
=··ii~t·~~:<:r :':.!'~':' 1 

: ' • • .• : > ;_' i. l •,.· . . . . 

1 

• • : ; -._ 

t:L"'i. , """"- ~ _ • · 

R.Kragler* 

Yqe6Ho­
MeTo,n;11qecKHe 

rroco6IDI 
Y qe6Ho-HayqHoro 

QeHTpa OIUIM 
~y6Ha 

YH~-2000-8 

Mathematica Tutorial Course 

*FH Ravensburg-Wengarten, University of Applied Sciences, Germany 

2000 



R.Kragler* 

Mathematica Tutorial Course 

* FH Ravensburg-Weingarten, University of Applied Sciences,Germany 

- ' , ,a~(/ 
.;,._ •,jj,•, 

. ,. ·,· ,.. /, 

• L\..~··;\ 



KparJiep P. 
BBO.[J;Hhlii icypc no cncTeMe MameMamu«a 

B HaCT05.lmee H3,n;amie BKmoqeHbI TPH JieKI.J;HH, rrpoqHTaHHbie no CHCTeMe 

MameMamw<a B YHU: 0115111. 
B rrepaoil: JieKI.J;HH ,n;aH ofoop OCHOBHbIX B03MO)KHOCTeil: CHCTeMbI 

MameMamuKa. Tionpo6Ho o6cy)KnaeTC5.I rrpHMeHeHHe CHCTeMbI ,[(JI5.I qlfcJieHHbIX H 
CHMB0JibHbIX BblqHCJieHHH, rpaqmKH H rrporpaMMHpoaaHHe Ha 5.13bIKe CHCTeMbI. 

Oco6oe BHHMaHHe y,n;eJieHO HOBbIM B03MO)KH0CT5.IM MameMamUKU 3. 0 TaKHM, KaK 

C03,ll;aHHe HHTepaKTHBHbIX ,[(OKyMeHTOB. 

Bo BTOpoil: JieKI.J;HH OCHOBHOe BHHMaHHe y,n;eJieHO CTHJI5.IM rrporpaMMHpOBaHH5.I 

B CHCTeMe MameMamuKa. ,[(eMOHCTPHPYIOTC5.I B03MO)KHOCTH 5.13bIKa BbICOKOro ypoBH5.I 

CHCTeMbI H ero HCIIOJib30BaHHe B pa3JilfqHbIX CTHJI5.IX rrporpaMMHpOBaHH5.I. 

l13JIO)KeHHe HJIJIIOCTpHpyeTC5.I MHOroqlfcJieHHbIMH rrpHMepaMH. 

TpeTb5.I. JieKI.J;H5.I co,n;ep)KHT BBe,n;eHHe B IIOJib30BaTeJibCKHH HHTepcpeil:c 

CHCTeMbI MameMamuKa. TipHBe,n;eHbI rrpHMepbI reHepan;HH KHOIIOK H IIaJIHTp, 

BpamaromHXC5.I HKOHOK, rHrrepccbIJIOK H T.II. 

fleKn;HH rrpoqHTaHbI B Yqe6Ho-HayqHoM n;eHTpe 0115111 rrpocpeccopoM P.KparnepoM 
B paMKaX I.J;HKJia JieKI.J;HH «CoapeMeHHbie rrpo6JieMbI ecTeCTBO3HaHH5.I». 

R.Kragler 
Mathematica Tutorial Course 

Included are three lectures on the Mathematica system given at the University 
Centre of JINR. 

The first lecture reviews the main features of Mathematica. Treated in detail 
are the application of the system for numerical and symbolic calculations, graphics, 
and programming in the language of the system. Special attention is paid to the new 
capabilities of Mathematica 3.0 like creating interactive documents. 

The second lecture deals mostly with the styles of programming in 
Mathematica. The capabilities of the high-level language of the system and its 
application in different styles of programming are shown. The narration is amply 
illustrated with _examples. 

The third lecture is an introduction to the user interface of Mathematica. 
Given are examples of generating buttons, palettes, rotating icons, _hyperlinks, etc. 

The lectures were given by Prof. R. Kragler at the University Centre of JINR within 
the lecture cycle «Modem Problems of Natural Sciences». 
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University Center 
Joint Institute of Nuclear Research / Dubna 

Mathematica Seminars 
October 27-29, 1998 

Survey of Mathematica Features : 
Numerics, Symbolic Computation and Graphics 

Prof. Dr. Robert Krag/er 
FH Ravensburg-Weingarten /University of Applied Sciences 

kragler@fh-weingarten.de · 
Abstract 

The lecture will give a survey on Mathematica Version 3.0 and it will be demonstrated how Mathematica 

notebooks can be used as convenient means for exchange of scientific information in the field of 

Mathematics, Physics and Engineering. 
The salient features of Mathematica - i.e. numerical and symbolic calculations, graphics and the high-level 

programming language - will be discussed in this lecture in detail online and illustrated by computer 
animations taken from different areas of science and engineering. Special emphasis is laid upon the new 
features of Mathematica version 3.0 such as typesetting and the interactivity of Mathematica documents. 
All examples are particularly chosen to demonstrate how the effectiveness of science resp. engineering 
education can be improved using CAS tools. Finally, an outlook on further feasible developments of CAS 
is given. 
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Some general remarks on CAS 

Motivation 

In the past logarithmic tables, slide rulers and collections of mathematical formulae (such as the famous 

"Table for Integrals, Series and Products" of Gradshteyn & Ryzhik) had been indispensible tools for 
physicists and engineers. At least the first two requisites had been replaced by electronic pocket 

calculators which in turn is nowadays replaced by more powerful PCs and portable laptop computers. The 
computing power available today on one's desk required only one decade ago the usage of mainframe 

computers. There are only few real hard, number-crunching problems in science which cannot be 

accessed without a super computer. · 

It is generally accepted that one has to resort to a computer in order to do numeric calculations. 

We are all used to computer graphics. The synthetic images generated by computers - Uust think of 
Steven Spielberg's movie Jurassic Park with the dinosaurs) - are astonishingly realistic so that the buzz 

word virtual reality is u_sed. However, even the famous domain of chess game was recently conquered 
by computers; on May 16, 1997 the renouned Russian chess word-champion G. Kasparov was beaten by 

Deep Blue, an IBM super computer. This example for artificial intelligence demonstrates that 

customized hard- and software combined with computer power commerically available can effectively be 
used for solving intricate problems. 

Perhaps less spectacular and thus less know to the public is the fact that even symbolic calculations, 
such as manipulation of formulae which usally required paper and pencil, are meanwhile done by 
computers, and as will be shown later faster and more reliable than humans who tend to make errors 

when performing tedious rewriting and simplifications of terms. Today, the term computer algebra is 
generally used to characterize machine processing of symbolic expressions in mathematics on a 

computer. 

Reasons using CAS 

The very reason resorting to CAS is always the fact that calculations necessary for the solution of a 

problem turn out to be so voluminous that they can no longer be done with paper and pencil. This may 
even lead to a point where the quantity of necessary computations turns over into a qualitative distinction : 

i.e., although a mathematical problem may in principle be solvable by a finite number of steps the amount 

of steps, however, makes practical execution impossible. 

Due to availability of CAS the qualitative change in mathematics takes place in several ways : at first CAS 
will be applied to such problems which could be solved in a conventional way but require a considerable 

amount of computations. 

The following example of the calculation of integrals with rational function may illustrate this : 

J ___ x_
5 
___ 

2 
dx / / FullSimplify 

(x4 + x2 + 1) 

2 (l+x2 +x 4
) (ArcTan[ .,.,- 1

•x
2 

]-ArcTan[ Jf2

2
]) 

1 2 V 3 ( 1 + x 2 ) 3 X 

-x + --/3 
6 ( 1 + x 2 + x4) 

Doing these kind of calculations with paper and pencil one is tempted to mm1m1ze the effort of 

computations in using experience with similar problems. As regards to CAS heuristics becomes 
unimportant with respect to the algorithm. In the case of integration the so-called Risch algorithm (1969) 

is the essential new insight to make this automatism possible at all. Algorithms are developed with the 
aim to solve these kind of problems on a computer by means of CAS. 
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There is another class of problems for which an algorithm is known, however for all cases of practical 

interest the computational expenditures are so high that it can no longer be done with conventional 
means. Often there is an interdependence between the development of algorithms and their 
implementation in CAS. 

Possible Applications of CAS 

If complicated problems in science and technique have to be solved it goes without saying for scientists 
and engineers to use computers for numerical calculations and in this context it is generally tolerated that 
there may occur rounding errors due to the way a computer (as a finite machine) works which might 
doctor the result. 
However, in the area of modelling and simulation of physical phenomena, before doing an actual 
computation, some kind of manipulation of equations or transformations into suitable coordinate systems 
are necessary which were always done by hand. Yet, with the progress in symbolic computations, i.e. 
powerful CAS available, there is no longer any need to do these tedious, error-prone calculations 
manually. Instead they can be done much faster and more reliable by computers now. 
Obviously, in the field of science and engineering there are practically no limits for CAS applications. 
According to the wide range using CAS these systems are successfully applied in following areas : 

■ System Control 
■ Analysis and Synthesis of Electrical Networks 
■ Robotics 
11 Hydro- and Aerodynamics 
11 Thermodynamics 
■ Elastomechanics 
■ Non-linear Dynamics 
■ Process Data Processing etc. 

For scientists and engineers, students and practitioners usage of CAS can be a convenient supplement 
supporting their work on very different levels : 
on lowest level when tedious, error-susceptible basic operations have to be performed such as symbolic 
differentiation and integration, solving of equations etc. ; 
on higher level when e.g. systems of differential equations in the context of physical modeling have to be 
investigated; 
on highest level to study the behavior of approximations of partial differential equations as occur in 
aerodynamics. 
In the process of teaching, i.e. in scientific education, a well-planed assignment of CAS helps to 
increase the attractivity of lectures. Using computer algebra tools combined with new multimedia 
techniques will help to improve substantially the content of various lectures, especially from didactics point 
of view. Visualization and animation of mathematical objects may contribute in a substantial way to 
improve the acceptance of (weary) lectures. This is possible now due to powerful hardware such as 
laptop computers along with coloured LCD panels or data projectors available at affordable costs. 
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Why just Mathematica ? 

Features of Mathematica 

Mathematica, Maple V and Macsyma are the most wide spread universal CA systems in academia and 
industry which cover a wide spectrum of mathematics. 
At our polytechnic both systems are used : 

Maple V is mainly used for research and teaching in natural sciences, in engineering and mathematics. 
The reason for this limited usage is the extraordinary large extent of approx. 2.500 mathematical 
funcJions, the high level of abstraction and the fact that only recently a graphical front end version for 
Maple V was developed. 
Mathematica is not only used in the areas of research and teaching but will be applied in many other fields 
e.g. in banking etc. Not only the comfortable user front end but also the excellent graphics features 
contributed to this success. 

The preceding, general remarks are to be illustrated in more details : Mathematica is a CA program for 
symbolic manipulation of formulae mainly. Apart from numerical and symbolic calculations this computer 

algebra system is supplemented by the following salient features : 

■ Graphic Interactive User Interface (Front End) 
■ Comfortable 2D/3D Graphics and· Animation 
■ High-level Programming Language for Developing new Procedures 
■ Extensive and Extendible Program Library for Mathematical Procedures 

In comparison to other CAS an outstanding feature of Mathematica. is its execellent graphics and the kind 

of worksheets called Notebooks. What are the features making Mathematica notebooks so remarkable 
?! 
Mathematica Notebooks are interactive electronic documents which may contain : . 

Mathematica code (to be executed), text ( with most DTP features supported such different fonts, colour, 

mathematical formulae etc.), graphics and animation, (even in real-time using the add-on program 

MathLive ), sound which is encoded in Postscript code too, as is graphics. 
According to these features there is an interesting aspect of Mathematica notebooks : 
Today students have at least access to PCs in a computer lab or even own a PC privately on which they 
can run Mathematica resp. MathReader. This fact makes Mathematica notebooks interesting for the 
development of multimedia lecture units, say in physics or mathematics, or even student courses for 

self-learning which are written like conventional lecture notes by the professor and distributed to the 
students who will download the files from a central server. 
Besides the possibilities in didactics the CA system Mathematica - due to its ability of symbolic 
manipulation of formulae and various numerical procedures - incorporates a great potential in solving 
mathematical problems in very distinct fields of technology and science. 

Particularly the following characterization applies to the new Mathematica version 3.0 

Mathematica is not only a Computer Algebra System 
Mathematica is rather a System for Technical Computing 

Mathematica Notebooks for Exchange of Scientific Information 

Mathematica notebooks are ordinary Mathematica expressions. Therefore they can immediately be 
manipulated by the user without any special setup etc. thus the results given in Mathematica notebooks 
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, .. 

can easily be checked or altered. Mathematica notebooks are organised in terms of hierarchical cells the 
layout of which can be pre-defined in so-called StyleSheets which are again Mathematica notebooks. 
Notebooks can even be created by the Mathematica kernel as output. There are no limitations as regards 
to the appearance of Mathematica notebooks. Due to the hierarchical cell concept notebooks can be read 
like books wherein there are table of content, sections and subsections etc. which are accessible after 
opening the corresponding pages. However, the advantage of the electronic document in comparison to 
conventional books is the interactivity, i.e. probing and manipulating the Mathematica code incorporated in 
the notebook. ( The very first pioneering book which contained all chapters in terms of Mathematica 

notebooks on a CD-ROM disk was "Exploring Mathematics with Mathematica" by Th. Gray and J. Glynn 
published by Addison-Wesley Publ. Company already in 1991. 

But the real important new feature in Mathematica version 3.0 is the portability of Mathematica notebooks. 
Mathematica notebooks contain all information in terms of ASCII code. They are platform independent. In 

earlier versions it was always a big problem to convert Mathematica notebooks which had been 
generated, say, under Windows operating system to Unix workstations {OS Solaris), NeXT {OS 
NeXTSTEP) or Macintosh (Mac OS 7) computers. Especially international characters such as German 
umlauts (or kyrillic letters) and other special symbols were a tedious problem to cope with in the past 
because there is no general accepted standard for character encoding. In Mathematica V 3.0 this problem 
is definitely solved. There are code translation tables for all Mathematica implementations which are 
provided for a large number of hardware platforms. 

Thus Mathematica notebooks may be used as mean for exchange of scientific information and could 
become a kind of standard for interactive electronic documents. On a wider scale Mathematica notebooks 
can be provided to academia via Web. There is already the built-in capability to save Mathematica 

notebooks in HTML format so that they be used as WWW pages. In this context Wolfram Research 
made in its newsletter MATHwire from April '98 two interesting announcements : 

Based on Mathematica's highly successful notebook paradigm, Wolfram Research has developed 
Publicon - a comprehensive solution for interactive technical publishing. Allowing the creation of 
professional-quality technical documents for on-screen, web, and printed use, a free beta version 
of Publican can be downloaded from <http://www.publicom.com/>. 

HyperDemo 

Mathematica becomes the framework for Web Typesetting Technology. The key ideas forming 
the core of the new MathML (Mathematical Markup Language) standard recently ratified by W3C 
(i.e. the WWW Consortium) come directly from Wolfram Research's typesetting technology. 
MathML is designed to allow mathematical expressions to be transmitted over the web, 
preserving the structure needed to do computations with them in Mathematica. Information on 
MathML can be downloades from the web at <http://www.wolfram.com/news/mathml/ > . 

In order to read Mathematica notebooks it is even not necessary to have Mathematica installed on a 
computer. It suffices to run the browser MathReader freely available from Wolfram Research. On the 

premises that (voluminous) graphics and sound cells are deleted (which can easily- be reconstructed with 
the help of running Mathematica ) from Mathematica notebooks they shrink to reasonable size and may 

be attached to email messages and be sent via Internet to colleagues all over the world. Thus, worldwide 
scientific cooperation by means of exchange of Mathematica notebooks works in practice already today. 

Mathematica's ca·pabilities in Technical Computing 

A closer look to the capabilities of Mathematica reveals that it is not only a simple CAS but a 

System for Creating Interactive Documents ( Mathematica notebooks) 

Notebooks are complete interactive document combining text, tables, graphics, sound, 
calculations, and other elements in terms of cells 
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Every Mathematica notebook is Mathematica expression which can therefore be manipulated by the 

kernel, see e.g. 

dir = subDir; 
openNotebookButton["NotebookE.nb", 1, dir] 
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Symbolic Calculator 

Mathematica can be used just like a calculator : type in some questions, and 
Mathematica returns the answers. 

Mathematica can do basic calculations 

Log [ 100 ! ] / / N 

363.739 

J ~ ~ dx 

( 
-Jx x3;2 ) 

~ -4- + -2- -
ArcSinh [ -Jx] 

4 

(sole= Solve [x3 + 2 x2 + 2 x - 1 == 0, x]) / / ColumnForm 

{x ➔-~ - ~ (47+3~ )1/3+ ~ (~ (47+3\1'249))1/3} 

{ X ➔ - ~ + ~ ( 1 + I \13) ( 47 +3 ~ ) l/3 - ~ ( l - I vf3) ( ~ ( 4 7 + 3 \1249) ) 
113

} 

{x ➔ - ~ + ~ (1 - I \13) ( 47 +3~ )
113 

- ~· (1 + I \13) ( ~ (47 + 3 \1249) )
113

} 

Mathematica can work with formulae of arbitrary length - hence solving problems that are untractable by 

hand. 

( x121 + y121 ) / / Factor 

Simplify[%] 
(x + y) (xlO _ xg y + XS y" _ x7 y3 + x6 y4 _ XS y5 + x4 y6 _ x3 y7 + x2 y8 _ X yg + ylO) (xllO _ 

xgg y11 + xss /: _ x77 y33 + x66 y44 _ xss yss + x44 y66 _ x33 y77 + x22 yss _ x11 y99 + y110) 

Xl21 + yl21 

For basic operations one may resort to palettes such as in order to simplify 

the marked expression in the cell below with TrigReduce. 

dir = $TopDirectory <> "\ \SystemFiles\ \FrontEnd\ \Palettes" 

openNotebookButton [ "BasicCalculations. nb", 1, dir] 
C:\PROGRAMME\WOLFRAM RESEARCH\MATHEMATICA\3.0\SystemFiles\FrontEnd\ 

Palettes 

3 Sin[a) - 4 Sin[a] 3 
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l Sin [3 a] 

Instrument for Extensive Numerical Calculations 

Mathematica, can do power computing; one can perform number-crunching 
numerical calculations 

Numbers of arbitrary size 

500! 
1220136825991110068701238785423046926253574342803192842192413588385845373153881997605496447. 

50220328186301361647714820358416337872207817720048078520515932928547790757193933060377295 
0859086270429174547882424912726344305670173270769461062802310452644218878789465754777149& 
63494367781037644274033827365397471386477878495438489595537537990423241061271326984327745 
71554630997720278101456108118837370953101635632443298702956389662891165897476957208792692 
88712817800702651745077684107196243903943225364226052349458501299185715012487069615681415 
2535905669342381300885624924689156412677565448188650659384795177536089400574523894033579& 
47636394490531306232374906644504882466507594673586207463792518420045936969298102226397195 
25971909452178233317569345815085523328207628200234026269078983424517120062077146409794561. 
16127629145951237229913340169552363850942885592018727433795173014586357570828355780158735 
43276888868012039988238470215146760544540766353598417443048012893831389688163948746965881. 
75045069263653381750554781286400000000000000000000000000000000000000000000000000000000000 
00000000000000000000000000000000000000000000000000000000000000000 

and arbitrary precision (such as 1r with 100 digits) can easily be dealt with. 

N[~, 100] 
3.14159265358979323846264338327950288419716939937510582097494459230781640\ 

6286208998628034825342117068 

Mathematica uses an state-of-the-art algorithm for factoring integers. 

p = 2105 - 1 

f = Factorinteger[p] 
40564819207303340847894502572031 

{{7, 2}, {31, l}, {71, l}, {127, l}, {151, l}, {337, l}, {29191, l}, 
{106681, l}, {122921, l}, {152041, l}} 

With the user-defined function FactorisationHold the explicit evaluation of the power products (Pi) ei 

is held so that the following neat representation is obtained 

FactorisationHold[args : { {_, _} .. }] : = 
Apply[Times, Apply[Power, # // HoldForm, {2}], {l}]& [args] 

FactorisationHold[f] 
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7 2 311 71 1 127 1 1511 337 1 29191 1 1066811 1229211 1520411 

Mathematica can solve numerically a nonlinear differential equation. The answer is an interpolating 

function which in:,plicitly represents the whole solution and is displayed as parametric plot. 

sol= 

NDSolve[ { x'' [t] + x[t] 3 == Sin[t] Cos[t], x[0] == x' [0] == 0}, x, {t, 0, 50}]; 

ParametricPlot[ { x [t], x' [t] } /. sol , {t, 0, 50}, 
Compiled ➔ False, PlotStyle ➔ {Red, th}]; 

Mathematica easily calculates the eigenvalues of a (100 x 100) matrix with random numbers 

IM= Table[Random[], {100}, {100}]; 

ListPlot [ Abs [Eigenvalues [M] ] ] ; 

4 

3 -­---- -... 
2 

1 

20 40 

--... ----
60 80 

--... _ 
·-. 
100 

An indication of the performance of Mathematica may be obtained by analysing the increase of CPU time 

for the evaluation of eigenvalues of these random matrices with size that increases from n = 50 to 500. 

1 
.,_~I 

dir = subDir; 

openNotebookButton["PerformanceE.nb", 1, dir] 
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System for Image Data Processing 

Mathematica is able to import data of arbitrary format and process the data 
with suitable procedures. 

In this example data are read from the file image.dat as input. 

data file has to be in the working directory) 

data = ReadList["image.dat", Number, RecordLists ➔ True]; 

Dimensions[data] 
{94, 100} 

and rendered as a density plot with an arbitrary function e {x applied to the data given 

ListDensityPlot[e✓data]; 

80 

60 

40 

20 

o~--~--~--~-~~-___.__, 
0 20 40 60 80 100 

(Note: the 

Then, data are shifted to the right in a cylic manner. Successive shift of pixels shows the well-known 

phenomenon of Poincare recurrence. 

mIR := Mapindexed[RotateRight, #]& 
ListDensityPlot[ Nest[mIR, data, 99]]; 
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0 20 40 60 80 100 

The histogram, i.e. the distribution of gray levels in the pixel data, and a 30 representation based on the 
same data is shown below. 

his to = ListPlot [ Sort [Flatten [data]] , DisplayFunction ➔ Identity] ; 

plt3D = ListPlot3D ( data, 

ColorFunction - > GrayLevel, Axes - > None, 

Mesh-> False, ViewPoint -> {. 2, -2, 3}, 

DisplayFunction ➔ Identity] ; 

Show[ GraphicsArray({histo, plt3D}], DisplayFunction ➔ $DisplayFunction]; 

200 

150 

100 

50 

2000 4000 6000 8000 
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I Visualization 

It is quite easy to create stunning visual images with Mathematica. 

Mathematica includes graphics primitives from which one can build up 2D resp. 3D graphics of any complexity. Here 

a list of point primitives is generated. 

I gr = 

Flatten [Table[ {Point[ { ~, Denominator[~]}], Hue[~]}, 
q q q 

{q, 100}, {p, q- l} ]]; 

The graphics corresponding to this list of point primitives is shown below 

I Show [ Graphics [gr, Frame ➔ True, AspectRa tio ➔ • 3 ] ] ; 

100 

80 

60 

40 

20 
' · • ~ •. -, f ., . • l 'i ; ~ ',,-8 , ... ; ~., ·.; -: •: ~; 

0 
s, • I I 'II I • • • • • • • • •• I I I 

0 0.2 0.4 0.6 0.8 1-

This is a generalization in 3D of the so-called Sierpinski gasket, which is obtained if cuboids are substituted in 3D 

space instead of points in the 2D plane . 
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g = Table[ If[ Mod[ Multinomial[x, y, z], 2] == 1, 

Cuboid[l.2 {x, y, -z}], {} ] , 

{x, 0, 15}, {y, 0, 15}, {z ; 0, 15}] //Flatten; 

sierpinski =Show[Graphics3D[g], 

Background ➔ RGBColor[l., 0. 8, 0 . 4], 

PlotLabel ➔ "Sierpinski Gasket"]; 

The so-called Klein Bottle (a generalization of the MObius strip in 20) is a 3-dimensional object with 

non-orientable surface, i.e. the object has a closed surface but one cannot distinguish between interior 
and external faces, there is only one single surface. 

The object is defined as a parametric surface which is obtained by decorating a droplet-like space curve 

. with a tube. 

Needs ["Graphics ' ParametricPlot3D' "] ; v =. ; 
Needs["Graphics ' Shapes ' "]; 

bx= 6 Cos[u] (1 + Sin[u]); 

by= 16 Sin[u]; 

rad = 4 ( 1 - Co~
2
[u] ) ; 

X = If [,r < u s 2 ,r, bx + rad Cos [v + :n-] , bx+ rad Cos [u] Cos [v] ] ; 

Y = If [:n- < u s 2 ,r, by, by+ rad Sin [u] Cos [v] ] ; 

Z = rad Sin [v] ; 

klein = Paramet:ricPlot3D[{X, Y, Z}, {u, 0, 2 ,r}, {v, 0, 2 :n-}, 

PlotPoints ➔ { 48, 12} , 

Axes ➔ False, Boxed ➔ False, 

PlotLabel ➔ "Klein Bottle", 

ViewPoint ➔ {1.4, -2 . 6, -1.7}, 

DisplayFunction ➔ Identity]; 

perfKlein = PerforatePolygons[klein, 0.7]; 

Show[perfKlein, Background ➔ RGBColor[0.2, 1., 1.], 

DisplayFunction ➔ $DisplayFunction] ; 
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■ Real time animation (Dynamic Visualizer or Conix 3DExplorer) 

With the DynamicVisualizer or Conix 3D Explorer, new Mathematica application packages available, it 

possible to display and manipulate 3D objects in real-time. 

Needs["DynamicVisualizer'"]; 

Visualize [ { } ] ; (•Brings DynamicVisualizer window to the front•) 

In order to display a single Mathematica graphics using the graphics viewpoint the command 

VisualizerShow [3dObject] has to be invoked. When the left mouse button is pressed the object is 

selected. Moving the mouse causes the object to rotate. Holding down the ~ resp. @ key together with 

the mouse button pressed and move the mouse then the object is zoomed or draged. 

g = Table[ If[ Mod( Multinomial[x, y, z], 2] == 1, 

Cuboid ( 1 . 2 { x , y, - z} ) , {} ) , 

{x, 0, 15}, {y, 0, 15}, {z, 0, 15}) //Flatten; 

sierpinski = Show[Graphics3D[g), 
Background ➔ RGBColor (1., 0. 8, 0. 4] , 

PlotLabel ➔ "Sierpinsk Gasket", 
DisplayFunction ➔ Identity); 

VisualizerShow[sierpinski); 

After closing the link between Mathematica and the DynamicVisua/izer it is possible to launch this 

application again. 

ClearVisualizer[ ); 

QuitVisualizer(); 

■ Animations 

(• Resetting DynamicVisualizer •) 

(* Closing DynamicVisualizer •) 

Mathematica produces animated movies which give a better understanding of movements such as a 

cam-follower or a gear mechanism shown in Animations. nb j 

■ Sound 

Mathematica treats sound on the same footing as graphics. Substituting the command Plot by Play it is 

then possible to make even complicated sound patterns audible which is demonstrated by 

SoundDerno . nb J . 

High-Level Programming Language 

Mathematica is an unprecedentedly flexible and intuitive programming 
language. 
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Examples of the Mathematica programming language are given in the following notebook 

In comparison to other computer algebra systems such as Maple V, Macsyma, Axion, Reduce due to 

the functional programming style of Mathematica it is often possible to write an elegant concise 

(single-line) program code whereas other CA programs require for the same task several lines at least. 

In order to show the efficiency of Mathematica programming the following test programs to given 
., ''•"'' <'Y',, '••·""··"\" ·:·",•''l'-x:"'".t1<;•$"''.W'f'?'.:l"S'.~vr~·<;{it·_ 

problems have been collected for comparison of '~:f8~1;'.~~.!}~~~tf~l~~i~:~h . (See 

also: News-Group sci.math.symbolic). 

Expert System 

Mathematica incorporates knowledge from the standard mathematical 
handbooks, and uses its own advanced algorithms to go even beyond. 

Mathematica knows about all the hundreds of special functions in pure mathematics and mathematical 

physics. 

Here is the Legendre function of the 2nd kind Qn (z) 

(• LegendreQ[3,x] •) 

~ - 5 x2 - 2_ x ( 1 - 5 x2 ) Log [ 1 + x ] 
3 2 4 3 1-x 

Mathematica can evaluate special functions such as the even Mathieu function cen(z,q) with any 

parameters to any precision. 

MathieuC [1 + i, 2 i, 3] / / N[#, 30] & 

3.925 I 31 I 374125 I 98643497646 I 68+ l.89882391154334724110527479714i 

Mathematica is now able to do vastly more integrals than were ever before possible for either humans or 

computers. For example, Mathematica claims to cover all the integrals in Gradshteyn and Ryzhik "Tables 

of Integrals, Series and Products" , 

for example the indefinite integral 

f ~ ArcTan[x] dx 

,- T - • 

! ..-~.-

; l.·~.:1 ·_·.,rr_:~,-•-:- r;-;r:·,t1""'i"l"1'"""V ~, ,,'4o-.,c • 

- .... ~ :, f.:. ,(:~ .. :...q i~~.t,.'i,._1,', /.~ 

E-1"{ GJJ-'.:.?~-, .. : ;~ _·.,~7. -Cf:./.i .. 



2 -1( ) __ lf2 4 'VX I -'2;; . -1( 2 'VX - ¥2 ) I - ,-;;2 -1( 2 'VX + V2 ) -tan xx- ---+-v~tan ---=-- +-v~tan ---=-- -
3 3 3 {2 3 {2 

log(-x+ V2 -VX - I) log(x+ V2 -vx + I) 
------+------

3 ¥2 3¥2 

or the following definite integrals 

f Log [x] e-x' dx 
0 . 

- 5~ r(!)(6y+\13 ,r+9log(3)) 

[ Sin [x2 ] e-x dx 

-'= I _,-;;2 3 5. I _r-_ • (I) -v rr cos( 4 ) + v ~ 1 F2 (l; 4 , 4 , - 64) - v ,r sm 4 

2¥2 

Mathematica can also evaluate finite and infinite sums and products. 

n 1 

I:k6 
lt•l 

,r6 I 
945 - I20 I/J<

5
>(n+ I) 

t~ 
n•O nl 

4 

0F3(; I, I, l;x) 

6 n (1 + Nest[x1 &, x, i]) 
i•l 

( 1 + xx) ( 1 + xx•) ( 1 + xx•' ) ( 1 + xx•'' ) ( 1 + xx••·' ) ( 1 + xx•"" ) 

Mathematica can solve a wide range of ordinary and partial differential equations. 

