does not cross the poles.

When transferring to Euclidean space the poles in all the propagators dis-
appear. Now the integral in 4-dimensional Euclidean space can be evaluated
in spherical coordinates and the integral over the modulus can be cut on the
upper limit. Let us demonstrate how this method works in the case of the
simplest scalar diagram shown in Fig.7. The corresponding pseudo-Euclidean
integral has the form

a1 d'k
6 = Gy | e
15

(2.1)
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Figure 6: The Wick rotation of the integration contour

~
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p : : P
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Figure 7: The simplest divergent diagram in a scalar theory

Transforming it to Euclidean space one gets

/ (k% + m?]((

(in what follows the index E will be omitted.)

For calculation of this kind of integrals we use the following approach. First,
we transform the product of several brackets in the denominator into the single
bracket with the help of the so-called Feynman parametrization. The following
general formula is valid:

d*kg

(At (2.2)

I (PE

1
ul _ F(a1+az+"'+an)/d$1d$2"'d-77n
ATTAS? - ApT ()T (az) - T(em) 1 1,
§(1—ay—zy— - —zp)ay lapt o oapr (2.3)

[Al.’L'l + Az.’L‘g + - Anfbn]"1+a2+"'+a"

Here ['(a) is the Euler I-function which has the following properties:

[—ﬂWE + Z

_m)n

r'(1) =1, I(n+1) = nl, 2T'(z) = T(z+1), [(1+z) =
where g is the Euler constant and ((n) is the Riemann zeta-function. The

16

)

[-function is finite for positive values of the argument and has simple poles at
negative integer values and at zero.
In our case, (n = 2,01 = g = 1) and eq.(2.3) has the form:

dz1796(1 — z) — 32)
B ¥+ = 4 el

1
2+ ml(p— k2 +m? 1)F 1) /

/0 [k2 - 2pksc + p2r + m?? (2:4)

Thus, integral (2.2) can be written as

k’ﬂ —pz
1) 2“)4/ / 2kp$+p z+m2r 2#)4/ /k2+pz 1—z)+m??

(2.5)
Now the integral depends only on the modulus of k£ and one can use the

D

spherical coordinates:

k*dk

I d Q
(p 4 k2+p2x1—z)+

(2.6)

m2]2’

" where the volume of the 4-dimensional sphere equals £4 = 272 (in general

SRS 2’;)//; ). The integral over the modulus can be easily calculated

N

h 1 v k2dk? 1 A?
= =] 1 2.7
2/0 (k2 +pPz(1 —z) + m?]2 2 0g(p%r:(1——a:)+m2)+ ’ (2.7)

and, as one can see, is logarithmically divergent at the upper limit. The full
answer has the form

i 1 A2

o2 /0 dz (log(m) + 1) . (2.8)
The last integral over z can also be evaluated and takes the simplest form in
the limiting cases for m = 0 or p = 0. Now one can go back to Minkowski
space p4 => —p°.

The regularization with the ultraviolet cut-off is quite natural and relatively
simple. The drawback of this regularization is Euclidean rather than Lorentzian
invariance and also the absence of the gauge invariance. Therefore, it is not

I(p*) =

J useful in the gauge theories. However, one should notice that the noninvariance
| of a regularization is acceptable since the invariance is restored when removing

the regularization . Still, this aspect complicates the calculation as one has to

| take care of the validity of all the identities
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2.2 Pauli-Villars Regularization

Another method of regularization which is called the Pauli-Villars regulariza-
tion is based on the introduction of a set of additional heavy fields with a wrong
sign of the kinetic term. These fields are not physical and are introduced es-

sentially with the purpose of regularization of divergent integrals. The main
trick is in the replacement
1 1 1
pP—-m? p-m?Z p?— M? (2.9)

where M — oo is the mass of the Pauli-Villars fields. As a result, the prop-

agator for large momenta decreases faster, which ensures the convergence of
the integrals. The divergences manifest themselves as logs and powers of M2 |

instead of the cutoff parameter A2

One uses sometimes the modifications of the Pauli-Villars regularization |

when the replacement (2.9) is performed not for each propagator but for the
loop as a whole. This method of regularization is called the regularization
over circles. It is used in Abelian gauge theories for the loops made of the
matter fields. This way one can preserve the gauge invariance. However, in
non-Abelian theories we face some problems related to the loops of the gauge
fields which cannot become massive without violating the gauge invariance.

This problem is often solved by introducing an additional regularization for
the vector fields, for example, with the help of higher derivatives. Here we will

not consider this regularization.

The positive property of the Pauli-Villars regularization is the explicit :
Lorentz and gauge (in abelian case) invariance, but it requires complicated
calculations since one has to calculate massive diagrams, while massless inte-

grals are much simpler.

2.3 Dimensional Regularization

The most popular in gauge theories is the so-called dimensional regularization.
In this case, one modifies the integration measure.

The technique of dimensional regularization consists of analytical continua-
tion from an integer to a noninteger number of dimensions. Basically one goes
from some D to D — 2¢, where € — 0. In particular, we will be interested in
going from 4 to 4 — 2¢ dimensions. In this case, all the ultraviolet and infrared

singularities manifest themselves as pole terms in €. To perform this continua- |

tion to non-integer number of dimensions, one has to define all the objects such
as the metric, the measure of integration, the  matrices, the propagators, etc.

Though this continuation is not unique, one can define a self-consistent set of

rules, which allows one to perform the calculations.
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The metric: g, — g7, Though it is rather tricky to define the metric in

pon-integer dimensions, one usually needs ouly one relation, nawely ¢""g,, =
8 = D=4-2ec
The measure: d*q — (u?)°d*~*q , where p is a parameter of dimensional
regularization with dimension of a mass. The integration with this measure is
defined by an analytical continuation from the integer dimensions.
The v matrices : The usual anticommutation relation holds {v",
however, some relations involving the dimension are modified:
Try'y” = ¢"Trl = g" { 208
4 i

7} = 29"

Yy =D =4-2¢

Usually Trl = 4 is taken. Then the y-algebra is straightforward:

gl/pg;m’L
7/1,71/7 — —’)’H’YH’y’V + Qg/w,yu — _(4 _ 26) vy 2,71/ — _(2 _ 26)’7’
01,243

What is not well-defined is the ¥° since v° = iv"y'y*v*® and cannot be continued
to an arbitrary dimension. This creates a problem in dimensional regularization
since there is no consistent way of definition of v°.
The propagator : In momentum space the continuation is simple
1 1
P2 —m?

T'f")’“’)’u’)”)’)’o _ Trl[g;wgp(r +g;m vp

etc.

P2 —m?

However, in coordinate space one has: (take m = 0 for simplicity)

d4p zpz 1 d4—26p o 1
LA 2 € M
p z p [=%]

The basic integrals: The main idea is to calculate the integral in the space-
time dimension where it is convergent and then analytically continue the answer

to the needed dimension.
Consider the earlier discussed example (2.1) and use the Euclidean repre-
sentation (2.5). Let us rewrite it formally in D-dimensional space

(kz)D/2—1dk2
EESYERN

[wrm=2
BT M 2

The integral over k2 is now the table one

/ (k2)D/2 ‘dkz kz—)k A2 (MZ)I) 2/.“) :l?l)/2<‘(1.l' — (,\[_))l:‘ B (“)F(Z ;)
o [K2+ M o (@+1)° (2 ‘

MP=ple(l—x)+m? (2.10)
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where we assume that the dimension D is suchi that the integral exists. In

this case this is 2 and 3. The main formula (2.11) allows one to perform the

analytical continuation over D into the region D =4 —2e. For e = 0, l.e.,in 4

dimensions, the integral does not exist since the I-function has a pole at zero

argument. However, in the vicinity of zero we get a regularized expression.
r'(D/2)r(2- D/2)

Collecting all together we get
1
|, Gt il om

Substituting now D = 4 — 2¢ and transforming back into the pseudo-Euclidean

space one finds
2)5
O] g

Expanding the denominator into the series over ¢, we finally arrive at

) = i Q
()(27r) ZD

(2.12)

7r)2”'
(2myi2 L

um: (2.13)

1 ! 2z(1 — z) — m?
1(") = 55T (1 +9) G— /0 dxlog[li:”—g———]ﬁog(@r)). (2.14)

Comparing it with eq.(2.8) we see that the ultraviolet divergence now takes

the form of the pole over ¢ instead of the logarithm of the cutoff. This is less
visual but much simpler in the calculations and also is automatically gauge
invariant.

We present below the main integrals needed for the one-loop calculations.
They can be obtained via the analytical continuation from the integer values
of D. We will write them down directly in the pseudo-Euclidean space.

_ T{a-D/2) (_W)D/z
/ [p? —2kp+m?e e [ —§2o-Dp2’ (2.15)
d2p T (m Ll
/ [p? — 2kp + m2]2 - I‘(2) [m? — k2]’ I'(e) p — 00,
dp _ L@ =)k,
/ [p? - 2kp+ m2]2 - p(z) [m? — k2’ ‘ (2.16)
d4- 2‘p Pubv F(e) k k,, gir‘(e — 1) 1

I PR TR ]
= 2hp + mP T - 2 (@) [ =k
The key formula is (2.15). All the rest can be obtained from it by the dif-
ferentiation. Notice the singularity in the r.h.s. of (2.15) for @ = D/2 — n,
n =0,1,... These integrals remain non-regularized. However, they usually do
not appear in the real calculations.

[m2 —
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Let us mention one iniportant rule used in diiensional regularization and
related to the massless theories. By definition it is accepted that zero to any
power is zero. Thus, for example, the following integral is zero

/

In fact, here we have a cancellation of the ultraviolet and infrared divergences
which both have the form of a pole over 1/e. There is no any incousisteucy
here and this way of doing is self-consistent in the calculations of dimensionalty
regularized integrals.

This rule leads, in particular, to the vanishing of all thie diagrams of the
tad-pole type in the massless case. However, in the massive case they survive
and are important for the restoration of the gauge invariance. As it will be
clear later, in the Standard Model the tad-poles give their coutribution to the
renormalization of the quark masses and provide the transversality of the vector
propagator in a theory with spontaneous symmetry breaking.

dPk

WZO, VO’.

(2.17)
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3 Lecture III: Examples of Calculations. One-
loop Integrals

All further calculations will be performed using dimensional regularization.
Below we show how the rules described above can be applied to calculate in
various models of quantum field theory.

3.1 The scalar theory

We start with the simplest scalar case and consider the theory described by i}

the Lagrangian
1 m? Ay

_ 2_ v A
L = 5(3u) 5 — ¥ (3.1)

The Feynman rules in this case are:

1
—
pz—m2’X

= —iA

First, we find the one-loop divergent diagrams. As it follows from Fig.4, K

they are the propagator of the scalar field and the quartic vertex.

The propagator: In the first order there is only one diagram of the tad-pole ‘

type shown in Fig.8.

L.

Figure 8: The one-loop propagator diagram
The corresponding integral is

(3.2)

A(p?) =

7

—i\ i d4_25k(/,l.2)5
=2 R
where 1/2 is the combinatoric factor. Calculating the integral (3.2), according
to (2.16), we find

. —iA D(=1+¢) , p* _ 2 ,[1 m’

= — = —_ — 4r)y— —_—

Ji(p°) (@n)2—< _ 2r() ( 5) 22" |z + 1—vg+log(4n)—log e
(3.3)
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The fact that the integral diverges quadratically manifests itself in the structure
of the multiplier [(=1 + €) which has a pole at £ = 0 as well as at = : 1'
However, sim?e we are interested in the lmit = — 0, we expand the alls:\'el. hi
the Loran SCies Inl €. As one can see, even in the case of quadratically divergent
integrals the divergence takes the form of a simple pole over ¢, but the integral
has the dime.nSiOH equal to two. Notice, however, that for m,: 0 the integr;l
equals zero in accordance with the properties of dimensional regularization
mentioned above. g

The vertex: Here one also has only one diagram but the external momenta
can be adjusted in several ways (see Fig.9). As a result the total contribution

Pops p
pP1 4 X
O+
P2 T py ’
pppp P2oP
Figure 9: The one-loop vertex diagram

to the vertex function consists of three parts
. [1:[1(8)‘4- [l(t)+[1(u),

wh.ere we introduced the commonly accepted notation for the Mandelstam
variables (we assume here that the momenta p; and p, are incoming and the
momenta p3 and p4 are outgoing)

= 2 _ 2
$= (rtp)’ = (490, £ = (pr=ps)? = (pr—p0)?, u = (P1—p0)? = (pr—pu)’,

and the integral equals

_ (—i/\)2 (/_L2)5 ] dl—'lsk
Ii(s) = Tt
© %(%Hf/W—wmhm%mﬂ

45111{1 4?}2 taflrfssfmk;nat(ilric coefficient).- We have already calenlated this integral
differeny o er has the fo;m‘(2.l4). Now we perform the calenlation in a
T Nt and simpler way applicable to the massless integrals.

Comb‘i):; tC(;)rIiI(lznéenftfsi are in order. The first one Cbli(j(‘l‘llb‘ the evalnation of the
the Wi e oe c1(=int. It comes from the expansion of the S-matrix within
exammple. o Q(Egn.h n the~case Yvhen all‘ the.pzlrtl('lvs are different like, for
cles thei; o t, t. e comblnatorl.c coeﬂiqent 1s usnally 1. For identical parti-
Factors 1/;) mlzlu z;tilo.ns are taken into account a.lr.oeuly in the Lagrangian (the
a simplo and /4! in (3.1)) and lead Fo noutrivial coeflicients. There exists

method to calculate the combinatoric coeflicient. in these cases. The

(3.4)
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coefficient equals 1/Sym, where'Sym is the symmetry factor of a diagram. Con-

sider the diagram shown in Fig.9. If one does not distinguish the arrangernent-
of momenta, then the diagram has the following symmetries: the permutation’

of external lines entering into the left vertex, the permutation of external lines
entering into the right vertex; the permutation of the vertices, the permutation
of internal lines. Altogether one has: 2 x 2 x 2 x 2 = 16. Hence, the combina-

" toric coeflicient equals'1/16 but, since we distinguish three different momentum
arrangements, one has 1/48. The same rule is valid for the multiloop diagrams
and we will use it in the next section. E ‘ :

The second coniment is related to the calculation of the massless integrals ‘

which are much simpler, and in some cases one can get the answer without any
explicit integration. The method, which we will describe below, is applicable to
a certain type of massless integrals and is based on.conformal properties of the
massless integrals depending on one external argument and uses the symmetry
between the coordinate and momentum representations.

The key formula is the Fourier-transformation of the propagator of a mass-

less particle
d4p eipz i7r2 .
/ 2 = R (35)
r° T

which can be generalized to an arbitrdry dimension and any power of the prop-
agator as follows: .

'/M:i(_‘ﬁ)D/Z’F(D/Z;—a) Sy
(P)° T @

Obviously, this formula is also valid for the coordinate integration instead of
momentum. This way the transition from momentum representation to the
coordinate one and vice versa is performed with the help of (3.6) and is accom-
panied by the factor l‘;(%‘ﬂ.

Let us go back to the diagram Fig.9. In momentum space it corresponds to
the integral over the momenta running along the loop. However, in coordinate
space it is just the product of the two propagators and does not contain any
integration. Therefore, the integral in momentum space can be replaced by the
Fourier-transform of the square of the propagator. Since in the massless case
all the propagators in both momentum and coordinate representation are just
the powers of p? or 2, all of them are easily calculated with the help of relation
(3.6). : . , ‘

In the case of the integral (3.4) for m = 0 one first has to mentally t1ansform
both the propagators into coordinate space which, according to (3.6), gives the
factor (lrl(;—)a))z, then multiply the obtained propagators (this gives 1/(z2)2-2))
and transform the obtained result back into momentum space that gives the

(3.6)
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N e

factor f(—lz(_—l, and the power of momenta 1/(p?)° (the same as in the argmn?en—t
of the last-vl"-function). Besides this, each loop contains the factor i(—m)*"°.
Collecting all together one gets

(—1A)® (B2)°7 / di-2k A2 gplee (,ﬁ )“m —&)(1 —¢)l(e)

-5

h(s) =15 @mi = | Rp_kE 18 (2n)® T(OT(DI(2 - 2¢)

: 27 : 2 2
o A2 u_Z 1 I‘Z(l——a)I‘(H—a):L A 2[1+2—7E+log47r+lni],
T 48 (4m)2c | —s| e(1-2¢) (1 -2) 48 1672 ¢ —s

which coincides with (2.14) at m = 0. . . .
The described method for calculation of massless integrals is applicable

to any integral depending on one external momentum (propaga.tor type).a'u(l
allows one to perform the calculations in any number of loops simply writing
down the corresponding factors without explicit integration. I.n the case'when
the integral depends on more than one external momentum (llk? for a tr‘langle
or a box) and they cannot be put equal to zero the method is no.t directly
applicable though some modifications are available. We do not consider them
here.

The four-point vertex in the one-loop approximation thus equals (we take
the common factor 1/4!¢* out of the brackets): :

k 2 2
A 3 3 3 1, w2 1 X 1. pu )}
3 — | = - = = ~n—+_-In—+-In— ] ».
I‘4=—z/\{1——167r2 (25 +3 27E+210g47r+ 219 — + glin= +5ln—
(3.7)
As one can see, the Euler constant and the logarithm of 47 always accompany

the pole term 1/¢ and can be absorbed into the redefinition of .

3.2 Quantum electrodynamics

Consider now the calculation of the diagrams in the gauge theories. We start
with quantum electrodynamics. The QED Lagrangian has the form
1

Loep = -—%Fﬁ,, + ("8, - m)y + ey  Aup — —22(6,,14,,)2, (3.8)

where the electromagnetic stress tensor is Fy, = 0,4, — 8,4, and the last
term in (3.8) fixes the gauge. In what follows we choose the Feynman or the

diagonal gauge (£ = 1). . ‘
The Feynman rules corresponding to the Lagrangian (3.8) are shown in

Fig.10.
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Figure 10: The Feynman rules for QED :

_k Va
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a) b) Ce

Figure 11: The one-loop:divergent didgréms in QED »

In quantum electrodynamlcs the dlvergences appear only in the photon
propagator, the electron propagator, and the triple vertex. The one-loop di-
vergent diagrams are shown in Fig.11. ,

We begin with the vacuum polarization graph It is given by the dlagram
shown in Fig. 11a). The corresponding expression looks like:

B o2 TT[7”(m + k) (m+k - p)]
Hﬂu(p) = (_—)(2”)4/(14 [m? /i:z][’m2 (k — p)Z] ’

where the ”-” sign comes from the fermion loop and § = 7*q,. We first go to
dimension 4 — 2¢. Then the integral (3.9) becomes :

Dzm (NZ)E' 4-2€ TT‘[’)’ (m+k)7 (m+k p)]
ME"0) = () gz | 2 e R o

Let us put m = 0 for simplicity. This will allow us to get a simple answer at
the end. First, we calculate the trace of the y-matrices:

(3.9)

Try*ky* (k—p) = Tr(yPy"v" 7" )k (k—p)° = 4k (k —p) [g“"g T+gh7g"P— g g,

So the integr'al now looks like

I7™(p) = (=)

oY [k

(2m)%-2 K2k —-p)?

Using the Feynman parametrization and performing the integration accordin
g g

to the formulae given above one finds

2\e 4—2¢ g
Dim _ ) d kk” k— P)
L™ (p) = 2w)4 = / / 7~ 2pkc T 7% (3.11)

" (3.10)

() mppa(-a) g [ de )
:(‘)’W{””g) S e R A )

To evaluate the remaining integrals, we use the standard integral for the
Euler beta-function

/ doa® 1-3:) B(e, ) = ['(a)l'(B)

(a+ﬂ)

which gives in our case

2ol e 1-e_ T(2=¢(2-¢)
/0 dez ~(1-z) = Ta—2g

Thus, the integral (3.11) becomes

.

