hadron collisions at very high energies

L. Van Hove v

CERN, Geneva

We shall review a number of recent results and developments concerning
selected
hadron collisions, mostly included among contributions submitted to this

Conference. We are mainly concerned with the high energy regions $p_{1 a b} \geqslant 4$ or $5 \mathrm{GeV} / \mathrm{c}$, although lower energy collisions will be mentions: occa on sliy. A systematic review of experimental results, prepared by Dr. A. M. Wetherell, is included in these Proceedings as a separate parer. The conteavs of the report will be arranged as follows:

1. Two body collisions at low momentum transfers
2. Pion proton forward collisions
a) Real part of the forward elastic scattering amplitude
b) $\alpha \sigma /$ at for $\pi^{ \pm} p$ elastic scattering
c) Polarization in $\pi^{ \pm}$, elastic scattering
i) Polarization in $\pi^{-} p \rightarrow \pi^{0} n$
e) Cither two-body processes in πp collisions
3. Plon-proton backward scattering
4. Kaon proton collisions
a) Elastic scattering
b) Charge exchange process $K_{p}^{-} \rightarrow K_{n}^{0}$
c) Other two-body processes in Kp collisions
5. Nucleon nucleon and antinucleon nucleon collisions elastic
a) Total cross sections and forward \boldsymbol{n} scattering amplitude
b) Elastic scattering
c) Charge exchange scattering
6. Isobar excitation and diffraction dissociation
II. Large angle scattering
7. New experimental results
8. Theoretical aspects
III. Multiple production of particles
9. Multiplicity distribution of pions
10. Correlations

IV Theoretical àvelopments

1. Quark model and associated mehtods methods
2. Regge pole theory
a) Parity exchange
b) General masses and spins

Sections I to III wiil present new experiepntel data, comments or earlier data and theoretical considerations. directly concerned with he reactions discussed. The more general theoretical developments are grovped in section IV. Section V mentions a few of the outstanding problems which can be expected to attract considerable attention in the comaing years.

I. Two body collisions at low monentum transfers

1. Eion proton forward collisions
a) Real part of the forward elastic scattering amplitude.

A Dubna group ${ }^{1}$, kes presented new values of

$$
\alpha=\frac{\operatorname{Re} A(s, 0)}{\operatorname{Im} A(s, 0)},
$$

the ratio of real to imaginary parts of the scattering amplitude $A(s, t)$ at $t=0$, for $\pi^{-} p$ at two energies. They are

$$
\begin{aligned}
& \alpha=-0.18 \pm 0.06 \quad \text { at } p_{1 a b}=3.5 \mathrm{GeV} / \mathrm{c} \\
& \alpha=-0.14\left\{\begin{array}{l}
+0.11 \\
-0.10 \quad \text { at } p_{1 a b}=6.1 \mathrm{GeV} / \mathrm{c}
\end{array}\right.
\end{aligned}
$$

Fig. 1, from Barashenkov's contribution, shows the predicted values of $\alpha_{ \pm}$for $\pi^{ \pm} p$, as calculated from the forward dispersion relations (lower curves). The new values are fully compatible with the prediction for α. One should note the well known discrepancies between the high energy 3 emperimental values of $\alpha_{ \pm}$and the calculated curves, expecially their trand reversed order $\left\langle\alpha_{+}\right\rangle \alpha_{-}$experimentally). If this triswa would be confirmed considerable complications must be expected in the theoretical interpretation 2,4 of the data.
2. Pion-proton backward scattering
3. Kaon proton collisions
a) Elastic scattering
b) Charge exchange process $K^{-} p \rightarrow K_{n}^{0}$
c) Other two-body processes in Kp collisions
4. Nucleon nucleon and antinucleon nucleon collisions
a) Total cross sections and forward scattering ampiitude
b) Elastic scattering
c) Charge exchange scattering
5. Isobar excitation and diffraction dissociation
II. Large angle scattering

1. New experimental results
2. Theoretidal aspects
III. Multiple production of particles
3. Multiplicity distribution of pions
4. Correlations

IV Theoretical jevelopments

1. Quark model and associated mehteds methods
2. Regge pole theory

を) Parity exchangé
b) General masses end spins
V. Concluding remarks
b) $\mathrm{a} \sigma / \mathrm{dt}$ for $\pi \pm p$ elastic seattering.

New data of a Michigan group for $\pi^{+}{ }^{+}$from 2.3 to $4.0 \mathrm{GeV} / \mathrm{c}$ are reproduced in fig. 2^{5}. They show a dip or shoulder around $t \simeq-0.6(\mathrm{Gev} / \mathrm{c})^{2}$. As illustrated by the solid lines on the figure, its position $z \otimes x$ cuinciaes closely with the $d i p$ of $d \delta / d t$ for the charge exchange process ${ }^{4} \pi \pi^{-} p \rightarrow \pi^{0} n$. The latter has been successfuily explained. in the Regge pole model as being due to vanishing of the the spin-flip amplitude for the value of t where the p trajectory $\alpha,(t)$ vanishes ("nonsense transition, unphysical signature"; remember that α_{ρ} is the only Regge trajectory supposed to contribute to $\pi^{-} p^{\text {a }} \rightarrow \pi^{\circ} n^{\circ}$). Frautschi 7 proposes that λ trajectdries ir. the even signature nonet give vanishing spin-flip when they verify $\alpha(t)=0$. Since the P^{\prime} trajectory $\alpha_{P^{\prime}}(t)$ probably passes through zero at about the same t as $\alpha_{\rho}(t)$, this effect could account for the dip or shoulder of do/at in elastic scattering. The structure would rapialy disappear with Increasing energy, however, because the pomeranchuk trajectory $x_{p}(t)$ does not pass through zero (remenber that $\Pi^{+} p$ elastic scattering is described in termsof the P, P^{\prime} and P trajectories with isospins and signatures $0+$, $0+$ and 1 - respectively).
$\therefore \quad$ Polarization in $\Pi^{ \pm}$p elastic scattering.
Data concerning the polarization parameter