DSolve[y"[x] +y'[x] +xy[x] ==0, y[x], x] 

{{y(x) ➔ e-x12 (si(v-t (x- :nc1 +Ai(v-t (x- :))c2)}} 
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Mathematica's algorithms can generate a huge range of mathematical results. 

ns r(-2n) 
nsl S 

12 7T2 

25 VS 

I I FullSimplify 

log(2) < ,(3) < V2 

True 

TrigReduce(cos4(x)) 

1 
8 (3+4Cos[2x] +Cos[4x]) 

An example from Number Theory is to find the 109th prime number by using a mixture of algorithms and 

built-in tables. 

22801763489 

Embedded System (MathLink Applications) 

■ The modular architecture of Mathematica makes is it quite easy to use Mathematica itself as a 
highly powerful software component. 

The communication is established by the addon feature Mathlink. 
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Examples of Mathematica Notebooks 

Files in Directory". \CD Dubna98\Lecture" 

The built-in Mathematica command FileNames lists all files according to given file specification in a 

prescribed directory and in subsequent subdirectories downwards to level n. 

FileNames [ "* . *" , actDir, 2] / / Col umnForm 

whereas the user-defined procedure filesinDirectory provides the list of all Mathematica 

notebooks (file extention .nb) in a given directory 

filesinDirectory[subDir] // ColumnForm 

4ColorTheorem.nb 
Add2.nb 
AirFoil.nb 
Animations.nb 
CellularAutomata.nb 
IFS.nb 
Mandelbrot.nb 
MathLinkApplications.nb 
MovingPendulum.nb 
NotebookE.nb 
PerformanceE.nb 
ProgrammingDemo.nb 
ProgrammingEfficiency.nb 
Projectile.nb 
SoundDemo.nb 
Swing2_3.nb 

Tunneling.nb 

The procedure openNotebookButton creates an array of buttoms which can be used to start the 

corresponding Mathematica notebooks in a directory tree structure. 

openNotebookButton["•·nb", l, subDir] 

4 ColorTheorem • nb 

AirFoil. nb 

CellularAutomata.nb 

Mandelbrot • nb 

MovingPendulum. nb 

PerformanceE • nb 

Progranuqin.gEfficiency. nb j 

SoundDemo • nb 

20 

Add2. nb 

Animations • nb 

IFS. nb 

MathLinkApplications.nbj 

. NotebookE • nb 

ProgrammingDemo • nb 

Projectile • nb 

Swing2_ 3. nb 



:alculus: Integral over Rational Function (x2 +a 
1
x + b) 

Whilst for the integral with rational integrand __,.~1 -....- with some computational exertion 
(x2 +ax +b)n 

Definitions and Settings 

Clear[a, b, n]; Remove[a, b, n]; 

fe[e.xpr_] := ExpandAll[FullSimplify[e.xpr]] 

J[n_J[x_] := J 1 
dx; 

(x2 +ax+b)n 

the following recursion can be verified 

J [n] [x] -- ------- ------- + (4 n - 6) J [n - 1] [x] ; 1 ( 2x+a ) 

(n-1) (4b-a2) (x2+ax + b)n-l 

by differentiation of both sides of the equation above 

[ 

oJT [n] [x] 

ax 

True 

eJ <..,.:•:.:,--• + (4 n-6) JT [ n-1] [ X] l 
(n-1) (4 b-a2) --ox // fe 

Mathematica provides a closed solution in terms of a hypergeometric function 2F1(a,b,c,z) which is a 

nearly unsolvable task calculating with paper and pencil . 

J [n] [x] / / FullSimplify 

-
1-(rn-l (-a-2x+ ✓ a2-4 b )(b+x(a+x»-n 

n-1 

( 
a+ 2 x + I )n 2 Fi ( I - n, n; 2 - n; ..!_ - _a-;=+=2=x=-)) 

✓a2 -4b 2 2 ✓a2 -4b 

:alculus : Conformal Mapping and Joukowski Transformation :.J\~:~:J9~~-~:;.~j 

llechanics : Projectile with Air Resistance 

)scillations : 2 & 3 Masses Swinger 

)scillations :Moving Pendulum 

~uantum Physics : Tunneling 

ieometry : Polyhedron Explorer 

:hemistry : Periodic Table 

Poly.h~,~r~?~,#~;f9,#,f,·:' .. 

PeriodicTabiet:{~; 
:.,:• · ~ -~~··.·: ::, •.i..:/:-t:~.'t·.,':r'::-~r ~~;,,,,..~; 
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Outlook on the Development of CAS 

The computer algebra systems existing today show that it is possible to perform extensive 

symbolic calculations even on a PC and obtain interesting results. The hardware expenditure start 

on the lower end with a PC and goes up to a super computer for especially involved problems. 

The future of CAS is strongly influenced by two developments: 

Firstly, with the tendency of declining hardware costs the spreading of these systeme will 

increase on all levels, particularly in highschools and colleges and on students' level. In some 

years computer algebra will be included in most curricula. 

{For example in Austria the usage of intelligent pocket calculators Tl 89 and Ti 92 with the built-in 

computer algebra system Derive is promoted from the ministry of education.) 

The usage of CAS as regards to differentiation and integration, solution of equations, problems of 

linear algebra and other tasks will soon be taken for granted as is today the usage of a pocket 

calculator for evaluting square roots. 

Secondly, incorporating new tasks the size of existing CAS will strongly increase so that software 

engineering will become more and more important. 

The interesting question however is, if and how mathematics itself will be changed by means of 

automatic processing of symbolic mathematical expressions, or which new areas will originate 

from the availability of CAS. At first glance this question might be surprising. Yet, this is exactly 

the case since the S0's with respect to numerical mathematics after the availability of computers. 

Without numerical computers areas such as optimization theory, nonlinear dynamics or soliton 

theory are unconceivable. The availability of CAS will initiate further fundamental changes of 

mathematics similarly to the impact which computers had on numerics. 

Examples for this statement are given below 

Four Colour Theorem 

The proof of the Four-Colour-Theorem, which occurs in the context of cartography, was only 

given in 1976 by K. Appel and W. Haken by means of a computer, which was used for "book 

keeping", to verify certain assumptions necessary for the proof. Because these evaluations with a 

computer had been quite tedious - doing the same by paper and pencil would go on for eternity -

it follows that one may prove this result with the help of another computer only. Therefore some 

purist mathematicians think that this kind of computer proof is not real proof. Obviously, the 

Four-Colour-Theorem is an example for an odd aspect of mathematics: that even a simple 

question easily understood can lead to an incredibly complicated proof .. ~. ~~~9i:~~'.70;3:-,~_m ~- ~I 
Fractals and Iterated Function Systems (IFS) 

Another area are fractals; discovered by the mathematician B. Mandelbrot in 1980 and named 

after him the most famous fractals are the Mandelbrot set an_d the Julia sets ;~a~~,,f.:,1?~9~t~il?'R;l 
associated with . The Mandelbrot set which arises from iteration of a harmless quadratic 

expression such as z 2+c ➔ z in the complex plane is one of the most complicated objects in 
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mathematics! But only a computer program with a few lines of code is required to generate these 

incredibly complicated sets. There is perhaps no other proof more impressive for the complexity 

hidden in simple rules as the variety of structures reflected in the Mandelbrot set. The complexity 

of these S!3ts and thus the coexistence of order and chaos cannot be studied without the help of a 

computer. 

And only gradually there emerges a new concept of so-called iterated function systems (IFS) 

in mathematics. 

Cellular Automata 

Another area is the so-called Game of Life which was suggested in 1970 by the mathematician 

J.H.Conway. This mathematical game which is also denoted as Cellular Automaton, clearly 

demonstrates that a set of simple rules can give rise to a complex world. 

·c;~1~.-~i~:r~u-~~Ina~~"~:,~,:I 

The assumption is to create a cellular game (on a triangular, square or hexagonal lattice) which is 

based on rules as simple as possible and nevertheless should be unpredictable. This set of rule 

should be complete so that the game - once started - would go on by itself. Growth and change 

occurs discontinuously; one step leads unavoidable to the next one. The result is a small universe 

based on logics in which everything is pre-determined, and yet there exists no possibility for the 

observer to predict the destiny of future generations in the game - besides let the game go on by 

itself. 

According to Stephen Wolfram "cellular automata are examples of mathematical systems built 

from many identical components to form one unit. All components are simple, together they are 

able to show complex behaviour. Investigating them in detail one can develop on the one hand 

specific models for certain systems, on the other hand one hopes to find generally valid principles 

which are applicable to a large number of complex systems". 

Cellular automata are mathematical odds and interesting as games. Besides that they become 

increasingly important as simple models of physical phenomena. They range from hydrodynamic 

turbulences to the spreading of virus infection or forest fires. The idea is to describe a physical 

system in such a compact way that one can recognize the essential properties and predict future 

behavour. Traditionally, mathematicians and physicists use partial differential equations for the 

description of physical systems; they describe how certain variables change in time. Solving these 

differential equations means to predict the behaviour of the system. However, many of these 
systems of partial differential equations are only solvable with great difficulties or not at all. 

Wolfram developed in 1984 a method for the approximate solution of partial differential equations . 

which resorts to cellular automata instead of traditional approximative methods of solution. 

Wolfram claims that this approach is more adequate to digital computers than various methods 

solving partial differential equations on a computer by approximation. In a certain sense this 

methodical ansatz changes the way of constructing a theory. One changes, so to speak, the 

recipe in order to use in an optimal way the resources of digital computers. The appearance of 

massive parallel computers - where interconnected processors enable to partition the 
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computation such that each processor will perform the same operations simultaneously on 

different parts of the same data - makes the concept suggested by Wolfram even more attractive. 

By the way, the involvement of Wolfram with cellular automata finally led - after the predecessor 

system SMP - to the development of the current CAS Mathematica. 

Conclusion 

In the general context to incorporate computer algebra systems (and in particular Mathematica) in the 

teaching of science courses subsequent positive aspects can be summarized : 

• Save time when solving mathematical problems 
• make parameter dependence of algebraic solutions transparent 
■ visualize 3D objects and dynamic processes 
■ demonstrate numerical effects of methods by freely chosen accuracy 
■ extend existing program libraries by new algorithms 

The implications which result from applying these techniques in lectures are formulated in terms of theses 

■ it is possible to deal with more involved, more realistic problems in the 
lecture hall (ad hoc) 

■ excellent visualization of mathematical issues using the graphics 
capabilities of CAS is provided 

■ there results an early familiarity of students with CAS techniques to be 
useful in industry later 

• as regards to knowledge transfer in the process of lecturing the 
emphasis on TECHNIQUES achieving a solution moves towards 
DISCUSSION of the properties of the solution obtained 
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Mathematica Performance 

Calculation of eigenvalues for n x n random matrices of increasing size. 

Clear[z]; z = {}; 
k = {50, 100, 150, 200, 300, 400, 500}; 

Do [ n = k [ [ j ] ] ; 

M = Table[ Random[], {n}, {n} ] ; 

zei t = ( ListPlot [ Abs [ Eigenvalues [M] ] ] / / Timing. ) ; 

z = AppendTo [ z , zei t [ [ 1 , 1 ] ] ] ; 

Print[ zeit[ [1, 1]] ] , 

{j, 1, Length[k] } ] ; 

z 
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8 

6 

4 

2 

' ' 100 200 300 400 

129.46 

10 

8 

6 

4 

2 

100 200 300 400 500 

312.75 

{0.99, 1.43, 3.18, 11.26, 46.96, 129.46, 312.75} 

<• z = {0.99,1.43,3.18,11.26,46.96,129.46,312.75}; •) 

xf = Transpose[{k, z}]; 

lp = ListPlot[ xf, 

PlotRange ➔ {{O, Max[k]}, {O, Max[z)}}, 

PlotStyle -> {Red, AbsolutePointSize[6]}, 

DisplayFunction ➔ Identity J ; 

Fl[x_J = Fit[ xf, Table[xm, {m, 1, 3}) , x] 

fp = Plot[ Fl[x), {x, 1,500}, , 

PlotRange ➔ All , 

(• Polynom-Fit •) 

PlotStyle ➔ {Blue, Dashing[{0.03}]}, 

DisplayFunction ➔ Identity J ; 

Show[ lp, fp, AxesLabel -> {" Matrix size (n) ", "CPU time"}, 
DisplayFunction ➔ $DisplayFunction]; 
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Performance of Mathematica 3.0 found as regards to the calculation of 
eigenvalues for n x n random matrices. 

50 0.99 
100 1.43 

150 3.18 
200 11.26 
300 46.96 
400 129.46 
500 312.75 

4.62023 X 10-6 x3 - 0.00130389.x2 + 0.11898x 

CPU time 
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Mathematica Notebooks 

Chaos and Fractals 

Prof. Dr. Robert Krag/er 
FH Ravensburg-Weingarten I University of Applied Sciences 

kragler@rz. fh-weingarten. de 

Mandelbrot and Julia Sets 
Initializations 

Visualization of Complex Functions 

Mathematica Journal Vol 3 # 1, "Tricks of the Trade" p. 18 

■ Usage of Compile 

The evaluation ofa function f[x1,x2, ... ] is essentially accelerated if Mathematica can assume that the variables x 1,x2, 

... can be dealt with as machine numbers instead of checking each time whether it is a number, a Iis!, an algebraic 

object or some other type of expression. The usage of 

Compile[ {x1 .x2, ... } ,expression] (1) 

creates a CompiledFunction object which· contains a sequence of simple instructions (similar to machine code) for the 

evaluation of the compiled function and thus can be executed faster than an ordinary Mathematica function. 

It is assumed for the evaluation of a compiled function that all parameters x1,x2, .•. which occur are numbers or logical 

variables. For large expressions compilation may speed up execution up to a factor of 20. Using the command 

Compile is always reasonable if a given numeric or logical expression is evaluated many times. However, although 

compilation makes the execution of numerical functions more efficient it is recommended to use built-in Mathematica 

functions whenever this is possible because they are generally faster than every compiled user-defined procedure in 

Mathematica . Built-in functions such as Integrate but also Plot· and Plot3D make use of the default option 

Compiled➔True for any function inserted. With Compiled➔False compilation is deactivated. 
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■ Iterative Maps 

Here are two examples which demonstrate the usage of Compile in order to speed up evaluation. These 
are iterative mappings of type 

I Zn+1 = (Zn)
2 + C Zn+1 = (Zn)

2 + Zo I (2) 

■ Julia Sets 

The Julia set associated with a complex number c is obtained by iteration of the mapping 

I z=z2+c 1(3) 

It is the number of all those points which will not tend to oo during interation. 

juliaC = Compile[{x, y, lim, Cx, Cy}, 

Module[ {z, c, n = O}, 

Z = X + i y; C : Cx + i Cy; 

While[Abs[z] <2.0 && n~lim, z=z2+c; ++n]; 

n] ] ; 
nS := 

NumberForm[#, {6, 5}]&; juliaSet[cx_, cy_, col_]:= 

DensityPlot[ -juliaC[x, y, SO, ex, cy], {x, -1.5, 1.5}, {y, -1.5, 1.5}, 
PlotPoints ➔ 100, Mesh ➔ False, 
ColorFunction ➔ col, PlotLabel ➔ 

StringForm[ "Julia set for c= ( '', '') n, ex// nS, cy // nS] ] ; 

The following Julia set is obtained for a value of c = o. 27334+0. 00742i 

I juliaSet[0.27334, 0.00742, 

z 1 
colJl [z_] : = Hue [ 2 • l - 3]; 

colJl]; 

Julia set for c=(0.27334,0.00742) 
1.5 

1 

0.5 

0 

- 0.5 

- 1 

- 1.5 w........~~~~~~~~~~~ ......... 
- 1.5 - 1 - 0.5 0 0.5 1 1.5 
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The appearance of the fractal Julia sets strongly depends on the location of the fixpoint c with respect to 
the so-called Mandelbrot set. Interesting structures will be obtained for those values of c which are 
located in the vicinity of the Mandelbrot set. For values of c from outside of the Mandelbrot set the 
corresponding Julia sets are continuous. For values of c outside the Mandelbrot set the corresponding 
Julia set disintegrates into island-like structures. The more the distance of c from the Mandelbrot set the 
more the associated Julia set dissolves which is called Fatou dust. 

I colJ2[z_] := Hue[.45, z, Mod[l/ (zS 

juliaSet[0, 1, colJ2]; 
+ • 01), 11 l; 

Julia set for c=(O., 1.) 

1.5 

1 

0.5 

0 

- 0.5 

- 1 

- 1.5 LL...,._..,_._-'-'---'-'--.__.._~----L-'---'-'---'-'---'-'--'-'--~~~---'--' 

- 1.5 - 1 - 0.5 0 0.5 1 1.5 

I juliaset[-1.25, 0.01, 

colJJ[z_] := 

colJJ]; 

Hue[Mod[z2, 1], .8, .8]; 

Julia set for c=(- 1.25,0.01) 
1.5 

1 

0.5 

0 

- 0.5 

- 1 

- 1.5 LL...,._..,_._..,_._-'-'--~.__.._~~--'-'---'-'----'-'---'-'--'-'--~.__.__, 

- 1.5 - 1 - 0.5 0 0.5 1 1.5 

I colJ4 [ z ] : = 
juliaSet[-0.5, -0.8, colJ4]; 

Hue [z + • 7]; 
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Julia set for c=(-0.5,-0.8) 
1.5 

1 

0.5 

0 

-0.5 

-1 

~1.5 ._._.___.____._~.._._'-'---'--'--'-__,____._~~'-'---'--'--'-__,____._~.,___,___._, 
-1.5 -1 -0.5 0 0.5 1 1.5 

■ Mandelbrot Set 

The Mandelbrot set is the set of points c ' = z not escaping to oo under the iteration of the mapping 

z=z 2 +Zo (4) 

Points within the Mandelbrot set lead to continuous Julia sets, for points outside-the Mandelbrot set the corresponding 

Julia sets disintegrate into mosaic-like structures. The following modification of the procedure juliaC may be used 

to create the Mandelbrot set too. 

mandelbrotC = Compile [ {x, y, lim}, 

Module [ {z0, z, n = O}, 

z0 = x + I y; z = z0; 

While[Abs[z] < 2.0 &&n ~ lim, z = z 2 + z0; ++n]; 

n] ] ; 

First, the Mandelbrot set is displayed as a density plot, moreover, the visualization of the Mandelbrot set as a 3D 

surface by means of the procedure Plot3D [mandelbrot, ... ] is possible too. 

m1 = DensityPlot [-mandelbrotC [x, y, 50], {x, -2., 1.}, {y, -1. 5, 1. 5}, 

Col.orFunction ➔ {Hue [. 7 + #1] &) , 

PlotPoints ➔ 100, Mesh ➔ False, 

Displ.ayFunction ➔ Identity]; 

m2 =Plot3D[mandel.brotC[x,y, 50], {x, -2., l.}, {y, -1.5, 1.5}, 

Col.orFunctipn ➔ Hue, Pl.otPoints ➔ 100, Mesh ➔ False, 

Displ.ayFunction ➔ Identity]; 

I Show [ GraphicsArray [ { {m1} , {m2}}] , 

Pl.otLabel ➔ "Mandel.brot set 

DisplayFunction ➔ $Displ.ayFunction ] 

z = z 2 +zo'·', . 
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Mandelbrot set z = z2+Zc, 

1.5 I 

1 

"' 

.... 
0.5 

i1 
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1 
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MathLink Applications 

Mathematica as a Software Component 

Mathematica has a modular architecture that makes it easy to use as a highly powerful software component. 

Here is some input and output in the standard notebook front end to Mathematica. 

f ✓Log[x] dx 

- ; ..fir Erfi( ✓Log [x] ] + x ✓Log [x] 

You can also access the Mathematica kernel directly from a rmv terminal. 

Integrate[Sqrt[Log[x]], x] 

1 
-(-) Sqrt[Pi] Erfi[Sqrt[Log[x]]] + x Sqrt[Log[x]] 

2 

MathLink provides a general program-level interface between Mathematica and.external pr:ograms. 

Here is C code for sending an expression J,✓ Log [ x] d x from an external program to Mathematica. 

I* Integrate[Sqrt[Log[x]], x] * / 

MLPutFunction ( std.link, "Eva1uatePacket", 1); 
MLPutFunction ( std.link, "Integrate", 2); 
MLPutFunction ( std.link, "Sqrt", 1); 
MLPutFunction ( std.link, "Log", 1); 
MLPutSymbo1 ( std.link, "x", 1); 

MLPutSymbo1 ( std.link, "x"); 
MLEndPacket ( std.link) ; 

This installs a compiled external C program that does bitwise operations on integers. 

1ink = Ins ta11 [ "bi tops"] ; 

This executes the external code for the BitAnd function. 

Bi tAnd [ 22222 , 33333] 

516 

This uninstalls the external program. 
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Uninstall[link]; 

MathLink can be used to access the Mathematica kernel from external programs. 

MS Word front end to Mathematica. 
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A web site that calls the Mathematica application The Integrator with (URL http://www.integrals.com ) via 

Netscape on the server of Wolfram Research. 

• > :;. r • ~ - .-

MS Excel linked to Mathematica. 

Under MS Windows, you can click this button to start a simple example 

" .. \AddOns\MathLink\DevelopersKits\ Windows\UnsupportedGoddies\ vbfe" of a Visual Basic front end to 

Mathematica. 
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MathLink can be used to access other programs from within the Mathematica kernel. 

MathLink allows you to set up templates to specify how external programs should be called. This defines a link to a C 
subroutine library. 

:Begin: 
:Function: 
:Pattern: 
:Arguments: 

:ArgumentTypes: 
:ReturnType: 
:End: 

anneal 
TSPTour[r:{{_, _} .. }] 
{First[Transpose[r]], Last[Transpose[r]], 
Length[r], Range[L,ngth[r]]} 

{RealList, RealList, Integer, IntegerList} 
Manual 

Here is a 3D graphic generated within Mathematica. 

ParametricPlot3D[ 

{ ( 2 + Cos [ ; ] Sin [v] - Sin [ ; ] Sin [2 v]) Cos [u] , 

( 2 + Cos [ ; ] Sip [v] - Sin [ ; ] Sin [2 v]) Sin [u] , 

u u ' 
Sin[-] Sin[v] + Cos [ - ] Sin[2 v]}, 

2 2 
{v, 0, 2 Pi}, {u, 0, 2 Pi}, PlotPoints -> 30, Boxed-> False, Axes-> None]; 

This image was generated by sending a description of the graphic from Mathematica via MathLink connection to an 
external photorea/istic renderer. 
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., 

MathLink can be used to control the Mathematica front end from within the kernel. 

This tells the front end to bring up the color selector dialog box. 

FrontEndTokenExecute["ColorSelectorDialog"] 

MathLink can be used to communicate between Mathematica kernels 
several. 

on one computer or 

On most computer systems (typically excluding Macintosh) this launches a subsidiary Mathematica kernel on your 
computer. 

link= LinkLaunch["MathKernel -mathlink"]; 

This reads data from the subsidiary Mathematica kernel. 

LinkRead[link] 

InputNamePacket[In[l] := 

This writes a command to the subsidiary kernel. 

LinkWrite[link, Unevaluated[$SessionID]] 

This reads back the $SessionID from the subsidiary kernel. 

LinkRead[link] 

ReturnPacket[ 2 0514827392884103963] 

The $SessionID in your main kernel will be different. 

$SessionID 

20514820511569745766 

This closes down the subsidiary kernel. · 

LinkClose[link]; 
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University Center 
Joint Institute of Nuclear Research I Dubna 

Mathematica Seminars 
October 27-29, 1998 

Mathematica Programming 
Prof. Dr. Robert Krag/er 

FH Ravensburg-Weingarten /University of Applied Sciences 
krag/er@fh-weingarten.de 

Abstract: 

The purpose of this tutorial is to demonstrate the versability and flexibility of Mathematica's high-level 

programming language which could be likewise used as testbed for various programming paradigms. 

In the first part some general remarks on different Mathematica notions such as prefix, postfix and infix 
notation and some new typesetting features of the current Mathematica version 3.0 will be discussed. 

■ Prefix Notation 
■ Postfix Notation 
■ Infix Notation 
■ New Typesetting Features 

The second part deals in detail with various programming styles wich can be realized using the 
Mathematica language 

■ Procedural Programming 
■ Recursive Programming 
■ Functional Programming 

(with the concept of pure and higher-level functions such as 
Apply, Map,Nest, Fold, FixedPoint,Thread, Inner,Outer etc.) 

■ Rule-Based Programming 
■ Logic (or Declarative) Programming 
■ Abstract Data Types 
■ Object-Oriented Programming 
■ Modularisation and Mathematica Packages 

The different programming styles resp. concepts will be illustrated by numerous examples. 

■ Initializations 

General Features of Mathematica 
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• Mathematica is a Computer Algebra System and (especially since version 3.0) 
at the same time it is a System for Technical Computing 

.';.1athematica is a CAS for symbolic manipulation of formulae mainly. Apart from 
numerical and symbolic calculations and comfortable 2D/3D graphics and animation this 
system is supplemented by the following salient features : 

• Graphic Interactive User Interface i.e. the Front End and the Notebook 
• High-level Programming Language for Developing new Procedures 

In comparison to other CAS an outstanding feature of Mathematica is its high-level 
programming language which, supplemented by the Mathematica notebook environment, 
provides execellent means for developing and testing algorithms. Hence, because the 
Mathematica engine,. i.e. the kernel, is an interpreter (and not a compiler) system it lends 
itself for rapid prototyping. Auxilliary to that the Mathematica programming language is 
very close to the way of thinking in mathematics and physics; thus it is quite easy to 
rewrite formulae into Mathematica expressions in a straightforward manner. Due to the 
concise Mathematica encoding programs may shrink by a factor of 10 to 20 in 
comparsion to traditional programming languages such as FORTRAN or C . 

Mathematica Notebooks : Interactive Documents 

Mathematica Notebooks are interactive electronic documents which may contain : 
Mathematica code (to be executed), text ( with most DTP features supported such as 
different fonts, colour, mathematical notation etc.), graphics and animation (even in 
real-time using the· add-on program MathLive ), sound which is encoded in Postscript 
code the same way as graphics and other elements in terms of cells. 

Every Mathematica notebook is a Mathematica expression which can therefore be generated or 
manipulated by the kernel. Notebook£ • nb j 

In more detail : Mathematica notebooks are ordinary Mathematica expressions. Therefore they can 
immediately be manipulated by the user without any special setup etc. thus the results given in 
Mathematica notebooks can easily be checked or altered. Mathematica notebooks are organised in terms 
of hierarchical cells the layout of which can be pre-defined in so-called StyleSheets which are again 
Mathematica notebooks. Notebooks can even be created by the Mathematica kernel as output. There are 
no limitations as regards to the appearance of Mathematica notebooks. Due to the hierarchical cell 
concept notebooks can be read like books wherein there are table of content, sections and subsections 
etc. which are accessible after opening the corresponding pages. However, the advantage of the 
electronic document in comparison to conventional books is the interactivity, i.e. probing and manipulating 
the Mathematica code incorporated in the notebook. ( The very first pioneering book which contained all 
chapters in terms of Mathematica notebooks on a CD-ROM disk was "Exploring Mathematics with 
Mathematica" by Th. Gray and J. Glynn published by Addison-Wesley Publ. Company already in 1991.) 

But the real important new feature in Mathematica version 3.0 is the portability of Mathematica notebooks. 
Mathematica notebooks contain all information in terms of ASCII code. They are platform independent In 
earlier versions it was always a big problem to convert Mathematica notebooks which had been 
generated, say, under Windows operating system to Unix workstations (OS Solaris), NeXT (OS 
NeXTSTEP) or Macintosh (Mac OS 7) computers. Especially international characters such as German 
umlauts (or kyrillic letters) and other special symbols were a tedious problem to cope with in the past 
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because there is no general accepted standard for character encoding. In Mathematica V 3.0 this problem 
is definitely solved. There are code translation tables for all Mathematica implementations which are 
provided for a large number of hardware platforms. 

Thus Mathematica notebooks may be used as a mean for exchange of scientific information and could 
become a kind of standard for interactive electronic documents. On a wider scale Mathematica notebooks 
can be provided to academia via Web. There is already the built-in capability to save Mathematica 
notebooks in HTML format so that they can be used as WWW pages. 

Recent developements from Wolfram Research are Pub/icon and MathML : 

Pub/icon - a comprehensive solution for interactive technical publishing which allows the creation of 
professional-quality technical documents for on-screen, Web, and printed use. A free beta version of 
Pub/icon can be downloaded from <http://www.publicom.com/>. 

MathML (Mathematical Markup Language) - a new standard recently ratified by W3C (i.e. the WWW 
Consortium) becomes the framework for Web typesetting technology. MathML is designed to allow 
mathematical expressions to be transmitted over the Web, preserving the structure needed to do 
computations with them in Mathematica. Information on MathML can be downloaded from the Web at 
<http://www.wolfram.com/news/mathml/ > . 

Mathematica Programming Language 

Mathematica is an unprecedentedly flexible and intuitive programming language. 
Examples of this feature are given in the following notebook: ~.~gR ' .,., ... ""1f"''"'' .• ' 

In contrast to other CAS because of the functional programming style of Mathematica 
it is often possible to write an elegant concise one-liner program whereas other CAS 
require for the same task at least several lines. In order to show the efficiency of 
Mathematica programming the following test programs to given problems have been 
collected for comparison in : ProgrammingEfficiency_ , • __ nb. J 

The different programming styles supported by Mathematica will be discussed in depth 
' ·,' ' . . ' ' '.' .. ,,..,, .. 

in the following notebook which serves as a tutorial: ,,Pr9~;i;~_i\9~.;~~r~.,i;~J;~:,;~~ 

Conclusion 

In conclusion the Mathematica high-level programming language is a powerful 
interpreter language most suitable for development and testing of algorithms. Thus it is 
an ideal tool for rapid prototyping. It comprises all programming styles and features 
known from traditional programming languages. There is an extensive range of more 
than 1000 commands and procedures provided by Mathematica. Hence very concise 
code can be written as a consequence of which the size of Mathematica programs may 
shrink to 1/1 O or more compared to other traditional programming languages such as 
FORTRAN or C etc. A salient feature is that the Mathematica programming language is 
very close to the way of thinking in science and technology. Thus, the conversion of 
mathematical formulae into Mathematica expressions is in most cases straightforward 
and is faciliated even more by the notation of Mathematica version 3.0. 

The features of Mathematica can be summarized as follows : 

■ high-level interpreter language 
■ most suitable for development and testing of algorithms 
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■ comprehensive range of commands 
■ concise programm code 
■ programming language follows thinking in science 
■ straightforward conversion of formulae into Mathematica code 
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Mathematica Notebooks 
Mathematica Programming Language 

Prof. Dr. Robert Krag/er 
FH Ravensburg-Weingarten I University of Applied Sciences 

kragler@rz. fh-weingarten. de 

Programming Demo 
■ Indexed Variables 

Copyright Wolfram Research Inc. 