- gy () T2 =) 1g%p?
Dim _ ¢ ef = gy - 3.12
2me) = rgny® (<5 ) S0 |y 4 32| oy
S I'(e) - bv th
where we have used that I'(~1+¢) = —1=%. Multiplying eq.(3.12 ) by the
trace » . o ;
[9””9 +g""g”” —9"g o \tp *p“p +p'pt - ¢"p = 2p P -g"”pz,‘
[9"6"° +9" g"° — g" ¢ 197" = ¢" D’ +g’”’ 2_ gm(4—2e)p? = —(2—2¢)p’ g’“’
we find .=
rDi 4e? Fz( K E.)I‘( ) uu 2 uv 2
Dim — 4 ef _ ) —g"p
L") = g im) ( p‘z) M-z PP o
. 862 \E l/’z : uu 2 F2(2 — 8)F( ) 10313
= il ny (<) @ - )—~—(4 S

Expanding now over ¢ with the help of

T() = ;iw(l';e), I(2—€) = (1-€)D(1-¢), T(4-2¢) = (3-2¢)(2-2¢)(1-2¢)I'(1-2¢),

we ﬁnally get

9 9N E 3e e
—z—e—(47r)€(—%> (uu2 pu )M__) &

D' _ -
Hp;m (p) - 1672

R o it ' #3314
= _ie —2 3|2 7E+log47r+log +3 ,(3.14)

; Z( /_u/ 2 p,up )HDtm( 2)
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where
2

. 2+5
16”23 —YE ogam og 3

Given the expression for the vacuum polarlzatlon one can construct the
photon propagator as shown in Fig.12.

=1\/\/\/\,+«\/\/\QW\,+...

Figure 12: The photon propagator in QED

HDi"‘(p25 = (3.15)

One has
Guw(p) = ;‘glw + 7 gllpnpﬂ p2g -
= ;;:glw _ I_ZI:;V +‘. o= %;giw _ i(g"” ._‘:;“P”/pz)ﬂ(p?) +
= S -EEa+neh +-) - 528,

where II(p?) is given by eq.(3.15). Notice that the radiative corrections are
always proportional to the transverse tensor.P,, = g, — p.p,/p?®. This is a
consequence of the gauge invariance and follows from the Ward identities.
Consider now the electron self-energy graph Fig. llb) The correspondmg
(B = k +m)y*

integral is
, e?
) =~y | e

Acting in a usual way we go to dimension 4 — 2¢, convert the indices of the
y-matrices and introduce the Feynman parametrization. The result is

2(u2)e d*=2k[—-2(1 — €)(p — k) + (4 — 26)m)
27r)4 2 / / [k? = 2kpz + pPx — m2z]?

The integral over k'can now be evaluated according to the standard formulas

(3.16)

Thim(p) = . (3.17)

. 2)e 21-€e)p(l—z)+ (4 —2)m
EDzm ) = —3i ) . .
() 167r2 L(e) / dz [p?z(1 — z) — m2z]e (3.18)
This expression can be expanded in series in €
\ ,
Dim € p 4m ~ )
ZVmp) = —iTe—s [ ——— +p—2m — (p — 4m)(—7E + log(4r))
1-
/ dz[2p(1 — z) — 4m)] logp i _Z) ] . (3.19)
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Notice that the linear divergence of the integral manifests itself as a simple
pole in ¢, and the coefficient has the dimension equal to 1 and is Lorentz

invariant (this is either p or m). ‘
At last, consider the vertex function F1g 11c) The correspouding integral
is . .
e Bk —G+mn(P-k+m)y”
hipa) = (2m)t / [(p—k—q)? —m¥[(p— k)? — m?]k>
Transfer to dimension 4 —2¢ and introduce the Feynman parametrization. This

(3.20)

gives
rPim(p q) = / d:z:/ dy (3.21)
/ d*- 2‘l’f[’v (p—k—g+mhy"(p— k+m)y]
[((p—k—q)?-m?)y+((p—k)* —m?)(z —y) + k(1 — )P
The integral over k is stralghtforward and gives
Dim — d 3.99
0P (0) = e gl [ d / y (3.22)

{F(1+5) [v(® (1—:,;) — §(1 —y) + m)y*(B(L ~ z) + gy +m)y"]
[(p—9)*y(1 — z) + pX(1 - z)(z — y) + ¢°y(z — y) — mPz]'*e
G B e e e o' } .
2 [(p-0)’y(1—z) + (1 - 2)(z — y) + P*y(z — y) — m’z]
As one can see, the first integral is finite and the second one is logarithmically
divergent. Expanding in series in € we find

. 32 71‘
I‘{’""(p,q)=i6167r2{——27 — *(vE — log(4m)) (3.23)
1 T —_A\2 1— 1— _ + 2 _ 2
. 27“/dz/dy 1og[p 9)’y(1-2)+p 2L mz]

/ l—z)—Q(l— y) + mIv(B(1 — z) + gy + m)y” }
/ -0 -0)+ (1 -2)E—y) + du—y) -
3.3 Qﬁanthm chi‘bmodynamics |

Consider now the non—Abehan gauge theories and, in particular, QCD. The
Lagrangian of QCD has the form

Loop = —3(Fo)? +P(in"0, — m)p + gy AZT™ - —(a Ag)?
+ 9,80, +g f“bCB#E“Ach, (3.24)
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where the stress tensor of the gauge field is now F' w = Ay =0, A5 +g f“b"AftA,c,
and the last terms represent the Faddeev-Popov ghosts.

The Lagrangian (3.24) generates the following set of Feynman rules:

the spinor propagator
the vector propagator

the ghost propagator

the spino-gauge vertex

the triple gauge vertex =—gf abc[(P - Q)kgﬂy

+(g — k)#g”

b v
A a Ap H(k—p) g
Ap
v NS
the ghost-gauge vertex “b EE =—gf abcqu

Consider the one-loop divergent diagrams. We start with the gluon propa-
gator. Besides the diagram shown in Fig.11a), one has additional contributions
to the vacuum polarization from the diagrams shown in Fig.13. The first dia-
gram takes into account the gluon self-interaction and the second one the con-
tribution of the Faddeev-Popov ghosts. (As has already been mentioned, the
tad-pole diagrams should not be included since they are automatically zero.)
These diagrams depend on the choice of the gauge, and to evaluate them we
have to fix the gauge. In what follows we choose the Feynman gauge (or the
diagonal gauge) for the gluon field.
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Figure 13: The vacuwuu polarization diagrams in the Yang-Mills theory

Then for the first diagram we have the expression

2 ab 4 .
ab g C{J d’k 9 0 1A L pA A pp
— 2 — k)Pat 2%k — Yo _ (L 1"
L) = 4o / Tl = K™ (2= ) = (k4

x [(2p—k)g" — (k+p)*g"” + (2k — p)"g"], (3.25)

where 1/2 is a combinatorial factor and C, is the quadratic Casimir operator
which for the SU(N) group equals N. It comes from the contraction of the
gauge group structure constants fe°

fabt:fdbc — Cgtsad.
Contracting the indices and going to 4 — 2¢ dimensions, one gets

HDim (ab)(p) — JabQZCA (l‘t2)E d4_2€
w 2 (2m*2% | (k- p)

+(3—2¢)(2k—p)*(2k—p)" — (2p—k)*(2p— k)" — (k+p)"(k+p)"}.

{g"[4p” + k* + (k - p)?]
(3.26)

To calculate the integrals, one can use the formulas given above. The first step
is the Feynman parametrization, eq.(2.4), and then the momentum integra-
tion is performed according to eqs.(2.16). Applying these rules we get for the
integral (3.26)

1

; 2C46% [—u®]1T(e)P(1—€)D(2—¢)
HDtm (ab) — .g"C4 uv, 2 6c)—p'p” (11=T2)).
v (p) 2(471')2_5 p2 F(4—25) [g p ( 2 6) p‘p ( 6)]
(3.27)
The second diagram corresponds to the integral
: 2C40% [—u21T(e)l (1—€)l(2—¢) 19
HDzm (ab) — 9“4 ny, 2 6c)— Y(11=7e)].
§11% (p) Z(47T)2—€ p2 F(4—25) [g p ( 2 6) pl‘p ( 6)]
(3.28)
here the ”-” sign comes from the Fermi statistics of the ghost fields.
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Calculation is now straightforward and gives

G?C48 [ P\ T(e)T(1 —)T(2—¢)

2\ €
Din (ab) — = v, 2 2 1— .
g ) = L (<) R P gz i - o).

(3.29)

Adding up the two contributions together, one finally has

L2g%6% T —p?] T ()1 —e)T(2—¢)
HDHIL (ab) =iC 47)e 5 3 uv, 2 L,V
102 ( ) Ly 1672 ( 71') p2 F(4—~2€) [g plp] |
(3.30)
or expanding in ‘
Dim (ab) (Lb ZQIW i P’LPV5 ,U 31
Hl“’ ( ) IC 6 —W‘—g ——'YE+10g4ﬂ'+10g 15 .
(3.31)

Acting the same way as in QED one can calculate the contribution to the gluon
propagator.

1 2
_ *1045"1’ - 2p [_ ~ v + log 47 + log - 1+ 2| .(3.33)
o
Analogously one can calculate the vertex diagrams. We consider in more
detail the calculation of the ghost-gluon vertex as a simpler one. The corre-

Isponding diagrams are shown in Fig.14. To simplify the evaluation, we put one

of the momenta equal to zero. Then the first diagram gives the integral

i

Notice that the final result for the sum of the two diagrams is again propor-

tional to the transverse tensor P,, = gu — pupv/ p?. This is not true, however,
for the diagram with the gauge fields and is valid only if one takes into account
the ghost contribution. Notice also the opposite sign of the resulting expression
compared to that of eq.(3.14). This is due to a non-Abelian nature of the gauge
fields and has very important consequences to be discussed later.

Consider also the ghost propagator. Here there is only one diagram shown
in Fig.14a).

k
a_(és%b
T oI
P pk P

a)

Figure 14: The ghost propagator and the ghost-gluon vertex diagrams in QCD

It corresponds to the integral

Dim (ab) ab 9 4-2 kkp
IPim (@) () = — 6 42€/d b

s
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(3.32)
which equals

HDim (ab)(p) — —iCAJGb

—uQ)E JEIM(1L—er(1-¢)
2 I'(2 - 2¢)

Having in mind that at the tree level the vertex has the form V,

Dimn (abe)
Vip

f”"" (3.34)

(p) = ()41/d @R

Using the equality kp = 1/2[k2 + p? — (k — p)? and substituting it into (3.34)
we find that the first two terms are reduced to the standard integrals and the

Jlast one leads to the tad-pole structure and is equal to zero. Adding up all

together we get

im (abc 1 ,U2 ¢ F(E)F(Q-E)F(l —6)
VD (abe) — abc _E n
1 (p) 4f a ﬂ) 7)) P G2 (1+ 2)
1 abe ‘ 1 2
= f ’ 16 ——p’ [——7E+10g47r+10g—+4 (3.35)

IThe second diagram gives

VQ?zm (abe)

_;Ca fabc / -2 P Rk + krgP — 2kPgH]
(2 4 x (K%)*(k ~ p)? '
(3.36)

Contracting the indices in the numerator we have (p — k)?kp + p’k(p — k) —
DEPp(p — k), which after integration leads to

(p) =

: 2\ Tl —e)(1—¢) 2

| VDzm {abc) = —_C abc (_“_) R
2 (p) 43 f (4r ) 2) P Tece 439
= —Ca fabc g P’ 1_ Ye + log 47 + log i + : (3.37)

1672 € p? 3 '

Adding up the two contributions together we find

‘/pDim (abc)(p) — fabc pp

1 —u?
672 _g—’YE+log47r+10g'T+2}- (3.38)

tree (abc) (p) .

—gf3%pP we get the vertex function in the one-loop approximation as

2
V(“bc)( ) = fabcp"{l+CA 7E+log47r+log—+2]}

(3.39)

1
21672
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4 Lecture I'V: Renormalization. General Idea:
{
Thus, we have convinced ourselves that the integrals for the radiative correc- |
tions are indeed ultraviolet divergent in accordance with the naive power count-
ing. The question then is: how to get a sensible result for the cross-sections
of the scattering processes, decay widths, etc? To answer this question let us. |
see what is the reason for divergences at large values of momenta. In coor-
dinate space the large values of momenta correspond to the small distances.
Hence, the ultraviolet divergences allow for the singularities at small distances.
Indeed, the simplest divergent loop diagram (Fig.7) in coordinate space is the
product of two propagators. Each propagator is uniquely defined in momentum
as well as in coordinate space, but the square of the propagator has already
an ill-defined Fourier-transform, it is ultraviolet divergent. The reason is that '
the square of the propagator is singular as 22 — 0 and behaves like 1/(z?)2. In
fact, the causal Green function (the propagator) is the so-called distribution
which is defined on smooth functions. It has the é-function like singularities
and needs an additional definition for the product of several such functions at !
a single point. The discussed diagram is precisely this product. i

The general approach to the elimination of the ultraviolet divergences known f
as the R-operation was developed in the 1950s. It consists in the 1ntr0duct10n
to the initial Lagrangian of additional local (or quasi-local) terms, called the -
counter-terms, which serve the task of the definition of the product of distrib-
utions at the coinciding points. The counter-terms lead to additional diagrams
which cancel the ultraviolet divergences. The peculiarity of this procedure, be- ;
ing the subject of the Bogoliubov-Parasiuk theorem, is in that the singularities
are local in coordinate space, i.e., are the functions of a single point and can |
contain only a finite number of derivatives. In the theories belonging to the .
renormalizable class, where the number of divergent structures is finite, the ‘
number of types of the counter-terms is also finite, they repeat the terms of the )
original Lagrangian. This means that the introduction of the counter-terms in :
this case is equivalent to the modification of the coefficients of various terms.,
i.e. to the modification of the normalization of these terms. That is why this
procedure was called the renormalization procedure.

It should be stressed that the parameters of the original Lagrangian like the
masses, the coupling constants and the fields themselves are not, strictly speak- |
ing, observable. They can be infinite. It is important that the renormalized
parameters which enter the final answers are meaningful. :
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Below we show by several exanmiples of renormalizable theories liow one
introduces the counter-terms into the Lagrangian, how they lead to tle renor-
malization of the original parameters and how the renormalization procedure
allows one to get finite results for the Green functions.

4.1 The scalar theory. The one-loop approximation

We start with the one-loop approximation and consider for simplicity the scalar
theory (3.1). It belongs to the renormalizable type and has a finite number of
ultraviolet divergent structures. The one-loop divergent diagrams in this theory
were calculated in the third lecture. Here we are interested in the singular parts,
i.e., the poles in . They are given by eqs. (3.3) and (3.7.

The propagator : Sing J;(p?) = —zmQ(—Gi\ﬁ—z)(—ilc:),

The vertex : Sing Ty(s,t,u) = —iA(35=)(—2).

1672
Note that the singular parts do not depend on momenta, i.e. their Fourier-
transform has the form of the é-function in coordinate space.

In order to remove the obtained singularities we add to the Lagrangian (3.1)
extra terms, the counter-terms equal to the singular parts with the opposite sign
(the factor 7 belongs to the S-matrix and does not enter into the Lagrangian),

namely,

1 A m? , A3 Ay
= 2e1672 o) F g Cp?)

These counter-terms correspond to additional vertices shown in Fig.15, where

@

Figure 15: The one-loop counter-terms in the scalar theory

(4.1)

the cross denotes the contribution corresponding to (4.1). With account taken
of the new diagrams the expressions for the propagator (3.3) and the vertex
(3.7) become

A
Lh(P*) = sz (1 — vg + log(4m) — log(m?/u*)) . (4.2)
A 3 3 1 u?
—ixd 2 (3-Capql L -1 FAL
Al'y =i { 16,72 (3 2’)'E + 2 log(4x) + ln + 2 —~In u)}
(4.3)
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Notice that the obtained expressions have no infinities but contain the de-
pendence on the regularization parameter p? which was absent in the initial
theory. The appearance of this dependence on a dimensional parameter is in-

herent in any regularization and is called the dimensional transmutation, i.e.,
an appearance of a new scale in a theory.

What we have done is equivalent to subtraction of divergences from the
diagrams. In doing this we have subtracted just the singular parts. This way
of subtraction is called the minimal subtraction scheme or the M S-scheme. One
can make the subtraction differently, for instance, subtract also the finite parts.

It is useful to subtract the Euler constant and log4m which accompany the -

pole terms. This subtraction scheme is called the modified minimal subtraction
scheme or the M S-scheme. It is equivalent to the redefinition of the parameter
1. Another popular scheme of subtraction is the so-called M OM-scheme when
the subtractions are made for fixed values of momenta. For example, in the case
of the vertex function one can make the subtraction at the point s = t = u = [2.
This subtraction is called the subtraction at a symmetric point.

The difference between various subtraction schemes is in the finite parts; in

the one-loop approximation this is just the constant independent of momentum,
however, in higher loops one already has momentum dependent terms. There-
fore, the finite parts of the Green functions depend on a subtraction scheme.
Note that this dependence in general is not reduced to the redefinition of the
parameter p, since there are usually a few divergent Green functions and all of
them are independent.

Thus, in the three subtraction schemes discussed above we have three dif-
ferent values for the vertex function

. A 3 1, 2 1 u 1 u2
MS — _ 3— 3 Jogdm+— In A= £
L ”\{1 1672 [ gretplgdrto s m i 2r
5 , A w1
F4 = —l/\{ 16 2|:3+—1 '_—S'f‘—l —t+—l _u}},
A o2 o1 121 2
MOM _ SEAR [l ML NI ML I ML I
Iy 1/\{1 62 [zln —s ln —t+ 5 n_u}}

The counter-terms are also different. It is useful to write them in the

following way

2 A
AL=—(Z— 1)-"2‘— — (24— 154", (4.4)
where for different subtraction schemes one has
1 A
27AIS = 1 il
+ 2e 1672’
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—_ 1
M5 - &
L lg T = e+ loglmgos,
3 A
ZA[S — e —— /
1 + 25 1672’ )
2{?[ = 1+ [——— — 3’Y}f +3 105;(117r)] 167 2?7

3
ZPOM = 14 —+3 3ve + 3log(4
1 [ YE + 0(7T)+ 12]162
The Lagrangian (3.1) together with the counter-terms (4.4) can be written

as

’ITLZ

1 2
E(a/l(P)Q - ZT‘P - Z4—’(P - ['an

wlere the renormalization constants Z and Z; are given by (4.5) and the renor-
malization constant Z, in the one-loop approximation equals 1.

Writing the "bare” Lagrangian in the same form as the initial one but in
terms of the "bare” fields and couplings

L+AL=2Z, (4.6)

1
['Bm‘e = 5(8“(,03)2 - (47)

and comparing it with (4.6), we get the connection between the "bare” and
renormalized quantities
Zop, my=2Z'm?, Ap = Z4Z7\

Y = (4.8)

Equations (4.7) and (4.8) imply that the one-loop radiative corrections calcu-

| lated from the Lagrangian (4.7) with parameters chosen according to (4.8,4.5)

are finite.

4.2 The scalar theory. The two-loop approximation

Consider now the two-loop diagrams. For simplicity and in order to complete

| all the integrations we restrict ourselves to the massless case. Since we are go-

ing to calculate the diagrams off mass shell, no infrared divergences may appear.

The propagator: In this order of PT there is only one diagram shown in

Fig.16.
The corresponding integral equals
d4—25kd4—25q
/ ¢*(k —q)*(p — k)¥’

(=iA)? ¥(u?)*
3 (2m)bt
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Jo(p?) =




o .

