P- 56

## ОБЪЕДИНЕННЫЙ <br> ИНСТИТУТ яДЕРНЫХ ИССЛЕДОВАНИЙ Дубва



R2-3521

R.J.N. Phillips

## REGGE POLES: RECENT PROGRESS AND EXPERIMENTAL QUESTIONS

These notes summarize two lectures, given in June 1967, at Dubna, in Laboratoryl of Theoretical Physics and Laboratory! of High Energy Physics

R.J.N. Phillips

## REGGE POLES: RECENT PROGRESS AND EXPERIMENTAL QUESTIONS

These notes summarize two lectures, Igiven in June 1967, at Dubna, in Laboratoryl of Theoretical Physics and Laboratory of High Energy Physics

Reproduced directly from the publication T.P. 295 A.E.R.E., Harwell, England

## 1. BACKGROUND. (1)

Fon ia two-body process $a+b \rightarrow c+d$ (Figure 1), a Regge pole exchange amplitude at high energy has the form (2)

$$
\begin{equation*}
T=\beta(t) \frac{1 \pm \exp \left(-i_{\pi}(t)\right)}{\sin \pi(t)}\left(\frac{s}{s_{0}}\right)^{\alpha(t)} \tag{1}
\end{equation*}
$$

$a(t)$ and $\beta(t)$ are the trajectory and residue functions; $s$ and $t$ are invariant squares of energy and momentum transfer; $s_{o}$ is a scale constant. The simature $\pm$ determines whether the polo ajoars in even or odd ancuisar momenta, in the t-channel.

On the Chew-Frautschi plot, the moving pole links t-channel particles. ( $t>0$ ) with s-channel scattering ( $t<0$ ), giving a sophisticated kind of singleparticle exchange (see Fig.2).

Here are some properties of kegge-exchange.
i) Shrinking: The cross section from onc puste has the form

$$
\begin{equation*}
\frac{d \sigma}{d t}=F(t)\left(s \cdot / s_{0}\right)^{2 \pi(t)-2} \tag{2}
\end{equation*}
$$

ie expect da $(t) / d t>0$, so $d \sigma / d t$ falls faster at larger momentum uaisfers $(-t)$, and the shape becomes narrower as $s$ increases. We can fird $a(\tau)$ directly from the experimental s-dependence of $d \sigma / d t$.
ii) Connection with particles. Values of $a(t)$ found from scatcering must be compatible with known particles, on a Chew-Frautsci. 2 pici.
iis) Pace-Energy relation. In the scattering region, $\alpha$ and $\beta$ are reii ar... whe phase of $T$ is fixed by $\alpha$ - i.e. Dy the s-dependence - and ذy we signature. This phase rule follows, $v=$ uispersion relations, from the simple power dependence $S^{\alpha}$. It is non-trivial. The same $a$-dependent
phase would hold asymptotically for $s^{\alpha}(\operatorname{lns})^{-\mathrm{N}}$ dependence, but fiting the latter to a set of data would give a different $a$ and hence a different phase.
iv) Spin-flips have same phase. In general $\hat{\rho}(t)$ is a sum of spin operators, with reai coefficients in a suitable convention. First-rank polarization $\mathcal{P}$ (the simple kind, with only one ispin measurement) has the form

$$
\begin{equation*}
\operatorname{Som}^{\mathrm{S}} \mathrm{~d} / \mathrm{dt} \sim \Sigma \operatorname{Im}\left(T_{1} \mathrm{~T}_{\mathrm{J}}^{*}\right) \tag{3}
\end{equation*}
$$

 $T_{i}$ have the same phase and $P=0$.
v) ${ }^{14}$ Leading spin-flips have sme s-dependence. The conventional invariant amplitudes for spin-filips have lower s-dependence, but this can be compensated by the spin operators they multiply. In $d \sigma / \mathrm{dt}$, the leading spin-flip and non-flip terms have equal s-dependence.
vi) Speciffic spin-depumence. The spin-dependence of a kegge-pole exchange depends on the quantum numbers: i.e. on the kind of t-chaninel particles it can give.
vii) Nonsense zeros. $\beta(t)$ contains géneralized Clebsch-Gordan coefficients, depending on $\alpha(t)$, which vanish for "nonsense" couplings. "Nonsense" means tiouz $a$ is a negative integer (half-integer for fermions) of that areal pancie with spin a and similar quántum numbers (ignoring signature) carsot couple. "Since the numerator'siri $\frac{1}{\pi}$ dillo vanishes at nonsense joints, $T$ does not vanish unless the signature factor $[1 \pm \exp (-i \pi \cos ]$ aiso voilishes. Hence the rule: T has uros at nonsense points with "wiong" signature (but see also 舁2).

Consiâon Regge-p exchange in rix'scrictering. The usual ${ }^{(3)}$ invariant amplitucie $B$ is nonsense at $a_{\rho}=0$, becanse scalar meson exchange gives none.