$$
P(t)=2 \operatorname{Im} f 8^{*} /\left(|f|^{2}+|g|^{2}\right)
$$

have been presented by a CERN group for πp at $6,8,10 \mathrm{GeV} / \mathrm{c}$, and for $\pi^{+} p$ at $6,10,12 \mathrm{GeV} / \mathrm{c}$. Part of the data and their Regge pole fit' are giver. in Figs. 3 and 4. The π^{+}p data agree well with the Regge pole prediction of Chiu et al ${ }^{9}$, which were based on the earlier $\pi^{-} p$ polarization data. In particular, the prediction is confirmed that the polarization originates
mainly from interference between the spin-flip contribution of the ρ Rete trajectory and the non-spin-flip part of the P and P trajectories; this effect accounts for the reversal of sign of n^{\prime} between $\boldsymbol{T}^{-} p$ and ip $^{t} p$ around and for the vanishing of the polarization afoumed $t=-0.6(\mathrm{GeV} / \mathrm{c})$ where the ρ spin-flip contribution vanishes. At a more detailed level, the abspence of marked energy variation of $P(t)$ near $i t s$ maximum around $t=-0.2(\mathrm{GeV} / \mathrm{c})^{2}$, especially for $\pi \bar{T} p$, should be of some concern. As we shall remark again later on, slow energy variations of this sort, if established with good accuracy, may become indications of effects not accounted for in the Regge pole model.
d) Polarization in $\boldsymbol{n}^{-} p \rightarrow \pi^{\circ} n$.

The charge exchange process $\mathbb{F}^{\mathbf{p}} \rightarrow \boldsymbol{T}^{0}{ }^{0}$ gave the Regge pole model its most striking success by leading to the experimental determination of
a linear $\alpha_{\rho}(t)$ trajectory of s lope $\sim 1(\mathrm{GeV} / \mathrm{c})^{-2}$, and by revealing the correctness of the dip mechanism at $t=-0.6(\mathrm{GeV} / \mathrm{c})^{2}$ mentioned above. 6 The do/dt curves are grouped in Fig. 5, and, the $\alpha_{\rho}(t)$ trajectory, as well as $\alpha_{R}(t)$ determined from the sister reaction $\pi^{-} p, \eta n$, are given in Fig, 6 taken from a contribution of K. A. Ter-Martirosyain to this conference. 10

The same $\prod^{-} p \rightarrow \Pi^{\circ} n$ reaction now faces $($ the R trajectory, of f ospin 1 and signature, is associated with $A_{2}(1300)$ meson if the latter is 2^{4})
$r \geqslant$ the Regge pole model with a new test, and requires inclusion of further corrections, especially at $6 \mathrm{GeV} / \mathrm{c}$. Recent data of a Saclay-Orsay-Piga collaboration, given in Fig. 7 . show, that the polization parameter $P(t)$ is as large as about 15% at $6 \mathrm{GeV} / \mathrm{c}$, and that it may remain of the same order up to $11 \mathrm{GeV} / \mathrm{c}$ although the $11 \mathrm{GeV} / \mathrm{c}$ results are not accurate enough in their present form to draw any definite conclusion. One finds for $P(t)$
averaged over two $\wedge^{\text {intervals of }}$ on $\left(p_{1 a b}\right.$ in $\mathrm{GeV} / \mathrm{c}, \mathrm{t}$ in $\left.(\mathrm{GeV} / \mathrm{c})^{2}\right)$: the following values:

t- interval	$0.015 \leqslant-t \leqslant 0.24$	$0.04 \leqslant-t \leqslant 0.34$
$\mathrm{p}_{\text {lab }}=6$	40.14 ± 0.03	$+0.12 \pm 0.03$
$\mathrm{p}_{1 a b}=11$	$+0.19 \pm 0.06$	$+0.24 \pm 0.07$

$P(t)$
The Regge pole model is known to predict vanishing \mathcal{P} on the basis of the ρ trajectory alone. To account for the data at $6 \mathrm{GeV} / \mathrm{c}$ various authors have introduced contributions of s-channel resonances $12,13,14$ or an additionai Regge pole ρ^{\prime} with the same quantum numbers as ρ. 15,16 In ai; cases $P(t)$ is predicted to drop by at least a factor 2 from 6 to $1 \mathrm{i} \mathrm{GeV} / \mathrm{c}$. While the experimental errors of the very recent $11 \mathrm{GeV} / \mathrm{c}$ data are stili too large to reveal the energy variation of $P(t)$, one may soon be led to discuss possible mechanisms explaining an eventual weak energy dependence of the $\pi p \rightarrow \pi_{n}$ polarization. One can envisage a sma); difference between the powers $s^{\alpha(t),} \mathrm{s}_{\mathrm{p}}(\mathrm{t})$ describing the energy variation of the spin-flip and non-spin-flip amplitudes (such an effect, while
Λ is very natural in the coherent droplet model of Yang and Byers, a point recently studied by Le Bellac ${ }^{17}$); or one can complete Regge pole theory with adaitional singularities close to $\alpha_{\rho}(t)$, for which the Mandelstam cuts would probably be the most popular candidates. One would hope that these modifications would not affect too much the description of do/dt for $\Pi^{-} p \rightarrow 1 O_{n}$, and of $d \sigma d t$ and $p(t)$ for $T_{p}^{+} \rightarrow \Pi^{ \pm} p$. one shouid face nevertheless reasonable requiremeñs of consistency, and acknowledge that if a Mandelstam cut associated with the ρ trajectory is imprtant in $\mathbb{H}^{-} p \rightarrow 7^{0} n$,
the same may be true in $\pi^{t_{p}} \rightarrow \Pi^{+}$亿 ir Luant the cut associated with the Pomeranchuk trajectory, so that this cut may profoundly affect the P^{\prime} trajectory contribution.
e) Other two-body processes in Tp collisions.