Figure 16: The two-loop propagator type diagram

(1/3! is a combinatorial coefficient). Let us use the method of evaluation of the
massless diagrams described above. One has to transform each of the propa-
gators into coordinate space, multiply them and transform back to momentum
space. This reduces to writing down the corresponding transformation factors. -

One gets
PR ) ()
6 (2r)l \ —p?

; /\2 2 72 2 ; /\2 1 13 2
A [ b L = =T P

6(167w2)2 | —p?| (2—3¢)(1—-3¢)(1—2¢e)2e  24(167%)2" |e 2 —p?
where the Euler constant and log4n are omitted.

The appeared ultraviolet divergence, the pole in €, can be removed via the
introduction of the (quasi)local counter-term ;

F1-e)l(1—-e)I'(1—¢e)l'(—1+ 2¢)
T(O)TOTL)T(E — 3¢)

h(p%) =

AL = (4.9).
_ {
where the wave function renormalization constant Z; in the MS scheme is
obtained by taking the singular part of the integral with the opposite sign

1/ 2\
ZQ“I_E<16w2) '

After that the propagator in the massless case takes the form

ot (=S S

i 1 A /13 2
LAY § . N 2In . :
p2{ 24 (16727 (2 +2h s )} (4.11)

The vertex: In the given order there are two diagrams (remind that in the
massless case the tad-poles equal to zero) shown in Fig.17. |
The first diagram by analogy with the one-loop case equals the sum of s,t
and u channels

S~ 108,

(4.10)

.[21 = .[21(8) -+ Izl(t) + .[21(11),
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m + crossed terms \9/ + crossed terms

Figure 17: The two-loop vertex diagrams

where each integral is nothing else but the square of the one-loop integral

G o Y Ol AN P\
In(s) = 96 <(27r)4_262/k2(17—k)2) "~ 96 (1672)2

(1/96 is the combinatorial coefficient).

Opening the bracket we, for the first time here, come across the second
order pole term 1/e? and the single pole log(—u?/s)/e accompanying it. This
latter pole is not harmless since its Fourier-transform is not a local function of
coordinates. This means that it can not be eliminated by a local counter-term.
This would be an unremovable problem if it were not the one-loop counter-
terms (4.1) which created the new vertices shown in Fig.15. In the same order
of A? one gets additional diagrams presented in Fig.18.

KX O

Figure 18: The diagrams with the counter-terms in the two-loop approximation

2
(1 ro+mi
£ —S5
(4.12)

These diagrams lead to the subtraction of divergences in the subgraphs (left
and right) in the first diagram of Fig.17. The subtraction of divergent sub-
graphs (the R-operation without the last subtraction called the R’ -operation)
looks like

where the subgraph surrounded with the dashed line means its singular part,
and the rest of the graph is obtained by shrinking down the singular subgraph
to a point. The result has the form

——————————

__________

3 2 2

o(s) = — -2 _[d By 21 oyl

Rila(s) = 4(16#2)2{(8+2+1n—s) 6(5+2+ln—s) -
i A 9 M "
_Zm(-—z+4+ln_ +4lll:



Notice that after the subtractions of subgraphs the siugular part is local. i.c.
. . b . .
i mowentunt space does not coutain Inp°. The terms with the single pole 1/«

are absent since the diagram can be factorized into two diagrams of the lower

order.
The contribution of a gi\'(‘,ll diagram to the vertex function ec uals
] 1

1 A 3
—IA{ ——— | ——= + 12
: {4(16772)2( a2

+l? S~ +41n

2 2 2 2
" + L—Fhlz i 411 + I +41 L)}
-5 —5 —t —t —u —U

The contribution to the renormalization constant of the four-point vertex in
the A1S scheme is cqual to the singular part with the opposite sign

302
AZy=+— (-2 .
e (16772)

The second diagrain with the crossed terms contains 6 different cases. Con-
sider one of them. Since we are interested here in the singular parts contributing
to the renormalization constants, we perform some simplification of the original

Al

integral. We use a very important property of the minimal subtraction scheme !
that the renormalization constants depend ouly on dimensionless coupling con-

stants and do not depend on the masses and the choice of external momenta.
Therefore, we put all the masses equal to zero, and to avoid artificial infrared
divergences, we also put equal to zero one of the external momenta. Then the
diagram becomes the propagator type one:

0
D —)—@ — D
The corresponding integral is:
(—iA)3 (#2)25 ) / d4-26qd4—25k
PERNCRS LR e s ey

Ino(p®) =

(1/48 is the combinatorial coefficient). Since putting one of the momenta equal

to zero we reduced the diagram to the propagator type, we can again use the
advocated method to calculate the massless integral. One has

N (p)* 7r2F(1 —e)I'(1—¢e)T'(e) / di-*E
48 (2m)8~4 T(LI()I(2 - 2¢) (E%)He(p — k)2

RS (ﬂi)kFU—dFu—dF@Wu—Qdﬂl—dF@d
T 48(1672)2 \ —p? F(HT(T(2 - 26)T(1 + &) (DT(2 - 3¢)
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Ino(p?) =

(4.13)

(4.14)

& A3 it 1
O 48(16m2)2 \ —p?/) 2e2(1— 25)(1 - 35)

i N 1.5 n(~1%/p’) W
= 48(16772) {2524—2—4—24— . + In* — ) 5 +51n ?}

As one can see, in this case we again have the second order pole in e and,
accordingly, the single pole with the logarithm of momentum. The reason of
their appearance is the presence of the divergent subgraph. Here we again
have to look at the counter-terms of the previous order which eliminate the
divergence from the one-loop subgraph. The subtraction of divergent subgraphs
(the R-operation without the last subtraction) looks like

—————

A5G- 00!

_____

or
. 3 2 2e €
Rib(s) = —2- 2 (- 1 A N
2(167%)2 | \—p?) 2e2(1—2¢)(1 - 3¢) —p) €%(1— 2¢)
i N 1 5 n(=p*/p*) | o ¥ p
=i 94— HIP) 2 B »
2(16772)2{(252+2 L e g —p2)
1 2 In(— 2 2
—(—2+—+4+iM L2 £ +21n——2)}=
e? ¢ € —p? —p
_ i X Lyl oy 1 300 L~
T 2602 | 22 2 o g n_ﬁ

Once again, after the subtraction of the dlvergent subgraph the singular part
is local, i.e. in momentum space does not depend on In p?.
The contribution to the vertex function from this diagram is:

L1 X 3 3 1, ., u? u?
AF4=—’LA{—(*(—§+E—12+§IH _—p2+31n—2+)}

3 (1672)2 >
(4.15)
=l 3 3 ) A2
2e? 2¢7 \ 1672/ °

Thus, due to (4.5) and (4.16) in the two-loop approximation the quartic
vertex renormalization constant in the M.S scheme looks like:

3 A AN\ 9 3
Ti=1+— ALY L2y,
T e T (167r2> (e~ 2
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and, accordingly,

AZy = (4.16)

(4.17)



With taking account of the two-loop renormalization of the propagator (4.10)
one has:

. 30A AN\ 91T '
gty 2T — — = —). 4.18
o= 2z P ote T (167r2) (2 ™1 ( v )
The statement is that the counter-terms introduced this way eliminate all
the ultraviolet divergences up to two-loop order and make the Grern functions
and lience the radiative corrections finite. In the case of nonzero mass, one.

should also add the mass counter-term.

4.3 The general structure of the R-operation

We are ready to fornmlate now the general procedure of getting finite expres-
sions for the Green functions off mass shell in an arbitrary local quantum field
theory. It consists of: _

In any order of perturbation theory in the coupling constant one introduces
to the Lagrangian the (quasi) local counter-terms. They perform the subtraction

of divergences in the diagrams of a given order. The subtraction of divergences

in the subgraphs is provided by the counter-terms of the lower order. After

the subtraction of divergences in the subgraphs the rest of the divergences are;

always local. The Green functions of the given order calculated on the basis of
the initial Lagrangian with account of the counter-terms are ultraviolet finite.
The structure of the counter-terms as functions of the field operators de-
pends on the type of a theory. According to the classification discussed in the
first lecture, the theories are divided into three classes: superrenormalizable (a
finite number of divergent diagrams), renormalizable (a finite number of types
of divergent diagrams) and non-renormalizable (a infinite number of types of
divergent diagrams). Accordingly, in the first case one has a finite number of
counter-terms; in the second case, a infinite number of counter-terms but they
repeat the structure of the initial Lagrangian, and in the last case, one has
an infinite number of structures with an increasing number of the fields and

derivatives.

In the case of renormalizable and superrenormalizable theories, since the.

counter-terms repeat the structure of the initial Lagrangian, the result of the
introduction of counter-tering can be represented as

L + AL = ‘CBIH'R = ‘C(QSB; {gB}v {mB})7 (419)

i.e., Lpare I the same Lagrangian £ but with the fields, masses and coupling
constants being the ”bare” ones related to the renormalized quantities by the

42

multiplicative equalities

= Z"({g},1/2)¢, ol = Zi({g}. 1/)gi, mP* = Zi,({g}, 1/e)m,,
(4.20)
where the renormalization constants Z; depend on the renormalized parameters
and the parameter of regularization (for definiteness we have chosen 1/¢). In
some cases the renormalization can be nondiagonal and the renormalization
constants become matrices. '

The renormalization constants are not unique and depend on the renormal-
ization scheme. This arbitrariness, however, does not influence the observables
expressed through the renormalized quantities. We will come back to this prob-
lem later when discussing the group of renormalization. In the gauge theories
Z; may depend on the choice of the gauge though in the minimal subtrac-
tion scheme the renormalizations of the masses and the couplings are gauge
invariant.

In the minimal schemes the renormalization constants do not depend on
dimensional parameters like masses and do not depend on the arrangement
of external momenta in the diagrams. This property allows one to simplify
the calculation of the counter-terms putting the masses and some external
momenta to zero, as it was exemplified above by calculation of the two-loop
diagrams. In making this trick, however, one has to be careful not to create
artificial infrared divergences. Since in dimensional regularization they also
have the form of poles in ¢, this may lead to the wrong answers.

In renormalizable theory the finite Green function is obtained from the
”bare” one, i.e., is calculated from the "bare” Lagrangian by multiplication on
the corresponding renormalization constant

F({p2}$ u2’ g}l) = Zp(l/é’, gi‘)FBare({p2}’ 1/67 gBm-e)v

where in the n-th order of perturbation theory the ”bare” parameters in the
r.h.s. have to be expressed in terms of the renormalized ones with the help
of relations (4.20) taken in the (n-1)-th order. The remaining constant Zp
creates the counter-term of the n-th order of the form AL = (Zr — 1)Or,
where the operator Or reflects the corresponding Green function. If the Green
function is finite by itself (for instance, has many legs), then one has to remove
the divergences only in the subgraphs and the corresponding renormalization
constant Zr = 1.

Note that since the propagator is inverse to the operator quadratic in fields
in the Lagrangian, the renormalization of the propagator is also inverse to the
renormalization of the 1-particle irreducible two-point Green function

D(p2, ﬂ2agu) = Z{l(l/s’ gu)DBare(p27 1/5y gBaTe)-
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Dare
i

(4.21)

(4.22)



The propagator renormalization constant is also the renormalization constant

of the corresponding field, but the fields themselves, contrary to the masses

and couplings, do not enter into the expressions for observables.

We would like to stress once more that the R-operation works independently
on the fact renormalizable or non-renormalizable the theory is. In local theory
the counter-terms are local anyway. But only in renormalizable theory the

counter-terms are reduced to the multiplicative renormalization of the finite

number of fields and parameters.

One can perform the R-operation for each diagram separately. For this
purpose one has first of all to subtract the divergences in the subgraphs and then-
subtract the divergence in the diagram itself which has to be local. This serves
as a good test that the divergences in the subgraphs are subtracted correctly.
In this case the R-operation can be symbolically written in a factorized form

RG= ][] a-M)G, (4.23)

div.subgraphs

where G is the initial diagram, M is the subtraction operator (for instance,
subtraction of the singular part of the regularized diagram) and the product
goes over all divergent subgraphs including the diagram itself. By a subgraph
we mean here the 1-particle irreducible diagram consisting of the vertices and
lines of the diagram which is UV divergent. The 1-particle irreducible is called
the diagram which can not be made disconnected by deleting of one line.

I

We have demonstrated above the application of the R-operation to the two~ -

loop diagrams in a scalar theory. Consider some other examples of diagrams
with larger number of loops shown in Fig.19. They appear in the ¢* theory in
the three-loop approximation.

a b c

Figure 19: The multiloop diagrams in the ¢* theory

In order to perform the R-operation for these diagrams one first has to find
out the divergent subgraphs. They are shown in Fig.20.

Let us use the factorized representation of the R-operation in the form of
(4.23). For the three chosen diagrams one has, respectively,

RGo = (1-Mg)(1 - My,)(1 - My)Go,
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Figure 20: The divergent subgraphs in the diagrams of Fig.19

RG,
RG,

= (1— Mg)(1 - My,)(1 - M,,)Gs,
(1= Me)(1 ~ My)(1 — My)(1 - M,,)G,

where 71 and 7, are the one- and two-loop divergent subgraphs shown in Fig.20.
The result of the application of the R-operation without the last subtraction
( R’-operation) for the diagrams of interest graphically is as follows:

@ @( o@ e OO{}

Figure 21: The R'-operation for the multiloop diagrams

_ Here, as before, the graph surrounded with the dashed circle means its
singular part and the remaining graph is obtained by shrinking the singular

“|subgraph to a point.

‘ Let us demonstrate how the R’-operation works for the diagram Fig.19a).
Since the result of the R’-operation does not depend on external momenta, we
put two momenta on the diagonal to be equal to zero so that the integral takes

thg propagator form. Then we can use the method based on Fourier-transform,
as 1t was explained above. One has )
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= (F(I“E) r(‘zf%) ) (F(I_E) r2(1+a)r(2—4s)) (;.T) i

We use here the angular integration measure in the 4—2¢ dimensional space'
accepted above, which results in the multiplication of the standard expression
by I'(1 —¢) in order to avoid the unwanted transcendental functions. Following

the scheme shown in Fig.21 we get
] 1 !
Yy _ *(1-)I(e) —
Q: @ = Tl-) 1o @‘
7

F(l _ 8) F‘-’(1~e)F(e)F(1 . 6) I(1-e)[(1-2¢)(2) (”_2)25

I(2-2¢) ['(1+4€)[(2—3¢) P
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1 ([‘_)3&‘
e3(1-2e)2(1~de) \ p?

iR

1 22
53(1—25)(1—35)(%?) g

€ i

P e 1

YN '._< >_ _ 1 D2(1-e)0(e) (e Ay 1 2

O O \tp =alll-ea 700 () = sgm(e)"
- o 1

Combining all together one finds
1 2 1 2
253(1—25)(2:_2)6 + 53(1_26)(1;_2)6

' ~ 1 2 3
R T@_‘T % e () -
2

l—e—e¢
e

Note the cancellation of all nonlocal contributions. The singular part after the
R'-operation is always local.
The realization of the R'-operation for each diagram G allows one to find
the contribution of a given diagram to the corresponding counter-term and, in

the case of a renormalizable theory, to find the renormalization constant equal

to

Z=1-KTRG, (4.24)

where K means the extraction of the singular part. Adding the contribution
of various diagrams we get the resulting counter-term of a given order and,
accordingly, the renormalization constant.
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5 Lecture V: Renormalization. Gauge Theo-

ries and the Standard Model

Consider now the gauge theories. The difference from the scalar case is in
the relations between various renornalization constants which follow from the
gauge invariance. If the regularization and the renormalization schieme do not
break the symmetry these relations hold autonatically. In the opposite case,
this is an additional requirement imposed on the counter-terms.

5.1 Quantum electrodynamics

Quantum electrodynamics (3.8) is a renormalizable theory: hence, the counter-
terms repeat the structure of the Lagrangian. They can be written as

' Zy—1 ] .
ALopp = —%—lﬁ'ﬁ, +(Zy = 1)ipdp ~ m(Z — 1) + e(Z, — 1)PAy. (5.1)

The term that fixes the gauge is not renormalized. In the leading order of
perturbation theory we calculated the corresponding diagrams with the help
of dimensional regularization (see (3.15),(3.19),(3.23)). Their singular parts
with the opposite sign give the proper renormalization constants. They are,
respectively,

2
1
T o= 1% 2
! 16n2e’
2
1
Z, = 1- -2 2.
2 16n2e’
. 2 4
To = 1--2_ 2% 5
3 16723¢’ (5-2)
2
7 =1--212
1672¢
Adding (5.1) with (3.8) we get
L: A Z3 2 . T A - -2 ]. 2
Qep + ALgep = *ZF,W + ZopOY — mZpp + eZyp Ayp — i(aﬂA“)
1 s . 2
= = Fnp +ibpds — mZZ; pn + 212y 25 P Ap
z3! 2
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that gives

wp = 2%, Ap=2,"A, mp=22Z;'m, ep= 2,251 2; e, €p= Zs.
(5.4)
The gauge invariance here manifests itself in two places. First, the transversal-
ity of the radiative correction to the photon propagator means that the gauge
fixing term is not renormalized ‘and, hence, the gauge parameter ¢ is renor-
malized as a gauge field. Second, the gauge invariance connects the vertex

Green function and the fermion propagator (the Ward identity), which leads .-

to the identity Z, = Zo. Since the dimensional regularization which we use
throughout the calculations does not break the gauge invariance, this identity
is satisfied automatically (see (5.2)). This means that the renormalization of
the coupling (5.4) is defined by the photon propagator only. Note, however,
that this is not true in general in a non-Abelian theory.

5.2 Quantum chromodynamics

The complications which appear in non-Abelian theories are ‘caused by the
presence of many vertices with the same coupling as it follows from the gauge
invariance. Hence, they have to renormalize the same way, i.e there appear new
identities, called the Slavnov-Taylor identities. The full set of the counter-terms

in QCD looks like
Zy—1
4

2 ~ ~ . 8
~{Zs— 1)-"Z fobe fade AP AC AL AC 4 (23— 1), Buc” + 9(Z1—1)f* 0, Ay’
+i(Zy — 1)Pd — m(Z = V)P + 9(Zry — VPAT, (5.5)

that being added to the initial Lagrangian gives

ALgcp = — (8,42 — 8,A%) — g(Z1 = D" ALALD, A,

Z c
Laop + ALgep = =7 (0,45 — 0,A7)" ~ 920 [ AGALOLA,
2 ‘ ~
2, e AL AS AL — 29,20 — 9T SO A
1
2€
(BuA% — 8,A%5)" — 92125 e ACp AL pOu A

i Zo DY — mZPp + 92 B AT — —(8,45)°

_ 1

- 3004

22 Ay A Al A + 0,580, + 921257 25D A
,Z3_1 2 \2 2T A ~1.7 ~17-1/27 Zfara
+-§£_(6FAIJB) + Z"/}Ba"/}B - mZZ2 '(/}B’(/}B + gZ11/1Z2 Z3 '(/}BABT "/}B. (56)
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This results i the relations between the renormalized and the ”bare” fields

1 and couplings

bp = Zy"p, Ap = ZPA ep =23,
mp = ZZ.zjlln, gp = ZIZ.J_S’/Qg. &p = Z3€,
ZZ7 = 23, Zy=Z3Z7Y. 20,27 = 227

(5.7)

The last line of equalities follows from the requirement of identical renormal-
ization of the coupling in various vertices and represents the Slavnov-Taylor
identities for tle singular parts. :

The explicit form of the renormalization constants in the lowest approxima-
tion follows from the one:loop diagrams calculated earlier (see (3.14), (3.19)
(3.23), (3.31), (3.33), (3.39). Aa usual, one has to take the singular part with7
the opposite sign. One has in the MS scheme

2
C
2 1672 ¢’
2
5 4
Ze = 1+ (2o, 2
3 +167r2(3ECA SETfnf)’
2
7 = 1--9 %
1672 ¢ ’
9
= C
7 =19 ~a
! 1672 2¢’ (5.8)
. 2 C
7, o= 149 Y4
2 +167r225’
. 2 1 4
Z, = zzzi Vo9 (2o, -2
97 M 672 (604 ~ 3 M)

wht(eire the following notation for the Casimir operators of the gauge group is
use

fabCfdbc — CA(sad, (TaTa)i]- = CF(S,-]-, TT(TaTb) = TF(sab.

