

Учебнометодические пособия
 Учебно-научного центра ОИЯИ Дубна

УНЦ-2000-8

R.Kragler*

Mathematica Tutorial Course

[^0]
R.Kragler*

Mathematica Tutorial Course

[^1]
Краглер Р.

 Вводный курс по системе МатематикаВ настоящее издание включены три лекции, прочитанные по системе Математика в УНЦ ОИЯИ.

В первой лекции дан обзор основных возможностей системы Математика. Подробно обсуждается применение системы для численных и символьных вычислений, графики и программирование на языке системы. Особое внимание уделено новым возможностям Математики 3.0 таким, как создание интерактивных документов.

Во второй лекции основное внимание уделено стилям программирования в системе Математика. Демонстрируются возможности языка высокого уровня системы и его использование в различных стилях программирования. Изложение иллюстрируется многочисленными примерами.

Третья. лекция содержит введение в пользовательский интерфейс системы Математика. Приведены примеры генерации кнопок и палитр, вращающихся иконок, гиперссылок и т.п.

Лекции прочитаны в Учебно-научном центре ОИЯИ профессором Р.Краглером в рамках цикла лекций «Современные проблемы естествознания».

R.Kragler
 Mathematica Tutorial Course

Included are three lectures on the Mathematica system given at the University Centre of JINR.

The first lecture reviews the main features of Mathematica. Treated in detail are the application of the system for numerical and symbolic calculations, graphics, and programming in the language of the system. Special attention is paid to the new capabilities of Mathematica 3.0 like creating interactive documents.

The second lecture deals mostly with the styles of programming in Mathematica. The capabilities of the high-level language of the system and its application in different styles of programming are shown. The narration is amply illustrated with examples.

The third lecture is an introduction to the user interface of Mathematica. Given are examples of generating buttons, palettes, rotating icons, hyperlinks, etc.

The lectures were given by Prof. R. Kragler at the University Centre of JINR within the lecture cycle «Modern Problems of Natural Sciences».

University Center Joint Institute of Nuclear Research / Dubna

Mathematica Seminars
October 27-29, 1998

Survey of Mathematica Features : Numerics, Symbolic Computation and Graphics

Prof. Dr. Robert Kragler
FH Ravensburg-Weingarten /University of Applied Sciences kragler@fh-weingarten.de
Abstract

The lecture will give a survey on Mathematica Version 3.0 and it will be demonstrated how Mathematica notebooks can be used as convenient means for exchange of scientific information in the field of Mathematics, Physics and Engineering.
The salient features of Mathematica - i.e. numerical and symbolic calculations, graphics and the high-level programming language - will be discussed in this lecture in detail online and illustrated by computer animations taken from different areas of science and engineering. Special emphasis is laid upon the new features of Mathematica version 3.0 such as typesetting and the interactivity of Mathematica documents. All examples are particularly chosen to demonstrate how the effectiveness of science resp. engineering education can be improved using CAS tools. Finally, an outlook on further feasible developments of CAS is given.

Some general remarks on CAS

Motivation

In the past logarithmic tables, slide rulers and collections of mathematical formulae (such as the famous "Table for Integrals, Series and Products" of Gradshteyn \& Ryzhik) had been indispensible tools for physicists and engineers. At least the first two requisites had been replaced by electronic pocket calculators which in turn is nowadays replaced by more powerful PCs and portable laptop computers. The computing power available today on one's desk required only one decade ago the usage of mainframe computers. There are only few real hard, number-crunching problems in science which cannot be accessed without a super computer.
It is generally accepted that one has to resort to a computer in order to do numeric calculations.
We are all used to computer graphics. The synthetic images generated by computers - (just think of Steven Spielberg's movie Jurassic Park with the dinosaurs) - are astonishingly realistic so that the buzz word virtual reality is used. However, even the famous domain of chess game was recently conquered by computers; on May 16, 1997 the renouned Russian chess word-champion G. Kasparov was beaten by Deep Blue, an IBM super computer. This example for artificial intelligence demonstrates that customized hard- and software combined with computer power commerically available can effectively be used for solving intricate problems.
Perhaps less spectacular and thus less know to the public is the fact that even symbolic calculations, such as manipulation of formulae which usally required paper and pencil, are meanwhile done by computers, and as will be shown later faster and more reliable than humans who tend to make errors when performing tedious rewriting and simplifications of terms. Today, the term computer algebra is generally used to characterize machine processing of symbolic expressions in mathematics on a computer.

Reasons using CAS

The very reason resorting to CAS is always the fact that calculations necessary for the solution of a problem turn out to be so voluminous that they can no longer be done with paper and pencil. This may even lead to a point where the quantity of necessary computations turns over into a qualitative distinction: i.e., although a mathematical problem may in principle be solvable by a finite number of steps the amount of steps, however, makes practical execution impossible.
Due to availability of CAS the qualitative change in mathematics takes place in several ways : at first CAS will be applied to such problems which could be solved in a conventional way but require a considerable amount of computations.

The following example of the calculation of integrals with rational function may illustrate this :

$$
\begin{aligned}
& \int \frac{x^{5}}{\left(x^{4}+x^{2}+1\right)^{2}} d x \quad / / \text { FullSimplify } \\
& \frac{1-x^{2}+\frac{2\left(1+x^{2}+x^{4}\right)\left(\operatorname{ArcTan}\left[\frac{-1+x^{2}}{\sqrt{3}\left(1+x^{2}\right)}\right]-\operatorname{ArcTan}\left[\frac{2+x^{2}}{\sqrt{3} x^{2}}\right]\right)}{\sqrt{3}}}{6\left(1+x^{2}+x^{4}\right)}
\end{aligned}
$$

Doing these kind of calculations with paper and pencil one is tempted to minimize the effort of computations in using experience with similar problems. As regards to CAS heuristics becomes unimportant with respect to the algorithm. In the case of integration the so-called Risch algorithm (1969) is the essential new insight to make this automatism possible at all. Algorithms are developed with the aim to solve these kind of problems on a computer by means of CAS.

There is another class of problems for which an algorithm is known, however for all cases of practical interest the computational expenditures are so high that it can no longer be done with conventional means. Often there is an interdependence between the development of algorithms and their implementation in CAS.

Possible Applications of CAS

If complicated problems in science and technique have to be solved it goes without saying for scientists and engineers to use computers for numerical calculations and in this context it is generally tolerated that there may occur rounding errors due to the way a computer (as a finite machine) works which might doctor the result.
However, in the area of modelling and simulation of physical phenomena, before doing an actual computation, some kind of manipulation of equations or transformations into suitable coordinate systems are necessary which were always done by hand. Yet, with the progress in symbolic computations, i.e. powerful CAS available, there is no longer any need to do these tedious, error-prone calculations manually. Instead they can be done much faster and more reliable by computers now.
Obviously, in the field of science and engineering there are practically no limits for CAS applications. According to the wide range using CAS these systems are successfully applied in following areas:

- System Control
- Analysis and Synthesis of Electrical Networks
- Robotics
- Hydro- and Aerodynamics
- Thermodynamics
- Elastomechanics
- Non-linear Dynamics
- Process Data Processing etc.

For scientists and engineers, students and practitioners usage of CAS can be a convenient supplement supporting their work on very different levels :
on lowest level when tedious, error-susceptible basic operations have to be performed such as symbolic differentiation and integration, solving of equations etc.;
on higher level when e.g. systems of differential equations in the context of physical modeling have to be investigated;
on highest level to study the behavior of approximations of partial differential equations as occur in aerodynamics.
In the process of teaching, i.e. in scientific education, a well-planed assignment of CAS helps to increase the attractivity of lectures. Using computer algebra tools combined with new multimedia techniques will help to improve substantially the content of various lectures, especially from didactics point of view. Visualization and animation of mathematical objects may contribute in a substantial way to improve the acceptance of (weary) lectures. This is possible now due to powerful hardware such as laptop computers along with coloured LCD panels or data projectors available at affordable costs.

Why just Mathematica?

Features of Mathematica

Mathematica, Maple V and Macsyma are the most wide spread universal CA systems in academia and industry which cover a wide spectrum of mathematics.
At our polytechnic both systems are used :
Maple V is mainly used for research and teaching in natural sciences, in engineering and mathematics. The reason for this limited usage is the extraordinary large extent of approx. 2.500 mathematical functions, the high level of abstraction and the fact that only recently a graphical front end version for Maple V was developed.
Mathematica is not only used in the areas of research and teaching but will be applied in many other fields e.g. in banking etc. Not only the comfortable user front end but also the excellent graphics features contributed to this success.

The preceding, general remarks are to be illustrated in more details : Mathematica is a CA program for symbolic manipulation of formulae mainly. Apart from numerical and symbolic calculations this computer algebra system is supplemented by the following salient features :

■ Graphic Interactive User Interface (Front End)

- Comfortable 2D/3D Graphics and.Animation
- High-level Programming Language for Developing new Procedures
- Extensive and Extendible Program Library for Mathematical Procedures

In comparison to other CAS an outstanding feature of Mathematica is its execellent graphics and the kind of worksheets called Notebooks. What are the features making Mathematica notebooks so remarkable ?!
Mathematica Notebooks are interactive electronic documents which may contain :
Mathematica code (to be executed), text (with most DTP features supported such different fonts, colour, mathematical formulae etc.), graphics and animation, (even in real-time using the add-on program MathLive), sound which is encoded in PostScript code too, as is graphics.
According to these features there is an interesting aspect of Mathematica notebooks :
Today students have at least access to PCs in a computer lab or even own a PC privately on which they can run Mathematica resp. MathReader. This fact makes Mathematica notebooks interesting for the development of multimedia lecture units, say in physics or mathematics, or even student courses for self-learning which are written like conventional lecture notes by the professor and distributed to the students who will download the files from a central server.
Besides the possibilities in didactics the CA system Mathematica - due to its ability of symbolic manipulation of formulae and various numerical procedures - incorporates a great potential in solving mathematical problems in very distinct fields of technology and science.
Particularly the following characterization applies to the new Mathematica version 3.0 :

> Mathematica is not only a Computer Algebra System
> Mathematica is rather a System for Technical Computing

Mathematica Notebooks for Exchange of Scientific Information

Mathematica notebooks are ordinary Mathematica expressions. Therefore they can immediately be manipulated by the user without any special setup etc. thus the results given in Mathematica notebooks
can easily be checked or altered. Mathematica notebooks are organised in terms of hierarchical cells the layout of which can be pre-defined in so-called StyleSheets which are again Mathematica notebooks. Notebooks can even be created by the Mathematica kernel as output. There are no limitations as regards to the appearance of Mathematica notebooks. Due to the hierarchical cell concept notebooks can be read like books wherein there are table of content, sections and subsections etc. which are accessible after opening the corresponding pages. However, the advantage of the electronic document in comparison to conventional books is the interactivity, i.e. probing and manipulating the Mathematica code incorporated in the notebook. (The very first pioneering book which contained all chapters in terms of Mathematica notebooks on a CD-ROM disk was "Exploring Mathematics with Mathematica" by Th. Gray and J. Glynn published by Addison-Wesley Publ. Company already in 1991.
But the real important new feature in Mathematica version 3.0 is the portability of Mathematica notebooks. Mathematica notebooks contain all information in terms of ASCII code. They are platform independent. In earlier versions it was always a big problem to convert Mathematica notebooks which had been generated, say, under Windows operating system to Unix workstations (OS Solaris), NeXT (OS NeXTSTEP) or Macintosh (Mac OS 7) computers. Especially international characters such as German umlauts (or kyrillic letters) and other special symbols were a tedious problem to cope with in the past because there is no general accepted standard for character encoding. In Mathematica V 3.0 this problem is definitely solved. There are code translation tables for all Mathematica implementations which are provided for a large number of hardware platforms.
Thus Mathematica notebooks may be used as mean for exchange of scientific information and could become a kind of standard for interactive electronic documents. On a wider scale Mathematica notebooks can be provided to academia via Web. There is already the built-in capability to save Mathematica notebooks in HTML format so that they be used as WWW pages. In this context Wolfram Research made in its newsletter MATHwire from April '98 two interesting announcements :

Based on Mathematica's highly successful notebook paradigm, Wolfram Research has developed Publicon - a comprehensive solution for interactive technical publishing. Allowing the creation of professional-quality technical documents for on-screen, web, and printed use, a free beta version of Publicon can be downloaded from http://www.publicom.com/ .

Mathematica becomes the framework for Web Typesetting Technology. The key ideas forming the core of the new MathML (Mathematical Markup Language) standard recently ratified by W3C (i.e. the WWW Consortium) come directly from Wolfram Research's typesetting technology. MathML is designed to allow mathematical expressions to be transmitted over the web, preserving the structure needed to do computations with them in Mathematica. Information on MathML can be downloades from the web at <http://www.wolfram.com/news/mathml/ > .
In order to read Mathematica notebooks it is even not necessary to have Mathematica installed on a computer. It suffices to run the browser MathReader freely available from Wolfram Research. On the premises that (voluminous) graphics and sound cells are deleted (which can easily be reconstructed with the help of running Mathematica) from Mathematica notebooks they shrink to reasonable size and may be attached to email messages and be sent via Internet to colleagues all over the world. Thus, worldwide scientific cooperation by means of exchange of Mathematica notebooks works in practice already today.

Mathematica's Capabilities in Technical Computing
A closer look to the capabilities of Mathematica reveals that it is not only a simple CAS but a
System for Creating Interactive Documents (Mathematica notebooks)
Notebooks are complete interactive document combining text, tables, graphics, sound, calculations, and other elements in terms of cells

Every Mathematica notebook is Mathematica expression which can therefore be manipulated by the kernel, see e.g. Notebobkiny nb

```
dir = subDir;
openNotebookButton["NotebookE.nb", 1, dir]
```


Mathematica can be used just like a calculator : type in some questions, and Mathematica returns the answers.

Mathematica can do basic calculations

```
Log[100!] // N
```

363.739
$\int \sqrt{\mathrm{x}} \sqrt{1+\mathbf{x}} d \mathrm{dx}$
$\sqrt{1+x}\left(\frac{\sqrt{x}}{4}+\frac{x^{3 / 2}}{2}\right)-\frac{\operatorname{ArcSinh}[\sqrt{x}]}{4}$

```
(sole = Solve [x + 2 x 2 + 2x-1 ==0,x]) // ColumnForm
{x->-\frac{2}{3}-\frac{2}{3}(\frac{2}{47+3\sqrt{}{249}}\mp@subsup{)}{}{1/3}+\frac{1}{3}(\frac{1}{2}(47+3\sqrt{}{249})\mp@subsup{)}{}{1/3}}
{x->-\frac{2}{3}+\frac{1}{3}(1+I\sqrt{}{3})(\frac{2}{47+3\sqrt{}{249}}\mp@subsup{)}{}{1/3}-\frac{1}{6}(1-I\sqrt{}{3})(\frac{1}{2}(47+3\sqrt{}{249})\mp@subsup{)}{}{1/3}}
{x->-\frac{2}{3}+\frac{1}{3}(1-I\sqrt{}{3})(\frac{2}{47+3\sqrt{}{249}}\mp@subsup{)}{}{1/3}-\frac{1}{6}(1+I\sqrt{}{3})(\frac{1}{2}(47+3\sqrt{}{249})\mp@subsup{)}{}{1/3}}
```

Mathematica can work with formulae of arbitrary length - hence solving problems that are untractable by hand.

```
( }\mp@subsup{x}{}{121}+\mp@subsup{y}{}{121})//\mathrm{ Factor
Simplify[%]
(x+y)(\mp@subsup{x}{}{10}-\mp@subsup{x}{}{9}y+\mp@subsup{x}{}{8}\mp@subsup{y}{}{2}-\mp@subsup{x}{}{7}\mp@subsup{y}{}{3}+\mp@subsup{x}{}{6}\mp@subsup{y}{}{4}-\mp@subsup{x}{}{5}\mp@subsup{y}{}{5}+\mp@subsup{x}{}{4}\mp@subsup{y}{}{6}-\mp@subsup{x}{}{3}\mp@subsup{y}{}{7}+\mp@subsup{x}{}{2}\mp@subsup{y}{}{8}-x\mp@subsup{y}{}{9}+\mp@subsup{y}{}{10})(\mp@subsup{x}{}{110}-
    x }\mp@subsup{}{}{99}\mp@subsup{y}{}{11}+\mp@subsup{x}{}{88}\mp@subsup{y}{}{22}-\mp@subsup{x}{}{77}\mp@subsup{y}{}{33}+\mp@subsup{x}{}{66}\mp@subsup{y}{}{44}-\mp@subsup{x}{}{55}\mp@subsup{y}{}{55}+\mp@subsup{x}{}{44}\mp@subsup{y}{}{66}-\mp@subsup{x}{}{33}\mp@subsup{y}{}{77}+\mp@subsup{x}{}{22}\mp@subsup{y}{}{88}-\mp@subsup{x}{}{11}\mp@subsup{y}{}{99}+\mp@subsup{y}{}{110}
```

$x^{121}+y^{121}$

For basic operations one may resort to palettes such as \square in order to simplify the marked expression in the cell below with TrigReduce.

```
dir = $TopDirectory <> "\\SystemFiles\\FrontEnd\\Palettes"
openNotebookButton["BasicCalculations.nb", 1, dir]
C:\PROGRAMME\WOLFRAM RESEARCH\MATHEMATICA\3.0\SystemFiles\FrontEnd\
    Palettes
```

$3 \operatorname{Sin}[\alpha]-4 \operatorname{Sin}[\alpha]^{3}$

Instrument for Extensive Numerical Calculations

Mathematica, can do power computing; one can perform number-crunching numerical calculations

Numbers of arbitrary size

Abstract

500! 1220136825991110068701238785423046926253574342803192842192413588385845373153881997605496447 . 50220328186301361647714820358416337872207817720048078520515932928547790757193933060377296 08590862704291745478824249127263443056701732707694610628023104526442188787894657547771498 63494367781037644274033827365397471386477878495438489595537537990423241061271326984327745 71554630997720278101456108118837370953101635632443298702956389662891165897476957208792692 88712817800702651745077684107196243903943225364226052349458501299185715012487069615681416 25359056693423813008856249246891564126775654481886506593847951775360894005745238940335798 47636394490531306232374906644504882466507594673586207463792518420045936969298102226397195 25971909452178233317569345815085523328207628200234026269078983424517120062077146409794561. 16127629145951237229913340169552363850942885592018727433795173014586357570828355780158735 43276888868012039988238470215146760544540766353598417443048012893831389688163948746965881. 750450692636533817505547812864000 000

and arbitrary precision (such as π with 100 digits) can easily be dealt with.

```
N[\pi, 100]
3.14159265358979323846264338327950288419716939937510582097494459230781640:
    6286208998628034825342117068
```

Mathematica uses an state-of-the-art algorithm for factoring integers.

```
p= 2 105 - 1
f= FactorInteger[p]
40564819207303340847894502572031
```

$\{\{7,2\},\{31,1\},\{71,1\},\{127,1\},\{151,1\},\{337,1\},\{29191,1\}$, $\{106681,1\},\{122921,1\},\{152041,1\}\}$

With the user-defined function FactorisationHold the explicit evaluation of the power products $\left(p_{i}\right)^{\boldsymbol{a}_{i}}$ is held so that the following neat representation is obtained

```
FactorisationHold[args:{{_, _}..}] :=
    Apply[Times, Apply[Power, # // HoldForm, {2}], {1}]&[args]
FactorisationHold[f]
```

Mathematica can solve numerically a nonlinear differential equation. The answer is an interpolating function which implicitly represents the whole solution and is displayed as parametric plot.

```
sol =
    NDSolve[{x''[t] + x[t] ' == Sin[t] Cos[t], x[0] == x'[0] == 0}, x, {t, 0, 50}];
ParametricPlot[{x[t], x'[t] } /. sol , {t, 0, 50},
    Compiled }->\mathrm{ False, PlotStyle }->{\mathrm{ Red, th}];
```


Mathematica easily calculates the eigenvalues of a (100×100) matrix with random numbers

```
M = Table[Random[], {100}, {100}];
```


ListPlot[Abs [Eigenvalues [M]]];

An indication of the performance of Mathematica may be obtained by analysing the increase of CPU time for the evaluation of eigenvalues of these random matrices with size that increases from $n=50$ to 500 .

```
performanceE.nb
```

dir = subDir;
openNotebookButton["PerformanceE.nb", 1, dir]

System for Image Data Processing

Mathematica is able to import data of arbitrary format and process the data with suitable procedures.

In this example data are read from the file image. dat as input.
(Note : the data file has to be in the working directory)

```
data = ReadList["image.dat", Number, RecordLists }->\mathrm{ True];
Dimensions[data]
{94, 100}
```

and rendered as a density plot with an arbitrary function $e^{\sqrt{x}}$ applied to the data given

Then, data are shifted to the right in a cylic manner. Successive shift of pixels shows the well-known phenomenon of Poincaré recurrence.

```
mIR := MapIndexed[RotateRight, #]&
ListDensityPlot[ Nest[mIR, data, 99]];
```


The histogram, i.e. the distribution of gray levels in the pixel data, and a 3D representation based on the same data is shown below.
histo $=$ ListPlot [Sort[Flatten[data]], DisplayFunction \rightarrow Identity];
plt3D = ListPlot3D[data,
ColorFunction -> GrayLevel, Axes -> None,
ColorFunction -> GrayLevel, Axes -> None,
Mesh -> False, ViewPoint -> {.2, -2, 3},
Mesh -> False, ViewPoint -> {.2, -2, 3},
DisplayFunction }->\mathrm{ Identity];
DisplayFunction }->\mathrm{ Identity];
Show[GraphicsArray[\{histo, plt3D\}], DisplayFunction \rightarrow \$DisplayFunction];

It is quite easy to create stunning visual images with Mathematica.

Mathematica includes graphics primitives from which one can build up 2D resp. 3D graphics of any complexity. Here a list of point primitives is generated.

```
\(g r=\)
    Flaten \(\left[\right.\) Table \(\left.\left[\left\{\operatorname{Point}\left[\left\{\frac{p}{q}, \operatorname{Denominator}\left[\frac{p}{q}\right]\right\}\right], \operatorname{Hue}\left[\frac{p}{q}\right]\right\},\{q, 100\},\{p, q-1\}\right]\right]\);
```

The graphics corresponding to this list of point primitives is shown below
【 Show[Graphics[gr, Frame \rightarrow True, AspectRatio \rightarrow. 3]];

This is a generalization in 3D of the so-called Sierpinski gasket, which is obtained if cuboids are substituted in 3D space instead of points in the 2D plane .


```
g = Table[ If [Mod[Multinomial [x, y, z], 2] == 1,
    Cuboid[1.2{x, Y,-z}], {} ],
    {x,0,15}, {Y, 0, 15}, {z;0, 15}] // Flatten;
sierpinski = Show[Graphics3D[g],
    Background }->\mathrm{ RGBColor[1., 0.8, 0.4],
    plotLabel }->\mathrm{ "Sierpinski Gasket"];
```

The so-called Klein Bottle (a generalization of the Möbius strip in 2D) is a 3-dimensional object with non-orientable surface, i.e. the object has a closed surface but one cannot distinguish between interior and external faces, there is only one single surface.

The object is defined as a parametric surface which is obtained by decorating a droplet-like space curve with a tube.

```
Needs ["Graphics`ParametricPlot3D`"]; v=.;
Needs ["Graphics`Shapes`"];
\(b x=6 \operatorname{Cos}[u](1+\operatorname{Sin}[u]) ;\)
by \(=16 \operatorname{Sin}[\mathrm{u}]\);
\(\mathrm{rad}=4\left(1-\frac{\mathrm{Cos}[\mathrm{u}]}{2}\right)\);
\(\mathrm{X}=\mathrm{If}[\pi<\mathrm{u} \leq 2 \pi, \mathrm{bx}+\operatorname{rad} \operatorname{Cos}[\mathrm{v}+\pi], \mathrm{bx}+\operatorname{rad} \operatorname{Cos}[\mathrm{u}] \operatorname{Cos}[\mathrm{v}]] ;\)
\(\mathrm{Y}=\operatorname{If}[\pi<u \leq 2 \pi\), by, by \(+\operatorname{rad} \operatorname{Sin}[u] \operatorname{Cos}[v]]\);
\(\mathrm{Z}=\mathrm{rad} \operatorname{Sin}[\mathrm{v}]\);
```

klein $=$ ParametricPlot $3 D[\{X, Y, Z\},\{u, 0,2 \pi\},\{v, 0,2 \pi\}$,
PlotPoints $\rightarrow\{48,12\}$,
Axes \rightarrow False, Boxed \rightarrow False,
PlotLabel \rightarrow "Klein Bottle",
ViewPoint $\rightarrow\{1.4,-2.6,-1.7\}$,
DisplayFunction \rightarrow Identity] ;
perfKlein = PerforatePolygons[klein, 0.7];
Show[perfklein, Background \rightarrow RGBColor[0.2, 1., 1.],
DisplayFunction \rightarrow \$DisplayFunction] ;

- Real time animation (DynamicVisualizer or Conix 3DExplorer)

With the Dynamic Visualizer or Conix 3D Explorer, new Mathematica application packages available, it possible to display and manipulate 3D objects in real-time.

Needs["DynamicVisualizer`"];

Visualize[\{\}]; (*Brings DynamicVisualizer window to the front *)

In order to display a single Mathematica graphics using the graphics viewpoint the command VisualizerShow [3dObject] has to be invoked. When the left mouse button is pressed the object is
 the mouse button pressed and move the mouse then the object is zoomed or draged.

```
g = Table[ If[Mod[Multinomial[x, y, z], 2] == 1,
    Cuboid[1.2{x, y, -z}], {} ],
    {x, 0, 15}, {Y, 0, 15}, {z, 0, 15}] // Flatten;
sierpinski = Show[Graphics3D[g],
    Background -> RGBColor[1., 0.8, 0.4],
    PlotLabel -> "Sierpinsk Gasket",
    DisplayFunction }->\mathrm{ Identity];
```

VisualizerShow[sierpinski];

After closing the link between Mathematica and the DynamicVisualizer it is possible to launch this application again.

```
ClearVisualizer[];
(* Resetting DynamicVisualizer *)
QuitVisualizer[]; (* Closing DynamicVisualizer *)
```


- Animations

Mathematica produces animated movies which give a better understanding of movements such as a cam-follower or a gear mechanism shown in Animations . nb

- Sound

Mathematica treats sound on the same footing as graphics. Substituting the command Plot by Play it is then possible to make even complicated sound patterns audible which is demonstrated by SoundDemo.nb

High-Level Programming Languàge
Mathematica is an unprecedentedly flexible and intuitive programming language.

Examples of the Mathematica programming language are given in the following notebook programming Demo nb

In comparison to other computer algebra systems such as Maple V, Macsyma, Axion, Reduce due to the functional programming style of Mathematica it is often possible to write an elegant concise (single-line) program code whereas other CA programs require for the same task several lines at least. In order to show the efficiency of Mathematical programming the following test programs to given problems have been collected for comparison of \qquad also : News-Group sci.math.symbolic).

Expert System

Mathematica incorporates knowledge from the standard mathematical handbooks, and uses its own advanced algorithms to go even beyond.

Mathematica knows about all the hundreds of special functions in pure mathematics and mathematical physics.

Here is the Legendre function of the $2 n d$ kind $Q_{n}(z)$
$Q_{3}(x)$ (* Legendre $[3, x]$ *)
$\frac{2}{3}-\frac{5 x^{2}}{2}-\frac{3}{4} x\left(1-\frac{5 x^{2}}{3}\right) \log \left[\frac{1+x}{1-x}\right]$

Mathematica can evaluate special functions such as the even Mathieu function $\mathbf{c e}_{n}(\mathbf{z}, \mathbf{q})$ with any parameters to any precision.

MathieuC[1+i., $2 \dot{\text { i }, ~ 3] ~ / / N[\#, ~ 30] ~} \varepsilon$
$3.9251311374125198643497646168+1.89882391154334724110527479714 i$

Mathematica is now able to do vastly more integrals than were ever before possible for either humans or computers. For example, Mathematica claims to cover all the integrals in Gradshteyn and Ryzhik "Tables of Integrals, Series and Products" ,
for example the indefinite integral
$\int \sqrt{x} \operatorname{ArcTan}[x] d x$

$$
\begin{aligned}
& \frac{2}{3} \tan ^{-1}(x) x^{3 / 2}-\frac{4 \sqrt{x}}{3}+\frac{1}{3} \sqrt{2} \tan ^{-1}\left(\frac{2 \sqrt{x}-\sqrt{2}}{\sqrt{2}}\right)+\frac{1}{3} \sqrt{2} \tan ^{-1}\left(\frac{2 \sqrt{x}+\sqrt{2}}{\sqrt{2}}\right)- \\
& \frac{\log (-x+\sqrt{2} \sqrt{x}-1)}{3 \sqrt{2}}+\frac{\log (x+\sqrt{2} \sqrt{x}+1)}{3 \sqrt{2}}
\end{aligned}
$$

or the following definite integrals
$\int_{0}^{\infty} \log [x] e^{-x^{3}} d x$
$-\frac{1}{54} \Gamma\left(\frac{1}{3}\right)(6 \gamma+\sqrt{3} \pi+9 \log (3))$
$\int_{0}^{\infty} \sin \left[\dot{x}^{2}\right] e^{-x} d x$
$-\frac{-\sqrt{\pi} \cos \left(\frac{1}{4}\right)+\sqrt{2}, F_{2}\left(1 ; \frac{3}{4}, \frac{5}{4} ;-\frac{1}{64}\right)-\sqrt{\pi} \sin \left(\frac{1}{4}\right)}{2 \sqrt{2}}$

Mathematica can also evaluate finite and infinite sums and products.
$\sum_{k=1}^{n} \frac{1}{k^{6}}$
$\frac{\pi^{6}}{945}-\frac{1}{120} \psi^{(5)}(n+1)$
$\sum_{n=0}^{\infty} \frac{x^{n}}{n!^{4}}$
${ }_{0} F_{3}(; 1,1,1 ; x)$

$$
\begin{aligned}
& \prod_{i=1}^{6}\left(1+\operatorname{Nest}\left[x^{\prime \prime} \varepsilon, x, i\right]\right) \\
& \left(1+x^{x}\right)\left(1+x^{x^{x}}\right)\left(1+x^{x^{x^{x}}}\right)\left(1+x^{x^{x^{x}}}\right)\left(1+x^{x^{x^{x^{x}}}}\right)\left(1+x^{x^{x^{x^{x^{x}}}}}\right)
\end{aligned}
$$

Mathematica can solve a wide range of ordinary and partial differential equations.

$\left\{\left\{y(x) \rightarrow e^{-x / 2}\left(\mathrm{Bi}\left(\sqrt[3]{-1}\left(x-\frac{1}{4}\right)\right) c_{1}+\mathrm{Ai}\left(\sqrt[3]{-1}\left(x-\frac{1}{4}\right)\right) c_{2}\right)\right\}\right\}$

Mathematica's algorithms can generate a huge range of mathematical results.
$\prod_{n=1}^{5} \Gamma\left(\frac{2 n}{5}\right) / /$ FullSimplify
$\frac{12 \pi^{2}}{25 \sqrt{5}}$
$\log (2)<\zeta(3)<\sqrt{2}$
True

TrigReduce $\left(\cos ^{4}(x)\right)$
$\frac{1}{8}(3+4 \operatorname{Cos}[2 x]+\operatorname{Cos}[4 x])$

An example from Number Theory is to find the 10^{9} th prime number by using a mixture of algorithms and built-in tables.

Prime $\left[10^{9}\right]$
22801763489

Embedded System (MathLink Applications)

The modular architecture of Mathematica makes is it quite easy to use Mathematica itself as a highly powerful software component.

The communication is established by the addon feature MathLink.
Mathilnkapplcationstrik

Examples of Mathematica Notebooks

Files in Directory " . \CD_Dubna98\Lecture"

The built-in Mathematica command FileNames lists all files according to given file specification in a prescribed directory and in subsequent subdirectories downwards to level n.

```
FileNames["*.*", actDir, 2] // ColumnForm
```

whereas the user-defined procedure filesInDirectory provides the list of all Mathematica notebooks (file extention, $\boldsymbol{n b}$) in a given directory

```
filesInDirectory[subDir] // ColumnForm
4ColorTheorem.nb
Add2.nb
AirFoil.nb
Animations.nb
CellularAutomata.nb
IFS.nb
Mandelbrot.nb
MathLinkApplications.nb
MovingPendulum.nb
NotebookE.nb
PerformanceE.nb
ProgrammingDemo.nb
ProgrammingEfficiency.nb
Projectile.nb
SoundDemo.nb
Swing2_3.nb
Tunneling.nb
```

The procedure openNotebookButton creates an array of buttoms which can be used to start the corresponding Mathematica notebooks in a directory tree structure.