Unifying Concept of the Mathematica Programming Language 

Mathematica includes advanced programming concepts from modern computer science - as well as 

adding new ideas of its own. Mathematica incorporates a whole range of programming paradigms - thus 

one can write every program in its most natural way resp. style. 

Mathematica is built on the powerful unifying concept that everything can be represented as a symbolic expression. 

■ All symbolic expressions are built up from combinations of the form head [arg1 , arg2 ... ] 

A list of elements 

I Ll.st[a, b, c] 
{a, b, c} 

An algebraic expression 

I Plus [Power[x, 2], Sqrt [x]] 
VX + x 2 

An equation 

I Equal [x, Sin [x]] 
x =::o Sin [x] 

A logic expression 
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And [p, Not [ q]] 
p && ! q 

A command 

AddTo[Part[m, 1], a] 
m[l] += a 

Graphics 

Graphics[{Hue[O], Circle[{l, O}, 2], Circla[{-1, O}, 21}] //Show; 

CTI) 
Abstract mathematical notation 

Tilde [ CirclePlus [a, b], Subacript[c, Infinity]] 
aeb - Cm 

A button 

ButtonBox [ "Preas hare"] / / DisplayFora 

flr~ia\ ..... ~.(I 
t-,,n-rt1~·•t~"::.~~t1,, 1 

A cell containing text 

A cell containing text is represented as 

Cell [ "A cell containing text is represented as", "Text" J 

■ The uniformity of symbolic exprnaions makes it easy to add to Ma'lllematlca any construct wanted 

A chemical compound HN03 

[ Raaove[Chemical] 

44 



Chemical[arg: {{_Symbol, _Integer} .. }] := 

Module [ {chem, chemFormula = {} } , 

Do[element = arg[[i, 1]]; n=arg[[i, 2]]; 

·Switch[ ToString[element], "Hydrogen", chem= "H", 

"Oxygen", chem = "0", 

"Nitrogen", chem = l'N"] ; 
If[n==l, chem, chem=Subscript[chem, n] ]; 

chemFormula = AppendTo [chemFormula, chem], 

{i, 1, Length[arg]} ]; 

(Times N chemFormula) // Print 

] 

Chemical [ {{Hydrogen, 1}, {Nitrogen, 1} , {Oxygen, 3}}] 

H N 03 

An electric circuit 

Circuit({Resistor["R"], Capacitor["C"]}] 

/4 II' 
■ All operations in Mathematica are ultimately transformations of symbolic expressions. 

Mathematica has a uniquely powerful pattern matcher for applying transformation rules. 

The notation /. tells Mathematica to apply the simple rule b ➔l+x. 

I {a, b, c, d} /. b ➔ 1 + x 
{a, 1 +x, c, d} 

x_ and y_ each stand for any expression, so the pattern x_ + y_ stands for a sum oftenns. 

{a+ b, c + d, a+ c} /. x_ + y_ -> x2 + y 2 

{ a 2 + b2' c2 + d2' a 2 + c2} 

I
. {a+ b, c + d, a+ c} /. a+ x_ -> x 3 

. {b
3

, c+d, c
3

} 

■ Mathematica uses patterns to generalize the notion of functions. 

This is an ordinary function definition for f (x) to be used for any x. 
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2 
f(x ] := -

- X 

Here is a special case that overrides the general definition. 

I f (OJ : = e 

Here is an example of the use off. 

f(6) +f(a+b) +f(O) 
1 2 
-+ --+e 
3 a+ b 

This clears the definitions given for f. 

I Clear[f] 

■ An important feature of using patterns is that they allow "functions" to take arguments in any 
structure. 

This defines a value for g with an argument that is a list of two elements. 

g[{x_, y_}] :=x+y 

g({4, ab}) 
4+ab 

Clear[g] 

This specifies the value for a function area when given a Circle object as an argument. 

area (Circle [ { , } , r J J : = 71' r 2 - - -

area [Circle [ {2, 3}; u]] 
,r u2 

This implements a logic reduction rule. p A q V p p 

I reduce [ p_ && <{_ 11 p_] : = p 
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logic = A A (-. A) Y A 

logic / / reduce 
A && ! A 11 A 

A 

Mathematica Programming Styles 

■ Procedural Programming 

I 
z = a; 

Do[ Print[z •= z + i], {i, 3}] 

a (1 + a) 

a (l+a) (2+a (l+a)) 

a(l+a) (2+a(l+a)) (3+a(l+a) (2+a(l+a))) 

I Clear (z] 

■ Functional Programming 

NestList[f, x, 4] 
{x, f[x], f(f[x]], f[f[f[x]]], f[f[f[f[x]]]]} 

The expression {1 + #) 2 
& is a pure (anonyroous) function, where # acts as a place holder to be 

replaced during execution by the actual variable. 

NestList[ (1 + #) 2 
&, x, 3] 

■ Rule-based Programming 

p[x_ + y_] : = p(x] + p(y] I 
p(a + b + c + d] 

p[a] +p[b) +p[c] +p[d] 
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_ stands for any simple expression ; _ for any sequence of expressions. 

s[{x_, a_, y_}, a_] := {a, x, x, y, y} 

s[{l, 2, 3, 4, 5, 6}, 4) 
{4, 1, 2, 3, 1, 2, 3, 5, 6, 5, 6} 

Clear[p, s] 

■ Object-Oriented Programming 

Here are 3 different definitions to be associated with the object h . 

h /: f_[h[x_]] : = fh[f, x] 

h /: p[h[x_], x_] := hp(x] 

h /: h[x_] + h[y_] := hplus[x, y] 
This connects the definitions with the object h 

f[h[r]] +p[h[x], x] +h[a] +h[b] 
fh [ f, r] + hp [ x] + hpl us [a, b] 

Clear[h) 

■ List-based Programming 

Many operations of Mathematica are automatically threaded over lists. 

1

1 + {a, b, c}2 

{ 1 + a 2
, 1 + b 2

, 1 + c 2
} 

1st= Table[ij, {i, 4}, {j, i}] 
{{l}, {2, 4}, {3, 9, 27}, {4, 16, 64, 256}} 

This command flattens sublists. 

lstf = Flatten [lat] 
{l, 2, 4, 3, 9, 27, 4, 16, 64, 256} 

This partitions into sublists with 2 elements each. 
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Partition [lstf, 2] 
{{1, 2}, {4, 3}, {9, 27}, {4, 16}, {64, 256}} 

■ String-based Programming 

S tringReplace [ 11 aababbaaabaabababa 11 
, { "aa" ➔ "(Jo<) " , "ba" ➔ " 1!1" } ] 

◊◊◊~b~◊◊◊~a~~~ 

■ Mixed Programming Paradigms 

Many of Mathematica's powerful functions mix different programming paradigms. 

Position[{l, 2, 3, 4, 5} /2, _Integer] 
{{2}, {4}} 

Mapindexed[Power, {a, b, c, d}] 

{{a}, {b2 }, {c 3 }, {d 4
}} 

FixedPointList[rf[EvenQ[#l], 
1

2

1
, #1]&, 105

] 

{ 100000 , 50000, 25000, 12500, 6250, 3125, 3125} 

ReplaceList[ {a, b, c, d, e}, {x_, y_} -> { {x}, {y}}] 

{{{a}, {b, c, d, e}}, {{a, b}, {c, d, e}}, {{a, b, c}, {d, e}}, 
{{a, b, c, d}, {e}}} 

Mathematica gives the flexibility to write programs in many different styles. Here a 12 different definitions 

of the Factorial function are given. 

f 1 [n_] : = Factorial [n] 

f2[n_] .- nl 

f 3 [n_] .- Gamma[n+l] 

f 4 [n_] := n f 4 [n-1] 

f,[1] = 1; 
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- r 

( 

( 

f 5 [n_] := Product[i, {i, n}] 

f6[n_] := Module[{t = l}, 

f 7 [n_] 

fa[n_] 

f9[n_] 

f10 [n_] 

fu [n_] 

Do [t = t * i, {i, n}] ; 

t] 

:= Module[{t = 1, i}, 

For [ i = 1 , i < = n, i + + , t * = i] ; 

t] 

:= Apply[Times, Range[n]] 

:= Fold[Times, 1, Range[n]] 

:= If[n == 1, 1, nfl0[n-1]] 

:= Fold[#2[#1]&, 1, Array[Function[t, #t]&, n]] 

f12 := If[#l == 1, 1, #1 f12[#1 - 1]]& 

In order to test the efficiency of the 12 different factorial function definitions the total CPU time for the factorials { 

1000 ! , 1500 ! , 2000 ! , 3000 ! } is measured in seconds and sorted with respect to time. 

fac = {f1, f2, f3, f,, fs, f6, f1, fe, f9, f10, f11, f12} ; 
val = {1000, 1500, 2000, 3000}; 

$RecursionLimit = 4000; nfac = Length[fac]; 

time = Table [ (Log [fac[iD /@ val ] ) // N // Timing , {i, 1, nfac}]; 

Thus one obtains for example 

{ time[5D, Ful1Definition[fac[5D // Evaluate] } 
{{1.65 Second, {5912.13, 9474.41, 13206.5, 21024. }}, f 5 [n_] :=Il~=1 i} 

As regards to efficiency of the factorial function definitions the following ranking is found: 
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orderedTimes = 
Table[ { time[i])[l, l]I, FullDefinition[fac[i]) //Evaluate]}, 

{i, nfac -1}] U { { time[12]) [1, 1]), Ful1Definition[f12 ]}} ; 

orderedTimes / / ColQlllllForm 
{0.06, f 10 [n_] :=If[n==l, 1, nflO[n-1))} 
{0.16, f2[n_) :=n!} 

{O.17, fi[n_] :=n!} 

{ 0 . 1 7 , f J[ n _] : = Gamma [ n + 1 ] } 

{1.37, fa [n_] : = Times @@Range [n]} 

{1. 48, f 9 [n_] : = Fold [Times, 1, Range [n]]} 

{1.65, fs[n_] :=m=li} 

{2.2, f 6 [n_) :=Module [{t=l}, Do[t=ti, {i, n}]; t)} 

{2.41, f4[l) = 1 } 

f 4 [n_) : = n f4 [n - 1) 

{2.69, f12 :=If[#l==l, 1, #lf12[#l-l)]&} 
{3.24, f 7 [n_] :=Module [{t=l, i}, For[i=l, isn, i++, t*=i); t)} 

{3.35, f 11 [n_) :=Fold[#2[#1]&, 1, Array[Function [t, #lt]&, n]]} 

Writing Programs in Mathematica 

Mathematica's high-level programming constructs enable to built sophisticated programs more quickly 
than with traditional programming languages. 

■ Even single-line Mathematica programs can perform complex operations. 

This program creates a one-dimensional random walk 

RandomWalk [n_] : = NestList[ (# + (-1) "Random[Integer]) &, 0, n] 

Here is a plot of the first 200 steps. 
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ListPlot[RandomWalk[200], PlotJoined ➔ True]; 

15 

12.5 

10 

7.5 

5 

2.5 

The directness of Mathematica programs makes a generalization quite easy. The subsequent program 

produces a random walk in d dimensions. 

RandomWalk [n_, d_] : = 
NestList[ (# + (-1) "Table[Random[Integer], {d}] )&, Table[O, {d}], n] 

Here is the three-dimensional random walk. 

Show[Graphics3D[{Hue[O], Line[RandomWalk[lOOO, 3]]}]]; 

■ Mathematica is a uniquely scalable language - suitable for programs of any size 

Cellular Automaton ( Game of Life ) 

Here is a direct program for one step in the life.cellular automaton. 
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LifeStep[a_List] := 

MapThread[If[(#l == 1 && #2 == 4) I I #2 == 3, 1, OJ&, 

{a, Sum[RotateLeft[a, {i, j}], {i, -1,. 1}, {j, -1, 1}]}, 2] 

Here is an alternative highly optimized program acting on cell lists. 

LifeStep[list_] := 

With[{u=Split[Sort[Flatten[Outer[Plus, list, N9, 1], 11]]}, 

Union[Cases [u, {x_, _, _} -> x], 
Intersection[Cases [u, {x_, _, _, _} -> x], list]]] 

N9 = Flatten[Array[List, {3, 3}, -1], 1]; 

Mathematica makes it easy to build up programs from components. In this example the parts for the 

simulation of a cellular automaton are put together. 

Clear[CAStep] 

CenterList [n_Integer] : = ReplacePart[Table [O, {n}], 1, Ceiling[n / 2]] 

ElementaryRule [num_Integer] := IntegerDigits[num, 2, 8] 

CAStep[rule_List, a_List] := 

rule [ [ 8 - (RotateLeft[a] + 2 (a + 2 RotateRight[a])) ] ] 

Mathematica has a compiler for optimizing programs that work with lists and numbers. Here is a definition 

of CAStep which resorts to Compile. 

CAStep = Compile[{{rule, _Integer, 1}, {a, _Integer, 1}}, 
rule[ [ 8 - (RotateLeft[a] + 2 (a + 2 RotateRight[a])) ] ] ] ; 

CAEvolveList[rule_List, init_List, t_Integer] := 

NestList[CAStep[rule, #]&, init, t] 

CAGraphics[history_List] :=Graphics[Raster[l - Reverse[history]], 
AspectRatio -> Automatic] 

This example demonstrates how the program runs. 
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Show[CAGraphics[ 

CAEvolveList[ 

ElementaryRule[30], CenterList[201], 150] ] ] ; 

Mathematica programs are often a direct translation of material in textbooks. Hereare definitions for the 

impedance of an electric circuit. 

Impedance of a Circuit 

Impedance[Resistor[r_], w_] := r 

Impedance[Capacitor[c_], w_] 

Impedance[Inductor[l_], w_] 

1 
:=---

jwc 

:= :iJ wl 

Impedance[SeriesElement[e_], w_] . = 

Apply[Plus, Map[Impedance[#, w]&, e]] 

Impedance[ParallelElement[e_], w_] := 

1 / Apply(Plus, 1 / Map [Impedance[#, w] & , e]] 

The definitions-above are then used for the following calculation of a circuit. 

Remove[Rn]; 
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Rn : = Subscript(R, n] 
Impedance[SeriesElement[ 

Tabl_e ( ParallelElemen t( 
Table (SeriesElement[ {Resistor[Rn]}], {n}] 

], {n, 1, 4}] 
], w] 

■ In Mathematica algorithms can be expressed clearly. 

Golden Ratio ( 1 + ✓5) 
2 

I GoldonRatio 
GoldenRatio 

Both programs approximate the Golden Ratio up to k digits. 

1 
,t,1 [k_] :=l+FixedPoint[N[--, k]&, 1] 

1 + #1 

{r/>1 [50], r/>2 [50], N[ GoldenRatio, 50]} 
{l.6180339887498948482045868343656381177203091798058 

l.6180339887498948482045868343656381177203091798057 

l.6180339887498948482045868343656381177203091798058 } 

■ Mathematica programs allow a unique combination of mathematical and computational notation. 

Subsequent definitions correspond _to a recently discovered approximation for prime numbers. 

Q [n_] : = Apply [Plus, Map [Last, Factorinteger [n]]] 

µ [n _] : = MoebiusMu [n] 

Here is a comparison of the approximation P(n] with the built-in function PrimePi(n) , which determines the 

number of primes ~ x. 

{ P [100000] , PrimePi [100000] } 
{9592, 9592} 
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Mathematica Notebooks 
Mathematica Programming Language 

Prof. Dr. Robert Krag/er 
FH Ravensburg-Weingarten I University of Applied Sciences 

krag/er@rz. fh-weingarten. de 

Programming Efficiency 
Create a Sequence of O's and 1 's 

■ Problem: All sequences of Length 3 
Result wanted : { [0,0,0],[l ,O,O],[O, 1,0],[l, I ,0],[0,0, I ],[l ,O, I ],[O, I, I ],[I, I, I] } 

For sequences consisting of digits O and 1 there are 2n possible arrangements. Solutions for 
Mathematica, Maple, Macsyma, Axiom and Reduce are : 

• Mathematica 

sequences[n_] :=Distribute[Table[{O, 1), {n}], List] 
saquencas[3] 
sequences[4] 

{{O, 0, 0}, {0, 0, 1}, {0, 1, 0}, {0, 1, l}, {1, 0, O}, {l, 0, l}, 
{1, 1, 0}, {1, 1, 1}} 

{{0, 0, 0, 0}, {0, 0, 0, l}, {0, 0, 1, 0}, {0, 0, 1, l}, {0, 1, 0, 0}, 
{0, 1, 0, l}, {0, 1, 1, 0}, {0, 1, 1, 1}, {l, 0, 0, 0}, {l, 0, 0, l}, 
{l, 0, 1, 0}, {l, 0, 1, l}, {l, 1, 0, 0}, {l, 1, 0, l}, {l, 1, 1, 0}, {l, 1, 1, 1}} 

■ Maple 

sequences := n -> if (n = 0) then [] 
elif (n = 1) then [ [0], [1]] 
else map(x->([op(x),0], [op(x),1]),sequences(n-1)) 
fi 
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■ Macsyma 

sequences(n) := 
if n=O then [ ] 
else if n=l then [ [0], [1]] 
else apply('append,map(lambda([l], [endcons(O,l), 

endcons(l,l)]), 
sequences(n-1)))$ 

• Axiom 

sequences n == 
one? n => [ [ 0] , [ 1 l l 
concat [[concat(O, s), concat(l, s)] 

for sin sequences(n-1)] 

■ Reduce 

procedure sequences n; 
if n = 1 then { { 0} , {1} } 

else for each sin sequences(n - 1) cone {O . s,1 . s}; 

List all Elements larger than all Preceding Elements 

• Problem : maxima[ { 3, 2, 6, 4, 8, I } ] 
Result wanted : { 3, 6, 8 } 

• Mathematica 

maxima[x_] : = Union[Accumulate[Max, x]] 
maxima [ { 3 , 2 , 6 , 4 , 8 , 1 } ] 
{3, 6, 8} 

• Maple 

maxima := proc(l) 
local mx, i; 
mx := op(l, 1)-1; 
[ seq( proc(m, v) if ( eval(m) < v) then m := v; 

v else NULL fi end('mx',i), i=l) ] 
end; 
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■ Macsyma 

maxima(l) := maxima2(1,minf)$ 

maxima2 (1, x) := 
if l=[] then [] 
else if first(l)>x 

then cons(first(l),maxima2(rest(l),first(l))) 
else maxima2(rest(l),x)$ 

■ Axiom 

maxima x == [x.i for i in 1 .. #x 
every?(a +->a< x.i, first(x, (i-1) ::NNI))] 

■ Reduce 

procedure maxima u; 
first u. maximal(rest u,first u); 

procedure maximal(u,v); 
if u = {} then{} 
else if first u > v then first u. maximal(rest u,first u) else 
maximal(rest u,v); 

Encode Sequences in Lists (Run-length Encoding) 

■ Problem : runEncode[ { a,a,b,c,c,c,a}] 
Result wanted : { {a, 2}, {b, I}, {c, 3}, {a, I}} 

Determine from a given set the run-lengths of equal characters following each other. 

■ Mathematica 

runEncode [x_ List] • -
({#1, l}&)/@x//. {u __ , {v_, r_}, {v_, s_}, w __ } ➔ {u, {v, r+s}, w} 

runEncode [ {a, a, b, c, c, c, a} ] 
{{a, 2}, {b, 1}, {c, 3}, {a, l}} 
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■ Maple 

run encode := l -> if (1 = (]) then [] else [encode_block(l,1,1)] fi: 
encode_block := (l,i,c)-> if (i >= nops(l)) then (l[i],c] 

elif (l[i] = l[i+l]) then 
encode_block(l,i+l,c+l); 

else [l[i],c],encode_block(l,i+l,1); 
fi: 

■ Macsyma 

elem_count(x,l) := 
if l=[] then 1 
else if first(l)=x then l+elem_count(x,rest(l)) 
else 1$ 

run_encode(l) := 
if l=[] then [] 
else block([c: elem count(first(l),rest(l))], 

cons([first(l),c],run_encode(rest(l,c))))$ 

■ Axiom 

lcount(a,x) == (empty? x => 1; a 
runEncode x -­

empty? x => []; 

first x => 1 + lcount(a, rest x); 1) 

cons([a := first x, n := lcouht(a, rest x)], 
runEncode rest(x, n)) 

■ Reduce 

procedure runencode 1st; 
if 1st={} then{} else runencodel(first lst,rest lst,1); 

procedure runencodel(u,v,n); 
if v = {} then {{u,n}} 
else if u = first v then runencodel(u,rest v,n + 1) else {u,n} . 
runencode v; 

59 



Mathematica Notebooks 
Mathematica Programming Language 

Prof. Dr. Robert Krag/er 
FH Ravensburg-Weingarten I University of Applied Sciences 

kragler@rz. fh-weingarten. de 

Programming Styles 
■ Initializations 

General Remarks on the Mathematica Programming Language 

The success of Mathematica relies to some extend on the fact that in adddition to the three columns Symbolic and 

Numerical Calculation and Graphics there is a powerful high-level Programming Language available which 

comprises very different programming concepts. 

An occasional Mathematica user may do his calculations with Mathematica in a dialogue mode where already in this 

case he is offered the possibility of processing results of previous calculations and nesting Mathematica expressions. 

With these features, however, the possibilites provided by Mathematica are far not exhausted. 

Mathematica is more than a handy pocket calculator. Auxilliary to more than I 000 commands implemented in the 

kernel Mathematica comprises a complete high-level programming language (comparable to C or FORTRAN etc.) 

allowing 

■ to access all built-in functions of Mathematica 
■ to extend the functionality of Mathematica by additional user-written 

procedures if required 
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Different Mathematica Notations 

A special feature of the Mathematica programming language is the great number of synonymous notations and the 

possibility resulting from this feature, to employ the syntax as means to emphasize or especially point out certain 

aspects or sequentialization etc. If suitable postfix , prefix or infix and bracket notations may be applied exclusively or 

in combination. 

f(x,y I 
Prefix[ f( x I) f@ x 

standardform fiir f(x,y) 
standard Prefix notation for f(x) 

Postfix[ f( x] ] x // f 
Infix[ f( x, y, ... ) x~f~y~f~ ... 

standard Postfix notation for f(x) 
standard Infix notation for f(x,y) 
Prefix form h x Prefix[ f( x I, h I 

Postfix[ f( x ), h I 
Infix[ f( x,y, ... I, h] 
PrecedenceForm[ expr, n] 

Postfix form x h 
Infix form x h y h ... 
expr to be parenthesized with 
precedence n 

As will be shown below the Postfix operator ( // ) may be used to emphasize the sequential execution of serveral 

operators from left to right ; the usage of the Prefix operator ( @ ) points out the sequence in which functions are 

applied , whereas the parenthesis notation common in other programming languages is more suitable for functions of 

several arguments or for augmenting nesting structures. The Infix operator ( ~ ) may be used as a (binary) operator 

acting between only two operands resp. parameters as is the case in other notations too. According to the need even 

within a Mathematica statement the mix of different notations is possible. This offers syntax possibilities similar to 

natural languages. 

■ Examples to model mathematical notation 

When there is an output form involving operators the question arises of whether the arguments of some of them should 

be parenthesized. In general this depends on the ranking order ( precedence ) of the particular operator. With 

PrecedenceForm [ ... ] one can specifiy the precedence level to assign to each operator a number between 1 and 

I 000. The higher the precedence level for an operator, the less it needs to be parenthesized. Using 

Infix[exp,h,precedence,grouping] it is possible to affect the parenthesizing of the output form. The 

precedence is determined by integer numbers; for OutputForm some precedence levels are given as follows 

Connection precedence level example 
Dot 210 x.y.z 
Power 190 x"y 
Times 150 x*y*z 
Plus 140 X + y + z 
Equal 130 X == y 
Set 60 X =y 

Possible specifications for grouping (associativity) of input forms with same precedence level are 

N onAssocia tive 
None 
Left 
Right 

not associative 
always associative 
left associative 
right associative 
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e.g. (a/b) / c 

e.g. a" (b"c) 



Prefix operator 

r ? Prefix 

Prefix[f[expr]] prints with f[expr] given in default prefix form: 
f@ expr. Prefix[f[expr], h] prints as hexpr. 

An equivalent short for Prefix [ ... ] is the operator @ (function application) 

Prefix [ f [x + y] 
f@ (x + y) 

f@ x+y 

f@ (x + y} 
y + f [x] 

f [x + y] 

Prefix[ f[x], ".£0"] 

Prefix[ f[2 + n], ".£0"] 
Lo X 

Lo (2 + n) 

Postfix operator 

r ? Postfix 

Postfix[f[expr]] prints with f[expr] given in default postfix form: 
expr // f. Postfix[f[expr], h] prints as exprh. 

Postfix[ f [2 + n], 11 0'1-f"] 
2 + n °'H 

Because the precedence level is with 160 larger than for Plus (+) one should expect a result which differs from the 

previous one. 

I Postfix[ f[2 + n], 11 0'1-f", 160] 
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I 

I ? Infix 

Infix[f[el, e2, ... ]] prints with f[el, e2, ... ] given in default 
infix form: el - f - e2 - f - e3 .... Infix[expr, h] prints with 
arguments separated by h: el h e2 h e3 

Infix[ f[x, y]] 
X ~ f ~ y 

{a, b, c}-Join~{d, e}-Join~{f, g, h} 
{a, b, c, d, e, f, g, h} 

Infix[ f[x, y], "$"] 
xEB y 

Format[ vectorProduct[a_, b_] ] := Infix[{a, b}, "x"] 

(• Format[vectorProduct[a_,b_] ]:=Infix[{a,b},"x",160,None] •) 

vectorProduct[a, b] 
axb 

Infix[f[a+b, c+d], "$ ", 135, None] 

Infix[f[a+b, c+d], "$ ", 145, None] 
a + b Z c + d 

(a+ b) Z (c + d) 

dot[a_, b_] : = Infix[dot[a·, b], 

dot[dot[a, b], dot[c, d]] 
a 0 b 0 c 0 d 

dot[a_, b_] := Infix[dot[a, b], 

dot[dot[a, b], dot[c, d]] 
(a 0 b) 0 (c 0 d) 

dot[a_, b_] := Infix[dot[a, b], 

dot[dot[a, b], dot[c, d]] 

110" 

' 

"0" 
' 

,.o" 
' 

120, None] 

120, NonAssociative] 

120, Left] 
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··~\ 

a 0 b 0 (c 0 d) 

Precedence 

r ? PrecedenceForm 

PrecedenceForm[expr, prec] prints with expr parenthesized as it 
would be if it contained an operator with precedence prec. 

The following output of a list will be decorated with the Infix operator 11 ~ 11 

s = Infix[ {a, b, c, d}, "<=>"] 

a=b=c=d l 
Because of its default the Infix operator has a precedence level higher than Power [ ... ] , i.e. exponentiation. 

He!1ce, squaring the expression s defined above with Infix operator 11 ~ 11 one obtains the result. 

Sn 

(a=b=c=d) n 

Due to the fact that precedence level for Add (+) is 140 there will be different results depending on whether the 

precedence level is higher or lower than 140 

a+ PrecedenceForm[c d, 120] 

a+ (c d) 

a+ PrecedenceForm[c d, 200] (• should be a + c d •} 

a + ( c d) 
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■ Example I sin ( f > I 

The following variations show the same content but in different notation 

sequential execution in the fashion of UNIX pipes 

I ( -
4
" ) // Sin // Jilis // N 

0. 707107 

functional (operational) way of viewing with final clause " ... and then all numeric" 

I Jilis @ Sin @ ( -
4
" ) / / N 

0.707107 

procedural way of viewing specifying the number of digits wanted of the numeric result 

-71' 
N[ Abs[Sin(-]), 20] 

4 
0.7071067811865475244 

mixed form with less parentheses 

-71' N[ Abs@ Sin[-], 20] 
4 

0.7071067811865475244 

mixed form with final clause " ... with absolute value" 

-71' 
N[ Sin[-] // N, 20] 

4 
0.7071067811865475244 
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Overview of Mathematica Programming Styles 

Mathematica as a powerful and (at the same time) elegant programming language support essentially all programming 

styles known from other high-level programming languages. In an first approach there will be only an overview of the 

variety of programming styles to be realized with Mathematica; in a second step there will be a discussion of technical 

details. 

Algorithms from procedural programming languages like FORTRAN, C, Pascal, Modula-2 etc. can be transscripted 

into Mathematica code in a straightforward manner. However, this is not always the most elegant way to do so. 

Because of the possibilites which are offered in functional and rule-based programming languages mathematical 

algorithms are in most cases more compact and more efficient. 

The essential programming styles supported by Mathematica are 

■ procedural 
■ recursive 
■ functional 
■ rule-base 

programming ( FORTRAN, Pascal, C like) 
programming ( C, Lisp like ) 
programming ( APL, Lisp like) 
programming ( Prolog, C++ like) 

A simple example - the factorial function - serves as illustration for the different programming styles: 

Factorial in Procedural Programming Style 
Procedural 

Procedural programming in the style of FORTRAN, Pascal or C language relies on structural elements such as blocks, 

conditions, loops and control structures (as well as iteration and recursion). 

facFortran [n_] : = Block [ {s = l}, 

Do [ s * = i , { i , n} ] ; s] 

facFortran[S000] // N // Timing 

{3. 46 Second, 4 .22857792660554 x 1016325
} 

Factorial in Recursive Programming Style 
Recursive 

Modern programming languages like C ( and recently FORTRAN 90 too) allow recursive function calls. Hence, some 

mathematical problems can be solved in a more concise way if formulated in a recursive fashion. 

facC[n_] :=If[n==l, 1, nfacC[n-1]] 

$RecursionLimi t = $IterationLimi t = 10000; 

facC[5000] //N //Timing 

{3.4 Second, 4.22857792660554x1016325
} 

Factorial in Functional Programming Style 
Functional 

Functional programming a la APL or Lisp make use of the concept of functional and structural operators 
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facAPL[n_Integer] : =Times@@ Range[n] 

facAPL[5000) // N // Timing 

{2. 31 Second, 4. 22857792660554 x 1016325
} 

Factorial in Rule-based Programming Style 
RuleBased 

Rule-based programming in the style of Prolog or C++ makes use of pattern matching and transformation rules. This 

programming style is most suitable when there are only few rules to be formulated in order to transform instructions 

from one form into another one. Each rule is related to a model and acts as an operator on the mapping of the model. 

Most rules can be constructed from a direct conversion of the corresponding mathematical formulae. Rules can be 

named so that they can be activated if needed or implemented as a global rule base to be always available 

facProlog[n_] : = n facProlog[n - 1] 

facProlog [ 0] : = 1 

? facProlog 

Global 'facProlog 

facProlog [ 0] : = 1 

facProlog[n_] := n*facProlog[n - 1] 

facProlog[5000) / / N // Timing 

{3.13 Second, 4 .22857792660554 x 1016325
} 
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Programming Styles in Detail 

Obviously Mathematica as a programming language does not tie down the user neither to a single programming style 

nor to a certain notation. The essential advantage in comparison to traditional programming languages is however that 

Mathematica is an interactive interpreter system. 