All other táb-body processes $\pi^{\frac{ \pm}{p}} \rightarrow A B$ (A and B being each a particle or a resonance) are of interest for a complete analysis of the high energy behavior of Πp collisions. We quoted already $\pi^{p} p \quad \rightarrow \eta^{n} 18$ which allows to detemine ine F trajectory. As shown by R. I. Thews and illustrated by the curves in Fig. 8 , reaction $\pi^{-} p \rightarrow \Pi^{0} N^{* *}$ can be fitted with the ρ srajectriry, End $K^{\dagger} p \rightarrow K^{0} N^{*++}$ by the ρ and R trajectories. 19 A Wisconsin group presented data on $\pi^{+} p \rightarrow K^{+} \Sigma^{+}$at $3.23 \mathrm{GeV} / \mathrm{c}^{20}$; the differentiai crose seciion is shown in Fig. 9, whereas Fig. 10 gives the \mathcal{E}^{+}polarization. Irce dic of do/dt near $t \simeq-0.6(\mathrm{GeV} / \mathrm{c})^{2}$ and the change of sign of the polari$z E i 0 n$ in the same region are of particularinterest, because the reievant Regge trajectories belonging to $K^{*}(890 \mathrm{Mev}$, signature $\tau=-)$ and tc $K^{*}(1410 \mathrm{MeV}, \tau=t)$ are likely to vanish ar ound $t \simeq-0.6$.

Many other $\Pi_{p} \rightarrow A B$ reactions have been studied, and information is available to some extent on $\alpha \sigma / a t$ and on its energy variation. This material has recently been reviewed by Morrision and is discussed in Jackson!'s report in the present conference. We shall limit ourselves to two comments. Firstily, the undeniable success of the peripheral model with absorption for the processes which experimentally seeme to of acminated by π exchange (e.g. $\Pi \mathrm{p} \rightarrow \rho p$) should be accomodated in the Rogge pole approach to high energy scattering, keeping in mind that higher trajectories can contribute (e.g. the ϕ and R trajectories). This requires ar extenstion of the Regge pole model to unequal mass particles and higher spins, a difficult problem to which we shall return in Section IV of the
of the present report. Secondly, the s and t dependence of $d \sigma / d t$ for $\Pi p \rightarrow A B$ seems often to remain essentially unchanged when A (or B) is replacea by a non-resonant state of two particles A_{1}, A_{2} having an effective mass, meff $\left(A_{1} A_{2}\right)$, close to the mass of $A_{\text {. }}$. Several experimental groups have fragmentary results pointing in this direction. They should be regarded as preliminary steps in the systematic study of three body final states, inich are very iikely to be amenable to a Regge pole type analysis. Ter-Martirosyan remerks on the importance of this problem which her also been tackled by a theoretical group at CERN. 21.
2. Pion proton backward scattering

In a contribution to this conference, selove ${ }^{22}$ summarized the dete Scaltering
on 7 p elastic near the backwara airection; in particular the data of the 23,24
Corneil-BNi \quad and Pennsylvania group? 2 . In addition, very recent data for πp in the $2-5$ GeV range were reported by a Dubna group 25 Tne is presented Séove summary in Figs. 11 ($\boldsymbol{f}^{\frac{1}{\prime}} \mathrm{p}$) and 12 ($\boldsymbol{\pi}^{-p}$), where the numbers on the surves denote the laboratory momentum, and "this expt" refers to the Pennsylvania group. While it would be highly desirable to have se aingle experiment cover at various energies the whoh range u $\underset{\sim}{c}-1(\mathrm{GeV} / \mathrm{c})^{2}$ $u=-(4 \text {-momentum transfer from incident } \pi \text { to outgoing } p)^{2}$, the data are tucd enough to reveal a remarkable dip around $u=-0.2(\mathrm{Gev} / \mathrm{c})^{2}$ in $T \mathrm{p}$, ric similar structure appearing in $\pi^{-} p$. Furthermore, the qualitative ieatures of the energy variation of $1 \sigma / \mathrm{du}$ are also apparent.