4 ColorTheorem. nb	Add2 . nb
AirFoil. nb	Animations.nb
CellularAutomata.nb	IES. nb
Mandelbrot.nb	MathLinkApplications.nb
MovingPendulum.nb	Notebooke , nb
PerformanceE. nb	- ProgrammingDemo.nb
ProgrammingEfficiency. nb	Projectile.nb
SoundDemo . nb	Swing2_3.nb

Calculus : Integral over Rational Function $\frac{1}{\left(x^{2}+a x+b\right)^{n}}$
Whilst for the integral with rational integrand $\frac{1}{\left(x^{2}+a x+b\right)^{2}}$ with some computational exertion Definitions and Settings

```
Clear[a, b, n]; Remove[a, b, n];
fe[expr_] := ExpandAll[FullSimplify[expr]]
U[n_][x_]:= \int\frac{1}{(\mp@subsup{x}{}{2}+ax+b\mp@subsup{)}{}{n}}dx;
```

the following recursion can be verified

$$
\mathbb{U}[n][x]==\frac{1}{(n-1)\left(4 b-a^{2}\right)}\left(\frac{2 x+a}{\left(x^{2}+a x+b\right)^{n-1}}+(4 n-6) J[n-1][x]\right) ;
$$

by differentiation of both sides of the equation above

$$
\left(\frac{\partial J[n][x]}{\partial x}==\frac{\partial \frac{\frac{A-2 x}{\left(x^{2}+2 x+b\right)^{-x}+(4 n-6)} \mathbb{U}[n-1][x]}{(n-1)\left(4 b-x^{2}\right)}}{\partial x}\right) / / f e
$$

True
Mathematica provides a closed solution in terms of a hypergeometric function ${ }_{2} F_{1}(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{z})$ which is a nearly unsolvable task calculating with paper and pencil .

$$
\begin{aligned}
& \mathbb{J}[n][\mathrm{x}] \quad / / \text { FullSimplify } \\
& \frac{1}{n-1}\left(2^{-n-1}\left(-a-2 x+\sqrt{a^{2}-4 b}\right)(b+x(a+x))^{-n}\right. \\
& \left.\quad\left(\frac{a+2 x}{\sqrt{a^{2}-4 b}}+1\right)^{n}{ }_{2} F_{1}\left(1-n, n ; 2-n ; \frac{1}{2}-\frac{a+2 x}{2 \sqrt{a^{2}-4 b}}\right)\right)
\end{aligned}
$$

Calculus : Conformal Mapping and Joukowski Transformation A1rFoll, nb
Mechanics : Projectile with Air Resistance
scillations : 2 \& 3 Masses Swinger
Scillations :Moving Pendulum
Quantum Physics : Tunneling
MovingRendulum, nb
Tunneling.
PolyhedronExplorertab
Chemistry : Periodic Table
Perlodictable, nh

Outlook on the Development of CAS

The computer algebra systems existing today show that it is possible to perform extensive symbolic calculations even on a PC and obtain interesting results. The hardware expenditure start on the lower end with a PC and goes up to a super computer for especially involved problems. The future of CAS is strongly influenced by two developments:
Firstly, with the tendency of declining hardware costs the spreading of these systeme will increase on all levels, particularly in highschools and colleges and on students' level. In some years computer aigebra will be included in most curricula.
(For example in Austria the usage of intelligent pocket calculators TI 89 and Ti 92 with the built-in computer algebra system Derive is promoted from the ministry of education.)
The usage of CAS as regards to differentiation and integration, solution of equations, problems of linear algebra and other tasks will soon be taken for granted as is today the usage of a pocket calculator for evaluting square roots.
Secondly, incorporating new tasks the size of existing CAS will strongly increase so that soffware engineering will become more and more important.

The interesting question however is, if and how mathematics itself will be changed by means of automatic processing of symbolic mathematical expressions, or which new areas will originate from the availability of CAS. At first glance this question might be surprising. Yet, this is exactly the case since the 50 's with respect to numerical mathematics after the availability of computers. Without numerical computers areas such as optimization theory, nonlinear dynamics or soliton theory are unconceivable. The availability of CAS will initiate further fundamental changes of mathematics similarly to the impact which computers had on numerics.

Examples for this statement are given below

Four Colour Theorem

The proof of the Four-Colour-Theorem, which occurs in the context of cartography, was only given in 1976 by K. Appel and W. Haken by means of a computer, which was used for "book keeping", to verify certain assumptions necessary for the proof. Because these evaluations with a computer had been quite tedious - doing the same by paper and pencil would go on for eternity it follows that one may prove this result with the help of another computer only. Therefore some purist mathematicians think that this kind of computer proof is not real proof. Obviously, the Four-Colour-Theorem is an example for an odd aspect of mathematics: that even a simple question easily understood can lead to an incredibly complicated proof. 4 Color Theorem. nb

Fractals and Iterated Function Systems (IFS)

Another area are fractals; discovered by the mathematician B. Mandelbrot in 1980 and named after him the most famous fractals are the Mandelbrot set and the Julia sets MandeIbrot, inb associated with . The Mandelbrot set which arises from iteration of a harmless quadratic

mathematics! But only a computer program with a few lines of code is required to generate these incredibly complicated sets. There is perhaps no other proof more impressive for the complexity hidden in simple rules as the variety of structures reflected in the Mandelbrot set. The complexity of these sets and thus the coexistence of order and chaos cannot be studied without the help of a computer.
And only gradually there emerges a new concept of so-called iterated function systems (IFS)

Cellular Automata
Another area is the so-called Game of Life which was suggested in 1970 by the mathematician J.H.Conway. This mathematical game which is also denoted as Cellular Automaton, clearly demonstrates that a set of simple rules can give rise to a complex world. CellularAutomata .nb

The assumption is to create a cellular game (on a triangular, square or hexagonal lattice) which is based on rules as simple as possible and nevertheless should be unpredictable. This set of rule should be complete so that the game - once started - would go on by itself. Growth and change occurs discontinuously; one step leads unavoidable to the next one. The result is a small universe based on logics in which everything is pre-determined, and yet there exists no possibility for the observer to predict the destiny of future generations in the game - besides let the game go on by itself.

According to Stephen Wolfram "cellular automata are examples of mathematical systems built from many identical components to form one unit. All components are simple, together they are able to show complex behaviour. Investigating them in detail one can develop on the one hand specific models for certain systems, on the other hand one hopes to find generally valid principles which are applicable to a large number of complex systems".
Cellular automata are mathematical odds and interesting as games. Besides that they become increasingly important as simple models of physical phenomena. They range from hydrodynamic turbulences to the spreading of virus infection or forest fires. The idea is to describe a physical system in such a compact way that one can recognize the essential properties and predict future behavour. Traditionally, mathematicians and physicists use partial differential equations for the description of physical systems; they describe how certain variables change in time. Solving these differential equations means to predict the behaviour of the system. However, many of these systems of partial differential equations are only solvable with great difficulties or not at all. Wolfram developed in 1984 a method for the approximate solution of partial differential equations which resorts to cellular automata instead of traditional approximative methods of solution. Wolfram claims that this approach is more adequate to digital computers than various methods solving partial differential equations on a computer by approximation. In a certain sense this methodical ansatz changes the way of constructing a theory. One changes, so to speak, the recipe in order to use in an optimal way the resources of digital computers. The appearance of massive parallel computers - where interconnected processors enable to partition the
computation such that each processor will perform the same operations simultaneously on different parts of the same data - makes the concept suggested by Wolfram even more attractive. By the way, the involvement of Wolfram with cellular automata finally led - after the predecessor system SMP - to the development of the current CAS Mathematica.

Conclusion

In the general context to incorporate computer algebra systems (and in particular Mathematica) in the teaching of science courses subsequent positive aspects can be summarized:

- Save time when solving mathematical problems
- make parameter dependence of algebraic solutions transparent
- visualize 3D objects and dynamic processes
- demonstrate numerical effects of methods by freely chosen accuracy
- extend existing program libraries by new algorithms

The implications which result from applying these techniques in lectures are formulated in terms of theses

> it is possible to deal with more involved, more realistic problems in the lecture hall (ad hoc)
> excellent visualization of mathematical issues using the graphics capabilities of CAS is provided
> there results an early familiarity of students with CAS techniques to be useful in industry later
> emp regards to knowledge transfer in the process of lecturing the emphasis on TECHNIQUES achieving a solution moves towards DISCUSSION of the properties of the solution obtained

Mathematica Performance

Calculation of eigenvalues for $\mathbf{n} \times \mathbf{n}$ random matrices of increasing size.

```
Clear[z]; z={};
k = {50, 100, 150, 200, 300, 400, 500};
```

Do[n $=\mathbf{k}[$ [j] $] ;$
$\mathrm{M}=$ Table[Random[], $\{\mathrm{n}\},\{\mathrm{n}\}] ;$
zeit = (ListPlot[Abs[Eigenvalues[M]]] // Timing.) ;
$z=A p p e n d T o[z, z e i t[1,1]]$;
Print[zeit [[1, 1]]],
\{j, 1, Length[k]\}];
z

3.18

11.26

129.46

312.75
$\{0.99,1.43,3.18,11.26,46.96,129.46,312.75\}$
(* $z=\{0.99,1.43,3.18,11.26,46.96,129.46,312.75\} ; *)$
$x f=\operatorname{Transpose}[\{k, z\}]$;
$1 \mathrm{p}=$ ListPlot[xf,
PlotRange $\rightarrow\{\{0, \operatorname{Max}[k]\},\{0, \operatorname{Max}[z]\}\}$, PlotStyle \rightarrow \{Red, AbsolutePointSize[6]\}, DisplayFunction \rightarrow Identity];

```
F1[x_] = Fit[ xf, Table[x'm {m, 1, 3}] , x] (* Polynom-Fit *)
```

```
fp = Plot[F1[x], {x, 1, 500},
    PlotRange }->\mathrm{ All ,
    PlotStyle }->\mathrm{ {Blue, Dashing[{0.03}]},
    DisplayFunction }->\mathrm{ Identity ];
```

Show[lp, fp, AxesLabel -> \{" Matrix size (n)", "CPU time"\},
DisplayFunction \rightarrow SDisplayFunction];

Performance of Mathematica 3.0 found as regards to the calculation of eigenvalues for $\mathbf{n} \times \mathbf{n}$ random matrices.
$\left(\begin{array}{rr}50 & 0.99 \\ 100 & 1.43 \\ 150 & 3.18 \\ 200 & 11.26 \\ 300 & 46.96 \\ 400 & 129.46 \\ 500 & 312.75\end{array}\right)$
$4.62023 \times 10^{-6} x^{3}-0.00130389 x^{2}+0.11898 x$

Mathematica Notebooks

Chaos and Fractals

Prof. Dr. Robert Kragler FH Ravensburg-Weingarten / University of Applied Sciences kragler@rz.fh-weingarten.de

Mandelbrot and Julia Sets

Initializations
Visualization of Complex Functions
Mathematica Journal Vol 3 \# 1, "Tricks of the Trade" p. 18

- Usage of Compile

The evaluation of a function $\mathrm{f}\left[x_{1}, x_{2}, \ldots\right]$ is essentially accelerated if Mathematica can assume that the variables x_{1}, x_{2}, ...can be dealt with as machine numbers instead of checking each time whether it is a number, a list, an algebraic object or some other type of expression. The usage of

Compile[$\left\{x_{1}, x_{2}, \ldots\right\}$,expression]
creates a CompiledFunction object which contains a sequence of simple instructions (similar to machine code) for the evaluation of the compiled function and thus can be executed faster than an ordinary Mathematica function.

It is assumed for the evaluation of a compiled function that all parameters x_{1}, x_{2}, \ldots which occur are numbers or logical variables. For large expressions compilation may speed up execution up to a factor of 20 . Using the command Compile is always reasonable if a given numeric or logical expression is evaluated many times. However, although compilation makes the execution of numerical functions more efficient it is recommended to use built-in Mathematica functions whenever this is possible because they are generally faster than every compiled user-defined procedure in Mathematica . Built-in functions such as Integrate but also Plot and Plot3D make use of the default option Compiled \rightarrow True for any function inserted. With Compiled \rightarrow False compilation is deactivated.

Here are two examples which demonstrate the usage of compile in order to speed up evaluation. These are iterative mappings of type

$$
\begin{equation*}
z_{n+1}=\left(z_{n}\right)^{2}+c \quad z_{n+1}=\left(z_{n}\right)^{2}+z_{0} \tag{2}
\end{equation*}
$$

Julia Sets

The Jufia set associated with a complex number \boldsymbol{c} is obtained by iteration of the mapping

$$
\begin{equation*}
z=z^{2}+c \tag{3}
\end{equation*}
$$

It is the number of all those points which will not tend to ∞ during interation.

```
juliac \(=\) Compile \(\left[\left\{x, y, l_{i m}, c_{x}, c_{y}\right\}\right.\),
    Module[\{z, \(c, n=0\}\),
            \(z=x+i y ; c=c_{x}+i c_{y}\);
            While[Abs[z]<2.0 \&\& \(\left.n \leq 1 i m, z=z^{2}+c ;++n\right]\);
                        n] ];
                            n5 : =
```

NumberForm[\#, \{6, 5\}]\&; juliaSet[cx_, cy_, col_]:=
Densityplot [-juliac[x, y, 50, cx, cy], \{x, -1.5, 1.5\}, \{y, -1.5, 1.5\},
PlotPoints \rightarrow 100, Mesh \rightarrow False,
ColorFunction \rightarrow col, PlotLabel \rightarrow
StringForm["Julia set for $c=(\cdots,--) ", ~ c x / / n 5, ~ c y / / n 5]$];

The following Julia set is obtained for a value of $c=0.27334+0.00742 i$:

$$
\operatorname{colv1}\left[z_{_}\right]:=\operatorname{Hue}\left[\frac{z}{2.1}-\frac{1}{3}\right] ;
$$

juliaset[0.27334, 0.00742, colv1];

The appearance of the fractal Julia sets strongly depends on the location of the fixpoint \mathbf{c} with respect to the so-called Mandelbrot set. Interesting structures will be obtained for those values of c which are located in the vicinity of the Mandelbrot set. For values of c from outside of the Mandelbrot set the corresponding Julia sets are continuous. For values of coutside the Mandelbrot set the corresponding Julia set disintegrates into island-like structures. The more the distance of c from the Mandelbrot set the more the associated Julia set dissolves which is called Fatou dust.

```
colJ2[z_]:= Eue[.45, z, Mod[1/(z5 + .01), 1]];
```

Juliaset[0, 1, colJ2];

Julia set for $\mathbf{c = (0 . , 1 .)}$


```
colv3[z_]:= Eue[Mod[z2, 1],.8,.8];
```

JuliaSet[-1.25, 0.01, colJ3];

juliaset $[-0.5,-0.8$, colv4]:

- Mandelbrot Set

The Mandelbrot set is the set of points $\mathbf{c}^{\prime}=\mathrm{z}$ not escaping to ∞ under the iteration of the mapping $z=z^{2}+z_{0}$

Points within the Mandelbrot set lead to continuous Julia sets, for points outside the Mandelbrot set the corresponding Julia sets disintegrate into mosaic-likestructures. The following modification of the procedure juliaC may be used to create the Mandelbrot set too.

```
mandelbrotC = Compile[{x, y, lim},
    Module[{z0, z, n=0},
                        z0=x+IY; z = z0;
    While[Abs[z]<2.0&&n\leqlim,z= z' + z0; ++n];
        n] ];
```

First, the Mandelbrot set is displayed as a density plot, moreover, the visualization of the Mandelbrot set as a 3D surface by means of the procedure Plot3D [mandelbrot, . . .] is possible too.

```
m
    ColorFunction }->\mathrm{ (Hue[.7 + #1]&),
    PlotPoints }->\mathrm{ 100, Mesh }->\mathrm{ False,
    DisplayFunction }->\mathrm{ Identity];
m}=\mathrm{ Plot3D[mandelbrotC [x, y, 50], {x,-2., 1.}, {y, -1.5, 1.5},
    ColorFunction }->\mathrm{ Hue, PlotPoints }->100\mathrm{ , Mesh }->\mathrm{ False,
    DisplayFunction }->\mathrm{ Identity];
```

Show [GraphicsArray [$\left\{\left\{m_{1}\right\}\right.$, $\left.\left\{m_{2}\right\}\right\}$],
Plotlabel \rightarrow "Mandelbrot set $z=z^{2}+z_{0}$ ",
DisplayFunction \rightarrow \$DisplayFunction] ;

Mandelbrot set $\mathbf{z}=\mathbf{z}^{\mathbf{2}+\mathbf{z}_{0}}$

MathLink Applications

Mathematica as a Software Component

Mathematica has a modular architecture that makes it easy to use as a highly powerful software component.
Here is some input and output in the standard notebook front end to Mathematica.

$$
\begin{aligned}
& \int \sqrt{\log [x]} d x \\
& -\frac{1}{2} \sqrt{\pi} \operatorname{Erfi}[\sqrt{\log [x]}]+x \sqrt{\log [x]}
\end{aligned}
$$

You can also access the Mathematica kernel directly from a raw terminal.
Integrate[Sqrt[Log[x]], x]
$-\left(\frac{1}{2}\right) \operatorname{Sqrt}[P i] \operatorname{Erfi}[\operatorname{Sqrt}[\log [x]]]+x \operatorname{Sqrt}[\log [x]]$

MathLink provides a general program-level interface between Mathematica and external programs.

Here is C code for sending an expression $\int \sqrt{\log [\mathrm{x}]} \mathrm{dx}$ from an external program to Mathematica.

```
/* Integrate[Sqrt[Log[x]], x] * /
MLPutFunction (stdlink, "EvaluatePacket", 1);
MLPutFunction (stdlink, "Integrate", 2);
MLPutFunction (stdlink, "Sqrt", 1);
MLPutFunction (stdlink, "Log", 1);
MuPutSymbol (stdlink, "x", 1);
MLPutSymbol (stdlink, "x");
MmEndPacket (stdlink);
```

This installs a compiled external C program that does bitwise operations on integers.

```
link = Install["bitops"];
```

This executes the external code for the BitAnd function.
BitAnd[22222, 33333]
516

This uninstalls the external program.

Uninstall[link];

MathLink can be used to access the Mathematica kernel from external programs.
MS Word front end to Mathematica.

Netscape on the server of Wolfram Research.

MS Excel linked to Mathematica.

Under MS Windows, you can click this button to start a simple example "..\AddOns\MathLinkDevelopersKits\Windows\UnsupportedGoddies\vbfe" of a Visual Basic front end to Mathematica.

MathLink can be used to access other programs from within the Mathematica kernel.

MathLink allows you to set up templates to specify how external programs should be called. This defines a link to a C subroutine library.
:Begin:
: Function:
: Pattern:
:Arguments:
: ArgumentTypes: :ReturnType:

anneal

TSPTOur[r:\{\{_,_\}..\}]
\{First[Transpose[r]], Last[Transpose[r]], Length[r], Range[Length[r]]\}
\{RealList, RealList, Integer, IntegerList\} Manual
: End:

Here is a 3D graphic generated within Mathematica.

```
ParametricPlot3D[
    {(2+\operatorname{Cos[\frac{u}{2}]\operatorname{Sin}[v] - Sin[\frac{u}{2}]\operatorname{Sin}[2v])\operatorname{Cos[u],}}\mathbf{~}=,
    (2+\operatorname{Cos[\frac{u}{2}] Sin[v] - Sin[\frac{u}{2}] Sin[2v]) Sin[u],},\mp@code{N}
    Sin[\frac{u}{2}]\operatorname{Sin}[v]+\operatorname{Cos}[\frac{u}{2}]\operatorname{Sin}[2v]},
    {v, 0, 2 Pi}, {u, 0, 2 Pi}, PlotPoints -> 30, Boxed -> False, Axes -> Nore];
```


This image was generated by sending a description of the graphic from Mathematica via MathLink connection to an external photorealistic renderer.

MathLink can be used to control the Mathematica front end from within the kernel.
This tells the front end to bring up the color selector dialog box.

FrontEndTokenExecute["ColorSelectorDialog"]

MathLink can be used to communicate between Mathematica kernels -
several. on one computer or

On most computer systems (typically excluding Macintosh) this launches a subsidiary Mathematica kernel on your computer.

```
link = LinkLaunch["MathKernel -mathlink"];
```

This reads data from the subsidiary Mathematica kernel.

```
LinkRead[link]
InputNamePacket[In[1]:= ]
```

This writes a command to the subsidiary kernel.

```
LinkWrite[link, Unevaluated[$SessionID]]
```

This reads back the \$SessionID from the subsidiary kernel.

LinkRead[link]

ReturnPacket[20514827392884103963]

The \$SessionID in your main kernel will be different.

\$SessionID

20514820511569745766

This closes down the subsidiary kernel.

```
LinkClose[link];
```


University Center
 Joint Institute of Nuclear Research / Dubna

Mathematica Seminars
October 27-29, 1998

Mathematica Programming

Prof. Dr. Robert Kragler
FH Ravensburg-Weingarten /University of Applied Sciences kragler@fh-weingarten.de

Abstract

: The purpose of this tutorial is to demonstrate the versability and flexibility of Mathematica's high-level programming language which could be likewise used as testbed for various programming paradigms.

In the first part some general remarks on different Mathematica notions such as prefix, postfix and infix notation and some new typesetting features of the current Mathematica version 3.0 will be discussed.

- Prefix Notation
- Postfix Notation
- Infix Notation
- New Typesetting Features

The second part deals in detail with various programming styles wich can be realized using the Mathematica language

```
- Procedural Programming
- Recursive Programming
= Functional Programming
    (with the concept of pure and higher-level functions such as
    Apply, Map,Nest,Fold,FixedPoint,Thread, Inner,Outer etc.)
| Rule-Based Programming
- Logic (or Declarative) Programming
- Abstract Data Types
- Object-Oriented Programming
m Modularisation and Mathematica Packages
```

The different programming styles resp. concepts will be illustrated by numerous examples.

- Mathematica is a Computer Algebra System and (especially since version 3.0) at the same time it is a System for Technical Computing

Sathematica is a CAS for symbolic manipulation of formulae mainly. Apart from numerical and symbolic calculations and comfortable 2D/3D graphics and animation this system is supplemented by the following salient features :

Graphic Interactive User Interface i.e. the Front End and the Notebook High-level Programming Language for Developing new Procedures

In comparison to other CAS an outstanding feature of Mathematica is its high-level programming language which, supplemented by the Mathematica notebook environment, provides execellent means for developing and testing algorithms. Hence, because the Mathematica engine, i.e. the kernel, is an interpreter (and not a compiler) system it lends itself for rapid prototyping. Auxilliary to that the Mathematica programming language is very close to the way of thinking in mathematics and physics; thus it is quite easy to rewrite formulae into Mathematica expressions in a straightforward manner. Due to the concise Mathematica encoding programs may shrink by a factor of 10 to 20 in comparsion to traditional programming languages such as FORTRAN or C.

Mathematica Notebooks : Interactive Documents

Mathematica Notebooks are interactive electronic documents which may contain : Mathematica code (to be executed), text (with most DTP features supported such as different fonts, colour, mathematical notation etc.), graphics and animation (even in real-time using the add-on program MathLive), sound which is encoded in PostScript code the same way as graphics and other elements in terms of cells.

Every Mathematica notebook is a Mathematica expression which can therefore be generated or manipulated by the kernel. NotebookE . . nb

In more detail : Mathematica notebooks are ordinary Mathematica expressions. Therefore they can immediately be manipulated by the user without any special setup etc. thus the results given in Mathematica notebooks can easily be checked or altered. Mathematica notebooks are organised in terms of hierarchical cells the layout of which can be pre-defined in so-called StyleSheets which are again Mathematica notebooks. Notebooks can even be created by the Mathematica kernel as output. There are no limitations as regards to the appearance of Mathematica notebooks. Due to the hierarchical cell concept notebooks can be read like books wherein there are table of content, sections and subsections etc. which are accessible after opening the corresponding pages. However, the advantage of the electronic document in comparison to conventional books is the interactivity, i.e. probing and manipulating the Mathematica code incorporated in the notebook. (The very first pioneering book which contained all chapters in terms of Mathematica notebooks on a CD-ROM disk was "Exploring Mathematics with Mathematica" by Th. Gray and J. Glynn published by Addison-Wesley Publ. Company already in 1991.)
But the real important new feature in Mathematica version 3.0 is the portability of Mathematica notebooks. Mathematica notebooks contain all information in terms of ASCII code. They are platform independent in earlier versions it was always a big problem to convert Mathematica notebooks which had been generated, say, under Windows operating system to Unix workstations (OS Solaris), NeXT (OS NeXTSTEP) or Macintosh (Mac OS 7) computers. Especially international characters such as German umlauts (or kyrillic letters) and other special symbols were a tedious problem to cope with in the past
because there is no general accepted standard for character encoding. In Mathematica V 3.0 this problem is definitely solved. There are code translation tables for all Mathematica implementations which are provided for a large number of hardware platforms.

Thus Mathematica notebooks may be used as a mean for exchange of scientific information and could become a kind of standard for interactive electronic documents. On a wider scale Mathematica notebooks can be provided to academia via Web. There is already the built-in capability to save Mathematica notebooks in HTML format so that they can be used as WWW pages.

Recent developements from Wolfram Research are Publicon and MathML :
Publicon - a comprehensive solution for interactive technical publishing which allows the creation of professional-quality technical documents for on-screen, Web, and printed use. A free beta version of Publicon can be downloaded from http://www.publicom.com/.

MathML (Mathematical Markup Language) - a new standard recently ratified by W3C (i.e. the WWW Consortium) becomes the framework for Web typesetting technology. MathML is designed to allow mathematical expressions to be transmitted over the Web, preserving the structure needed to do computations with them in Mathematica. Information on MathML can be downloaded from the Web at <http://www.wolfram.com/news/mathml/ > .

Mathematica Programming Language

Mathematica is an unprecedentedly flexible and intuitive programming language. Examples of this feature are given in the following notebook : Rpogrammingpengraxthe

In contrast to other CAS because of the functional programming style of Mathematica it is often possible to write an elegant concise one-liner program whereas other CAS require for the same task at least several lines. In order to show the efficiency of Mathematica programming the following test programs to given problems have been collected for comparison in : \qquad
The different programming styles supported by Mathematica will be discussed in depth in the following notebook which serves as a tutorial : Programingstyles

Conclusion

In conclusion the Mathematica high-level programming language is a powerful interpreter language most suitable for development and testing of algorithms. Thus it is an ideal tool for rapid prototyping. It comprises all programming styles and features known from traditional programming languages. There is an extensive range of more than 1000 commands and procedures provided by Mathematica. Hence very concise code can be written as a consequence of which the size of Mathematica programs may shrink to $1 / 10$ or more compared to other traditional programming languages such as FORTRAN or C etc. A salient feature is that the Mathematica programming language is very close to the way of thinking in science and technology. Thus, the conversion of mathematical formulae into Mathematica expressions is in most cases straightforward and is faciliated even more by the notation of Mathematica version 3.0.

The features of Mathematica can be summarized as follows :

- high-level interpreter language
- most suitable for development and testing of algorithms
- comprehensive range of commands
- concise programm code
- programming language follows thinking in science
- straightforward conversion of formulae into Mathematica code

Mathematica Notebooks

Mathematica Programming Language
Prof. Dr. Robert Kragler
FH Ravensburg-Weingarten / University of Applied Sciences
kragler@rz.fh-weingarten.de Programming Demo

- Indexed Variables

Copyright Wolfram Research Inc.

Unifying Concept of the Mathematica Programming Language

Mathematica includes advanced programming concepts from modern computer science - as well as adding new ideas of its own. Mathematica incorporates a whole range of programming paradigms - thus one can write every program in its most natural way resp. style.

Mathematica is built on the powerful unifying concept that everything can be represented as a symbolic expression.

- All symbolic expressions are built up from combinations of the form head [arg, $\mathbf{a r g}_{2} \ldots$]

A list of elements

```
List[a,b, c]
{a,b, c}
```

An algebraic expression

```
Plus [Power [x, 2], Sqrt[x]]
\sqrt{}{x}+\mp@subsup{x}{}{2}
```

An equation

```
Equal [x, Sin[x]]
x== Sin[x]
```

[^2]```
And[p, Not[q]]
p&&!q
```


## A command

```
AddTo[Part[m, 1], a]
m【1】+=a
```

Graphics

Graphics[(Hue[0], Circle[\{1, 0\}, 2], Circle[\{-1, 0\}, 2]\}] // Show;


Abstract mathematical notation

```
Tilde[CirclePlus[a, b], Subscript[c, Infinity]]
```

$\mathrm{a} \oplus \mathrm{b} \sim \mathrm{C}_{\infty}$

A button

ButtonBox["Press here"] // DisplayForm
Iremsher
Rramestar

A cell containing text
A cell containing text is represented as

Cell["A cell containing text is represented as", "Text"]

- The uniformity of symbolic expressions makes it easy to add to Mathematice any construct wanted

A chemical compound $\mathrm{H}_{\mathrm{H}} \mathrm{HO}_{3}$

```
Remove[Chemical]
```

```
Chemical[arg : {{_Symbol, _Integer}..}] :=
 Module[{chem, chemFormula = {} },
 Do[element = arg[[i, 1]]; n = arg[[i, 2]];
 Switch[ToString[element], "Hydrogen", chem = "H",
 "Oxygen", chem= "O",
 "Nitrogen", chem = "N"];
 If[n==1, chem, chem = Subscript[chem, n]];
 chemFormula = AppendTo[chemFormula, chem],
 {i, 1, Length[arg]}];
 (Times chemFormula) // Print
]
```

```
Chemical[{{Hydrogen, 1}, {Nitrogen, 1}, {Oxygen, 3}}]
```

$\mathrm{H} \mathrm{N} \mathrm{O}_{3}$
An electric circuit

```
Circuit[{Resistor["R"], Capacitor["C"]}]
```



All operations in Mathematica are ultimately transformations of symbolic expressions. Mathematica has a uniquely powerful pattern matcher for applying transformation rules.

The notation /. tells Mathematica to apply the simple rule $\mathrm{b} \rightarrow 1+\mathbf{x}$.

```
{a,b,c,d}/.b->1+x
{a,1+x,c,d}
```

$x_{-}$and $y_{-}$each stand for any expression, so the pattern $x_{-}+y_{\_}$stands for a sum of terms.

```
\(\{a+b, c+d, a+c\} / . x_{-}+y_{-}->x^{2}+y^{2}\)
\(\left\{a^{2}+b^{2}, c^{2}+d^{2}, a^{2}+c^{2}\right\}\)
```

```
\(\{a+b, c+d, a+c\} / \cdot a+x _->x^{3}\)
\(\left\{b^{3}, c+d, c^{3}\right\}\)
```

This is an ordinary function definition for $f(x)$ to be used for any $\mathbf{x}$.

$$
f\left[x_{-}\right]:=\frac{2}{x}
$$

Here is a special case that overrides the general definition.

```
f[0]:=e
```

Here is an example of the use of $\mathbf{f}$.

$$
\begin{aligned}
& f[6]+f[a+b]+f[0] \\
& \frac{1}{3}+\frac{2}{a+b}+e
\end{aligned}
$$

This clears the definitions given for f .

```
Clear[f]
```

- An important feature of using patterns is that they allow "functions" to take arguments in any structure.

This defines a value for g with an argument that is a list of two elements.

$$
g\left[\left\{x_{\_}, y_{-}\right\}\right]:=x+y
$$

```
g[{4, a b}]
```

$4+a b$

## Clear [g]

This specifies the value for a function area when given a Circle object as an argument.

```
area[Circle[{_, _}, r_]]:= \pir'
```

```
area [Circle[{2; 3}, u]]
\piu
```

This implements a logic reduction rule. $\mathbf{p} \wedge \mathbf{q} \vee \mathbf{p} \mathbf{p}$

```
reduce[p_ && q_ || p_]:=p
```

```
logic = A ^ (\negA) VA
logic //reduce
A&&!A|A
```


## A

## Mathematica Programming Styles

## Procedural Programming

```
z = a;
Do[Print[z*=z+i],{i, 3}]
```

a ( $1+a$ )
$a(1+a)(2+a(1+a))$
$a(1+a)(2+a(1+a))(3+a(1+a)(2+a(1+a)))$

```
Clear[z]
```

Functional Programming

```
NestList[f, x, 4]
{x,f[x], f[f[x]], f[f[f[x]]], f[f[f[f[x]]]]}
```

The expression $(1+\#)^{2} \varepsilon$ is a pure (anonymous) function, where \# acts as a place holder to be replaced during execution by the actual variable.

```
NestList[(1+#)}\mp@subsup{}{}{2}&,x,3
{x,(1+x\mp@subsup{)}{}{2},(1+(1+x\mp@subsup{)}{}{2}\mp@subsup{)}{}{2},(1+(1+(1+x\mp@subsup{)}{}{2}\mp@subsup{)}{}{2}\mp@subsup{)}{}{2}}
```


## Rule-based Programming

```
p[x_+ y_] := P[x] + P[y]
```

```
p[a+b+c + d]
p[a]+p[b]+p[c]+p[d]
```

stands for any simple expression ; for any sequence of expressions.

$$
s\left[\left\{x \_, a_{\_}, y_{\ldots}\right\}, a_{\_}\right]:=\{a, x, x, y, y\}
$$

```
s[{1, 2, 3, 4, 5, 6},4]
{4, 1, 2, 3, 1, 2, 3, 5, 6, 5, 6}
```

```
Clear[p, s]
```


## - Object-Oriented Programming

Here are 3 different definitions to be associated with the object $h$.