(Only for some simple expressions it is possible to create compiled functions which speeds up evaluation. A built-in 

compiler in the Mathematica kernel translates expressions into pseudocode which is used by a subsequent pseudocode 

interpreter to evaluate the compile functions.) 

This allows an experimental proceeding to call individual functions separately and to test them without the necessity of 

writing a complete program. Thus, the !,ISer can build up complicated programs based on simple functions which in 

turn make use of fundamental operations of Mathematica. Many programs of that kind are available as Mathematica 

packages for very different applications to be loaded into the Mathematica kernel if needed. 

Below follows a list of different programming styles : 

Procedural Programming 

First of all the procedural programming ( as known from Pascal or C ) should be dealed with. In this programming 

style functions may call each other by value or by reference. The usual constructs available are e.g. loops, 

conditionals, local variables, arguments with default values and recursive calls. This programming style is 

well-known. And the most important control structures are Do, While and For as well as conditionals such as If, 

Which and Switch. 

In order to define local variables within functions or procedures one uses the mechanism of Module (with lexical 

scoping) or Block (dynamic scoping) 

C = b 2 ; 

The local value for b in the block is used throughout the evaluation of b+c 

Block [ {b = a} , b + c] 
a+ a 2 

Here only the b that appears explicitly in b+c is treated as a local variable 

Module [ {b = a} , b + c] 

a+ b 2 
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■ Example : Sign function slgn(x) 

signum[x_] : = If [x ::s: 0, 0, 1] 
signum [ 10] · 

1 

Plot[signum[i], {i, -5, 5}, 

PlotStyle ➔ { {RGBColor[l, 0, 0], AbsoluteThickness[2]}}, 

AxesLabel ➔ { "x", "Sign (x) "}, AspectRatio ➔ 0. 4, 
Background ➔ Gray Level [ 0 • 7 5] ] ; 

• ·~/❖•' 

-4:. . - ·::i . . : 
In order to point out the intricacy of this programming style consider the task to represent numbers with respect to the 

base 256. The realization in procedural style could be as follows 

makeListl[num_Integer] := 

Module [ {res = {}, rem= num}, 

While[rem 'i 0, PrependTo[res, Mod[rem, 256]]; 

rem= Quotient[rem, 256]]; 

res] 

coeffl = makeListl [111111111111] 
{25, 222, 189, 1, 199} 

To test the correctness of the forgoing procedure tenns of the fonn c1 256 1 are summed up to yield the decimal number 

il = Length [ coeffl ] ; 
i1 

s = .Li coeffl[i] HoldForm[256] (il-i) 

isl 

199 + 256 + 189 2562 + 222 2563 + 25 2564 

s I I ReleaseHold 
111111111111 

(• or ReleaseHold IIO s •) 
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This naive procedural formulation is very unsatisfying because 2 local variables rem and T'es ru-e used and the flow ~f 

the program is controlled by a While-loop. Using a recursive algorithm however the program can be written in a more 
concise and elegant way;· 

Recursive Programming 

All modem programming languages support recursive function calls. Using this concept one can solve more concisely 

those mathematical problems which are described recursively. Thus one avoids an explicit control of the flow of the 

program. , 

A solution of the example above is achieved in a recursive way with the help of two definitions 

makeList2 [O] = {}; 

·. makeList2 [num_Integer] . -

Append[makeList2 [ Quotient[num, 256] ] , Mod[num, 256]] 

, makeList2 [111111111111] 
{25, 222, 189, 1, 199} 

In general a recursive program is faster although the book-keeping of the recursion requires some additional 

computational effort. What is in favor of a recursive program style is its clearness and the ease to read. 
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■ Efficiency 

In the case of simple problems with recursive, solutions mostly iterative solutions will exist too which are more 

efficient. For complicated problems, howeve~, it is preferable using a short recursive algorithm instead of a long 

iterative one. 

In algorithms with recursive calls to be used more than once the storage of. intermediate results (e.g. f [n_] = 

f [n] = expression) avoids multiple computations. As prominent example serve the Fibonacci numbers 

Fibonacci Numbers 

A version without intermediate storage require more computation 

fibl[0] = 1; fibl[l] = 1; 

fibl [n_] : = fibl [n - 1] + fibl [n - 2] 

fibl [20] / / Timing 

{2.2Second, 10946} 

Storing intermediate results makes the calculation more efficient 

fib2 [ 0] = 1; fib2 [ 1] = 1; 

fib2 [n_] : = fib2 [n] = fib2 [n - 1] + fib2 [n - 2] 

fib2 [20] / / Timing 

{0. Second, 10946} 

$RecursionLimi t = 1000; 

fib2 [200] / / Timing 

{0 .17 Second, 453973694165307953197296969697410619233826} 

In the present example, however, an iterative algorithm is much faster which starts with the calculation_ at f[2] in 

increasing order and calculates from the two preceding value the next one 

fib3[0] = 1; fib3(1] = 1; 

fib3 [n_] : = 
Module [ { i , fn = 1 , fnl = 1 , fn2} , 

Do [ fn2 = fnl ; fnl = fn; 

fn = fnl + fn2, {i, 2, n}] ; 

fn] 

fib3 [200] / / Timing 
{0.06Second, 453973694165307953197296969697410619233826} 
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Functional Programming 

An interactive programming environment as provided by Mathematica is most suitable to do a step-by-step of the 

results. Procedural programming is unsuitable for this because there occur mostly local variables and control 

structures which make it difficult to insert pieces of program code. 

However, the technique of functional programming will ease a stepwise construction of a program. As building block 

one uses functions, their results are handed over to other functions in terms of arguments or parameters. The entire 

program consists of expressions in terms of nested function calls. Control structures in functional programs may often 

be substituted by iterative functions such as Sum etc. In this context an important role is taken by so-called anonymous 

or pure functions which are applied on lists together with Mathematica functions such as Map ( f /@ expr ) , 

Apply ( f @@ expr) 

■ Example : Approximation of Euler number e 

The following functional program approximates the Euler number e up to 50 decimals 

( NSO = N [ #, 50] & ; 

Sum[l/i!, {i, 0, 60}] //NSO //Timing 
{0.05Second, 2.7182818284590452353602874713526624977572470937000} 

As regards to efficiency this procedure is comparable with the C type program variant with a For loop 

r = l; 
For[i = 1, is 60, i++, 

For [j = 1; s = 1, j S i, j ++, s •= j] ; 

1 
r += -] ; 

s 
r // NSO 
2.7182818284590452353602874713526624977572470937000 
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■ Example : Newton's Approximation for V3 
Even Newton's approximation of the square root is more transparent asfvced point procedure using a pure function 

a= 3; 

FixedPoint[..:_ (#1+ ~)&, 1.] //NSO 
2 #1 

1.732050807568877 

rather than a While loop in the style of a Pascal program 

x=l.;y=2.; 

While[! (x==y), y=x;x= ~ {x+ :)]; 

x // NSO 
1.732050807568877 
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Concept of pure (or anonymous) functions 

Sometimes it is rather favorable to operate with user-specified functions on elements of lists. This can be done with the 

command Map or with its shortcut /@ e.g . 

. r Clear[x, f, g, a, b, c, d] 

h[x_] := f[x] +g[x] 
h /@ {a, b, c, d} 

{f[a] +g[a], f[b) +g[b], f[c] +g[c], f[d) +g[d)} 

However, it is too involved defining a function ( in this case h [x] ) which is only needed to map it with Map resp. /@ 
. For functional operators such as Map or Nest one always has to specifiy a function which is applied on some 

operands (i.e. variables or lists). In the example above the name of a function h was used in order to define the 

function. Yet, it is too m·uch trouble to define a function only for using it once. Mathematica allows the construction of 

so-called anonymous or pure jimctions. These objects have no explicit function name and are primarily used to act on 

the arguments of other Mathematica functions. 

The following pure function will give the same result as above 

Function[x, f[x] + g[x]] /@ {a, b, c, d} 
{f[a] + g(a], f[b] + g[b], f[c] + g[c], f[d] + g[d]} 

In general the syntax of a pure function is : 

Function[ body][arg] 
Function[ body](argl, arg2, ... ) 
(body)& [arg) 
(body)& (arg1, arg2, ... ) 

Result of the calculation of argl, ... is substituted 
for all occurrences of#l, ... in body, the 
resulting expression will be returned after 
evaluation 

The shortcut notation for pure functions uses # as placeholder for the formal parameters (resp. #1, #2, ... if there is 

more than one parameter), whereas the name of these formal parameters is irrelevant. Only the function definition has 

to be specified and terminated with the character & . 

(f(#] + g[#] &) /@ {a, b, c, d} 
{f[a) +g[a], f[b] +g[b], f[c] +g[c], f[d] +g[d]} 

The notation Function [x, f [x] +g [x] ] and (f [ #] +g [ #]) & are equivalent. The second formulation strips 

down the function completely to its functionality and hence justifies the name pure function. Obviously, pure 

functions are very close to mathematical notation of operators. 
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Rule-based Programming 

Even procedural programming only makes use of a part of the possibilities the Mathematica language offers. To go 

beyond this, rules can be defined which can be applied automatically or manually. In this context even the built-in 

functions of Mathe_matica can be defined or extended in a newly. 

Programming with definitions and transformation rules distinguishes Mathematica. In this way it is quite easy to 

implement into Mathematica straightforward the mathematical knowledge from tables of formulae etc. For this kind of 

problems rule-based programming is the most powerful programming style. Whenever in some cases only a few 

number of rules have to be applied this programming style is the most suitable one. If, however, the set of all rules 

should be used for all possible cases then functional resp. procedural programming is more favorable. 

■ Examples of Rule-based Programming 

■ Manual substitution rule 

x 2 
/. x ➔ a 

a2 

where 11 
/. 

11 has the meaning of 

? I. 

expr /. rules applies a rule or list of rules in an attempt to 

transform each subpart of an expression expr. 

■ Factorial function 

fak[n_] :=nfak[n-1] 

fak [OJ = 1; 

fak[x_?Negative] = "Not defined!!"; 

Thus Mathematica contains the followi~g set of rules for the calculation of the factorial function: 

I ?fak 

Global' fak 

fak[O] = 1 

fak[(x) ?Negative] "Not defined!!" 

fak[n_] .- n*fak[n - 1) 

I fak [50] 
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30414093201713378043612608166064768844377641568960512000000000000 

fak[-1) 
Not defined!! 

■ Definition of a linear function 

q[x_] + q[y_) ":= q[x + y) _ {•":=is used for UpSetDelayed •) 

?q 

Global 'q 

q[x_] + q[y_] ":= q[x + y] 

q[a) + q[b) + q[c) 
q[a+b+c] 

■ Rules for differentiating algebraic functions 

Symbolic calculation will be illustated in the subsequent example by the most famous recursive definition, namely by 

differential calculus. 

Clear[!>] 

V[c_ ?NumberQ, x_] 

V[x_, x_] 
V [f _n_?NumberQ, X _] 

V[c_ f_, x_] 

V[f_ + g_, x_] 

V[f_ g_, x_] 

f 
ii[-=-, x_] 

g_ 

1 ii[-, x_] 
g_ 

:= 0 

:= 1 
: = n fn-l V [f, x] 

:= cV[f, x] /; FreeQ[c, x] 

:=V[f, x] +V[g, x] 

:= V[f, x] g+ fV[g, x] 

V[f, x] g-fV[g, x] 

g2 

V[g, x] 
: = -

g2 

Now the set of rules for differentiation V [ ... , x] is specified as follows 

?V 

Global 'V 
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1) [ ( c _) ? NumberQ, x_] . - 0 

'.D(x_, x_] : = 1 

'.D((g_)"(-1), x] := -('.D[g, x]/g"2) 

'.D[ (f_)" (n_) ?NumberQ, x_] := n* f" (n - 1) *'.D[f, x] 

'.D((c) * (f ), x_] := C*'.D[f, x] /; FreeQ[c, x] 

'.D[(f_) + (g_), x] := '.D[f, x] + '.D[g, x] 

'.D[(f_) I (g_), x_] .- ('.D[f, x] *g - f*'.D[g, x]) /g"2 

'.D[(f) * (g_), x_] .- '.D[f, x] *g + f*'.D[g, x] 

with 

I ?NumberQ 

NumberQ[expr] gives True if expr is a number, and False otherwise. 

? FreeQ 

FreeQ[expr, form] yields True if no subexpression in expr matches 
form, and yields False otherwise. FreeQ[expr, form, levelspec] 
tests only those parts of expr on levels specified by levelspec. 

Application of simple differentiation rules on algebraic functions using as a shortcut notation the following pure 
function "operator" 

'.Dx , - V [ #, x] & · 

{ 
4 3 4 X } 1,x,x, (x+2x) ,--

x-1 

{ 0, 1, 4 x 3
, 4 ( 1 + 6 x 2

) ( x + 2 x 3
) 

3
, -

Definition of the functions f (x) and g(x) 

x3 
f[x_] .- - ; 

2 
g[x_] : = 1 + X 

Vx /@ { f [ X] , g [ X] , f [ X] - g [ X] } 

{ 
3 x 2 

1 _ 1 + 3 x~ } 
2 ' ' 2 

Trace [ V [ f [ x 2
] , x] , V ] 

1 
(-l+x) 2

} 
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{v[ ;
6

, x], ~ V[x 6
, x], {V[x 6

, x], 6x6
-

1 V[x, x], {V[x, x], l}}} 

f [x] 1 X 
!Dx /@ { f [x] g [x] , -- , -- , -- } / / Simplify 

g[x] f[x] g[x] 

{ ]:_x2 (3+4x), x2 (3+2x)' _ _§_' 1 } 
2 2 ( 1 + x) 2 x 4 

( 1 + x) 2 

■ Laplace Transformation Rules 

The following example demonstrate how the essential properties of the Laplace transformation can be specifies with 

only few transformation rules 

( Clear[a, b, c, n, s, t] 

C 
: = - I ; FreeQ [ c, t] 

s 
.L:[c_, t_, s_] 

£[a_+ b_, t_, s_] 

.L: [c_ a_, t_, s_] 

:=£[a, t, s] +.L:[b, t, s] 

: = c £ [ a , t , s] / ; FreeQ [ c , t] 
nl 

.L:[t n_., t, s] := -- /;FreeQ[n, t] &&n>O 
- - - gn+l 

.L:[a_t_n_., t_, s_] := (-l}nO(s,n}.L:[a, t, s] /;FreeQ[n, t] &&n>O 

.L: [ : = , t _, s _] : = Module [ { 'C} , f £ [a, t, 'C] di 'C] 

£[a_. eb_.+c_.t_, t_, s_] :=.L:[aeb, t, s-c] /; FreeQ[{b, c}, t] 

.L:[t3 e-Jt, t, s] 
6 

(3+s) 4 

The package "Calculus' LaplaceTransform'" a more complete rule base for the Laplace-transformation is 

contained which increases the time for evaluation however. 
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■ Definition of a user-specified logarithmic function log 

log[l] = 0; 

log[E] = 1; 

log [x _ y_] : = log [x] + log [y] 

log[x_n-] :=nlog[x] 

{ log[2 x 3 ], log[x2 Y], log[xT]} 

{log[2] + 3 log[x], 2 y log[x], y 2 log[x]} 

The built-in function Log however cannot handle the case Log [xY] 

I Log[x'] 
Log [xY] 

but can be extended by the following rule 

Unprotect[Log, Power]; 

Clear[Log]; 

Log[x_Y-] ;..:=yLog[x] 

Protect[Log, Power]; 

{ Log [ x2 Y ] , Log [ xr J } 
{2 y Log [x], y" Log [x]} 
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Programming with Binding Propagation 

Transformation rules are always directed : rules which make use of a given pattern are applied to expressions. 

Sometimes, however, it is more suitable to work with bindings which are formulated as equations and are solved with 

Solve [eqns, vars, elims]. Thus, no special direction is distinguished; equations may be solved arbitrarily 

with respect to variables or parameters wanted. 

The following examples will be studied: 

Example: Solution of a system of equations 

I vo r3 vo 
e.qnl = {Va== --- , Va==· Vi, g == -} i 

r 1 + r 2 Vi 
The system of equations will be resolved with respect to g 

Solve [eqn1 , g, {r1, r2}] 

{ { g ➔ :o }} . 
i 

Solution with respect to r1 and in addition elimination of g 

Solve[eqn1 , r1] 

Simplify [Solve [ eqn1 , r1 , g] ] 
{ { r1 ➔ - r2 + g r3} } 

{{ . r3vo }} 
r1 ➔ -r2 + -v---

i 

Example : Inclined Throw 

Clear [xo, Yo, zo, vo, g, a] 

eqns2 = { x == xo + Vo Cos [a] t, 

gt2 
y==yo +vo Sin[a] t- --

2 

Z == Zo } i 

Eliminating time t resultes in the parabolic trajectory. 

Solve[eqns2 , y, t] // ExpandAll 

{{ 
gx2 Sec[o:] 2 gxx0 Sec[o:] 2 

Y ➔ Yo - 2 + 
2 Vo v§ 

g x5 Sec [o:] 
2 

+ x Tan (o:] - x 0 Tan [o:]}} 
2 v5 

Perhaps, the question is posed what are the initial conditions to be chosen so that the mass is flying after /sec in x- and 

y-direction / m 

Solve [ eqns2 / . { x ➔ 1 , y ➔ 1 , z ➔ 0 , t ➔ 1} , { xo , Yo , zo } ] / / ExpandAll 
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{{xo ➔ l-vaCos[o:], Yo ➔ l+ ~ -voSin[o:], zo ➔ O}} 

Or, for given initial location (e.g. x 0 = z 0 = 0, Yo = 1) and initial velocity (vo = 1), the shooting angle is wanted 

which is associated with the maximum range of throw. In this case the parabolic trajectory has to be investigated after 

elimination of time t. 

initialCond= {xo ➔ O, yo ➔ l, zo ➔ O, vo ➔ l}; 

res= Solve[eqns2 /. initialCond, y, t] 

{{y ➔ ~ Sec[o:] 2 (1-gx2 +Cos[2o:] +xSin[2o:J)}} 

Then, one determines the x-value belonging to y=O which is the end of the parabola. 

sol= Solve[y == 0 /. res[l], x] // Simplify 

{{x ➔ Sin[2o:] - ✓4g+4~~os[2o:] +Sin[2o:]
2 

}, 

Sin[2o:] + ✓4g+4gCos[2o:] +Sin[2o:] 2 
}} 

{ X ➔ 2 g 

Now, the (relevant) solution should be maximized with respect to the angle a. 

FindMinimum[-x /.sol[2] /. g ➔ 9.81, {cx,1}] 
{-0.462887, {0: ➔ 0.21676}} 
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Logic Programming 

Logic programming or declarative programming tries· to write down declarations that express certain properties of the 

desired results without specifying the flow of control. Pattern matching and backtracking are used to solve an instance 

of the problem. 

Logic programming languages such as Prolog operate with transformation rules too. However, in contrast to 

Mathematica they are able to process several rules in parallel. The advantage of logic programming is based on the 

fact that no particular path of solution has to specified for a calculation. However, one pays for this kind of proceeding 

by computation time which is hard to predict or even un-predictable. Mathematica dimishes this disadvantage by 

testing the rules known one after the other and applying the first (!) one which works. Often Mathematica tries several 

possibilities in analogy to logic programming systems. 

Mathematica provides a general mechanism in order to specifiy limitations for patterns. With "/ ; " (which reads " ... 

whenever" or " ... provided that") a condition is put at the end of a pattern to signify that it applies only when the 

specified condition is True. 

Example : Pattern verification with restriction 

In the subsequent definition of a function the condition never gives the value True so that one can see in detail how 

all possibilities will be checked. 

Remove[f]; 

f[x_, y_, z_] : = dummy /; Print[ {x}, {y}, {z}] 

. f[l, 2, 3, 4, 5] 

{1}{2}{3, 4, 5} 

{1}{2, 3}{4, 5} 

{1, 2}{3}{4, 5} 

{1}{2, 3, 4}{5} 

{l, 2}{3, 4}{5} 

{l, 2, 3} {4} {5} I f[l, 2, 3, 4, 5] 

f[a, b, c] 

{a}{b}{c} I f[a, b, c] 
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Example : Reversion of a list 

The following example programmed in typical PROLOG style reverses a list. The auxiliary function 

rev(leftList,rightList] acts on two stacks (lists) It removes the first element from leftList and inserts it 

into rightList .. Wrapping with Trace (expr, :form,opts] shows how this code works. It uses the method we 

would use to reverse the order of a card deck: taking one after another and placing it onto a second pile. 

reverse[l_List] : = rev[l, {}] 

rev[{}, r_List] : = r 
rev[{s_, t __ }, {r __ }] := rev[{t}, {s, r}] 

liste = {a, b, c, d, e}; 

Trace[ reverse[liste], rev[_List, _List], TraceAbove ➔ True] // ColumnForm 
reverse[{a, b, c, d, e}] 

rev[{a, b, c, d, e}, {}] 

rev[{b, c, d, e}, {a}] 

rev[{c, d, e}, {b, a}] 

rev[{d, e}, {c, b, a}] 

rev[{e}, {d, c, b, a}] 

rev[{}, {e, d, c, b, a}] 
{e, d, c, b, a} 

Backtracking can be implemented with side conditions. The pattern matcher generates all possible cases. The side 

conditions can then be used to commit a certain case. 

Example: Sorting of a list 

An inversion in a list is a pair of adjacent elements such that the first one is larger than the second one. A sorted list is 

characterized by not having any inversions of adjacent elements. To sort a list, one simply reverses any inversions 

found. Thus, no particular order of doing this must be specified. 

sort[{a __ , i_, j_, z __ }] := sort[{a, j, i, z}] /; i > j 
sort[l_List] : = 1 

The pattern matcher generates all possible pairs of adjacent elements i and j. Whenever they are out of order, they will 

be reversed. 

Trace [ sort [ { 5 , 1 , 3 , 2}], sort, TraceAbove ➔ True] // ColumnForm 
sort [ { 5, 1, 3, 2} l 
sort[{l, 5, 3, 2} l 
sort[{l, 3, 5, 2} l 
sort[{l, 3, 2, 5} l 
sort[{l, 2, 3, 5} l 
{l, 2, 3, 5} 
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Abstract Data Types 

The following discussion follows closely chapter 2 in Roman Maeder's book "The Mathematica Programmer" . 

Abstract data types are both a theoretically well-defined concept and a useful tool for program development. 

Following the principles of abstract data type design, one arrives at a clear separation of specification and 

implementation. 

Abstract data types are defined through type names, function names, and equations. These can be realized in 

Mathematica very easily. The equations become rewrite rules. The interactive nature of Mathematica makes it well 

suited for rapid prototyping and testing of designs. 

A data type can be defined roughly as _set of values and access methods. One can then decide on data representations 

and functions with which data are manipulated and follow a usually self-imposed discipline in using only these 

functions in the application program. 

One arrives at such guidelines through the study of the theoretical foundation of the design of abstract data types. 

Usually, such theoretical foundations are of theoretical interest only since they are either non-constructive to begin 

with or cannot be made 'into executable programs on a real computer. However, the specification of an abstract data 

type can be made executable under certain conditions. This is particularly easy in Mathematica, since it contains an 

interactive symbolic programming language with rewrite rules. This should be remembered during the following rather 

theoretical definitions of an abstract data type. They will be turned into running Mathematica programs soon. 

■ Definition of Abstract Data Types 

An algebra is a mathematical structure that consists of a set of elements and a number of operations on these 

elements. The natural number with the usual arithmetic operations are an example. Since one often uses more than one 

type of data this notation needs to be expanded into many-sorted algebras. Hence, the task of defining the operations 

then becomes a bit tricky, since one has to specify the types of all operands. 

An abstract data type is specified in terms of three parts : 

• A set S of sort names 

• A set £of function names (or operator symbols) 

• A set E, of equations 

The triplet <S, l; E, > is called a specification. The sorts can be thought of as the names of the types to be modelled. 

Usually there is more than one; auxiliary types, such as boo! (standing for Boolean values) may be used. Sort names 

are printed as boldface lowercase characters. 

In the first example natural number (non-negative integers) are modelled, with Boolean values as an auxiliary type. 

Therefore the set S of sort names consists of two elements 

S = {int, bool} (1) 

The set £ of function names are broken down according to the number and types of arguments and the return type. 

This is described by a sequence of elements from S, the last one being the return type, the preceeding ones describing 

the argument type in the proper order. 

Formally, the set £ consists of sets ~-'withs ES, w ES• (This says that w is a sequence of elements of S, ands is a 

single element of S, the return type.) With ,l denoting the empty sequence the elements of .EA,., are called constants 

since they are functions without arguments. 

In the present example of natural number the set £of function names comprises the follwoing definitions 

L'int 

L'bool 

= {z} 
= {/, t} 
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L'int,int 

Iint,bool 

L'bool,bool 

L'int, int, int 

= {s} 
{isz} 
{not} 

= {add, mult} 

The notation points out that z is a constant of type int and that add is a function of two arguments of type int, 

returning a result of type int. £ ist called the signature. Note, that up to now these function names has not given any 

meaning yet, ( even though one can think of add as the addition function of integers). 

There is nothing in the definitions so far that forces one to use the addition function as meaning for thee function 

named add. In order to implement the operations in £ one can give a number of equations that must be satisfied by the 

functions chosen. The set E, of equations below enforces the usual meaning for the operations. Variables are printed in 

italics with types obvious from the functions in which they appear. 

isz(z) = t 
isz(s(n)) = f 

not(t) = f 
not(t) = t 

add(n,z) = n 
add(n,s(m)) = s(add(n,m)) 

mult(n,z) = z 
mult(n,s(m)) = add(mult(n,m),n) 

(3) 

Now, the .E-algebras can be defined: a .E-algebra is a mathematical structure that "fits" the signature £. It consists of 

sets for the sorts from S and of mappings corresponding to the operator symbols from £. 

Now the present example can be endowed with its intendes mening, using the non-negative integers as carrier set of 

sort int. To describe the functions the Mathematica notation can be used, e.g. 

Bint = {0,1,2, ... } 
Bboo1= {False, True} 

ZB=O& 

fB = False& 
tB = True& 
SB= Function[n,n+l] 

iszB = Function[n,n==O) 
notB =Not 
addB = Plus 

multB = Times 
It is customary to leave out the empty argument sequence for constants. Instead of writing 

(False&) [] one simply writes False etc. 

(4) 

If the equations are sufficiently well behaved this algebra can be modelled in Mathematica with the equations to be 

thought as reductions, always replacing the left side by the simpler right side. In this way there is one special term in 

each class of terms identified by the equations. Any other term is transformed into normal form by the applicable 

reduction rules. In the present example the equations can be simply turned into rewrite rules which will be sufficient 

for reducing all equivalent terms into normal form. The first example shows the corresponding code in Mathematica. 
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Example 1 : Data type natural numbers 

The model for natural numbers consists of the constant zero and a successor function. This suffices to represent all 

natural numbers. Another kind of objects represents the Boolean values to express the predicates (i.e. functions 

returning a Boolean value). 

The initial algebra for the specification of natural numbers is 

Sort names S 

int; 

bool; 

Function names I 

{ z}; 

{t, f}; 

{s}; 
{isz}; 
{not}; 

{add, mult}; 

(* ➔ int 

(* ➔ bool 

(* int ➔ int 

(* int ➔ bool 

( * bool ➔ bool 

(* int int ➔ int 

Equations e turned into rewrite rules 

constant zero•) 

Boolean true, false•) 

Successor •) 

Predicate "is sequence of zero•) 

Negation•) 

Addition/ Multiplication •) 

isz[z] :=t 

isz[s[n_]] :=f 

(* Predicate function applied to z gives zero•) 

not[w] : = f 

_not[f] :=t 

add[n_, z] : = n 

add[n_, s[m_]] := s[add[n, ml] 

mult[n_, z] : = z 
mult[n_, s [m_]] : = add[mult[n, m], n] 

Test 

Here a few sample computations. The integer n is represented as n-fold nesting of s applied to z 

add[s[z], s[s[z]]] 
s[s[s[z]]] 

A trace shows the computations going on. 

(* Addition 1 + 2 = 3 •) 

Trace [ add [ s [ z] , s [ s [ z] ] ] , add, TraceForward ➔ True ] / / Col umnForm 

add [ s [ z l , s [ s [ z l l l 
s [ add [ s [ z l , s [ z l l l 
{ add [ s [ z l , s [ z l J , s [ add [ s [ z l , z l l , { add [ s [ z l , z l , s [ z l } , s [ s [ z l l } 
s[s[s[z]]] 

The product of the integers 3 and 4 is 

mul t [ s [ s [ z] ] , s [ s [ s [ z] ] ] ] (* multiplication 2 * 3= 6 •) 
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s (s (s (s (s (s [z]]]]]] 

Trace [ mult.[s [s [z]], s [s [s [z]]]], mult, TraceForward ➔ True.] // ColumnForm 
mu1t [ s [ s [ z J J , s [ s [ s [ z J J l l 
add[mult[s[s[z]], s[s[z]]], s(s(z]]] 

{mult(s(s[z]], s(s[z]]], add[mult(s(s[z]], s[z]], s[s[z]]], {mult[s[s[z]], s[z] 

s(s(s(s(s(s[z]]]]]] 

not[isz[s[z]]] 
t 

(• Test of 1 f O •) 

One does not want to perform arithmetic with this abstract version of data types. Instead one can work with a more 

suitable ~ algebra. The integers { 0, 1, 2 , ... } are in one-to-one correspondence with the terms { 

O,s[O],s[s[O]], ... } 

Example 2 : Data type rational numbers 

The data type for rational numbers can be defined with the constructor MakeRational [z ,n] and the selectors 

Zaehler [r] and Nenner [r]. The representation of a rational number is given through a data element of the 

form rational [z, n] which represent the rational number .:... 
n 

Rules 

makeRational [z_, n_] : = rational [z, n] 

Zaehler [rational [z_, n_]] : = z 

Nenner[rational[z_, n_]] := n 

Data type rational 

The data type of rational numbers is rational. Usually the datatype is represented al a normal expression with the sort 

name als head. 

I Head[makeRational[z, 
rational 

Normal form 

n]] 

The current representation of rational number is however not unambiguous, because rational [-1, 2] , 

rational [1, -2] and rational [-2, 4] describe the same rational number. The representation becomes 

unambiguous if one requires that numerators are always positive and in addition, that numerator and denominator have 

not a common divisor. The last two rules ( with built-in function GCD) for rational [z, n] guarantee that data 

elements rational [z, n] will be transformed to normal form. 

rational[z_, n_] := rational[-z, -n] I; n < 0 
z n 

rational[z_, n_] := rational[-----, -----] /; GCD[z, n] > 1 
GCD[z, n] GCD[z, n] 

Connections 
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Rules for summation and multiplication of 2 rational numbers which operate exclusively with constructors and 

selectors (being the only functions which have access on the internal representation of data elements) are 

rational /: a_rational + b_rational : = 
makeRational[ 

Zaehler[a] Nenner[b] + Zaehler[b] Nenner[a], Nenner[a] Nenner[b]] 

rational/: a_rational b_rational : = 
makeRational[Zaehler[a] Zaehler[b], Nenner[a] Nenner[b]] 

The existing connections "+" and "x" are overloaded. The easiest way to do this is using upvalues of the form type /: 

f [n _type, . . . ] : = . . . . Upvalues provide a convenient mechanism to define how operations act on object 

of special type. 