For the SU(N) group and the fundamental representation of the fermion fields
they are equal to ' :
NZ-1 1

Tr = =.

Cas=N, Cr=
A F aN 5

5.3 The Standard Model of fundamental interactions

In fﬁhe Standard Modf:l of fundamental interactions besides the gauge inter-
:-CtIOI.lS, and t-he quartic interaction of the Higgs fields there are-also Yukawa
ype interactions of the fermion fields with the Higgs field. These interactions
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are also renormalizable and is characterized by the Yukawa coupling constants
oue for each fermion field. The peculiarity of the SM is that the masses of the:
flelds appear as a result of spontaneous symmietry breaking when the Hi S
field develops a vacuum expectation value. As a result the masses are not in(gii-

pendent but are expressed via the coupling constant multiplied by the vacuum -

expectation value. Here there are two possibilities: to treat the Yukawa cou-
plings as independent quantities and to renormalize them in a usual way and
th.en express the renormalized masses via the renormalized couplings or toystart
with the masses of particles and to treat the Yukawa couplihgs as secondar
quantities. The first approach is usually used within the minimal subtractioill
§c11e111e where the renormalizations do not depend on masses. On the contrar
in the MOM scheme when the subtraction is carried out on mass shell (tli;
so-called ”on-shell” scheme), one usually takes masses of particles as the basis
Under this way of subtraction the pole of the propagator is not shifted and the:
renormalized mass coincides with the mass of a physical particle. Below wi
consider the renormalizations in the SM in the M S scheme and con.centrat N
the renormalization of the fields and the couplings. oo

Another property of the Standard Model is that it has the gauge grou
SU(3) x SUL(2) x Uy(1) which is spontaneously broken to SU,(3) x U 5 (1)p
In the theories with spontaneously broken symmetry, accordincg to theEgold-.
SFone theorem there are massless particles, the goldstone bosons. These par-
ticles indeed are present in the SM but they are not the physical degreeg of
freedom and due to the Higgs effect are absorbed by vector bosons turning into
longitudinal degrees of freedom of massive vector particles. ¢

Thus, there are two possibilities to formulate the SM as a theory with spon-
taneous symmetry breaking: the unitary formulation in which nonphysical de-
grees of freedom are absent and vector bosons have three degrees of freedom
and the so-called renormalizable formulation in which goldstone bosons ar(;
present in the spectrum and vector fields have two degrees of freedom. These
two formulations correspond to two different choices of the gauge in sponta-
neously broken theory.

In unitary gauge we have only physical degrees of freedom, i.e., the theory is
automatically unitary, hence the name of this gauge. However, the propagator
of the massive vector fields in this case has the form o

g —EE
Gulk) =~

Le., does;. nor decrease when momentum goes to infinity. This leads to the
increase in the power qf divergences and the theory happens to be formally
nonre_normah'zable despite the coupling constant being dimensionless. We have
mentioned this fact in the first lecture. ‘ ' ‘
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On the other hand, in renormalizable gauge, where the vector fields have
two degrees of freedom, the propagator behaves as

g — Ll
_ . 12
Gul/(k) = —1 k.z — AIQ ’

which obviously leads to a renormalizable theory which explains the name of
this gauge. However, the presence of the goldstone bosons calls into question
tlie unitarity of the theory since transitions between the physical and unphysical
states become possible.

Since all the gauges are equivalent, one can work in auy of them but in the
unitary gauge one has to prove the renormalizability while in the renormalizable
gauge one has to prove unitarity. The gauge invariance of observables preserved
in a spontaneously broken theory should guarantee the fulfilment of both the
requirements simultaneously. Note that in spontaneous symmetry breaking
the symmetry of the Lagrangian is preserved, it is the boundary condition that
breaks the symmetry.

The rigorous proof of that the theory is simultancously renormalizable aid
unitary is not so obvious and eventually was awarded the Nobel prize, but
can be seen by using some intermediate gauge called the Re-gange. The gauge
fixing term in this case is chosen in the form

o O O

1 @ ., \2 a __ v
_QE(B;LA;L gng Xl) ) gF: - 9

OO O%R
oow O

@

where v is the vacuum expectation value of the Higs field, and x; are the
goldstone bosons. In this gauge the vector propagator has the form

9" — man(1-9)
Gu(k) = —1i R Y ,

and at £ = 0 corresponds to the renormalizable gauge while as £ — oo it
corresponds to the unitary one. Since all the observables do not depend on &,
we can choose £ = 0 when investigating the renormalizability properties and
choose £ = 0o in examining the unitarity. Since we are interested here in the
renormalizability of the SM, in what follows we will work in a renormalizable

gauge.
The Lagrangian of the Standard Model consists of the following three parts:

L = Lgauge + Ly ukawa + LHiggs: (5.9)
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The gauge part is totally fixed by the requirement of the gauge invariance
leaving only the values of the couplings as free parameters

1 o a 1 i i 1
E!I““!l" = _ZGI”IGI”/ - Zu/;wullw - ZBIH’BI”‘ (510)

+i7J_u’YHD/:La + ia({y”Dan’ + iE—n’Y”DuEﬂ
+iU," DU +iDoy" DDy + (DH) (D, H),

wliere the following notation for the covariant derivatives is used

« a ‘ « abe b e
G/{l/ = OI’GI/ - (),,G“"f‘ g-ﬁ'ful G/fGl/‘?
Wi, = 9W) - 9,Wi+ g Wiwk,
B/u/ = O/IBI/;(‘)I/B[L7

g 9 i, 9
DI'L” = (()” t 7,‘2—7'"/1/” + Z'é—B”)Ln,
D/LEn = (6;L+ig,Bu)E(n
g g g
- 2794 . -J8 ya
D,Q. = (6,,——1—2-7 VVH—Z—G—BN—ZE/\ Gz)Qm
2
Dla = (9 —i59'Bu - i%/\aGZ)Um
1 s \ara
DDa = (8,4 isg B~ i %X GE)De

The Yukawa part of the Lagrangian which is needed for the generation of the
quark and lepton masses is also chosen in the gauge invariant form and contains
arbitrary Yukawa couplings (we ignore the neutrino masses, for simplicity)

E)’ukawa = ygﬁz’—aEﬁH + y(?,e@aDﬂH + ygﬁQuUﬁﬁ =+ h.C., (5'11)

where H = ity HY.

At last the Higgs part of the Lagrangian contains the Higgs potential which
is chosen in such a way that the Higgs field acquires the vacuum expectation
value and the potential itself is stable

A
Lrigge ==V =m’H'H — S(H'H)", (5.12)

Here there are two arbitrary parameters: m? u X. The ghost fields and the
gauge fixing terms are omitted.
The Lagrangian of the SM contains the following set of free parameters:

e 3 gauge couplings gs,9,9;
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o 3 Yukawa matrices y(fﬂ, y(?ﬂ, yf"d;
o Higgs coupling constant A
o Higgs mass parameter m?;

o the number of the matter fields (generations).

All particles obtain their masses due to spontaneous breaking of the SUes(2)
symmetry group via a nonzero vacuum expectation value (v.e.v.) of the Higgs

el < H>= (8), v=m/VA {(5.13)

As a result, the gauge group of the SM is spontaneously broken down to
SU.(3) ® SUL(2) ® Uy (1) = SU:(3) ® Ugar(1).

The physical weak intermediate bosons are linear combinations of the gauge

ones L WiEiw? ' 3
= ——7§—, Z, = —sinfy By, + cos Oy W, (5.14)
with masses
mw = %gv, mz = mw/cosfy, tanby =4d'/g, (5.15)
while the photon field
¥, = cos b By, + sin HWW;:’ (5.16)

remains massless.
The matter fields acquire masses proportional to the corresponding Yukawa
couplings:
M3 = Ypsv, Mi, = yigv, Ml = YhgV, My = V2m. (5.17)
The mass matrices have to be diagonalized to get the quark and lepton masses.
The explicit mass terms in the Lagrangian are forbidden because they are
not SUje(2) symmetric. They would destroy the gauge invariance and, hence,
the renormalizability of the Standard Model. To preserve the gauge invariance
we use the mechanism of spontaneous symmetry breaking which, as was ex-
plained above, allows one to get the renormalizable theory with massive fields.
The Feynman rules in the SM include the ones for QED and QCD with
additional new vertices corresponding to the SU(2) group and the Yukawa
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interaction, as well as the vertices with goldstone particles if one works in the
renormalizable gauge. We will not write them down due to their complexity,
though the general form is obvious.

Cousider the one-loop divergent diagrams in the SM. Besides the familiar
diagrams in QED and QCD discussed above one has the diagrams presented
in Fig.22. The diagrams containing the goldstone bosons are omitted. The

Qg 2
1,‘\¥ { L _%_ -V __:__

i i ~ v \w/ _ - P
N s S S
-— _ P aVaC SN

Figure 22: Some divergent one-loop diagrams in the SM. The dotted line de-

notes the Higgs field, the solid line - the quark and lepton fields, and the wavy

line - the gauge fields

calculation of these diagrams is similar to what we have done above. Therefore,
we show only the results for the renormalization constants of the fields and
the coupling constants. They have the form (for the gauge fields we use the
Feynman gauge) ’

Zyg, = i lez[;ﬁg +292+§g3+%y§+%yﬁ],
Zug = 1- 12 [49 +495+yz1]

€1672'9 3
Zodg = 1- llﬁlﬂz[lg +§99+9D]
Zor, = 1";‘?61?2‘[29’24'29 +1yL],
Zaew = 1= 2355l" + 42, |
Zoy = 1+-i—-16i2—[;g +gg - 3y} — 3yp — i)
Zzp = 1*%1%5[290 Ft NH]Q U(l_)Y boson
Zzy = 1+-§#[3—% rle? ~ photon

Zyw = élﬁlﬂ [? E,)l‘(NF + 3NF) — =Nulg,
o - -
Zp = 1+ %1—61;2[ 11+ %Np]gf,
g = 1+ 51—1—2[—%% %NF + éNHk?Z,
Zyr = éml 2[299% + éN” Io"
Zy = 1+ éﬁg[—i—;gm - Zgz — 87 + gyf + ;yé +ui),
Zyy = 14 éfglﬁ[—%g” - 2-92: —8g2 +;y'fr + gy% +il,
Zy = 1+ -i— 1617r2 ['—?5'2 — 292 + gy} +3y¢: -+ 3p),
Zy = 1+ 21—61;5[—351’2 zg + 2(3uf + 3y% -+ y2) + 6)
~2(3yi: -+ 3yp -+ yp) /A + (zj + ;q + g‘zq'2 )/l

where, for simplicity, we ignored the mixing between the generations and as-
sumed the Yukawa matrices to be diagonal.

The difference from the expressions considered above is that the renormal-
ization constant of the scalar coupling contains the ternis of the type ¢*/\ and
y*/X. This is because writing the counter-term for the quartic vertex we factor-
ized A. The counter-terms themselves are proportional to ¢* and y* and are not
equal to zero. Thus, the quantum corrections generate a new interaction even
if it is absent initially. Since the gauge and Yukawa interactions belong to the
renormalizable type, the number of types of the counter-terms is finite and the
only new interaction which is generated this way, if it was absent, is the quartic
scalar one. With allowance for this interaction the model is renormalizable.

Since the masses of all the particles are equal to the product of the gauge
or Yukawa couplings and the vacuum expectation value of the Higgs field, in
the minimal subtraction scheme the mass ratios are renormalized thic same way
as the ratio of couplings. To find the renormalization of the mass itself, one
should know how the v.e.v. is renormalized or find explicitly the mass counter-
term from Feynman diagrams. In this case, one has also to take into accoun
the tad-pole diagrams shown in Fig.22, including the diagrams with goldstone
bosons.

For illustration we present the renormalization constaut of the b-quark mass
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in the SM

11 v} ve 3. 3., .
Zy, = 14+=-==[) ZT+3Y ZL-2+=(y; ¢}
v +5167r2[Z A + ; N 2 +4(yh Yt)

3 (9*+9%)? 34’

- 3Q4(Q1, — T)g" — 447). (5.18)

16 A 8 A
The result for the t-quark can be obtained by replacing b by ¢. For the light
quarks the Yukawa constants are very small and can be ignored in eq.(5.18).

Note that here we again have the Higgs self-interaction coupling A in the
denominator. It appears from the tad-pole diagrams but, contrary to the pre-
vious case, the renormalization constant 7, is not multiplied by A and the
denominator is not cancelled. This does not lead to any problems in perturba-
tion theory since by order of magnitude A ~ g? ~ y? and the loop expansion is
still valid.
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6 Lecture VI: Renormalization Group

The procedure formulated above allows one to eliminate the ultraviolet di-
vergences and get the finite expression for any Green function in any local
guantum field theory. In renormalizable theories this procedure is reduced to
the multiplicative renormalization of parameters (masses and couplings) and
multiplication of the Green function by its own renormalization constant. This
is true for any regularization and subtraction scheme. Thus, for example, in
the cutoff regularization and diinensional regularization the relation between
the ”bare” and renormalized Green functions looks like

F({pz}: u27 {gu}) = Zr(A2/y,2, {gli})FBtl7’€({p2}7 A, {gBare}) (6'1)
F({p2}a 1‘27 {gu}) = Zr(l/é‘, {g/t})FBare({p2}a 1/51 {gBare})7 (6~2)

where {p?} is the set of external momenta, {g} is the set of masses and cou-
plings, and

9Bare = Zg((A2/:U27 {gu})g Or  gpare = Zg((l/Ev {gu})g-

It is obvious that the operation of multiplication by the constant Z obeys the
group property. Indeed, after the elimination of divergences one can multiply
the couplings, masses and the Green functions by finite constants and this will
be equivalent to the choice of another renormalization scheme. Since these
finite constants can be changed continuously, we have a continuous Lie group
which got the name of renormalization group. The group transformations of
multiplication of the couplings and the Green functions are called the Dyson
transformations.

6.1 The group equations and solutions via the method
of characteristics

In what follows we stick to dimensional regularization and rewrite relation (6.2)
in the form

FBare({P2}7 1/57 {gBare}) = ZITI(I/E: {gu})F({p2}7 ,U?, {gu})‘ (63)

[t is obvious that the Lh.s. of this equation does not depend on the parameter
of dimensional transmutation z and, hence, the r.h.s. should not also depend
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on it. This allows us to write the functional equation for the renormalized

Green function. Differentiating it with respect to the continuous parameter p

oue can get the differential equation which has a practical value: solving this
equation one can get the improved expression for the Green function which
corresponds to summation of an infinite series of Feynman diagrams.

Cousider an arbitrary Green function I' obeying equation (6.2) with the
normalization condition

r'({r’}, p*,0)=1.

Differentiating (6.2) with respect to u? one gets:

o d o  ,0g 0 dIn Zp
2. " = 2 = 2 / .
Iz du2r < au + 8u26g) d,LL2 ZFFB{"C)
or
9
( 0Bl +7r) D({ph 2, 9.) = O, (6.4)

where we have introduced the so-called beta function $(g) and the anomaly
dimension of the Green function yr(g) defined as

dg
IB = dﬂ |gbar¢7 (6'5)
dln Z
_ .2 r
T = —p ‘Wlmm- (6.6)

Equation (6.4) is called the renormalization group egquation in partial deriv-
atives (in Ovsyannikov form). In the western literature it is also called the
Callan-Simanzik equation.

The solution of the renormalization group equation can be written in terms
of characteristics:

where the characteristic equation is (for definiteness we restrict ourselves to a
single coupling)

B(g), 3(0,9) =g (6.8)

The quantity g(t, g) is called the effective charge or effective coupling.

d_
Eg(t, g) =
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We will consider the useful properties of this solution (6.7) later and we
first derive several other similar equations. Since the vertex function usually
comes with the coupling, one can consider the product

gl <{£z} ) . (6.9)

If T is the n-point function, then the renormalization of the coupling g is given

by : \
9Bare = ZI‘Z_"/ g,

and the product (6.9) is renormalized as

/2
gF = Z;l/ gB(”‘(iFBII.‘I‘("

Hence, one has the same equation as (6.2) with solution (6.7) but with Zp =
Z;L/ 2 and v = —n/27. (Recall that the anomalous dimension 7, is defined
with respect to the renormalization constant Z; 1)

Furthermore, one can construct the so-called invariant charge by multlply-
ing the product (6.9) by the corresponding propagators

= gF({pz},g)HD‘/"’( ) (6.10)

The invariant charge &, being RG-invariant, obeys the RG equation without
the anomalous dimension and plays an important role in the formulation of the
renormalization group together with the effective charge. In some cases, for
instance in the MOM subtraction scheme the effective and invariant charges
coincide.

The usefulness of solution (6.7) is that it allows oné to sum up an infinite
series of logs coming from the Feynman diagrams in the infrared (¢ — —o0)
or ultraviolet (t+ — o) regime and improve the usual perturbation theory
expansions. This in its turn extends the applicability of perturbation theory
and allows one to study the infrared or the ultraviolet asymptotics of the Green
functions.

To demonstrate the power of the RG, let us consider the invariant charge
in a theory with a single coupling and restrict ourselves to the massless case.
Let the perturbative expansion be

2 2

E(%,g) =g(1+bgln—£2—+...). (6.11)
The B function in the onc-loop approximation is given by
Blg) = bg”. (6.12)
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Notice that the coefficient b of the logarithm in eq.(6.11) coincides with that of
the 8 function. Alternatively the 8 function can be defined as the derivative
of the invariant charge with respect to logarithm of momentum

Blg) = (6.13)

26( Qag)lli‘ =2
This definition is useful in the MOM scheme where the mass is not con-
sidered as a coupling but as a parameter and the renormalization constants
depend on it. We will come back to the discussion of this question below when
considering different definitions of tlie mass.
According to eq.(6.7) (with vanishing anomalous d1111ens1011) the RG-iinproved
expression for the invariant charge corresponding to the perturbative expression

(6.11) is
;2 P 2

gl?G(L_Qag) §PT(1 g(ﬂ'Q,g)) (%ag):

where we have put in eq.(6.7) p* = p2 and then replaced ¢ by t = In p? /u?. The
effective coupling is a solution of the characteristic equation

(6.14)

d 2
—g(t,9) = bg*, §(0,9) =g, t=In=. 6.15
7I(t9) =bg", §(0,9) =g, na (6.15)
The solution of this equation is
gtg) = —5—. (6.16)
! 1 — bgt .