```
h/: f_[h[x_]] := fh[f,x]
```

$h /: p\left[h\left[x_{\sim}\right], x_{-}\right]:=h p[x]$
$h /: h\left[x_{-}\right]+h\left[y_{-}\right]:=$hplus $[x, y]$
This connects the definitions with the object $h$

```
f[h[r]]+p[h[x], x]+h[a]+h[b]
fh[f,r]+hp[x]+hplus [a, b]
```


## Clear [h]

## - List-based Programming

Many operations of Mathematica are automatically threaded over lists.

```
1+{a,b,c}}\mp@subsup{}{}{2
{1+\mp@subsup{a}{}{2},1+\mp@subsup{b}{}{2},1+\mp@subsup{c}{}{2}}
```

```
lst = Table[ij, {i, 4},{j,i}]
{{1},{2, 4}, {3, 9, 27}, {4, 16, 64, 256}}
```

This command fattens sublists.

```
lstf = Flatten[1st]
{1, 2, 4, 3, 9, 27, 4, 16, 64, 256}
```

This partitions into sublists with 2 elements each.

```
Partition[1stf, 2]
```

```
{{1, 2}, {4, 3}, {9, 27}, {4, 16}, {64, 256}}
```


## - String-based Programming

```
StringReplace["aababbaaabaabababa", {"aa" > "\<>@", "ba" -> "吕"}]
```



## - Mixed Programming Paradigms

Many of Mathematica's powerful functions mix different programming paradigms.

```
Position[{1, 2, 3, 4, 5} / 2, _Integer]
```

\{\{2\}, \{4\}\}

```
MapIndexed[Power, {a, b, c, d}]
{{a},{\mp@subsup{b}{}{2}},{\mp@subsup{c}{}{3}},{\mp@subsup{d}{}{4}}}
```

```
FixedPointList[If[EvenQ[#1], #1
{100000, 50000, 25000, 12500, 6250, 3125,.3125}
```

```
ReplaceList[{a,b, c, d, e}, {x__, y__} -> {{x}, {y}}]
{{{a}, {b,c,d, e}}, {{a, b}, {c, d, e}}, {{a,b, c}, {d, e}},
 {{a,b,c, d}, {e}}}
```

Mathematica gives the flexibility to write programs in many different styles. Here a 12 different definitions of the Factorial function are given.

```
f
```

$$
\mathrm{f}_{2}\left[\mathrm{n}_{-}\right]:=\mathrm{n}!
$$

$$
f_{3}\left[n_{-}\right]:=\operatorname{Gamma}[n+1]
$$

```
f_[n_]:= n ficm[n-1];
f4[1] = 1;
```

```
f5[n_] := Product[i, {i, n}]
```

```
ff[n_] := Module[{t = 1},
 Do[t = t*i, {i, n}];
 t]
```

```
f
 For[i = 1, i <= n, i++, t *= i];
 t]
```

$f_{8}\left[n_{-}\right]:=$Apply[Times, Range[n]]
$f_{9}\left[n_{-}\right]:=$Fold[Times, 1, Range[n]]
$f_{10}\left[n \_\right]:=\operatorname{If}[n==1,1, n f 10[n-1]]$
$f_{11}\left[n_{n}\right]:=\operatorname{Fold}[\# 2[\# 1] \varepsilon, 1$, Array[Function[t, \#t]\&, $n]$ ]

```
f12 := If[#1 == 1, 1, #1 fl2[#1 - 1]]&
```

In order to test the efficiency of the 12 different factorial function definitions the total CPU time for the factorials $\{$ $1000!, 1500!, 2000!, 3000!\}$ is measured in seconds and sorted with respect to time．

```
fac = {fic, f: f
val = {1000, 1500, 2000, 3000};
$RecursionLimit = 4000; nfac = Length[fac];
```

time = Table[(Log[facโi]/eval])//N //Timing, (i, 1, nfac\}];
Thus one obtains for example
\{time【5】, FullDefinition[fac〔5]//Evaluate] \}
$\left\{\{1.65\right.$ Second, $\left.\{5912.13,9474.41,13206.5,21024\}\},. f_{5}\left[n_{-}\right]:=\prod_{i=1}^{n} i\right\}$

As regards to efficiency of the factorial function definitions the following ranking is found ：

```
orderedTimes =
 Table[{ time\llbracketi][1, 1\rrbracket, FullDefinition[fac\llbracketi\rrbracket// Evaluate] },
 {i, nfac-1}] U {{ time[12][1, 1], FullDefinition[f12]}};
orderedTimes // ColumnForm
{0.06, fic [n_] := If [n== 1, 1, n f10[n-1]]}
{0.16, fin[n_]:=n!}
{0.17, frl[n_] := n!}
{0.17, fi [n_] := Gamma [n+1]}
{1.37, ff [n_]:= Times @@Range [n]}
{1.48, f9[n_] := Fold [Times, 1, Range [n]]}
{1.65, f}\mp@subsup{f}{5}{[n_]:= \mp@subsup{\prod}{i=1}{n}i}
{2.2, fin[n_] := Module [{t=1}, Do[t=ti, {i, n}]; t]}
{2.41, f f [1] = 1 }
 f4[n_] := n f [[n-1]
{2.69, fl2:= If[#1== 1, 1, #1 flic#1-1]]&}
{3.24, f7[n] := Module [{t=1, i}, For[i=1, i\leqn, i++, t *= i]; t]}
{3.35, f11 [n_]:= Fold[#2[#1]&, 1, Array[Function [t, #1 t]&, n]]}
```


## Writing Programs in Mathematica

Mathematica's high-level programming constructs enable to built sophisticated programs more quickly than with traditional programming languages.

## - Even single-line Mathematica programs can perform complex operations.

This program creates a one-dimensional random walk

```
RandomWalk[n_] := NestList[(# + (-1)^Random[Integer])&, 0, n]
``` Here is a plot of the first 200 steps.

ListPlot[RandomWalk[200], PlotJoined \(\rightarrow\) True];


The directness of Mathematica programs makes a generalization quite easy. The subsequent program produces a random walk in d dimensions.

RandomWalk[n_, d_]:=
NestList[ (\# + (-1) ^Table[Random[Integer], \{d\}])\&, Table[0, \{d\}], n]
Here is the three-dimensional random walk.

- Mathematica is a uniquely scalable language - suitable for programs of any size

\section*{Cellular Automaton ( Game of Life )}

Here is a direct program for one step in the Life.cellular automaton.
```

LifeStep[a_List] :=
MapThread[If[(\#1 == 1 \&\& \#2 == 4) || \#2 == 3, 1, 0]\&,
{a, Sum[RotateLeft[a, {i, j}], {i, -1, 1}, {j, -1, 1}]}, 2]

```

Here is an alternative highly optimized program acting on cell lists.
```

LifeStep[list_] :=
With[{u = Split[Sort[Flatten[Outer[Plus, list, N9, 1], 1]]]},
Union[Cases[u, {x_, _, _} -> x],
Intersection[Cases[u, {x_, _', _',_} -> x], list]]]
N9 = Flatten[Array[List, {3, 3}, -1], 1] ;

```

Mathematica makes it easy to build up programs from components. In this example the parts for the simulation of a cellular automaton are put together.
```

Clear[CAStep]

```
```

CenterList[n_Integer] := ReplacePart[Table[0, {n}], 1, Ceiling[n/2]]
ElementaryRule[num_Integer] := IntegerDigits[num, 2, 8]
CAStep[rule_List, a_List] :=
rule[[8 - (RotateLeft[a] + 2 (a + 2 RotateRight[a]))]]

```

Mathematica has a compiler for optimizing programs that work with lists and numbers. Here is a definition of CAStep which resorts to Compile.
```

CAStep = Compile[{{rule, _Integer, 1}, {a, _Integer, 1}},
rule[[8 - (RotateLeft[a] + 2(a + 2 RotateRight[a]))]]];

```
```

CAEvolveList[rule_List, init_List, t_Integer] :=
NestList[CAStep[rule, \#]\&, init, t]

```
CAGraphics[history_List] := Graphics[Raster[1 - Reverse[history]],
                                AspectRatio -> Automatic]

This example demonstrates how the program runs.

Show [ CAGraphics [
```

CAEvolveList[

```

ElementaryRule[30], CenterList[201], 150] ]];


Mathematica programs are often a direct translation of material in textbooks. Hereare definitions for the impedance of an electric circuit.

\section*{Impedance of a Circuit}
```

Impedance[Resistor[r_], \omega_] := r
Impedance[Capacitor[c_],\omega_] := 位
Impedance[Inductor[l_],\omega_] := i}\omega
Impedance[SeriesElement[e_],\omega_] :=
Apply[Plus, Map[Impedance[\#, \omega]\&, e]]
Impedance[ParallelElement[e_], \omega_] :=
1/Apply[Plus, 1 / Map[Impedance[\#, \omega] \& , e]]

```

The definitions above are then used for the following calculation of a circuit.


Remove \(\left[R_{n}\right]\);
```

Rn}:=\mathrm{ Subscript[R,N]
Impedance[SeriesElement[
Table[ParallelElement[
Table[SeriesElement[{Resistor[[R] }], {n}]
], {n,1,4}]
],\omega]
R

```

\section*{- In Mathematica algorithms can be expressed clearly.}

Golden Ratio \(\frac{(1+\sqrt{5})}{2}\)

\section*{GoldenRatio}

GoldenRatio

Both programs approximate the Golden Ratio up to \(\mathbf{k}\) digits.
\[
\left.\phi_{1}[k]\right]:=1+\text { FixedPoint }\left[N\left[\frac{1}{1+\# 1}, k\right] \varepsilon, 1\right]
\]
\[
\phi_{2}\left[k_{-}\right]:=\text {FixedPoint }[\mathbb{N}[\sqrt{1+\# 1}, k] \&, 1]
\]
```

{ }\mp@subsup{\phi}{1}{}[50],\mp@subsup{\phi}{2}{[50],N[GoldenRatio, 50]}
{1.6180339887498948482045868343656381177203091798058 ,
1.6180339887498948482045868343656381177203091798057 ,
1.6180339887498948482045868343656381177203091798058 }

```

\section*{- Mathematica programs allow a unique combination of mathematical and computational notation.}

Subsequent definitions correspond to a recently discovered approximation for prime numbers.
```

$\Omega\left[n_{1}\right]:=$ Apply [Plus, Map[Last, FactorInteger[n]]]
$\mu\left[n_{-}\right]:=$MoebiusMu[n]
$P\left[x_{-}\right]:=-\sum_{k=1}^{\log [2, x]]} \mu[x] \sum_{n=2}^{\left\lfloor x^{1 / k} \mid\right.} \mu[n] \Omega[n]\left\lfloor\frac{x^{1 / x}}{n}\right\rfloor / ; x>0$

```

Here is a comparison of the approximation \(\mathrm{P}[\mathrm{n}]\) with the built-in function PrimePi[n] , which determines the number of primes \(\leqslant \mathbf{x}\).
```

{P[100000], PrimePi[100000] }
{9592, 9592}

```

\section*{Mathematica Notebooks}

\section*{Mathematica Programming Language}

Prof. Dr. Robert Kragler
FH Ravensburg-Weingarten / University of Applied Sciences
kragler@rz.fh-weingarten.de

\section*{Programming Efficiency}

\section*{Create a Sequence of 0's and 1's}
- Problem: All sequences of Length 3

Result wanted : \(\{[0,0,0],[1,0,0],[0,1,0],[1,1,0],[0,0,1],[1,0,1],[0,1,1],[1,1,1]\}\)
For sequences consisting of digits 0 and 1 there are \(2^{n}\) possible arrangements. Solutions for Mathematica, Maple, Macsyma, Axiom and Reduce are :
- Mathematica
```

sequences[n_]:= Distribute[Table[{0, 1}, (n}], List]
sequences[3]
sequences[4]
{{0,0,0},{0, 0, 1},{0, 1, 0},{0, 1, 1},{1, 0, 0},{1, 0, 1},
{1, 1, 0}, {1, 1, 1}}

```
```

{{0, 0, 0, 0},{0, 0, 0, 1}, {0, 0, 1, 0}, {0, 0, 1, 1},{0, 1, 0, 0},
{0,1,0,1},{0, 1, 1, 0}, {0, 1, 1, 1}, {1, 0, 0, 0}, {1, 0, 0, 1},
{1, 0, 1, 0}, {1, 0, 1, 1}, {1, 1, 0, 0}, {1, 1, 0, 1}, {1, 1, 1, 0},{1, 1, 1, 1}}

```

\section*{- Maple}
```

sequences := n >> if (}n=0\mathrm{) then []
elif (n = 1) then [[0],[1]]
else map(x-> ([op(x),0],[op(x),1]),sequences(n-1))
fi

```

\section*{Macsyma}
```

sequences(n):=
if n=0 then []
else if n=1 then [[0],[1]]
else apply('append,map(lambda([1],[endcons(0,1),
endcons(1,1)]),
sequences(n-1)))\$

```

\section*{- Axiom}
```

sequences n ==
one? n => [[0], [1]]
concat [[concat(0, s), concat(1, s)]
for s in sequences(n-1)]

```

\section*{- Reduce}
```

procedure sequences n;
if n = l then {{0},{1}}
else for each s in sequences(n - 1) conc {0 . s,1 . s};

```

\section*{List all Elements larger than all Preceding Elements}
- Problem : \(\quad \operatorname{maxima}[\{3,2,6,4,8,1\}]\)

Result wanted : \(\{3,6,8\}\)
- Mathematica
```

maxima[x_] := Union[Accumulate[Max, x]]
maxima[{3, 2, 6, 4, 8, 1}]
{3, 6, 8}

```

\section*{- Maple}
```

maxima := proc(l)
local mx, i;
mx := op(1, l)-1;
[seq(proc(m, v) if (eval(m) < v) then m := v;
v else NULL fi end('mx',i), i=l)]
end;

```

\section*{- Macsyma}
```

maxima(l):= maxima2(1,minf)\$
maxima2(1,x):=
if l=[] then []
else if first(l)>x
then cons(first(l),maxima2(rest(l),first(l)))
else maxima2(rest(l),x)\$

```

\section*{Axiom}
```

maxima x == [x.i for i in l..\#x |
every?(a +-> a < x.i, first(x, (i-1)::NNI))]

```
- Reduce
procedure maxima u;
first \(u\). maximal(rest \(u\),first \(u\) );
procedure maximal (u,v);
if \(u=\{ \}\) then \(\}\)
else if first \(u>v\) then first \(u\). maximal(rest \(u\), first \(u\) ) else
maximal(rest \(u, v)\);

\section*{Encode Sequences in Lists (Run-length Encoding)}
```

- Problem : runEncode[{a,a,b,c,c,c,a}]
Result wanted: { {a,2},{b,1},{c,3}, {a,1}}

```

Determine from a given set the run-lengths of equal characters following each other.
- Mathematica
```

runEncode[x_List] :=
({\#1, 1}\&)/ex //. {u

```
\(\qquad\)
``` \(,\left\{v_{-}, x_{-}\right\},\left\{v_{-}, s_{-}\right\}, w\)
``` \(\qquad\)
``` \(\} \rightarrow\{u,\{v, x+s\}, w\}\)
```

```
runEncode[{a, a, b, c, c, c, a}]
{{a, 2},{b, 1}, {c, 3}, {a, l}}
```


## Maple

```
run_encode := l -> if (l = []) then [] else [encode_block(l, 1,1)] fi:
encode_block := (l,i,c)-> if (i >= nops(1)) then [l[i],c]
 elif (l[i] = l[i+1]) then
encode_block(l,i+1,c+1);
 else [l[i],c],encode_block(l,i+1,1);
 fi:
```


## Macsyma

```
elem_count (x,1):=
 if l=[] then 1
 else if first(l)=x then 1+elem_count(x,rest(l))
 else 1$
run_encode(l):=
 if l=[] then []
 else block([c: elem count(first(l),rest(1))],
 cons([first(l),c],run_encode(rest(l,c))))$
```


## - Axiom

```
lcount(a,x) == (empty? x => 1; a = first x => 1 + lcount(a, rest x); 1)
runEncode x ==
 empty? x => [];
 cons([a := first x, n := lcount(a, rest x)],
 runEncode rest(x, n))
```


## - Reduce

```
procedure runencode lst;
if lst = {} then {| else runencodel(first lst,rest lst,1);
procedure runencodel(u,v,n);
if v = {} then {{u,n}}
else if u = first v then runencodel(u,rest v,n + l) else {u,n} .
runencode v;
```


## Mathematica Notebooks

Mathematica Programming Language
Prof. Dr. Robert Kragler
FH Ravensburg-Weingarten / University of Applied Sciences kragler@r.fh-weingarten.de

## Programming Styles

## - Initializations

## General Remarks on the Mathematica Programming Language

The success of Mathematica relies to some extend on the fact that in adddition to the three columns Symbolic and Numerical Calculation and Graphics there is a powerful high-level Programining Language available which comprises very different programming concepts.

An occasional Mathematica user may do his calculations with Mathematica in a dialogue mode where already in this case he is offered the possibility of processing results of previous calculations and nesting Mathematica expressions. With these features, however, the possibilites provided by Mathematica are far not exhausted.

Mathematica is more than a handy pocket calculator. Auxilliary to more than 1000 commands implemented in the kernel Mathematica comprises a complete high-level programming language (comparable to C or FORTRAN etc.) allowing

- to access all built-in functions of Mathematica
- to extend the functionality of Mathematica by additional user-written procedures if required


## Different Mathematica Notations

A special feature of the Mathematica programming language is the great number of synonymous notations and the possibility resulting from this feature, to employ the syntax as means to emphasize or especially point out certain aspects or sequentialization etc. If suitable postfix, prefix or infix and bracket notations may be applied exclusively or in combination.

f $\mid x, y]$		standardform für $\mathrm{f}(\mathrm{x}, \mathrm{y})$
Prefix [ $\mid x]$ ]	f@ ${ }^{\text {d }}$	standard Prefix notation for $\mathrm{f}(\mathrm{x})$
Postfix[ f$] \mathrm{x}] \mathrm{]} \quad \mathrm{x} / / \mathrm{f}$		standard Postfix notation for $\mathrm{f}(\mathrm{x})$
$\operatorname{Infix}[\mathrm{f}]$ x, $y, \ldots]$	$x \sim f \sim y \sim f \sim \ldots$	standard Infix notation for $\mathrm{f}(\mathrm{x}, \mathrm{y})$
		Prefix form h x
Postfix[ flx $]$, h ]		Postfix form xh
$\operatorname{Infix}[\mathrm{f} x, y, \ldots], \mathrm{h}]$		Infix form xh y h ...
PrecedenceForm[ expr, $n$ ]		expr to be parenthesized with precedence $n$

As will be shown below the Postfix operator ( // ) may be used to emphasize the sequential execution of serveral operators from left to right ; the usage of the Prefix operator ( @ ) points out the sequence in which functions are applied, whereas the parenthesis notation common in other programming languages is more suitable for functions of several arguments or for augmenting nesting structures. The Infix operator ( ~ ) may be used as a (binary) operator acting between only two operands resp. parameters as is the case in other notations too. According to the need even within a Mathematica statement the mix of different notations is possible. This offers syntax possibilities similar to natural languages.

## - Examples to model mathematical notation

When there is an output form involving operators the question arises of whether the arguments of some of them should be parenthesized. In general this depends on the ranking order (precedence) of the particular operator. With PrecedenceForm [...] one can specifiy the precedence level to assign to each operator a number between 1 and 1000. The higher the precedence level for an operator, the less it needs to be parenthesized. Using Infix[exp,h,precedence, grouping] it is possible to affect the parenthesizing of the output form. The precedence is determined by integer numbers; for OutputForm some precedence levels are given as follows

Connection	precedence level	example
Dot	210	$\mathbf{x} \cdot \mathbf{y} \cdot \mathbf{z}$
Power	190	$\mathbf{x} \mathbf{y}$
Times	150	$\mathbf{x} \mathbf{Y}^{\star} \mathbf{z}$
Plus	140	$\mathbf{x}+\mathbf{y}+\mathbf{z}$
Equal	130	$\mathbf{x}=\mathbf{y}$
Set	60	$\mathbf{x}=\mathbf{y}$

Possible specifications for grouping (associativity) of input forms with same precedence level are

NonAssociative	not associative	always brackets
None	always associative	(never bracket)
Left	left associative	e.g. $(a / b) / c$
Right		e.g. $a^{\wedge}\left(b^{\wedge} c\right)$

## Prefix operator

## ? Prefix

```
Prefix[f[expr]] prints with f[expr] given in default prefix form:
 f @ expr. Prefix[f[expr], h] prints as hexpr.
An equivalent short for Prefix[...] is the operator @ (function application)
```

```
Prefix[f[x+y]]
```

f @ $(\mathrm{x}+\mathrm{y})$

```
f@ x+y
f@(x+y)
y+f[x]
```

$$
f[x+y]
$$

```
Prefix[f[x], "Lo"]
Prefix[f[2 + n], "L`"]
LO X
```

```
LO(2+n)
```


## Postfix operator

## ? Postfix

```
Postfix[f[expr]] prints with f[expr] given in default postfix form:
 expr // f. Postfix[f[expr], h] prints as exprh.
```

```
Postfix[f[2+n], "०H"]
2+n OH
```

Because the precedence level is with 160 larger than for Plus $(+)$ one should expect a result which differs from the previous one.

```
Postfix[f[2+n], "OH", 160]
```


## ? Infix

Infix[f[e1, e2, ... ]] prints with $f[e 1, ~ e 2, \ldots]$ given in default infix form: e1 ~ f ~ e2 ~ f ~ e3 ... . Infix[expr, h] prints with arguments separated by $h$ : e1 h e2 h e3... .

Infix $[f[x, Y]]$
$x \sim f \sim y$
$\{a, b, c\} \sim J o i n \sim\{d, e\} \sim J o i n \sim\{f, g, h\}$
$\{a, b, c, d, e, f, g, h\}$

Infix [f[x, Y], " $\oplus$ "]
$x \oplus y$

```
Format[vectorProduct[a_, b_]] := Infix[\{a, b\}, "x"]
 (* Format[vectorProduct[a_,b_]]:=Infix[\{a,b\},"x",160,None] *)
vectorProduct[a, b]
\(a \times b\)
```

```
Infix[f[a+b,c c d]," }\oplus\mathrm{ ", 135, None]
Infix[f[a+b,c+d]," }\oplus\mathrm{ ", 145, None]
a + b Z c + d
```

$(a+b) Z(c+d)$

```
dot[a_, b_] := Infix[dot[a; b], "0", 120, None]
dot[dot[a,b], dot[c, d]]
a}\mp@subsup{}{}{\circ}\mp@subsup{b}{}{\circ}\mp@subsup{c}{}{\circ}
```


$\operatorname{dot}[\operatorname{dot}[a, b], \operatorname{dot}[c, d]]$
$\left(a^{\circ} b\right)^{\circ}\left(c^{\circ} d\right)$

```
dot[a_, b_] := Infix[dot[a, b], "o", 120, Left]
dot[\operatorname{dot}[a,b], dot[c, d]]
```

```
a}\mp@subsup{}{}{\circ}\mp@subsup{b}{}{\circ}(\mp@subsup{c}{}{\circ}d
```


## Precedence

## ? PrecedenceForm

PrecedenceForm[expr, prec] prints with expr parenthesized as it
would be if it contained an operator with precedence prec.
The following output of a list will be decorated with the Infix operator " $\Leftrightarrow$ "

```
s = Infix[{a,b,c, d}, "¢"]
a\Leftrightarrowb\Leftrightarrowc\Leftrightarrowd
```

Because of its default the Infix operator has a precedence level higher than Power [. . .], i.e. exponentiation. Hence, squaring the expression $s$ defined above with Infix operator " $\Leftrightarrow$ " one obtains the result.

```
s
(a\Leftrightarrowb\Leftrightarrowc\Leftrightarrowd)
```

Due to the fact that precedence level for Add ( + ) is 140 there will be different results depending on whether the precedence level is higher or lower than 140

```
a + PrecedenceForm[cd, 120]
a+(cd)
```

```
a + PrecedenceForm[cd, 200] (* should be a + c d *)
a + (cd)
```

E Example $\left|\sin \left(\frac{\pi}{4}\right)\right|$
The following variations show the same content but in different notation sequential execution in the fashion of UNIX pipes

$$
\begin{aligned}
& \left(\frac{-\pi}{4}\right) / / \sin / / \mathrm{Abs} / / \mathrm{N} \\
& 0.707107
\end{aligned}
$$

functional (operational) way of viewing with final clause "...and then all numeric"

Abs@ Sin@ $\left(\frac{-\pi}{4}\right) / / N$
0.707107
procedural way of viewing specifying the number of digits wanted of the numeric result
$\mathrm{N}\left[\operatorname{Abs}\left[\operatorname{Sin}\left[\frac{-\pi}{4}\right]\right], 20\right]$
0.7071067811865475244
mixed form with less parentheses
$\mathrm{N}\left[\mathrm{Abs} @ \operatorname{Sin}\left[\frac{-\pi}{4}\right], 20\right]$
0.7071067811865475244
mixed form with final clause "...with absolute value"
$N\left[\operatorname{Sin}\left[\frac{-\pi}{4}\right] / / N, 20\right]$
0.7071067811865475244

## Overview of Mathematica Programming Styles

Mathematica as a powerful and (at the same time) elegant programming language support essentially all programming styles known from other high-level programming languages. In an first approach there will be only an overview of the variety of programming styles to be realized with Mathematica; in a second step there will be a discussion of technical details.
Algorithms from procedural programming languages like FORTRAN, C, Pascal, Modula-2 etc. can be transscripted into Mathematica code in a straightforward manner. However, this is not always the most elegant way to do so. Because of the possibilites which are offered in functional and rule-based programming languages mathematical algorithms are in most cases more compact and more efficient.

The essential programming styles supported by Mathematica are

- procedural programming (FORTRAN, Pascal, C like)
- recursive programming ( C , Lisp like)
- functional programming (APL, Lisp like)
m rule-base programming (Prolog, C++ like)

A simple example - the factorial function - serves as illustration for the different programming styles :

## Factorial in Procedural Programming Style

## Procedural

Procedural programming in the style of FORTRAN, Pascal or C language relies on structural elements such as blocks, conditions, loops and control structures (as well as iteration and recursion).

```
facFortran[n_]:=Block[\{s=1\},
 Do[s *=i, \(\{\mathrm{i}, \mathrm{n}\}] ; \mathrm{s}]\)
```

```
facFortran[5000] //N // Timing
{3.46 Second, 4.22857792660554 \10 16325}
```


## Factorial in Recursive Programming Style

## Recursive

Modern programming languages like $C$ ( and recently FORTRAN 90 too) allow recursive function calls. Hence, some mathematical problems can be solved in a more concise way if formulated in a recursive fashion.

```
facC[n_] := If[n==1, 1, n facc[n-1]]
$RecursionLimit = $IterationLimit = 10000;
```

facc[5000] //N //Timing
\{3.4 Second, $\left.4.22857792660554 \times 10^{16325}\right\}$

## Factorial in Functional Programming Style

## Functional

Functional programming à la APL or Lisp make use of the concept of functional and structural operators

```
facAPL[n_Integer] := Times @@ Range[n]
```

```
facAPL[5000] // N // Timing
{2.31 Second, 4.22857792660554\times10 16325}
```


## Factorial in Rule-based Programming Style

## RuleBased

Rule-based programming in the style of Prolog or C++ makes use of pattern matching and transformation rules. This programming style is most suitable when there are only few rules to be formulated in order to transform instructions from one form into another one. Each rule is related to a model and acts as an operator on the mapping of the model. Most rules can be constructed from a direct conversion of the corresponding mathematical formulae. Rules can be named so that they can be activated if needed or implemented as a global rule base to be always available

```
facProlog[n_] := n facProlog[n-1]
facProlog[0] := 1
```

```
?facProlog
```

```
Global`facProlog
facProlog[0] := 1
facProlog[n_] := n* facProlog[n - 1]
```

facProlog[5000] //N // Timing
\{3.13 Second, $\left.4.22857792660554 \times 10^{16325}\right\}$

## Programming Styles in Detail

Obviously Mathematica as a programming language does not tie down the user neither to a single programming style nor to a certain notation. The essential advantage in comparison to traditional programming languages is however that Mathematica is an interactive interpreter system.
(Only for some simple expressions it is possible to create compiled functions which speeds up evaluation. A built-in compiler in the Mathematica kernel translates expressions into pseudocode which is used by a subsequent pseudocode interpreter to evaluate the compile functions.)
This allows an experimental proceeding to call individual functions separately and to test them without the necessity of writing a complete program. Thus, the user can build up complicated programs based on simple functions which in turn make use of fundamental operations of Mathematica. Many programs of that kind are available as Mathematica packages for very different applications to be loaded into the Mathematica kernel if needed.

Below follows a list of different programming styles :

## Procedural Programming

First of all the procedural programming ( as known from Pascal or C ) should be dealed with. In this programming style functions may call each other by value or by reference. The usual constructs available are e.g. loops, conditionais, local variables, arguments with default values and recursive calls. This programming style is well-known. And the most important control structures are Do, While and For as well as conditionals such as If, Which and Switch.

In order to define local variables within functions or procedures one uses the mechanism of Module (with lexical scoping) or Block (dynamic scoping)

$$
c=b^{2} ;
$$

The local value for $\boldsymbol{b}$ in the block is used throughout the evaluation of $\boldsymbol{b}+\boldsymbol{c}$

```
Block[{b=a},b+c]
a+ a
```

Here only the $\boldsymbol{b}$ that appears explicitly in $\boldsymbol{b}+\boldsymbol{c}$ is treated as a local variable

```
Module[{b=a}, b + c]
a+b
```


## - Example : Sign function sign(x)

```
signum[x_]:= If [x s 0, 0, 1]
signum [10]
1
```

```
Plot[signum[i], {i, -5, 5},
```

    PlotStyle \(\rightarrow\) \{\{RGBColor[1, 0, 0], AbsoluteThickness [2] \}\},
    AxesLabel \(\rightarrow\) \{"x", "Sign (x)"\}, AspectRatio \(\rightarrow 0.4\),
    Background \(\rightarrow\) GrayLevel[0.75]];
    

In order to point out the intricacy of this programming style consider the task to represent numbers with respect to the base 256 . The realization in procedural style could be as follows

```
makeList1[num_Integer] :=
 Module[{res = {}, rem = num},
 While[rem f 0, PrependTo[res, Mod[rem, 256]];
 rem = Quotient[rem, 256]];
 res]
```

coeffl $=$ makeList1 [1111111111111]
\{25, 222, 189, 1, 199\}

To test the correctness of the forgoing procedure terms of the form $\boldsymbol{c}_{l} \mathbf{2 5 6}^{\boldsymbol{l}}$ are summed up to yield the decimal number

```
i1 = Length[coeff1];
s= 住coeff1\llbracketi\rrbracket HoldForm[256] (i1-i)
199+256+1892562+222256 3}+252564,
```

```
s // ReleaseHold
(* or ReleaseHold //0 s *)
```

111111111111

This naive procedural formulation is very unsatisfying because 2 local variables rem and res are used and the flow of the program is controlled by a While-loop. Using a recursive algorithm however the program can be written in a more concise and elegant way.

## Recursive Programming

All modern programming languages support recursive function calls. Using this concept one can solve more concisely those mathematical problems which are described recursively. Thus one avoids an explicit control of the flow of the program.

A solution of the example above is achieved in a recursive way with the help of two definitions

```
makeList2[0] = {};
makeList2[num_Integer] :=
 Append[makeList2[Quotient[num, 256]], Mod[num, 256]]
```

makeList2 [111111111111]
$\{25,222,189,1,199\}$

In general a recursive program is faster although the book-keeping of the recursion requires some additional computational effort. What is in favor of a recursive program style is its clearness and the ease to read.

## - Efficiency

In the case of simple problems with recursive solutions mostly iterative solutions will exist too which are more efficient. For complicated problems, however, it is preferable using a short recursive algorithm instead of a long iterative one.

In algorithms with recursive calls to be used more than once the storage of intermediate results (e.g. f[n_] = $\mathrm{f}[\mathrm{n}]=$ expression ) avoids multiple computations. As prominent example serve the Fibonacci numbers

## Fibonacci Numbers

A version without intermediate storage require more computation

```
fibl[0] = 1; fibl[1] = 1;
fibl[n_] := fibl[n-1] + fib1[n-2]
fibl[20] // Timing
{2.2 Second, 10946}
```

Storing intermediate results makes the calculation more efficient

```
fib2[0] = 1; fib2[1] = 1;
fib2[n_] := fib2[n] = fib2[n-1] + fib2[n - 2]
```

```
fib2[20] / / Timing
{0. Second, 10946}
```

```
$RecursionLimit = 1000;
fib2[200] // Timing
{0.17 Second, 453973694165307953197296969697410619233826}
```

In the present example, however, an iterative algorithm is much faster which starts with the calculation at $\mathrm{f}[2]$ in increasing order and calculates from the two preceding value the next one

```
fib3[0] = 1; fib3[1] = 1;
fib3[n_] :=
 Module[{i, fn=1, fn1=1, fn2},
 Do[fn2 = fn1; fn1 = fn;
 fn=fn1 + fn2, {i, 2, n}];
 fn]
```

fib3[200] / / Timing
\{0.06 Second, 453973694165307953197296969697410619233826$\}$

## Functional Programming

An interactive programming environment as provided by Mathematica is most suitable to do a step-by-step of the results. Procedural programming is unsuitable for this because there occur mostly local variables and control structures which make it difficult to insert pieces of program code.

However, the technique of functional programming will ease a stepwise construction of a program. As building block one uses functions, their results are handed over to other functions in terms of arguments or parameters. The entire program consists of expressions in terms of nested function calls. Control structures in functional programs may often be substituted by iterative functions such as Sum etc. In this context an important role is taken by so-called anonymous or pure functions which are applied on lists together with Mathematica functions such as Map ( $£ / @$ expr ) , Apply ( $\mathbf{f}$ @ expr)

## - Example : Approximation of Euler number $\boldsymbol{e}$

The following functional program approximates the Euler number $\mathbb{e}$ up to 50 decimals

```
N50 = N[#, 50]&;
```

```
Sum[1/i!, {i, 0, 60}] // N50 // Timing
{0.05 Second, 2.7182818284590452353602874713526624977572470937000}
```

As regards to efficiency this procedure is comparable with the $C$ type program variant with a For loop

```
r = 1;
For[i=1,is60,i++,
 For[j=1;s=1, j si, j++, s *= j];
 I+= \frac{1}{s}];
r // N50
2.7182818284590452353602874713526624977572470937000
```


## - Example : Newton's Approximation for $\sqrt{3}$

Even Newton's approximation of the square root is more transparent as fixed point procedure using a pure function

```
\(\mathrm{a}=3\);
FixedPoint \(\left[\frac{1}{2}\left(\# 1+\frac{\text { a }}{\# 1}\right) \&, 1.\right] / /\) N50
1.732050807568877
```

rather than a While loop in the style of a Pascal program

```
x=1.; y=2.;
While[!(x== y), y=x; x= 咅(x+\frac{a}{x})];
x // N50
1.732050807568877
```


## Concept of pure (or anonymous) functions

Sometimes it is rather favorable to operate with user-specified functions on elements of lists. This can be done with the command Map or with its shortcut / e e.g.