Tests 

makeRational[4, -6] 

rational[-2, 3] 

makeRa tional [ 2 , 3] + makeRa tional [ 5, 4] 

rational[23, 12] 

makeRa tional [ 2 , 3] makeRa tional [ 3 , 2] 

rational[l, 1] 

makeRational[6, 5] (makeRational[2, 3] +makeRational[3, -4]) 

rational [-1, 10] 

Example 3 : Data type modular numbers 

In a similar way the arithmetics for modular numbers can be formulated. This example is intended to model Zp, the 

ring of integers modulo some positive integer p. It can be built on top of the natural numbers, extending S by a sort of 

mod, and adding the following operations. 

.Eint = {p} 
~od,int = {rep} 
.Eint,modl = {makemod} (5) 

L'mod, mod, mod = { add, mult} 
.Eint int int = {rem} 

' ' 
There is no problem with using the same operation name (here add and mutt ) in different sets L;.,,,· . They are 

distinguished by the type of arguments and return values. rep is meant to give a representative of a modular number, 

an integer that can be used to implement arithmetic in mod, as will be seen in the following equations . 

makemod(rep(m)) = m 
rem(n-rep(makemod(n)),p) = 0 
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add(m1 ,m2) = makemod( add( rep(mi), rep(m2) )) 
mult(m1, m2) = makemod( mult( rep(mi) , rep(m2))) 

The second equation says that the representative of a modular number made from integer n is concruent to n mod p . 

("-" being integer subtraction). This is usually expressed as 

rep(makemod(n)) = n (mod p) (7) 

Addition and multiplication are then defined in terms of their integer counterparts through the use of rep. A possible 

implementation, using expressions of the form mod [n] with n integer, holds elements of ~mod 

Constructors 

MakeModular is called a constructor, because it creates values of a certain type (here mod). 

SetModulus[p_Integer?Positive] := (theModulus = p} 

MakeModular[n_Integer] : = mod[ Mod[n, theModulus]] 

Selectors 

Representative is a selector, since it returns parts of an expression (mod elements have only one part, the 

representative of the modular number). 

I Representative[ mod[n_] ] . - n 

89 



Arithmetic 

mod/: a_mod + b_mod := MakeModular[Representative[a] + Representative[b]] 

mod/: a_mod * b_mod := MakeModular[Representative[a] * Representative[b]] 

mod/: 

a_mod" q_Integer := MakeModular[ PowerMod[Representative[a], q, theModulus] 

mod /: a_mod + b_Integer : = a + MakeModular[b] 

mod /: a_mod •b_Integer := a* MakeModular[b] 

Output Formatting 

Format[m_mod] := SequenceForm[Representative[m], "mod", theModulus] 

The use of the built-in function Mod [n,p] in MakeModular ensures that a unique representation is chosen ( an 

integer in the range O ... p-1). Putting this computation into the constructor removes all worries about the choice of 

representative from the rest of the code and trivially satisfies the first and second equation. 

Note, that the built-in addition and subtraction functions have been overloaded which corresponds directly to the use 

of the same names in the specification. 

The modulus is set to 17 for the computation and the constant I mod 17 is generated. 

SetModulus[17]; 

one= MakeModular[l] 
1 mod 17 

(* constant 1 mod 17 •) 

Any integer can be turned into a modular number by multiplying it with one 

ml = one 100 
15 mod 17 

Large powers can be efficiently computed using the built-in function PowerMod 

m2 =ml" 9999999999999999999999 
8 mod 17 

The rule works for subtraction 

m3=1-m2 

10 mod 17 

Division is turned into multiplication and a negative power. For a modular number a, the quantity a-1 denotes the 

modular inverse. 

m4 = 1 /m3 
12 mod 17 
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The product of a number and its inverse should be 1. 

I m• m3 
1 mod 17 

The following loop computes the order of the modular number 2 which is the smallest exponent n such that x' =1 

(modp). 

x = MakeModular[2]; 
n = 1; While[xn =I= one, n++]; n 
8 

In quite similar way it is possible to model the data structure of LISP by means of Mathematica (See for example "The 

Mathematica Programmer" (1994) by Roman Maeder) 
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Object Oriented Programming 

Object-oriented programming (OOP) is a programming style that is becoming more and more popular. It promises the 

re-use of program code and easier maintenance of larger projects than is possible with traditional procedural 

programming languages. Its use of methods and message passing instead of procedure calls shifts the programmer's 

view towards closer integration of data and operations. 

OOP is an alternative method as regards to modular programming : one does not comprise functions doing similar 

things but combines functions operating on similar objects. At first the objects will be defined and then the 

corresponding methods for manipulating the objects. In order to clarify this distinction consider for example the print 

function: in a modular program it contains instructions for printing all possible objects whereas in an object-oriented 

style for every object a print method will be defined. 

The important concepts of objected-oriented programming languages are objects and classes (associated with the 

objects) and inheritance. 

The first important aspect of object-oriented languages is that functions are considered part of data. A data object 

"knows" which operations can be performed on it. The functions defined for a certain type of object are part of that 

object. Thus an object is a collection of data elements and operations that act on these date elements. The operations 

are called methods. A uniform mechanism, called message passing, is provided for invoking the correct piece of code 

when a function is called or a message is passed to an object in order to execute a certain method. Methods are usually 

not defined for each object separately but are collected in a class. Objects then belong to a class from which they take 

their methods. 

The second important aspect is inheritance. Often a number of related data types have some common characteristics. 

Some operations on them can be written in a way that does not depend on which of the data types they are applied to. 

Common characteristics of related data types can then be isolated and encapsulated in a new data type. The related 

data types are made sub-types of the new type. They inherit the characteristics of the common type and need only 

implement those aspects in which they differ from their super-type. Thus much of the code needs to be written only 

once and hence save development time and ensure consistency, since a change needs to be made only once, instead of 

being applied to several almost identical pieces of code. 

An interactive OOP language can easily be implemented into Mathematica. Although Mathematica does not 

presuppose data types the arguments of functions can nevertheless be restricted to certain types (through patterns of 

the form x_head or x_?test or conditions of the form expr /; conditions). Using appropriate heads it is 

thus possible to simulate certain data types. 

The mechanism to define user-specific objects is Head [ expr] . Moreover it is possible to associate definitions ( or 

transformation rules) with specific objects. Instead of associating definitions of the form f [g [x _]] : = ... with the 

symbol f (the downvalue off) one may also associate the definition with the symbol g (the upvalue of g) which is not 

the head of the expression on the left hand side. The syntax is f [g [x _] ": = or equivalently 

g/: f [g [x _] : = ... This construct allows operator overloading which means that an operator (e.g. in example 2 

Plus and in example 3 Equal) has a different meaning according to the object it acts on. (This feature is not possible 

in programming languages such as Pascal or Modula-2.) 

Obviously, the term object-oriented means that the transformation rule associated with an object is not categorized 

under the rule's name but rather under the object's name. Therefore it makes sense to order the transformation rules in 

an object-oriented way. This concept allows to find the corresponding rules rather quickly and load resp. unload a 

whole contingent of rules if necessary. This is important under the view point of economic memory management. 

Mathematica supports a distinct object-oriented arrangement of rules in that it signes the rules with the corresponding 

names of the objects. 

objectName /:pattern:= instruction/; condition 
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Obviously, same functions can be defined for different objects in multiple context. Within a package it is possible to 

define a private context which contains auxiliary functions and variables not accessible from outside the package. In 

TMJ Vol 3 #1 p 23-31 Roman Maeder introduced two packages Classes.m and Collections.m which 

implement the concept of classes and inheritance. 

Example 1 : Exponential function 

exp/: exp[x_] exp[y_] : = exp[x + y] 

exp/: ✓exp[x_] :=exp[;] 

exp [a] exp [b] 

exp [a+ b] 

Example 2 : Modular Arithmetic 

As an example the data type for modular numbers is defined. At first the output formatting is fixed through the 

following definition 

modinteger /: Format[modinteger[i_, n_]] := SequenceForm[i, 11 mod 11
, n] 

Similar to this definition of the output format of the function modinteger other format types (e.g. TeXForm) can be 

modified too such that the type is listed as a second argument of Format [expr, type] : =form, e.g. 

modinteger /: Format[modinteger[i_, n_], TeXForm] := 

SequenceForm [ 11 
{ 

11 
, i , 11 \bmod 11 

, n, "} "] 

Then one defines the sum and the product of objects of type mod Integer (by means of overloading the opertators Pl us 

and x.) 

modin teger / : 

modinteger[i_, n_] + modinteger[j_, n_] : = modinteger[Mod[i + j, n], n] 

modin teger / : 

modinteger[i_, n_] modinteger[j_, n_] :=modinteger[Mod[ij, n], n] 

modinteger /: modinteger[i_ ?Negative, n_] 

modinteger /: -modinteger[i_, n_] 

With these definitions the modular arithmetic is complete. 

Test 

modin teger [ 4 , 7] / / TeXForm 
{ 4 \brnod 7} 
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: = modinteger [Mod [i, n] , n] 

: = modinteger [ -i, n] 



modin teger [ 2 , 5] + modin teger [ 3 , 5] modin teger [ 2 , 5] 
3 mod 5 

modinteger[-2, 5] 
3 mod 5 

-modinteger [ 4, 5] modinteger [2, 5] - modinteger [3, 5] 
4 mod 5 

Example 3 : Comparison and Sorting of Lists of Names 

In order to compare and sort name lists a new data type name is introduced with two arguments for first and last name. 

For this data type the output format is defined first. 

name/: Format[name[f_String, l_String]] := SequenceForm[f, "", l] 

name [ "Fritz" , "Meier"] 
Fritz Meier 

Then a comparison function will be defined. This function tests whether first or last name of two persons are equal. 

Associating this definition with data type name leads to overloading of the function Equal (resp. == ) already 

existing. 

Equal[name[f1 _String, 1 1 _String], name[f2 _String, 1 2 _String]] ":= 
f1 == f2 && 11 == 12 

name [ "Fritz" , "Meier"] = = name [ "Fritz" , "Meier"] 
True 

name["Fritz", "Huber"] == name["Fritz", "Meier"] 
False 

Unfortunately, association is only possible for symbols on the highest level of the argument list. Thus, in order to 

introduce a sort function which accepts a list of names this sort function must be named newly. For its definition the 

built-in function Sort may be used with second parameter being a user-defined comparsion function which takes into 

account the last names to be sorted first. 

nameSort [x : {name[_ String, _ String] .. } ] : = 
Sort [x, OrderedQ [ { #1 [2] <> #1 [1], #2 [2] <> #2 [1]}] &] 

Test 
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For a given list of names 

list= { name ["Hans", "Meier"] , 

name.["Hans", "Huber"], 
name ["Fritz", "Meier"] , 

name ["Fritz" , "Huber"] } ; 

nameSort[list] 
{Fritz Huber, Hans Huber, Fritz Meier, Hans Meier} 
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Modularization 

Modern programming languages provide features for organizing large programming projects. Most important are 

modularization (or encapsulation) and information hiding. In Mathematica such programs are called packages. A 

package consists of two parts :an interface definition and an implementation part. The interface describes the aspects 

that a user needs to know. The implementation provides that functionality but it is hidden from users of the package. 

Here is the skeleton of how a Mathematica package looks like : 

BeginPackage[" PackageName'"] 
proc::usage = "proc[vl, v2] is a procedure that ... " 

Begin["' Private'"] 
f[intArgs_] := value 

proc[args_, intArgs_] -
End[ ] 

Protect[ proc] 
EndPackage[] 

The part between initial BeginPackage [] and Begin [" 'Private' "] is the interface. It declares all functions 

exported from this package (here it is proc [] ) and documents them. 

By means of BeginPackage [ ] the context name "PackageName' " is given to the package which by 

convention must be stored in a file with the same name PackageName. m. If PackageName' comprises a 

sub-context ( e.g. Graphics' Colors') then the file Colors . m must be located in the subdirectory Algebra. 

Expressions of the form proc: :usage = "comment" following after BeginPackage can be understood as an 

export list of the package. Here, all objects which are provided to the user will be endowed with the documentation. 

This documentation is given in "comment". With the command ?proc the help text is displayed as output. 

After these lines of documentation there follows a private context. The part bracketed by Begin and End is the proper 

implementation. With Begin [" 'Private' "] a private sub-context is opened and the system variable $Con text 

set to 'Private' . The context comprises the definitions of the exported functions (here proc [ ] ) and local 

quantities (auxiliary functions such as f [ ] and local variables such as intArgs) which are not available for the 

user of the package. The private context is closed again with End [ ] . 

The outer bracket BeginPackage [ ] EndPackage [ ] is slightly more complicated. With 

BeginPackage [ ] the system variables $Context and $ContextPath are stored. Then $Context is put to 

PackageName' and $ContextPath to { "PackageName' ","System'"}. New names (i.e. names of hidden 

quantities) are thus introduced in the context 'PackageName' (and not in the context 'Global') . All names are 

considered as new ones even if they already exist in "Global' "context. All function names which appear in lines 

starting with proc: : usage are put in the context "PackageName' " 

EndPackage finally restores $Context and $ContextPath with context "PackageName'" prepended. Only 

those functions exported from the package are available to the user because their context is contained in the list 

$ContextPath . Names however which appear in the internal Begin-End bracket can only be quoted through 

explicit referencing of their context. 

In order to protect the function definitions within a package the command Protect must be placed between End and 

EndPackage. With Protect [proc] one prevents any modification of the exported function proc through users 

of the package. If, however, a protected symbol s within a package should be modified the symbol s must be freed 

with Unprotect [ s] first. Then, a new definition of this symbol may follow which is protected again with 

Protect [s] . 

Packages are extension of the built-in functions provided by Mathematica. Packages are either loaded with the 
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command Get[PackageName.m] (or <<PackageName.m) or more recommendable with 

Needs [ "PackageName' "] thus avoiding multiple loading of packages. Packages can load additional packages if 

necessary. The corresponding context is then stored in the global variable $Packages. 

■ Framework for a User-defined Package 

The subsequent skeleton of a package illustrates how a consistent form faciliates maintenance and readability of 

Mathematica programs. All important concepts are contained in the prototype package 

Skeleton.m Skeleton of a package•) 

(•Setup packagecontext, includinganyimports•) 

BeginPackage ["Skeleton'", "Packagel' ", "Package2' "] ; 

Needs [ "Package3' "] ; ( * Read in any hidden imports *) 

(• Usage message for the exported functions and context itself•) 

Skeleton: :usage= "Skeleton.m is a package doing nothing." 

Fnctl: : usage = "Fnctl [n] does nothing" 

Fnct2: :usage= "Fnct2 [n, (m: 17)] does even more nothing!" 

Begin ["'Private·"] ( * Begin private context *) 

(•Unprotect any built-in functions for which new rules will be defined•) 

protected = Unprotect [Sin, Cos] 

(• Definition of auxiliary functions and local variables•) 

AuxFct[f_] := do[something] 

localVar = 0 

(* Error messages of exported objects•) 

Skeleton: : badarg = "Error, called '1' with argument '2' I " 

(* Definition of exported functions•) 

Fnctl [n_] : = n 

Fnct2[n_, m_: 17) := nm /; n < 5 11 Message[Skeleton: :badarg, Fct2, n] 

(* Rules for system functions•) 

Sin/: Sin[x_] 2 := 1-Cos[x] 2 

Protect[Evaluate[protected]] 

(• Restore protection of system symbols•) 

End[]; 

Protect [Fnctl, Fnct2] 

EndPackage[]; 
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(• End of private context•) 

(• Protect exported symbol•) 

(• End of package context•) 



Mathematica as Developing Tool : 
from an Interactive Evaluation to a Package 

The following task serves as an example to illustrate the step-wise transition from an interactive evaluation to the 

development of a package. 

For a given sequence of n random numbers ordered by their size the median is to be calculated. If n is odd then the 

value is a the location n; 1 
, ifn is even the median is the average of the values at location f and n; 1 . The result will 

at first be calculated step by step by an interactive mode, afterwards realized in form a Mathematica package. 

■ Evaluation in Dialog Mode 

tlist = Table[Random[], {i, 1, 10}] 
{0.65224, 0.0164685, 0.197755, 0.351424, 0.543858, 0.684035, 0.585712, 

0 .196561, 0. 0132099, 0. 911238} 

len = Length[tlist] 
10 

slist = Sort[tlist] 
{0.0132099, 0.0164685, 0.196561, 0.197755, 0.351424, 0.543858, 
0.585712, 0.65224, 0.684035, 0.911238} 

?Odd* 

OddQ(expr) gives True if expr is an odd integer, and False otherwise. 

OddQ[len] 
False 

Calculation of the median value 

len + 1 1 { len len } 
medianO = If[OddQ[len], slist[---], - slist[--] + slist[-- + 1] ] 

2 2 2 2 
0.447641 

■ Combine Commands in terms of a Function 

The single commands are comprised in terms of a module function. 
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medianl[l_List] := 

Module[ {len, slist}, 

len =Length[!]; slist = Sort[l]; 

[ [ 
len + 1 ] 1 ( [ len [ len ) If OddQ [len] , slist 

2 
, 2 slist -

2
-] + slist -

2
- + 1] ] 

medianl[tlist] 
0.627426 

11 Integrate Functions in a Package 

Alternatively, one may define a package 

BeginPackage["MedianContext'"] 

median2:: "usage" = 

"median2[list] calculates the median of list and returns the result." 

Begin["'Private'"] 

median2[l_List] := 

Module[{len, slist}, 

len =Length[!]; slist = Sort[l]; 

len + 1 1 ( len len ) 
If[OddQ[len], slist[ 

2 
] , 2 slist[-

2
-] + slist[-

2
- + 1] ] 

End[] 

Protect[median2] 

EndPackage[] 
MedianContext' 

median2[list] calculates the median of list and returns the result. 

MedianContext'Private' 

MedianContext'Private' 

{median2} 

?? median2 

median2[list] calculates the median of list and returns the result. 
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Attributes[median2] = {Protected} 

median2[MedianContext'Private'l_List] .-
Module[{MedianContext'Private'len, MedianContext'Private'slist}, 
MedianContext'Private'len = Length[MedianContext'Private'l]; 
MedianContext · Private·· slist = Sort [MedianContext· Private' l]; 

If[OddQ[MedianContext'Private'len], 
MedianContext'Private'slist[[(MedianContext'Private'len + 1) /2]], 
1 / 2 * (MedianContext ·Private· slist [ [MedianContext ·Private' len / 2]] + 

MedianContext'Private'slist[[MedianContext'Private'len/2 + l]])]] 

The symbol median2 is protected in MedianContext. Hence, it is not possible to assign a value to the protected 

symbol as shows the following assignment. Loading a package which contains the same procedure gives rise to a 

conflict because there occurs a shadowing of the same symbol from different contexts. 

median2 = 4 

Set::wrsym Symbol median2 is Protected. 

4 

<< "Median.m" 
SetDelayed::write Tag median2 in median2[l_List] is Protected. 

■ Errors and Tracing 

In every non-trivial program there occur errors. Therefore, it is essential to search for them and provide some tools for 

this task. In order to find programming errors Mathematica provides two main tools: Trace and Dialog. 

The function Trace lists all sub-expressions generated during evaluation. Hence, it is possible to watch all 

intermediate steps . 

a= 3; 
(a2 + a + 1) / / Trace 
{{{a, 3}, 3 2

, 9}, {a, 3}, 9+3+1, 13} 

As regards to evaluation of a Mathematica expression one has to be aware of the fact that the tree structure of an 

expression is evaluated bottom up. In the case of nested function calls the calculation proceeds from inside to outside 

which thus enables functional programming. The head of an expression is processed first. 

71' 71' 
s = Sin; s [{ - , - } ] / / Trace 

4 2 

{{s, Sin},{{{!,!},;,;},{{~,~},;,;},{;,;}}, 

Sin [ { ; , ; }] , { Sin [ ; ] , Sin [ ; ]} , { Sin [ ; ] , .};_ } , { Sin [ ; ] , 1}, { ~ , 1}} 

Consider the following calculation which if simply Trace is applied turns out to be quite voluminous. However, 

called with a second parameter it is possible to trace only the values of j. 
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Trace[ For[i = 1; j = 1; p = 5, p < 5000, i++, 

p = Prime [ i + j ] ; 

j = Floor [ ✓ {p + 1 / 2) 2 
] ] , j ] 

{{{{{{j, l}}}}}, {{{{{j, 3}}}}}, {{{{{j, 11}}}}}, {{{{{j, 43}}}}}, 

{{{{{j, 211}}}}}, {{{{{j, 1321}}}}}} 

The output can also be restricted to suitable patterns given as second parameter to Trace. All definitions in this 

example are obtain with_=_ 

Trace [ For [ i = 1; j = 1; p = 5, p < 5000, i++, 

p = Prime [ i + j ] ; 

j =Floor[✓ {p+l/2) 2
]], _=_] //ColumnForm 

{{i=l}, {j=j_}, {p=5}} 

{{p=3}, {j =3}} 

{{i=2}} 

{{p=ll}, {j=ll}} 

{{i=3}} 

{{p=43}, {j=43}} 

{{i = 4}} 

{ {p = 211}, { j = 211}} 

{{i=5}} 

{{p=l321}, {j=l321}} 

{{i=6}} 

{ {p = 10909}, {j = 10909}} 

{{i=7}} 
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With the following options of Trace such as 

TraceBackwards➔False 

TraceForward➔False 

TraceDepth➔Infinity 

TraceOff➔None 

TraceOn➔pattern 

TraceOriginal➔False 

it is possible to control the output in detail. 

Trace[ For[i = 1; j = 1; p = 5, p < 5000, i++! 

p = Prime[i + j]; 

j = Floor [ ✓ (p + 1 / 2} 2 
] ] , TraceOn ➔ Floor ] / / ColumnForm 

{ { { Floor [ f] , 3}}} 

{ { { Floor [ 2
/ ] , 11} } } 

{ { { Floor [ 8
2
7 

] , 4 3} } } 

{{{Floor[ 4
~

3 
], 211}}} 

{{{Floor[ 26
}

3 J, 1321}}} 

{ { {Floor [ 21
~

19
], 10909}}} 

■ Dialog 

Mathematica. allows debugging that is direct interference in a running program in order to trace errors. In this way it is 

possible to inspect actual values and change them if necessary. 

In an interactive session the command Dialog [] or Dialog [ e.xpr] starts another subsession or dialog which is 

often useful if one wants to interact with Mathematica while it is in the middle of doing a calculation. With 

Return [] one exits from the dialog. It is also possible to return a value from this dialog using Return [ e.xpr]. 

TraceDialog [ e.xpr] automatically starts a dialog for every Mathematica expression which is used for the 

evaluation of e.xpr. In the subsequent example the tracing is restricted to assignments of the form y = a_. + _ 4 

y = t; 
TraceDialog[ Do[y = Expand[ (y+ i} "2], {i, 5}), y =a_.+_ "4] 
TraceDialog::dgbgn: Entering Dialog; use Return[] to exit. 

y = 9 + 12 t + 10 t 2 + 4 t 3 + t 4 

- I TraceDialog::dgend: Exiting Dialog. 

While the dialog session is running it is possible to look e.g. for the value of i 

i 

2 

or change in a running calculation the value of the variable t which is set to I 
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t = 1; 
1 

Entering Return ·c 1 exits the dialog session. 

I Return[] 

In this case a numerical value is obtained instead of a polynomial in y. 

I ;'.,oa5548969 □ c 
Finally, using the command Dialog a dialog session is started when f [31 is calculed 

f[O]=l; 

f[n_] . - {If[n == 3, Dialog[] ] ; n f[n -1] } 

f[B] 
40320 

The command Stack [pat] gives the list of all expressions under evaluation which fit the pattern pat. 

Stack[_] 
{If[8==3, Dialog[]]; 8£[8-1], 8£[8-1], If[7==3, Dialog[]]; 
7£[7-1], 7£[7-1], If[6==3, Dialog[]]; 6£[6-1], 6£(6-1], 

If[5 == 3, Dialog[]]; 5 £[5 -1], 5 £[5 -1], If[4 == 3, Dialog(]]; 
4 £[4 -1], 4 £[4 -1], If[3 == 3, Dialog[]]; 3 £(3 -1], Dialog[]} 

or all products using the pattern Times 

Stack[Times] 
{8£[8-1], 7£[7-1], 6£[.6-1], 5£(5-1], 4£[4-1]} 

The dialog is closed with Return [] . 

I Return[] 

Programmer's Recommendation and Conclusion 

Finally, there is a Golden Rule of Mathematica programming : avoid iteration. An old saying amongst computer 

scientists is: To iterate is human, to recurse, divine. 

As was shown there is a whole assortment of list manipulation functions built into Mathematica, which are in general 

much faster than iterations. Moreover, these list manipulation operations can be threaded together to construct fast, 

elegant and efficient solutions to programming problems which to demonstrate was the intention of the previous 

subsections. 
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As a final remark it seem quite convincing that due to the fact that Mathematica is an interpreter system its 

programming language is most suitable for rapid prototyping, for the development and testing of algorithms etc .. The 

c9mpactness of the Mathematica code which comprised more than I 000 commands and high level functions not 

available in other programming languages allow a reduction of length of traditional programs by a factor of IO - 20. 

Due to increasing computational power and performance of computers speed is (in most cases) no longer an essential 

argument in favour of compiler languages. The high flexibility of the Mathematica language which supports very 

different programming styles as was demonstrated above, and the advanced notation which admits the usage of 

symbols identical to the ones occuring in the mathematical formulation of the proble"l enable the experienced 

Mathematica user to write sophisticated programs. It is challenging to write the programs such that the programming 

code seems to be more or less a straightforward transcription of the mathematical language in which the problem was 

formulated. It is the experience of a growing user community that Mathematica is the most suitable tool for this sort of 

tasks. 
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Programming Literature 

Concerning the literature for programming in Mathematica there exist several books to be recommended on which this 

tutorial is based on. 

Programming literature 

Robert M. Dickau / WRI 

Mathematica Training: 

Programming with Mathematica (1996) 

Richard J. Gaylord, Samuel N. Kamin, Paul R. Wellin 

Introduction to Programming with Mathematica , 2nd Edition 

TELOS/Springer-Verlag/Berlin (1996) 

ISBN 0-387-94434-6 (with disk) 

John W. Gray 
Mastering Mathematica : Programming Methods and Applications, 2nd Edition 

Academic Press Professional (1997) 

ISBN 0-12-296105-6 (with CD-ROM) 

Stephan Kaufmann 

Mathematica as a tool. 

An Introduction with practical examples 

Birkhauser Verlag ( 1994) 

ISBN 0-8176-5031-8 (with disk) 

Roman E. Maeder 
Programming in Mathematica , 3rd Ed. 

Addison-Wesley-Longman Inc. (1997) 

ISBN 0-201-85449-X 

Roman Maeder 

The Mathematica Programmer 

Academic Press Professional (1994) 

ISBN 0-12-464990-4 (with disk) 

Roman Maeder 

The Mathematica Programmer II 

Academic Press, Inc. (1996) 

ISBN 0-12-464992-0 (with CD-ROM) 

Troels Petersen, Ed. 
The Elements of Mathematica Programming 

TELOS/Springer-Verlag (to be published) 

ISBN 0-387-94590-3 (with CD-ROM) 

David B. Wagner 
Power Programming with Mathematica : The Kernel 
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McGraw-Hill (1996) 
ISBN 0-07-912237-X (with disk) 

Stephen Wolfram 
The Mathematica Book, 3rd Edition 
Wolfram Media/Cambridge University Press (1996) 

ISBN 0-9650532-0-2 (Hardcover) 
ISBN 0-9650532-1-0 (Paperback) 
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University Center 
Joint Institute for Nuclear Research/ Dubna 

Mathematica Seminars 
October 27-29, 1998 

Mathematica Front End 
Prof. Dr. Robert Krag/er 

FH Ravensburg-Weingarten /University of Applied Sciences 
kragler@fh-weingarten.de 

Abstract: 

The purpose of this tutorial is to give an introduction to some of the features of the Mathematica Front End. i.e. the 
notebook interface with help of which the user interacts with the Mathematica kernel in order to create interactive 
documents. The Front End is a purely graphical interface which is supported on most computer systems. 

Alternatively one may also communicate with a text-based interface by typing text on the keyboard. 

The lecture will deal with different technicalities such as 

■ the layout of Mathematica notebooks 
■ how to change text styles 
■ how to customize stylesheets for layout 
■ how to change the style environment of notebooks 
■ an overview of the Option Inspector 

Moreover, due to the fact that notebooks are by themselves nothing but Mathematica expressions they can therefore 
be generated with of Mathematica programs and may be modified by the Mathematica kernel itself. Furthermore, 
examples will be given on 

■ discussion of the some of the new typesetting features 
■ how to generate buttoms and palettes, 
■ how to.rotate icons for open/close of cell groups 
■ how to use hyperlinks etc. 

Initializations 
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Interactive Documents and Front End Features 

■ Mathematica is more than merely a Computer Algebra System. 
Since version 3.0 it is a System for Technical Computing used for the 
creation of interactive documents 

Besides symbolic and numeric calculations and 2D/3D graphics Mathematica's salient features are : 

■ graphic user interface, the so-called Front End 
■ worksheets, i.e. Mathematica Notebooks 

Mathematica Notebooks are interactive electronic documents which may contain : 

Mathematica code (to be executed), text (with most DTP features supported such as different fonts, colour, 
mathematical formulae etc.), graphics and animation, (even in real-time using the add-on programs Mathlive or 
Dynamic Visualizer) and sound (which is encoded in PostScript code as is graphics and other elements in terms of 
cells). 

Mathematica Notebooks: Interactive Documents 

The statement : "every Mathematica notebook is a Mathematica expression" is more than only a credo; it 
means these worksheets can be generated or manipulated by the kernel. 

In more detail : Mathematica notebooks are ordinary Mathematica expressions. Therefore, they can immediately be 
manipulated by the user without any special setup etc. Hence, the results given in Mathematica notebooks can easily 
be checked or altered. Mathematica notebooks are organized in terms of hierarchical cells the layout of which can be 
pre-defined in so-called StyleSheets which are again special Mathematica notebooks in a specific stylesheet 
subdirectory. Notebooks can even be created by the Mathematica kernel as output. There are no limitations as regards 
to the appearance of Mathematica notebooks. Due to the hierarchical cell concept notebooks can be read like books 
comprising table of content, sections and subsections etc. which are accessible after opening the corresponding pages. 