Being expanded over ¢, the geometrical progression (6.16) reproduces the ex-
pansion (6.11); however, it sums the infinite series of terms of the form g"t".
This is called the leading log approximation (LLA) in QFT. To get the cor-
rection to the LLA, one has to consider the next term in the expansion of the

f function. Then one can sum up the next series of terms of the form gt

which is called the next to leading log approximation (NLLA) etc. This pro-

cedure allows one to describe the leading asymptotics of the Green functions

for t - too. {
Consider now the Green function with non-zero anomalous dimension. Let

its perturbative expansion be

v’ p
F(P,g) =1l+cgln—=+ (6.17)
I .
Then in the one-loop approximation the anomalous dimension is ‘
!
v(g) = cg. (6.18) |
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Again the coefficient of the logarithm coincides with that of the anomalous
dimension. In analogy with eq.(6.13) the anomalous dimension can be defined
as a derivative with respect to the logarithm of momentum

d 2
v(9) = ﬁ InT( 2,g)lp =yt (6.19)
Substituting (6.18) into eq.(6.7), one has in the exponent
' Frg), | g
_ T\9 cg c. g
'ygt,gdt:/ dg= | —=dg=-+In=.
/ (5t 9) (9) bg? b g
0 g 9
This gives for the Green function the improved expression
Tre = g - -— ! ” ~1+ct+ (6.20)
RG — g _— 1 — bgt ~~ C CERY .

Thus, one again reproduces the perturbative expansion, but expression (6.20)
again contains the whole infinite sum of the leading logs. To get the NLLA,
one has to take into account the next term in eq.(6.18) together with the next
term of expansion of the 8 function.

All the formulas can be easily generalized to the case of multiple couplings
and masses.

6.2 The effective cbupling

By virtue of the central role played by the effective coupling in RG formulas,
consider it in more detail. The behaviour of the effective coupling is determined
by the B function. Qualitatively, the 8 function can exhibit the behaviour
shown in Fig.23. We restrict ourselves to the region of small couplings.

In the first case, the S-function is positive. Hence, with increasing momen-
tum the effective coupling unboundedly increases. This situation is typical of
most of the models of QFT in the one-loop approximation when 8(g) = bg?
and b > 0. The solution of the RG equation for the effective coupling in this
case has the form of a geometric progression (6.16). It is characterized by the
presence of a pole at high energies, called the Landau pole. We will consider
this pole in detail later.

In the second case, the S-function is negative and, hence, the effective
coupling decreases with increasing momentum. This situation appears in the
one-loop approximation when b < 0, which takes place in the gauge theories.
Here we also have a pole but in the infrared region.
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B(g) B(9) B(g) B(g)

a) b) c d)

Figure 23: The possible form of the B-function. The arrows show the behaviour

of the effective coupling in the ultraviolet regime (¢t — co)

In the third case, the S-function has zero: at first, it is positive and then
is negative. This means that for small initial values the effective coupling
increases; and for large ones, decreases. In both the cases, with increasing
momentum it tends to the fixed value defined by the zero of the S-function.
This is the so-called ultraviolet stable fized point. It appears in some models
in higher orders of perturbation theory. 4 ,

Eventually, in the last case one also has the fixed point but now for the
small initial coupling it decreases and for the large one it increases, i.e., with
increasing momentum the effective coupling moves away from the ﬁxed pomt,
it is ultraviolet unstable. On the contrary, with decreasing momentum it tends
to the fixed point, i.e., it is infrared stable. It appears in some models in lower
dimensions, for mstance in statistical physics. '

6.3 Dimensional regularization and the MS scheme

Consider now the calculation of the 8 function and the anomalous dimensions
in some particular models within the dimensional regularization and the min-
imal subtraction scheme. Note that in transition from dimension 4 to 4 — 9%
the dimension of the coupling is changed and the "bare” coupling acquires
the dimension [gp] = 2¢. That is why the relation between the "bare” and
renormalized coupling contains the factor (u?)*

98 = (1)) Z,g. o (6.21)

Hence, even before the renormalization when Zg =1, in order to compensate
this factor the dimensionless coupling ¢ should depend on pu. Differentiating
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(6.21) with respect to 12 one gets
dlog Z, dg

= — Ly,
0=eZ59+ dlog 2“9 + Ydlog u?
ie.,
dg dlong
1_2:(g) = = - = —£g+ 6.22
Bi-2:(9) dlog 22 59+9d10 g+ Bi(g). (6.22)

In the M S scheme the renormalization constants are given by the pole terms
in 1/¢ expansion and so does the bare coupling. They can be written as

Zr=1+ i %’2 =1+> > —csg (6.23)

n=1 n=1m=n

And similarly

9Bare = 2)E |V Z ] = (#2)6

Differentiating eq.(6.23) with respect to In x4 and having in mind the defi-
nitions (6.5) and (6.6), one has:

00 00 mt1
z : z : aTL"lg”'
g + 8"

n=1 m=n

} . (6.24)

a(9) _ d —alg)
1+Z: o (o) = [=eg + Bla)] - ; e
Equalizing the coefficients of equal powers of ¢, one finds
d
n(g) = 93, (9), (6.25)
d d
ggg—cn(g) = [w(g) +B(9) g]cn 1(g9), n>2. (6.26)

One sees that the coefficients of higher poles ¢,, n > 2 are completely
defined by that of the lowest pole ¢; and the 8 function. In its turn the f3-
function is also defined by the lowest pole. To see this, consider eq.(6.24).
Differentiating it with respect to In % one has

. [g £y —(g—)] + [~eg+ B(0)] [1 7 ﬂ] =0 (62

n=1 n=1

Equalizing the coeflicients of equal powers of ¢, one finds

Blg) = (gd%—l)al(g), (6.28)

(93— Donle) = ﬁ(g)j—gan_l(g), n>e. (6.29)
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Thus, knowing the coefficients of the lower poles one can reproduce all the
higher order divergences. This means that they are not independent, all the

information about them is connected in the lowest pole. In particular, substi- .

tuting in (6.29) the perturbative expansion (6.24) one can solve the recurrent
equation and find for the highest pole term

G = a3y, (6.30)
i.e. in the leading order one has the geometric progression

2 g
95 = pT T ey (6.31)
which reflects the fact that the effective coupling in the LLA is also given by a
geometric progression (6.16).

The pole equatious are easily geueralized for the multiple couplings case,
the higher poles are also expressed through the lower ones though the solutions
of the RG equations are more complicated.

Consider now some particular models and calculate the corresponding S-
functions and the anomalous dimensions.

The ¢* theory
The renormalization constants in the M S scheme up to two loops are given
by egs. (4.10,4.14,4.18). (g = A/167?)

3 9 3

Zy = — (— = .32
! 1+2Eg+g (452 25)’ (6:32)

1 92
Zot = 14+ 22— 6.33
2 t e o 17 (6:33)

3
Zg = 1+ -2—9 +g (482 TQ_E) (6.34)

Notice that the higher pole coefficient azs = 9/4 in the last expression is the
square of the lowest pole one a;; = 3/2 in accordance with eq.(6.30).
Applying now egs.(6.25) and (6.28) one gets

3

nulg) = 59-3¢" (6.35)

m(9) = %92, (6.36)
30 175

Blg) = glnat+2m)= 59 r (6.37)

One can see from eq.(6.37) that the first coefficient of the S-function is 3/2,
Le., the ¢* theory belongs to the type of theories shown in Fig.23a). In the
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leading log approximation (LLA) one has a Landau pole behaviour. In the
two-loop approximation (NLLA) the S-function gets a nou-trivial zero and the
effective coupling possesses an UV fixed point like the one shown in Fig.23s).
However, this fixed point is unstable with respect to higher orders and is not
reliable. Here we encounter the problem of divergence of perturbation series
in quantum field theory, they are the so-called asymptotic series which have a
zero radius of convergence.

QED

In QED in the one-loop approximation the renormalization constants in the
Feynman gauge are given by eq.(5.2). Due to the Ward identities the renormal-
ization of the coupling is defined by the plioton wave function renormalization
constant Z3 and is gauge invariant. Equation (5.2) allows one to determine the
anomalous dimmensions and the B-function

N () —a, (6.38)
rla) = q, (6.39)
y3(a) = ga, (6.40)
Ym(e) = —da, (6.41)
Baler) = %a? (6.42)

where we use the notation o = €2/1672.

Thus, in QED in the one-loop approximation the effective coupling behaves
the same way a in the ¢! theory and has a Landau pole in the LLA. In this
theory, the next term of expansion of the B-function is also calculated. It has
the same sign.

QCD

In QCD the calculation of the 8 function can be based on various vertices.
The result should be the same due to the gauge invariance. To simplify the
calculations, we choose the ghost-ghost-vector vertex. The renormalization
constants in the one-loop approximation in the Feynman gauge are given by
(5.8) and lead to the following anomalous dimensions and the B-function:

F(e) = ~%a, (6.43)
Yole) = —%a, (6.44)
5 2
Ya(a) = _(502_‘3'71)')&, (6.45)
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11 2
Bala) = a1 +2%2+73) = _(—3‘CA - —?;nf)az, (6.46)

where like in QED we take a = g2/16n2, the Casimir operator Cy in the case

of SU(3) groups is equal to 3, and ny is the number of quark flavours. ,

One can see from eq.(3.31) that if the number of flavours is less than %CZ =
373, the B-function is negative and the effective coupling decreases and tends
to zero with increasing momentum. This type of behaviour of the effective
coupling is called the asymptotic freedom. 1t takes place only in gauge theories.

6.4 Ao

The solution of the characteristic equation for the effective coupling, which is a
differential equation of the first order, depends on initial conditions. Therefore,
the solution (6.16) depends on the choice of the initial point and the value of
the coupling at this point. However, this choice is not unique and one can
choose another initial point and another value of the coupling and still get the
same solution, as it is shown in Fig.24.

g(tg)

~
\\

91 \\ "
gF v =

Figure 24: Different parametrizations of the effective coupling. Each curve is
characterized by a single parameter A

In fact, every curve is not characterized by two numbers (the initial point
and the coupling), but by one number and the transition from one curve to
another is defined by the change of this number. To see this, consider the
one-loop expression for the effective coupling in a gauge theory and rewrite it
in equivalent form

_Q? 9y 1 1 _ Q2
9\ —, 3 ) = 7 = T = :g(_)’ (6'47)
(uz g 1— BogyIn % i—ﬂgln% Bolné; 2
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where we have introduced the notation
1

A% =)l Bocy,

(6.48)

This quantity is called Agep in quantum chromodynamics and can be intro-
duced in any model. The numerical value of A is defined from cxperiment.

Equation (6.48) can be generalized to any number of loops. For this pui-
pose, let us rewrite the RG equation for the effective coupling in the Gell-Mann
- Low form. Oune has

Q2 99 dg

In = = . 6.49

©? O ﬁ,{/(g) ( )
Combining the lower limit with ln z? one gets
Q* _ [ dg

In—= = — 6.50

2=/ B (6:50)

where

12: 26.’L‘ " dg 5
v =it (7 580), (651

which is the generalization of eq.(6.48) for an arbitrary number of loops.

The quantity A, introduced this way, is p-independent but depends on
the renormalization scheme due to the scheme dependence of the B-function.
However, the scheme dependence of A is given exactly (!) in one-loop order.
Indeed, since A does not depend on g, let us choose p in such a way that
gp — 0. Then for the S-function one can use the perturbative expansion

Bala) = Boa® + e + ...

d 1
(64

In this limit the ratio of two parameters A belonging to two different schemes
is

A? 171 1 1
ln_lz__[___:lz__—.c — o, 6.52
A2 Bolea ﬂo[l e (652

where the coefficients ¢; and ¢ are calculated in the one-loop order. They can
be found from perturbative expansion of any physical quantity in two different
schemes

R = 91(1+clgl+...)
@1+ coga + ...}

Il
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Since A does not depend on g, one can take any value of g, and eq.(6.52) is
always valid. The difference c; — co does not depend on a particular choice of
R (though each of them depends) and is universal.

It should be noted that the quantities like the invariant or effective coupling,
the B-function, etc. are not directly observable. Therefore, their dependence
on the subtraction scheme does not contradict the independence of predictions
of the method of calculations. We perform the perturbative expansion over
the coupling which is scheme dependent, but the coefficients are also scheme

dependent. As a result, within the given accuracy defined by the order of.

perturbation theory the answer is universal.

In the minimal subtraction schemes when the renormalizations depend only
on dimensionless couplings, the one-loop renormalization constants and hence
the anomalous dimensions and the S-function are the same in all schemes; the
difference starts from two loops. The exception is the S-function in a theory
with a single coupling like QED, QCD or the ¢* theory, where the difference
starts from three loops. Indeed, if one has two subtraction schemes M, and
M5 so that the couplings in two schemes are related by

g2 = q(91) = g1 + cgi + O(g1),
then the S-functions B1(g1) and Ba(g2) are connected by the relation

dQ(gl)

Ba(g2) = —dg—l‘ﬂl(gl)

and their perturbative expansions are

Bi(g) = Bogi + Brigi + Begl + ...,
Ba(g2) = Dogs + Brgs + Bogs + ...

so that the first two terms of the S-function are universal.

As for the further terms of expansion, they depend on the renormalization
scheme and one can use this dependence as discretion, for instance, one can put
all of them equal to zero. Then we would have an exact S-function. However,
one should have in mind that it is not valuable by itself but rather in the
aggregate with the PT expansion for the Green functions for which we construct
the solution of the RG equation. This expansion in our ”exact” scheme is
unknown.

6.5 The running masses

In the minimal subtraction scheme the renormalization of the mass is performed
the same way as the renormalization of the couplings, i.e., the mass is treated
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as an additional coupling and is renormalized mmltiplicatively, namnely,
MpPare = Zm7”7

where the mass renormalization constant Z,, is independent of tlie mass pa-
rameters and depends only on dimensionless couplings. Then, in full analogy
with the effective coupling one can introduce the effective or the "running”
Mass

d _ _ -
Em(t,g) =my,(g), m(0,g) = m,. (6.53)

Solving this equation together witl the equation for the effective coupling (6.8)

one has
' g

/71;;(6(1,9))(il
'ﬁl(t, g) = mgC 0

=myC Y . (6.54)

In the one-loop order

Bla) = ba?, T (@) = ca

c/b
m(t) = mg <_a(t)) .
ag
This is the running mass!

The natural question arises: what is the physical mass measured in experi-
ment and how is it related to the running mass and at what scale?

To answer this question, consider why the mass is running. This is due
to the radiative corrections. If one considers the value of momentum which is
bigger than the mass, i.e. p? > m?, then the particles are created, they are run-
ning inside the loops and give the contribution to the running. On the contrary,
if p? < m?, particles are not created, they ”decouple” and do not contribute
to the running. In the MOM scheme this takes place automatically because
for the momentum smaller than the mass the diagram simply disappears. In
the minimal scheme, on the contrary, this does not happen. Hence, it is quite
natural in this case to stop the running at the value of p* = m? and to identify
the physical mass with the running mass at the scale of the mass, i.e

and the solution is

However, this is true only up to finite corrections. Let us come back to the
definition of the mass term in the Lagrangian. It is chosen in such a way that
the propagator of a particle, which is the inverse to the quadratic form, has the
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pole at p* = m?. Therefore, a more appropriate definition of the physical mass
is the position of the pole of the propagator with allowance for the radiative
corrections, .i.e.,

physical mass = pole mass

This definition of a mass does not depend on a scale and it is also scheme
independent and may have physical meaning. The pole mass can be expressed
through the running mass at the scale of a mass with finite and calculable

corrections.
Consider as an example the quark mass in QCD. The quark propagator is

graphically presented in Fig.25.
—

Figure 25: The quark propagator

_ *

The corresponding expression is

Gpm) =+ 57
p—m p—m

(iAp + iBm)—— + .
p—m

o 1 Aﬁ+Bm+ 1 1 B 7
Cp-m p—m )T p-m 14+ 4R p—m o Ap+ Bm’

The pole mass is now defined as a root of the equation

A1+ AP*) —m(1 - B(p*)) =0, (6.55)

which gives in the lowest order

1 — B(m?)

Mpole = m—1—+—;1_(m—2) = m[l — A(m?) — B(m?)].

To calculate the functions A and B, consider the one-loop diagram shown
in Fig.26.
The corresponding expression is

Y= (6.56)

% o [P k+m)y g
em "] Tlp-kR-mY k2
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Figure 26: The quark propagator in one loop in QCD

and was calculated earlier. The result has the form (3.19)

2 1 t 2 (1 N2
AR m?) = s R _ pz(l—z)—m
(p*, m?) 167T2CF [6 1 2/O dz(1-zx) log——_u2—— ,(6.57)
2 1
o o s 4 piz(l — z) — m?
B(p*,m*) = 167r20F [_E +2 +4/0 dz log _T] . (6.58)

After subtraction of divergences in the M S-scheme one has

Am(p2 m?) = — 9 Cr 142 ldz:(l—— )1 p“__Qz(l—x)——m2 6
) Ton2CF ; z)log —z ,(6.59)
— 2 1 2 2
BMS(p2 m?) = s pa(l—z)—-m
(p*, m?) 167r2CF 244 | dzlog . . (6.60)
Substituting p? = m?2, one finds
M52 2 s MS i
AMS(m? m?) =24+ Int BMS(m?m?) = —6—4aln L (6.61)
m m?
Thus, for the radiative correction to the pole mass we have
sC. 2
Mpote = M) [1 + 24 4 31 %)] . (6.62)
T m :

Substituting Cp = 4/3 and p? = m? one obtains the desired relation between
the pole mass and the running mass at the mass scale

Mpote = m(m) [1 + §?J . (6.63)
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7 Lecture VII: Zero Charge and Asymptotic
Freedom

Since the beliaviour of the effective coupling has so essential consequences we
cousider two typical examples which are realized in quantumn field theory in the
one-loop approximation and presumably take place in a full theory. Usually,
one speaks about the zero charge behaviour or the asymptotic freedom. We
explain below what it means.

7.1 The zero charge

The notion of the zero charge appeared in QED in the leading log approxima-
tion. This is what takes place within the renormalization group method in the
one-loop approximation. If one writes down the expression for the renormal-
ized coupling as a function of the ”bare” coupling, i.e. inverts eq.(6.31), one

gets
9B 9B

1+ fogs/e 1+ Bognlog A%
where the first coefficient of the B-function By > 0. Then, removing the regu-
larization, i.e., for € = 0 or A — oo, the renormalized coupling tends to zero
independently of the value of the "bare” coupling. This is what is called the
zero charge. For the effective coupling considered above the zero charge corre-
sponds to the behaviour shown on the left panel of Fig.27 which is characterized
by the Landau pole at high energies.

The zero charge behaviour is typical of QED, the ¢* theory for positive
quartic coupling and also the Yukawa type interactions, i.e., in those theories
where the S-function is positive.

It is obvious that in the vicinity of the pole the perturbation theory does
not work and, hence, the one-loop formula is not applicable. However, for small
momenta transfer the one-loop approximation is reliable. For instance, in QED
the effective expansion parameter is 2/167? = a/4mw ~ 1/137/4n ~ 5.8 - 10~
and the next loop corrections (which have the same sign) do not play any
essential role. The behaviour of the effective coupling in QED in the region
up to 100 GeV has got the experimental confirmation in measuring the fine
structure constant at the LEP accelerator. At the scale equal to the mass of
the Z-boson M the fine structure constant is not 1/137 but a(Mz) ~ 1/128,
which is in a good agreement with the one-loop formula.

g (7.1)
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Figure 27: The behaviour of the effective coupling: the zero charge (left) and
the asymptotic freedom (right)

The large momenta transfer in this case are limited by the pole provided
the pole does not disappear in a full theory. It is still unclear how higher orders
of perturbation theory influence this behaviour since the perturbation series is
divergent and it is impossible to make definite conclusions without additional
nonperturbative information.

The presence of the Landau pole indicates the presence of unphysical ghost
states. To see this, consider the photon propagator in QED which due to
the Ward identities coincides with the invariant charge and in the leading log
approximation has the form of a geometric progression

wo__ v /.2
G(pZ) = —"ig P:P /P 1 1 (7 2)
P — 32 Q¢ log(—p?/m?)’ '

wherfe @ is the electric charge of a particle (in the units of electron charge)
running round the loop.