```
Clear[x, f, g, a,b, c, d]
```

```
h[x_] := f[x] + g[x]
h/@{a,b,c,d}
{f[a]+g[a],f[b]+g[b],f[c]+g[c],f[d]+g[d]}
```

However, it is too involved defining a function (in this case $h[x]$ ) which is only needed to map it with Map resp. /@ . For functional operators such as Map or Nest one always has to specifiy a function which is applied on some operands (i.e. variables or lists). In the example above the name of a function $h$ was used in order to define the function. Yet, it is too much trouble to define a function only for using it once. Mathematica allows the construction of so-called anonymous or pure functions. These objects have no explicit function name and are primarily used to act on the arguments of other Mathematica functions.

The following pure function will give the same result as above

```
Function[x,f[x]+g[x]]/@ {a,b,c,d}
{f[a] + g[a],f[b] + g[b],f[c] + g[c],f[d] + g[d]}
```

In general the syntax of a pure function is :

Function[ body][arg]   Function[ body][arg1, arg2,...]   (body)\& [arg]   (body )\& [arg1, arg2,...]	Result of the calculation of arg $1, \ldots$ is substituted for all occurrences of $\# 1, \ldots$ in body, the resulting expression will be returned after evaluation

The shortcut notation for pure functions uses \# as placeholder for the formal parameters (resp. \#1, \#2,... if there is more than one parameter), whereas the name of these formal parameters is irrelevant. Only the function definition has to be specified and terminated with the character \& .

```
{f[#] +G[#]&)/@ {a,b,c,d}
{f[a]+g[a],f[b]+g[b],f[c]+g[c],f[d]+g[d]}
```

The notation Function $[x, f[x]+g[x]]$ and $(f[\#]+g[\#]) \&$ are equivalent. The second formulation strips down the function completely to its functionality and hence justifies the name pure function. Obviously, pure functions are very close to mathematical notation of operators.

## Rule-based Programming

Even procedural programming only makes use of a part of the possibilities the Mathematica language offers. To go beyond this, rules can be defined which can be applied automatically or manually. In this context even the built-in functions of Mathematica can be defined or extended in a newly.

Programming with definitions and transformation rules distinguishes Mathematica. In this way it is quite easy to implement into Mathematica straightforward the mathematical knowledge from tables of formulae etc. For this kind of problems rule-based programming is the most powerful programming style. Whenever in some cases only a few number of rules have to be applied this programming style is the most suitable one. If, however, the set of all rules should be used for all possible cases then functional resp. procedural programming is more favorable.

## - Examples of Rule-based Programming

## ■ Manual substitution rule

```
x / . x }->\textrm{a
a
```

where " /. " has the meaning of

```
?/.
expr /. rules applies a rule or list of rules in an attempt to
 transform each subpart of an expression expr.
```


## Factorial function

```
fak[n_] := n fak[n-1]
fak[0] = 1;
fak[x_?Negative] = "Not defined!!";
```

Thus Mathematica contains the following set of rules for the calculation of the factorial function :

```
? fak
Global`fak
fak[0] = 1
fak[(x) ?Negative] = "Not defined!!"
fak[n_] := n* fak[n - 1]
```

fak[50]

```
fak[-1]
```

Not defined!!

## Definition of a linear function

```
q[x_] + q[y_] ^:= q[x+y] .(* ^:= is used for UpSetDelayed *)
```

? q
Global`q
$q\left[x_{\sim}\right]+q\left[y_{-}\right] \wedge:=q[x+y]$

```
q[a]+q[b]+q[c]
q[a+b+c]
```


## Rules for differentiating algebraic functions

Symbolic calculation will be illustated in the subsequent example by the most famous recursive definition, namely by differential calculus.

```
Clear[D]
D [c_?NumberQ, x_] := 0
D[x_, x_] := 1
D[f_n_?NumberQ, x_] := n f N-1 D [f,x]
D[c_f_, x_] :=c\mathcal{D}[f,x]/; FreeQ[c,x]
D[f_+g_, x_] := D [f,x]+\mathcal{D}[g,x]
\mathcal{D}[f_g_, x_] : := D}[f,x]g+f\mathcal{D}[g,x
\mathcal{D}[\frac{f_}{\mp@subsup{g}{_}{\prime}},\mp@subsup{x}{-}{\prime}]\quad:=\frac{\mathcal{D}[f,x]g-f (\mathcal{D}[g,x]}{\mp@subsup{g}{}{2}}
D}[\frac{1}{\mp@subsup{g}{_}{\prime}},\mp@subsup{x}{_}{\prime}]\quad:=-\frac{\mathcal{D}[g,x]}{\mp@subsup{g}{}{2}
```

Now the set of rules for differentiation $\mathcal{D}[\ldots, \mathbf{x}]$ is specified as follows

```
? D
```

Global ${ }^{`}$ D

```
D [(c_) ?NumberQ, x_] := 0
```

$D\left[x_{-}, x_{-}\right]:=1$
$\mathcal{D}\left[\left(g_{-}\right) \wedge(-1) ; x_{-}\right]:=-\left(\mathcal{D}[g, x] / g^{\wedge} 2\right)$
$\mathcal{D}\left[\left(f_{-}\right) \wedge\left(n_{-}\right) ? N u m b e r Q, x_{-}\right]:=n * f \wedge(n-1) \star \mathcal{D}[f, x]$
$\mathcal{D}\left[\left(c_{-}\right) *\left(f_{-}\right), x_{-}\right]:=c * \mathcal{D}[f, x] / ; \operatorname{FreeQ}[c, x]$
$\mathcal{D}\left[\left(f \_\right)+\left(g_{-}\right), x_{-}\right]:=\mathcal{D}[f, x]+\mathcal{D}[g, x]$
$\mathcal{D}\left[\left(f_{-}\right) /\left(g_{-}\right), x_{-}\right]:=(\mathcal{D}[f, x] * g-f * \mathcal{D}[g, x]) / g^{\wedge} 2$
$\mathcal{D}\left[\left(f_{-}\right) *\left(g_{-}\right), x_{-}\right]:=\mathcal{D}[f, x] * g+f * \mathcal{D}[g, x]$
with

## ? NumberQ

NumberQ[expr] gives True if expr is a number, and False otherwise.

## ? FreeQ

FreeQ[expr, form] yields True if no subexpression in expr matches
form, and yields False otherwise. FreeQ[expr, form, levelspec]
tests only those parts of expr on levels specified by levelspec.
Application of simple differentiation rules on algebraic functions using as a shortcut notation the following pure function "operator"

```
\mathcal{D}}\mathbf{x}:=\mathcal{D}[#,x]
```

$$
\begin{aligned}
& \mathcal{D}_{\mathbf{x}} / @\left\{1, \mathbf{x}, \mathbf{x}^{4},\left(\mathbf{x}+2 \mathrm{x}^{3}\right)^{4}, \frac{\mathbf{x}}{\mathbf{x}-1}\right\} \\
& \left\{0,1,4 \mathrm{x}^{3}, 4\left(1+6 \mathrm{x}^{2}\right)\left(\mathrm{x}+2 \mathrm{x}^{3}\right)^{3},-\frac{1}{(-1+x)^{2}}\right\}
\end{aligned}
$$

Definition of the functions $f(x)$ and $g(x)$

$$
f\left[x_{-}\right]:=\frac{x^{3}}{2} ; \quad g\left[x_{-}\right]:=1+x
$$

```
\mathcal{D}
```

$\left\{\frac{3 x^{2}}{2}, 1,-1+\frac{3 x^{2}}{2}\right\}$

Trace $\left[\mathcal{D}\left[f\left[x^{2}\right], x\right], \mathcal{D}\right]$

$$
\left\{\mathcal{D}\left[\frac{x^{6}}{2}, x\right], \frac{1}{2} \mathcal{D}\left[x^{6}, x\right],\left\{\mathcal{D}\left[x^{6}, x\right], 6 x^{6-1} \mathcal{D}[x, x],\{\mathcal{D}[x, x], 1\}\right\}\right\}
$$

$$
\begin{aligned}
& \mathcal{D}_{\mathbf{x}} / @\left\{f[\mathbf{x}] g[\mathbf{x}], \frac{f[\mathbf{x}]}{\mathrm{g}[\mathrm{x}]}, \frac{1}{\mathrm{f}[\mathbf{x}]}, \frac{\mathbf{x}}{\mathrm{g}[\mathrm{x}]}\right\} / / \text { Simplify } \\
& \left\{\frac{1}{2} \mathrm{x}^{2}(3+4 \mathrm{x}), \frac{x^{2}(3+2 x)}{2(1+x)^{2}},-\frac{6}{x^{4}}, \frac{1}{(1+x)^{2}}\right\}
\end{aligned}
$$

## Laplace Transformation Rules

The following example demonstrate how the essential properties of the Laplace transformation can be specifies with only few transformation rules

```
Clear[a,b, c, n, s, t]
```

```
\(\mathcal{L}\left[c_{-}, t_{-}, s_{-}\right] \quad:=\frac{c}{s} / ; \operatorname{FreeQ}[c, t]\)
\(\mathcal{L}\left[a_{-}+b_{-}, t_{-}, s_{-}\right]:=\mathcal{L}[a, t, s]+\mathcal{L}[b, t, s]\)
\(\mathcal{L}\left[c_{-} a_{2}, t_{1}, s_{-}\right] \quad:=c \mathcal{L}[a, t, s] / ; \operatorname{Free} Q[c, t]\)
\(\mathcal{L}\left[t_{-}^{n}-, t_{-}, s_{-}\right] \quad:=\frac{n!}{s^{n+1}} / ;\) FreeQ \([n, t] \& \& n>0\)
\(\mathcal{L}\left[a_{-} t_{-}^{n_{-}}, t_{_}, s_{-}\right]:=(-1)^{n} \partial_{\{s, n\}} \mathcal{L}[a, t, s] / ;\) FreeQ \([n, t] \& \& n>0\)
```

$$
\begin{aligned}
& \mathcal{L}\left[\frac{a_{-}}{t_{-}}, t_{-}, s_{-}\right]:=\operatorname{Module}\left[\{\tau\}, \int_{s}^{\infty} \mathcal{L}[a, t, \tau] d \tau\right] \\
& \mathcal{L}\left[a_{-} . \mathbb{e}^{b} \cdot+c_{-} \cdot t_{-}, t_{-}, s_{-}\right]:=\mathcal{L}\left[a \mathbb{e}^{b}, t_{,}, s-c\right] / ; \operatorname{FreeQ}[(b, c\}, t]
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\mathcal{L}\left[t^{3} e^{-3 t}, t, s\right]}{(3+s)^{4}}
\end{aligned}
$$

The package "Calculus`LaplaceTransform"" a more complete rule base for the Laplace-transformation is contained which increases the time for evaluation however.

Definition of a user-specified logarithmic function log

```
log[1] = 0;
log[E]=1;
log[x_y_]:= log[x] + log[y]
log[x_n-] := n log[x]
```

$\left\{\log \left[2 x^{3}\right], \log \left[x^{2} y\right], \log \left[x^{y^{2}}\right]\right\}$
$\left\{\log [2]+3 \log [x], 2 y \log [x], y^{2} \log [x]\right\}$

The built-in function Log however cannot handle the case $\log \left[x^{y}\right]$

```
Log[[x]
Log[[}\mp@subsup{x}{}{y}
```

but can be extended by the following rule

```
Unprotect[Log, Power];
Clear[Log];
Log[x_}\mp@subsup{}{-}{\textrm{y}}\mp@subsup{]}{}{\wedge}\mp@code{:= y Log[x]
Protect[Log, Power];
```

$\left\{\log \left[x^{2} y\right], \log \left[x^{y^{2}}\right]\right\}$
$\left\{2 y \log [x], y^{2} \log [x]\right\}$

## Programming with Binding Propagation

Transformation rules are always directed : rules which make use of a given pattern are applied to expressions. Sometimes, however, it is more suitable to work with bindings which are formulated as equations and are solved with Solve[eqns, vars, elims]. Thus, no special direction is distinguished; equations may be solved arbitrarily with respect to variables or parameters wanted.

The following examples will be studied:

## Example : Solution of a system of equations

$$
e q n_{1}=\left\{v_{a}==\frac{v_{0} r_{3}}{r_{1}+r_{2}}, v_{a}==v_{i}, g==\frac{v_{0}}{v_{i}}\right\} ;
$$

The system of equations will be resolved with respect to $g$

```
Solve[eq\mp@subsup{n}{1}{},g,{r, r, r2}]
{{g->\frac{\mp@subsup{v}{0}{}}{\mp@subsup{v}{i}{}}}}
```

Solution with respect to $\boldsymbol{r}_{\mathbf{1}}$ and in addition elimination of $\boldsymbol{g}$

```
Solve[eqn}\mp@subsup{|}{1}{\prime},\mp@subsup{r}{1}{}
Simplify[Solve[eqn_, ri,g]]
{{r}\mp@subsup{r}{1}{}->-\mp@subsup{r}{2}{}+g\mp@subsup{r}{3}{}}
```

$$
\left\{\left\{r_{1} \rightarrow-r_{2}+\frac{r_{3} v_{0}}{v_{i}}\right\}\right\}
$$

## Example : Inclined Throw

```
Clear[\mp@subsup{x}{0}{},Y0, zo, vo,g,a]
```

$$
\begin{aligned}
e q n s_{2}=\{x & ==x_{0}+v_{0} \operatorname{Cos}[\alpha] t, \\
y & =y_{0}+v_{0} \operatorname{Sin}[\alpha] t-\frac{g t^{2}}{2}, \\
z & \left.=z_{0}\right\} ;
\end{aligned}
$$

Eliminating time $t$ resultes in the parabolic trajectory.

$$
\begin{aligned}
& \text { Solve }\left[\text { eqns }_{2}, y, t\right] / / \text { ExpandAll } \\
& \left\{\left\{y \rightarrow y_{0}-\frac{g x^{2} \operatorname{Sec}[\alpha]^{2}}{2 v_{0}^{2}}+\frac{g x x_{0} \operatorname{Sec}[\alpha]^{2}}{v_{0}^{2}}-\frac{g x_{0}^{2} \operatorname{Sec}[\alpha]^{2}}{2 v_{0}^{2}}+x \operatorname{Tan}[\alpha]-x_{0} \operatorname{Tan}[\alpha]\right\}\right\}
\end{aligned}
$$

Perhaps, the question is posed what are the initial conditions to be chosen so that the mass is flying after $1 s e c$ in $\mathbf{x}$ - and y-direction $1 m$


$$
\left\{\left\{x_{0} \rightarrow 1-v_{0} \operatorname{Cos}[\alpha], y_{0} \rightarrow 1+\frac{g}{2}-v_{0} \operatorname{Sin}[\alpha], z_{0} \rightarrow 0\right\}\right\}
$$

Or, for given initial location (e.g. $x_{0}=z_{0}=0, y_{0}=1$ ) and initial velocity ( $v_{0}=1$ ), the shooting angle is wanted which is associated with the maximum range of throw. In this case the parabolic trajectory has to be investigated after elimination of time $t$.


```
res = Solve[eqns, /. initialCond, Y, t]
{{y->\frac{1}{2}\operatorname{Sec}[\alpha\mp@subsup{]}{}{2}(1-g\mp@subsup{x}{}{2}+\operatorname{Cos[2\alpha]+x}\operatorname{Sin}[2\alpha])}}
```

Then, one determines the $x$-value belonging to $y=0$ which is the end of the parabola.

$$
\begin{aligned}
& \text { sol }=\text { Solve }[y=0 / \cdot \operatorname{res}[1 \mathbb{1}, x] / / \operatorname{Simplify} \\
& \left\{\left\{x \rightarrow \frac{\operatorname{Sin}[2 \alpha]-\sqrt{4 g+4 g \operatorname{Cos}[2 \alpha]+\operatorname{Sin}[2 \alpha]^{2}}}{2 g}\right\},\right. \\
& \left.\left\{x \rightarrow \frac{\operatorname{Sin}[2 \alpha]+\sqrt{4 g+4 g \operatorname{Cos}[2 \alpha]+\operatorname{Sin}[2 \alpha]^{2}}}{2 g}\right\}\right\}
\end{aligned}
$$

Now, the (relevant) solution should be maximized with respect to the angle $\alpha$.

```
FindMinimum[- x /. sol\llbracket2\rrbracket /. g -> 9.81, {\alpha, 1}]
```

$\{-0.462887,\{\alpha \rightarrow 0.21676\}\}$

## Logic Programming

Logic programming or declarative programming tries to write down declarations that express certain properties of the desired results without specifying the flow of control. Pattern matching and backtracking are used to solve an instance of the problem.
Logic programming languages such as Prolog operate with transformation rules too. However, in contrast to Mathematica they are able to process several rules in parallel. The advantage of logic programming is based on the fact that no particular path of solution has to specified for a calculation. However, one pays for this kind of proceeding by computation time which is hard to predict or even un-predictable. Mathematica dimishes this disadvantage by testing the rules known one after the other and applying the first (!) one which works. Often Mathematica tries several possibilities in analogy to logic programming systems.

Mathematica provides a general mechanism in order to specifiy limitations for patterns. With "/;" (which reads "... whenever" or "...provided that") a condition is put at the end of a pattern to signify that it applies only when the specified condition is True.

## Example : Pattern verification with restriction

In the subsequent definition of a function the condition never gives the value True so that one can see in detail how all possibilities will be checked.

```
Remove [f];
f[x__,y__, z__]:= dummy /; Print[{x},{y},{z}]
```

```
f[1, 2, 3, 4,5]
```

f[1, 2, 3, 4,5]
{1}{2}{3,4,5}
{1}{2,3}.{4, 5}
{1, 2}{3}{4,5}
{1}{2,3,4}{5}
{1, 2}{3,4}{5}
{1, 2, 3} {4}{5}
f[1, 2, 3, 4, 5]

```
```

f[a,b,c]

```
\{a\}\{b\}\{c\}
\(f[a, b, c]\)

\section*{Example : Reversion of a list}

The following example programmed in typical PROLOG style reverses a list. The auxiliary function rev[leftList, rightList] acts on two stacks (lists) It removes the first element from leftList and inserts it into rightList. Wrapping with Trace [expr, form, opts] shows how this code works. It uses the method we would use to reverse the order of a card deck: taking one after another and placing it onto a second pile.
```

reverse[l_List] := rev[1, \{\}]
$\operatorname{rev}\left[\left\}, r_{\text {_List }}\right]:=r\right.$

```

```

liste = {a, b, c, d, e};
Trace[ reverse[liste], rev[_List, _List], TraceAbove -> True ] // ColumnForm
reverse[{a, b, c, d, e}]
rev[{a, b, c, d, e}, {}]
rev[{b, c, d, e}, {a}]
rev[{c, d, e}, {b, a}]
rev[{d, e}, {c, b, a}]
rev[{e}, {d, c, b, a}]
rev[{}, {e, d, c, b, a}]
{e, d, c, b, a}

```

Backtracking can be implemented with side conditions. The pattern matcher generates all possible cases. The side conditions can then be used to commit a certain case.

\section*{Example : Sorting of a list}

An inversion in a list is a pair of adjacent elements such that the first one is larger than the second one. A sorted list is characterized by not having any inversions of adjacent elements. To sort a list, one simply reverses any inversions found. Thus, no particular order of doing this must be specified.
```

sort[{a

```
\(\qquad\)
``` , i_, j_, z_ \}] := sort[\{a, j, i, z\}] /; i > j
sort[l_List] := l
```

The pattern matcher generates all possible pairs of adjacent elements \mathbf{i} and \mathbf{j}. Whenever they are out of order, they will be reversed.

```
Trace[sort[{5, 1, 3, 2}], sort, TraceAbove -> True] // ColumnForm
sort[{5, 1, 3, 2}]
sort[{1, 5, 3, 2}]
sort[{1, 3, 5, 2}]
sort[{1, 3, 2, 5}]
sort[{1, 2, 3, 5}]
{1, 2, 3, 5}
```

Abstract Data Types
The following discussion follows closely chapter 2 in Roman Maeder's book "The Mathematica Programmer" .

Abstract data types are both a theoretically well-defined concept and a useful tool for program development. Following the principles of abstract data type design, one arrives at a clear separation of specification and implementation.

Abstract data types are defined through type names, function names, and equations. These can be realized in Mathematica very easily. The equations become rewrite rules. The interactive nature of Mathematica makes it well suited for rapid prototyping and testing of designs.

A data type can be defined roughly as set of values and access methods. One can then decide on data representations and functions with which data are manipulated and follow a usually self-imposed discipline in using only these functions in the application program.
One arrives at such guidelines through the study of the theoretical foundation of the design of abstract data types. Usually, such theoretical foundations are of theoretical interest only since they are either non-constructive to begin with or cannot be made into executable programs on a real computer. However, the specification of an abstract data type can be made executable under certain conditions. This is particularly easy in Mathematica, since it contains an interactive symbolic programming language with rewrite rules. This should be remembered during the following rather theoretical definitions of an abstract data type. They will be turned into running Mathematica programs soon.

- Definition of Abstract Data Types

An algebra is a mathematical structure that consists of a set of elements and a number of operations on these elements. The natural number with the usual arithmetic operations are an example. Since one often uses more than one type of data this notation needs to be expanded into many-sorted algebras. Hence, the task of defining the operations then becomes a bit tricky, since one has to specify the types of all operands.

An abstract data type is specified in terms of three parts:

- A set \mathcal{S} of sort names
- A set Σ of function names (or operator symbols)
- A set \mathcal{E} of equations

The triplet $\langle\mathcal{S}, \boldsymbol{\Sigma}, \mathcal{E}>$ is called a specification. The sorts can be thought of as the names of the types to be modelled. Usually there is more than one; auxiliary types, such as bool (standing for Boolean values) may be used. Sort names are printed as boldface lowercase characters.
In the first example natural number (non-negative integers) are modelled, with Boolean values as an auxiliary type. Therefore the set \mathcal{S} of sort names consists of two elements

$$
\begin{equation*}
\mathcal{S}=\{\text { int }, \text { bool }\} \tag{1}
\end{equation*}
$$

The set Σ of function names are broken down according to the number and types of arguments and the return type. This is described by a sequence of elements from \mathcal{S}, the last one being the return type, the preceeding ones describing the argument type in the proper order.
Formally, the set Σ consists of sets $\Sigma_{w, s}$ with $s \in \mathcal{S}, w \in \mathcal{S}^{*}$ (This says that w is a sequence of elements of \mathcal{S}, and s is a single element of \mathcal{S}, the return type.) With λ denoting the empty sequence the elements of $\Sigma_{\lambda, r}$ are called constants since they are functions without arguments.
In the present example of natural number the set Σ of function names comprises the follwoing definitions

$$
\begin{array}{ll}
\Sigma_{\text {int }} & =\{z\} \\
\Sigma_{\text {bool }} & =\{f, t\}
\end{array}
$$

$$
\begin{array}{ll}
\Sigma_{\text {int,int }} & =\{\boldsymbol{s}\} \\
\Sigma_{\text {int,bool }} & =\{\text { isz }\} \\
\Sigma_{\text {bool, bool }} & =\{\text { not }\} \\
\Sigma_{\text {int, int, int }} & =\{\text { add, mult }\}
\end{array}
$$

The notation points out that \mathbf{z} is a constant of type int and that add is a function of two arguments of type int, returning a result of type int. $\boldsymbol{\Sigma}$ ist called the signature. Note, that up to now these function names has not given any meaning yet, (even though one can think of add as the addition function of integers).

There is nothing in the definitions so far that forces one to use the addition function as meaning for thee function named add. In order to implement the operations in Σ one can give a number of equations that must be satisfied by the functions chosen. The set \mathcal{E} of equations below enforces the usual meaning for the operations. Variables are printed in italics with types obvious from the functions in which they appear.

$$
\begin{align*}
\operatorname{isz}(\mathbf{z}) & =\mathbf{t} \\
\operatorname{isz}(\mathbf{s}(n)) & =\mathbf{f} \\
\operatorname{not}(\mathbf{t}) & =\mathbf{f} \\
\operatorname{not}(\mathbf{f}) & =\mathbf{t} \\
\operatorname{add}(n, \mathbf{z}) & =n \tag{3}\\
\operatorname{add}(n, \mathbf{s}(m)) & =\mathbf{s}(\operatorname{add}(n, m)) \\
\operatorname{mult}(n, \mathbf{z}) & =\mathbf{z} \\
\operatorname{mult}(n, \mathbf{s}(m)) & =\operatorname{add}(\operatorname{mult}(n, m), n)
\end{align*}
$$

Now, the $\boldsymbol{\Sigma}$-algebras can be defined: a Σ-algebra is a mathematical structure that "fits" the signature $\boldsymbol{\Sigma}$. It consists of sets for the sorts from \mathcal{S} and of mappings corresponding to the operator symbols from $\boldsymbol{\Sigma}$.

Now the present example can be endowed with its intendes mening, using the non-negative integers as carrier set of sort int. To describe the functions the Mathematica notation can be used, e.g.

$$
\begin{align*}
\mathcal{B}_{\text {int }} & =\{0,1,2, \ldots\} \\
\mathcal{B}_{\text {bool }} & =\{\text { False, True }\} \\
z_{B} & =0 \& \\
f_{B} & =\text { False } \& \\
t_{B} & =\text { True\& } \\
s_{B} & =\text { Function }[\mathrm{n}, \mathrm{n}+1] \tag{4}\\
\operatorname{isz}_{B} & =\text { Function }[\mathrm{n}, \mathrm{n}==0] \\
\operatorname{not}_{B} & =\text { Not } \\
\operatorname{add}_{B} & =\text { Plus } \\
\operatorname{mult}_{B} & =\text { Times }
\end{align*}
$$

It is customary to leave out the empty argument sequence for constants. Instead of writing (False\&) [] one simply writes False etc.

If the equations are sufficiently well behaved this algebra can be modelled in Mathematica with the equations to be thought as reductions, always replacing the left side by the simpler right side. In this way there is one special term in each class of terms identified by the equations. Any other term is transformed into normal form by the applicable reduction rules. In the present example the equations can be simply turned into rewrite rules which will be sufficient for reducing all equivalent terms into normal form. The first example shows the corresponding code in Mathematica.

Example 1 : Data type natural numbers

The model for natural numbers consists of the constant zero and a successor function. This suffices to represent all natural numbers. Another kind of objects represents the Boolean values to express the predicates (i.e. functions returning a Boolean value).

The initial algebra for the specification of natural numbers is
Sort names \mathcal{S}

```
int;
```

bool;

Function names $\boldsymbol{\Sigma}$

```
{z}; (* -> int constant zero *)
{t, f}; (* b bool
{s}; (* int }->\mathrm{ int
{isz}; (* int }->\mathrm{ bool
{not}; (* bool }->\mathrm{ bool
{add, mult}; (* int int }->\mathrm{ int
```

```
Boolean true, false *)
```

Boolean true, false *)
Successor *)
Successor *)
Predicate "is sequence of zero *)
Predicate "is sequence of zero *)
Negation*)
Negation*)
Addition / Multiplication *)

```
    Addition / Multiplication *)
```

Equations \mathcal{E} turned into rewrite rules

```
isz[z]:=t (* Predicate function applied to z gives zero *)
isz[s[n_]]:=f
not[w] := f
not[f] := t
add[n_, z] := n
add[n_, s[m_]]:= s[add[n,m]]
mult[n_, z]:= z
mult[n_, s[m_]] := add[mult[n,m], n]
```


Test

Here a few sample computations. The integer n is represented as n-fold nesting of s applied to z

```
add[s[z],s[s[z]]] (* Addition 1 + 2 = 3 *)
s[s[s[z]]]
```

A trace shows the computations going on.

```
Trace[ add[s[z],s[s[z]]], add, TraceForward }->\mathrm{ True] // ColumnForm
add[s[z], s[s[z]]]
s[add[s[z],s[z]]]
{add[s[z], s[z]], s[add[s[z], z]], {add[s[z], z], s[z]}, s[s[z]]}
s[s[s[z]]]
```

The product of the integers 3 and 4 is

```
mult[s[s[z]],s[s[s[z]]]] (* multiplication 2 * 3= 6 *)
```

```
Trace[mult[s[s[z]],s[s[s[z]]]], mult, TraceForward }->\mathrm{ True] // ColumnForm
mult[s[s[z]],s[s[s[z]]]]
add[mult[s[s[z]],s[s[z]]],s[s[z]]]
{mult[s[s[z]],s[s[z]]], add[mult[s[s[z]], s[z]], s[s[z]]], {mult[s[s[z]],s[z]
s[s[s[s[s[s[z]]]]]]
```

```
not[isz[s[z]]] (* Test of 1 f 0 *)
t
```

One does not want to perform arithmetic with this abstract version of data types. Instead one can work with a more suitable Σ algebra. The integers $\{0,1,2, \ldots\}$ are in one-to-one correspondence with the terms $\{$ 0,s[0],s[s[0]], ...\}

Example 2 : Data type rational numbers

The data type for rational numbers can be defined with the constructor MakeRational $[\mathrm{z}, \mathrm{n}]$ and the selectors Zaehler[r] and Nenner[r]. The representation of a rational number is given through a data element of the form rational $[z, n]$ which represent the rational number $\frac{z}{n}$.

Rules

```
makeRational[z_, n_] := rational[z,n]
Zaehler[rational[z_, n_]] := z
Nenner[rational[z_, n_]] := n
```


Data type rational

The data type of rational numbers is rational. Usually the datatype is represented al a normal expression with the sort name als head.

```
Head[makeRational[z, n]]
```

rational

Normal form

The current representation of rational number is however not unambiguous, because rational[-1,2], rational $[1,-2]$ and rational $[-2,4]$ describe the same rational number. The representation becomes unambiguous if one requires that numerators are always positive and in addition, that numerator and denominator have not a common divisor. The last two rules (with built-in function GCD) for rational $[\mathbf{z}, \mathrm{n}]$ guarantee that data elements rational $[z, n]$ will be transformed to normal form.

```
rational[z_, \(\left.n_{-}\right]:=\)rational \([-z,-n] / ; n<0\)
rational \(\left[z_{2}, n_{-}\right]:=\)rational \(\left[\frac{z}{\operatorname{GCD}[z, n]}, \frac{n}{\operatorname{GCD}[z, n]}\right] / ; \operatorname{GCD}[z, n]>1\)
```


Connections

Rules for summation and multiplication of 2 rational numbers which operate exclusively with constructors and selectors (being the only functions which have access on the internal representation of data elements) are

```
rational /: a_rational +b_rational :=
    makeRational[
    Zaehler[a] Nenner[b] + Zaehler[b] Nenner[a], Nenner[a] Nenner[b]]
rational /: a_rational b_rational :=
    makeRational[Zaehler[a] Zaehler[b], Nenner[a] Nenner[b]]
```

The existing connections " + " and " x " are overloaded. The easiest way to do this is using upvalues of the form type /: f[n_type, . .] := . . . Upvalues provide a convenient mechanism to define how operations act on object of special type.