Two mechanisms are currently invoked to explain Hp zaciosrd scattering. The first, which is important at not too high energies, considers the effect of s-channel resonances. The relevant baryonic resonances, and their role in backward Π p scattering, are treated in a contribution
of Earger and a Cline ${ }^{26}$. These authors group them in three families $\left(\Delta_{\delta^{\prime}} N^{N} \alpha^{\prime} N_{\gamma}\right)$ forming remariably long Regge recurrence series, as shown on Figs. 13 and 14. [for the two lower members of each family, the spin-parity assignment is known to be correct; some information concerning 1 parity for higher resonances can also be obtained from estimating their contribution to forward $\pi p \rightarrow \pi^{\circ} n$ and backward πp elastic scattering. 13]

At higher energies (perhaps $p_{\text {lab }} \gtrsim 5 \mathrm{GeV} / \mathrm{c}$) the second mechanism for backward scattering is supposed to beco. me dominant. It is the u-channel exchange of the baryonic Regge trajectories $\alpha_{\Delta}(\sqrt{u}), \alpha_{N}(\sqrt{u}), \alpha_{N}(\sqrt{u})$ of Figs. 13 and 14 continued to lower u values (we write N for N_{α} and N^{\prime} for N γ). This mechanism is discussed in detail by Chiu and Stack in a contribution to the conference ${ }^{27}$. The situation is complicated by the Gribov phanomenon, according to which, for each value of u, a fermion trajectory $\alpha(\sqrt{u})$ contributes twice, through its values $\alpha(+\sqrt{u})$ and $\alpha(-\sqrt{u})$. [Thus, for $u>0$, two systems of particles are associated with α (f_{u}), one containing particles of mass M such that $\alpha(M)=1 / 2,5 / 2 \ldots$ or $3 / 2$, $7 / 2 \ldots$, and the other containing particles of mass M^{\prime} such that $\alpha\left(-M^{\prime}\right)$ has these vaiues. The particles of mass M, M^{\prime} have opposite parity. Figs. 12, 13 show only one such system for each tragectory. If a system contains a particle not found in nature one must assume that the residue of the Regge pole vanishes at the corresponding value of \sqrt{u}; according to Chiu and Stack this happens for a $1 / 2$ baryon of mass 850 MeV on the N trajectory]. For u <0, the trajectory will give complex conjugate Regge poles $\alpha(\pm i / u / 1 / 2)$.

Only α_{Δ} contributes to backward $\pi \bar{p}$ scattering, all three trajectories to $\Pi^{+} p$. Since $d \sigma / d u$ is experimentally smaller for $\Pi^{-} p$ than for $\Pi^{+} p$,
and since the α_{Δ} contribution to $\Pi_{l}^{1} p$ is further reduced by the clebschGordon coefficient, Chiu and Stack neglect α_{Δ} altogether in Π^{t} p. Ghis will have to be revised at higher energies if $\alpha_{\Delta}(0)>\alpha_{N}(0) \simeq \alpha_{N}$ (0) as suggested by Figs.13, 14; the Regge pole theory would then require disappearance of the dip at $k \simeq-0.2(\mathrm{GeV} / \mathrm{c})^{2}$ for higher energies.] For nowsense
$\alpha_{N}(\sqrt{u})<-1 / 2$, one has a A transition of unphysical signature, so tin-t the $\alpha_{N}(\sqrt{u})$ gives vanishing contribution both to spin-flip and non-spin-Elip amplitudes. The corresponding value of u is close to $-0.2(\mathrm{GeV} / \mathrm{c})^{2}$ where do/du for $\pi^{+} p$ has its dip. Since $\alpha_{N^{\prime}}$, having opposite signature, would give a non-vanishing contribution in this region, Chiu and Stack suppose that this latter trajectory is weakty- coupled very weakly and neglect it aiso. They are left with α_{N} as sole contributor to $\Pi^{t} p$ backward scattering and ootain a very satisfactory fit of the data, the dip originating from The ranishing of the N trajectory contribution when $\alpha_{N}(\sqrt{u})=-1 / 2$.
3. Kaon proton scattering
a) Elastic scattering

New data on $K^{-} p$ elastic scattering have been presented by a Northwestern University-Argonne collaboration at 4.1 and $5.5 \mathrm{GeV} / \mathrm{c} .28$ The diffraction peak is well described by the five-Regge-pole fit of Kp and Π p scattering processes due to Phillips and Rarita ${ }^{29}$ (the poles are $P, P!, R, \rho$ and one $I=0$, odd signature pole fè taken for simplicity - to replace the $\oint \omega$ pair). Concerning backward scattering, the authors find an upper bound $\sigma\left(e_{\mathrm{cm}}>\pi / 2\right)<2 \mu \mathrm{~b}$ for the backward hemisphere, to be compred to $\sigma\left(\theta_{\mathrm{cm}}>\pi / 2\right) \sim 8$ رo for $\bar{\pi} \mathrm{p}$ at similar energies. This effert, whech can be explained by the absaence of strangeness 1 baryons, is of course of considerable interest, and e detailed study of $\alpha o / d t$ in
the backward hemispiere at vacious energses would be of great importance as an example of a smali momentum transfer process for whith no known particle or pole is available for exchange.
b) Charge exchange process $K^{-} p \rightarrow \bar{K}^{0}$.