This expression has a pole in the Euclidean region at pt= ‘m2337p(“—é7§ ).
Q' ny

Substituting m = m, = 0.5 MeV, ag = 1/137and " Q* = [(4/9+1/9)3+1)3] =
8, one gets p* =~ —(5-10%")2 GeV?. That is the pole is very far off, even beyond
the Planck scale, and at low energies one can ignore it. However, the presence
of the pole indicates the presence of a new asymptotic state and the residue
at the pole defines the norm of this state. In the case of the Landau pole
the residue is negative, i.e., the new state is a ghost, it has the wrong sign of
the kinetic term in the Lagrangian. This fact, in its turn, leads to negative
probabilities, which indicates internal inconsistency of the theory.
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Usually, it is assumed that there are two ways out of this trouble: either the
higher order corrections improve the behaviour of the theory at high momenta
so that the Landau pole disappears, or that the zero charge theory is contra-
dictory by itself, but at high energies it is part of a more general theory where
the behaviour of the coupling is improved. The example of such a behaviour
is given by the Grand Unified Theories where QED is one of the branches of
a non-Abelian gauge theory with the asymptotically free behaviour. In both
the cases the theory at high energies is modified. At the same time, the zero
charge theory is infrared free, i.e. for small momenta transfer the coupling goes
to zero.

7.2 The asymptotic freedom

The name asymptotic freedom originates from the non-Abelian gauge theories
where it was found that the sign of the first coefficient of the S-function is neg-
ative. The effective coupling in this case behaves as is shown in the right panel
of Fig.27 and tends to zero at high momenta transfer. This means that quarks
in QCD are quasi-free particles, i.e., practically do not interact. This way one
explains the success of the so-called parton model of the strong interactions at
high energies, according to which the proton behaves as a set of free partons,
and at high energies the interaction takes place with the individual partons
and their interaction does not play any role.

The behaviour of the effective coupling in QCD at high energies was tested
at various accelerators and in various experiments and the validity of the renor-
malization group formula was confirmed. The accuracy of modern measure-
ments assumes the inclusion of the next terms of perturbative expansion. In
QCD in the MS scheme the four terms of the S-function are known. Below we
present the two-loop expression

o o ., 1 38 ., )
ﬂa(as)_—4ﬂ_[11 3nf]a3 (4ﬂ_)2[102 3nf]as+0(as).

(7.3)
As one can see, if the number of quarks in not too big, both the coefficients
of the B-function are negative. All the experimental data fit a single curve for
the effective coupling with the parameter Agcp ~ 200 MeV (see Fig.28)

In four-dimensional space the asymptotic freedom occurs only in non-Abelian
gauge theories. But in the case when one has several interactions, like in the
Standard Model, the non-Abelian coupling may draw other couplings into the
asymptotically free region. Consider, for instance, the behaviour of the Yukawa
couplings in the SM. For simplicity, let us take a single Yukawa coupling for
the t-quark and a single gauge coupling. Then in the one-loop approximation
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Figure 28: The variation of the effective coupling of the strong interactions «;
with energy

the equations for the effective couplings look like

dg g2

= = _pg* = I8 ;
dt 95 9= Jen2 (74)
dy v} 2

= = - = t=log=

7 = v —c), y=1 et

where the coeflicients b, @ and ¢ are always positive and for the SM are equal
to 7,9/2 and 8, respectively. The solutions to these equations are

- _ % __wk
77 Trbgt’ VT 1—agoF (7.5)
t
E@) = (g/gg)c/b, F(it)= / E(tdt'.
0

In the case of a single Yukawa coupling it can be written in an explicit form

y_ yo(;%)(:/b
- Yo_a [(9\c/b-1 _ 1]
L+ B2 (L)1 — 1]

0 c—b

(7.6)

Graphically, it can be presented in a phase diagram shown in Fig.29. For the
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Figure 29: The behaviour of tlie Yukawa and gauge conplings for various initial

conditions

initial condition such that yy > (c—b)/a go the Yukawa coupling increases with
momenta and has the Landau pole, while for yy < (c — b)/a gy it demonstrates
the asymptotically free beliaviour. In a similar way in the Grand Unified
Theories one can reach the asymptotic freedom for all the couplings.

The back side of the asymptotic freedom at high energies is the presence of
a pole at low energies or the infrared pole. In this region, we also go beyond
the validity of perturbation theory since the coupling increases. To find the
true behaviour of the coupling one has to attract independent nonperturbative
information. However, in QCD the region near the infrared pole p ~ Agcp is
in the phase of hadronization, i.e., in this region the quark-gluon description
is no more adequate. Therefore, the behaviour of the effective coupling in this
region is not described by perturbative QCD.

7.3 The screening and anti-screening of the charge

The variation of the coupling with momenta transfer or with the scale, which is
the characteristic feature of quantum field theory, has its analog in a classical
theory. This analogy allows one to understand the qualitative reason for the
variation of the coupling.

Indeed, let us consider the electromagnetic phenomena. Consider the di-
electric medium and put the test electric charge in it. The medium will be
polarized. The electric dipoles present in the medium will be rearranged in
such a way as to screen the charge (see Fig.30). This is a consequence of the
Coulomb law: the opposite charges are attracted and the same charges are
repulsed. This is the essence of the electric screening phenomena.

The opposite situation occurs in magnetic medium. According to the Bio-
Savart law, the electric currents of the same direction are attracted and the
opposite direction are repulsed (see Fig.30). This leads to the anti-screening in
magnetic medium.
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Figure 30: The electric screening and magnetic anti-screening

In quantum field theory the role of the medium is played by the vacuum.
The vacuum is polarized in the presence of created virtual pairs. The matter
particles as well as transversely polarized quanta, of the gauge fields act like the
electric dipoles in the dielectric and cause the screening of the charge. At the
same time, the longitudinal quanta of the gauge fields behave like currents and
cause the anti-screening. These two effects are in competition (see eq.(3.31)
above) and, for instance, in QCD with a small number of quarks the effect of
anti-screening prevails.

Thus, the couplings become the functions of the distance or momentum
transfer described by the renormalization group equations.
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8 Lecture VIII: Anomalies

The gauge invariance leads to numerous relations between various operators
and their vacuum averages, i.e., the Green functions. We have already come
across such relations called the Ward or the Slavnov-Taylor identities. They are
the consequences of the gauge symmetry of the classical theory. In case when
one has divergences in a theory and is bound to use some regularization, the
validity of these identities depends on invariance of the regularization. However,
one can always perform the subtraction of divergences in such a way that the
finite parts obey these relations.

The exception from this rule is the so-called anomalies. By anomalies one
usually means the violation in quantum theory of some relation, for instance,
the conservation of the current or the Ward identity following from the sym-
metry properties of a classical theory. The well-known examples of quantum
anomalies is the anomaly of the trace of the energy-momentum tensor or the
axial anomaly. The characteristic feature. of the anomaly is the impossibility
of its removing by the redefinition of any quantities or parameters.

8.1 The axial anomaly

Consider quantum electrodynamics. Let us define the vector and the axial
vector currents B _

Ju =Py, 5 =Py (8.1)
In classical theory the equations of motion lead to the conservation or partial
conservation of the current

Ouiu =0,  Buj) = 2img°, (8.2)

where j° = 1y51).

On the other hand, as a consequence of the gauge invariance, the vector

and the axial vertices obey the Ward identities

(p—P)'Tulp,P) = S7'(p) -5,
(- )Tip,p) = S )7 +7°S7H(P) +2mI°(p, p),

(8.3)
(8.4)

where I, I"f“ and I'® are the vector, axial and pseudoscalar vertices, respectively,
and S is the fermion propagator.
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If one looks how the identities (8.3,8.4) are fulfilled in perturbation theory,
one first of all has to introduce some regularization due to the presence of the
ultraviolet divergences. If the regularization is gauge invariant, then the vector
Ward identity is satisfied in any order of PT. For the axial identity there are
two types of diagrams: in the first one the axial current is in the outgoing
fermion line, and in the second one the axial current is in the internal loop (see
Fig.31). For the first type of a diagram the identity (8.4) is satisfied, and for

Figure 31: The diagrams with the axial current in external and internal fermion
lines ‘ :

the second type there exists d*ﬁe famous triangle diagrafn (see F ig.32) where it
is violated due to the ultraviolet divergence of the integral.

Figure 32: The anomalous triangle diagram for the axial current

Indeed, the corresponding integral in momentum space looks like
e A
q ¥ dk ik ik+p) i(k+g ‘
= (=)(—ie 2/ T u 5 »i(k + P) ,\7'( +4)
M | G R ke e ee| ©9

and is formally divergent requiring the regularization.

To preserve the conservation of the gauge invariance, it is useful to in-
troduce the dimensional regularization; however, here we for the first time
face a problem since the v° matrix has no natural and consistent continu-
ation to non-integer dimension. Two properties of the ° matrix, namely,
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the anticomnmmutation with all ¥/, g = 0,1,2,3 and the property of the trace
Tr(y>y/'y"4"y") = —4ie™*” are in contradiction if the dimension is noninteger.
To calculate the axial anomaly, we use the following trick: we use the formula
for the trace but reject the property of anticommutativity of 4%. This allows
one to perform al the calculations in a consistent and unambiguous way.

The divergence of the axial current can be obtained by multiplication of
(8.5) by ¢/ which gives : :

L ik Tr [k ok + )]
/ @n) Kk +p)2(k+ q)?

Using the cyclic property of the trace we move g to the right and write it as
G = (§+ k) — k. Then the first term multiplied by k + ¢ gives (k + ¢)* and
cancels with the denominator. As a result, one gets the integral

)

ok TIr [évskv”(k v%ﬁ)v*]

/ (2m)* k*(k + p)?
which depends only on p and after the integration turns to zero due to the
antisyinmetry of the trace with the 4® matrix.

In the second term we will drag k to the left until it is multiplied by k giving
k2. As a result, at each step we always get the trace of four y-matrices with o
for which we have the formula with the e-tensor. We obtain in the numerator

— 4PN (k- p)P[(k-+q)? — )+ 8ie™ PPk (k-+p) g KA — 4ie® P ko g? [ (k+p)* ]
—4ie"p2gP k% + 8ie“ﬂ’\”k"pﬁq”k".
Despite the fact that the integral is formally divergent, using a dimensional
regularization and collecting all terms together we finally get the finite answer
equal to '
E g = — (g Y &)
——€ =——€ —p)?, .
4 4n? 1 4n? 7 p
One has to add to this expression the same diagram but with the replace-
ment p ¢> ¢ — p,v ¢ A and take the sum, but the answer is already invariant
with respect to this replacement. Multiplying (8.7) by A.(p)Ax((¢ — p) and
transforming to the coordinate representation, one gets

. 82 v 62 v,
8,,];3 = ETEG# ”"@,A,,B,,A,\ =-"167T26# pf\vasz\- , (88)

As a result one has the following modification of equations for the divergence
of the axial current and the axial vertex : o C

. o . - . i : .
8#];? = 22m.75 + 4_7T’Ful/Fpt7€”Vp ) i (89)
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(P =P)'T,p,p) = S )y ++°S71(P) + 2mI%(p,p) — ifF (p,p'), (8.10)
™

Wflﬁ]re F }fp, p’) is the vertex with insertion of the operator FF. The appearance
of the r.h.s In these equations is called anomaly known as tl i
i e Yy s the Adler-Bell-Jackiw

The most esseptial here is not the violation of the Ward identity but the
fact that §ubtract1ng the anomaly and restoring the "normal” Ward identity
for ‘Zihe iX}al vertex we violate the conservation of the vector current. In other
words, it is impossible to satisfy the conservation of axi :
ittt n of axial and vector currents

Notice tha.t the violation of the conservation of the axial current preserving
the conservation of the vector current (8.9) can be obtained by accurately
calculatm.g .the matrix element for the divergence of the axial current in x-
space splitting Fhe arguments of the field operators. Consider the vacuum
average of the divergence of the axial current, and to avoid the singularity for
the product of two‘opferators at coinciding points, split the arguments. Then
to preserve the gauge invariance, we have to insert between the operators the
exponent of the Wilson line. The axial current then takes the form

z+e/2
.5 . 7 .
i) = ll—%{lp(x + £/2)v"y° exp[—ie / dz"A,(2)[Y(z - €/2)},  (8.11)
] z—€f2
and for the divergence we get

z+e/2

dz" Ay (2)J(x — e/2)

%) = Ig{0u(e + /20" explie |

z~ef2
T+e /2

+ 1/_1(x+e/2)7“75exp[—ie/ , dz" A, (2)]0,¢(z — €/2) | (8.12)

z—¢f!
_ e z+e/2
+ Y(z +e/2)v"y°[—iec" 8, A, (z))] exp[—ie/ dz"A,(2)]d(z — €/2)}.
‘ T-£/2
Using the equations of motion
YOup = —ie Ay, Ay = ie A

and keeping the terms of the order of ¢ we find

Ouip(z) = ggg{a,,tﬁ(z +e/2)[~ieA(z +¢/2) —ieA(z — ¢/2)

L ety A@Ie—e/2) |
ll_[}(l){l/l(x + ¢/2)[—dec"v*(8, A, — A ) (x — €/2)}(8.13)
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Now we have to calculate the vacuum average over the fermion vacuum (the
photon field is assumed to be external) which means that we liave to permute
the fermion operators. The permutation function of the fermtion operators is
singular and this is the reason for appearance of a nonzero term similarly to
the appearance of triangle anomaly due to divergency of the integral. Indeed,
calculating the propagator of the fermion in external field and keeping the
terms linear in the photon field, we get '

&k ik [ dk d'p -+, i(k + D) . ik
= | =2 ikly-2) = UR CF iktpy,—ikz N N so Alp)—
S-=2) /(27r)46 k2+/ (@m) 2m)t° ‘ (k+p)2( e (p)(lsczl’z;'

The propagator (8.14) is singular as y — z; however, the first term does not
give a contribution to the divergence, while the second one leads to

(Do + e/ (e — €/2)) = |
‘ dk d . e (kD) . ik
_ ipr —1keT —ieA hhPV T3
/(27r)4.(27r)4e T AP YT ;

4 4 . . e oo (L VA, o .

[ ot ot s
m)4 (2w

To find the limit as € —+ 0, one can expand the integrand for large k, which

gives '

B+ ef20P0le — €/2) = e r ) [ LU
(2m)t” 7 (2mt” kY
vpo:n 250 vpo Eq
= —4dee” zBVAp(q)W = —ee! ””zF,,p(m)m, (8.16).
Substituting this expression into (8.13) we find
. . B 2
: : vpo ; 4 s T € v
Buj) = ll_r’ré{——ee"' s zF?p(z)m(—zes F.)}= 1671_26“ P FypFou,  (8.17)

that coincides with (8.9).

The axial anomaly has one very important property: the obtained formu-
las (8.9) and (8.10) are ezact in all orders of perturbation theory, i.e., have no
radiative corrections. More rigorous statement is: there exists such a renormal-
ization scheme (and it was constructed explicitly) that the radiative corrections
to the axial anomaly are absent. This statement. is.the subject of the Adler-
Bardeen theorem. Graphically, this means the cancellation of the contributions
of the diagrams shown in Fig.33, which was checked by explicit calculation.

The Adler-Bardeen theorem is valid also in non-Abelian theories. It has
important consequences: if the anomaly is compensated in the lowest order, it
will not appear further.’
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Figure 33: Cancellation of radiative corréctions to the axial anomaly

8.2 Consequences of the axial anomaly

Let us ask the question what are the consequeﬁces of the axial anomaly? Here
one has to distinguish two cases: when the operatof of the axial current is an
external operator with respect to the Lagrangian and when it is present in the
interaction Lagrangian. . C

_In the first case, the presence of anomaly does not lead to any troubles and
even may be useful. Thus, for instance, inthe current algebra which describes
the low, energy hadron interactions, the axial anomaly is responsible for the.
neutral pion decay 7’ — 2y and is in agreement with the experiment. -

. In the second case, the triangle anomaly leads to that the ultraviolet renor-
malizations of the vector vertex do not remove all divergences from the axial :
vertex. This has destructive consequences for the renormalizability of the whole
theory. To see this, compare the two processes of the elastic scattering of lep-
tons: ve+e — Ve+e and v, 4+ e — v+ p in the Standard Model. Graphically,

in the lowest order they differ by one diagram containing the triangle anomaly
(See Fig.34). ‘

Fh;ligzr(la 34: The anomaly in the process of lepton scattering in the Standard
ode ‘ o ‘ ’

As a result, after the renormalization the amplitude of v,e-scattering has
finite radiative corrections, while that of vee-scattering is divergent. This led to
nonrenormalizability of the theory and was a serious problem for the left-right
nonsymmetric model with SUz(2) x U(1) symmetry before the introduction of
the.c-quark. Remarkably, the c-quark introduced by Glashow, Iliopoulos and
Maiani for suppression of the neutral current changing strangeness leads to the
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compensation of the contributions of quarks and leptons to triangle anomaly

and restores the renormalizability of the theory.
In the Standard Model due to its left-right asymmetry the preseuce of the

axial currents for quarks and leptons leads to several kinds of triangle anomalies -

where all three gauge fields may be in the vertices of the triangle. However,
not all of them lead to anomalies. In general, the anomaly is proportional to

the trace
Tr T{T",T°},

where the matrix T* is the generator of the corresponding gauge group in the
representation corresponding to the fields that run inside the triangle. The
necessary condition of the existence of anomaly is the presence of the complex
representations and the nontrivial anticommutator of the generators of the
group. Among the simple Lie groups which satisfy this requirement, only the
groups SU(n), SO(4n + 2) and Eg have complex representations and out of
them only the SU(n),n > 2 and SO(6) groups have a symmetric invariant
needed for the construction of the anomaly. The gauge theories built on other
groups are free from anomalies.

The non-vanishing anomalies corresponding to the symmetry group of the
Standard Model SU(3) x SUL(2) x Uy(1) are presented in Fig.35 where the
gauge fields adjusted to the groups U(1) and SU(2) are shown prior to mixing.
The particles that run over the triangle can be either left or right quarks and
leptons. Particles of different helicity give the opposite sign contribution to the’

axial anomaly.
%um % u(1) % u(1) % u(1)

u(1} (1)  Suj Su(2) SuU(@3) Su(3) grav grav

Figure 35: The triangle anomaly in the Standard Model

In the first case, the anomaly is proportional to the trace of the cube of hy-
percharge TrY? = TrY7 —TrY{ and its absence is achieved by the cancellation
of the contributions of quarks and leptons in each generation

N 3 NE RS N .Y O 2 13 _>3__3_
T = = 3[R+ - G~ 2] + (- + (1= (2 =0
N S T S S S CEL)
colour up di UR dp v, er €R.
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In further diagrams the anomaly is proportional to, respectively,

1 1
TrY; = 3(-4+2)]=-1-1=
L (3 + 3) 1-1=0,
1 1 4 2
TrY, = 3[=-+=-— - (=2 _
! (3 t3-3-( ,3)) =0, | (8.19)
1 1 4 2

Y = 3(§+§—§—(~§))—1—1—(—2):0.