Tests

```
makeRational [4, -6]
rational[-2, 3]
```

```
makeRational[2, 3] + makeRational [5, 4]
rational[23, 12]
```

```
makeRational [2, 3] makeRational[3, 2]
```

rational[1, 1]

```
makeRational[6, 5] (makeRational[2, 3] +makeRational[3, -4])
rational[-1, 10]
```


Example 3 : Data type modular numbers

In a similar way the arithmetics for modular numbers can be formulated. This example is intended to model \mathcal{Z}_{p}, the ring of integers modulo some positive integer p. It can be built on top of the natural numbers, extending S by a sort of mod, and adding the following operations.

$$
\begin{align*}
\Sigma_{\text {int }} & =\{\boldsymbol{p}\} \\
\Sigma_{\text {mod,int }} & =\{\mathbf{r e p}\} \\
\Sigma_{\text {int,modl }} & =\{\text { makemod }\} \tag{5}\\
\Sigma_{\text {mod, mod, mod }} & =\{\text { add }, \text { mult }\} \\
\Sigma_{\text {int, int, int }} & =\{\text { rem }\}
\end{align*}
$$

There is no problem with using the same operation name (here add and mult) in different sets $\Sigma_{w, s}$. They are distinguished by the type of arguments and return values. rep is meant to give a representative of a modular number, an integer that can be used to implement arithmetic in mod, as will be seen in the following equations.

$$
\begin{array}{r}
\operatorname{makemod}(\operatorname{rep}(m))=m \\
\operatorname{rem}(n-\operatorname{rep}(\operatorname{makemod}(n)), \mathrm{p})=0 \tag{6}
\end{array}
$$

$$
\begin{aligned}
\operatorname{add}\left(m_{1}, m_{2}\right) & =\operatorname{makemod}\left(\operatorname{add}\left(\operatorname{rep}\left(m_{1}\right), \operatorname{rep}\left(m_{2}\right)\right)\right) \\
\operatorname{mult}\left(m_{1}, m_{2}\right) & =\operatorname{makemod}\left(\operatorname{mult}\left(\operatorname{rep}\left(m_{1}\right), \operatorname{rep}\left(m_{2}\right)\right)\right)
\end{aligned}
$$

The second equation says that the representative of a modular number made from integer n is concruent to $n \bmod p$. ("-" being integer subtraction). This is usually expressed as

$$
\begin{equation*}
\operatorname{rep}(\operatorname{makemod}(\mathrm{n})) \equiv \mathrm{n}(\bmod \mathbf{p}) \tag{7}
\end{equation*}
$$

Addition and multiplication are then defined in terms of their integer counterparts through the use of rep. A possible implementation, using expressions of the form $\bmod [\mathrm{n}]$ with n integer, holds elements of $\mathcal{B}_{\text {mod }}$

Constructors

MakeModular is called a constructor, because it creates values of a certain type (here mod).

```
SetModulus[p_Integer?Positive] := (theModulus = p)
MakeModular[n_Integer] := mod[Mod[n, theModulus]]
```


Selectors

Representative is a selector, since it returns parts of an expression (mod elements have only one part, the representative of the modular number).

```
Representative[mod[n_] ] := n
```


Arithmetic

```
mod /: a_mod + b_mod := MakeModular[Representative[a] + Representative[b] ]
mod /: a_mod * b_mod := MakeModular[Representative[a] * Representative[b] ]
mod /:
    a_mod ^ q_Integer := MakeModular[ PowerMod[Representative[a], q, theModulus]]
mod /: a_mod + b_Integer := a + MakeModular[b]
mod /: a_mod *b_Integer := a * MakeModular[b]
```

Output Formatting

```
Format[m_mod] := SequenceForm[Representative[m], " mod ", theModulus]
```

The use of the built-in function $\operatorname{Mod}[\mathrm{n}, \mathrm{p}]$ in MakeModular ensures that a unique representation is chosen (an integer in the range $0 \ldots$...-1). Putting this computation into the constructor removes all worries about the choice of representative from the rest of the code and trivially satisfies the first and second equation.

Note, that the built-in addition and subtraction functions have been overloaded which corresponds directly to the use of the same names in the specification.
The modulus is set to 17 for the computation and the constant $1 \bmod 17$ is generated.

```
SetModulus[17];
one = MakeModular[1] (* constant 1 mod 17 *)
1 mod }1
```

Any integer can be turned into a modular number by multiplying it with one

```
m1 = one 100
15 mod 17
```

Large powers can be efficiently computed using the built-in function PowerMod

```
m2 = m1 ^ 99999999999999999999999
8 mod 17
```

The rule works for subtraction

```
m3 = 1-m2
10 mod 17
```

Division is turned into multiplication and a negative power. For a modular number a, the quantity a^{-1} denotes the modular inverse.

```
m4 = 1/m3
12 mod }1
```

The product of a number and its inverse should be 1 .

```
m4 m3
1 mod 17
```

The following loop computes the order of the modular number 2 which is the smallest exponent n such that $\boldsymbol{x}^{n}=1$ ($\bmod \boldsymbol{p}$) .

```
x = MakeModular[2];
n = 1; While[x =!= one, n++]; n
8
```

In quite similar way it is possible to model the data structure of LISP by means of Mathematica (See for example "The Mathematica Programmer" (1994) by Roman Maeder)

Object Oriented Programming

Object-oriented programming (OOP) is a programming style that is becoming more and more popular. It promises the re-use of program code and easier maintenance of larger projects than is possible with traditional procedural programming languages. Its use of methods and message passing instead of procedure calls shifts the programmer's view towards closer integration of data and operations.

OOP is an alternative method as regards to modular programming : one does not comprise functions doing similar things but combines functions operating on similar objects. At first the objects will be defined and then the corresponding methods for manipulating the objects. In order to clarify this distinction consider for example the print function: in a modular program it contains instructions for printing all possible objects whereas in an object-oriented style for every object a print method will be defined.

The important concepts of objected-oriented programming languages are objects and classes (associated with the objects) and inheritance.

The first important aspect of object-oriented languages is that functions are considered part of data. A data object "knows" which operations can be performed on it. The functions defined for a certain type of object are part of that object. Thus an object is a collection of data elements and operations that act on these date elements. The operations are called methods. A uniform mechanism, called message passing, is provided for invoking the correct piece of code when a function is called or a message is passed to an object in order to execute a certain method. Methods are usually not defined for each object separately but are collected in a class. Objects then belong to a class from which they take their methods.

The second important aspect is inheritance. Often a number of related data types have some common characteristics. Some operations on them can be written in a way that does not depend on which of the data types they are applied to. Common characteristics of related data types can then be isolated and encapsulated in a new data type. The related data types are made sub-types of the new type. They inherit the characteristics of the common type and need only implement those aspects in which they differ from their super-type. Thus much of the code needs to be written only once and hence save development time and ensure consistency, since a change needs to be made only once, instead of being applied to several almost identical pieces of code.

An interactive OOP language can easily be implemented into Mathematica. Although Mathematica does not presuppose data types the arguments of functions can nevertheless be restricted to certain types (through patterns of the form $x_{\text {_head }}$ or $x_{\text {_ }}$? test or conditions of the form expr /; conditions). Using appropriate heads it is thus possible to simulate certain data types.

The mechanism to define user-specific objects is Head[expr]. Moreover it is possible to associate definitions (or transformation rules) with specific objects. Instead of associating definitions of the form $\mathrm{f}[\mathrm{g}[\mathrm{x} \quad]]:=\ldots$ with the symbol f (the downvalue of f) one may also associate the definition with the symbol g (the upvalue of g) which is not the head of the expression on the left hand side. The syntax is $f\left[g\left[x_{-}\right]^{\wedge}:=\ldots\right.$ or equivalently $\mathrm{g} /: \mathrm{f}\left[\mathrm{g}\left[\mathbf{x}_{\mathbf{\prime}}\right]:=\ldots\right.$ This construct allows operator overloading which means that an operator (e.g. in example 2 Plus and in example 3 Equal) has a different meaning according to the object it acts on. (This feature is not possible in programming languages such as Pascal or Modula-2.)

Obviously, the term object-oriented means that the transformation rule associated with an object is not categorized under the rule's name but rather under the object's name. Therefore it makes sense to order the transformation rules in an object-oriented way. This concept allows to find the corresponding rules rather quickly and load resp. unload a whole contingent of rules if necessary. This is important under the view point of economic memory management. Mathematica supports a distinct object-oriented arrangement of rules in that it signes the rules with the corresponding names of the objects.
objectName /: pattern $:=$ instruction /; condition

Obviously, same functions can be defined for different objects in multiple context. Within a package it is possible to define a private context which contains auxiliary functions and variables not accessible from outside the package. In TMJ Vol 3 \#1 p 23-31 Roman Maeder introduced two packages Classes.m and Collections.m which implement the concept of classes and inheritance.

Example 1 : Exponential function

```
exp /: exp[x_] exp[y_] := exp[x+y]
exp /: \sqrt{}{\operatorname{exp}[x_]}:=\operatorname{exp}[\frac{x}{2}]
```

```
exp[a] exp[b]
exp[a+b]
```

```
\sqrt{exp[3 Y']}{2}
exp[\frac{3\mp@subsup{y}{}{2}}{2}}
```


Example 2 : Modular Arithmetic

As an example the data type for modular numbers is defined. At first the output formatting is fixed through the following definition

```
modInteger /: Format[modInteger[i_, n_]] := SequenceForm[i, " mod ", n]
```

Similar to this definition of the output format of the function modInteger other format types (e.g. TeXForm) can be modified too such that the type is listed as a second argument of Format [expr, type]:=form, e.g.

```
modInteger /: Format[modInteger[i_, n_], TeXForm] :=
    SequenceForm[ "{", i, " \bmod ", n, "}"]
```

Then one defines the sum and the product of objects of type modinteger (by means of overloading the opertators Plus and \mathbf{x}.)

```
modInteger /:
    modInteger[i_, n_] ] modInteger[j_, n_] := modInteger[Mod[i+j, n],n]
modInteger /:
    modInteger[i__, n_]modInteger[j_, n_] :=modInteger[Mod[i j, n], n]
modInteger /: modInteger[i_?Negative, n_] := modInteger[Mod[i, n], n]
modInteger /: -modInteger[i_, n_] := modInteger[-i, n]
```

With these definitions the modular arithmetic is complete.

Test

```
modInteger[4, 7] // TeXForm
{4 \bmod 7}
```

```
modInteger [2, 5] +modInteger[3, 5] modInteger[2, 5]
3 mod 5
```

```
modInteger[-2, 5]
3 mod 5
```

```
-modInteger[4, 5] modInteger[2, 5] - modInteger[3, 5]
4 mod 5
```


Example 3 : Comparison and Sorting of Lists of Names

In order to compare and sort name lists a new data type name is introduced with two arguments for first and last name. For this data type the output format is defined first.

```
name /: Format[name[f_String, l_String]] := SequenceForm[f, " ", 1]
```

```
name["Fritz", "Meier"]
Fritz Meier
```

Then a comparison function will be defined. This function tests whether first or last name of two persons are equal. Associating this definition with data type name leads to overloading of the function Equal (resp. $==$) already existing.

```
Equal[name[ \(f_{1}\) _String, \(1_{1}\) _String], name[ \(f_{2}\) String, \(1_{2}\) _String]] ^:=
    \(f_{1}==f_{2} \& \& I_{1}==1_{2}\)
```

name["Fritz", "Meier"] == name["Fritz", "Meier"]
True

```
name["Fritz", "Huber"] == name["Fritz", "Meier"]
False
```

Unfortunately, association is only possible for symbols on the highest level of the argument list. Thus, in order to introduce a sort function which accepts a list of names this sort function must be named newly. For its definition the built-in function Sort may be used with second parameter being a user-defined comparsion function which takes into account the last names to be sorted first.

```
nameSort[x : {name[_String, _String]..}] :=
Sort[x, OrderedQ[{#1\llbracket2\rrbracket<>#1\llbracket1\rrbracket, #2\llbracket2\rrbracket<>#2\llbracket1\rrbracket}]&]
Test
```

```
list = { name["Hans", "Meier"],
    name["Hans", "Huber"],
    name["Fritz", "Meier"],
    name["Fritz", "Huber"] };
```

nameSort[list]
\{Fritz Huber, Hans Huber, Fritz Meier, Hans Meier\}

Modularization

Modern programming languages provide features for organizing large programming projects. Most important are modularization (or encapsulation) and information hiding. In Mathematica such programs are called packages. A package consists of two parts :an interface definition and an implementation part. The interface describes the aspects that a user needs to know. The implementation provides that functionality but it is hidden from users of the package.

Here is the skeleton of how a Mathematica package looks like :

```
BeginPackage[" PackageName`"]
    proc::usage = "proc[v1, v2] is a procedure that ... ".
        ...
        Begin["`Private`"]
            f[intArgs_] := value
            proc[args_, intArgs_] := ...
        End[ ]
    Protect[ proc ]
EndPackage[ ]
```

The part between initial BeginPackage [] and Begin["'Private`"] is the interface. It declares all functions exported from this package (here it is proc []) and documents them.

By means of BeginPackage[] the context name "PackageName'" is given to the package which by convention must be stored in a file with the same name PackageName.m. If PackageName`comprises a sub-context (e.g. Graphics`Colors`) then the file Colors.m must be located in the subdirectory Algebra.

Expressions of the form proc::usage = "comment" following after BeginPackage can be understood as an export list of the package. Here, all objects which are provided to the user will be endowed with the documentation. This documentation is given in "comment". With the command ?proc the help text is displayed as output.

After these lines of documentation there follows a private context. The part bracketed by Begin and End is the proper implementation. With Begin ["`Private`"] a private sub-context is opened and the system variable \$Context set to 'Private`. The context comprises the definitions of the exported functions (here proc []) and local quantities (auxiliary functions such as $f[]$ and local variables such as intArgs) which are not available for the user of the package. The private context is closed again with End [].

The outer bracket BeginPackage[] ... EndPackage[] is slightly more complicated. With BeginPackage[] the system variables \$Context and \$ContextPath are stored. Then \$Context is put to PackageName` and \$ContextPath to \{"PackageName`", "System" \}. New names (i.e. names of hidden quantities) are thus introduced in the context `PackageName` (and not in the context `Global`). All names are considered as new ones even if they already exist in "Global "context. All function names which appear in lines starting with proc: : usage are put in the context "PackageName " "
EndPackage finally restores \$Context and \$ContextPath with context "PackageName`" prepended. Only those functions exported from the package are available to the user because their context is contained in the list \$ContextPath. Names however which appear in the internal Begin-End bracket can only be quoted through explicit referencing of their context. In order to protect the function definitions within a package the command Protect must be placed between End and EndPackage. With Protect [proc] one prevents any modification of the exported function proc through users of the package. If, however, a protected symbol \(s\) within a package should be modified the symbol \(s\) must be freed with Unprotect[s] first. Then, a new definition of this symbol may follow which is protected again with Protect[s]. Packages are extension of the built-in functions provided by Mathematica. Packages are either loaded with the command Get[PackageName.m] (or <<PackageName.m) or more recommendable with Needs ["PackageName`"] thus avoiding multiple loading of packages. Packages can load additional packages if necessary. The corresponding context is then stored in the global variable \$Packages.

- Framework for a User-defined Package

The subsequent skeleton of a package illustrates how a consistent form faciliates maintenance and readability of Mathematica programs. All important concepts are contained in the prototype package

```
(* -- Skeleton.m -- Skeleton of a package *)
(*Set up packagecontext, includinganyimports*)
BeginPackage["Skeleton`", "Package1`", "Package2`"];
Needs["Package3`"]; (* Read in any hidden imports *)
(* Usage message for the exported functions and context itself *)
Skeleton::usage = "Skeleton.m is a package doing nothing."
Fnct1::usage = "Fnct1[n] does nothing"
Fnct2::usage = "Fnct2[n,(m:17)] does even more nothing!"
Begin["`Private`"] (* Begin private context *)
(*Unprotect any built-in functions for which new rules will be defined *)
protected = Unprotect[Sin, Cos]
(* Definition of auxiliary functions and local variables *)
AuxFct[f_] := do[something]
localVar = 0
(* Error messages of exported objects *)
Skeleton::badarg = "Error, called `1` with argument `2` !"
(* Definition of exported functions *)
Fnct1[n_]:= n
Fnct2[n_, m_:17]:=nm /; n< 5 || Message[Skeleton::badarg, Fct2,n]
(* Rules for system functions *)
Sin /: Sin [x_] ' 
Protect[Evaluate[protected]]
    (* Restore protection of system symbols *)
End[]: (* End of private context *)
Protect[Fnct1, Fnct2] (* Protect exported symbol *)
EndPackage[]; (* End of package context *)
```


Mathematica as Developing Tool :
 from an Interactive Evaluation to a Package

The following task serves as an example to illustrate the step-wise transition from an interactive evaluation to the development of a package.

For a given sequence of n random numbers ordered by their size the median is to be calculated. If n is odd then the value is a the location $\frac{n+1}{2}$, if n is even the median is the average of the values at location $\frac{n}{2}$ and $\frac{n+1}{2}$. The result will at first be calculated step by step by an interactive mode, afterwards realized in form a Mathematica package.

- Evaluation in Dialog Mode

```
tlist = Table[Random[], {i, 1, 10}]
{0.65224, 0.0164685, 0.197755,0.351424, 0.543858, 0.684035, 0.585712,
0.196561,0.0132099, 0.911238}
```

```
len = Length[tlist]
10
```

```
slist=Sort[tlist]
{0.0132099, 0.0164685, 0.196561, 0.197755, 0.351424, 0.543858,
0.585712, 0.65224, 0.684035, 0.911238}
```

```
? Odd*
```

OddQ[expr] gives True if expr is an odd integer, and False otherwise.

```
OddQ[len]
False
```

Calculation of the median value

```
median \(0=\operatorname{If}\left[\operatorname{OddQ}[l \mathrm{en}]\right.\), slist \(\llbracket \frac{\operatorname{len}+1}{2} \rrbracket, \frac{1}{2}\left(\right.\) slist \(\left.\left.\llbracket \frac{\operatorname{len}}{2} \rrbracket+\operatorname{slist} \llbracket \frac{\text { len }}{2}+1 \rrbracket\right)\right]\)
0.447641
```


- Combine Commands in terms of a Function

The single commands are comprised in terms of a module function.

```
median1[l_List] :=
    Module[{len, slist},
        len = Length[l]; slist = Sort[l];
        If[OddQ[len], slist\llbracket[\frac{len+1}{2}], \frac{1}{2}(\mathrm{ slist [{ len}}2|]+\operatorname{list}\llbracket\frac{len}{2}+1\rrbracket)
        ]
```

median1[tlist]
0.627426

- Integrate Functions in a Package

Alternatively; one may define a package

```
BeginPackage ["MedianContext`"]
median2::"usage" =
    "median2[list] calculates the median of list and returns the result."
Begin["`Private`"]
median2[l_List] :=
    Module[{len, slist},
        len = Length[l]; slist = Sort[l] ;
        If [OddQ[len], slist\llbracket[\frac{len +1 }{2}\rrbracket, \frac{1}{2}(\mathrm{ slist [ len }
            ]
End[]
    Protect[median2]
EndPackage[]
MedianContext`
```

median2[list] calculates the median of list and returns the result.
MedianContext`Private`
MedianContext`Private`
\{median2 \}
?? median2
median2[list] calculates the median of list and returns the result.

```
Attributes[median2] = {Protected}
median2[MedianContext`Private`l_List] :=
    Module[{MedianContext`Private`len, MedianContext`Private`slist},
        MedianContext`Private`len = Length[MedianContext`Private`l];
        MedianContext`Private`slist = Sort[MedianContext`Private`l];
        If[OddQ[MedianContext`Private`len],
        MedianContext`Private`slist[[(MedianContext`Private`len + 1)/2]],
        1/2*(MedianContext`Private`slist[[MedianContext`Private`len/2]] +
            MedianContext`Private`slist[[MedianContext`Private`len/2 + 11])]]
```

The symbol median2 is protected in MedianContext. Hence, it is not possible to assign a value to the protected symbol as shows the following assignment. Loading a package which contains the same procedure gives rise to a conflict because there occurs a shadowing of the same symbol from different contexts.

```
median2 = 4
Set::wrsym : Symbol median2 is Protected.
4
```

```
<< "Median.m"
SetDelayed::write : Tag median2 in median2[1 List] is Protected.
```


- Errors and Tracing

In every non-trivial program there occur errors. Therefore, it is essential to search for them and provide some tools for this task. In order to find programming errors Mathematica provides two main tools: Trace and Dialog.

The function Trace lists all sub-expressions generated during evaluation. Hence, it is possible to watch all intermediate steps .

```
a = 3;
(a
{{{a,3}, 3', 9},{a, 3}, 9+3+1, 13}
```

As regards to evaluation of a Mathematica expression one has to be aware of the fact that the tree structure of an expression is evaluated bottom up. In the case of nested function calls the calculation proceeds from inside to outside which thus enables functional programming. The head of an expression is processed first.

$$
\begin{aligned}
& \mathbf{s}=\operatorname{Sin} ; \operatorname{s}\left[\left\{\frac{\pi}{4}, \frac{\pi}{2}\right\}\right] / / \text { Trace } \\
& \left\{\{\sin \operatorname{Sin}\},\left\{\left\{\left\{\frac{1}{4}, \frac{1}{4}\right\}, \frac{\pi}{4}, \frac{\pi}{4}\right\},\left\{\left\{\frac{1}{2}, \frac{1}{2}\right\}, \frac{\pi}{2}, \frac{\pi}{2}\right\},\left\{\frac{\pi}{4}, \frac{\pi}{2}\right\}\right\},\right. \\
& \left.\operatorname{Sin}\left[\left\{\frac{\pi}{4}, \frac{\pi}{2}\right\}\right],\left\{\sin \left[\frac{\pi}{4}\right], \sin \left[\frac{\pi}{2}\right]\right\},\left\{\sin \left[\frac{\pi}{4}\right], \frac{1}{\sqrt{2}}\right\},\left\{\sin \left[\frac{\pi}{2}\right], 1\right\},\left\{\frac{1}{\sqrt{2}}, 1\right\}\right\}
\end{aligned}
$$

Consider the following calculation which if simply Trace is applied turns out to be quite voluminous. However, called with a second parameter it is possible to trace only the values of j.

```
Trace[ For \([i=1 ; j=1 ; p=5, p<5000, i++\),
    p = Prime [i + j] ;
    \(\left.\left.j=F \operatorname{loor}\left[\sqrt{(p+1 / 2)^{2}}\right]\right], j\right]\)
\(\{\{\{\{\{\{j, 1\}\}\}\}\},\{\{\{\{\{j, 3\}\}\}\}\},\{\{\{\{\{j, 11\}\}\}\}\},\{\{\{\{\{j, 43\}\}\}\}\}\),
    \(\{\{\{\{\{j, 211\}\}\}\}\},\{\{(\{\{j, 1321\}\}\}\}\}\}\)
```

The output can also be restricted to suitable patterns given as second parameter to Trace. All definitions in this example are obtain with _=

```
Trace [For[i=1; j=1;p=5,p<5000,i++,
    p = Prime [i + j] ;
    \(j=\) Floor \(\left.\left.\left[\sqrt{(p+1 / 2)^{2}}\right]\right],{ }_{-}\right] / /\)ColumnForm
\(\{\{i=1\},\{j=i\},\{p=5\}\}\)
\(\{\{p=3\},\{j=3\}\}\)
\(\{\{i=2\}\}\)
\(\{\{p=11\},\{j=11\}\}\)
\(\{\{i=3\}\}\)
\(\{\{p=43\},\{j=43\}\}\)
\(\{\{i=4\}\}\)
\(\{\{p=211\},\{j=211\}\}\)
\(\{\{i=5\}\}\)
\(\{\{p=1321\},\{j=1321\}\}\)
\(\{\{i=6\}\}\)
\(\{\{p=10909\},\{j=10909\}\}\)
\(\{\{i=7\}\}\)
```

With the following options of Trace such as

```
TraceBackwards }->\mathrm{ False
TraceForward }->\mathrm{ False
TraceDepth->Infinity
TraceOff }->\mathrm{ None
TraceOn->pattern
TraceOriginal->False
```

it is possible to control the output in detail.

```
Trace[For[i=1;j=1;p=5,p< 5000,i++,
    p=Prime[i + j];
    j = Floor [\sqrt{}{(p+1/2\mp@subsup{)}{}{2}}]],\mathrm{ TraceOn }->\mathrm{ Floor ] // ColumnForm}
{{{Floor[\frac{7}{2}], 3}}}
{{{Floor[\frac{23}{2}],11}}}
{{{Floor[\frac{87}{2}], 43}}}
{{{Floor[\frac{423}{2}], 211}}}
{{{Floor [\frac{2643}{2}], 1321}}}
{{{Floor[\frac{21819}{2}], 10909}}}
```


- Dialog

Mathematica allows debugging that is direct interference in a running program in order to trace errors. In this way it is possible to inspect actual values and change them if necessary.
In an interactive session the command Dialog[] or Dialog [expr] starts another subsession or dialog which is often useful if one wants to interact with Mathematica while it is in the middle of doing a calculation. With Return [] one exits from the dialog. It is also possible to return a value from this dialog using Return [expr].

TraceDialog [expr]automatically starts a dialog for every Mathematica expression which is used for the evaluation of expr. In the subsequent example the tracing is restricted to assignments of the form $y=a_{-}^{+}+{ }_{-}^{4}$

```
y=t;
TraceDialog[ Do[y = Expand[ (Y+i)^2], {i, 5}], Y =a_. + _^4]
TraceDialog::dgbgn : Entering Dialog; use Return[] to exit.
y=9+12t+10t}\mp@subsup{t}{}{2}+4\mp@subsup{t}{}{3}+\mp@subsup{t}{}{4
```

```
TraceDialog::dgend : Exiting Dialog.
```

While the dialog session is running it is possible to look e.g. for the value of i

```
i
```

2
or change in a running calculation the value of the variable t which is set to 1

```
t = 1;
```

1

Entering Return [] exits the dialog session.

Return []

In this case a numerical value is obtained instead of a polynomial in \mathbf{y}.

```
y
```

5408554896900

Finally, using the command Dialog a dialog session is started when $f[3]$ is calculed

```
f[0] = 1;
f[n_]:= (If[n== 3, Dialog[]]; nf[n-1])
```

```
f[8]
```

40320

The command Stack [pat] gives the list of all expressions under evaluation which fit the pattern pat.

```
Stack[_]
{If[8== 3, Dialog[]]; 8f[8-1], 8f[8-1], If[7 == 3, Dialog[]];
    7f[7-1], 7f[7-1], If[6==3, Dialog[]]; 6f[6-1], 6f[6-1],
    If[5==3, Dialog[]]; 5f[5-1], 5 f[5-1], If[4 == 3, Dialog[]];
    4f[4-1],4f[4-1], If[3== 3, Dialog[]]; 3f[3-1], Dialog[]}
```

or all products using the pattern Times

```
Stack[Times]
{8f[8-1], 7f[7-1], 6f[6-1], 5f[5-1], 4f[4-1]}
```

The dialog is closed with Return [] .

Return []

Programmer's Recommendation and Conclusion

Finally, there is a Golden Rule of Mathematica programming : avoid iteration. An old saying amongst computer scientists is: To iterate is human, to recurse, divine.
As was shown there is a whole assortment of list manipulation functions built into Mathematica, which are in general much faster than iterations. Moreover, these list manipulation operations can be threaded together to construct fast, elegant and efficient solutions to programming problems which to demonstrate was the intention of the previous subsections.

As a final remark it seem quite convincing that due to the fact that Mathematica is an interpreter system its programming language is most suitable for rapid prototyping, for the development and testing of algorithms etc. . The compactness of the Mathematica code which comprised more than 1000 commands and high level functions not available in other programming languages allow a reduction of length of traditional programs by a factor of $10-20$. Due to increasing computational power and performance of computers speed is (in most cases) no longer an essential argument in favour of compiler languages. The high flexibility of the Mathematica language which supports very different programming styles as was demonstrated above, and the advanced notation which admits the usage of symbols identical to the ones occuring in the mathematical formulation of the problem enable the experienced Mathematica user to write sophisticated programs. It is challenging to write the programs such that the programming code seems to be more or less a straightforward transcription of the mathematical language in which the problem was formulated. It is the experience of a growing user community that Mathematica is the most suitable tool for this sort of tasks.

Programming Literature

Concerning the literature for programming in Mathematica there exist several books to be recommended on which this tutorial is based on.

Programming literature
Robert M. Dickau / WRI
Mathematica Training:
Programming with Mathematica (1996)
Richard J. Gaylord, Samuel N. Kamin, Paul R. Wellin
Introduction to Programming with Mathematica, 2nd Edition
TELOS/Springer-Verlag/Berlin (1996)
ISBN 0-387-94434-6 (with disk)
John W. Gray
Mastering Mathematica : Programming Methods and Applications, 2nd Edition
Academic Press Professional (1997)
ISBN 0-12-296105-6 (with CD-ROM)

Stephan Kaufmann

Mathematica as a tool.
An Introduction with practical examples
Birkhäuser Verlag (1994)
ISBN 0-8176-5031-8 (with disk)

Roman E. Maeder
Programming in Mathematica , 3rd Ed.
Addison-Wesley-Longman Inc. (1997)
ISBN 0-201-85449-X
Roman Maeder
The Mathematica Programmer
Academic Press Professional (1994)
ISBN 0-12-464990-4 (with disk)

Roman Maeder
The Mathematica Programmer II
Academic Press, Inc. (1996)
ISBN 0-12-464992-0 (with CD-ROM)
Troels Petersen, Ed.
The Elements of Mathematica Programming
TELOS/Springer-Verlag (to be published)
ISBN 0-387-94590-3 (with CD-ROM)

David B. Wagner
Power Programming with Mathematica : The Kernel

McGraw-Hill (1996)
ISBN 0-07-912237-X (with disk)

Stephen Wolfram

The Mathematica Book, 3rd Edition
Wolfram Media/Cambridge University Press (1996)
ISBN 0-9650532-0-2 (Hardcover)
ISBN 0-9650532-1-0 (Paperback)

University Center Joint Institute for Nuclear Research / Dubna

Mathematica Seminars
October 27-29, 1998

Mathematica Front End
 Prof. Dr. Robert Kragler
 FH Ravensburg-Weingarten /University of Applied Sciences kragler@fh-weingarten.de

Abstract

:

The purpose of this tutorial is to give an introduction to some of the features of the Mathematica Front End, i.e. the notebook interface with help of which the user interacts with the Mathematica kernel in order to create interactive documents. The Front End is a purely graphical interface which is supported on most computer systems.

Alternatively one may also communicate with a text-based interface by typing text on the keyboard. The lecture will deal with different technicalities such as - the layout of Mathematica notebooks - how to change text styles - how to customize stylesheets for layout - how to change the style environment of notebooks - an overview of the Option Inspector

Moreover, due to the fact that notebooks are by themselves nothing but Mathematica expressions they can therefore be generated with of Mathematica programs and may be modified by the Mathematica kernel itself. Furthermore, examples will be given on

- discussion of the some of the new typesetting features
- how to generate buttoms and palettes,
- how to rotate icons for open/close of cell groups
- how to use hyperlinks etc.

[^3]- Mathematica is more than merely a Computer Algebra System. Since version 3.0 it is a System for Technical Computing used for the creation of interactive documents

Besides symbolic and numeric calculations and 2D/3D graphics Mathematica's salient features are :

> - graphic user interface, the so-called Front End - worksheets, i.e. Mathematica Notebooks

Mathematica Notebooks are interactive electronic documents which may contain :
Mathematica code (to be executed), text (with most DTP features supported such as different fonts, colour, mathematical formulae etc.), graphics and animation, (even in real-time using the add-on programs MathLive or Dynamic Visualizer) and sound (which is encoded in PostScript code as is graphics and other elements in terms of cells).

Mathematica Notebooks : Interactive Documents

The statement : "every Mathematica notebook is a Mathematica expression" is more than only a credo; it means these worksheets can be generated or manipulated by the kernel.

In more detail : Mathematica notebooks are ordinary Mathematica expressions. Therefore, they can immediately be manipulated by the user without any special setup etc. Hence, the results given in Mathematica notebooks can easily be checked or altered. Mathematica notebooks are organized in terms of hierarchical cells the layout of which can be pre-defined in so-called StyleSheets which are again special Mathematica notebooks in a specific stylesheet subdirectory. Notebooks can even be created by the Mathematica kernel as output. There are no limitations as regards to the appearance of Mathematica notebooks. Due to the hierarchical cell concept notebooks can be read like books comprising table of content, sections and subsections etc. which are accessible after opening the corresponding pages.