A CERN-ETH (Zurich) collaboration presented new data on $K p \rightarrow \bar{K}^{\circ}$ n at 5 and $7 \mathrm{GeV} / \mathrm{c} .{ }^{30}$ They are grouped In Fig. 15 with the $9.5 \mathrm{GeV} / \mathrm{c}$ data cotasned earlier by the same authore. ${ }^{31}$ The RegGe pole predictions of Fnilins and Rarita 29, 32 are in fair agreement with ine data, and the latter W: II undoubtedly allow an imp-roved adjustment of the Regge pole parameters. The aata show interesting qualitative features similar tc $\pi \bar{p}-\pi^{0} n$: the peak shrinks as the energy increases, and a small dipar is present at $t=0$. There are differences, however. The real part of the amplitude is much smaller than the imaginary one at $t=0$, due to compensailur between ρ and R trajectory contributions. No dip is seen at $t \approx-0.6(\mathrm{GeV} / \mathrm{c} f$, a fecture which wiil become of considerable importance if it is confirmed by mere accurate neasurements.
c) Other two-body processes in Kp collisions

A CERN-Brussels collaboration presented data on a variety of two-body reactions $K^{+} p \rightarrow A B$, obtained at $3,3.5$ and $5 \mathrm{GeV} / \mathrm{c}$. ${ }^{33}$ They observe shrinking peaks and fit them, in oversimplified fashion, with single Regge poles. Whlle more extensive data and multi-Regge pole fits are called for, it may be worth noting tne interest of this particular set of reactions. Indeed, the abs\&ence of s channel resonances makes it plausible athat a Regge pole analysis will be valia at lower energies than in all other meson-nucleon collisions.

4. Nucleon-rimeleon ana antirueleon-nucleon collisions. pelastic

a) Totai cross sections and forwaráscattering amplitude.

A compilation of $\sigma_{T}(p p)$ and $\sigma_{T}(p n)$ necentiy prepared by Wetherell is contained in Fig.16. The inequality $\sigma_{f}(n p)>\sigma_{f}(p p)$ continues to hold up to $p_{1 a b} \simeq 19 \mathrm{GeV} / \mathrm{c}$, but the data suggest that it might belreversed at higher energy, It would be of considerable interest to decide on this qut:stion by improving the accuracy or the pn data. Since pn scattering data are usualiy obtained from pd measuremente, the whole question of deuteron effects (Giauber correction) is very important, and it would appear dusisable to study if for its own sake so as to develop a more accarate description of deuteron effectsthan is available at present. A number of theoretical investigations of the problem have been carried out recently. $34,35,36$

Cnernev et ai. have contributed new data on the ratio $\alpha_{p n}$ of real to imaginary parts of the forward amplitude for pn scattering from 1 to $10 \mathrm{G} \in \mathrm{V} / \mathrm{c}$, derived from measurements of $\alpha_{\mathrm{pd}}{ }^{37}$ All available data are collected in Fig. 17, the black dots denoting the new resutts. The curve is the dispersion relation prediction of Garter and Bagg, 48 the shaded area representing the estimated uncertalnties.

It is unfortunate that no data have yet been obtained for the ratic α_{-}, a quantity which plays an important role in the high enerey asypytotics of the NN and NN systems. Thts problem is of considerable interest because α is known to be of order -0.3 over a large energy pp range and does not show any tendency to approach jero as $p_{\text {lab }} \rightarrow \infty$; α_{pp} and α_{pp} are related through crossing symmetry, and information on $\alpha_{\text {pp }}$ would greatly help the theoretical analysis of the likely asymptotic behavior of both quantities.
b) Elastic scattering.

A stenford-Michigan group ${ }^{39}$, by an interesting method using a neutron beam from the Berkeley Bevatron, carried out extensive measurements on elasiic np scattering from 2 to $6 \mathrm{GeV} / \mathrm{c}$. The behavior of $\mathrm{d} \sigma / \mathrm{dt}$ is found to be very similar to the one of pp in the same energy range,

A California Institute of Technology group 40 , having measured pp elastic scattering from 1 to $2.5 \mathrm{GeV} / \mathrm{c}$, reports a dip in $\mathrm{d} \sigma / \mathrm{dt}$ around $t \sim-0.5$ (GeV/c) $)^{2}$ - Frautschi ${ }^{T}$ connects this phenomenon with tne dips in meson nucleon scattering and at similar t-values (see section I. 1.b. or ohis report). It will ue very intreresting to measure accurately dr/at in this region at increasing energies. As is known, such iips do not occur in pp scattering.

We mention finally new polarization data for pp scattering at 6 and $10 \mathrm{GeV} / \mathrm{c}$, presented by a CERN Group: ${ }^{41}$. The polarization is found to be of oraer 10% for $0.2 \leq-t \leq 0.5(\mathrm{GeV} / \mathrm{d})^{2}$ at both energies, but the lower energy data do not agree with earlier Berkeley work; 42 which gave an appreciable larger, value $(\sim 18 \%)$. Here agaih the bbslence of visible energy variation may have 1 mportant theoretical implications.
c) Charge exchange scattering.

A CERN-ETH group has measured the charge exchange process $\overrightarrow{\mathrm{p} p} \rightarrow \overrightarrow{\mathrm{n}}$. Et $5,6,7$ and $9 \mathrm{GeV} / \mathrm{c}$. 43 The results are presented in Flj . 18 , where the .cures are fits to the coherent droplet model. A more complete fit all
to available np and pp charge exchange data has been carried out by Byers ${ }^{14}$, who introduces a one-pion-exchange contribution in the coherent
all data, including aroplet model and is thereby able to reproduce \boldsymbol{A} the very narrow peak in $\mathrm{r} \mathrm{p} \rightarrow$ pn at $\quad|t|<0.02(\mathrm{GeV} / \mathrm{c})^{2}$.