This point also has wrong signature, so $B_{p}$ has zero. More generally, any. coupling to t-channel states with net helicity $\lambda_{1}-\lambda_{2}=\lambda$ is nonsense for a particle with spin $J<|\lambda|$. In the example given," $B$ corresponds to NTN helicities ( $1 / 2,-\frac{1}{2}$ )。

The vanishing of $T$, or part of $T$, can give minima in $\mathrm{dF} / \mathrm{dt}$ and sign changes in interference terms (e.g. in polaritation).
viii) Factorization. $\quad \beta(t)$ breaks into factors characterislag the two vertices.

$$
\begin{equation*}
\beta(t)=\eta_{a c}(t) \eta_{b d}(t) \tag{4}
\end{equation*}
$$

Thus different processes are inter-related.
1x) Crossing. Regge pole amplitudes for $a+b \rightarrow c+d$ and $\bar{c}+b \rightarrow \bar{a}+d$ are simply related, since the corresponding t-channels differ only by interchanging $a \nrightarrow \vec{c}$. For example, if a atid $c$ are spinless, the amplitudes riffer by the signature $\pm 1$.

If two Regge poles were identical in all but algnature (a case of "exchange degeneracy") we might be tempted to combine them. But the combination would not behave simply under crossing; well-defined signature is essential.

*     *         * 

Branch points: The exchange of two or more Regge poles, in diagrams (Iike Fig.3) that have a third double-spectral function $\rho(s, u)$, gives moving branch-points in angular momentum. For linear trajectories, $\alpha_{i}(t)=\alpha_{i}(0)+$ $t a_{i}^{\prime}$, the two-pole branch point is at

$$
\begin{equation*}
a_{12}(t)=a_{1}(0)+a_{2}(0)-1+t a_{1}^{\prime} a_{2}^{\prime} /\left(a_{1}^{\prime}+a_{2}^{8}\right) \tag{5}
\end{equation*}
$$

In seneral, if $P$ is the Pomeranchuk pole (with $a_{P}(0)=1$ ), the $(P+i)$ exchange branch point coincides with $a_{i}$ at $t=0$ and lies above it for $t<0$. The branch points for (many-P + i) - exchange also coincide at t=0 and lie still higher for $t<0$. The corresponding branch-out contributions to the scattering amplitude are Iike continua oî Regge pole terms - up to the brancin points. Hence, for $t<0$ the branch cuts must uitimately dominate over single poles at very high energy. This is a pity, since cuts have many more unknown parameters.

However, perhaps the poles stili doninate at present accelerator energies. This is tacitly assumed in Regge pole theories. Test cases.

Resge-pole properties are tested convincingly in reactions where only one kown pole is allowed. The best case is $\pi^{-}+p \rightarrow \pi^{0}+n$, where the selection rules permit only $p$-exchange. There are good dJ/dt data up to $18 \mathrm{GeV} / \mathrm{c}$, for $: t_{i}<(\mathrm{EEV} / \mathrm{c})^{2}$.

The s-depencience of $d \sigma / d t$ gives a trajectory with positive slope, highly consistenc with the spin and mass of p (Fig. 5b) - and also with the $R$ and $T$ mesons, if we guess $J^{P}=3^{-}$and $5^{-}$and extrapolate $\propto$ Iinearly (Fig.2). This checks properties (i) and (ii).

Using tine optical theorem and charge-independence, the imaginary part of the forward amplitude is found from $\sigma_{\mathrm{T}}\left(\pi^{-} p\right)-\sigma_{r}\left(\pi{ }^{+} p\right)$. The deficit
in $\mathrm{d} \sigma / \mathrm{dt}(\mathrm{t}=0$ ) then gives the real part, and checks the phase rule (iii).
The rise of $d \sigma / d t$ away from $t=0$ suggests a strong spin-flip term (associated with the invariant amplitude B). But we notice $a_{p}=0$ near $t=-0.6(\mathrm{GeV} / \mathrm{c})^{2}$; for $B$ this is a nonsense wrong signature point and we expect $B=0$ here. Sure enough, there is a minimum in $\mathrm{C} / \mathrm{dt}$ at this point, checking property (vii).

Through the range $0 \geqslant t>-1\left((\mathrm{GeV} / \mathrm{c})^{2}\right.$, the ratio of spin-filp to non-flip terms in $\mathrm{d} \sigma / \mathrm{dt}$ fluctuates rapidly but the S -dependence (measured by $a(t))$ does not fluctuate. This checks property (v).

Properties (viii) and (ix) give no predictions here. There remains the equal-phase rule (iv), predicting zc"o polarization'. Non-zero values were recently measured at 6 and $11 \mathrm{GeV} / \mathrm{c}$ : see below.

Mrs
2. RECLTM PNOGRESS
2.1 Polarization in $\pi^{-}+p \rightarrow \pi^{0}+n$. At the 1966 Berkeley conference, new $11.2 \mathrm{GeV} / \mathrm{c}$ data were presented suggesting - within big errors - that the polarization previously found at $5.9 \mathrm{GeV} / \mathrm{c}$ might even be increasing with energy. Final results ${ }^{(5)}$ are less sensational:

$$
P=0.16 \pm 0.035 \text { at } 5.9 \mathrm{GeV} / \mathrm{c}
$$

$$
\begin{equation*}
\} \tag{6}
\end{equation*}
$$

$$
\mathcal{P}=0.14 \pm 0.045 \text { at } 11.2 \mathrm{GeV} / \mathrm{c}
$$

averaging over $0.04 \leqslant-i \leqslant 0.24(\mathrm{GeV} / \mathrm{c})^{2}$.
Clearly something must be added to Regge-p exchange. Early proposals were to add a second trajectory $p^{\prime}\left(\text { with } a_{p} \approx a_{p}-1\right)^{(5)}$ or to add Breit-Wigner tems to represent known s-channel resonances. (7) Both predicted $\mathcal{P}$. Would ralz by about $50 \%$ between 6 and $11 \mathrm{GeV} / \mathrm{c}$. The experimental errors above are too big to exclude this completely, but the energy dependence does seem less rapid.