However, the advantage of the electronic document in comparison to conventional books is its interactivity, i.e. probing and manipulating the Mathematica code incorporated in the notebook. (The very first pioneering book which contained all chapters in terms of Mathematica notebooks on a CD-ROM disk was "Exploring Mathematics with Mathematica" by Th. Gray and J. Glynn published by Addison-Wesley Publ. Company already in 1991.

But the real important new feature in Mathematica version 3.0 is the portability of Mathematica notebooks. Mathematica notebooks contain all information in terms of ASCII code. They are platform independent. In earlier versions it was always a big problem to convert Mathematica notebooks which had been generated, say, under Windows operating system to Unix workstations (OS Solaris), NeXT (OS NeXTSTEP) or Macintosh (Mac OS 7) computers. Especially international characters such as German umlauts (or kyrillic letters) and other special symbols were a tedious problem to cope with in the past because there is even today no general accepted standard for character encoding. In Mathematica V 3.0 this problem is definitely solved. There are code translation tables for all Mathematica implementations which are provided for a large number of different hardware platforms.

Thus Mathematica notebooks may be used as a mean for exchange of scientific information and could become a kind of standard for interactive electronic documents in science. On a wider scale, Mathematica notebooks can be provided to academia via Web. There is already the built-in capability to save Mathematica notebooks in HTML format so that they can be used as WWW pages.

Recent developements from Wolfram Research are Publicon and MathML :

Publicon - a comprehensive solution for interactive technical publishing which aliows the creation of professional-quality technical documents for on-screen, web, and printed use. A free beta version of Publicon can be downloaded from URL http://www.publicom.com/ .

MathML (Mathematical Markup Language) - a new standard recently ratified by W3C (i.e. the WWW Consortium) becomes the framework for Web typesetting technology. MathML is designed to allow mathematical expressions to be transmitted over the Web, preserving the structure needed to do computations with them in Mathematica. Information on MathML can be downloaded from the Web at <http://www.wolfram.com/news/mathml/ > .

Mathematica Front End features

Details of the M/athematico Front End are given in another notebook which can be invoked with the button
Frontende . nb|.
This feature to work with buttons is a convenient mean of referring to other Mathematica notebooks in different subdirectories and thus organizing a talk or lecture avoiding the danger not to find the proper subdirectory with the notebook wanted.

Mathematica Notebooks

Every Mathematica notebook is a complete interactive document which combines text, tables, graphics, calculations and other elements.

This document is a notebook.

- A calculation

$$
\operatorname{Plot}[\operatorname{Sin}[\xi]+\sin [\sqrt{\xi}],\{\xi, 0,120 \pi\}]
$$

- Notebooks are automatically organized in a hierarchy of cells.
- One can close groups of cells so that only their headings are to be seen.
- One can use Hyperlinks to jump within a notebook to certain location or between notebooks.

Each cell can be assigned a style or format from a style sheet.

Mathematica notebooks are automatically adjusted for output on screen or printer. Fonts and layout for each medium are optimized.
Everything in theMathematica Help Browser is a notebook - including the complete on-line Mathematica book with 1500 pages.

- Mathematica provides hundreds of options which allow to give notebooks any look to be wanted and to generate full publication-quality documents.

Here is an ordinary text. It can be any font, face, SIZE, color, etc. There are hundreds of special characters such as \forall as well as formulas such as $\int \frac{1}{x^{3}-1} d x$ embedded in text.

Mathematica makes it easy to set up tables and arrays

```
\mp@subsup{\alpha}{}{2}-\beta\quad(\alpha-\beta)(\alpha+\beta)}\mp@subsup{\alpha}{}{2}-\mp@subsup{\beta}{}{3
\mp@subsup{\alpha}{}{3}-\beta}\quad\mp@subsup{\alpha}{}{3}-\mp@subsup{\beta}{}{2}.\quad(\alpha-\beta)(\mp@subsup{\alpha}{}{2}+\alpha\beta+\mp@subsup{\beta}{}{2}
```

Mathematica lets one set up spacing and justification

> of

> text

as wanted.

- Like other objects in Mathematica, the cells in a notebook, and in fact the whole notebook itself, are all ultimately represented as Mathematica expressions. With the standard notebook front end one can use the command Show Expression (which corresponds to the keyboard sequence [[TRO] + [$\mathrm{m}=\mathrm{F}]+\mathrm{E}$) to see the underlying text of the Mathematica expression that corresponds to any particular cell.

The Mathematica language itself can be used to specify all aspects of notebooks.
Here is a typical cell in a notebook.

-

This shows how Mathematica represents the cell internally.

```
Cell[TextData[StyleBox["This is a typical (text) cell.",
    FontWeight->"Bold",
    FontSlant->"Italic",
    Background->RGBColor[0,. 1, 1]]], "Text",
    PageBreakBelow->False,
    CellTags->"T.8"]
```

Mathematica notebooks can be built up using explicit commands as well as interactively.
This tells Mathematica to print three cells in Subsubsection style with numbering.

```
Do[StylePrint[StringJoin["Heading ", ToString[i]], "Subsubsection"], {i, 3}]
```

Heading 1

Palettes and Buttons

Palettes and buttons provide a simple but fully customizable interface to Mathematica with point－and－click features．

Mathematica comes with a collection of ready－to－use standard palettes．
Here is part of the palette（Lists and Matrices Matrix Operations）for Basic Calculations

$\text { Crose [} n, 0]$
Outer［ $1,0,0]$
Det［1］
Inverse［m］
Transpose［阬
Eigenvalues［ $\left[\right.$ ］${ }^{\text {a }}$ ，
Eigenvectors［m］
RowReduce

Here is the standard palette International Characters for European characters

a	a	à	a	a	a	a	¢
d	¢	©	\bigcirc	i	1	2	i
δ	1	İ	O	6	人	0	\％
\varnothing		ú	人̀	ü	$\dot{\text { y }}$	\pm	b
B	À	\dot{A}	\hat{A}	I	$\ddot{\text { A }}$	$\dot{\text { A }}$	E
C	E	\dot{E}	\hat{E}	シ	i	Í	I
İ	D	$\underline{8}$	N	$\dot{0}$	ó	0	0
0	\varnothing	Ù	Ú	ט̂	$\ddot{0}$	$\underline{1}$	5
ε	8	＊	》	2	1		

Palettes work like keyboard extensions.
In a palette like this, pressing the key inserts an ϵ into the notebook.

$2(1+1$
$2(1+\epsilon)$
In a palette like this the placeholder a indicates where the current selection should be inserted.

Clicking the button takes the highlighted selection and wraps a square root around it.
$1+\sin \left|x+\cos ^{2} x\right|$
$1+\sqrt{\operatorname{Sin}[x]+\operatorname{Cos}[x]}$

It is easy to create own custom palettes.
One can create a blank palette using the Create Table/Matrix/Palette item in the Input menu. The empty symbols a can be specified later.

Darken[m]	Lighten[日]
EdgeSeleat[E$]$	\square
\square	\square

One can create custom palettes to do any function or manipulate any expression by clicking a button.
Expand [E]
Factor [$]$
Simplify[

Clicking the button immediately factors in place the expression selected.

$$
\begin{aligned}
& 1+a^{\wedge} 2+2 a b+b^{\wedge} 2 \\
& 1+(a+b)^{2}+(p+q)^{\wedge} 2
\end{aligned}
$$

Use the following HyperLink to see other examples of palettes.
Here is an interactive Mathematica program Rolyhedranfxplorer ont in order to manipulate polyhedra.

Mathematica notebooks fully support standard mathematical notation - for both output and input.

Mathematica combines the compactness of mathematical notation with the precision of a computer language.

Here is an integral input using only ordinary keyboard characters.

```
Integrate[Log[1+x]/Sqrt[x], x]
-4\sqrt{}{x}+4 ArcTan [\sqrt{}{x}]+2\sqrt{}{x}\operatorname{Log}[1+x]
```

Here is the same integral entered in two-dimensional form with special characters. One can enter this form using a palette or directly the keyboard.

$$
\begin{aligned}
& \int \frac{\log [1+\xi]}{\sqrt{\xi}} d \xi \\
& -4 \sqrt{\xi}+4 \operatorname{Arctan}[\sqrt{\xi}]+2 \sqrt{\xi} \log [1+\xi]
\end{aligned}
$$

This shows the keys one needs to type in order to get the input above. \vdots stands for the Esc key.

Mathematica always allows to edit output - use it again as input.
$-4 \sqrt{\xi}+4 \operatorname{Arctan}[\sqrt{\xi}]+2 \sqrt{\xi} \log [1+\xi]$
$-4 \sqrt{\xi}+(4 \operatorname{ArcTan}[\sqrt{\xi}]+2 \pi)+2 \sqrt{\xi} \log [1+\xi]$
Mathematica can generate output in traditional textbook form. Note that Mathematica's StandardForm is precise and unambiguous whereas TraditionalForm requires heuristics for interpretation.

This input commands Mathematica to compute the integral and then display the result in TraditionalForm.
$\int \frac{\log [1+\xi]}{\sqrt{\xi}} d \xi / /$ TraditionalForm
$4 \tan ^{-1}(\sqrt{\xi})+2 \sqrt{\xi} \log (\xi+1)-4 \sqrt{\xi}$
Mathematica produces top-quality output for formulas of any size or complexity.
$\sum_{\mu=0}^{\infty} \frac{\varphi^{\mu} \operatorname{Cos}\left[\frac{\pi \mu}{4}\right]}{\mu!^{2}\left(\mu^{2}+\kappa\right)\left(\mu^{2}-\lambda\right)} / /$ TraditionalForm

```
\(\left(-\lambda, F_{2}(-i \sqrt{\kappa} ; 1,1-i \sqrt{\kappa} ; \sqrt[4]{-1} \varphi)-\lambda_{1} F_{2}(i \sqrt{\kappa} ; 1, i \sqrt{\kappa}+1 ; \sqrt[4]{-1} \varphi)-\right.\)
    \(\left.\kappa_{1} F_{2}(-\sqrt{\lambda} ; 1,1-\sqrt{\lambda} ; \sqrt[4]{-1} \varphi)-\kappa{ }_{1} F_{2}(\sqrt{\lambda} ; 1, \sqrt{\lambda}+1 ; \sqrt[4]{-1} \varphi)\right) /(4 \kappa(\sqrt{\kappa}-i \sqrt{\lambda})(\sqrt{\kappa}+i \sqrt{\lambda}) \lambda)+\)
\(\left(-\lambda_{1} F_{2}\left(-i \sqrt{\kappa} ; 1,1-i \sqrt{\kappa} ;-(-1)^{3 / 4} \varphi\right)-\lambda_{1} F_{2}\left(i \sqrt{\kappa} ; 1, i \sqrt{\kappa}+1 ;-(-1)^{3 / 4} \varphi\right)-\right.\)
    \(\left.{ }_{\kappa} F_{2}\left(-\sqrt{\lambda} ; 1,1-\sqrt{\lambda} ;-(-1)^{3 / 4} \varphi\right)-\kappa_{1} F_{2}\left(\sqrt{\lambda} ; 1, \sqrt{\lambda}+1 ;-(-1)^{3 / 4} \varphi\right)\right) /\)
    \((4 \kappa(\sqrt{\kappa}-i \sqrt{\lambda})(\sqrt{\kappa}+i \sqrt{\lambda}) \lambda)\)
```

Look at the Formula Gallery for other examples of mathematical formulas generated by Mathematica.
Mathematica makes it easy to work with abstract notation.

$$
\begin{aligned}
& \text { Table }\left[g \circ \overline{\alpha_{i} \oplus \beta_{i}} \Rightarrow \underset{i}{\sigma-i}, \quad\{i, 6\}\right] .
\end{aligned}
$$

Mathematica supports over 700 special characters with new fonts optimized for both screen and printer. All these characters can be found in the Complete Characters palette. All of them have consistent full names; some also have aliases, as well as TeX and SGML names.

Conclusion

In conclusion, the front end features of Mathematica version 3.0 are compared with the previous version 2.2 - a break through. Mathematical typesetting in version 3.0 does in most cases what one wants. And even when one wants to do something out of the ordinary, options allow to override the default behavior, thus making the typesetting system extremely flexible. One can make changes and gets immediate feedback, or one can make changes to be part of some output form. If it turns out that one constantly want a few different changes or groups of changes to be immediately accessible, then one may create a palette with buttons that apply those changes with one mouse click.

Mathematica Notebooks

Notebook Technicalities

Prof. Dr. Robert Kragler

FH Ravensburg-Weingarten / University of Applied Sciences kragler@rz.fh-weingarten.de

Front End Features of

Mathematica v3.0

■ Initializations
| Set Working Directory "
CD_Dubna98
Lecture"
| Packagelnfo
| openNotebookButton \& filesInDirectory
| Load Mathematica Packages
\| Cell-Group with Icon \triangleright resp. ∇
| Set notebook options
| Information on important System Variables
Print["Current working directory : " ",Directory[]]
Print["Initializations finished ",tag,zeit]
Current working directory : \cdots D: \CD_Dubna98
Initializations finished on 1999.5 .18 at $2: 01 \mathrm{~h}$

1.1 Intoduction to Notebooks

The Mathematica system consists of two programs: the front end and the kernel. The front end sends questions to the kernel which in turn answers the questions and returns them to the front end for display.

Electronic documents created by the Mathematica front end are called notebooks. Because every Mathematica notebook is a Mathematica expression it can therefore be manipulated by the kernel.

1.1.1 Notebooks

Notebooks are complete interactive document combining text, tables, graphics, sound; calculations, and other elements in terms of ceils.

A notebook can contain styled text, pictures, animations, sounds, and typeset formulas. In addition, notebooks can contain live mathematical expressions, hyperlinks (e.g. the standard palette international Characters for European characters) and buttons that execute arbitrary Mathematica functions Notebooke.nb

One special type of notebook is a palette, e.g. CompleteCharacters . nb which typically contains a collection of special characters, 2D forms, or Mathematica functions to be pasted into the current notebook.

To create a new notebook, pull down the File menu and choose New.

1.1.2 Cells

One fundamental difference between Mathematica notebooks and traditional word-processing documents is the notion of cells. Every piece of information in a notebook goes inside a separate cell, and the type of a cell determines the default appearance and properties of its content. E.g., mathematical questions go inside Input cells, whose contents are sent to the Mathematica kernel when evaluated the answers are placed inside new Output cells. Titles, section headings, and explanatory text go inside Title, Section, and Text cells etc., which are not sent to the kernel for interpretation.

Cells are denoted by vertical bracket on the rhs of the screen (here shown in red). When the key sequence [SWT] + बETT is pressed after entering 50! in an input cell the result is the following

!501

30414093201713378043612608166064768844377641568960512000000000000
Cells can be collected into groups, which organize the contents of a notebook similar to the way a book is organized into chapters and sections. Above there is a (red) cell bracket, that groups the input and output cells.

Cell groups can be closed, which hides all the information in a cell group except for the first cell. To close a cell group, double-click the cell bracket that encloses the cell group.

There occurs a small filled triangle at the bottom of the closed cell group indicating that there are cells inside the closed group. Double-clicking the closed cell bracket opens the cell and reveals the hidden output cell.

A horizontal line crossing the screen is called the cell insertion point, which is where Mathematica will create a new cell (which is by default a new input cell). In order to create a new cell between two existing cells one must place the cell insertion point at the appropriate place. To move the cell insertion point, the (vertical) mouse pointer I has to be moved upward until it becomes a (horizontal) $+\boldsymbol{- 1}$ bar, which happens only when the pointer is between two existing cells. Pressing the left mouse button places the cell insertion point between two cells. When one starts typing, a new input cell is created at the cell insertion point.
(Pressing [SHFT + REIT afterward places the matching output cell directly under the new input cell, places the cell insertion point beneath the new output cell.)

To create e.g. a text cell at the current insertion point, one has to change the cell type by first selecting the input cell bracket by clicking it with the mouse pointer. Next pull down the Format menu and chose Text from the Style submenu. By default, text cells have margins to the left of the margin for an input or output cell, and use a different font (here e.g. Helvetica resp. Arial).

One can insert headings by creating new cells, typing the text for each heading, and changing the cell into section cell by choosing Section from the Style submenu. S(ubsubs)ection cells usually use a larger font size than text cells, and have a dingbat such as $\square, \square, \square$ or etc. to the left of the text. The cell dingbat can be changed by using in the Format menu the Cell dingbat submenu which offers a great number of different symbols etc. e.g. course the actual layout depends on the underlying Stylesheet

In the case of the Classroom Stylesheet the layout is as such:

Exercise Main

Exercise

Exercise Text

By default, section cells are set up so that they put all cells from the section heading down to the next section cell into a cell group. To turn off automatic cell grouping, choose Cell menu and select from the Cell Grouping submenu the option Manual Grouping ; the default is Automatic Grouping. To group cells manually, select the cells to be grouped, then choose from the Cell Grouping submenu the option Group Cells or the keystroke sequence $[\mathrm{CTFA}]+[$ SHITT $]$.

Of course, one can insert other types of cells (depending on the actual Stylesheet) by creating a new cell and then change the cell type. For certain cell types Title etc. till Input there are keyboard short cuts such as AAIT $+\mathbf{n}$ (with $\mathrm{n}=$ 1... 9).

By using Show Toolbar from the Format menu the notebook header will then have an extra toolbar which contains in particular a popup window with all Cell types available for this notebook and another popup window with the Magnification.

Cells resp. cell groups can be deleted by selecting them and choosing Clear from the Edit menu or 国远 on the keyboard. Cell can be merged by selecting two or more adjacent cells, pulling down the Cell menu and choosing Merge Cells (or $[\mathrm{CTRL}+[$ SHIFT] $+\mathbf{M}$). A cell can be divided into two cells by placing the text insertion point at the place the

- 1.1.3 Text Styles

Most of the front end's word-processing features such as Font, Faces, SiZe, Text color, Background color, text alignment (i.e. left, center and right) and so on are under the Format menu. The format of the content of a cell can be changed by selecting the text to be changed, then making modifications with the commands under the Format menu. In order to change the format of one or several cells one has to select the cell bracket(s) and make the modifications the same way. The menu options Show Ruler and Show Toolbar under the Format menu make it easier to change a notebook's margin, text alignment and cell styles.

Besides the characters on the keyboard there are hundreds of special characters available such as \varnothing. A convenient way is to choose from in the File menu from the Palettes submenu the following palettes CompleteCharacters or InternationalCharacters. In addition inline formulas such as $\int \frac{1}{x^{5}-1} d x$ are possible.

- 1.1.4 Style Sheets

One can change the style of cells of a certain type in a notebook by editing the notebook's style sheet, which is by itself another Mathematica notebook document that contains cells with styles representative for all the cell styles that will be used when a new cell is created.

Usually, the style sheets such as Default.nb or Classroom.nb etc. that come with the system are all contained in the subdirectory


```
dir = $TopDirectory <> "\\SystemFiles\\FrontEnd\\StyleSheets";
openNotebookButton["*.nb", 1, dir]
```

ArticleClassic.nb	ArticleModern.nb	Classic.nb
Classroom.nb	Default.nb	Demo.nb
DemoText.nb	HelpBrowser.nb	HTML. nb
MathsnFun.nb	NaturalColor.nb	NotepadMono.nb
Notepad.nb	PasteColor.nb	PrimaryColor.nb
Report.nb	Textbook.nb	TutorialBook.nb

It is, however, recommended to place additional user-defined style sheets into a separate (empty) directory

\section*{C:\Programs\Wolfram Research\Mathematical3.01Configuration\FrontEndIStyleSheets\}

```
dir = $TopDirectory <> "\\Configuration\\FrontEnd\\StyleSheets";
openNotebookButton["*.nb", 1, dir]
```

Applmanual
Awstyles mbs
CDStyles. nb
Training1 ${ }^{\text {ab }}$

where they will show up together with the style sheets provided by the system
To edit a style sheet, pull down the Format menu and choose Edit Style Sheet.
To apply changes only to current notebook, click the Import Private Copy button. To edit a style sheet that defines styles for future new notebooks, click the Edit Shared Style Sheet button.
$\xlongequal[i]{\text { I }}$ Hrniug : However, before changing a style sheet it is advisible to keep a copy of the old style sheet before editing. It may happen that the modified style sheet will turn out to be corrupted after saving it so that all Mathematica notebooks using this particular style sheet are affected likewise.

A typical style sheet is Training . nb
To change the style of all cells of certain type, one has to open the appropriate cell group in the style sheet notebook and select the prototype cell wanted.

If one wants to change e.g. the style of the prototype Input cell to italic, one may pull down the Format menu and choose Italic from the Face menu. As soon as the style sheet window is closed, all existing and new input cells in the notebook will have slanted text. Most versions of Mathematica come with several style sheets. Hence, one may choose a predefined style sheet by pulling down the Format menu and choosing the desired style sheet from the Style Sheet submenu.

1.1.5 Style Environments

The appearance of a notebook can be further changed by switching to a different sly $1 / c^{\prime}$ cmirommem. Typical environments are

- Working
- Presentation
- Condensed
- Printout

Documents viewed in the Presentation environment typically use larger font sizes than documents in the Working environment. As regards to the Condensed environment there a font smaller than in the Working environment is used in order to display expressions which extend over the normal width of the screen. There is also the Printout environment, which uses smaller fonts than the Working environment, and uses styles that look better on the printed page. In addition all colored cell backgrounds are converted to gray scales.

In the Format menu there are two submenues Screen Style Environment and Printing Style Environment ; when chosen the style environment which are defined in the style sheet being used pop up and one can switch between different environments.

There is part of a notebook in the Working environment, in which text typically wraps around at the actual window width, and uses fonts large enough to be viewed comfortably on the screen

Use Working environment TestTraining.nb

In the Printout environment TestTraining.nb the same notebook uses smaller fonts and line breaks occur at the page width rather than on the actual window width. If one chooses right at the bottom of the Format menu the option Show Page Breaks then the style environment is switched to Printout so that the line breaks are visible. By default cell brackets are not printed. This can be controlled in the Printing Settings of the File menu, particularly in the Printing Options where there is an option Print cell bracket $[\wedge \wedge]$

1.1.6 Hyperlinks

Hyperlink1

To enter a hyperlink in a notebook, first select the destination of the link (i.e. the cell that the link should jump to), then add a tag to the the destination cell. A tag is a label associated with a cell that allows one to refer to a particular cell.

Tags are not displayed on the screen unless the option Show Cell Tags from the Find menu is chosen.
In order to add a tag to the cell one chooses Add/Remove Cell Tags in the Find menu, then type the desired tag into the uppermost text field. To add the tag to the cell, click the Add button.

Next, select the text one wants to act as the hyperlink, then pull down the Input menu and choose CreateHyperlink. In the dialog box that appears, one has to click the desired target cell tag from the list at the bottom of the dialog box.

Figure 2
The selected text (here hyperlink) appears (by default) as underlined blue text. When a hyperlink is clicked the front end scrolls the selected notebook to the destination of the link (in the present case the tag Hyperlink1)

- 1.1.7 Numbered Equations and Figures

To create numbered equations or figures one has to select the cell containing the equation or figure, then choose NumberedEquation (or NumberedFigure) from the Style submenu in the Format menu.

Note, that not every style sheet contains the numbered-equation or numbered-figure style definition. Some of the style sheets that do define automatic-numbering cells are Classroom, Classic, Report and Article styles.

Here is a cell containing some formulae inside numbered-equation cells.

$$
\begin{align*}
& \int d x=x \tag{1}\\
& \int \lambda d x=\lambda x \tag{2}\\
& \int x^{n} d x=\frac{x^{n+1}}{n+1} \quad(n \neq 1) \tag{3}\\
& \int(f(x)+g(x)) d x=\int f(x) d x+\int g(x) d x \tag{4}
\end{align*}
$$

If an equation is inserted between existing cells, Mathematica automatically updates the equation numbers.
Plot $\left[\frac{\operatorname{Sin}[x]}{x},\{x,-4 \pi, 4 \pi\}\right.$, PlotRange \rightarrow All, Frame \rightarrow True $]$;

Figure 3

- 1.1.8 Converting Notebooks

Mathematica can save notebooks in several different formats, including HTML, TeX, Package_Format and Pre-3.0_Notebook. The different formats available are lissted under Save_As_Special submenu in the File menu.

Mathematica also opens files other than notebooks. Some files can be opened directly by choosing Open from the File menu, and others require use of Open_Special. The front end is set up automatically convert notebooks from versions of Mathematica earlier than 3.0.

Text and graphics in notebooks can be directly copied to the system clipboard and pasted into other programs. Some notebook elements, such as graphs and typeset formulae, can be converted into several formats e.g.

- Text
 - Cell Expression
 - Notebook Expression
 - Complete Notebook
 - Package Format

- EPS
- Adobe lllustrator
- Bitmap (BMP)
Enhanced Metafile (EMF)
- Windows Metafile (WMF)
- Rich Text (RFT)
- Wave (WAV)
using commands under the Save_Selection_As and Copy_As submenus of the Edit menu.

See also NotebookConvert, HTMLSave, TeXSave, Display, DisplayString
? NotebookConvert

System`NotebookConvert
Attributes [NotebookConvert] $=$ \{Protected, ReadProtected \}

```
Options [NotebookConvert ] = {InputToStandardForm -> False,
    OutputToStandardForm -> False, PreserveStyleSheet -> False,
    GenerateBitmapCaches -> False, InputToInputForm -> False,
    OutputToOutputForm -> False, Interactive -> False}
```

? HTM以Save

HTMLSave ["file.html", notebook, options] converts the Notebook object notebook into an html document.
? TeXSave

TeXSave ["file.tex", notebook, options] converts the Notebook object notebook into a TeX document.
? Display

Display [channel, graphics] writes graphics or sound to the specified output channel in Mathematica PostScript format. Display [channel, graphics, "format"] writes graphics or sound in the specified format. Display [channel, expr, "format"] writes boxes, cells or notebook expressions in the specified format.

? DisplayString

```
DisplayString [graphics] generates a string giving graphics or sound in
    Mathematica PostScript format . DisplayString [graphics, "format "]
    generates a string giving graphics or sound in the specified
    format. DisplayString [expr, "format"] generates a string giving
    boxes, cells or notebook expressions in the specified format.
```


1.2 Cells and Notebook Options

1.2.1 Setting Options

Almost any feature of a notebook, cell, or expression can be altered using the Option Inspector, available under the Format menu. The Option Inspector window typically looks like the following figure

To reveal or hide the choices under on of the headings

Global Options

Notebook Options
Cell Options
Edition Options
Formatting Options
Graphics Options
Button Options

To reveal or hide the choices under one of the headings (Global Options, Notebook Options, etc.) click the button * to the left. When using the Option Inspector one can set the scope of the changes to make; that is, one can set options

- for the current selection only,
- for every cell with the same style as the current seclection,
- for the entire current notebook, or
- change the global default settings for options in all current and future notebooks.

To change the scope of the option settings, select the ddesired scope from the pop-up menu near the top of the Option Inspector window.

To remove any option settings in a cell or notebook, pull down the Format menu and choose Remove_Options.
The Lookup text field allows one to find options pertaining to particular topics, without having to navigate the different headings. To find options pertaining to cells, for example, type "cell" into the text filed, and then click the Lookup button to reveal the next option name that contains the word "cell". A partial listing of the commands in the Option Inspector is contained in Appendix A of this tutorial.

1.2.2 Global Options

Some of the global options that can be changed are

- the list of palettes to open when Mathematica is started,
 - the directories to search for configuration files,
 - the default style sheet to use for new notebooks.

To change global options, choose Global from the pop-up menu in the Option Inspector window.
For example, to turn off the Mathematica startup sound, open the Global Options category, open the System Configuration subcategory, and set the option StartupSound to False. There is typically a checkbox to the right of an option that takes only the values True or False, and clicking the box toggles the option settings.

One can also change the global editing and formatting behavior of the Mathematica front end. For example, the front end quickly flashes an open bracket (I, \{ or () when the matching closing bracket (l, \} or)) is typed. In the Edition Options category on can set the option DelimiterFlashTime to the length of time, in seconds, that the bracket should flash. (The default setting is 0.3 sec .) To turn delimiter flashing off, type 0 for the option value.

Also in the Editing Options category is an option called DragAndDrop. When set to True (the default value is False), one can highlight some text of part of a formula, and "drag" the selection to another location in the same cell.

1.2.3 Notebook Options

To change the options for an entire notebook, choose Notebook from the pop-up menu in the Option Inspector, making certain the notebook or palette whose options to be changed is the currently selected notebook.

Some of the options one can change at the notebook level are the notebook's background color, the magnification, the toolbars and other elements present in a notebook, and the window title. Furthermore, one can change the notebook's printing properties, such as how many copies to pring and the range of pages to print. These and many other option settings are found in the Notebook Options category.

To show the timing for each evaluation in a notebook, open the Notebook Options category and the Evaluation Options subcategory, and then choose Show_Timing form the list of choices.

In the Editing Options category, one can change text options, such as whether and how much paragraphs should be intended, how text should be aligned, and how much space should fall between lines and paragraphs.

In the Graphics Options category, one can set options that control how graphics are rendered in the notebook. For example, in the Rendering Options subcategory one can tell Mathematica to draw dummy graphics in place of PostScript graphics (in order to save memory), and whether to draw lines and filled polygons in graphs.

■ 1.2.4 Cell Options

Some options one can change at the cell level are a cell's background color, how to display cell brackets, whether to draw a frame around a cell, and the margins of a cell. To change the option settings for one or more cells, select the cell(s) to change, choose Selection from the pop-up menu that sets the scope of an option, open the Cell Options category, and then make the desired changes. (To apply the changes to every cell in the notebook, choose Notebook from the pop-up menu in the Option Inspector.)

An important set of options for a cell are its properties. By default, most cells have the property that they are editable, that is, text inside a cell can be changed. To remove this property, select a cell bracket, pull down the Cell menu, and open the Cell Properties submenu. If the cell is editable, there will be a check or other indication that the editable property is currently set for the cell. Choosing Cell Editable from the Cell Properties submenu will toggle between the property being set or unset for the selected cell(s). If the editable property is unset, the text in the cell cannot be changed.

A property that input cells typically have is that they are evaluatable, meaning they can be sent to the kernel for interpretation. (Cells containing titles, section headings, and other text usually do not have this property set.) To make an input cell unevaluatable (which is desirable if the cell contains a typeset expression not intended for interpretation by the kernel), choose Cell Evaluatable from the Cell Properties submenu to unset the evaluatable property of the cell.

Other properties that cell can have set include the property that an attempt to edit the contents of a cell results in a copy of the cell being created (se Cell Edit Duplicate in the Cell Properties submenu - this property is set by default for output cells), and the property that the contents of a cell are automatically sent to the kernel, when the notobook containing the cell opened (Initialization Cell).

A cell's properties can be changed by opening the General Properties subcategory inside the Cell Options category in the Option Inspector. To change the properties for every cell of a particular type in a notebook, choose Selection's Style from the pop-up menu, or directly edit the notebook's style sheet.

2 Special Characters and Forms

2.1 Introduction

Mathematica works with several hundred special characters, including Greek, script, Gothik, and double-struck letters, accented Latin letters, relational signs, and mathematical operators. In addition, Mathematica interprets and generates many two-dimensional input and output forms for mathematical and other functions, and allows to create our own formatting rules for input and output.

One can create arbitarily sophisticated typeset formulas in many ways, using graphical features of the front end, keyboard shortcuts, and Mathematica's programming language.

2.2 Using Palettes

One way to enter special characters and two-dimensional forms is to use a palette. Palettes are special notebooks that contain an array of buttons, and each button can be used as an extra key on the keyboard. For example, to enter the character α into a notebook, click a button containing an α, and the α character appears at the current insertion point.

On most systems, a palette that looks like the following figure will be present on the screen. (If not, pull down the File menu and choose BasicInput from the Palettes submenu.

To enter the expression $1+\delta$ into an input cell, type $1+$ into a new input cell using the keyboard, then click the δ button. The δ appears at the current text insertion point, after the plus sign.

The same palette can be used to enter some two-dimensional expressions. To enter $\sqrt{ }(1+\delta)$ into a notebook, click the $\sqrt{ }$ w button, then type $1+\delta$ into the space that appear under the radical sign. (Pressing the arrow key or CTRAC + SPACEG gets the cursor out of the radical sign.) Another way is to type and select $1+\delta$, then click the $\sqrt{ }$ 圆 button on the palette.

Here are the steps to enter the expression Expand $\left[(\alpha+\beta)^{10}\right]$ into an input cell.
First type Expand [int an input cell. With the text insertion point still located after the bracket, click the exponent button ${ }^{\square}$. In the lower placeholder type $(\alpha+\beta)$ using a palette to enter the α and β characters.

```
Expand [(\alpha+\beta)
```

Next click in the exponent placeholder with the mouse. (Pressing the [rias key also moves the text insertion point into the next empty placeholder.) When the insertion point is in place, type 10 for the exponent. Pressing the right arrow

 expression.