As is well known, the Regge pole model has been uaable-te unable
so far to account for np and $\bar{p} p$ exchange data. The s-dependence of d $\sigma / \alpha=$ for ap and pp churge exchange at $t=0$ cannot be fitted with the p and s polo. Whereas fits are possivle by adding other poles with the same quannum sumbers [like the p' poie used by Hogaasen et al. 15,16 to fit botin these charge exchange processes ana the $6 \mathrm{GeV} / \mathrm{c}$ polarization data in $\left.\pi-p \rightarrow 0_{n}\right]$, it. seems more natura ${ }^{45}$ to study first the role which would bu played by Regge poles belonging to psandoscalar and axial vector paricies, hich ean couple uc nucieons but not to fisudoscalar mesons. As was first recognized by Gribov and Voikov, 46,47 the properties of these poles are much more complicated than is the case for trose belonging to the 1. and 2^{+}particles, in the sense oha: their positions and residues at t - 6 have to be related to each otherin a specified way if the scattering ampl tuce is to have its most general form vithout containing unacceptable Singilarities. This property, which thr specialists now refer to as "corspiracy" between Regge poles, has attracted renewed attention recently (See section IV. 2) but no results have oeen reported on the use of the pontoscrit and axial poles for fittinzectuel NN and NN data.
5. Isobar excitation and diffraction dassociation.

An extensive study of the process $p+p-p+p^{*}$ by the missing mass method has been carried out by a BNL-Carnegie Institude of Terinoiogy group in the energy intervel $6-30 \mathrm{GeV}$. The excitation of the tevoar $\mathrm{N}^{*}(1.23 \mathrm{GeV} ; \mathrm{I}=3 / 2), \mathrm{N}^{*}(1.52 ; 1 / 2), \mathrm{N}^{*}(1.69 ; 1 / 2)$ and $N^{*}(2.19 ; 10)$ is measured as a function of s and t. One observes in addition for smail $|t|$ a bump whicn suggests an isobar $n^{*}(1.4)$; the N it system with isospin $I=1 / 2$ may indeec nave a pecularity at mass 1.4 GeV a though it is regarded as doubtful whether it is a regular resonance. Fig. 99 gives the energy
variation of the production cross sections, combining the above experiment with data at lower enerey optained is a kutherford Laboratory experiment. ${ }^{4}$ The constancy of the cross section for $N^{*}(I=1 / 2)$ states is of great interest. It undoubtedly illustrates the phenomenon of diffraction dissociation so often predicted to accompany diffraction scattering. 50,51 This phenomenon does not occur for the $N^{*}(I=3 / 2)$ because no isospin is exchanged in high tnereg aiffraction. A theoretical aiscussion of the BNL-Carnegie Tech teresults has been presented at the conference by Margolis and Rotsstein. We aiso ncre that the pp missing mass experiment ${ }^{48}$ has been extended to $\mathrm{pp} \rightarrow$ ppx ${ }^{\circ}$, X triseen, by measuring the momenta of the two outgoing protons 53 . The phenomenon of diffraction dissocition is expected to occur also Wein the excited system is not in an iscbar state, and it should manifest iesete nic only in diffraction on an elementary particle but alsc on compiex objects as atomic nuclei. An iliustration is found in the work presented by an Orsay-Milan-Saclay-Berkeley Collaboration ${ }^{54}$, which observed the process $\pi^{-} \rightarrow \pi^{+} 2 \pi^{-}$at $16 \mathrm{GeV} / \mathrm{c}$ in a heavy liquid bubble chamber (the liquid being $\mathrm{C}_{2} \mathrm{~F}_{5} \mathrm{Cl}$). Fig. 20 represents the t distribution for three types of $\pi^{+} 2 \pi^{-}$zonfigurations (all, $\rho \pi^{0}$ and $\rho^{0} n$). The sharp peak for $t^{\prime}=|t|-\left|t_{\min }\right| \leqslant 0.1(\mathrm{GeV} / \mathrm{c})^{2}$, which behaves as exp $\left(-80 t^{\prime}\right)$, is evidence T^{2} for a coherent dissociation on complex nuclei, whereas the slower decrease at larger t^{\prime}, behaving as exp $(-8 t)$, is probably produced by dissociation on bound nucleons behaving as quasi-free particles.

1. New experimental results.

Among the new results in this field we mention first the np large angle scattering data from 2 to $6 \mathrm{GeV} / \mathrm{c}$ obtained in the stanfordMichigan experiment mentioned earlier. 39 Here as in the case of small angles the np behavior is analogous to the one of the $p p$ system. This remains true in the region of $\theta_{\mathrm{cm}} \sim 90^{\circ}$ where the data show a remarkable amount of syrametry around the point $\Theta_{\mathrm{cm}}=90^{\circ}$. Another important experiment was carried out by a CERN group ${ }^{55}$ to detect possible fluctuations in $\alpha o / \alpha t$ at large angles, as can be expected, following Ericson, 56 if the statistical model would be appied literally to the scattering process [as is well known the statistical model has been able to predict with remarkable success the magnitude of the cross section 57] The fluctuations would originate from the fact that the phase and absolute value of the partial wave amplitudes would vary essentially at random from one angular momentum value to the next, each amplitude being itself a rapidly and randomly varying function of the energy. Detection of such fluctuations requires an angular resolution

$$
\Delta \theta_{c m} \ll \ell_{\text {mar }}^{-1} \simeq\left(k_{\mathrm{cm}} r\right)^{-1}
$$