Revised proposals have now been made. Logan et al: ${ }^{(8)}$ suggesí a much iigher $p^{\prime}$ trajectory (perhaps related to the $\delta(963)$ meson). Since $\mathcal{P} \sim s^{-\Delta a}$,
where $\Delta_{a}^{\prime}=\left|a_{p}-a_{p}\right|=0.4$, the polarlzation falls more slowly; s-channel resonances can be auded if desired.

Another idea, not yet fully worked out, is that $\rho$ and $\rho$ trajectories intersect. If so, polarization from $\rho p^{\prime}$ interference vanishes at this t-value Desal et al ${ }^{(10)}$ extrapolate the sequences of known 5 -channel resonances to include unobserved members with higher spins and masses but also rapidiy diminishing elasticity. Their result is that $\mathcal{P}$ stays almost constant between 6 and $11 \mathrm{GeV} / \mathrm{c}$, but ultimately has to fall rather fast. At $18 \mathrm{GeV} / \mathrm{c}$, predicted $P$ has fallen by nearly $50 \%$, for small $t$.

Branch cuts are another possibility. The preliminary (and short-ilved) report tifit $\mathcal{P}$ increased with energy was first hailed as a characteristic effect of interference between $p$ and a cut, because the cut terms fall less rapidiy than the pole term, asymptotically. However, we are dealing with sub-asymptotic energies, where the continuum of Regge-pole-like terms that make up a cut has a mean behaviour somewhat below the asymptotic behaviour. A reallstic model caiculation ${ }^{(12)}$, wi th the $p$ pole and the ( $p+$ Pomeranchuk) cut, shows that polarization should be decreasing even up to $100 \mathrm{GeV} / \mathrm{c}$, in the small-t region above: Polarization vanishes where pole (a)
and cut terms have equal phase; at $11 \mathrm{GeV} / \mathrm{c}$ this zero may be near $t=-0.5$ $(\mathrm{GeV} / \mathrm{c})^{2}$, but it moves toward $t=0$ as $s \rightarrow \infty$ (unlike the fixed zero from intersecting trajectories).

Semi-emplrical absorptive corrections to Regge-p exchange have also been proposed ${ }^{(13)} \because$ They give slowly falling polarization with a moving zero, but seem to 1ack ai solid theoretical foundation.

Polarization data with higher energy and accuracy would reduce the possible explanations. So would spin-parity determinations of the new mesons, to decide if there is a $p^{\prime}$ particle.

## 2.2 ionsense zeros.

At tive Berkeley conference there were three prize examples.

1) $\bar{\pi}+p \rightarrow \pi^{0}+n$. The $B$ amplitude for $p$-exchange is nonsense with wrong signature at $a_{p}=0$, and vanishes to give a dip in do/dt (§1).
i1) $\pi^{+}+p \rightarrow X^{+}+\Sigma^{+}$. We expect $K^{*}(888)$ and $X^{*}(1410)$ exchanges, plus perhaps s-chanel resonances. The B amplitude for $\mathbf{K}^{*}$ (888)-exchange has a zero at $a=0$, just like the $\rho$ case above; $K^{*}(1410)$ has right signature at $a=0$, so no zero. Data at $3.2 \mathrm{GeV} / \mathrm{c}$ show a minimum in $\mathrm{d} \sigma / \mathrm{dt}$ and a sign change in $\Sigma$-polarization, near $t=-0.6(\mathrm{GeV} / \mathrm{c})^{2}$, which can both be correlated with this $K^{*}(888)$ nonsense zero ${ }^{(14)}$.
ii1) $\pi^{ \pm}+p \rightarrow p+\pi^{ \pm}$, elastic near $180^{\circ}$. Here we have fermion Regge-poles in the u-channel; $u$ is the invariant square of exchange-momentumtransfer (replacing t). Consi der the $N$ and $\Delta(1236)$ trajectories; it is plausible that the nonsense point $\alpha=-\frac{1}{2}$ lies inside the scattering region and near the backward direction, in each case. For N this point has wrong signature and a zero is predicted; but $\Delta$ has_right signature and no zero ${ }^{\text {(15) }}$. Hence we expect a minimum near the backward direction for the $\pi^{+} p$ case ( $\mathrm{N}+\Delta$ exchange) but none for $\pi p$ ( $\Delta$ alone). The data, up to $10 \mathrm{GeV} / \mathrm{c}$, suggest such a situation and were fitted using Regge-exchanges only (16)

Recently it has been claimed
that s-channel resonances alone can explain backward $\pi^{ \pm} p$ data, at least up to $5 \mathrm{GeV} / \mathrm{c}$, so case (iil) is not yet established properly.