However, the advantage of the electronic document in comparison to conventional books is its interactivity, i.e. 
probing and manipulating the Mathematica code incorporated in the notebook. (The very first pioneering book which 
contained all chapters in terms of Mathematica notebooks on a CD-ROM disk was "Exploring Mathematics with 
Mathematica" by Th. Gray and J. Glynn published by Addison-Wesley Pub I. Company already in 1991. 

But the real important new feature in Mathematica version 3.0 is the portability of Mathematica notebooks. 
Mathematica notebooks contain all information in terms of ASCII code. They are platform independent. In earlier 
versions it was always a big problem to convert Mathematica notebooks which had been generated, say, under 
Windows operating system to Unix workstations (OS Solaris), NeXT (OS NeXTSTEP) or Macintosh (Mac OS 7) 
computers. Especially international characters such as German umlauts (or kyrillic letters) and other special symbols 
were a tedious problem to cope with in the past because there is even today no general accepted standard for character 
encoding. In Mathematica V 3.0 this problem is definitely solved. There are code translation tables for all 
Mathematica implementations which are provided for a large number of different hardware platforms. 

Thus Mathematica notebooks may be used as a mean for exchange of scientific information and could become a kind 
of standard for interactive electronic documents in science. On a wider scale, Mathematica notebooks can be provided 
to academia via Web. There is already the built-in capability to save Mathematica notebooks in HTML format so that 
they can be used as WWW pages. 

Recent developements from Wolfram Research are Pub/icon and MathML: 
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Pub/icon - a comprehensive solution for interactive technical publishing which allows the creation of 
professional-quality technical documents for on-screen, web, and printed use. A free beta version of 
Publican can be downloaded from URL <http://www.publicom.com/>. 

MathML {Mathematical Markup Language) - a new standard recently ratified by W3C {i.e. the WWW 
Consortium) becomes the framework for Web typesetting technology. MathML is designed to allow 
mathematical expressions to be transmitted over the Web, preserving the structure needed to do 
computations with them in Mathematica. Information on MathML can be downloaded from the Web at 
<http://www.wolfram.com/news/mathml/ >. 

Mathematica Front End features 

Details of the :l/11the11mtirn Front End are given in another notebook which can be invoked with the button 

FrontEndE • nb /. 

This feature to work with buttons is a convenient mean of referring to other Mathematica notebooks in different 
subdirectories and thus organizing a talk or lecture avoiding the danger not to find the proper subdirectory with the 
notebook wanted. 

Mathematica Notebooks 

Every Mathematica notebook is a complete interactive document which combines 
text, tables, graphics, calculations and other elements. 

This document is a notebook. 

■ A calculation 

Plot [Sin[{] + Sin [ ~], {{, 0, 120 Tr}]; 

2 

.1 

-1 

-2 

• Notebooks are automatically organized in a hierarchy of cells. 

• One can close groups of cells so that only their headings are to be seen. 

• One can use Hyperlinks to jump within a notebook to certain location or between notebooks. 
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Each cell can be assigned a style or format from a style sheet 

Mathematica notebooks are automatically adjusted for output on screen or printer. Fonts and layout for 
each medium are optimized. 

Everything in theMathematica Help Browser is a notebook - including the complete 
on-line Mathematica book with 1500 pages. 

• Mathematica provides hundreds of options which allow to give notebooks any look to be wanted and to 
generate full publication-quality documents. 

• 
Here is an ordinary text. It can be any font, face, size, color, etc. There are hundreds of 

special characters such as ◊ as well as formulas such as J x5~t dx embedded in text. 

Mathematica makes it easy to set up tables and arrays 
a,2-(3 (a.-/3) (a.+/3) a,2-(33 

a,3 - f3 a,3 - 132 . ( a. - f3) ( a,2 + a. f3 + 132 ) 

Mathematica lets one set up spacing and justification 

of 

text 

as wanted. 

• Like other objects in Mathematica, the cells in a notebook, and in fact the whole notebook itself, are all 
ultimately represented as Mathematica expressions. With the standard notebook front end one can use 
the command Show Expression {which corresponds to the keyboard sequence ~+~+E ) to see the 
underlying text of the Mathematica expression that corresponds to any particular cell. 

The Mathematica language itself can be used to specify all aspects of notebooks. 

Here is a typical cell in a notebook. 

This shows how Mathematica represents the cell internally. 

Cell[TextData[StyleBox["This 
FontWeight->"Bold", 
FontSlant->"Italic", 
Background->RGBColor[O, 
PageBreakBelow->False, 
CellTags->"T.8"] 

is a typical (text) cell.", 

1, 1] ] ] , "Text", 

Mathematica notebooks can be built up using explicit commands as well as interactively. 

This tells Mathematica to print three cells in Subsubsection style with numbering. 

Do [StylePrint [StringJoin [ "Heading ", ToString [i]] , 11Subsubsection11
] , {i, 3}] 

Heading 1 
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Heading 2 

Heading 3 

Palettes and Buttons 

Palettes and buttons provide a simple but fully customizable interface to 
Mathematica with point-and-click features. 

Mathematica comes with a collection of ready-to-use standard palettes. 

Here is part of the palette(Lists and Matrices Matrix Operations) for Basic Calculations 

~J;an•pos_.,c,1.,;{:,:,;: 
. Bigenvaluea[~l"il 
Bigenvectc>J:s C•E-:; 

LinearSol ve [■ ,/ □l: . . 

RowReduce[■] 

Here is the standard palette International Characters for European characters 

• • i a a a -~ • • i i i i ·1: '.:t:;i 
aj1jnjoj6jolQl()I 
•I iululul:tltl:t>I 
.6 ' 

, 
i. i. A A I .. I A A 

i 
, 

i i . ' jj_!J ~ E _;i: _I. 

1 I fJ I~ I & Io i:0L9 l'o·1-
o I ta I u Lu I O I Y r 'fl.!J 
.tJ • 1 « r » · 11. 1 1 r,, i.:, 1 
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Palettes work like keyboard extensions. 

In a palette like this, pressing the key I inserts an e into the notebook. 

2 (1 + I 

2 (1 + e 

~~1 
~ 

I 

In a palette like this the placeholder ■ indicates where the current selection should be 
inserted. , 

m·~.·•Z·:·.·.<"''.41>:<,, ... ',:i·A· i,> : ·"'• <f{, '<:1,::/1 ·1-f 

t~R,Sl'Jtll~ 
~'~i1ll~.,·.' '··· · :[·.<•··1·;,1 ~.~, 

Clicking the button takes the highlighted selection and wraps a square root around it. 

1 + ~E1!Mi-C•J.1•31 

1 + ✓ Sin [x] + Cos [x] 

It is easy to create own custom palettes. 

One can create a blank palette using the Create Table/Matrix/Palette item in the 
Input menu. The empty symbols o can be specified later. 

D~:t"[■J LiqJlt4Ni[•J 
J:dgeSelect [ ■] □ . 

,/□'' · . I i □ 

One can create custom palettes to do any function or manipulate any expression by clicking a 
button. 

Clicking the button immediately factors in place the expression selected. 

1 + a " 2 + 2 a b + b " 2 J + (p + q) "2 

1 + (a+ b) 2 + (p + q) "2 

Use the following Hyperlink to see other examples of palettes. 

Here is an interactive Mathematica program ~+~~~~~~f,:1-': · t~~.9~d in order to 
manipulate polyhedra. 
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Mathematical Notation 

Mathematica notebooks fully support standard mathematical notation - for both 
output and input. 

Mathematica combines the compactness of mathematical notation with the precision of a 
computer language. 

Here is an integral input using only ordinary keyboard characters 

Integrate [Log (1 + x] / Sqrt [x], x] 

- 4 yx + 4 ArcTan [ yx] + 2 yx Log [ 1 + x] 

Here is the same integral entered in two-dimensional form with special characters. One can enter this fonn using a 
palette or directly the keyboard. 

J Log(l + {] 
----cl{ 

'¥{ 

- 4 Vf. + 4 ArcTan [ Vf.] + 2 Vf. Log [ 1 + c;] 

This shows the keys one needs to type in order to get the input above. : stands for the @fl key. 

:int: Log [1 + :X:] ~ /] _~2] :X: ~] :dd: :X: 

Mathematica always allows to edit output - use it again as input. 

-4 ~ + 4 ArcTan [ ~] + 2 ~ Log [l + ~] 

-4 ~ + {4 ArcTan[ ~] + 2 1r) + 2 ~ Log[l + £] 

Mathematica can generate output in traditional textbook form. Note that Mathematica's 
StandardForm is precise and unambiguous whereas TraditionalForm requires heuristics for 
interpretation. 

This input commands Mathematica to compute the integral and then display the result in Traditiona/Form. 

---- cl { / / Tradi tionalForm J Log(l + {] 

'¥{ . 

4tan-1(-yg)+2-yg log({+ 1)-4-yg 

Mathematica produces top-quality output for formulas of any size or complexity. 

m ~ Cos [ "/ ] 
-------- //TraditionalForm 
JJ I 2 (µ2 + K) (µ2 - A) 

µ=0 
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(-.l I F2 (-i 'Vi<; 1, l -i 'Vi<; v-I i,o)-.l I Fi(i 'Vi<; 1, i 'Vi<+ I; v-I i,o)-
K I F2 (-vi; 1, 1-YA; v-I i,o)-K I F2 (vi; I, VA+ I; v-I i,o))/(4K('/I< -i vi)(VK + i YA).l) + 

(-.l I F2(-iVK; 1, 1-i'\/,<;-(-1)314 i,o)-.l I F2(iVK; 1, i'\/,< + l;-(-1)314 i,o)-
K I F2(-vi.; I, I -YA; -(-1)314 

i,o)-K I F2(YA; 1, VA+ I; -(-1)314 ,,o))/ 
(4K('/I< -iYA)(VK +iVA).l) 

Look at the Formula Gallery for other examples of mathematical formulas generated by Mathematica. 

Mathematica makes it easy to work with abstract notation. 

6-i 
Table(o~aiED/3i===> ~, {i, 6}). 

l. 

· ___ 5 --- 4 --- 3 --=--- 2 --- 1 --=--- 0 
{r;;oaiEB!3i===>2, goaiEB/3i=2, r;;oaiEB/3i=2, r;;oaiEB!3i=2, r;;oaiEB/31 =2, r;;oaiEB!3i=2} 

1 2 3 4 5 6 

Mathematica supports over 700 special characters with new fonts optimized for both screen and printer. All these 
characters can be found in the Complete Characters palette. All of them have consistent full names; some also have 
aliases, as well as TeX and SGML names. 

Conclusion 

In conclusion, the front end features of Mathematica version 3.0 are -
compared with the previous version 2.2 - a break through. Mathematical 
typesetting in version 3.0 does in most cases what one wants. And even when 
one wants to do something out of the ordinary, options allow to override the 
default behavior, thus making the typesetting_system extremely flexible. One 
can make changes and gets immediate feedback, or one can make changes to 
be part of some output form. If it turns out that one constantly want a few 
different changes or groups of changes to be immediately accessible, then one 
may create a palette with buttons that apply those changes with one mouse 
click. 
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Mathematica Notebooks 
Notebook Technicalities 

Prof. Dr. Robert Krag/er 
FH Ravensburg-Weingarten I University of Applied Sciences 

kragler@rz. fh-weingarten. de 

Front End Features 
of 

Mathematica v3.0 
■ Initializations 

I Set Working Directory"\ \CD_Dubna98\ \Lecture" 

I 
I 
I 
I 
I 
I 

I 

Package Info 

openNotebookButton & fileslnDirectory 

Load Mathematica Packages 

Cell-Group with Icon 1> resp. v 

Set notebook options 

Information on important System Variables 

Print["Current working directory : · · ",Directory[] ] 
Print["Initializations finished ",tag,zeit] 

Current working directory : · · D: \CD_Dubna98 

Initializations finished on 1999.5.18 at 2: 01 h 
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I 1 Using the Mathematica 3.0 Front End 

1.1 lntoduction to Notebooks 

The Mathematica system consists of two programs: the front end and the kernel. The front end sends questions to the 

kernel which in turn answers the questions and returns them to the front end for display. 

Electronic documents created by the Mathematica front end are called notebooks. Because every Mathematica 
notebook is a Mathematica expression it can therefore be manipulated by the kernel. 

■ 1.1.1 Notebooks 

Notebooks are complete interactive document combining text, tables,·graphics,.sound; calculations, 

and other elements in terms of cells. 

A notebook can contain styled text, pictures, animations, sounds, and typeset formulas. In addition, notebooks can 

contain live mathematical expressions, hyper/inks ( e.g. the standard palette International Characters for 

European characters ) and buttons that execute arbitrary Mathematica functions NotebookE. nb 

One special type of notebook is a palette, e.g. CompleteCharacters . nb which typically contains a collection of 

special characters, 2D forms, or Mathematica functions to be pasted into the current notebook. 

To create a new notebook, pull down the File menu and choose New. 

■ 1.1.2 Cells 

One fundamental difference between Mathematica notebooks and traditional word-processing documents is the notion 

of cells. Every piece of information in a notebook goes inside a separate cell, and the type of a cell determines the 

default appearance and properties of its content. E.g., mathematical questions go inside Input cells, whose contents 

are sent to the Mathematica kernel when evaluated the answers are placed inside new Output cells. Titles, section 

headings, and explanatory text go inside Title, Section, and Text cells etc., which are not sent to the kernel for 

interpretation. 

Cells are denoted by vertical bracket on the rhs of the screen (here shown in red). When the key sequence 1w] +@] is 

pressed after entering 50! in an input cell the result is the following 

1 soi 

I 3041409320111337804361260816606476884437764156896o512000000000000 

Cells can be collected into groups, which organize the contents of a notebook similar to the way a book is organized 

into chapters and sections. Above there is a (red) cell bracket, that groups the input and output cells. 

Cell groups can be closed, which hides all the information in a cell group except for the first cell. To close a cell 

group, double-click the cell bracket that encloses the cell group. 
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I so, 

There occurs a small filled triangle at the bottom of the closed cell group indicating that there are cells inside the 

closed group. Double-clicking the closed cell bracket opens the cell and reveals the hidden output cell. 

A horizontal line crossing the screen is called the cell insertion point, which is where Mathematica will create a new 

cell (which is by default a new input cell). In order to create a new cell between two existing cells one must place the 

cell insertion point at the appropriate place. To move the cell insertion point, the (vertical) mouse pointer I has to be 

moved upward until it becomes a (horizontal) H bar, which happens only when the pointer is between two existing 

cells. Pressing the left mouse button places the cell insertion point between two cells. When one starts typing, a new 

input cell is created at the cell insertion point. 

(Pressing @ +lliffi afterward places the matching output cell directly under the new input cell, places the cell insertion 

point beneath the new output cell.) 

To create e.g. a text cell at the current insertion point, one has to change the cell type by first selecting the input cell 

bracket by clicking it with the mouse pointer. Next pull down the Format menu and chose Text from the Style 

submenu. By default, text cells have margins to the left of the margin for an input or output cell, and use a different 

font (here e.g. Helvetica resp. Arial). 

One can insert headings by creating new cells, typing the text for each heading, and changing the cell into section cell 

by choosing Section from the Style submenu. S(ubsubs)ection cells usually use a larger font size than text cells, and 

have a dingbat such as D , ■ , ■ or • etc. to the left of the text. The cell dingbat can be changed by using in the 

Format menu the Cell dingbat submenu which offers a great number of different symbols etc. e.g. ·<:;;·or@ . Of 

course the actual layout depends on the underlying Stylesheet 

In the case of the Classroom Stylesheet the layout is as such: 

I Exercise Main 

Exercise 

Exercise Text 

By default, section cells are set up so that they put all cells from the section heading down to the next section cell into 

a cell group. To turn off automatic cell grouping, choose Cell menu and select from the Cell Grouping submenu the 

option Manual Grouping; the default is Automatic Grouping. To group cells manually, select the cells to be 

grouped, then choose from the Cell Grouping submenu the option Group Cells or the keystroke sequence 

~+@+G. 

Of course, one can insert other types of cells ( depending on the actual Stylesheet) by creating a new cell and then 

change the cell type. For certain cell types Title etc. till Input there are keyboard short cuts such as @TI+ n (with n = 
I ... 9 ). 
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By using Show Toolbar from the Format menu the notebook header will then have an extra toolbar which contains 

in particular a popup window with all Cell types available for this notebook and another popup window with the 

Magnification. 

Cells resp. cell groups can be deleted by selecting them and choosing Clear from the Edit menu or [ID] on the 

keyboard. Cell can be merged by selecting two or more adjacent cells, pulling down the Cell menu and choosing 

Merge Cells (or [@+~+M ). A cell can be divided into two cells by placing the text insertion point at the place the 

cell should be divided, and choosing Divide Cell (or [@+~+D) 

■ 1.1.3 Text Styles 

Most of the front end's word-processing features such as Font, Faces, Size, Text color, Background 

color, text alignment (i.e. left, center and right) and so on are under the Format menu. The format of the 

content of a cell can be changed by selecting the text to be changed, then making modifications with the commands 

under the Format menu. In order to change the format of one or several cells one has to select the cell bracket(s) and 

make the modifications the same way. The menu options Show Ruler and Show Toolbar under the Format menu 

make it easier to change a notebook's margin, text alignment and cell styles. 

Besides the characters on the keyboard there are hundreds of special characters available such as 0 . A convenient 

way is to choose from in the File menu from the Palettes submenu the following palettes CompleteCharacters 

or InternationalCharacters. In addition inlineformulas such as J x5~t dx are possible. 

■ 1.1.4 Style Sheets 

One can change the style of cells of a certain type in a notebook by editing the notebook's style sheet, which is by 

itself another Mathematica notebook document that contains cells with styles representative for all the cell styles that 

will be used when a new cell is created. 

Usually, the style sheets such as Default.nb or Classroom. nb etc. that come with the system are all contained 

in the subdirectory 

C:\Programs\Wolfram Research\Mathematica\3.0\SystemFiles\FrontEnd\StyleSheets\ 

I dir = $TopDirectory <> "\ \SystemFiles\ \FrontEnd\ \StyleSheets" ; 
openNotebookButton["•·nb", 1, dir] 

ArticleClassic.nb ArticleModern.nb Classic.nb 

Classroom.nb Default.nb Demo.nb 

DemoText.nb HelE_Browser.nb HTML.nb 

MathsnFun.nb NaturalColor.nb NoteE_adMono.nb 

Notepad.nb PasteColor.nb PrimaryColor.nb 

ReE_ort.nb Textbook.nb TutorialBook.nb 

It is, however, recommended to place additional user-defined style sheets into a separate (empty) directory 
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C:\Programs\Wolfram Research\Mathemat/ca\3.0\Configuration\FrontEnd\StyleSheets\ 

I dir = $TopDirectory <> 11
\ \Configuration\ \FrontEnd\ \Sty1eSheets" ; 

openNotebook.Button["•·nb", 1, dir] 

where they will show up together with the style sheets provided by the system 

To edit a style sheet, pull down the Format menu and choose Edit Style Sheet. 

To apply changes only to current notebook, click the Import Private Copy button. To edit a style sheet that defines 

styles for future new notebooks, click the Edit Shared Style Sheet button. 

·9 H 'ami11:.:: However, before changing a style sheet it is advisible to keep a copy of the old style sheet before 

editing. It may happen that the modified style sheet will turn out to be corrupted after saving it so that all 

Mathematica notebooks using this particular style sheet are affected likewise. 

A typical style sheet is Training •. nb I 

To change the style of all cells of certain type, one has to open the appropriate cell group in the style sheet notebook 
and select the prototype cell wanted. 

If one wants to change e.g. the style of the prototype Input cell to italic, one may pull down the Format menu and 

choose Italic from the Face menu. As soon as the style sheet window is closed, all existing and new input cells in the 
notebook will have slanted text. Most versions of Mathematica come with several style sheets. Hence, one may 
choose a predefined style sheet by pulling down the Format menu and choosing the desired style sheet from the Style 
Sheet submenu. 

■ 1.1.S Style Environments 

The appearance of a notebook can be further changed by switching to a different style e11riro11111L'1ll. Typical 

environments are 

■ Working 
■ Presentation 
■ Condensed 
■ Printout 
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Documents viewed in the Presentation environment typically use larger font sizes than documents in the Working 

environment. As regards to the Condensed environment there a font smaller than in the Working environment is used 

in order to display expressions which extend over the normal width of the screen. There is also the Printout 

environment, which uses smaller fonts than the Working environment, and uses styles that look better on the printed 

page. In addition all colored cell backgrounds are converted to gray scales. 

In the Format menu there are two submenues Screen Style Environment and Printing Style Environment ; when 

chosen the style environment which are defined in the style sheet being used pop up and one can switch between 

different environments. 

There is part of a notebook in the Working environment, in which text typically wraps around at the actual window 

width, and uses fonts large enough to be viewed comfortably on the screen 

Use Working environment TestTraining. nb 

In the Printout environment Test Training. nb the same notebook uses smaller fonts and line breaks occur at the 

page width rather than on the actual window width. If one chooses right at the bottom of the Format menu the option 

Show Page Breaks then the style environment is switched to Printout so that the line breaks are visible. By default 

cell brackets are not printed. This can be controlled in the Printing Settings of the File menu, particularly in the 

Printing Options where there is an option Print cell bracket [ /\ ,y1 

■ 1.1.6 Hyperlinks 

Hyperlink1 

To enter a hyper/ink in a notebook, first select the destination of the link (i.e. the cell that the link should jump to), 

then add a tag to the the destination cell. A tag is a label associated with a cell that allows one to refer to a particular 

cell. 

Tags are not displayed on the screen unless the option Show Cell Tags from the Find menu is chosen. 

In order to add a tag to the cell one chooses Add/Remove Cell Tags in the Find menu, then type the desired tag into 

the uppermost text field. To add the tag to the cell, click the Add button. 

C Edit Cell Tdgs for FrontEnd.nb £) 

ffCell'ag_; 1-•I I Add I BIIIIOYe_ I 
/l•Gf ... Nlectld~•~ 

.. ,,.",'.,, .•. ;:,_~&Q•~•IIIIJ~,,'. 
\111ce1;19nlhe~ 

,}.'-'; 

: Hype,linklest 

-._ , .-- l)~tudd1ta · 
. r, t ,

1
1 _,__,,· :.. · -· , .·. .· ~ ,: 
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Next, select the text one wants to act as the hyperlink , then pull down the Input menu and choose CrcateHyperlink. 

In the dialog box that appears, one has to click the desired target cell tag from the list at the bottom of the dialog box. 

Figure2 

The selected text (here hyperlink) appears (by default) as underlined blue text. When a hyperlink is clicked the front 
end scrolls the selected notebook to the destination of the link (in the present case the tag Hyperlinkl) 

■ 1.1. 7 Numbered Equations and Figures 

To create numbered equations or figures one has to select the cell containing the equation or figure, then choose 
NumberedEquation (or NumberedFigure) from the Style submenu in the Format menu. 

Note, that not every style sheet contains the numbered-equation or numbered-figure style definition. Some of the style 
sheets that do define automatic-numbering cells are Classroom, Classic, Report and Article styles. 

Here is a cell containing some formulae inside numbered-equation cells. 

f .AdX = .AX 

f 
xn+l 

xndx = -­
n+ 1 

(n '# 1) 

J (f (x) + g (x)) dx = ff (x) dx + f g (x) dx 
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If an equation is inserted between existing cells, Mathematica automatically updates the equation numbers. 

I Sin[x] 
Plot[ x , {x, -4,r, 4,r}, PlotRange ➔ All, Frame ➔ True]; 

1 

0.8 

0.6 

0.4 

0.2 

01, ~ ~ I I \ ~ ¾ ~1 

-0.2 '"----~--~--_,______--~--~----' 
-10 -5 0 5 10 

Figure 3 

■ 1.1.8 Converting Notebooks 

Mathematica can save notebooks in several different formats, including HTML, TeX, Package_Format and 
Pre-3.0_Notebook. The different formats available are Iissted under Save_As_Special submenu in the File menu. 

Mathematica also opens files other than notebooks. Some files can be opened directly by choosing Open from the File 
menu, and others require use ofOpen_Special. The front end is set up automatically convert notebooks from versions 
of Mathematica earlier than 3.0. 

Text and graphics in notebooks can be directly copied to the system clipboard and pasted into other programs. Some 
notebook elements, such as graphs and typeset formulae, can be converted into several formats e.g. 

■ Text 
■ Cell Expression 
■ Notebook Expression 
■ Complete Notebook 
■ Package Format 

■ EPS 

■ Adobe Illustrator 
■ Bitmap (BMP) 

■ Enhanced Metafile (EMF) 
■ Windows Metafile (WMF) 
■ Rich Text (RFT) 
■ Wave(WAV) 

using commands under the Save_Selection_As and Copy_As submenus ofthe Edit menu. 

Seealso NotebookConvert, HTMLSave, TeXSave, Display, DisplayString 

I ? NotebookConvert 
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System'NotebookConvert 

Attributes [NotebookConvert ] = {Protected, ReadProtected} 

Options [NotebookConvert ] = { InputToStandardForm -> False , 

OutputToStandardForm -> False , PreserveStyleSheet -> False , 
GenerateBitmapCaches 

OutputToOutputForm 
-> False , InputToinputForm -> False , 

-> False, Interactive -> False} 

I ?HTMLSave 

HTMLSave ["file . html ", notebook , options 

object notebook into an html document 

I ? TeXSave 

converts the Notebook 

TeXSave ["file . tex ", notebook , options ] converts the Notebook object 

notebook into a TeX document . 

I ? Display 

Display [ channel , graphics ] writes graphics or sound to the specified 

output channel in Mathematica Postscript format . Display [ channel , 

graphics , "format "] writes graphics or sound in the specified 

format . Display [ channel , expr, "format "] writes boxes , cells or 

notebook expressions in the specified format . 

I ? DisplayString 

DisplayString [ graphics ] generates a string giving graphics or sound in 

Mathematica Postscript format. DisplayString [graphics, "format"] 

generates a string giving graphics or sound in the specified 

format . DisplayString [ expr, "format "] generates a string giving 

boxes , cells or notebook expressions in the specified format . 

1.2 Cells and Notebook Options 

11 1.2.1 Setting Options 

Almost any feature of a notebook, cell, or expression can be altered using the Option I_nspector, available under the 
Format menu. The Option Inspector window typically looks like the following figure 
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Global Options 
Notebook Options 
Cell Options 
Editing Options 
Formatting Options 
Graphics Options 
Button Options 

To reveal or hide the choices under on of the headings 

_:J Global Options 

_:J Notebook Options 

_:J Cell Options 

_:J Edition Options 

_:J Formatting Options 

_:J Graphics Options 

_:J Button Options 

To reveal or hide the choices under one of the headings (Global Options, Notebook Options, etc.) click the button 

~ to the left. When using the Option Inspector one can set the scope of the changes to make; that is, one can set 

options 

• for the current selection only , 
• for every cell with the same style as the current seclection, 
• for the entire current notebook, or 
• change the global default settings for options in all current and future 
notebooks. 
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To change the scope of the option settings, select the ddesired scope from the pop-up menu near the top of the Option 

Inspector window. 

To remove any option settings in a cell or notebook, pull down the Format menu and choose Remove_ Options. 

The Lookup text field allows one to find options pertaining to particular topics, without having to navigate the 

different headings. To find options pertaining to cells, for example, type "cell" into the text filed, and then click the 

Lookup button to reveal the next option name that contains the word "cell". A partial listing of the commands in the 

Option Inspector is contained in Appendix A of this tutorial. 

■ 1.2.2 Global Options 

Some of the global options that can be changed are 

• the list of palettes to open when Mathematica is started, 
• the directories to search for configuration files, 
• the default style sheet to use for new notebooks. 

To change global options, choose Global from the pop-up menu in the Option Inspector window. 

For example, to tum off the Mathematica startup sound, open the Global Options category, open the System 

Configuration subcategory, and set the option StartupSound to False. There is typically a checkbox to the right of 

an option that takes only the values True or False, and clicking the box toggles the option settings. 

One can also change the global editing and formatting behavior of the Mathematica front end. For example, the front 

end quickly flashes an open bracket ( I, { or ( ) when the matching closing bracket ( ], } or)) is typed. In the Edition 

Options category on can set the option DelimiterFlashTime to the length of time, in seconds, that the bracket should 

flash. (The default setting is 0.3 sec.) To tum delimiter flashing off, type O for the option value. 

Also in the Editing Options category is an option called DragAndDrop. When set to True (the default value is 

False), one can highlight some text of part ofa formula, and "drag" the selection to another location in the same cell. 

■ 1.2.3 Notebook Options 

To change the options for an entire notebook, choose Notebook from the pop-up menu in the Option Inspector, 

making certain the notebook or palette whose options to be changed is the currently selected notebook. 

Some of the options one can change at the notebook level are the notebook's background color, the magnification, the 

too/bars and other elements present in a notebook, and the window title. Furthermore, one can change the notebook's 

printing properties, such as how many copies to pring and the range of pages to print. These and many other option 

settings are found in the Notebook Options category. 

To show the timing for each evaluation in a notebook, open the Notebook Options category and the Evaluation 

Options subcategory, and then choose Show_Timing form the list of choices. 

In the Editing Options category, one can change text options, such as whether and how much paragraphs should be 

intended, how text should be aligned, and how much space should fall between lines and paragraphs. 
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In the Graphics Options category, one can set options that control how graphics are rendered in the notebook. For 

example, in the Rendering Options subcategory one can tell Mathematica to draw dummy graphics in place of 

Postscript graphics (in order to save memory), and whether to draw lines and filled polygons in graphs. 

■ 1.2.4 Cell Options 

Some options one can change at the cell level are a cell's background color, how to display cell brackets, whether to 

draw a frame around a cell, and the margins of a cell. To change the option settings for one or more cells, select the 

cell(s) to change, choose Selection from the pop-up menu that sets the scope ofan option, open the Cell Options 

category , and then make the desired changes. (To apply the changes to every cell in the notebook, choose Notebook 

from the pop-up menu in the Option Inspector.) 

An important set of options for a cell are its properties. By default, most cells have the property that they are editable, 

that is, text inside a cell can be changed. To remove this property, select a cell bracket, pull down the Cell menu, and 

open the Cell Properties submenu. If the cell is editable, there will be a check or other indication that the editable 

property is currently set for the cell. Choosing Cell Editable from the Cell Properties submenu will toggle between 

the property being set or unset for the selected cell(s). If the editable property is unset, the text in the cell cannot be 

changed. 

A property that input cells typically have is that they are evaluatable, meaning they can be sent to the kernel for 

interpretation. (Cells containing titles, section headings, and other text usually do not have this property set.) To make 

an input cell unevaluatable (which is desirable if the cell contains a typeset expression not intended for interpretation 

by the kernel), choose Cell Evaluatable from the Cell Properties submenu to unset the evaluatable property of the 

cell. 

Other properties that cell can have set include the property that an attempt to edit the contents of a cell results in a 

copy of the cell being created (se Cell Edit Duplicate in the Cell Properties submenu - this property is set by default 

for output cells), and the property that the contents of a cell are automatically sent to the kernel, when the notobook 

containing the cell opened (Initialization Cell). 