where r is the dimension of the region of interaction, usually taken to. be of order of one fermi. The experiment was carried out at $16.9 \mathrm{GeV} / \mathrm{c}$, Giving $l_{\max }^{-1} \simeq 6^{\circ}$, whereas $\Delta \theta_{\mathrm{cm}}$ was of order 0.8°. The incident momentum had a spread of $10-15 \mathrm{MeV} / \mathrm{c}$ leading to a resolution of about 2 MeV in the C.M. energy. Fig. 21 shows the experimental points and a few curves with simulated Ericson fluctuations. The latter were obtained by selecting the partial wave amplitudes $a_{l}=x_{e}+i y_{l}$ at random, with normal distributions
for the real variables x_{C}, y_{l} verifying

$$
\left\langle x_{e}\right\rangle=\left\langle y_{l}\right\rangle-0, \quad\left\langle x_{l}^{2}\right\rangle-\left\langle y_{l}^{2}\right\rangle=1 / 2 \exp \left(-l^{2} / \mathrm{bk}^{2}{ }_{\mathrm{cm}}\right)
$$

b was given the value $10(\mathrm{GeV} / \mathrm{c})^{-2}$. The experimental results clearly indicate that such fluctuations are very unlikely to exist. The correctness of the statistical model's prediction for the values of do/ dR at $E_{\mathrm{cm}} 90^{\circ}$ and all measured energies remains nevertheless as impressive as before. Fig. 22 shows an Drear type fit to the data

$$
\mathrm{s}\left(\frac{\partial \sigma}{\partial \Omega}\right)_{\mathrm{cm}}=A \exp \left(-p_{\perp} / b\right)
$$

Ore finds $b=224 \pm 5 \mathrm{MeV} / \mathrm{c}$, a value distinctly different from the slope $\mathrm{b}=158 \pm 3 \mathrm{MeV} / \mathrm{c}$ first proposed by Drear as a universal parameter. ${ }^{58}$ In will be most interesting to have further data on the s and t dependence of large angie cross sections with the new precision illustrated by the experiment just discussed. It is also clear that large angle data would be of the greatest importance for inelastic two body processes of type $A \perp B \rightarrow C+D$ with C and/or D different from A and B.
2. Theoretical aspects.

While the statistical model remains unique in its ability to predict the magnitude of the large angle cross sections, other models have been considered, especially the one proposed by Wu and. Yang. ${ }^{59}$ As described in at this confeesuce, Drei''s report, ${ }_{\lambda}$ this model fits well with the new DESY data for the proton magnetic form factor up to $t \simeq-10(\mathrm{GeV} / \mathrm{c})^{2}$. In contributions tc the present conference, K. Huang: 60 discussed on a model how an exponential drop of d $v / \bar{\alpha}=$ with energy can be obtained along the lines suggested by Wu and Yang, whereas Domokos and Karplus ${ }^{61}$ attempt to derive from field-theoretical considerations a relation of the Wu-Yang type between d σ / dt and form factors.

Bialas and Czyzewski analyze avai iaole data on pp anci np iarge angle scattering, show that the Eeneral benavior is the same ior bith reactions end note a Porward-backward asymuetry which can be used as an argument against the statistical model In another contribution, 63 ine same autrors propose a new nechanism for large angle πp scattering; it uses the erfect of s-channel resonances assuming the latter to be given by ve:y long and straight Regge recurrences as described by Barger and Cline and iiiusrated in Figs. 13, 14, Finally we note two contributions by jogunor e* e_{1}, one studying form factors and scattering amplitudes at large in a nev aneiyuical representation ${ }^{64}$ and the other discussing large angle scattering Et high energy by a regular potential in the quasi-classical approximation, the scattering process taking place at classically forbidaen angles. 65
III. Multiple production of particles

A large amount of experimental material on multiple particle production is available, especially from bubble chamber work, and tinis amount w111 rapidly increase in coming years. It is very unfortuante that up to now no saufsfactory procedures have been found for systematic extraction of dynamical information concerning the coliision and production mechanisms involved. This is of course due to the great complexity of the material, and is very natural if we remember that the systematics of high energy two body coliisions is only being deveioped since about four years("body" refers here to particles and resonances). The Regge pole type anaiysis on which thiss systematics is currently based has reached sufficient quelitative success to attempt its extension to rather broad classes of three or four
body reactions, a programme which is recommended by some theoretical groups ${ }^{10,21}$ and will probably give practical results if it covers sufficiently large energy interval.

The other extreme case of very high multiplicities probably presents altogether different problems, and the concepts, models and distrivution functions currently used in analyzing the databre not very likely in reveal directly the most important dynamical elements. Strong interaction theory, on the other nand, has not made the slightest progress in the field of multiple particle production, and it is unlikely to do so before some new cluee are obtained, as could hopefully be given by unconventional ways of grouping and treating the data.

In view of the general situation, we shall not attempt to review the many experimental contributions on multiple particle proauction presented 2. tiis Conference, and we shall rother describe a few of the points made review
by 0. Czyzewski in a presented in the Discussion Session on High review
Energy Experiments. It is expected thet this leetape will be published separately.