The simple rule for zeros, formulated in §1, has some curious consequences. Take Compton scattering and consider the helicity non-flip amplitude ${ }^{(18)}$. In the $t$-channel, this means coupling to a two-photon scate with helicities ( $+1,-1$ ), which is forbidden for a physical meson with spin $J<2$. Hence this is a nonsense wrong signature coupling for the Pomeranchux trajectory at $t=0$, where $\alpha=1$. We have a zero in the amplitude and no Pomeranctuk term in the total photon cross section, using the optical theorem. Secondary poles give $\sigma_{T} \sim S^{\alpha_{2}^{-1}}$, with $\alpha_{2}<i$, whereas the integrated

Poneranchuk contribution to elastic scattering gives $\sigma_{\text {el }} \sim 1 /($ lns $)-$ apparently greater than $\sigma_{T}$ asymptotically! This contradiction can be resolved by cuts from many-Pomeranchuk exchange.

Recent developments have modified the whole theory of nonsense zeros however $(19,20)$. In general, fixed poles in angular momentum are forbidde but there is an exception; amplitudes can have fixed poles at the nonsens wrong-signature points. One finds that such fixed poles have no direct effect on the asymptotic s-channei scattering, but can have an indirect effect by generating poles in the reduced residues at these nonsense polntis. If we write the residue function

$$
\begin{equation*}
\beta(t)=\beta_{0}(t) C(t) \tag{7}
\end{equation*}
$$

- Where $0(t)$ is the generalized Ciebsch-Gordan part, the statement is that $C(t)$ still vanishes at the nonsense point $\left(t=t_{N}\right.$, say), but $\beta_{0}(t)$ can have a compersating pole at the same point:

$$
\beta_{0}(t)=r(t)+\varepsilon(t) /\left(t-t_{N}\right) .
$$

In particular, this reinstates the Romeranchuk tem in photon total cross sections ${ }^{(21)}$.

In general, (8) the behaviour or $\beta(t)$ pow depends on the strength of poie cuefficient $\varepsilon(t)$ compared to $\gamma(t)$. If $\varepsilon(t)$ is weak, it simply displaces the zero of $\beta$ to a new value near $t_{N}$. If $\varepsilon(t)$ is dominant, it removes the zero of $\beta$ completely. Now the strength of $\varepsilon(t)$ is determi by the third double-spectral function $p(s, u)$ - which also determines the strength of branch cuts. We conclude that, if braach cuts are weak, we situil probably expect nonsense zeros as before, but perhaps slighty cissiaced in t.
2.3 Daughters and conspirators. In general 2-body reactions wh th unequal mass particles, analyticity sugsests that Regge poles occur in families ${ }^{(22)}$; if $a_{0}(t)$ is the leading (parent) trajectory, the $n^{\text {th }}$ daughter trajectory $a_{n}$ is correlated at $t=0$ by $a_{n}(0)=\alpha_{0}(0)-n$. Successive daughters have alternating signature, but other properties are as for the parent. No physical particles are yet firmly identified as belonging to daughter trajectories; one wonders if the latter do In fact rise rapidiy and give particles like the parent, or not.

There is an interesting model calculation by swift ${ }^{(23)}$. From an infinite sum of ladder diagrams in perturbation theory, for unequal mass scattering, he extracts both the parent Regge pole and the first daughter. Taking equal internal masses, the daughter trajectory and residue $\alpha_{1}(t)$ and $\beta_{j}(t)$ have no two-particle cut (unlike the parent). Taking unequal internal masses, they have trib-partlicie cuts but remain dominated by the three-particle scattering and $\omega_{1}(t)$ moves less rapidiy than $\alpha_{0}(t)$.

Conspirators were proposed years ago ${ }^{(24)}$, bat have only just become fashionable. They are sets of t-charnel Regge poles that choose to satisfy certain s-channel constraints collectively rather than individually; a typical conspiracy includes some trejectories colnciding and some with integer spacings, at $t=0$. Conspirators have various signatures and spinparity assignments, but common i-spin and G-parity. Two questions arise. Do any conspiracies happen in nature? And how do they fit in with daughters?

Gribov ${ }^{(25)}$ showed that fermion trajectories meet in pairs at $u=0$; this is a special case of conspiracy. Blit anong boson Regge poles no conspiracies are yet established. Indeed, in elastic scattering it is known that poles are not conspiring if they contribute to the total cross section (via the optical theoren); this eliminates the best-known poles in the bogt-known procemeth.

One possible conspiracy has $\pi$ and an opposite-parity trajectory as leading members, coinciding at $t=0$. The second conspirator need not give a $0^{+}$meson, if it "chooses nonsense" at $\alpha=0$, but will give a $2^{+}$meson if $a$ reaches 2. The evidence is this. Assuming Regge poles only, without conspirac: the $\pi$ term in $p n$ and $\bar{p} p$ charge exchange is large and incompatible with experiment. Conspiracy offers a solution ${ }^{(26)}$. But this is not conclusive, for the data can also be explained by invoking strong cuts ${ }^{(27)}$. Recent work by Freedman and Hang ${ }^{(28)}$ suggests a connection between daughters and conspirators. When the initial and final t-channel states have pairs of equal-mass particles (like $\pi \pi \rightarrow \bar{N} N$ ), they prove an $O$ (4) symmetry at $t=0$. poles classified according to $O$ (4) give inf inite families of Regge poles, with both daughter-type and conspirator-type inter-relations at $t=0$. The families contain one parent, or a few conspiring parents of different spin-parity ciasses, plus all their daughters. N scattering is discussed in detail (t-channel $\overline{\mathrm{N}} \mathbf{N} \rightarrow \overline{\mathrm{N}}$ ): here the odd dauchters happen to decouple. The possible conspiracies are more restricted than originally supposed ${ }^{(25)}$, but include the pion case above.