A cell's properties can be changed by opening the General Properties subcategory inside the Cell Options category 

in the Option Inspector. To change the properties for every cell ofa particular type in a notebook, choose Selection's 

Style from the pop-up menu, or directly edit the notebook's style sheet. 

126 



I 2 Special Characters and Forms 

2.1 Introduction 

Mathematica works with several hundred special characters, including Greek, script, Gothik, and double-struck letters, 

accented Latin letters, relational signs, and mathematical operators. In addition, Mathematica interprets and generates 

many two-dimensional input and output fonns for mathematical and other functions, and allows to create our own 

formatting rules for input and output. 

One can create arbitarily sophisticated typeset fonnulas in many ways, using graphical features of the front end, 

keyboard shortcuts, and Mathematica's programming language. 

2.2 Using Palettes 

One way to enter special characters and two-dimensional forms is to use a palette. Palettes are special notebooks that 

contain an array of buttons, and each button can be used as an extra key on the keyboard. For example, to enter the 

character a into a notebook, click a button containing an a, and the a character appears at the current insertion point. 

On most systems, a palette that looks like the following figure will be present on the screen. (If not, pull down the File 
menu and choose Basiclnput from the Palettes submenu. 
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To enter the expression 1 +c5 into an input cell, type 1 + into a new input cell using the keyboard, then click the o 
button. The o appears at the current text insertion point, after the plus sign. 

The same palette can be used to enter some two-dimensional expressions. To enter V (1 + o) into a notebook, click the 

VII button, then type l+c5 into the space that appear under the radical sign. (Pressing the arrow key or lB!!l+/SPACEI gets 

the cursor out of the radical sign.) Another way is to type and select 1+c5, then click the VII button on the palette. 

Here are the steps to enter the expression Expand [ ( ex + /3) 10 ] into an input cell. 

First type Expand [ int an input cell. With the text insertion point still located after the bracket, click the exponent 

button 11□ • In the lower placeholder type (a+p) using a palette to enter the a and p characters. 

I Expand [(ex+ /3) □ 

Next click in the exponent placeholder with the mouse. (Pressing the ~ key also moves the text insertion point into 
the next empty placeholder.) When the insertion point is in place, type 10 for the exponent. Pressing the right arrow 

key ➔ or ~+/SPACE! moves the text insertion point out of the exponent position and back to the baseline of the 
expression. With the insertion point at the proper location, then type the closing bracket I , and @iul+@) to evaluate the 
expression. 

I Expand[ (ex+ /3) 10
] 

I a
10 + 10 a 9 (3 + 45 a 8 (3 2 + 120 a 7 (3 3 + 210 a 6 (3 4 + 252 a 5 (35 + 210 a4 (3 6 + 120 a 3 (37 + 

45 a2 13s + 10 a 13s + 1310 
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Another way to do the same thing is to type everything except the exponent into a cell, and select the expression to be 
the base of the exponent. 

I Expand uam.mJ] 
With (a+p) selected, click the exponent button, and Mathematica puts an empty placeholder(□) at the superscript 
position, into which the exponent 10 is typed. Pressing ~+ffirn evaluates the expression. 

In general, clicking a button that contains a formula or special character places the character at the current text 
insertion point in the selected notebook (which usually has a highlighted title bar), replacing any selected text. 

Clicking a button that contains a selection placeholder ■ "wraps" the contents of the button around the current 
selection, if any, replacing the ■ with the selected expression. Ifnothing is currently selected, clicking a button pastes 
the blank fonn into the notebook at the current insertion poit. To fill in any empty placeholder(□), click the 
placeholder with the mouse pointer (the ~ key also moves the text insertion point from one placeholder to the next), 
then type the desired expression, pressing ~+ffirn when finished to evaluate the expression. 

Choosing the CompleteCharacters palette from the Palettes submenu of the File menu brings up a palette containing 
every special character in the Mathematica character set (click a triangle e> to expand a particular section of the 
palette), and choosing BasicTypesetting from the Palettes submenu offers a larger selection of buttons for entering 
two-dimensional typeset forms. 

2.3 Character Full Names 

Every special character in Mathematica has a full name of the fonn \ [FullName], and typically the Mathematica 

front end converts the fonn \ [FullName] into the named character once the closing square bracket is typed. (In 

order to prevent the front end from processing the fonn \ [FullName] use before the closing bracket ] an i11risihle 

('0/1/11/II ;,; ) 

For example, to enta a character ,r using its full name, type \ [Pi] ; and to enter n type \ [ Capi talPi] . As with 

all Mathematica names, the full names of characters are case sensitive. To enter the expression 
Expand[ (a+/3) (8+A)], type the following characters and then press~+[@. By default, Mathematica converts 

\ [Alpha] into a, \ [Beta] into p, and so forth, once each closing square bracket is typed. 

I Expand[(\ [Alpha] +\[Beta]) (\ [Theta] + \ [CapitalDelta])] 

I a.t::.+f3t::.+a.e+(3e 

When using the CompleteCharacters palette, Mathematica displays the full name of a character when the mouse 
pointer is over a button containing the character. In chapter 6 "Structure of Typeset Expressions", the internal 
representation of two-dimensional typeset fonns is examined in more detail. 

See also ShowSpecialCharacters, ToCharacterCode, FromCharacterCode, 
CharacterRange 

I ? ShowSpecialCharacters 

ShowSpecialCharacters is an option for Cell which specifies whether 

to replace [Name], : nnnn, etc. by explicit special characters . 
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I ? ToCharacterCode 

ToCharacterCode["string"] gives a list of the integer codes corresponding to 
the characters in a string. ToCharacterCode["string", "encoding"] 
gives integer codes according to the specified encoding. 

I ? FromCharacterCode 

FrornCharacterCode[n] gives a string consisting of the character with integer 
code n. FrornCharacterCode[{nl, n2, ... }] gives a string consisting of the 
sequence of characters with codes ni. FrornCharacterCode[ ... , "encoding"] 
generates a string using the specified character encoding. 

I ? CharacterRange 

CharacterRange["cl", "c2"] yields a list of the characters in the 
range from "cl" to "c2". 

2.4 Menus 

Under the Edit menu there is a submenu called Expression Input, in which the commands for entering subscripts, 
superscripts, underscripts, and overscripts, as well as other two-dimensional forms are listed. 

To enter a subscripted expression such as x0 type the base x, choose Subscript from the Expression Input submenu, 

fill in the base, and then press the right arrow key or ml+@@ to move the insertion point back to the baseline of the 

expression. 

I xo 

Similarly, to enter expression i , type an x, choose Above from the Expression Input submenu, and type the caret 

character " . (Note, that on a non-standard English keyboard, Mathematica will almost always accept rn]+6 but may 

not accept rn]+" ) 

I x 

To enter a matrix or other array-like form, pull down the Input menu and choose the option 

CreateTable/Matrix/Palette ,click the Matrix button, and then fill in the blanks in the dialog box that appears. 

I Det[ ( ! ! ) ] 
I -1 

To add a row or column to an already existing matrix, select the pull down the Edit menu and choose from the 

Expression Input submenu AddRow (or AddColumn). 
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2.5 Keyboard Aliases and Shortcuts 

Many special characters have a keyboard alias of the form :alias: where the character: (or[@ esc [@) represents the 

Escape key [@ . Mathematica typically converts the form :alias: into the corresponding character once the second : is 

typed. To enter a n, type[@ p [@; and to enter a Il type[@ P [@ because keyboard aliases are case sensitive. Most 

one-letter aliases stand for Greek letters; hence [@ m [@ givesµ, [@ G [@ is r, and so forth. 

To enter the command Solve [4p+5µ=0 ,Pl, type 

I Solve[ 4 :r: + 5 :m: == O, :r:] 

I {{p ➔ -s:}} 
Other families of letters are 

Greek letters [@Gr@ r 
double-struck letters [@dsA [@ IA 

Gothic letters [@goA[@ R 

script letters [@scA[@ .JI 

accented Latin [@ A punctuation [@ A 

To enter a character for a particular font family,just prepend to the character the abbreviation for the font family. 

The aliases for accented Latin characters are typically the letter with a punctuation mark appended that resembles the 

accent to be used. Some aliases for accented letters are :a~: for a, :C,: for~. :e': fore, :OI: fore, and :Ao: for A etc. 

Greek, double-struck, Gothic, script and extended Latin letters can be used in variables and function names too 

I polygon[n_Integer] 

polygon[3) 

I 

,r 
.- Table[{cos[Bl, Sin[B)}, {e, o, 1.99,r, 2 -}] 

n 

When using the CompleteCharacters palette, placing the mouse pointer over a special character displays the 

keyboard alias for that character, if one is defined. 

There are also keyboard shortcuts for most two-dimensional forms, most involving use of the~ key. In many cases, 

the keyboard shortcuts for two-dimensional forms mimic the keyboard form for one-dime11sional commands. For 

example, enter an exponent using a caret", which is entered on most keyboards by typing [illj]{6]. To enter the 

two-dimensional form of 2100, after typing the base 2, press either [illj]{6] ( or ml{"]), which moves the text insertion 

point into the superscript position, and then fill in the placeholder. Thus, the following keystrokes will create input and 

output :[illj]{2] 2rnl{6] 100 @+@] 

I ✓ 2100 

I 112s899906842624 
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Similarly, in one dimension afraction is typed as x/y; to enter the two-dimensional form type the keystrokes 

x~/]y 

I {x/y, ;} 

I {~, ~} 
y y 

Overscripts and underscripts are created by typing ©fill{7] and ~=] . To type x !+ x" 2, type x ➔ x2 

(where ➔ is entered as\ [RightArrow] , then select the arrow, and then press ©fill{7]. Then type the contents of 

the overscript (f) into the placeholder~ above the arrow. Note, that the expression is not a valid Mathematica input, 

hence, one should not press @m(@l] after creating the form. 

In general, pressing a keyboard shortcut for a subscript, superscript, fraction, etc. applies the form to the first complete 

subexpression directly before the insertion point. If one types a+b+c into an input cell and then press ©fillf 6] for a 

superscript (exponent), the superscript is applied only to c. 

a+b+cx 

On the other hand, if on types a+ (b+c) followed by ~6], the exponent is applied to the entire expression (b+c) . 

a+ (b + c)x 

If part ofan expression is highlighted, the subscript or superscript is applied to the entire selection. Here, type 

a+b+c+d into an input cell, then select the subexpression b+c 

a+.+d 

Pressing the keyboard shortcut for a fraction, i.e. ©fill{/], places the selected expression in the numerator position of the 

fraction 

b+c 
a+ --+d 

• 
Some characters in typeset expressions have both a subscript and superscript, or both an underscript or overscript. In 

such an expression, the keyboard shortcut ~ 5] ( or ~ % ] ) moves to the opposite position in the expression. To enter 

the expression~, type the base of the expression and then one of the scipts, in this case the subscript, by typing 

x~ - JO which gives xo . With the insertion point still in the subscript position, pressing ~ 5] creates a placeholder 

in the superscript position and moves the insertion point into it, where one can type the superscript 2. 

xml{-]O ~5]2 results in ~ 

Similarly, to enter a summation first type the character\ [Sum] (which can be entered as :sum:, and which is 

different from the Greek letter\ [Capi talSigma] ). 

r 
The variable of summation and the lower limit are usually placed as an underscript to the summation sign, and one 

moves to the underscript position by typing~=], so that 

I 
i=I 

To move from the underscript to the overscript position, type ~5], and then type the upper limit of the summation 
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n 

I: 
i=I 

Then press the right arrow key or ~!SPACE!] to move out of the overscript position, type the function to be summed and 
press ~lf!iJ] to evaluate the· expr~ssion. . 

I 
I 9

1
0 n ( 1 + n ) ( 1 + 2 n ) ( - 3 + 9 n - n 2 

- 15 n 3 + 5 n 4 + 15 n 5 + 5 n 6 
) 

The Other Information category of the Help Browser contains further examples of entering and editing 

two-dimensional expressions .• -~~,tati~eE~a,ptP~~~ .:[ t~;I 
See also the documentation in the subdirectory " ... \Otherinformation" 

I dir = $TopDirectory <> "\ \Documentation\ \English\ \Otherinformation"; 
filesinDirectory [ dir ] / / ColumnForm 

Browserindex .nb 
CellMenu .nb 
Contactinfo .nb 
EditingCommands .nb 
EditMenu .nb 
FileMenu .nb 
FindMenu .nb 
ForrnatMenu .nb 
HelpMenu .nb 
InputMenu .nb 
KernelMenu .nb 
MacKeyboardCommands .nb 
NeXTKeyboardCommands .nb 
NotationExarnples .nb 
StyleSheets .nb 
WindowMenu .nb 
WindowsKeyboardCommands .nb 
XKeyboardCommands .nb 

Special input forms based on control characters are summarized in the table below 

~@] or ~2] or \! \( \@x \) 

~"] or ~6] or \! \( x\"y \) 

go into a square root v■ 

go to superscript position ■0 

because of key {:) 

because of key { : ) 

or \! \( x\_y \) go to subscript position ■0 because of key { : ) 

~+] or ~=] or \! \( x\+y \) 

~&] or ~7] or \! \( x\&y \) 

{ +=) go to underscript position ■ because of key 
0 

• • 
0 be fk { 

7
&) go to overscript pos1t1on ■ cause o ey 

~%] or ~5] or \! \( x\"y\%z \) go from subscript to superscript and vice versa or to 

exponent position in a root ■g because of key { : ) 

133 



On a standard English-language keyboard, the shifted versions of keystrokes in the first column are accepted on 

standard English-language keyboards. However, on a non-English keyboard Mathematica will almost always accept 

the non-shifted versions in the second column. 

A third alternative are the \! sequences followed by \( •.• \) in the third column using ordinary printable characters from 

the keyboard. Note, that if one copies a\! sequence into Mathematica, it will automatically jump into two-dimensional 

form. But if one enters the sequence directly from the keyboard, the\( ... \) sequences are shown in literal form. 

Choosing the Make_2D item (or the keystrokes~+ ©fil]+Y) from the Edit menu convert these sequences into 

two-dimensional forms wanted. 

2.6 Extensible Characters 

Some characters that Mathematica uses are extensible, meaning they may stretch to surround an expression that is 

taller or wider than a single character. Different types of brackets and arrows are typically extensible characters. 

For example, the parentheses surrounding a matrix are extensible. Here is a 2 x 2 matrix. 

(: !) 
Ifan additional row is added to the matrix, the parentheses extend to the new height of the matrix. 

[: ;) 
The following input line is one-dimensional, so the square brackets are as tall as a single character 

I Gamma[ll/2] 

I 945 v,r 
32 

Entering the argument .!!. in two-dimensional form, however, causes the brackets to grow vertically. 
2 

I 11 
Gamma [ 2 ] 

The characters\ [UnderBracket] and\ [OverBracket] are examples of characters that grow horizontally. 

Here is a simple expression. 

1+2+3 

To put a horizontal bracket above the entire expression, select the whole sum, and then click a ~ button in a palette or 

press ~7]. Then type \ [OverBracket] or its alias :o [: in the placeholder above the sum. Mathematica extends 

the bracket to the length of the sum 

1+2+3 

If terms to the sum are added, the brackets extends to the proper length. 

1+2+a+b+3 

There are some special expandable characters such as parentheses, arrows, bracketing bars which grow without 

bound to span whatever expressions they contain, whereas brackets, brashes and slashes grow by default to limited 
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size only. These default characteristics of expandable characters, however, can be controlled by StyleBox options, 
e.g. 

I RowBox[{ 11
(", 

11
{", GridBox[{{X}, {Y}, {Z}})}] //DisplayForm. 

I Vi 
However, with option SpanMaxSize➔Infini ty specifies that all characters inside the StyleBox should be 

allowed to grow as large as they need. 

I StyleBox [RowBox [ {" {", GridBox [ {{X}, {Y}, {Z}}]}] , SpanMaxSize ➔ Infinity] / / 

DisplayForm 

IE 
By default expandable characters grow symmetrically. For a GridBox, one can use the option GridBaseline to 

specify where the baseline should be taken to lie. The possible settings are Center, Top ,Bottom and Axis 

(default) 

I 
{ GridBox [ {{ ■, ■}, {■, ■}}, GridBaseline ➔ Top] , 

GridBox[{{o, □}, {□, □}}, GridBaseline ➔ Center], 

GridBox[{{o, □}, {□, □}}, GridBaseline ➔ Axis] , 

GridBox[{{■ , ■}, {■, ■}}' GridBaseline ➔ Bottom] } I I DisplayForm. 

I • • 
{. □ □ □ □ • •} . ' 

□ □ □ □' 

• • 
which explains the following arrangement of the GridBox 

(rb = RowBox [ { 11 ( 
11

, GridBox [ { {X}, {Y}}, GridBaseline ➔ Bottom], ")" } ] ) // I DisplayForm 

I l ~ l 
Setting SpanSymmetric➔False allows expandable characters to grow asymmetrically. 

I { StyleBox [rb, SpanSymmetric ➔ False] , Z } / / DisplayForm. 

I {(~), z} 

The notebook front end typically provides a Spanning_Characters submenu in Edit\Expression_Input 

which allwos one to change the spanning characteristics of all characters within the current selection. 

· The li111i1s <!/(/ s11111 are usually displayed as underscripts and overscripts. 

s = Sum [f [i] , {i, 0, n}] 
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When the sum is shown smaller, it is conventional for the limits to be displayed in subscript and superscript position 

I 11 s 

I 1 

Li=O f [ i l 

The option Limi tsPosi tioning (with default value Automatic) to UnderoverscriptBox and related 

boxes controls whether to change positioning oflimits in the conventional way. 

{s=UnderoverscriptBox["i::", "i=O", "n", LirnitsPositioning ➔ False]) // 
DisplayForm I 

It 
In order to avoid that the underscript and overscript positions are moved to subscript and superscript positions in the 
case ofa fraction, use the option LimitsPositioning➔False instead of True resp. Automatic. 

I FractionBox [ "1", s] / / DisplayForm 

I 1 
n 

I 
i=O 

Here is a sophisticated example of extensible characters which shows how horiwntal brackets span the objects they 
enclose. 

I Table[Factor[xi -1], {i, 5}] 

I {-l+x, (-l+x) (l+x), (-l+x) (l+x+x 2
), (-l+x) (l+x) (l+x 2

), 

(-l+x) (l+x+x2 +x3 +x 4
)} 

Seealso OverBar, OverVector, UnderBar, 

SpanMaxSize, SpanMinSize, SpanSymmetric 

I ? SpanMaxSize 

I ? SpanMinSize 

I ? SpanSymmetric 

2.7 Typeset Expressions within Text (/nlinelnput) 

After creating a typeset expression, one can copy it and paste it into the text contained in a text, title, section, or any 
other cell using the commands in the Edit menu. Here is a two-dimensional expression inside an input cell 

l 

v:; 
And after creating the expression, select it and choose Copy or Cut from the Edit menu, and then paste it at the desired 

location inside a text cell. 
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Here is a formula in text : _,;.. 
'Y lir 

Alternatively, inside text one can create in/ine cells that contain typeset structures. To create an inline typeset cell 
inside a text cell, begin by typing text as usual. Wh~n one wishes to start entering a typeset expression, press lf@[9] or 

~(], then enter a two-dimensional form using palettes and keyboard shortcuts. (Usually ther is a frame or other 
indication of the boundaries of the inline cell.) When one has finished entering a typeset expression in text, press 

~O] or~)], and continue typing ordinary text. 

Begin oflnline Mode:~(] ... in/ine text or formula ... @D{)] end oflnline Mode 

2.8 Examples 

Note, that many of the following examples are not valid as Mathematica input, so do not press [w)[@I] to evaluate 
them. 

(a + p)n -:/= an + pn 

h :=:6.6260754 ~ 
sec 

(V y) (V z) ( y E xA z E y ~z E x ) 

2k n sin( ; ) < 2k < 2k n tan( ; ) 

d = ✓ (Xz - X1 )2 + (yz - YI )2 

sin !!_ : ✓ I-cos/I 
2 2 

tan(O ± <f,) = tanll:t tan~ 
I :i:tan9tan~ 

(

A )(0) n aP=ng(n,E)UaUp+ Pliap 

00 

1 /1e = (✓ 8) / 9801 L ((4n!) (1103 + 26390n))/ ((n!)"4396" (4n)) 
l=I 

In order to expand the bracket in the way wanted one is referred to the discussion in the.previous section 2.7. 

rx<O U(x) = } , x = 0 

1, X > 0 

au a12 a1n 

a21 a22 a2n 

[ Cu 
C12 ... Cjl ... ~] C12 C22 ... Cj2 . .. Cn2 

Aadj(A)= 
ail ai2 ain . . . . 

C1n C2n Cjn Con 
an1 an2 ann 

In order to create the extensible overbar use OverscriptBox ["ex.pr", "-"] / /DisplayForm 
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(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 



(f,g) = f b Ui (x) + i J2(x)] [g1 (x)++ i g2(x)] dx 

ff (/V g - g V /)·n du= ff f (/V2g- g V2/) dT 

In order to avoid the underscript and overscript positions for the summation or product signs use the option 

(17) 

(18) 

Limi tsPosi tioning➔Fa1se (instead of True resp. Automatic) for the UnderoverscriptBox in order 
to control the positioning of limits 

n m 

IIA112= L L laijl2 
l=l J=l 

n k1 
TTP1 
l:O 

( (.../2)./2) V2 =2 

Sty1eBox[superscriptBox[ 

RowBox[ { Sty1eBox[ "(", FontSize ➔ 20], 

SuperscriptBox [ "(V2) ", 11-{2 11
] , 

Sty1eBox[ ") ", FontSize ➔ 20] 

} ] , "V2 "], 
SpanMaxSize ➔ Infinity, 

ScriptBaselineShifts ➔ {Automatic, 1}] // Disp1ayForm 

1 
Il(F,G)~l- cl> [ c--,;-mnp1 ] 

✓var<Wxv> 

( 
r s ) , s 

Cov ~ K1, ~ L1 = ~ ~ Cov(K1,L1) 

N( a;a~ ... a;)= N - L N(a,) + L N(a, a1)- L N(a, a1 ak) + ... (- lY N(a1 a2 ... a,) 
i i#j i,j,k 
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(19) 

(20) 

(21) 

(22) 

(23) 

(24) 



I a Doing Calculations 

3.1 Different Input and Output Forms 

Mathematica allows a few different fonns for input and output of mathematical expressions which are suitable for 
different purposes. 

Versions of Mathematica prior to 3.0 allowed input only in a one-dimensional form called InputForm. Expressions 

in Inpu tForm use only ordinary keyboard characters, and requires the use of spelled-out function names and square 

brackets to enclose function arguments in order to make questions unambiguous. 

I Integrate [1 / (x" 4 + 1) , x] / / OutputForm 

-Sqrt[2) + 2 X Sqrt[2) + 2 X 
ArcTan[ l ArcTan[ l 

Sqrt[2) Sqrt[2) 
+ 

2 Sqrt[2) 2 Sqrt[2) 

2 2 
Log(-1 + Sqrt[2) X - X l Log[l 

+ 
+ Sqrt[2) X + X l 

4 Sqrt[2) 4 Sqrt(2] 

The corresponding output form is OutputForm, a two-dimensional form which approximates traditional 

mathematical notation by printing numerators, denominators, and exponents on separate lines. Expressions in 
OutputForm cannot be edited directly; to create an editable copy ofan expression in OutputForm place the cell 

insertion point directly und the OutputForm expression, then choose Copy Output from Above from the Input 

menu. The result of the integral above displayed using OutputForm is given below. 

-Sqrt[2) + 2 X Sqrt[2) + 2 X 
ArcTan[ l ArcTan[ l 

Sqrt[2) Sqrt[2) 
+ 

2 Sqrt[2) 2 Sqrt[2) 

2 2 
Log(-1 + Sqrt[2) X - X l 

+ 
Log(l + Sqrt[2) X + X l 

4 Sqrt[2) 4 Sqrt[2) 

The default form of input and output in Mathematica 3.0 is StandardForm which uses special characters and 

two-dimensional forms. StandardForm understands input (and generaated output) using radical signs, 
superscripted exponents, and two-dimensional fractions; as was as traditional input fonns for operators such as 
integrals, sums, and products, and some· special form for constants, such as ,c and oo for Pi and Infinity. 

I f--1- dm / / StandardForm 
1 + m4 

Mathematica by default generates output in StandardForm. Note that StandardForm uses Mathematica names 

for mathematical functions (ArcTan and Log for arctangent and logarithm) and square brackets for enclosing 

function arguments, making output in StandardForm unambiguous and therefore suitable for use as further input. 

I ArcTan [ -15;2 ~ ) 

2 vi 
ArcTan [ ¥,] 

+ ------==-----
2 vi 

Log [ - 1 + vi ~ - ~2 ) 

4 vi 
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To edit output in StandardForm, type directly inside the expression; the front end normally creates a copy of the 

output in a new input cell, and one edits the copy. 

I ArcTan [ --vi +2 •+111111 ] 

V2 
2 '\/2 

ArcTan [ V2 +2 • ] 
V2 

+ ----------
2 '\/2 

Log[-1+"-/2 m-m2] 

4 V2 
+ 

Log[l + '\f2 m + m2] 

4 V2 

Another input and output form availabe in Mathematica 3.0 is Tradi tionalForm, which mimics traditional 

mathematical and technical notation with italic single-letter variabl names, parentheses instead of square brackets 
surrounding the arguments to a function, and traditional forms for special functions ( tan-1 and log for ArcTan and 

Log) 

I J 1 
d m / / Tradi tionalForm 

1 + m4 

I tan-1(2<1>-Y2) tan-1(24>+Y2) .( _,-;:; ) ( _,-;:; ) ~ · ~ log -<1>2 + v 2 <I> - I log <1>2 + v 2 <I>+ I 
----+ -----------+ -----

2{2 2{2 4V2 4V2 

A difficulty with using traditional notation, and therefore with Tradi tionalForm, for input is that it is ambiguous. 

For example, in traditional notation it is unclear if q(l-p) means a variable q times 1-p or a function q evaluated at 1-p 

( except by the context in which it is used); when using Tradi tionalForm for input, a space between the q and the 

parentheses denotes multiplication, and no space signifies that q is a function. In the following input in 

Tradi tionalForm , there is no space after the q in the first item, and a space after the q in the second item. (The 

output is in StandardForm.) 

I { q(l - p), q (1 - p)} 

I {q[l-p],(1-p)q} 

Mathematica understands very common abbreviations for functions (such as f(z) for Gamma [z] and sin-1(x) for 

ArcSin [x] ), and allows parentheses to surround the arguments to a function. 

(Note that the parentheses or brackets are required, so typing sin x to mean sin (x) is not permitted. ) 

I ,ci-•i•tn 
I ✓,r - ; 

In general, Mathematica understands input in Tradi tionalForm if it uses only the most common notation and the 

above convention regarding parentheses, or involves simple editiong of previously generated Tradi tionalForm 

output. Here is an integral in Tradi tionalForm ; the expression Jv (z) stands for the Bessel function of first kind, 

called BesselJ. The answer, also in Tradi tionalForm, contains typeset forms for the gamma function and a 

hypergeometric function. 

I Jz Jv(z) dz /I TraditionalForm 

I i-v-t zv+2 r(; + I) 1 F2 ( f + I; v + I, f + 2; - ~ ) 
r(v+l)f(f+2) 
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Three common special characters to be aware of in s tandardForm and Tradi tionalForm are e, i and d. The 

characters l' (entered as :88: or\ [Expon8ntialE] ) and i (entered as :ii: or\ [Imaginary!] ) stands for E, 

the base of the natural logarithm, and I, the imaginary unit; the keyboard letters e and i are uonderstood to be ordinary 

variable names. Si_milarly, the character d (entered as :dd: or\ [Diff8r8ntialD] ) is used in integrals, while the 
keyboard letter dis also an ordinary variable name. 

The following integral uses the special characters e, i and d 

The default input and output format types are set by pulling down the Cell menu and choosing the desired type from 
the Default Input (or Output) FormatType submenu. 

3.2 Converting between Forms 

To convert from one display form to another, select the cell containing the expression to be converted, then pull down 
the Cell menu and choose the desired form from the Convert To submenu. Note, that converting from one form to 
another requires the Mathematica kernel to be running. 

For example, ifone type~ Limit [ Sin [x" 2] / x" 2, x -> O] into an input cell, select the cell, choose Convert 
To TraditionalForm, the following is the result: Mathematica knows that Limit traditionally has a special 

two-dimensional form 

I sin(x2) 
lim---
x➔o x2 

One can superficially change from one form to another by pullilng down the Cell menu and choosing a form from the 
Display As submenu. Displaying Limit [ Sin [ x" 2] / x" 2 , x->0] as Tradi tionalForm displays the 

formula with a (proportional) font and italic variable names, but does not translate Limit into its traditional form. 

I Limit[Sin[x"2]/ x"2, x -> O] 

Display As\ TraditionalForm (as opposed to Convert To \TraditionalForm) is useful when formatting expressions 
that are not intended for use as input. Displaying an expression in a certain form does not require the Mathematica 
kerel to be running. Here is an expression in StandardForm 

I c - .!.. mmp1 
n {F, G) = 1 - m [ 2 

] 

✓var (WXY) 

Here is the same expression after choosing Display As \ TraditionalForm 

I 
I c- -mmp1 

Il(F, G) :::: 1 - cl>[ 2 
] 

✓var(Wxv) 

Mathematica returns an error message if one tries to convert the previous expression to Tradi tiorialForm (instead 

of displaying it as Tradi tionalForm ) because the expression is not valid input. 
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I c-.:.. mmp1 
n (F' G) = l - m [ 2 1 

✓var (WXY) 

c-.Lmm 1 
TI(F,G)::::1-gi[ 2 p] -- ✓var (W0 ) 

To override the default format type for output of a formula, wrap the formula with the name of the desired form. 

I (Sin[n] 2 + Binomial[n, m] -Gamma[m]) // rraditionalForm 

I sin2(n) + ( ; )- r(m) 

To generate traditional notation for a formula without evaluating the formula, ·use HoldForm 

I (F[b]-F[a] =Limit[Sum[f[x1] b.x, {i, l, n}], b.x ➔ O]) //HoldForm// 

TraditionalForm 

I F(b) - F(a) = lim 'L /((x;)*) ~x 
Ax O i=I 

3.3 Special Characters and Forms in Input 

Some special characters have built-in interpretations as Mathematica constants, operators, or functions, and those that 
do not there can be assigned one. For example, the symbol 1r is interpreted as the constant Pi , ad the symbols e and i 

represent the constants E and I. {Lower-case pi is the only Greek letter with a built-in interpretation.) 

I ei" 

I -1 

The character ,t, does not have a built-in interpretation, so it may be used as a variable name. Here, a value, 

GoldenRatio, is assigned to ,t, 

I ~ = : (1+v's); 

The variable ,t, can now be used in calculations. 