Expand $\left[(\alpha+\beta)^{10}\right]$
$\alpha^{10}+10 \alpha^{9} \beta+45 \alpha^{8} \beta^{2}+120 \alpha^{7} \beta^{3}+210 \alpha^{6} \beta^{4}+252 \alpha^{5} \beta^{5}+210 \alpha^{4} \beta^{6}+120 \alpha^{3} \beta^{7}+$
$45 \alpha^{2} \beta^{8}+10 \alpha \beta^{9}+\beta^{10}$

Another way to do the same thing is to type everything except the exponent into a cell，and select the expression to be the base of the exponent．

Expand［t（axix）］］

With $(\alpha+\beta)$ selected，click the exponent button，and Mathematica puts an empty placeholder（ \square ）at the superscript position，into which the exponent 10 is typed．Pressing 组酊＋

In general，clicking a button that contains a formula or special character places the character at the current text insertion point in the selected notebook（which usually has a highlighted title bar），replacing any selected text．

Clicking a button that contains a selection placeholder ${ }^{\text {en }}$＂wraps＂the contents of the button around the current selection，if any，replacing the $\quad \square$ with the selected expression．If nothing is currently selected，clicking a button pastes the blank form into the notebook at the current insertion poit．To fill in any empty placeholder（ a ），click the placeholder with the mouse pointer（the［rase key also moves the text insertion point from one placeholder to the next）， then type the desired expression，pressing shlifi + ［geT when finished to evaluate the expression．

Choosing the CompleteCharacters palette from the Palettes submenu of the File menu brings up a palette containing every special character in the Mathematica character set（click a triangle \triangleright to expand a particular section of the palette），and choosing BasicTypesetting from the Palettes submenu offers a larger selection of buttons for entering two－dimensional typeset forms．

2．3 Character Full Names

Every special character in Mathematica has a full name of the form \［FullName］，and typically the Mathematica front end converts the form \［FullName］into the named character once the closing square bracket is typed．（In order to prevent the front end from processing the form \［FullName］use before the closing bracket ］an invisihle （c，mmu ：：：）

For example，to enta a character π using its full name，type $\backslash\left[P_{i}\right]$ ；and to enter Π type \backslash［CapitalPi］．As with all Mathematica names，the full names of characters are case sensitive．To enter the expression Expand［ $(\alpha+\beta)(\theta+\Delta)]$ ，type the following characters and then press［silf］+ ［昂］．By default，Mathematica converts $\backslash[$ Alpha］into $\alpha, \backslash[$ Beta］into β ，and so forth，once each closing square bracket is typed．

```
Expand[(\[Alpha] + \[Beta]) (\[Theta] + \[CapitalDelta])]
```

$\alpha \Delta+\beta \Delta+\alpha \theta+\beta \theta$
When using the CompleteCharacters palette，Mathematica displays the full name of a character when the mouse pointer is over a button containing the character．In chapter 6 ＂Structure of Typeset Expressions＂，the internal representation of two－dimensional typeset forms is examined in more detail．

```
See also ShowSpecialCharacters，ToCharacterCode，FromCharacterCode， CharacterRange
```


？ShowSpecialCharacters

ShowSpecialCharacters is an option for Cell which specifies whether
to replace［Name］，：nnnn，etc．by explicit special characters．

```
ToCharacterCode["string"] gives a list of the integer codes corresponding to
    the characters in a string. ToCharacterCode["string", "encoding"]
    gives integer codes according to the specified encoding.
```


- FromCharacterCode

```
FromCharacterCode[n] gives a string consisting of the character with integer
    code n. FromCharacterCode[{n1, n2, ... }] gives a string consisting of the
    sequence of characters with codes ni. FromCharacterCode[ ... , "encoding"]
    generates a string using the specified character encoding.
    ? CharacterRange
```

CharacterRange["c1", "c2"] yields a list of the characters in the
range from "c1" to "c2".

2.4 Menus

Under the Edit menu there is a submenu called Expression Input, in which the commands for entering subscripts, superscripts, underscripts, and overscripts, as well as other two-dimensional forms are listed.

To enter a subscripted expression such as x_{0} type the base x, choose Subscript from the Expression Input submenu, fill in the base, and then press the right arrow key or $[$ Cing + SPACEA to move the insertion point back to the baseline of the expression.

- $\mathbf{x}_{\mathbf{0}}$

Similarly, to enter expression $\hat{\mathbf{x}}$, type an \mathbf{x}, choose Above from the Expression Input submenu, and type the caret character ^. (Note, that on a non-standard English keyboard, Mathematica will almost always accept [cimel +6 but may not accept ($\mathrm{CR} \mathrm{N}^{+\wedge}$)
$\hat{\boldsymbol{x}}$

To enter a matrix or other array-like form, pull down the Input menu and choose the option CreateTable/Matrix/Palette ,click the Matrix button, and then fill in the blanks in the dialog box that appears.
$\int \operatorname{Det}\left[\left(\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right)\right]$
| -1
To add a row or column to an already existing matrix, select the pull down the Edit menu and choose from the Expression Input submenu AddRow (or AddColumn).

2.5 Keyboard Aliases and Shortcuts

Many special characters have a keyboard alias of the form :alias: where the character: (or ECD esc $\operatorname{ESC}_{\text {) }}$) represents the Escape key ESC. Mathematica typically converts the form :alias: into the corresponding character once the second \equiv is

To enter the command Solve [$4 \rho+5 \mu=0, \rho]$, type

$\left\{\left\{\rho \rightarrow-\frac{5 \mu}{4}\right\}\right\}$
Other families of letters are

Greek letters	ESC G EEC	Γ	
double-struck letters	[ESC dsA [ES	A	
Gothic letters	ESC goA Esc	f	
script letters	ESC ScA ${ }_{\text {ESC }}$	\mathcal{A}	
accented Latin	ESC A punctuation [ES		$\ddot{\mathbf{A}}$

To enter a character for a particular font family, just prepend to the character the abbreviation for the font family.
The aliases for accented Latin characters are typically the letter with a punctuation mark appended that resembles the

Greek, double-struck, Gothic, script and extended Latin letters can be used in variables and function names too

```
pofygon[m_Integer] := Table[{Cos[0], Sin[0]},{0,0,1.99\pi,2\frac{\pi}{n}}]
polygon[3]
```

$\left\{\{1,0\},\left\{-\frac{1}{2}, \frac{\sqrt{3}}{2}\right\},\left\{-\frac{1}{2},-\frac{\sqrt{3}}{2}\right\}\right\}$

When using the CompleteCharacters palette, placing the mouse pointer over a special character displays the keyboard alias for that character, if one is defined.

There are also keyboard shortcuts for most two-dimensional forms, most involving use of the cimel key. In many cases, the keyboard shortcuts for two-dimensional forms mimic the keyboard form for one-dimensional commands. For example, enter an exponent using a caret ${ }^{\wedge}$, which is entered on most keyboards by typing cimal [6]. To enter the two-dimensional form of 2^{100}, after typing the base 2 , press either [GTRL $[6]$ (or [[ment $\{\wedge]$), which moves the text insertion point into the superscript position, and then fill in the placeholder. Thus, the following keystrokes will create input and

$\sqrt{2^{100}}$
1125899906842624

Similarly, in one dimension a fraction is typed as \mathbf{x} / \mathbf{y}; to enter the two-dimensional form type the keystrokes $x[$ [imet/ $/ \mathrm{y}$
$\left\{x / y, \frac{x}{y}\right\}$
$\left\{\frac{x}{y}, \frac{x}{y}\right\}$

(where \rightarrow is entered as \[RightArrow], then select the arrow, and then press [cren [7]. Then type the contents of the overscript (f) into the placeholder \rightarrow above the arrow. Note, that the expression is not a valid Mathematica input, hence, one should not press [shrir [国] after creating the form.

In general, pressing a keyboard shortcut for a subscript, superscript, fraction, etc. applies the form to the first complete subexpression directly before the insertion point. If one types $a+b+c$ into an input cell and then press cher $[6]$ for a superscript (exponent), the superscript is applied only to c.

$$
a+b+c^{x}
$$

On the other hand, if on types $a+(b+c)$ followed by $[$ crame $[6]$, the exponent is applied to the entire expression $(b+c)$.

$$
a+(b+c)^{x}
$$

If part of an expression is highlighted, the subscript or superscript is applied to the entire selection. Here, type $a+b+c+d$ into an input cell, then select the subexpression $b+c$

$a+\quad+d$

Pressing the keyboard shortcut for a fraction, i.e. crim [/], places the selected expression in the numerator position of the fraction

$$
a+\frac{b+c}{\square}+d
$$

Some characters in typeset expressions have both a subscript and superscript, or both an underscript or overscript. In
 the expression x_{0}^{2}, type the base of the expression and then one of the scipts, in this case the subscript, by typing $\mathbf{x [t r a n}\left\{-\mid 0\right.$ which gives x_{0}. With the insertion point still in the subscript position, pressing [ram $\{5]$ creates a placeholder in the superscript position and moves the insertion point into it, where one can type the superscript 2.

Similarly, to enter a summation first type the character \[Sum] (which can be entered as \vdots :sumः, and which is different from the Greek letter \[CapitalSigma]).

Σ

The variable of summation and the lower limit are usually placed as an underscript to the summation sign, and one moves to the underscript position by typing cime $[=]$, so that

$$
\sum_{i=1}
$$

To move from the underscript to the overscript position, type [me $\{5$], and then type the upper limit of the summation

Then press the right arrow key or［［rimt［［8Rats］to move out of the overscript position，type the function to be summed and press［shliff［［⿴囗玉il］to evaluate the expression．
$\sum_{i=1}^{n} i^{8}$
｜$\frac{1}{90} n(1+n)(1+2 n)\left(-3+9 n-n^{2}-15 n^{3}+5 n^{4}+15 n^{5}+5 n^{6}\right)$
The Other Information category of the Help Browser contains further examples of entering and editing two－dimensional expressions．NotationExamples anb

See also the documentation in the subdirectory＂．．．\OtherInformation＂

```
dir = $TopDirectory <> "\\Documentation\\English\\OtherInformation";
filesInDirectory[dir ] // ColumnForm
```

```
BrowserIndex .nb
CellMenu .nb
ContactInfo .nb
EditingCommands .nb
EditMenu .nb
FileMenu .nb
FindMenu .nb
FormatMenu .nb
HelpMenu .nb
InputMenu .nb
KernelMenu .nb
MacKeyboardCommands .nb
NeXTKeyboardCommands .nb
NotationExamples .nb
StyleSheets .nb
WindowMenu .nb
WindowsKeyboardCommands .nb
XKeyboardCommands .nb
```

Special input forms based on control characters are summarized in the table below

	go into a square root $\sqrt{-}$ because of key $\binom{$ e }{2}
	go to superscript position \square° because of key $\binom{\hat{4}}{6}$
	go to subscript position \square_{0} because of key $(-)$
	go to underscript position－because of key $\binom{+}{=}$
	go to overscript position．because of key $\binom{$ \＆}{7}
	exponent position in a root because of key $\binom{$ \％}{5}

On a standard English-language keyboard, the shifted versions of keystrokes in the first column are accepted on standard English-language keyboards. However, on a non-English keyboard Mathematica will almost always accept the non-shifted versions in the second column.

A third alternative are the $\backslash!$ sequences followed by $\backslash(\ldots \backslash)$ in the third column using ordinary printable characters from the keyboard. Note, that if one copies a $\!$ sequence into Mathematica, it will automatically jump into two-dimensional form. But if one enters the sequence directly from the keyboard, the $\backslash(\ldots)$ sequences are shown in literal form. Choosing the Make_2D item (or the keystrokes $[$ shifi $+[\mathrm{CRR}]+\mathrm{Y}$) from the Edit menu convert these sequences into two-dimensional forms wanted.

2.6 Extensible Characters

Some characters that Mathematica uses are extensible, meaning they may stretch to surround an expression that is taller or wider than a single character. Different types of brackets and arrows are typically extensible characters.

For example, the parentheses surrounding a matrix are extensible. Here is a 2×2 matrix.
$\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$
If an additional row is added to the matrix, the parentheses extend to the new height of the matrix.
$\left(\begin{array}{ll}a & b \\ c & d \\ e & f\end{array}\right)$
The following input line is one-dimensional, so the square brackets are as tall as a single character
Gamma [11 / 2]
$\frac{945 \sqrt{\pi}}{32}$
Entering the argument $\frac{11}{2}$ in two-dimensional form, however, causes the brackets to grow vertically.
$\operatorname{Gamma}\left[\frac{11}{2}\right]$

The characters \[UnderBracket] and \[OverBracket] are examples of characters that grow horizontally. Here is a simple expression.
$1+2+3$
To put a horizontal bracket above the entire expression, select the whole sum, and then click a button in a palette or press [cmal $[7]$. Then type \backslash [OverBracket] or its alias : $\circ[\mathrm{E}$ in the placeholder above the sum. Mathematica extends the bracket to the length of the sum

$1+2+3$

If terms to the sum are added, the brackets extends to the proper length.

$\overline{1+2+a+b+3}$

There are some special expandable characters such as parentheses, arrows, bracketing bars which grow without bound to span whatever expressions they contain, whereas brackets, brashes and slashes grow by default to limited
size only. These default characteristics of expandable characters, however, can be controlled by StyleBox options, e.g.

RowBox[\{"(", "\{", GridBox[\{\{X\}, \{Y\}, \{Z\}\}]\}]//DisplayForm
$\left(\begin{array}{l}X \\ Y \\ Z\end{array}\right.$

However, with option SpanMaxSize \rightarrow Infinity specifies that all characters inside the StyleBox should be allowed to grow as large as they need.

StyleBox[RowBox[\{"\{", GridBox[\{\{X\}, \{Y\}, \{Z\}\}]\}], SpanMaxSize \rightarrow Infinity]// DisplayForm
$\left\{\begin{array}{l}X \\ Y \\ Z\end{array}\right.$
By default expandable characters grow symmetrically. For a GridBox, one can use the option GridBaseline to specify where the baseline should be taken to lie. The possible settings are Center, Top, Bottom and Axis (default)

```
{GridBox[{{п, ■}, {■, ■}}, GridBaseline }->\mathrm{ Top],
    GridBox[{{\square, \square}, {\square, \square}}, GridBaseline }->\mathrm{ Center],
    GridBox[{{\square, \square}, {\square, \square}}, GridBaseline }->\mathrm{ Axis],
    GridBox[{{п, m}, {m, ■}}, GridBaseline }->\mathrm{ Bottom]} // DisplayForm
```


which explains the following arrangement of the GridBox

```
(rb = RowBox[{ "(", GridBox[{{X}, {Y}}, GridBaseline -> Bottom], ")" }]) //
DisplayForm
(\begin{array}{l}{X}\\{Y}\end{array})
```

Setting SpanSymmetric \rightarrow False allows expandable characters to grow asymmetrically.
|\{StyleBox[rb, SpanSymetric \rightarrow False], z\} //DisplayForm
| $\left.\left\{\begin{array}{l}X \\ Y\end{array}\right), z\right\}$
The notebook front end typically provides a Spanning_Characters submenu in Edit\Expression_Input which allwos one to change the spanning characteristics of all characters within the current selection.

The fimis of a sum are usually displayed as underscripts and overscripts.
$\| s=\operatorname{Sum}[f[i],\{i, 0, n\}]$
$\sum_{i=0}^{n} f[i]$

When the sum is shown smaller, it is conventional for the limits to be displayed in subscript and superscript position
| $1 / \mathrm{s}$
| $\frac{1}{\sum_{i=0}^{n} f[i]}$
The option LimitsPositioning (with default value Automatic) to UnderoverscriptBox and related boxes controls whether to change positioning of limits in the conventional way.


```
DisplayForm
```

$\sum_{\mathrm{i}=0}^{\mathrm{n}}$
In order to avoid that the underscript and overscript positions are moved to subscript and superscript positions in the case of a fraction, use the option LimitsPositioning \rightarrow False instead of True resp. Automatic.
| FractionBox["1", s] // DisplayForm
| $\frac{1}{\sum_{i=0}^{n}}$
Here is a sophisticated example of extensible characters which shows how horizontal brackets span the objects they enclose.

Table[Factor[$\left.\left.x^{i}-1\right],\{i, 5\}\right]$

```
\(\left\{-1+x, \overline{(-1+x)(1+x)}, \overline{(-1+x)\left(1+x+x^{2}\right)}, \overline{(-1+x)(1+x)\left(1+x^{2}\right)}\right.\),
\(\left.(-1+x)\left(1+x+x^{2}+x^{3}+x^{4}\right)\right\}\)
```

See also OverBar, OverVector, UnderBar,
SpanMaxSize, SpanMinSize, SpanSymetric
| ? SpanMaxSize
? SpanMinSize
? SpanSymmetric

2.7 Typeset Expressions within Text (InlineInput)

After creating a typeset expression, one can copy it and paste it into the text contained in a text, title, section, or any other cell using the commands in the Edit menu. Here is a two-dimensional expression inside an input cell

$$
\frac{1}{\sqrt{2 \pi}}
$$

And after creating the expression, select it and choose Copy or Cut from the Edit menu, and then paste it at the desired location inside a text cell.

Alternatively, inside fext one can create inline cells that contain typeset structures. To create an inline typeset cell inside a text cell, begin by typing text as usual. When one wishes to start entering a typeset expression, press [cmand $[9]$ or ctin) [] , then enter a two-dimensional form using palettes and keyboard shortcuts. (Usually ther is a frame or other indication of the boundaries of the inline cell.) When one has finished entering a typeset expression in text, press

Begin of Inline Mode : [CTRLU $[(]$... inline text or formula ... [CTRLU $)]$ end of Inline Mode

2.8 Examples

Note, that many of the following examples are not valid as Mathematica input, so do not press [sNrF] [国] to evaluate them.
$(\alpha+\beta)^{n} \neq \alpha^{n}+\beta^{n}$
$\hbar \simeq 6.6260754 \frac{\text { Joule }}{\mathrm{sec}}$
$F_{n}=F_{n-1}+F_{n-2}, \quad n \quad 2$
$(V y)(\forall z)(y \in x \wedge z \in y \Rightarrow z \in x)$
$2^{k} n \sin \left(\frac{\theta}{2^{k}}\right)<2^{k}<2^{k} n \tan \left(\frac{\theta}{2^{k}}\right)$
$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$\sin \frac{\theta}{2}=\sqrt{\frac{1-\cos \theta}{2}}$
$\tan (\theta \pm \phi)=\frac{\tan \theta \pm \tan \phi}{1 \mp \tan \theta \tan \phi}$
$(\hat{\Pi})_{\alpha \beta}^{(0)}=n g(n, \epsilon) u_{\alpha} u_{\beta}+p \delta_{\alpha \beta}$
$1 / \pi=(\sqrt{ } 8) / 9801 \sum_{i=1}^{\infty}((4 n!)(1103+26390 n)) /\left((n!)^{\wedge} 4396^{\wedge}(4 n)\right)$
In order to expand the bracket in the way wanted one is referred to the discussion in the previous section 2.7.
$\mathbf{U}(\mathrm{x})= \begin{cases}0, & x<0 \\ \frac{1}{2}, & x=0 \\ 1, & x>0\end{cases}$
$A \operatorname{adj}(A)=\left(\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & & \vdots \\ a_{i 1} & a_{i 2} & \cdots & a_{i n} \\ \vdots & \vdots & & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n}\end{array}\right)\left(\begin{array}{cccccc}c_{11} & c_{12} & \cdots & c_{j 1} & \cdots & c_{n 1} \\ c_{12} & c_{22} & \cdots & c_{j 2} & \cdots & c_{n 2} \\ \vdots & \vdots & & \vdots & & \vdots \\ c_{1 n} & c_{2 n} & \cdots & c_{j n} & \cdots & c_{n n}\end{array}\right)$
In order to create the extensible overbar use OverscriptBox ["expr", "_"]//DisplayForm
$\langle\mathrm{f}, \mathrm{g}\rangle=\int_{a}^{b}\left[f_{1}(x)+i f_{2}(x)\right] \overline{\left[g_{1}(x)++i g_{2}(x)\right]} d x$
$\iint(f \nabla g-g \nabla f) \cdot n d \sigma=\iiint\left(f \nabla^{2} g-g \nabla^{2} f\right) d \tau$
In order to avoid the underscript and overscript positions for the summation or product signs use the option LimitsPositioning \rightarrow False (instead of True resp. Automatic) for the UnderoverscriptBox in order to control the positioning of limits

$$
\begin{equation*}
\|A\|^{2}=\sum_{i=1}^{n} \sum_{j=1}^{m}\left|a_{i j}\right|^{2} \tag{19}
\end{equation*}
$$

$\prod_{i=0}^{n} p_{l}^{k_{l}}$

$$
\begin{equation*}
\left((\sqrt{2})^{\sqrt{2}}\right)^{\sqrt{2}}=2 \tag{20}
\end{equation*}
$$

StyleBox[SuperscriptBox[

$$
\begin{aligned}
& \text { RowBox }[\{\text { StyleBox }["(", \text { FontSize } \rightarrow 20], \\
& \text { SuperscriptBox }["(\sqrt{2}) ", " \sqrt{2} "], \\
& \text { StyleBox }[") ", \text { FontSize } \rightarrow 20] \\
& \}], \text { " } \sqrt{2} "], \\
& \text { SpanMaxSize } \rightarrow \text { Infinity, } \\
& \text { ScriptBaselineShifts } \rightarrow\{\text { Automatic, 1\}] //DisplayForm }
\end{aligned}
$$

$\Pi(F, G) \approx 1-\Phi\left[\frac{c-\frac{1}{2}-m n p_{1}}{\sqrt{\operatorname{Var}\left(W_{X Y}\right)}}\right]$
$\operatorname{Cov}\left(\sum_{i=1}^{r} K_{i}, \sum_{j=1}^{s} L_{j}\right)=\sum_{l=1}^{r} \sum_{j=1}^{s} \operatorname{Cov}\left(K_{i}, L_{j}\right)$
$\mathrm{N}\left(a_{1}^{\prime} a_{2}^{\prime} \ldots a_{r}^{\prime}\right)=\mathrm{N}-\sum_{\mathrm{i}} \mathrm{N}\left(a_{i}\right)+\sum_{\mathrm{i} \neq \mathrm{j}} \mathrm{N}\left(a_{i} a_{j}\right)-\sum_{\mathrm{i}, \mathrm{j}, \mathrm{k}} \mathrm{N}\left(a_{i} a_{j} a_{k}\right)+\ldots(-1) \mathrm{N}\left(a_{1} a_{2} \ldots a_{r}\right)$

3 Doing Calculations

3.1 Different Input and Output Forms

Mathematica allows a few different forms for input and output of mathematical expressions which are suitable for different purposes.

Versions of Mathematica prior to 3.0 allowed input only in a one-dimensional form called InputForm. Expressions in InputForm use only ordinary keyboard characters, and requires the use of spelled-out function names and square brackets to enclose function arguments in order to make questions unambiguous.

```
Integrate[1/(x^4+1), x] // OutputForm
```

$$
\begin{aligned}
& \frac{\operatorname{ArcTan}\left[\frac{-\operatorname{Sqrt}[2]+2 \mathrm{x}}{\operatorname{Sqrt}[2]}\right]}{2 \operatorname{Sqrt}[2]}+\frac{\operatorname{ArcTan}\left[\frac{\operatorname{Sqrt}[2]+2 \mathrm{x}}{\operatorname{Sqrt}[2]}\right]}{2 \operatorname{Sqrt}[2]}- \\
& \frac{\log \left[-1+\operatorname{Sqrt}[2] \mathrm{x}-\mathrm{x}^{2}\right]}{4 \operatorname{Sqrt}[2]}+\frac{\log \left[1+\operatorname{Sqrt}[2] \mathrm{x}+\mathrm{x}^{2}\right]}{4 \operatorname{Sqrt}[2]}
\end{aligned}
$$

The corresponding output form is OutputForm, a two-dimensional form which approximates traditional mathematical notation by printing numerators, denominators, and exponents on separate lines. Expressions in OutputForm cannot be edited directly; to create an editable copy of an expression in outputForm place the cell insertion point directly und the OutputForm expression, then choose Copy Output from Above from the Input menu. The result of the integral above displayed using OutputForm is given below.

The default form of input and output in Mathematica 3.0 is StandardForm which uses special characters and two-dimensional forms. StandardForm understands input (and generaated output) using radical signs, superscripted exponents, and two-dimensional fractions; as was as traditional input forms for operators such as integrals, sums, and products, and some special form for constants, such as π and ∞ for Pi and Infinity.
$\int \frac{1}{1+\Phi^{4}} d \Phi / /$ StandardForm
Mathematica by default generates output in StandardForm. Note that StandardForm uses Mathematica names for mathematical functions (ArcTan and Log for arctangent and logarithm) and square brackets for enclosing function arguments, making output in StandardForm unambiguous and therefore suitable for use as further input.

$$
\frac{\operatorname{ArcTan}\left[\frac{-\sqrt{2}+2 \Phi}{\sqrt{2}}\right]}{2 \sqrt{2}}+\frac{\operatorname{ArcTan}\left[\frac{\sqrt{2}+2 \Phi}{\sqrt{2}}\right]}{2 \sqrt{2}}-\frac{\log \left[-1+\sqrt{2} \Phi-\Phi^{2}\right]}{4 \sqrt{2}}+\frac{\log \left[1+\sqrt{2} \Phi+\Phi^{2}\right]}{4 \sqrt{2}}
$$

To edit output in StandardForm, type directly inside the expression; the front end normally creates a copy of the output in a new input cell, and one edits the copy.

Another input and output form availabe in Mathematica 3.0 is TraditionalForm, which mimics traditional mathematical and technical notation with italic single-letter variabl names, parentheses instead of square brackets surrounding the arguments to a function, and traditional forms for special functions ($\tan ^{-\boldsymbol{I}}$ and \log for ArcTan and Log)
\| $\int \frac{1}{1+\Phi^{4}} d \Phi / /$ TraditionalForm

$$
\frac{\tan ^{-1}\left(\frac{2 \Phi-\sqrt{2}}{\sqrt{2}}\right)}{2 \sqrt{2}}+\frac{\tan ^{-1} \cdot\left(\frac{2 \Phi+\sqrt{2}}{\sqrt{2}}\right)}{2 \sqrt{2}}-\frac{\log \left(-\Phi^{2}+\sqrt{2} \Phi-1\right)}{4 \sqrt{2}}+\frac{\log \left(\Phi^{2}+\sqrt{2} \Phi+1\right)}{4 \sqrt{2}}
$$

A difficulty with using traditional notation, and therefore with TraditionalForm, for input is that it is ambiguous. For example, in traditional notation it is unclear if $\boldsymbol{q}(1-p)$ means a variable q times $\boldsymbol{1}-\boldsymbol{p}$ or a function q evaluated at $1-p$ (except by the context in which it is used); when using TraditionalForm for input, a space between the q and the parentheses denotes multiplication, and no space signifies that q is a function. In the following input in TraditionalForm, there is no space after the q in the first item, and a space after the q in the second item. (The output is in StandardForm.)
| $\{q(1-p), q(1-p)\}$

- $\{q[1-p],(1-p) q\}$

Mathematica understands very common abbreviations for functions (such as $\Gamma(z)$ for Gamma [$z]$ and $\sin ^{-1}(x)$ for $\operatorname{ArcSin}[x]$), and allows parentheses to surround the arguments to a function.
(Note that the parentheses or brackets are required, so typing $\sin x$ to mean sin (x) is not permitted.)

$$
\begin{aligned}
& \Gamma\left(\frac{1}{2}\right)-\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right) \\
& \sqrt{\pi}-\frac{\pi}{3}
\end{aligned}
$$

In general, Mathematica understands input in Traditional Form if it uses only the most common notation and the above convention regarding parentheses, or involves simple editiong of previously generated TraditionalForm output. Here is an integral in TraditionalForm ; the expression $J_{v}(z)$ stands for the Bessel function of first kind, called BesselJ. The answer, also in TraditionalForm, contains typeset forms for the gamma function and a hypergeometric function.
$\int z J_{v}(z) d z / /$ TraditionalForm
$2^{-v-1} z^{\nu+2} \Gamma\left(\frac{v}{2}+1\right) \frac{1 F_{2}\left(\frac{v}{2}+1 ; v+1, \frac{v}{2}+2 ;-\frac{z^{2}}{4}\right)}{\Gamma(v+1) \Gamma\left(\frac{v}{2}+2\right)}$

Three common special characters to be aware of in StandardForm and TraditionalForm are $\boldsymbol{e}, \boldsymbol{i}$ and d. The

 the base of the natural logarithm, and I, the imaginary unit; the keyboard letters e and i are uönderstood to be ordinary variable names. Similarly, the character d (entered as :dd: or \[DifferentialD]) is used in integrals, while the keyboard letter d is also an ordinary variable name.

The following integral uses the special characters e, i and d
$\int e^{i z} d z$
$-\mathrm{IE}^{\mathrm{I} 2}$
The default input and output format types are set by pulling down the Cell menu and choosing the desired type from the Default Input (or Output) FormatType submenu.

3.2 Converting between Forms

To convert from one display form to another, select the cell containing the expression to be converted, then pull down the Cell menu and choose the desired form from the Convert To submenu. Note, that converting from one form to another requires the Mathematica kernel to be running.

For example, if one types Limit [$\left.\operatorname{Sin}\left[x^{\wedge} 2\right] / x^{\wedge} 2, x \rightarrow 0\right]$ into an input cell, select the cell, choose Convert To TraditionalForm, the following is the result: Mathematica knows that Limit traditionally has a special two-dimensional form

```
lim
```

One can superficially change from one form to another by pullilng down the Cell menu and choosing a form from the Display As submenu. Displaying Limit $\left[\operatorname{Sin}\left[x^{\wedge} 2\right] / x^{\wedge} 2, x->0\right]$ as TraditionalForm displays the formula with a (proportional) font and italic variable names, but does not translate Limit into its traditional form.

```
Limit[Sin[x^2]/ x^2, x > 0]
```

Display As \TraditionalForm (as opposed to Convert To \TraditionalForm) is useful when formatting expressions that are not intended for use as input. Displaying an expression in a certain form does not require the Mathematica kerel to be running. Here is an expression in StandardForm

$$
\Pi(F, G) \approx 1-\Phi\left[\frac{c-\frac{1}{2} m m p_{1}}{\sqrt{\operatorname{Var}\left(W_{X Y}\right)}}\right]
$$

Here is the same expression after choosing Display As \backslash TraditionalForm

$$
\Pi(F, G) \approx 1-\Phi\left[\frac{c-\frac{1}{2} m m p_{1}}{\sqrt{\operatorname{Var}\left(W_{\mathrm{XY}}\right)}}\right]
$$

Mathematica returns an error message if one tries to convert the previous expression to TraditionalForm (instead of displaying it as TraditionalForm) because the expression is not valid input.
$\Pi(F, G) \approx 1-\Phi\left[\frac{c-\frac{1}{2} m m p_{1}}{\sqrt{\operatorname{Var}\left(W_{X Y}\right)}}\right]$
$\Pi(\underline{E, G}) \approx 1-\Phi\left[\frac{c-\frac{1}{2} m m_{1}}{\sqrt{\operatorname{Var}\left(W_{X Y}\right)}}\right]$
To override the default format type for output of a formula, wrap the formula with the name of the desired form.
| (Sin $[n]^{2}+$ Binomial $[n, m]$ - Gamma[m]) //TraditionalForm
$\sin ^{2}(n)+\binom{n}{m}-\Gamma(m)$
To generate traditional notation for a formula without evaluating the formula, use HoldForm
$\left(F[b]-F[a]=\operatorname{Limit}\left[\operatorname{Sum}\left[f\left[x_{i}^{*}\right] \Delta x,\{i, 1, n\}\right], \Delta x \rightarrow 0\right]\right) / / H o l d F o r m / /$
TraditionalForm
$F(b)-F(a)=\lim _{\Delta x} \sum_{i=1}^{n} f\left(\left(x_{i}\right)^{*}\right) \Delta x$

3.3 Special Characters and Forms in Input

Some special characters have built-in interpretations as Mathematica constants, operators, or functions, and those that do not there can be assigned one. For example, the symbol π is interpreted as the constant Pi, ad the symbols \boldsymbol{e} and \boldsymbol{i} represent the constants E and I . (Lower-case pi is the only Greek letter with a built-in interpretation.)
$\int e^{i \pi}$
| -1
The character ϕ does not have a built-in interpretation, so it may be used as a variable name. Here, a value, GoldenRatio, is assigned to ϕ
$\phi=\frac{1}{2}(1+\sqrt{5}) ;$
The variable ϕ can now be used in calculations.
| $\left(\phi^{2}==\phi+1\right) / /$ Simplify
\| True
Many functions can be represented by a special character, and in most cases the character has the full name \backslash [FunctionName]. For example, the logical function And can be represented by the character Λ (entered as \backslash (And] or :and:)
\| $(\pi>e) \wedge(4>3)$
True
The set function Intersection can be entered using the character \bigcap by typing \|ntersection]
$\{a, b, c\} \cap\{b, c, d\}$
\{b, c\}
Other such functions are Or (V), Union (U), Sum (Σ), Product (Π), and Integral (\int)
It is important to keep in mind that many pairs of special characters look alike but have different meanings.