### 2.4 Double-Regge diagrams.

,There is recent interest in diagrams Iike Fig. 5a, with two Regge poles. These are not the only contributions leading to three final particles, but it is interesting to see if they play an important role.

The following properties can be seen ${ }^{(2 \theta)}$.

1) These diagrams can only be important in the central part of the Dalitz plot (the inner triangle in Fig.6). We expect the outer strips to be dominated by resonance production like Fig. 5b.

1i) Each diagram preferentially populates one corner of the Dalitz plot, since the vertices favour low momentum transfer. Diagram 5a populates the corner marked $X$ in Fig. 6; we permute labels $3,4,5$ to get other comers.
iii) Longitudinal momenta in the c.m. system are preferentialiy ordered $\mathrm{p}_{\mathrm{L} 3}>\mathrm{p}_{\mathrm{L} 4}>\mathrm{p}_{\mathrm{L} 5}$ in the direction of particle 1 .
iv) At a fixed point in the Dalitz plot, the kinematics become rather rigid, generally giving a peak for the distribution function in any remalning variable.
v) Factorization relates the outer Regge-pole couplings to two-body reactions. In particular, this indicates that baryon exchanges are relatively weak and generally negligible.
vi) Nonsense zeros are expected, as before, with new possibilities at the central vertex.

Chan et al ${ }^{(29)}$ have compared such diagrams with data for $\pi^{+} p \rightarrow \pi^{+} \pi^{0} p$ at $8 \mathrm{GeV} / \mathrm{c}$, and $\bar{\pi} p \rightarrow K_{1}^{0} K_{1}^{0} n$ at $10 \mathrm{GeV} / \mathrm{c}$, with encouraging results. Similar diagrans are also suggested by some $\overline{\mathrm{p} p} \rightarrow \overline{\mathrm{p} p} \mathrm{p}^{\text {and }} \overline{\mathrm{Kp}} \rightarrow \Sigma^{0} \pi^{+} \pi^{-}$ data at $6 \mathrm{GeV} / \mathrm{c}^{(30)}$.

## 3. EXPERMENTAL QUESTIONS

3.1 Asymptotic spin-dependence.

Resge-pole property (v) of $\$ 1$ allows a non-trivial spin diependence at high energy, which one would like to measure. The equalphase rule destroys first-rank polarization in any case (Eq. 3), but not second-rank effects like the depolarization tensor $D_{i j}$, which have general form

$$
\begin{equation*}
\mathrm{D}_{\mathrm{ij}} \mathrm{~d} \mathrm{\delta} / \mathrm{dt} \sim \sum \operatorname{Re}\left(\mathrm{~T}_{\mathrm{m}} \mathrm{~T}_{n}^{*}\right) \tag{9}
\end{equation*}
$$

So these second-rank tensors are interesting. They require two spin ceanmations; e.g. for $\mathrm{D}_{\mathrm{i} j}$, wothinitial target polarization and final recoil"polarization. For more discussion see refs 31,32 .

### 3.2 Factorization tests.

Factorization property (viii) of $\$ 1$ gives famous relations between cross-sections in the Pomeranchuk (one pole) limit, e.g. is

$$
\begin{equation*}
\sigma_{T}(\pi \pi) \quad \sigma_{T}(N N)=\left[\sigma_{T}(\pi N)\right]^{2} \tag{10}
\end{equation*}
$$

and a similar relation for $\sigma \sigma / \mathrm{dt}$. But pion targets are hard to make; this is more use as a prediction of $\pi$ scattering than as a factorization test. However, factorization includes spin-dependence ${ }^{(33)} \quad$ Any $I=0$ Regge pole exchange, that is common to $\pi \pi, \pi N$, $K N$ and $N N$ scattering, contributes

$$
\begin{align*}
& \begin{array}{l}
\mathbf{T}=F \eta_{\pi}^{2} \\
\mathbf{T}_{\pi N}=F \eta_{\pi}\left(\eta_{N}+i \phi_{N} \sigma \cdot n\right)
\end{array}  \tag{11}\\
& T_{K N}=F \eta_{K}\left(\eta_{N}+i \phi_{N} \underset{\sim}{\sigma} \cdot \eta_{\Omega}\right) \\
& T_{N W}=F\left(\eta_{N}+1 \phi_{N} \underset{\sim}{\sigma} \neq{\underset{\sim}{n}}^{(1)}\left(n_{N}+i \phi_{N} \underset{\sim}{\sigma} \cdot \underset{\sim}{n}\right)\right. \tag{1}
\end{align*}
$$

where $F(s, t, o)$ includes all the common s-dependence, signature and kinematic factors. $\eta_{\pi}(t), \eta_{K}(t), \eta_{N}(t)$ and $\phi_{N}(t)$ are the vertex couplings to $\pi, K$ and $N$ (two kinds). Pauli matrices $\underset{\sim}{\sigma}$ operate on rest-frame spinors and $n$ is the normal to the scattering plane. Going to $\bar{K} N$ and $\bar{N} N$ scattering, odd-signature terms charge sign. For $I=1$ Regge poles, there are Clebsch-Gordan coefficients for different charge channels.