I (~2 == ~ + l) // Simplify 

I True 

Many functions can be represented by a special character, and in most cases the character has the full name 

\ [FunctionName]. For example, the logical/unction And can be represented by the character A (entered as 

\ [And] or ,and, ) 

I (71' > e) A (4 > 3) 

I True 

The set/unction Intersection can be entered using the character n by typing \I Intersection I 
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I {a' b' C} n {b' C' d} 

I {b, c} 

Other such functio!)S are Or (V), Union (l.J), Sum (L), Product (fl), and Integra1 (f) 

It is important to keep in mind that many pairs of special characters look alike but have different meanings. 

For example, \ [ Sum] (L) looks similar to \ [ Capi ta1Sigma] (:t) , but Mathematica interprets the former as the 
mathematical function Sum and the latter as the letter I:. 

Other pairs to be aware of are\ [Product] (Ill and\ [Capita1Pi] (Il), \ [Union] (U) and the keyboard 

capital letter U, and ordinary multiplication\ [Times] ( x ) and the vector cross product\ [Cross] ( x). 

In addition, many Mathematica operators have special forms that can be entered using keyboard aliases. One way to 
enter a replacement rule is to use the form x➔n. 

I Cos [x] /. x ➔ 7t' 

I -1 

Mathematica also understands the arrow character ➔, entered by typing:->: or\ [Ru1e]. (Note that the character 

\ [Ru1e] is different from the character\ [RightArrow]. 

The relational operators =, !=,>=and<= have corresponding keyboard aliases. But this is not the case for>-,~, 
-=or=etc .. 

I < 3 == 7t', 3 ;. 7t', 3 i!: 7t', 3 :s 7t' , 3 i!: 7t', 3 = 7t', 3 = 7t', 3 • 7t' } 

I {False, True, False, True, 3 .: Tr, 3:::: Tr, 3 == Tr, 3 = Tr} 

Mathematica preserves style information for input on the screen, but ignores the styles when sending input to the 
kernel. Each a in the following input is identical for the purposes of calculation. 

However, the same letter represented in different styles such as Script, Gothic, Double-Struck or Extended Latin is 
treated as different. Hence ordinary keyboard letters do not mean the same as accented, script, Gothic, or 
double-struck letters. 

1a+a+a+a 
I a+a+a+a 

Because Mathematica normally ignores style information in input, one can highlight interesting parts of a formula 
without changing its meaning. In calculus teaching, for example, it may be desirable to highlight related parts of an 
integral when teaching integration by substitution. 

I J2xcos[x2
] cllx 

I Sin [x 2
] 
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3.4 Styled Text in Output 

StyleForm generates output using styld text. StyleForm take as arguments the expression to change, along with a 
sequence of options describing the changes. Here is a symbol printed with blue text 

I StyleForm[06 +1, FontColor ➔ RGBColor[O, O, 1]] 

I i + n6 

The expression is valid Mathematica input, so one can apply mathematical functions to it. The kernel ignores the style 
changes, the result is therefore in the default output style 

I Factor[%] 

I ( i + n2 ) ( i - n2 + Q4 ) 

Options that alter the textual characteristics ofan expression typically start with the keyword Font. Some of the 
• 

options that control common.changes are FontSiza, FontSlant, FontWaight, and FontFamily. 

Here is the lower-case Greek alphabet using progressively larger font sizes, which is controlled by the option 

FontSize . 

SequenceForm ff Table( StyleForm(FromCharacterCode[944 + n], 
n 

FontColor ➔ Hue[--] , 
25. 

FontSiza ➔ n + 10, 

FontWeight ➔ "Bold" ] , {n, 25}] 

I a(3y<5e~r,eLKAµY~07rpc;a-c u</) xl/fw 
where 

I ? StyleForm 

StyleForrn[expr, options] prints using the specified style options. 
StyleForrn[expr, "style"] prints using the specified cell style 
in the current notebook. 

I ? SequenceForm 

SequenceForrn[exprl, expr2, ... ] prints as the textual concatenation 
of the printed forms of the expri. 

I SequenceForm ff { "a 11 
, "b 11 

, 
11 c 11 

} 

I abc 

Typical values for FontSlant are "Plain", "Italic" and "Oblique". Here is an expression in italic type. 

I StylaForm["Slanted text", FontSlant ➔ "Italic"] 

I Slanted text 
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The style fonn can also be controlled in a graphic. 

Plot ( x
2 

, {x, -2 71', 2 71'}, 

I 
Sin [x2 ] 

PlotLabel ➔ StyleForm["Wave Packet", FontSize ➔ 16, 

FontWeight ➔ "Bold", FontSlant ➔ "Italic"]]; 

Wave Packet 

0.4 

0.2 

-0.2 

The graphics option TextStyle controls the default text styles used in a graph. The value assigned to TextStyle 

is a list of font options to apply to all the text in the graph. 

Sin [x2 ] 
Plot [ ----, {x, -2 71', 2 71'}, 

x2 

PlotLabel ➔ "Wave Packet", 

TextStyle ➔ {FontSize ➔ 16, FontFarnily -> "Times", FontWeight ➔ "Bold"}]; 

Wave Packet 

See also StyleBox, StylePrint, CellPrint, $TextStyle,FormatType, Format, 
FontVariations 
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14 Notebook Programming 

4.1 Notebooks Are Expressions 

In Mathematica 3.0 notebooks and cells are represented as Mathematica expressions, which means that they can be 
created and manipulated using the Mathematica programming language. To see the expression form of part of a 

notebook, one selects one or more cells in the notebook, and chooses Show Expression (resp. [IBjrr][lf@XE] ) from 
the Format menu. 

4.2 Cells 

A cell in a notebook is represented by the expression Cell [contents," cellstyle"]. Common values for 

cellstyle are Title, Section, Text, Input, and Output. 

For example, here is the expression representing a text cell containing the word "Hello". 

I Cell ["Hello", "Text"] 

I Cell [ Hello , Text ] 

The function stylePrint creates a new cell of a given style, and prints a given expression into it. Here a text cell is 

created 

I StylePrint["A new cell of type Definition", "Definition"] 

I A new cell of type Definition 

StylePrint and all other notebook-manipulation commands work inside programming functions. Therefore, a Do 

loop can be used to create a sequence of several small-text numbered cells. 

I 
Do [ StylePrint [ "Cell 

{n, 5}] 

number " <> ToString[n], "Small Text", 
FontSize -> 10 + 2 n, 
TextAlignment -> Center] , 

Cell number 1 

Cell number 2 

Cell number 3 

Cell number 4 

Cell number 5 
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CellPrint prints a given cell expression into the current notebook. 

I Cell.Print [ Cel.l. [ "This is a new cel.l.", "Smal.l.Text", 

Cel.l.Frame -> True ] ] 

This is a new cell 

Cell objects accept options, just as other Mathematica functions do. 

Cel.l.Print[ Cel.l. ["Appendix A", "Text", 

Background -> GrayLevel. [ 0 . 85] , 

Cel.l.Frame -> True, 

FontWeight -> "Bol.d", FontSize -> 18, 
TextAl.ignment -> Center] ] 

Appendix A 

To learn the types of options a cell can take, select a cell an change some of its options using the commands under the 
Format menu or the Option Inspector, and then show the expression form of the cell using the Show Expression 
menu command. Here is a cell with several options changed 

• I Appendix B.1 , Tables of formuoi. 

Here is the expression form of the cell. 

Cell["Appendix B.1 : Tables of formulas", "Text", 
CellFrarne->3, 
CellDingbat->"\[FilledSqu~re]", 
CellMargins->{{18.375, Inherited}, {I~herited, Inherited}}, 
FontWeight->nBold", 
Background->GrayLevel(l]] 

The expression form of a cell can be edited directly, and any changes made are reflected when the cell is converted 
back into its display form'. If a cell contains styled text, the separate strings of text are part of a list inside a 
TextDa ta object, as in the following example 

I 

Cel.l.Prin t [ Cel.l. [ TextDa ta [ { "Here is some " ,, 

Styl.eForm["styl.ed ", FontCol.or -> Hue[O], 
FontSl.ant -> "Ital.ic"], 

".text." } ] , 

"Text", Cel.l.Frame -> 3, TextAl.ignment -> "Center" ] ] 

Here is some styled text. 

Because a cell or cell group is a Mathematica expression, hence Mathematica programs can be used to generate cells 
automatically. The function Cel.l.Prin t in a Do-loop generates a sequence of cells as output. 
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Do [ CellPrint [ Cell [ "This is a cell", "Text", 

This is a cell 

I This is a cell 

I This is a cell 

I This is a cell 

I This is a cell 

. i 
CellFrame -> 3, CellFrameColor -> Hue[--] , 

20. 
i -10 

FontSize -> i, FontColor -> Hue[--] ] ] , {i, 10, 20, 2}] 
20. 

I This is a cell 

I 
I 
I 
I 
11 

In this example, StyleBox objects are used to produce colored text. The size, color, and background of each character 

is individually set according to the increment i. 

n = 71. ; 

CellPrint[Cell[TextData[ 
. i 

Table [ StyleBox [ ToString [i] , FontColor ➔ Hue [ - ] , 
n 

i 
.Background ➔ Hue [ Mod [ . 5 + - , 1] ] , 

n 
i 

FontSize ➔ -] , {i, 20, n}]], "Output"]] 
2. 
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Groups of cells are represented by a list of cells inside a CellGroupData object. If a notebook has automatic 

grouping turned on, Mathematica automatically wraps CellGroupDa ta objects around groups of cells; if not, 

Mathematica groups cells according to the groups manually set. 

4.3 Notebooks 

■ 4.3.1 Notebooks as Expressions 

A Mathematica notebook is represented by a list of cells inside a Notebook object. Here is a notebook consisting of 

three cells. 

I nb = Notebook [ { Cell ["Notebooks", "Title"] , 

Cell["Creating notebooks", "Section"], 

Cell ["To create a new notebook, ... ", "Text"] } ] 

I Notebook[{Cell[Notebooks, Title], Cell[Creating notebooks, Section], 
Cell[To create a new notebook, ... , Text]}) 

However, Mathematica does not automatically convert a Notebook expression into a displayed notebook. To create 

a new notebook from a Notebook expression, use NotebookPu t. 

I newNb = NotebookPut [ nb ] 

I • NotebookObj ect -

The notebook appears in a separate window 

otebooks 

SetOptions allows one to change the option settings for a notebook expression, in this case the notebook 

background is colored to yellow. 

I SetOptions [ newNb, Background ~ RGBColor [ 1, 1 , 0] ] ; 

NotebookPut can be used the same way as CellPrint above. The command Notebook creates a new window 

which therefore represents a complete notebook document. For Notebook expressions one may use the same options 

149 



as for cells, and additional options that are defined only at the Notebook level. For example, Window Size 

specifies the extension of the window. 

The subsequent input 

NotebookPu t [ Notebook [ { Cel.l. [ "Notebook Programming" , "Ti tl.e"] , 

Cel.l.["Window size is 300 x 220 pixel.s", "Text"]}, 

FontSize -> 20, 

FontCol.or -> RGBCol.or [O, 0, 1] , 

WindowSize -> {350, 220}] ] ; 

creates a window of size 350x220 pixels containing blue text. 

D Untillf!d·1 •" · t!!llilEi 

Notebook 
Programming 

'~'indo\v size is 300 x 220 pixels 

..ill 

• 

] 

~ 
The command NotebookGet reads an open notebook as an expression to be manipulated by the Mathematica 

kernel. 

The command NotebookCrea te creates an empty notebook. 

I newerNb = NotebookCreate[] 

I -NotebookObj ect -

To place cells into the empty notebook just created, use NotebookWri te 

I NotebookWri te [ newerNb, Cel.l. [ "Chapt 4 : Notebook Programming", "Section"]] 

The section cell appears at the top of the new notebook. 

□ Untitled-:28 . ·. ~ · II~ Ei 
• 

■ Ch apt 4 : Notebook Programming ] 

~-------..!LI ~ 
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4.4 Controlling Notebooks with the Kernel 

There are several ways to refer to a notebook using kernel functions. EvaluationNotebook [] refers to the 

notebook in which the command EvaluationNotebook [] is being evaluated. To change the background color of 

the current evaluation notebook, type the following 

I SetOptions [ Eval ua tionNotebook [] , Background ➔ GrayLevel [. 8] ] ; 

SelectedNotebook refers to the currently selected notebook (usually indicated by having a highlighted title bar), 

and InputNotebook refers to the notebook in which keyboard input will appear. In many cases the two functions 

refer to the same notebook; one exception is when a palette is the selected notebook. Ordinary, palettes do not receive 

typed input, so a palette may be the selected notebook while another non-palette notebook is the input notebook. 

Many features of the front end, such as opening, closing, saving, and printing notebooks, can be duplicated using 

kernel functions. Here, another new notebook is created. 

I anotherNb = NotebookPut [ Notebook [ { Cell [ "Another Notebook", "Subtitle"]}] ] 

I -NotebookObj ect -

Notebook Save saves the new notebook under the givenfile name. 

I NotebookSave [ anotherNb, "New .nb"] 

With the command NotebookClose the new notebook is closed. 

I NotebookClose [ anotherNb ] 

NotebookOpen ["name"] opens the notebook with file name "name" from the hard disk (assuming the file is in 

the current directory, or one specifies the full pathname of the file) into a new window, and NotebookPrint prints 

a notebook to the currently selected printer. 

Furthermore, Mathematica maintains information about the current selection in a notebook in the object 

NotebookSelection. 

One can read the contents of the current selection using NotebookRead. One may change the options of the current 

selection using SetOptions. 

Moreover, on can locate contents of a notebook using the commands No tebookLoca te and No tebookFind. The 

command NotebookLoca te ["tag"] sets the current selection to be the first cell in the selected notebook that 

has the cell tag tag. 

For example, evaluating NotebookLoca te [ "Hyperlinkl "] scrolls the current notebook to the first cell that has 

the cell tag "Hyperlinkl" (which actually is in Chapt. 1.1.6 of this notebook) 

I NotebookLoca te [ "Hyperlinkl"] 

A tag may be assigned to a cell by selecting a particular cell, and choosing from the Find menu 

Add/Remove_Cell_Tags, or by changing the value of the cell option Cell Tags in the expression form ofa cell. 

Cell tags are generally not displayed on the screen unless Show_ Cell_ Tags from the Find menu is chosen. 
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Hyper/inks inside notebooks are typically implemented using NotebookLocate. One can also specifiy a notebook 
to search other than the currently selected notebook. 

NotebookFind [ notebook, data ] sets the current selection to be the next occurence of data in the 
notebook object notebook. 

For example, Notebo'okFind[ SelectedNotebook [ ] , "ma th"] generally scrolls the currently selected 

notebook to the next occurence of the string ma th. Additonally, one can specify what part of a notebook to search by 

specifying elements such as CellContents, CellStyle, or Cell Tags. 

The following command selects the next graphics c~ll in the selected notebook. The result is a 
NotebookSelection object. 

I NotebookFind[ SelectedNotebook[], "Graphics", Next, CellStyle] 

I NotebookSelection [ - NotebookO?j ~ct · - ] 

The selection jumps to Chapt. 3.4 in the current notebook. 

Similarly, the following command selects all output cells in the selected notebook, and then deletes the cells using 
NotebookDelete. 

I 
With [ {selectedNb = Selectec!Notebook [] } , 

NotebookFind[selectedNb, "Output", All, CellStyle]; 
NotebookDelete[selectedNotebook] 

] 

The current selection of a notebook can be moved, evaluated, copied and so forth, using notebook-manipulation 
commands such as SelectionMove, SelectionEvaluate and NotebookRead. 

Seealso GraphicsData, SetSelectedNotebook, SelectionMove, SelectionEvaluate, 
Notebooks, ButtonNotebook, Options, FullOptions 

I ? SetSelectedNotebook 

SetSelectedNotebook [notebook ] makes the specified notebook be the 
currently selected one in the front end . 

I ? SelectionMove 

SelectionMove [ obj , dir, unit ] moves the current selection in an open 
notebook in the front end in the direction dir by the specified 
unit. SelectionMove [obj, dir, unit, n] repeats the move n times . 

I ? SelectionEvaluate 

SelectionEvaluate [notebook ] replaces the current selection in 
a notebook with the result obtained by evaluating the contents 
of the selection in the kernel . SelectionEvaluate [notebook , sei] 
sets the current selection after the evaluation to be as specified by sel . 

I ? Notebooks, 

Notebooks [ ] gives a list of notebooks currently open in the front end. 
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I ? ButtonNotebook 

ButtonNotebook [ ] gives the notebook , if any, that contains the 

button which initiated the current evaluation . 

I ? Options 

Options [symbol ] gives the list of default options assigned to a symbol . 

Options [ expr ] gives the options explicitly specified in a particular 

expression such as a graphics object . Options [ stre~m ] or Options [ "sname "] 

gives options associated with a particular stream. Options [object] gives 

options associated with an external object such as a NotebookObject . 
Options [ obj , name ] gives the setting for the option name . Options [ obj , 

{namel, name2, } ] gives a list of the settings for the options namei . 

I ? FullOptions 

FullOptions [expr] gives the full settings of options explicitly specified in 
an expression such as a graphics object . FullOptions [ expr , name ] 

gives the full set ting for the option name . FullOptions [ expr , 
{namel, name2, } ] gives a list of the full settings for the 

options namei. FullOptions [object] gives the full settings for 

options associated with an external object such as a NotebookObject 
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I s Creating Buttons and Palettes 

5.1 Predefined Typs of Buttons 

■ 5.1.1 Simple Buttons for Textual Substitution 

In order to create a button pull down the Input menu and choose the type of button wanted from the Create Button 

submenu, e.g. Custom ... . Mathematica places the button chosen with an empty placeholder [ □) in the notebook at the 

current cell insertion point, e.g. here 

I 
Then, one may type some contents for the button, such as the single character 1r 

I 
The new button is by default inactive hence clicking has no effect. To make the button active select the cell containing 

the button, pull down the Cell menu and choose in the Cell Properties submenu the item Cell Active . The tiny "A" 

next to the cell bracket indicates the cell is active. Then, clicking the acitive button will paste the character 1r at the 

current cell insertion point. 

Hence buttons can be used to paste arbitrarily complicated expressions into a notebook. Note, that the text style 

displayed in a button has no effect on the input pasted into the notebook, thus font size or color of the expression 

displayed in a button can be changed. 

I 
In order to make a button appear in a separate (movable) window select the button (or the cell containing the button), 

then pull down the File menu and choose the menu item Generate_Palette_from_ Selection. The palette window 

can be moved by "dragging" the pallette by its title bar, and can be closed by clicking the window's close box f x) . 

-(x-xo)2 
Note that the contents of a button replace the current text selection if any " .../2,r . Here a selected text has been 

2 /'I' 

replaced by the content of the button with the Gaussian function. 

■ 5.1.2 Buttons with Wrap around 

To create a button whose contents are pasted around the current selection use the notion of placeholders. E.g. , to 

create a button that allows to wrap the function Factor around the current selection, type the expression Factor[■ [ 

in the button. The symbol ■ is called a selection placeholder and it can be typed either by \ I Selection Placeholder) or 

its alias ;spl; . 

(Note that the selection placeholder character is different from the character\ (FilledSquare[ .) 
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Here is a button created by choosing Custom ... from the Create Button submenu of the Input menu, then typing 
Factor[\ [SelectionPlaceholder] ] ( or the shortcut Factor[ :spl: ) ) into the button. 

Cell[BoxData[ 
ButtonBox[ 

RowBox [ {"Factor", 11 
[ 

11
, 

11
\ [SelectionPlaceholder] ", 

ButtonStyle->None]], "Input", 
Active->True] 

"]"}], 

Then the button has to be made acliFe, either by making the cell containing it active or generating a (floating) palette 
from the button. Next one types the expression to be factored into a new input cell and select it. Clicking the button 
pastes the contents of the button into the input cell, replacing the selection placeholder with the expression to 
befactored. Typing ~II!!l] evaluates the expression 

I Factor[x4 
- 10 x 3 + 35 x 2 

- 50 x + 24] 

I (-4+x) (-3+x) (-2+x) (-l+x) 

Creating a button by changing ButtonStyle➔None to ButtonStyle➔"Evaluate" (which has to be done by hand in 
the unformatted cell because the CreateButton menu does not offer these options) pastes its contents around the 
current selection and then evaluates it in place, replacing the current selection with the result. 

I Factor[■ ] (• ButtonStyle->"Evaluate 11 
•) 

Cell [BoxData [ 
RowBox [ { 

ButtonBox[ 
RowBox[{"Factor", "[", 
ButtonStyle->"Evaluate"], 

RowBox [ { " ( *", " ", 
RowBox[{"ButtonStyle", 

"Input", 
Active->True] 

"\[SelectionPlaceholder]", 
ti 

"->", 

ti , 

"\"\<Evaluate\>\""}], 
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Hereisafourthorderpolynomial x' - 10 x 3 + 35 x2 - 50 x + 24 in order to test the button. 

I x' - 10 x 3 + 35 x 2 
- 50 x + 24 (• Use the Button with Factor[■] •) 

The buttons in the standard AlgebraicManipulation palette use the Evaluate style. 

(Note, that when using an Evaluate button be aware that% refers to the result of the subexpression evaluated, and not 
necessarily to the entire contents of the cell.) 

Two other predefined styles of buttons are ButtonStyle➔"EvaluatcCcll" and ButtonStyle➔"CopyEvaluatc". The 
former pastes the contents of the button around the current selection, and evaluates the entire cell containing the 
expression. The latter pastes the button contents around a copy of the selected input, then evaluates it in place. 

To enter a button that pastes a function with more than one argument use the selection placeholder ■ to represent the 
current selection, then use placeholders to represent slots for additional arguments of the function. A placeholder o 
is entered by typing either □ or its alias ,pl,. (Note that the placeholder is different from the empty square character □ 
.) 

For example, the function Solve takes two arguments, (i) the equation to be solved, and (ii) the variable(s) for which 

the solution has to be solved. To enter a button that pasted Solve around the current selection and leaves space for 

the second argument , type Solve( ■ , □ ) into a button. 

; .. '- ,h"A ✓'·')' ,C,;,·.··o:.'.,.,,. l j: I i .. soive· 11',;t"a :/• 
1 £_:::>~ ... #,. e • .-'(l < •c, \. 

After making the botton "Solve" active it can be used to solve the following fourth order equation 
x' - 10 x3 + 35 x2 - 50 x + 24 == 0 

I x' - 10 x3 + 35 x2 
- 50 x + 24 == 0 

I Solve [x' - 10 x3 + 35 x2 
- 50 x + 24 == 0 , ] 

The selected equation appears in place of the selection placeholder ■, and the text insertion point moves to the next 
placeholder o , where the variable x is typed in. 

I Solve [x' - 10 x3 + 35 x2 
- 50 x + 24 == 0 , x] 

I {{x ➔ l}, {x ➔ 2}, {x ➔ 3}, {x ➔ 4}} 

Then press ~@:I] for evaluation. 

Differentiation button 

Another suitable example is differentiation; the function D takes two arguments, a function to be differentiated and a 

variable of differentiation. To enter a button that pastes D around the current selection an leaves space for the second 

argument, type the expression D [ ■, □ l into a button. 

I '". '..r,MoJ/ ~\ ·:l-\· ·:· f'~ 

After making the button active, one may use it by typing an expression (e.g. f [x] g [x] ) to be differentiated into a 

new input cell and selecting it. 

When the button containing D [ ■ , □] is pressed, the following is the result 

I D[f[x] g[x], □] 
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The selected expression f [x] g [x] appears in place of the selection placeholder, and the text insertion point moves 

to the placeholder, where one types the variable of differentiation, then press @+rrru to evaluate the input. 

I D [f [x] g [x] , x] 

I g[x]f'[x)+f[x]g'[x] 

Series button 

A button can contain only one selection placeholder, but as many regular placeholders as desired. Here is a button 
containing several placeholders 

I i2 

When the button is clicked, the current selection replace the selection placeholder ■ in the button's contents, and one 
moves from one placeholder to the next by pressing the ~ key or using the mouse pointer. 

5.2 Creating Palettes 

A pale/le is simply a notebook that contains an array of buttons, and has special settings that dictate its properties and 
appearance on the screen. 

To create a new palette, choose Create_Table/Matrix/Palette from the Input menu. In the dialog box that appears, 
enter the number of rows and columns the palette should contain, and check the boxes indicating whether to draw lines 
separating the rows and columns, and whether to draw a frame around the palette. 

The following palette has one row and three columns of buttons. By default, each button contains an empty 
placeholder. 

To define symbols to be pasted when the button is pressed, type a symbol into each placeholder. Here the placeholders 

are filled with 1r, e and i. Then activate the cell containing the palette. 

To put the palette into a separate window, select the entire palette with the mouse, and then pull down the File menu 
and choose Generate_Palette_from_Selection. A copy of the palette will appear in a separate window. When one of 
the (activated) buttons in the palette is clicked, the contents of the button will appear in the active notebook at the 
current text insertion point. 

To l·11111·er1 u 11a/c/lL' i11111 w1 edi1ahlc 1101eho11k by selecting the palette window (by clicking on its title bar or selecting 

its name from the Window menu) and choose Generate_Notebook_from_Palette from the File menu. 

This was done for the PageBreakButton palette which was converted to an ordinary notebook in order to study the 

underlying code in detail by unformatting the button cell . PageB~•,~,l$~~~;!?f.ijs~tif1 

I openNotebookButton [ "PageBreakButtonNotebook. nb", 1, subDir] 
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5.3 Custom Button Actions 

A button can perfonn any action that can be programmed with Mathematicds programming language. 

The internal expression fonn of a button is But tonBox [ con ten ts, options] . The options to But tonBox 

control (i) the action taken when the button is clicked, (ii) the appearance of the button, and (iii) any additional data 

associated with the button. 

The option that changes the function which a button perfonns, is ButtonFunction, which accepts a function to 

evaluate when the button is pressed. To create a button with a custom function, pull down the Input menu and choose 

Custom ... from the Create Button submenu, . 

D Edit BuUon EJ 

JIFrontEndExecute[ { 
.?! FrontEnd'Notebool<Apply[ 
,,: FrontEnd'lnputNotebook[ L II, Placeholder)})& 

<B.~9"iSou.i.e:' (Automatic r Button llata: 

(Automatic 

r Buttpntl~ I None 

~B~tv~ fNone 

· . r· Button..,. active 

.::.J' 
3. 

~ 
3· 

and then type the desired ButtonFunction in the button function field in the dialog box. 

-~---.,., 
1:1• L 

,, \ 

Whe one a create a button that uses kernel functions, one must change the value of the ButtonStyle to None and 

change the value ofButtonEvaluator to the name ofan available kernel (such as "Local") or Automatic. 

The setting for ButtonFunction can be changed by directly editing the expression fonn of the button, or selecting 

the button and then choosing Edit_Button from the Input menu. 

Button "Load package DiracDelta" 

Here is the expression fonn ofa button that loads the package Calculus· DiracDel ta·. 

Cell[BoxData[ 
ButtonBox [ "Load package DiracDelta", 
ButtonFunction:>Needs["Calculus·oiracDelta·"l, 
ButtonEvaluator->"Local", 
ButtonStyle->None 
]], "Input"] 

I ;Load paQk!ge ~~racDel ta I 
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Button "red'' 

Here is the expression form of an active button that changes the currently selected text in the input notebook to red. 

Cell[BoxData[ 
ButtonBox["red", 

ButtonFunction:> SetOptions[NotebookSelection[InputNotebook[]l, 
FontColor-> Hue[0]], 

ButtonEvaluator->Automatic, 
ButtonStyle->None, 
Active->True 
11, "Input"] 

When the button is clicked, any currently selected text becomes red. 

The function used in ButtonFunction needs to specify where any output for the function should be placed. (The 

button functions defined above did not return a value.) 

Button "Create random number" 

For example, the button function setting ButtonFunction: >Random [] will not display any output unless one 

creates an output cell using a command such as NotebookWri ta. 

Here is the expression form of a button that creates a new output cell containing a random number in the currently 
selected notebook, using StylePrint. 

Cell[BoxData[ 
ButtonBox[ 

RowBox [ {"Create", " ", "random", " ","number"}], 
ButtonFunction: >StylePrint [ Random[], "Output"], 
ButtonEvaluator->"Local", 
ButtonStyle->None, 
Active->True] 1, "Input"] 

I Crea ta random number 

1 o. 710919 

Note, that button definitions must be created using a subsetz of standard Mathematica syntax conventions. As a 
general rule, button definitions can be made using the FullForm representation of expressions, as well as the 

operators -> and :> , lists in { } form, and pure functions using # and & . 

For example, if one wants to use a compound expression as a value to ButtonFunction, one cannot use the input 

form expr1 ; expr2 ; instead one must use the internally used form 
CompoundExpression[expr1 , expr2 ], and to assign a value to a variable use the full form Set instead of its 

abbreviation 11 = 11
• 

Button "Insert J,eading" 

Here is the expression form of an active button that inserts a title cell at the begining of the input notebook. 
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Cell [BoxData [ 
ButtonBox[ 

RowBox [ {"Insert", " ", "heading"}] , 
ButtonFunction:>With[{Set[iNb, InputNotebook[] 1 }, 

CompoundExpression[ 
SelectionMove[iNb, 
NotebookWrite[iNb, 

Before, Notebook], 
Cell [TextData [ { 

"Notebook by [", 
StyleBox["R.Kragler", 
FontSlant->"Italic"], 
"Example", 
Background->Hue[0.15], 
TextAlignment->Center, 
CellFrame->2 

] ] 

],ButtonEvaluator->Automatic, 
Buj:tonStyle->None ] ] , "Input", 

Active->True ] 

~t~~~~:11e~~~~ .. · I -,~ . ·. . I 

"] II } l 1 

A button's options can be changed using items under the Button Options category of the Option Inspector. More 
sophisticated button actions can be programmed by changing the values of the options ButtonData and 
ButtonSource. Examples of more sophisticated buttons and palettes are available in the Help Browser, under 

Getting Started/Demos category. 

Seealso ButtonData, ButtonSource, FrontEndTokenExecute, FrontEndToken, 

FrontEndExecute, ButtonFrame, ButtonNote 

I ? ButtonData 

ButtonData is an option for ButtonBox which specifies the second 

argument to give to the ButtonFunction for the button when the 

button is active and is clicked on. 

I ? ButtonSource 

ButtonSource is an option for ButtonBox 
argument to give to the ButtonFunction 

button is active and is clicked on. 

I ? FrontEndExecute 

which specifies the first 

for the button when the 

FrontEndExecute [expr] sends expr to be executed by the Mathematica front end. 

I ? ButtonFrame 

ButtonFrame is an option for ButtonBox which specifies the type of 

frame to display around a button . 

I ? ButtonNote 

ButtonNote is an option for ButtonBox which specifies what should be 

displayed in the status line of the current notebook window when 
the button is active and the cursor is placed on top of it. 
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