This way the anomaly is miraculousl i
y canceled in all the cases
break the renormalizability of the SM. and does not

8.3 The conformal anomaly

Another example of quantum anomaly is the conformal anomaly or the anom-
z(a,ly (l)f)tl'le tra..ce of the energy-momentum tensor. The requirement of conformal
scale) invariance means the invariance of the action with
{scale) Im with respect to the trans-
Ty 2z’ d(ze™) = e2¢(z), (8.20)
where A_ is 1.:h(‘3 dimensior} of a field. This condition is fulfilled in the classical
II\JIagISInglf.}Ill if it has no dimensional parameters. In this case, according to the
oether theorem, there exists a conserved current called the di i
e dil
Dh O, 5 that latation current
9,D" = e,
where ©¥ is the symmetric energy-momentum tensor.
The easiest way to see it is to define the energy-momentum tensor as a

variation of the action of the matter fields with res i
\ pect to the space-t i
in the external gravitational filed ’ e metric

)

oW =2
Ogu

[ s c@). (6.21)

The scale transformation can be realized as a variation of the metric

9w () = €79 (z). (8.22)

This means that the variation of the Lagrangian under this transformation is
the trace (_)f ©#. The deviation of the trace of the energy-momentum tensor
from zero indicates the violation of the scale (and hence conformal) invariance
In the quantum case, due the presence of the ultraviolet divergences the:
new scale appears. This is the same phenomenon of dimensional transmutation
discussed above. Therefore, the scale invariance of the action is violated
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Since the coupling constant becones scale dependent, its variation with the
scale (8.20) takes the form

8g = on2 = o(g). (8.23)
Hence, for the variation of the Lagrangian we get

6L
L= U@;ﬁi({g}): (8-24)

oL
0,D" = 0}, = A ({a)). (8.25)

This relation is known as the trace anomaly of the energy-momentum tensor.

Similarly to the axial anomaly, relation (8.25) can be checked by perturba-
tion theory. However, in this case the result is defined by the full S-function
calculated in all orders of PT.
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9 Lecture IX: Infrared Divergences

One more problem that we encounter on the way of calculating the finite expres-
sions for the probabilities of physical processes is the presence of the so-called
infrared divergences. They appear when calculating the matrix elements of the
scattering matrix on shell, i.e., when the squares of external momenta are equal
to the corresponding masses squared and the theory contains massless particles
like photons or gluons. The infrared divergences can be of two types: the diver-
gences for small values of momenta (the genuine infrared divergences) and the
divergences at parallel momenta (the collinear divergences). Contrary to the
ultraviolet divergences, the infrared divergences have a clear physical meaning:
a massless particle with a very small momentum can not be registered and
with momentum parallel to another particle cannot be distinguished. For this
reason in the theories with massless particles one has to define the physical
process to be evaluated in a proper way.

9.1 The double logarithmic asymptotics

For illustration consider the process of creation of a muon pair in the e*e™
annihilation. The leading diagrams for this process are shown in Fig.36.

# oo T TR TR iy
v §m< >’\A€v 2\/\< ,
27 W i e wooe - utoe pt
aj b) ¢
& 'y e" n e u
T ¥
T
¢ u+ o . Fl+ o pt
d) e)
Figure 36: The diagrams contributing to the process ete~ — u*u~ in QED:

a) the leading order, b)- d) the virtual corrections of the order of a, e) the real
corrections of the order of a.

The first diagram is the tree amplitude, it gives the contribution in the
leading order. The radiative corrections due to emission of virtual photons
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(Fig.36 b)) are the corrections to the vertex function considered above (see
(3.23)). It is easy to see that if one puts in this formula all fermion momenta
on mass shell, ie. p? = (p — ¢)2 = m?, then in the second integral in the
denominator one gets [—m?z2+¢?y(z —y)]. Performing the change of variables
y — yz so that all the integrations are performed within the limits [0,1], we
get [-m2z? + ¢°z%y(1 — y)], and the integral (with account of the Jacobian =
x) is logarithmically divergent as z — 0.

The appeared divergence has the infrared nature. Like the ultraviolet one
it can be regularized, for instance, by introducing the nonzero photon mass

or cutting the integral over momenta at the lower limit, or with the help of

dimensional regularization but it cannot be removed by any renormalization.

Let us calculate this diagram on mass shell introducing the nonzero photon
mass m,;, into the virtual photon line. This will not break the gauge invariance
since, as it will be clear later, after the cancellation of the IR divergences one
can put the mass of a photon equal to zero.

Let us go back to eq.(3.23), remove the UV divergence by the minimal
subtraction and go to the mass shell for the fermion fields taking into account
that the external fermion operators obey the Dirac equation (p — m)u(p) = 0
and i(p— q)(p — § — m) = 0. Then after some exercise we obtain for the vertex
function the following expression:

. . aq” y N N v
Df(p, ) = e [Fl(qQ)vag(q?) 2,3], o= XTI (o)

where the form-factors F;(¢?) have the form

A(@) = 103 [ 2—2/ dz/ dy = log (—m2z2 +_‘11”’22y(1—y))
N /da:/ 2(2— 2z —a2)— 2q2(1—zy)(1—z+zy)}, 02)

—m2x2 + a?y(1 —y) — ml, (1 - z)
—4m?z(1 - z)
d d . (9.3
/0 x/o Yy —m2z2+q2w2y(1—y)—m§h(1—z) ( )
The form factor F, is IR convergent and does not need any regularization.
Substituting mp = 0, we get

1 2
2 _ﬁ 2m
F(g) = 47T/0 dy————mQ_qu(l_y). (9.4)

For ¢% = 0 it can be easily calculated and equals

Fy(q%) Ton2

which is nothing else but the first correction to the g-factor, which is called the
anomalous magnetic moment of electron (muon).

As for the form factor F, it is IR divergent. We calculate its divergent
part in the limit my, - 0. It comes only from the second integral in (9.2). To
simplify the integration, we notice that the divergence is defined by the region
of the parameter x ~ 0. Therefore, we put z = 0 everywhere in the numerator
and in the coefficient of myy, in the denominator. Then one gets

2(2m? —
hie) 167f2/ dy/ o (1 q)]-?v?—mQ - (699)

'ph

The integral over z is now easily evaluated

a 1 om2_ 2 —m2 1 2yl — u) — m2
A= | r q—)]log(m+qy( v) = M

ar J, Ym v ghy(1
o (9.7)
The remaining integral over y is also simple. We calculate it in the limit
—g* — co. Then it takes the form

Fi(¢%) = —— / r ¢ log (=2 ¢ “12
ME T o V(i) B\, ) = 2vr1°g( )l"g mZ, )

9.8

The obtained double logarithmic behaviour of the form-factor is called( thc)z
Sudakov double logarithm. It contains the infrared cutoff in the form of the
photon mass. In the amplitude of creation of the muon pair there are two of
such form factors for the electron and the muon vertices, respectively. The
corrections to the fermion and the photon propagators do not contain the IR
divergences. Thus, the cross-section of the process ete™ — utpu~ is logarith-
mically divergent. In order to understand the reason of appearance of the IR
divergence and to find the method of its elimination, consider the process of
creation of the muon pair from the point of view of an observer.

9.2 The soft photon emission

During the process of electron-positron annihilation the muon pair is created
with momenta that satisfy the conservation law and can be measured. However,
they are registered with some accuracy, and momentum smaller than some
value which depends on a particular detector is not registered. Therefore, if
besides the muon pair the photon with momentum smaller than this value
Is created, then this process with emission of the ”soft” y-quantum ete~ —
pTp~y is experimentally indistinguishable from the initial process ete”™ —
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ptp~. The diagramms corresponding to the process ete™ — p*p~7y are shown
in Fig.36 e). They contain an additional vertex and hence additional coupling,
but being squared give a correction to the main process of the order of a,
exactly as the radiative corrections due to the virtual photon.

Let us compare the differential cross-sections of the precess ete” = ptp~
in the one-loop approximation and e*e™ — ptpy in the tree approximation.

We have, respectively,
do o ~q ~q 2
— ) |1-=1 log | —|+...40 9.9
(dQ>0{ T o8 (mg.[l> % (m?)h et (a ) ( ) .

do, , _ . do a —q* ~q 2
— =|-—= l — 4. 10
dQ(e e” = utpTy) (dﬂ)o[ﬁlog <m3.;, g {5 4+..+0(a®)} (9.10)

do _ _
E(fe —ptpT) =

ph

where the second cross-section is written down without derivation which we
will perform later. As follows from eqs.(9.9,9.10), each of these cross-sections
is IR divergent, but in the sum the divergences cancel and one gets the finite
answer.

What is observable after all? In fact, neither the first nor the second process
is observable separately. In a real detector with limited sensitivity one observes
the process of creation of the muon pair plus an arbitrary number of soft
photons with the total energy below the sensitivity threshold. In a given order
of perturbation theory we have to sum the cross-sections of the two processes

in order to get the observed cross-section
dU dU +,— + - dO’ ;- ,
— preend _ it = E E .
<dQ)0bservable (dQ> (e e TR )+ (dQ) (e € g, & < Ly )
(9.11)

The latter cross-section is given by the same formula (9.10) with the replace-
ment in the second logarithm of the photon energy by Emin. Thus, we get

do do ! —q? —¢* ) 2
— =|—-= 1-—— 1 .t O .
(dQ> observable (dQ)O [ m log (mg,u) o8 (E?nin + * (a )

(9.12)

As one can see, for the proper statement of the problem the cross-section of

the observable process is finite and does not depend on the IR regulator. At the

same time, it depends on the sensitivity of the detector Emin and for improved !

sensitivity tends to infinity. However, this infinity also is not physical and is
the artefact of perturbation theory: when the logarithm becomes large we go
beyond the scope of applicability of perturbation theory and it is necessary
to perform the summation of these corrections by analogy with what happens
with the ultraviolet logarithms within the renormalization group method.
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Thus, the IR divergences appear due to the contributions of the photons
with ”soft” momenta: real with the energy smaller than E,,;,, and virtual with
momenta k* < EZ2,,. What is important is that the momenta of fermions
are on wass shell, otherwise the singularities in the propagator do not arise.

The typical diagram of higher order contains a big amount of real and virtual
photon lines (see Fig.37).

Figure 37: The hard process with creation of the soft photons

Let us try to sum up the contributions of these soft photons. Consider first
the external fermion line with the outgoing photons (real and virtual).

P +k1+kz p+k ,

Figure 38: The emission of the soft photons from the fermion line

It corresponds to the following expression:
i(p+ kr +m) (Cier) ip+k+k+m)
2pk; 2p(k1 + k) + O(K?)
P+ k4 +ka+m)
2p(ky + -+ - ks) + O(K?)

We use now the fact that the operator #(p) obeys the Dirac equation @(p)(p —
m) = 0 and omit the momenta k; < p in the numerator. Then we get

u(p) (~ier™)

-+ (9.13)

. (_ie7p") Z.]\Jhard-

a(p)y* (b +m)y* (B +m) --- = u(p)2pMy**(p + m) - - = U(p)2p2p - - -

(9.14)
Hence, eq.(9.13) takes the form

Ll P "
o) e TR o+ )
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The next step is the summation over all the permutations of the photon lines

and the permutations of momenta k;. (So far we have not distinguished between
the real and virtual photons, we will do it later.) This operation is non-trivial
but leads to the simple result. One has

oLl S U G}
permutations pkl p(kl + k2) p(kl +kpt-o-+ kﬂ) pkl pk2 pkn.
(9.16)

The same procedure can be applied to the incoming fermion line. The
difference is that the fermion momentum has the opposite direction which leads
to the replacement of (p + k;)? to (p — k;)? in the propagator, i.e., the change
of the sign p — —p in the denominator. Collecting both factors together we
get the following expression for the amplitude of emission of soft photons from
arbitrary points of the incoming and the outgoing line (Fig.39):

Figure 39: The emission of soft photons from arbitrary points of the incoming
and the outgoing lines

. 11 p”‘ p/pz pllz p/lln plln
M= / Mar e<p ——) ( - >.”e( B )
u(P) 1M hard u(p) vk pk € p'ky  pke Pk, Dk,
(9:17)

Now we have to decide which photons are real and which are virtual. The
virtual photon can be obtained by joining the two photon momenta k; and &;,
taking k; = —k; = k, multiplying by the photon propagator and integrating
over k. In this way for any virtual photon we get the expression:

2 d4k . / !
e_/__z r_pr\(F_ _ P (9.18)
2 ) @m)*k? \pk pk)\-Pk -pk
where the factor 1/2 compensates the double counting due to permutation of
k; and k;. The obtained integral is nothing else but the vertex function in the
one-loop approximation, i.e., the form factor F(g?).

If the number of virtual photons equals n, one gets the product of n ex-
pressions like (9.18) and the factor 1/n! taking into account the permutations
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which d(') not change the result. The full answer is obtained with the help of
sunmation over the soft virtual photons, which gives

o0

- O xY —r = 6p) iMiara u(p) exp(Fh). (9.19)

At the same time, if the real photon is emitted, then instead of the propa-
gator one has to multiply the amplitude by the polarization operator, sum up
over all polarizations and integrate the square of the matrix element over the
photon phase space. In this case, one gets the following expression:

d3k — it 1t v v
(%) = & L(P__P_ LAY 4
(¢ (2m)3 21| \p'k pk) \pk pk/)’ (9:20)
which is the element of the cross-section of the process ete~ —» ptp~y. The

integration over the modulus of the three-vector k has to be performed within
the limits (myph, Emin). Contracting the indices one gets

2 d3k 72 / 2
I(qz):_e_/_(p P B
oy ) 2R \whE  Coben T b))
The first and the last integrals are equal to each other. Let us consider the last
one and choose the frame where = 0. This gives

YT ., 2k (mk)E T on og( mfm)' (9.22)

As for the second integral, we proceed in the following way: first we also choose
the frame p'= 0, and then we covariantize the answer. One has

e2 Eonin k2dk ! ,/ =2 2
I, = W%r/ T/ dcosf myy_tm
Mpp - =2 -
v ! (mk)(\/P + m?k — |p'|k cos 6)

-2 - -

— ilog(Erznm) Vp, +m2 lOg V p’2+m2 - 'pll

- 2
22 -
VP +m?4p

27 My, 7]
Covariantizing this answer and having in mind that ¢ = p — p/, p? = p? =m?

(9.23)

22
and, hence, g% = 2m? — 2m\/p’" + m? one gets

L(e®) = Z 1o (E;iin) 2m? — ¢? 2m? — ¢ — \/~?(4m? — &2
2r T ml,/~¢?(4m? — ¢7) 2m? — g% + \/—g?(4m? — 2
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Thus,

E2. o2m? — ¢* 2m?—q®—/—¢*(4m2—q?
(%) = — log(=in) =L _log | | -2/.
2m me, —g*(4m? — ¢?) 2m2—q2++/—¢*(4m?—q

(9.25)
In the limit —¢? — co we get the desired answer
a E7271in __q2
I{¢®) = ;log( 3 )log(m), (9.26)

ph
coinciding with (9.10). o
If there are n real photons, there are n such contributions and the symmetry

factor 1/n! taking into account the identity of the final particles. The cross-
section of the process with emission of an arbitrary number of photons with

the energy smaller than E,,;, hence equals
0 X 7rn
> Z—g(e%"—* phpny) = Z—g(e%‘—* uW‘)XZO %
" " (9.27)
Combining the results for the real and virtual photons one gets the final
expression for the observable cross-section with emission of an arbitrary number
of photons with the energy smaller than Ep;;,

do ) ( do ) < ex
-= = |55 p(2F1) x exp (I)
< df observable dQ 0

2 2
do a —¢* - o —q Eiin
=|— ——1 log(—5-) | exp | = log ) log(—252%)
( dQ)OeXP[ - og(mg#) g(m}ih)} p[7T (mg# i,
do o —q? —q? ]
=—= —=1 1 . (9.28)
(dﬂ>oexp [ m Og(mg,p) Og( 12nin)

The obtained expression is valid in all orders of perturbation theory. The .

exponential factor does not depend on the IR cutoff but on the sensitivity of

the detector. It is called the Sudakov form factor. When E,,;, tends to zero, -

the form factor decreases and in the limit Ey;, — O vanishes. This is the

manifestation of the statement that he amplitude of creation of the ferm.ion
pair without accompanying soft photons indeed vanishes: the charged particle |

inevitably emits the low frequency electromagnetic waves. This means that
the cross-section of elastic electron scattering without inclusion of emission of
bremsstrahlung quanta should vanish, precisely as it follows from eq.(9.28).
Let us estimate the value of the Sudakov form factor for some real process.
A good example is the cross-section of e*e™ annihilation into hadrons which in
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do - _
= (—iﬁ(e“Le —ptp)e.

the leading order in the fine structure constant is described by one diagram with
Z-boson exchange in the s-channel. The cross-section has a maximum in the
Z-boson peak where it is described by the Breit-Wigner resonance formula.
The energy is equal to the Z-boson mass Mz and the energy resolution is
defined by the Z-boson width I'z. Substituting the values Mz = 91.187 GeV,
I'z = 2.496 GeV, m, = 0.5 MeV, a = 1/128 into the form factor (9.28) we get

o M?2 M2
—=log(—£) log(=£)| =~ 0.648.
exp[ Wog(mg)og(F%J 0.648

As one can see, the form factor, despite the smallness of the fine structure
constant, considerably departs from unity and has to be taken into account
when analysing the experimental data.

9.3 The cancellation of the infrared divergences

The considered example is typical of the QED and one can make the general
statement concerning the infrared divergences for the elements of the S-matrix.

The infrared divergences in radiative corrections to the cross-section of any
physical process in QED are cancelled in every order of perturbation theory if to
the cross-section of the elastic process one adds the inelastic cross-section of the
process with emission of an arbitrary number of additional photons integrated
over the phase space with the requirement that the total photon energy does not
ezxceed some value E, ;.

This statement is also valid for the cross-sections of the processes in non-
Abelian gauge theories like the electroweak theory and some processes in QCD,
though in this case, due to the self-interaction of the non-Abelian gauge fields,
there is no full factorization with the exponentiation, and the proof of this
statement presents some problem.. Nevertheless, for many processes the result
has the same form. Thus, for example, the electromagnetic form-factor in QCD
has the same Sudakov form (9.28) but with the replacement @ — Cra,.

Thus, one can say that the problem of obtaining the ultraviolet and the in-
frared finite radiative corrections to the cross-sections of the physical processes
is solved in two steps: first, with the help of the renormalization procedure
one gets rid of the ultraviolet divergences, which is under full control in renor-
malizable theories; second, defining the correct physical process including the
emission of the soft quanta, the cancellation of the infrared divergences takes
place.

As we will see below, this is not sufficient in non-Abelian gauge theories
with massless gauge fields. They contain additional divergences which require
some ads-inn to the described procedure. We will consider this question in the
last lecture.
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10 : Lecture X: Collinear Divergences

10.1 The collinear divergences in massless theory

The obtained result (9.28) for the cross—secti‘on. of creatio'n. of the ;nuoln Fans“
in thie process of e*e -annihilation with emission of additional solttp i(; 01;t
is typical of the theories with a 111assive? 'fel‘n}lon and masslless ptllooslh. b
ca.nu be generalized to non-Abelian theories w1t¥1 massless g uon, | ) 01 ‘IR
ons cause sohie problems in proving the cance;llatpn 'of the ‘
divergences. Note, however, that eq. (9.28) contains the logarlthmlc} slngt;;lllaliletz
witlt respect to the fermion mass, and if the latte.r tends to zero, one 1as :SSive
divergence. This would not cause any problem since all the fermlolns arem Sive
but the masses of the clectron and the light quarks are so %mal compared :
the characteristic energies of the scattering process thatl Wlt.h good prec1s1o1S
it is reasonable to neglect them. As for the. QCD, Fonmdermg 1the proce;s(e:e
with gluons in initial states due ’ttzi the self-interaction of the gluons we ia
i for the gluon amplitudes. _ ' |

thlstI‘;olll):e;alyse whgat is the reason for the appearance of .thf; new dtlve(riger.lce
after the IR divergence at small photon momenta if regularizéd by ;n. l;’otiuvcu:)gf
the photon mass. Consider for this purpose ed. (9.‘17) for the c;)ln .rltu IOItl. !
the real or virtnal photons. The difference 1s that in one case the integratio

1 ; i ther case
tum of the virtual photon; and in the o ,
ontum of is essential that for the

gluon interacti

goes over the four- .
over the three-momentum of the real photon, but what

massless electron its propagator takes the form
1 1 1 1

N # _ (10.1)
20k~ 2080 ) 2(71IF| - Fllklcos6)  2lFI(1 = cos)

k)

where 6 is the angle between the electron and photon momenta. (In the case of

a virtual photon we use the fact that the contribution to the singularity comes
from the region of photon momentum close to-the mass shell.) .