Thus factorization relates the spin-dependence of $\pi N, K N, \bar{K} N$, an and $\bar{N} v$ scattering, and can be tested without reference to $\pi \pi$ (or KK). For example, in the Pomeranchuk limit, all depolarization tensors are equal:

$$
\begin{equation*}
D_{i j}(\pi N)=D_{i j}(K N, \bar{K} N)=D_{i j}(N N, \bar{N} N) \tag{12}
\end{equation*}
$$

Ec. (il) also implies internal constraints in NN scattering. One consequence, in the Pomeranchuk limit, is $C_{n \rightarrow}=K_{n n}=0$, these being the normal components of the spin-correlation and polarization transfer $(31,34)$
tersurs.
When several Regge poles take part, we must first isolate their conibibutions. This can often be done by taking suitable sums and differences of cross sections, or by exploiting the different energy- . dependences. When fitting Regge poles to data, this is done by computer].

For example, $\pi N$ scattering is dominated by two vacuum poles $P, P^{\prime}$ and the $\beta$ pole. If $P$ is polarization as before, $P \mathrm{do} / \mathrm{dt}$ is a sum of $P P^{\prime}$ Pp and $p^{\prime} p$ interference tems. $O_{i}^{\prime}$ these, $P p$ and $p^{\prime} p$ change sign between jis $\pi^{+} \rho$ and $\pi p$, while $p^{\prime}$ does not. Experimentally, $P \mathrm{dF} / \mathrm{dt}$ is子路 apmoxinately anti-symmetric between $\pi^{+} p$ and $\pi \bar{p}$, so the Pp' tenm is smal. Facial faccorization we can show the corresponding pp! terms in kN and hin jciunzaition are also small. Hence, assuming $P, P^{\prime}$ and $w$ poles dominate line latier cases, it follows that $\rho$ d $\sigma / \mathrm{dt}$ must be approximately antisymatric between $K^{+} p$ and $\bar{K} \bar{p}$, and between $p p$ and $\overline{p p}$.

E
Tius polarization effects give the best tesis. $(31,33,34)$
Another kind of test is possible if a coupling vanishes somewhere, ato For example, the cross-over of pp and pp differential cross sections near $\varepsilon=0.1(\mathrm{GeV} / \mathrm{c})^{2}$ seems to require the w-residues to change sign hene ${ }^{(35)}$.
 usimilü cross-over is predicted for $K^{+} p$ and $K^{-} p$, and agrees with data. Siniatry, the $\omega$ term in $\pi N \rightarrow$ pN must vonish at the same, t-value.

3 3. Tests for cuts.
Almost any branch-cut contribution can be faked by one or more Regge poles. So we must look for terms wid thenergy-dependence and/or spin-dependence that no known poles can give.

1) Unexpected energy-dependence of $d \sigma / d t$. Consider $\pi p \rightarrow x^{*} p$, where $\pi^{*}$ is a $O^{+}$state ${ }^{(36)}$. All the leading Regge poles $P, P^{\prime}, \omega, p, A_{2}$ are parity-forbidden at the $\pi x^{*}$ vertex; the others give rapidly decreasing terms as $\rightarrow \infty$. But the $(P+P)$-cut includes all spin-parity assignments and is allowed: it gives $\alpha \sigma / \mathrm{dt} \sim(\mathrm{Lns})^{-2}$ at $t=0$. Unfortunately, no $0^{+}$ resonance production is found experimentally.

Double-charge exchange offers another test ${ }^{(37)}$. No doubly charged mesons are yet known. Any such Regge poles presumably lie low and give very rapidly decreasing terms, for processes like $\pi^{+} n \rightarrow \pi N^{++}, \pi{ }^{-} D \rightarrow X^{+} \Sigma^{-}$ and $X^{-} p \rightarrow K^{+} \xi^{-}$. But the $p+\rho, p+K^{*}$ and $K^{*}+K^{*}$ cuts exist, and predict $d \sigma / \mathrm{dt} \sim s^{-1.7}(\mathrm{lns})^{-2}, s^{-2}(\mathrm{Ins})^{-2}$ and $s^{-2.4}(\mathrm{Ins})^{-2}$, respectively, at $t=0$.

A single Regge pole gives shrinking of $d \sigma / d t$. Dominant cuts give no shrinking, (except near $t=0$ where the pole takes over). The strpng shrinking in $\pi^{-} p \rightarrow \pi^{0} n$, agreeing with the extrapolated $\rho$ trajectory, shows cuts are weak here.
11) Unexpected energy-dependence of forward scattering amplitude. The real and imaginary parts of forward non-flip elastic amplitudes are measured by Coulomb interference and by total cross sections, respectively. They approach their asymptotic limits as a power of s, for poles. Branch cut contributions go as (lns) ${ }^{-2}$ and (lns) for the real and imaginary parts. To distinguish the cuts is possible in principle but difficult in practice.