For example, \[Sum] (Σ) looks similar to \[CapitalSigma] (Σ), but Mathematica interprets the former as the mathematical function Sum and the latter as the letter Σ.

Other pairs to be aware of are \backslash [Product] (Π) and \backslash [CapitalPi] (Π), \backslash [Union] (U) and the keyboard capital letter U, and ordinary multiplication \backslash [Times] (\times) and the vector cross product \backslash [Cross] (x).

In addition, many Mathematica operators have special forms that can be entered using keyboard aliases. One way to enter a replacement rule is to use the form $\mathrm{x} \rightarrow \pi$.
| $\operatorname{Cos}[x] / . x \rightarrow \pi$
| -1

Mathematica also understands the arrow character \rightarrow, entered by typing :->: or \backslash [Rule]. (Note that the character \backslash [Rule] is different from the character \[RightArrow].

The relational operators $=,!=,>=$ and $<=$ have corresponding keyboard aliases. But this is not the case for $>\sim, \sim$, \sim or $==$ etc. .
| $\{3=\pi, 3 \neq \pi, 3 \geq \pi, 3 \leq \pi, 3 \geq \pi, 3 \approx \pi, 3 \approx \pi, 3 \equiv \pi\}$
【 \{False, True, False, True, $3 \approx \pi, 3 \approx \pi, 3 \approx \pi, 3 \equiv \pi\}$
Mathematica preserves style information for input on the screen, but ignores the styles when sending input to the kernel. Each a in the following input is identical for the purposes of calculation.

$\mid \mathbf{a + a}+\mathbf{a}+\mathbf{a}$

4 a
However, the same letter represented in different styles such as Script, Gothic, Double-Struck or Extended Latin is treated as different. Hence ordinary keyboard letters do not mean the same as accented, script, Gothic, or double-struck letters.

$\mid \mathbf{a}+\boldsymbol{a}+\mathbf{a}+\boldsymbol{a}$

|a+a+a+a
Because Mathematica normally ignores style information in input, one can highligh/ interesting parts of a formula without changing its meaning. In calculus teaching, for example, it may be desirable to highlight related parts of an integral when teaching integration by substitution.
$\iint 2 x \cos \left[x^{2}\right] d x$
$\mid \sin \left[x^{2}\right]$

3.4 Styled Text in Output

StyleForm generates output using styld text. StyleForm take as arguments the expression to change, along with a sequence of options describing the changes. Here is a symbol printed with blue text

StyleForm $\left[\Omega^{6}+1\right.$, FontColor $\left.\rightarrow \operatorname{RGBColor}[0,0,1]\right]$
$1+\Omega^{6}$
The expression is valid Mathematica input, so one can apply mathematical functions to it. The kernel ignores the style changes, the result is therefore in the default output style

Factor[8]
$\left(1+\Omega^{2}\right)\left(1-\Omega^{2}+\Omega^{4}\right)$
Options that alter the textual characteristics of an expression typically start with the keyword Font. Some of the options that control common changes are FontSize, FontSlant, FontWeight, and FontFamily.

Here is the lower-case Greek alphabet using progressively larger font sizes, which is controlled by the option FontSize.

> SequenceForm Table[StyleForm[FromCharacterCode[944+n],

$$
\begin{aligned}
& \text { FontColor } \rightarrow \text { Hue }\left[\frac{n}{25 .}\right], \\
& \text { FontSize } \rightarrow n+10, \\
& \quad \text { FontWeight } \rightarrow \text { "Bold"], }\{n, 25\}]
\end{aligned}
$$

${ }_{\alpha \beta \gamma \delta \epsilon \zeta \eta \theta\llcorner\kappa \lambda \mu \nu \xi O \pi \rho \varsigma \sigma \tau U \phi \chi \psi \omega}$

where
?StyleForm

```
StyleForm[expr, options] prints using the specified style options.
    StyleForm[expr, "style"] prints using the specified cell style
    in the current notebook.
```


? SequanceForm

```
SequenceForm[expr1, expr2, ... ] prints as the textual concatenation of the printed forms of the expri.
SequenceForm \{"a", "b", "c"\}
abc
```

Typical values for FontSlant are "Plain", "Italic" and "Oblique". Here is an expression in italic type.

```
StylaForm["Slanted text", FontSlant }->\mathrm{ "Italic"]
Slanted text
```

The style form can also be controlled in a graphic.

$$
\begin{aligned}
& \text { Plot }\left[\frac{\sin \left[x^{2}\right]}{x^{2}},\right.\{x,-2 \pi, 2 \pi\}, \\
& \text { PlotLabel } \rightarrow \text { StyleForm ["Wave Packet", FontSize } \rightarrow 16, \\
& \text { FontWeight } \rightarrow \text { "Bold", FontSlant } \rightarrow \text { "Italic"]]; } \\
& \text { Wave Packet }
\end{aligned}
$$

The graphics option Textstyle controls the default text styles used in a graph. The value assigned to Textstyle is a list of font options to apply to all the text in the graph.

$$
\begin{aligned}
& \text { Plot }\left[\frac{\operatorname{Sin}\left[x^{2}\right]}{x^{2}},\{x,-2 \pi, 2 \pi\},\right. \\
& \text { PlotLabel } \rightarrow \text { "Wave Packet", } \\
& \text { TextStyle } \rightarrow\{\text { FontSize } \rightarrow 16, \text { FontFamily } \rightarrow \text { "Times", FontWeight } \rightarrow \text { "Bold" }\}] ;
\end{aligned}
$$

See also StyleBox, StylePrint, CellPrint, \$TextStyle,Formattype, Format, FontVariations

4 Notebook Programming

4.1 Notebooks Are Expressions

In Mathematica 3.0 notebooks and cells are represented as Mathematica expressions, which means that they can be created and manipulated using the Mathematica programming language. To see the expression form of part of a notebook, one selects one or more cells in the notebook, and chooses Show Expression (resp. [shlifu [ciee $\{[\mathrm{E}]$) from the Format menu.

4.2 Cells

A cell in a notebook is represented by the expression Cell [contents, "cellstyle"]. Common values for cellstyle are Title, Section, Text, Input, and Output.

For example, here is the expression representing a text cell containing the word "Hello".

```
Cell["Hello", "Text"]
Cell [Hello, Text]
```

The function StylePrint creates a new cell of a given style, and prints a given expression into it. Here a text cell is created

```
StylePrint["A new cell of type Definition", "Definition"]
```


A new cell of type Definition

StylePrint and all other notebook-manipulation commands work inside programming functions. Therefore, a Do loop can be used to create a sequence of several small-text numbered cells.

```
Do[ StylePrint[ "Cell number " <> ToString[n], "SmallText",
                                    FontSize -> 10+2n,
                                    TextAlignment -> Center],
```

 \(\{n, 5\}]\)
 Cell number 1
Cell number 2
Cell number 3
Cell number 4
Cell number 5

CellPrint prints a given cell expression into the current notebook.

```
CellPrint[Cell["This is a new cell", "SmallText",
    CellFrame -> True ]]
```


This is a new cell

Cell objects accept options, just as other Mathematica functions do.

```
CellPrint[ Cell["Appendix A", "Text",
    Background -> GrayLevel[0.85],
    CellFrame -> True,
    FontWeight -> "Bold", FontSize -> 18,
    TextAlignment -> Center] ]
```


Appendix A

To learn the types of options a cell can take, select a cell an change some of its options using the commands under the Format menu or the Option Inspector, and then show the expression form of the cell using the Show Expression menu command. Here is a cell with several options changed

Appendix B. 1 : Tables of formulas

Here is the expression form of the cell.

```
Cell["Appendix B.1 : Tables of formulas", "Text",
    CellFrame->3,
    CellDingbat->"\[FilledSquare]",
    CellMargins->{{18.375, Inherited}, {Inherited, Inherited}},
    FontWeight->"Bold",
    Background->GrayLevel[1]]
```

The expression form of a cell can be edited directly, and any changes made are reflected when the cell is converted back into its display form. If a cell contains styled text, the separate strings of text are part of a list inside a TextData object, as in the following example

```
CellPrint[Cell[ TextData[{ "Here is some ",
    StyleForm["styled ", FontColor -> Hue[0],
                                    FontSlant -> "Italic"],
    "text." }],
    "Text", CellFrame -> 3, TextAlignment -> "Center"]]
```

Here is some styled text.

Because a cell or cell group is a Mathematica expression, hence Mathematica programs can be used to generate cells automatically. The function CellPrint in a Do-loop generates a sequence of cells as output.

Do [CellPrint[Cell["This is a cell"; "Text",

$$
\begin{aligned}
& \text { CellFrame }->3 \text {, CellFrameColor } \rightarrow \text { Hue }\left[\frac{i}{20 .}\right], \\
& \text { FontSize } \left.\left.\left.->\text { i, FontColor } \rightarrow \text { Hue }\left[\frac{i-10}{20}\right]\right]\right], \quad\{i, 10,20,2\}\right]
\end{aligned}
$$

This is a cell

This is a cell

This is a cell

This is a cell

This is a cell

This is a cell

In this example, StyleBox objects are used to produce colored text. The size, color, and background of each character is individually set according to the increment \boldsymbol{l}.
$\mathrm{n}=71$.
CellPrint[Cell[TextData[
Table[StyleBox[ToString[i], FontColor \rightarrow Hue $\left[\frac{i}{n}\right]$,
Background $\rightarrow \operatorname{Hue}\left[\operatorname{Mod}\left[.5+\frac{i}{n}, 1\right]\right]$,
FontSize $\left.\left.\left.\rightarrow \frac{i}{2}\right],\{i, 20, n\}\right]\right]$, "Output"]]

Groups of cells are represented by a list of cells inside a CellGroupData object. If a notebook has automatic grouping turned on, Mathematica automatically wraps CellGroupData objects around groups of cells; if not, Mathematica groups cells according to the groups manually set.

4.3 Notebooks

4.3.1 Notebooks as Expressions

A Mathematica notebook is represented by a list of cells inside a Notebook object. Here is a notebook consisting of three cells.

```
nb = Notebook[{ Cell["Notebooks", "Title"],
    Cell["Creating notebooks", "Section"],
    Cell["To create a new notebook, ...", "Text"] }]
Notebook[{Cell[Notebooks, Title], Cell[Creating notebooks, Section],
    Cell[To create a new notebook, ..., Text]}]
```

However, Mathematica does not automatically convert a Notebook expression into a displayed notebook. To create a new notebook from a Notebook expression, use NotebookPut.

```
newNb = NotebookPut[nb ]
```

- NotebookObject -

The notebook appears in a separate window

Setoptions allows one to change the option settings for a notebook expression, in this case the notebook background is colored to yellow.

Setoptions [newNb, Background $\rightarrow \operatorname{RGBColor}[1,1,0]$];
NotebookPut can be used the same way as CellPrint above. The command Notebook creates a new window which therefore represents a complete notebook document. For Notebook expressions one may use the same options
as for cells, and additional options that are defined only at the Notebook level. For example, Windowsize specifies the extension of the window.

The subsequent input

```
NotebookPut[ Notebook[{ Cell['Notebook Programming", "Title"],
    Cell["Window size is 300 x 220 pixels", "Text"] },
    FontSize -> 20,
    FontColor -> RGBColor[0, 0, 1],
    WindowSize -> {350, 220}] ];
```

creates a window of size 350×220 pixels containing blue text.

The command NotebookGet reads an open notebook as an expression to be manipulated by the Mathematica kernel.

The command NotebookCreate creates an empty notebook.

I
newerNb = NotebookCreate[]

- NotebookObject -

To place cells into the empty notebook just created, use No tebookWri te
NotebookWrite[newerNb, Cell["Chapt 4 : Notebook Programming", "Section"]]
The section cell appears at the top of the new notebook.

4.4 Controlling Notebooks with the Kernel

There are several ways to refer to a notebook using kernel functions. EvaluationNotebook [] refers to the notebook in which the command EvaluationNotebook [] is being evaluated. To change the background color of the current evaluation notebook, type the following

SetOptions[EvaluationNotebook[], Background \rightarrow GrayLevel[.8]];
SelectedNotebook refers to the currently selected notebook (usually indicated by having a highlighted title bar), and InputNotebook refers to the notebook in which keyboard input will appear. In many cases the two functions refer to the same notebook; one exception is when a palette is the selected notebook. Ordinary, palettes do not receive typed input, so a palette may be the selected notebook while another non-palette notebook is the input notebook.

Many features of the front end, such as opening, closing, saving, and printing notebooks, can be duplicated using kernel functions. Here, another new notebook is created.

```
anotherNb = NotebookPut[ Notebook[{Cell["Another Notebook", "Subtitle"]}]]
```

- NotebookObject -

NotebookSave saves the new notebook under the given file name.
| NotebookSave[anotherNb, "New.nb"]
With the command NotebookClose the new notebook is closed.
| NotebookClose[anotherNb]
NotebookOpen ["name"] opens the notebook with file name "name" from the hard disk (assuming the file is in the current directory, or one specifies the full pathname of the file) into a new window, and NotebookPrint prints a notebook to the currently selected printer.

Furthermore, Mathematica maintains information about the current selection in a notebook in the object NotebookSelection.

One can read the contents of the current selection using NotebookRead. One may change the options of the current selection using Setoptions.

Moreover, on can locate contents of a notebook using the commands NotebookLocate and NotebookFind. The command NotebookLocate ["tag"] sets the current selection to be the first cell in the selected notebook that has the cell tag tag.

For example, evaluating NotebookLocate ["Hyperlink1"] scrolls the current notebook to the first cell that has the cell tag "Hyperlinkl" (which actually is in Chapt. 1.1.6 of this notebook)

NotebookLocate["Hyperlink1"]
A tag may be assigned to a cell by selecting a particular cell, and choosing from the Find menu Add/Remove_Cell_Tags, or by changing the value of the cell option Cell Tags in the expression form of a cell. Cell tags are generally not displayed on the screen unless Show_Cell_Tags from the Find menu is chosen.

Hyperlinks inside notebooks are typically implemented using NotebookLocate. One can also specifiy a notebook to search other than the currently selected notebook.

NotebookFind [notebook, data] sets the current selection to be the next occurence of data in the notebook object notebook.

For example, NotebookFind [SelectedNotebook [] , "math"] generally scrolls the currently selected notebook to the next occurence of the string math. Additonally, one can specify what part of a notebook to search by specifying elements such as CellContents, CellStyle, or CellTags.

The following command selects the next graphics cell in the selected notebook. The result is a NotebookSelection object.

```
NotebookFind[SelectedNotebook[], "Graphics", Next, CellStyle]
NotebookSelection [-NotebookObject -]
```

The selection jumps to Chapt. 3.4 in the current notebook.
Similarly, the following command selects all output cells in the selected notebook, and then deletes the cells using NotebookDelete.

```
With[{selectedNb = SelectedNotebook[]},
    NotebookFind[selectedNb, "Output", All, CellStyle];
    NotebookDelete[selectedNotebook]
    ]
```

The current selection of a notebook can be moved, evaluated, copied and so forth, using notebook-manipulation commands such as SelectionMove, SelectionEvaluate and NotebookRead.

```
See also GraphicsData, SetSelectedNotebook, SelectionMove, SelectionEvaluate,
Notebooks, ButtonNotebook, Options, FullOptions
```


? SetSelectedNotebook

SetSelectedNotebook [notebook] makes the specified notebook be the currently selected one in the front end.

? SelectionMove

```
SelectionMove [obj, dir, unit] moves the current selection in an open
    notebook in the front end in the direction dir by the specified
    unit. SelectionMove [obj, dir, unit, n] repeats the move n times.
```


? SelectionEvaluate

SelectionEvaluate [notebook] replaces the current selection in
a notebook with the result obtained by evaluating the contents
of the selection in the kernel. SelectionEvaluate [notebook, sel]
sets the current selection after the evaluation to be as specified by sel.

? Notebooks

Notebooks [] gives a list of notebooks currently open in the front end.

```
ButtonNotebook [ ] gives the notebook, if any, that contains the
    button which initiated the current evaluation.
```

 ? Options
 Options [symbol] gives the list of default options assigned to a symbol.
Options [expr] gives the options explicitly specified in a particular
expression such as a graphics object. Options [stream] or Options ["sname"]
gives options associated with a particular stream. Options [object] gives
options associated, with an external object such as a NotebookObject .
Options [obj, name] gives the setting for the option name. Options [obj,
\{name1, name2, ... \}] gives a list of the settings for the options namei.
? Fulloptions
Fulloptions [expr] gives the full settings of options explicitly specified in
an expression such as a graphics object. Fulloptions [expr, name]
gives the full setting for the option name. Fulloptions [expr,
\{namel, name2, ... \}] gives a list of the full settings for the
options namei. Fulloptions [object] gives the full settings for
options associated with an external object such as a NotebookObject.

5 Creating Buttons and Palettes

5.1 Predefined Typs of Buttons

5.1.1 Simple Buttons for Textual Substitution

In order to create a button pull down the Input menu and choose the type of button wanted from the Create Button submenu, e.g. Custom... . Mathematica places the button chosen with an empty placeholder [미 in the notebook at the current cell insertion point, e.g. here

Then, one may type some contents for the button, such as the single character π

The new button is by default inactive hence clicking has no effect. To make the button active select the cell containing the button, pull down the Cell menu and choose in the Cell Properties submenu the item Cell Active . The tiny "A" next to the cell bracket indicates the cell is active. Then, clicking the acitive button will paste the character π at the current cell insertion point.

Hence buttons can be used to paste arbitrarily complicated expressions into a notebook. Note, that the text style displayed in a button has no effect on the input pasted into the notebook, thus font size or color of the expression displayed in a button can be changed.

In order to make a button appear in a separate (movable) window select the button (or the cell containing the button), then pull down the File menu and choose the menu item Generate_Palette_from_Selection. The palette window can be moved by "dragging" the pallette by its title bar, and can be closed by clicking the window's close box $[\times]$. Note that the contents of a button replace the current text selection if any $\frac{e^{-\left(x-x_{0}\right)^{2}}}{\sqrt{2 \pi}}$. Here a selected text has been replaced by the content of the button with the Gaussian function.

5.1.2 Buttons with Wrap around

To create a button whose contents are pasted around the current selection use the notion of placeholders. E.g. , to create a button that allows to wrap the function Factor around the current selection, type the expression Factor|■| in the button. The symbol $■$ is called a selection placeholder and it can be typed either by \[SelectionPlaceholder] or its alias :spl: .
(Note that the selection placeholder character is different from the character \backslash [FilledSquare] .)

Here is a button created by choosing Custom... from the Create Button submenu of the Input menu, then typing Factor[\backslash [SelectionPlaceholder]] (or the shortcut Factor[:spl:]) into the button.

Factor
 42]

Cell[BoxData[

ButtonBox[

RowBox[\{"Factor", "[", "\[SelectionPlaceholder]", "]"\}], ButtonStyle->None]], "Input", Active->True]

Then the button has to be made active, either by making the cell containing it active or generating a (floating) palette from the button. Next one types the expression to be factored into a new input cell and select it. Clicking the button pastes the contents of the button into the input cell, replacing the selection placeholder with the expression to befactored. Typing [SHIFI[[RIT] evaluates the expression

Factor $\left[x^{4}-10 x^{3}+35 x^{2}-50 x+24\right]$
| $(-4+x)(-3+x)(-2+x)(-1+x)$
Creating a button by changing ButtonStyle \rightarrow None to ButtonStyle \rightarrow "Evaluate" (which has to be done by hand in the unformatted cell because the CreateButton menu does not offer these options) pastes its contents around the current selection and then evaluates it in place, replacing the current selection with the result.

Factor [a] (* ButtonStyle->"Evaluate" *)

```
Cell[BoxData[
    RowBox[{
        ButtonBox[
            RowBox[{"Factor", "[", "\[SelectionPlaceholder]", " ", "]"}],
            ButtonStyle->"Evaluate"], " ",
        RowBox[{"(*", " ",
            RowBox[{"ButtonStyle", "->", "\"\<Evaluate\>\""}], " ", "*)"}]}]]
        "Input",
        Active->True]
```

Here is a fourth order polynomial $x^{4}-10 x^{3}+35 x^{2}-50 x+24$ in order to test the button.

```
f \(x^{4}-10 x^{3}+35 x^{2}-50 x+24\) (* Use the Button with Factor[ 0 ] *)
```

The buttons in the standard AlgebraicManipulation palette use the Evaluate style.
(Note, that when using an Evaluate button be aware that \% refers to the result of the subexpression evaluated, and not necessarily to the entire contents of the cell.)

Two other predefined styles of buttons are ButtonStyle \rightarrow "EvaluateCell" and ButtonStyle \rightarrow "CopyEvaluate". The former pastes the contents of the button around the current selection, and evaluates the entire cell containing the expression. The latter pastes the button contents around a copy of the selected input, then evaluates it in place.

To enter a button that pastes a function with more than one argument use the selection placeholder \square to represent the current selection, then use placeholders to represent slots for additional arguments of the function. A placeholder \square is entered by typing either \square or its alias $\equiv p l \equiv$. (Note that the placeholder is different from the empty square character \square .)

For example, the function Solve takes two arguments, (i) the equation to be solved, and (ii) the variable(s) for which the solution has to be solved. To enter a button that pasted Solve around the current selection and leaves space for the second argument, type Solve[\boldsymbol{m}, \square] into a button.

```
Solve[m,%]
```

After making the botton "Solve" active it can be used to solve the following fourth order equation
$x^{4}-10 x^{3}+35 x^{2}-50 x+24==0$
f $x^{4}-10 x^{3}+35 x^{2}-50 x+24=0$
Solve $\left[x^{4}-10 x^{3}+35 x^{2}-50 x+24==0,\right]$
The selected equation appears in place of the selection placeholder m, and the text insertion point moves to the next placeholder \square, where the variable x is typed in.

```
Solve \(\left[x^{4}-10 x^{3}+35 x^{2}-50 x+24==0, x\right]\)
```

| $\{\{x \rightarrow 1\},\{x \rightarrow 2\},\{x \rightarrow 3\},\{x \rightarrow 4\}\}$

Differentiation button

Another suitable example is differentiation; the function D takes two arguments, a function to be differentiated and a variable of differentiation. To enter a button that pastes D around the current selection an leaves space for the second argument, type the expression $D[\square, \square]$ into a button.

After making the button active, one may use it by typing an expression (e.g. $f[x] g[x]$) to be differentiated into a new input cell and selecting it.

When the button containing $D[m, \square]$ is pressed, the following is the result
! $D[f[x] g[x], \square]$

The selected expression $f[x] g[x]$ appears in place of the selection placeholder，and the text insertion point moves to the placeholder，where one types the variable of differentiation，then press［ئ⿴囗十ifT + ber to evaluate the input．
I
$D[f[x] g[x], x]$
$\int g[x] f^{\prime}[x]+f[x] g^{\prime}[x]$

Series button

A button can contain only one selection placeholder，but as many regular placeholders as desired．Here is a button containing several placeholders
$\| i^{2}$
When the button is clicked，the current selection replace the selection placeholder m in the button＇s contents，and one moves from one placeholder to the next by pressing the TABA key or using the mouse pointer．

5．2 Creating Palettes

A pelcell＇is simply a notebook that contains an array of buttons，and has special settings that dictate its properties and appearance on the screen．

To create a new palette，choose Create＿Table／Matrix／Palette from the Input menu．In the dialog box that appears， enter the number of rows and columns the palette should contain，and check the boxes indicating whether to draw lines separating the rows and columns，and whether to draw a frame around the palette．

The following palette has one row and three columns of buttons．By default，each button contains an empty placeholder．

To define symbols to be pasted when the button is pressed，type a symbol into each placeholder．Here the placeholders are filled with π, e and i ．Then activate the cell containing the palette．

To put the palette into a separate window，select the entire palette with the mouse，and then pull down the File menu and choose Generate＿Palette＿from＿Selection．A copy of the palette will appear in a separate window．When one of the（activated）buttons in the palette is clicked，the contents of the button will appear in the active notebook at the current text insertion point．
 its name from the Window menu）and choose Generate＿Notebook＿from＿Palette from the File menu．
This was done for the PageBreakButton palette which was converted to an ordinary notebook in order to study the underlying code in detail by unformatting the button cell PageBreakButconnotebock
openNotebookButton［＂PageBreakButtonNotebook．nb＂，1，subDir］

5.3 Custom Button Actions

A button can perform any action that can be programmed with Mathematica's programming language.
The internal expression form of a button is ButtonBox [contents, options]. The options to ButtonBox control (i) the action taken when the button is clicked, (ii) the appearance of the button, and (iii) any additional data associated with the button.

The option that changes the function which a button performs, is ButtonFunction, which accepts a function to evaluate when the button is pressed. To create a button with a custom function, pull down the Input menu and choose Custom... from the Create Button submenu,

and then type the desired ButtonFunction in the button function field in the dialog box.
Whe one a create a button that uses kernel functions, one must change the value of the Buttonstyle to None and change the value of ButtonEvaluator to the name of an available kernel (such as "Local") or Automatic. The setting for ButtonFunction can be changed by directly editing the expression form of the button, or selecting the button and then choosing Edit_Button from the Input menu.

Button "Load package DiracDelta"

Here is the expression form of a button that loads the package Calculus`DiracDelta`.

```
Cell[BoxDatal
    ButtonBox["Load package DiracDelta",
    ButtonFunction:>Needs["Calculus`DiracDelta`"],
    ButtonEvaluator->"Local",
    ButtonStyle->None
    ]], "Input"]
```

Load package piracDelta

Button "red"

Here is the expression form of an active button that changes the currently selected text in the input notebook to red.

```
Cell[BoxData[
    ButtonBox["red",
                ButtonFunction:> SetOptions[NotebookSelection[InputNotebook[]],
                        FontColor-> Hue[0]],
        ButtonEvaluator->Automatic,
        ButtonStyle->None,
        Active->True
        ]], "Input"]
    red
```

When the button is clicked, any currently selected text becomes red.
The function used in ButtonFunction needs to specify where any output for the function should be placed. (The button functions defined above did not return a value.)

Button "Create random number"

For example, the button function setting ButtonFunction: $>$ Random [] will not display any output unless one creates an output cell using a command such as NotebookWrite.

Here is the expression form of a button that creates a new output cell containing a random number in the currently selected notebook, using StylePrint.

Cell [BoxDatal
ButtonBox [
RowBox[\{"Create", " ", "random", " ", "number"\}], ButtonFunction:>StylePrint[Random[], "Output"], ButtonEvaluator->"Local", ButtonStyle->None, Active->True]], "Input"]

```
    Create random number
```


0.718919

Note, that button definitions must be created using a subsetz of standard Mathematica syntax conventions. As a general rule, button definitions can be made using the FullForm representation of expressions, as well as the operators \rightarrow and $:>$, lists in \{\} form, and pure functions using \# and \& .

For example, if one wants to use a compound expression as a value to ButtonFunction, one cannot use the input form expr r_{1}; expr r_{2}; instead one must use the internally used form
CompoundExpression $\left[\operatorname{expr} r_{1}\right.$, expr ${ }_{2}$], and to assign a value to a variable use the full form Set instead of its abbreviation " = ".

Button "Insert heading"

Here is the expression form of an active button that inserts a title cell at the begining of the input notebook.

```
RowBox[{"Insert", ":", "heading"}],
ButtonFunction:>With[{Set[iNb, InputNotebook[] ]},
                CompoundExpression[
                SelectionMove[iNb, Before, Notebook],
                    NotebookWrite[iNb, Cell[TextData[{
                                    "Notebook by [",
                                    StyleBox["R.Kragler",
                                    FontSlant->"Italic"], "]" |],
                                    "Example",
                                    Background->Hue[0.15],
                                    TextAlignment->Center,
                                    CellFrame->2
                                    ]]
            ]
        ],ButtonEvaluator->Automatic,
            ButtonStyle->None J], "Input",
Active->True ]
```


Ineert heading

A button's options can be changed using items under the Button Options category of the Option Inspector. More sophisticated button actions can be programmed by changing the values of the options ButtonData and ButtonSource. Examples of more sophisticated buttons and palettes are available in the Help Browser, under Getting Started/Demos category.

```
See also ButtonData, ButtonSource, FrontendTokenExecute, FrontEndToken, FrontendExecute, Buttonframe, ButtonNote
```


? ButtonData

```
ButtonData is an option for ButtonBox which specifies the second
    argument to give to the ButtonFunction for the button when the
    button is active and is clicked on.
```


? Buttonsource

```
ButtonSource is an option for ButtonBox which specifies the first
    argument to give to the ButtonFunction for the button when the
    button is active and is clicked on.
? FrontEndExecute
```

FrontEndExecute [expr] sends expr to be executed by the Mathematica front end.

? ButtonFrame

```
ButtonFrame is an option for ButtonBox which specifies the type of
    frame to display around a button.
```


? ButtonNote

```
ButtonNote is an option for ButtonBox which specifies what should be
    displayed in the status line of the current notebook window when
    the button is active and the cursor is placed on top of it.
```


CONTENTS

Survey of Mathematica Features:Numerics, Symbolic Computation and Graphics
Abstract 3
Some general remarks on CAS 4
Motivation 4
Reasons using CAS 4
Possible Application of CAS 5
Why just Mathematica? 6
Features of Mathematica 6
Mathematica Notebooks for Exchange of Scientific Information 6
Mathematica's Capabilities in Technical Computing 7
Symbolic Calculator 9
Instrument for Extensive Numerical Calculations 10
System for Image Data Processing 12
Visualization 14
Real Time Animation (Dynamic Vizualizer or Conix 3DExplorer) 16
High-Level Programming Language 16
Expert System 17
Examples of Mathematica Notebooks 20
Outlook on the Development of CAS 22
Four Color Theorem 22
Fraktals and Iterated Function-Systems (IFS) 22
Cellular Automata 23
Mathematica Performance 25
Mandelbrot and Julia Sets 29
Visualization of Complex Functions 29
Iterative Maps 30
Julia Sets 30
Mandelbrot Set 32
MathLink Applications 34
Mathematica as a Software Component 34
Mathematica Programming
Abstract 39
General Features of Mathematica 39
Mathematica Notebooks: Interactive Documents 40
Mathematica Programming Language 41
Programming Demo 43
Unifying Concept of the Mathematica Programming Language 43
Mathematica Programming Styles 47
Writing Programs in Mathematica 51
Programming Efficiency 56
Create a Sequence of 0's and 1's 56
List all Elements larger than all Preceding Elements 57
Encode Sequences in Lists (Run-length Encoding) 58
Programming Styles 60
General Remarks on the Mathematica Programming Language 60
Different Mathematica Notations 61
Overview of Mathematica Programming Styles 66
Factorial in Procedural Programming Style 66
Factorial in Recursive Programming Style 66
Factorial in Functional Programming Style 66
Factorial in Rule-based Programming Style 67
Programming Styles in Detail 68
Procedural Programming 68
Recursive Programming 70
Functional Programming 72
Concept of pure (or anonymous) functions 74
Rule-based Programming 75
Programming with Binding Propagation 80
Logic Programming 82
Abstract Data Types 84
Object Oriented Programming 92
Modularization 96
Mathematica as Developing Tool: from an Interactive Evaluation to a Package 98
Programming Literature 105
Mathematica Front End
Abstract 107
Interactive Documents and Front End Features 108
Mathematica Notebooks 109
Palettes and Buttons 111
Mathematical Notation 113
Front End Features of Mathematica v3.0 115
Using the Mathematica 3.0 Front End 116
Introduction to Notebooks 116
Notebooks 116
Cells 116
Text Styles 118
Style Sheets 118
Style Environments 119
Hyperlinks 120
Numbered Equations and Figures 121
Converting Notebooks 122
Cells and Notebook Options 123
Setting Options 123
Global Options 125
Notebook Options 125
Cell Options 126
Special Characters and Forms 127
Introduction 127
Using Palettes 127
Character Full Names 129
Menus 130
Keyboard Aliases and Shortcuts 131
Extensible Characters 134
Typeset Expressions within Text (InlineInput) 136
Examples 137
Doing calculations 139
Different Input and Output Forms 139
Converting between Forms 141
Special Characters and Forms in Input 142
Styled Text in Output 144
Notebook Programming 146
Notebooks Are Expressions 146
Cells 146
Notebooks 149
Notebooks as Expressions 149
Controlling Notebooks with the Kernel 151
Creating Buttons and Palettes 154
Predefined Types of Buttons 154
Simple Buttons for Textual Substitution 154
Buttons with Wrap around 154
Creating Palettes 157
Custom Button Actions 158

[^0]: *FH Ravensburg-Wengarten, University of Applied Sciences, Germany

[^1]: * FH Ravensburg-Weingarten, University of Applied Sciences,Germany

[^2]: A logic expression

[^3]: Initializations