Thus, the divergence appearing in the massless case comes from ; tf:hlnIeI:)L
gration over the angles and not over the modulus, as in the case t(? ! eFOr
divergence, and is related to the collinearity of mpment'a of two particles. ’
this reason it is called the collinear divergence. To get rid of these dlvizrgencte}z1 ,
one can introduce the angular sensitivity of the detector analogquls y }‘zo the
IR divergence. This would reflect the fact that two massless particles having
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almost parallel momenta are not distinguishable from a single particle with
the same total momentum. Hence, the observed cross-section should include
besides the main process the process of emission of the soft photons and the
process of emission of the collinear photons with the kinematically allowed
absolute values of momenta.

However, in real life the quarks and leptons are massive though their masses
are very small; therefore, the problem of collinear divergences occurs for the
processes with the gluon fields. Since the gluons are not free particles but
exist inside hadrons, any process with the gluons has a similar process with
quarks and it is reasonable to consider them together. For this reasol, ole
usually speaks about the inclusive processes where besides the particles of the
main process one includes the creation of all kinematically allowed particles,
in particular the gluons. In this case, we do not impose any restriction on the
gluon energy, we do not introduce any detector sensitivity to the energy or
the angle, but sum over all the possibilities. It happens, however, that this is
not sufficient to get the finite answer. It is necessary to take into account the
possibility of existence of collinear gluons in the initial state, and only after this
one can get the finite answer for the cross-section of the observable pracess.

The multiloop analysis in this case is much more complicated and is the
subject of the Kinoshita-Lee-Nauenberg theorem which states:

The infrared and collinear divergences in a massless theory are cancelled
in the cross-section of any process if one takes into account the ewistence in
the initial and final states of an arbitrary number of the soft quanta as well as
the particles having the parallel momenta with the same total momentum. The
probabilities of these processes integrated over the phase space of these addi-
tional soft (collinear) quanta in the initial and final states should be added to
the probability of the initial process.

As an illustration we consider the model example of the electron-proton
(quark) scattering and put all the masses equal to zero. We will be interested
in the radiative corrections in the first order with respect to the strong coupling
a;. The corresponding diagrams are shown in Fig.40.

We have already calculated the matrix elements corresponding to these dia-
grams, but now we proceed in a different way. Since the ultraviolet divergences
which appear in the diagrams b)-d) are compensated due to the Ward identity
in QED (Z; = Z,), all the arising divergences are solely infrared and collinear.
To extract them we will use the dimensional regularization. Then both the
divergences are manifested in the form of the poles over € and, since we have
both of them, there will be poles of the first and the second order.

We start with the virtual corrections. The diagrams of self-energy c) and d)
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Figure 40: The process of electron-quark scattering in the first order in as:
a) the Born diagram, b)-d) the corrections due to the virtual gluons, e)-f) the
corrections due to the real gluons

in the massless case are identically zero due to the above-mentioned property
of a massless integral depending on one arguiment equal to zero (p?=0 on the
mass shell). As we explained, here one has the cancellation of the UV and the
IR divergences. Therefore, all divergences in the vertex diagram b) may be
considered as infrared. (The UV divergences should cancel with the UV ones
from the self-energy diagrains and the latter in their turn cancel with the IR).
The integral for the vertex part is defined by two formfactors Fi(q?) and Fy(q*)
(9.1). Taking the expression for the vertex function (3.22) as the starting point,
we put m = 0 and go to the mass shell. The result is

2 \E
as [ B 2 3
R(¢) = -Crg <———_q2) (Z+=-t8), (10.2)

F(¢?) = 0, (10.3)

where instead of the logarithm of the photon mass as the IR regulator we have
the pole over . In order to avoid the transcendental numbers, we used the
helpful definition of the angular measure in the space of 4 — 2z dimensions and
multiplied the standard expression by I'(1 — €)/(4m)¢. Then the constants like
vz, log(4w) and ((2) disappear from the intermediate expressions. Due to the
cancellation of divergences in the final expressions, this redefinition does not

influence the answer.
Thus, the cross-section for the diagrams with virtual gluon has the form

do do a 'uz € 9 3
do\ _ (%9 I AN |
(d9>vm (d9>0 [1 g, (_t) (G+o+ )} ; (10.4)

where the differential cross-section in the Born approximation is given by

do\ o 21 u?—et?) [pt\° 05
@), wm\ e J\s/) (105)
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In the c.m. frame s = E* t = —E2/2(1 — cosf),u = —FE%/2(1 4+ cos#), where
the angle  is the electron scattering angle. | 7
Consider now the diagrams with the emission of the real gluons e) and f)
Be31'des the squares of each of the diagrams one should also take into account.
the interference term. The calculation in fact repeats that in QED but iustead
of th'e photon mass we again use the dimensional regularization and do not
restrict the integration region over the momentum of additional gluon. The

C 5 g I ‘ he [)llase lllte I 3.1
alculat on 1s a l) t 'e(ll‘)lls a“e (:()Il‘ aCtlIl all ‘he lIldl(IeS

doysg =

1 D +¢.2 de 9 : .
2n B2 / Pt (p5) / 2myp’ BV (i=R) )M ey, (10.6)
'1\/['2 — 6—49—28MO +eMy + €2M2
4 ts+t+u)

_ 2 2y .
My = 4s — 8pik — 4pok + 8(pik)? +4(2s+ pik — B>+ 2 + 2 + 2st)

pak '
2 . . 2
My = —4(s5-+1) + 8yt 8ok SPIRS 45 Wkt 2ot tu)’ —2u+ 5)t
pak
2 B
Mz =4(s +t +u) — dpok — (s+t+uw)?  (s+t+ust2pk)?
p2k ok ’

It is. useful FO pass to the spherical coordinates and use the c.m. frame. After
the integration over the phase volume the result can be represented in the form

d_a _(do as (12\52 3 2 (N
(30),. - (42) oor ()& o] crsoce (5 () v,
(10.7)

where the functions f; and f, in the c.m. frame are (z = cosb)

o= _2(1—z)(z3+5z2—31:+5)log(lT"’)—(z—1)2(z+1)(z—11)/4
(1—-2)%(1 + z)2 (108
fo = _(_1——‘56)_21—(?+*$)2 [(1 —z)(z® 4+ 522 — 32 + 5) lop;g(1 ; b
+ %(1 —z)(3z°+ 1522+ 772 - 31) log(1 ) (L4 0 (b4 3)
—12(9z2+2:c+5)Li2(1 * z)+%(1 —z)(1+ :1:)(5.15"—12.1'—23)] - (10.9)
As one can see from the comparison of tlie cross-scctions of the processes

with the virtual (10.4) and the real gluons (10.7), in the sum the sccond order
poles cancel. However, the total cancellation of divergences does ot happen.
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The remaining divergences in the form of a single pole have a collinear nature.
As was already mentioned, for their cancellation one has to define properly the
initial states. The point is that the massless quark can emit the collinear gluon
which will carry part of the initial momentum and in this case, it is impossible
to distinguish one particle propagating with the speed of light from the two
flying parallel.

10.2 The quark distributions and the splitting functions

To take into account this possibility, let us come back to the scattering process
and assume that the initial quark has emitted the parallel gluon (see Fig.41).
The two particles can be almost parallel with small relative transverse momen-
tum. The three four-momenta can be chosen in the form:

q=p-k
p
;5; K
Figure 41: The diagram corresponding to the splitting of the quark into the
quark and the gluon

p=(p;0,0,p), g~ (ep;;pL,0,2p), k~((1-2)p—pL0, (1= z)p),
so that all of them obey the condition p? = ¢° = k* = 0 with the accuracy
up to p. It is helpful, however, to use another method, namely to choose
the momenta in such a way that they obey the mass shell condition with the
accuracy up to p‘_‘L, but to give up the energy conservation in the order of pi.
The advantage of this approach consists in the use of formulas for the spinors
and the polarization vectors on mass shell. Therefore, we choose the momenta

as follows:
2

2
= (p; ~ (zpr2L; k ~ ((1=2)pt—ti—; —pu, 0, (1=
p (paOy();p)aq (ZP+2ZP)PJ_,07ZP): (( z)p+2(1—z)p’ AR 1( Z)P)

The square of the matrix element corresponding to the process of splitting on
mass shell in this case can be written in the standard form

2 N
|M(q = 4G = %—CFTT(v"ﬁv”c]) 3 et (10.10)
pol

where the factor 1/2 comes from the averaging over the spin states. Here we
must take into account the physical polarizations of the gluon only, i.e.

which gives

=,

|M(g = )2 = 49°Cr {p‘)q" _ @%ﬂ} | (10.11)
k)2 ’

or, substituting the values of momenta,

222 1+2
IM(g = Q) = Cp2BL 2T
)l Fz(l—z)l—z’ z <1

(10.12)

The i i

The grzg?ng;iritp;sssmn does not depend on the choice of momenta and has a
. Nov.v one can calculate the cross-section of the process of interest. Graph
1c.ally, it will be the same diagram Fig.40 e); however, the additim;“d 1111 )
will be referred not to the final state but to the initialione Here we( . tcl)11
standard Feynman rules when the energy conservation law i;; not violatgsde b 1:
th'e massless particle is slightly off shell. Since in the case of interest th : uk
with momentum ¢ is virtual, it is useful to choose the momenta like P

2
212y L 2p), k& (2 Z)Pm;wl,&(l—z)p)-
In this case, '
2
2 __ p_l_

Then the cross-section of the process can be written in the factorized form

1 d*k 0z
dolp) = s [ GaMeoeel (@ EDdo ), (10.14)

2z 5
where the factor (25) is due to fact that the cross-section is normalized to the

energy of initial particles, and we have re i
. , placed the quark 0
by the quark with the energy 2p°. ! with the enerey »

Rewriting the differential d®k in terms of the new variables
d*k = pdzd®p, = pdzﬂdp_zL,

and substituting the value of the matrix element (10 2 fi
nd o nt (10.12) and ¢* from (10.17),

e? pdzdp? (1—2z)? 2p? 2
_ P 14
do(p) / . L z zdo (pz)

F
1672 ) (1-2)p pl 2(1-2)1-=2
oy [ dzdpt 1+ 22
- ot [ SPEE
T p; 1-—=z

do(pz). (10.15)



The integral over the transverse momentum is divergent at zero and this is
nothing else but the manifestation of the collinear divergence. The upper limit

is not of great importance, it is restricted by kinematic considerations. We

assume that the integration over p? goes from zero to some scale Q% Later,
we will see that one can change this scale analogously to the change of the

ultraviolet scale p?.
To extract the divergence we use the dimensional regularization. Changing

the dimension of transverse integration from 2 to 2 — 2¢ one gets

1 1 2 rQ® (L 2V—e(_ 12 dp?
s +Z/ (p}) (=) Pl go(p2)
0

o
d = (2
o(p) For)y 1-z P’

1o 1 14221 IN\®

= Cpﬁ | dz 1-‘; pln (——g—2> do(pz). (10.16)
At first sight the obtained expression still contains the pole in the integrand
as z — 1. However, it only looks like a singularity. It came from the matrix
element (10.12), which we have calculated only for z < 1 and it needs to be
redefined for z — 1. We will come back to this question below and, at first,
discuss the interpretation of relation (10.16).

Let us introduce the notion of distribution of the initial gquark with respect
to the fraction of the carried momentum z: q(z). Then the initial distribution
corresponds to ¢(z) = 6(1—2), and the emission of a gluon leads to the splitting:
the quark carries the fraction of momentum equal z, while the gluon - (1-2).
The probability of this event is given by the so-called splitting functions Py(2)
and Pg(1—2z). In the lowest order of perturbation theory in as the quark and
gluon distributions can be written in the form

9\ €

(@) = 8-+ 22t () Pule) (1017
9\ €

6o = 21 (5) Pe=9 (1018)

where the splitting functions are defined by the corresponding matrix elements
one of which for P,y(2) has been calculated in the leading order in a; earlier
(see (10.12)). The result has the following form:

Pyulz) = Cr ((:’t‘j)j + %5(1 - z)> , (10.19)
22 — )2
Pg(z) = —L(;——)— (10.20)

Note that eq. (10.19) contains the redefinition of the function Py (z) at the

point z = 1 mentioned above, namely the sign ” +” should be understood as .
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the following integration rule:

1
[lalEL o [t 10
o (I—-2) 0 (1-2) °
and the coefficient of the d-function is defi i
ation of the s of o n is defined from the requirement of conser-

1 1
2 _
/Oq(z,Q)dz—l = /0 P, (2)dz = 0.

Thus, eq. (10.16) together with the Born diagram can be written as

1
do(p) = A dz q(z, Q%) do(pz), (10.21)
where the quark distribution g(z, Q%) is given by (10.17)

It seems strange at first sight that the answer depends on the scale Q? whict
'deﬁnes the quark distribution. However, it has the physical interpretation ThC'1
is thg measure of collinearity of the emitted gluons that can be distin u.ish (lis
Le., it refers to the definition of the initial state. In fact, in the 1nass1gess c: ,
one cannot define the initial state that contains just the qu’ark it exists to ethii
w¥th the.set of collinear gluons. (The same is true for the 7maLssless elgctron
with .colhnear photons.) This scale is sometimes called the factorization scale
at thlS. scale the scattering cross-section (10.21) takes the factorized form Th,
factorization scale can be varied. The dependence of the quark and the éluog

distributi th ; :
o inocgsC Io)n e scale is governed by the so-called DGLAP equations well

10.3 The finite answers

’I}‘lhus, besides the two.contributions to the cross-section from the virtual and
the real gluons there is one more contribution related to the splitted initial
state (10.16). In the lowest order of perturbation theory in ¢ it can be written

as
do lo 1 'u2 € do
— =22 0
(dQ)Split e2r 0 dz (Q% qu(Z) a0 (pZ), (1022)

Wbe;e the Born cross-section is given by (10.5) with the rep121C63111(;11t of the
1n1t1a1. quark m.omentum p by pz, and the factorization scale Q% is an zu'bitm‘r\;
quzantlty associated with the quark distribution function. Notfe that the %c('\l;\
Q % may depend on z. It is quite natural to choose the factorization scalore:( ;111
to the characteristic scale of the process of interest. Thus, in our case’ ih(is
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choice corresponds to Q% = —#, where t is the Mandelstam parameter ¢ for the

: 3 2 i to the
process where p is replaced by pz. One has t = [ ey This leads

following result:

o g <£) (“—2> (L4 g, (10.23)
dQ) split 2F221 \ s —t €

where fi is given by (10.8) and
1
Jr = (1 —2)2(1 +a)?
1
+12(92° + 2z + 5) Lia(

[2(1 —z)(2® + 2% — 33z + 7) log( 5 T)

- (14 )3 (x* + 5z + 3)7?
—%(1ﬁx)(1+a;)(11z2— 19)} : (10.24)

Comparing the obtained expression with (10.4) and (10.7) we see tha; Eile
last divergence cancels and the final expression for th'e cross-section 0 ‘ ﬁe
electron-quark scattering with account of possible creation of the gluon in the
initial and final states takes the form (¢ = cos®)

do _ (%o +<i(5> +<d—a> (10.25)
<E§> naba a ds2 virt ds2 real de2 split

o? {x2+2w+5 as_—c’i.__[(x3+5m2—3z+5)10g2
— - T 2

(1+z)(32° + 21z + 2)} } .

T 2E?
1——x_

+%(7x3 + 192% — 55z — 3) log

This expression is our final answer for the.Cfo.ss-section of thle ;;hi/su.:s}
process of electron-quark scattering where the initial and t.h-e ﬁnzfl E & e.t1. 1
clude the soft and collinear gluons. It includes also the. definition of the m; ia
state and can be recalculated for the alternative choice _of the factox;za ion
scale similar to what happens to the ultraviolet scale wblch deﬁnfz? td 'eéo:l
pling constant. Thus, we practically deal with the scattering not o t1n 1v1O zl
particles but rather with coherent states with a fixed total momentum. y

i cess has a physical meaning. . '
thlSIIIl)rFoigAZ, we shovif the diﬂferent;al cross-section of this proce}sls as :hfeugltcrt;i)ln
of the electron scattering angle: %g—g(cos 6). We hav§ chos.en (;rteh adiativi
coupling s = 0.2, and Cp = 4/3. As one can see, the 1nclu3191&0 e rf iative
correction ~ a, practically does not change the'resw‘ult, the di erfncet rrobation
Born approximation is less than a per cent, that justifies the use of pertu

theory.
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Figure 42: The differential cross-section of g scattering in the Born approxi-
mation and with allowance for the a, correction. On the right plane the same
plot is shown in the bigger scale

Let us stress once more that the obtained answer for the cross-section of
the observable process depends on: a) the ultraviolet subtraction scheme that
manifests itself, in particular, in the appearance of the ultraviolet scale 1.2
(canceled in our case in the lowest order of perturbation theory) and b) the
definition of the initial coherent state, which manifests itself in the appearance
of the factorization scale Qf,. The universality in the description of the physical
processes is based on the fact that choosing the UV and the IR scale one
way or another and fitting the experimental data of some process, one can
then recalculate the obtained values of the running coupling and of the quark
(lepton) distribution for any other choice of the scales. This way the result for

the observable quantities does not depend on a particular choice of these scales
and is universal.

105



11 Afterword

Local quantum field theory, being the mathematical basis of elementary par-
ticle physics, is the logical continuation of quantum mechanics. It exploits
the same basic ideas, but describing the system with an infinite number of
degrees of freedom permits the creation and annihilation of particles in the
course of the interaction. The modern formulation is based on the interaction
representation which assumes the existence of the asymptotic states of the free
fields. In the S-matric approach we presume that these fields interact in a local
way in the space-time, and calculating the S-matrix elements one can find the
probabilities of various processes. The most developed and reliable method of
these calculations is the perturbation theory in the coupling constant which
is similar to the one in quantum mechanics. However, due to a much more
complicated structure of the field theory, the methods of perturbation theory
encounter problems which have no analogy in guantum mechanics, namely the
divergence of the appearing integrals for the radiative corrections. We have
shown in these lectures how oné can deal with these divergences which have
the ultraviolet and the infrared nature and how to get the finite answers for
the probabilities of the physical processes. We did not aim to prove the main
theorems like the Bogoliubov-Parasiuk or the Kinoshita-Lee-Nauenberg theo-
rem, but have exemplified how they work. The explicit calculations allow one
to convince himself in the validity of the final conclusions.

1t should be noted that the formalism of quantum field theory contains the
physical principles which we have to follow sometimes not realizing it. Thus,
for example, the ultraviolet divergences restrict the type of the interaction
and, contrary to quantum mechanics, there are only a few types of allowed
Lagrangians. Not without reason the renormalizability played such an impor-
tant role in the formation of the Standard Model. The other example is the
notion of the asymptotic states. Even starting with the free fields within the
perturbation theory, from the requirement of the cancellation of the infrared
divergences we come to the definition of the physical initial and final states
which are essentially the coherent states.

The very fact that the gravitational interaction does not fit to the general
scheme probably means that local quantum field theory has a limited applica-
bility and should be replaced by a more general construction. It might be
nonlocal like in the string theory, or multidimensional one like in the brane-

106

world theory. However. iy auy case, in the |
quantum ficld theory thougl
we considered lyere.

! . e low energy limit one has the local
POsSIbly going bevond the Standard Model that
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