1ii) Unexpected energy-dependence of spin effects.
We can exploit the specific spin-dependence of Regge pole terms ${ }^{(36)}$. Consider $\bar{N} N$ states in the t-channel; they form three distinct classes.

There are singlet states, with $J^{i=}=0^{-+}, 1^{+-}, 2^{-+}, \ldots$. ; triplet states with $L=J$ and $J^{P C}=J^{++}, 2^{-\infty}, \ldots$. ; triplet states wi th $L=J \pm 1$ and $J^{P C}=0^{++}, 1^{-\infty}$ $2^{++}$.... A Regge pole interpolates states within one class, and has the same kirid of spin-couplings. $\pi$ and $B$ belong to the first class; $A_{1}$ belongs to the sccond; $p, p^{\prime}, \omega, p$ and $A_{2}$ belong to the third. Branch cuts however are not restrictu to a sidele class of state or spin-dependence.

In wn scattcring, the leading poles are all of the third class and predict $D_{n n}=1$ asymptotically ( $D_{n n}$ is also known as the Wolrenstein D-parameter): Assuring the $A_{q}$ and $B$ trajectories lie below 0.5 for $t<0$, their contributions to $\left(1-D_{n n}\right) d \sigma / d t$ fall faster than $s^{-1}$ as $s \rightarrow \infty$. The many --P cut contributions can fall much more slaviy.

In $\pi N \rightarrow \rho N$ and $K N \rightarrow K^{K}(888) N$, the vector meson decay correlations measute some metrix eiements or its spin density matrix $p_{i j}$. The leading Regse poles are of the third class and give $\rho_{00}=\rho_{01}=0$. The pion contributes strongly to these elements, but lies lower on the Chew-Frautschi plot; thus, for poles alone, we expect $\rho_{00}$ and $\rho_{01}$ to tend to zero like some inverse power of s. For dominant branch cuts, they could tend to non-zero consizits instead. Present data up to $10 \mathrm{GeV} / \mathrm{c}$ seem consistent wiヒ̆i zeoge poles alone. $(27,38)$

The most famous test case is $\pi^{-} p^{\prime} \rightarrow \pi^{0} n$ polarization. If this effect is pole-cut interference, it is first-order in the cut and therefore more sensitive than either of the two preceding tests. Here poles and cuts have similar spin-dependence, since only the third ciass of NW states is ailunod, so we can exploit only the energy-dependence. As discussed in S2.: piesent data are not enough to distinguish between pole and cut erfects.
$\therefore$ Iv) Othen pheromena.
Mal ate suggested that wide-angle scattering contains evicicnce of Cuti, ${ }^{(35)}$ aria arguments are given for characteristic oscillations. (40)

The pn and $\overline{p p}$ charge exchange data seem to require elther a cut or a conspiracy (26); the latter has physical consequences and may eventually be eliminated.

### 3.4 Tests for crossing.

Consider the reactions $\pi^{+} p \rightarrow K^{+} \Sigma^{+}$and $K p \rightarrow \pi \Sigma^{+}$, related by crossing; they have the advantage that $\Sigma^{+}$polarization is measured by the weak decay. Only $\mathrm{K}^{*}(888)$ and $\mathrm{K}^{*}(1410)$ Regge pole exchanges are known; they are odd and even under crossing, respectively. $\Sigma^{+}$ polarization comes from interference between the two poles. Herice $\rho d \sigma / \mathrm{dt}$ must have the same size but opposite signs in the two reactions.
3.5 The region $t>0$.

There is evidence that trajectories may continue to rise, roughly linearly with $t$ (or $u$ ), for a long way in the region $t \geqslant 0(u>0)^{(4,41)}$. What does this imply?

For a sequence of particles on such a trajectory, mass increases as $J^{\frac{1}{2}}$. The impact parameter in any two-particle channel also increases as $\mathrm{J}^{\frac{1}{2}}$. Eventually the impact parameter exceeds the $r$ ange of forces, and the two-particle partial widths become exponentially small. Hence very high spin members will not appear in elastic scattering; but only in many-body channels. Note that $\mathcal{N}^{*}(3690)$, possibly a spin $-23 / 2$ recurrence or $\mathrm{N}^{*}(1518)$, was found in a study of 8 -prong events. ${ }^{(42)}$

For fermion trajectories, the appropriate variable is really $W a \sqrt{u}$, rather than $u$. Thus $a(u)$ has two branches, corresponding to the two square roots of $u$; these appear as a pair of Regge trajectories, coinciding at $u=0$ and complex conjugate for $u<0$. In fact, the two branches correspond to the two possible parities for given j, following the MacDowell symmetry. If $a(u)$ were exactly linear, the two branches would colncide, giving pairs of particles with the same mass and opposite parities. When the fermion trajectories starting with $N, N^{*}(1518)$ and
$\Delta(1236)$ are discussed, only one branch is usually considered ${ }^{(41)}$, but the approximate linearity in $u$ suggests there may be many opposite-parity particles waiting to be discovered. Chiu and Stack ${ }^{(16)}$ parametrized the $N$ trajectory ( $J^{P}=\frac{1}{2}+\frac{5}{2}+, \ldots$ ) and found that the other branch gave $\frac{1}{2}$ and $\frac{5}{2}^{-}$particles with masses 0.85 and 1.60 GeV ; the former was renoved by a zero in the residue, but the latter was identified as the $\pi N D \frac{5}{2}$ resonance.

## References

1. For background references, see proceedings of recent high-energy conferences and summer schools.
2. "This is for boson poles. Fermion poles are similar in spirit but differ in details.
3. Defining $T=-A+i \gamma_{\mu} \quad B, Q$ being the average of initial and rinal pion momenta.
4. D. Cline; Nuovo Cim. 45A 750 (1966)
5. P. Bonamy et al. Physics Letters 23, 501 (1966).
6. H. Högaasen and W. Fischer, Physics Letters 22516 (1966).
7. R.J.N. Phililips, Nuovo Cim. 45A 245 (1966)
R.K. Logan et al. Phys. Rev. Letters 17, 834 (1966).
8. R.K. Logan et al. Phys. Rev. Letters 18 259 (1967).
9. N.F. Bali et al, UCRL-17475 (1967), submitted to Phys. Rev.
10. B.R. Desai et al, Phys. Rev. Letters 18, 565 (1967).
11. V.M. De Lany et al, Phys. Rev. Letters 18149 (1967).
12. C.B. Chiu and J. Finkelstein, Nuovo Cim. 48A 820 (1967).
13. R.C. Arnold, Phys. Rev. 1531523 (1967)
G. Cohen-Tannoudji et al., Nuovo Cim. 48A 1075 (1967).
14. R.R. Kofler et al; D.D. Reeder and K.V.L. Sarma: reports submitted to 1966 Berkeley conference, session $12(\mathrm{~b})$.
15. Strictly speaking, fermion trajectorles become complex for u<0. We shpuld speak of $a_{N}$ passing near $-\frac{1}{2}$, with a minimum (not a zero) in $\beta_{\mathrm{N}}$ 。
16. C.B. Chiu and I. Stack, Phys. Rev: 153 1575 (1967)
17. V. Barger and D. Cline, Physics Letters 22666 (1966)
N. Dikmen, Phys. Rev. Letters 18798 (1967)
18. V. Mur, JETP 44 2173, 451051 (1963);
H. Abarbanel and S. Nússinow, Painceton preprint ;
H.K. Shephard, Santa Barbara preprint.
19. C.E. Jones and V.L. Teplitz, M.I.T. preprint S. Mandelstam and J.M. Wang, Berkeley preprint
A.H. Mueller and T.L. Trueman, Brockhaver preprints BNL 11223, 11308.
20. Gribov and Ter-Martirosyan reached similar conclusions (private commanication)
21. K. Abarbanel et al. M.I.T. preprint (submitted to Phys. Rev.).
22. D.Z. Freedman and J.M. Wang, Phys. Rev. 1531596 (1967).
23. A.H. Swdft, Phys. Rev. Ietters 18 813 (19 7), and Madison preprint.
24. D.V. Volkov and V.N. Gribov, JETP 441068 (1963).
25. V.N. Gribov, JETP 431529 (1962),
26. R.J.N. Phillips, Nuclear Phys. B (in press).

27 A.B. Kaigdalov and B.M. Karnakov; private communication.
28. D.Z. Freedman and J.M. Wang, Phys. Rev. Letters 18863 (1967), and preprint.
29. Chan Hong-Mo et al, Nuovo Cim. 49A 157 (1967) and CERN preprint TH 764.
30. V. Alles-Borelli et al, CERN preprint TC/PHYS 66-25, Nuovo Cim. (in press).
W. Allison and L. Lyons, Oxford Preprint 11/67.
31. R.J.N. Phillips and W. Rarita, UCRL-16185 (1965), unpublished.
R.J.N. Phillips, Proceedings of 1966 Saclay conference on polarized targets and ion scurces.
32. A. Bialas and B.E.Y. Svensson, Nuovo Cimento 42A 908 (1966).
33. M.Gell-Mann, 1962 High Energy Conference at CERN, p 533. V.N. Gribov and I. Ya Pomeranchuk, Phys. Rev. Letters 8 343, 412 (1962).
34. E. Leader, Rev. Mod. Phys. 38476 (1966).
35. W. Rarita and V. Teplitz, Phys. Rev. Letters 12206 (1964).
W. Rarita et $\mathfrak{a}^{3}$, to be published.
36. V.N. Gribov, report submitted to Berkeley conference, 1966 .
37. R.J.N. Phillips, Physics Letters 24B 342 (1967)
38. G.V. Dass and C.D. Froggatt to be published.
39. K. Huang et al, Phys. Rev. Letters 18146 (1967).
40. A.A. Anselm and I.T. Dyatlov, Physics Letters $24 B 470$ (1967).
41. V. Barger and D. Cline, Phys. Rev. Letters 16913 (1966).
42. Bartke et al, Physics Letters 24B, 118 (1967).




Figure $?$

Two-Reggeon exchange giving a brunch paint

Figure 4
$\pi p$ charge exchange test case.





(b)
TuvaE 5


[^0]
[^0]:    