1. Multipiicity distribution of pions.

Bartke and Czyzewski ${ }^{66}$ have been able to test with goome success the conjecture that, when one considers all events producing n pions (n is the total sumber of pions in the final state, including π^{0} 's), the various isospin states of the n pion system allowed by charge and isospin conservation have about equal probabilivies. If this is so, from the experimentally known cross sections σ_{n} for producing n 胃 one. can predict the cross sections $\sigma_{n}^{(m)}$ for producing $(n-m) \pi^{ \pm}+m i T^{\circ}, m \geqslant 1$. This can be comparad with experiment, either by using experimentai determinations of σ_{n}, or
in a more suringent way by calcuiating the sum

$$
\sigma_{\pi}(c n k)=\sum_{n} \sum_{m} \sigma_{n}(m)
$$

and comparing it with the measured total cross section σ_{π} for inelastic collisions without strange particle or antinucleon production. The agreement is surprisingly good in 4 and $8 \mathrm{GeV} / \mathrm{c}$. $\mathrm{I}^{\mathrm{t}} \mathrm{p}$ collisions, as shown in the following table:

The errors are of the order of the mb. One might expect that the above treatment will give reasonable results if the average multiplicities are rether high and if mesonic resonances are only produced weakly. This seems to be the case, in the collisions considered (nucleonic resonances should cause saiy a small violation of the statistical assumption in isospin space since only one baryon is involved.). One might also try to use this method in other cases in order to estimate the abundance of resonance production. 67 . The abundance of resonance production in six prong interactions of $8 \mathrm{GeV} / \mathrm{c}$ Ttp is discussed in a contribution of the Warsaw group. 68

2. Correlations.

Various interesting correlation effects have been seen in high multiplicity events. Thus, the Krakow group 69 presented evidence on $\left\langle p_{1}\right\rangle$ for nucleons and pions produced in $8 \mathrm{geV} / \mathrm{c}$ Tp collisions, the average being taken over events witn given pion multiplicity n (oniy evients
with no or one π^{0} were considered). Whereas $\left\langle p_{\perp}\right\rangle$ decreases markedly for increasing n in the case of the pion transverse momentum, it is approximately constant for nucleons, as shown in Figs. 23 and 24. One notices large fluctuations at. low multiplicities, an effect which is seen more clearly in Fig. 25 and is probably due to the abundance of resonance production and of oud two body processes in low multiplicity events. In the same experiment the distribition of c. m. angles between pairs of pions were measured. Fig. 26 shows a clear difference between pairs of like and unlike pions, in agreement with the effect first observed by G. Goldhaber et al. 70 and attribuited to Bose-Einstein statistics.

Another strong correlation effect is seen in Fig. 27, nor between $\left\langle p_{\lambda}\right\rangle$ and $p_{\|}$for charged pions produced in $\pi^{-}+p \rightarrow p+\pi^{+}+2 \pi^{m}+m \pi^{\circ}$ (all m). This effect, which was found in a $7.5 \mathrm{GeV} / \mathrm{c}$ exposure in propane as part of an extensive analysis by a Dubna-Bucharest collaboration, 71 perhaps of interpreted on the basis of relativistic phase space. It should not de separated, however, from the general and unsolved problem of $=$ understanding transverse and longitudinal momentum distributions, to which the other effects mentioned previously also belong.

IV. Theoretical Developmerits

1. Quark model and associated methods.

Although discussed little during the Conference, the quark model of high energy scattering should be mentioned as one of the most important steps in clarifying the relation between nigh energy collisions and SU $_{6}$ symmetry. $72,73,74,75$. The principal assumption, beyond the quark structure of hadrons, is that the hadron-hadron scattering amplitude is the sum of
quark-quark and antiquark-quark amplituares, as expressed graphically in Fig. 28 , where the f^{\prime} 's denote the form factors for the hadronic trans: Lions. They reduce tc 1 for $A^{\prime} \approx A, B^{\prime}=B$ and $t=0$. Some interesting relations obtained in the quark model are

$$
\begin{align*}
& \sigma_{T}(\pi N)=\frac{2}{3} \sigma_{T} \text { (NN) in the unit of vert light energy (1) } \\
& \sigma_{T}\left(K^{+} \rho\right)-\sigma_{T}\left(K^{-} \varphi\right)=\sigma_{T}\left(\pi^{+} \rho\right)-\sigma_{T}\left(\pi^{-} \rho\right) \\
& +\sigma_{T}\left(k^{+}\right)-\sigma_{T}\left(k^{-} n\right) \\
& \sigma_{T}\left(\pi^{+} p\right)-\sigma_{T}\left(\pi_{T}^{-}\right)=\sigma_{T}\left(k^{+} n\right)-\sigma_{T}\left(\alpha^{-} n^{\prime}\right) \tag{3}\\
& \theta_{T}\left(K^{+} P\right)=\sigma_{T}\left(K^{+} n\right) \tag{4}
\end{align*}
$$

In acdition to the additivity as sumption, (1) uses the asymptotic properties 0 of high energy cross sections (Pomeranchuk limit), (2) uses isospin invariance, (3) requires SU_{3} symmetry, and (4) combines isospin invariance With an assumption of absence of charge exchange scattering between the two $I=1 / 2$ quarks, as proposed bi Lipkin. 76 Eq. (1) agrees very well with the measured cross sections extrapolated to constant limits for $s \rightarrow \infty$ $\left[\sigma_{T}(\pi N) \rightarrow \sim 22 \mathrm{mb}, \sigma_{T}(\mathrm{NN}) \rightarrow \sim 36 \mathrm{mb}\right.$ if one takes into account the values of σ_{T} ($\bar{N} N$) which should tend to the same limit $\wedge^{\text {P }}$ Eds. (2) and (4) are very well satisfied for $p_{l a b} \geqslant 5 \mathrm{GeV} / \mathrm{c}$, whereas there is a reasonably small violation of (3) as is expected since the relation requires $S U_{3}$. Furthermore the additivity assumption itself should not be better than 10 or 20%. 5 We note that (3) and (4) are the Johnson Treiman relations originally derived from $\mathrm{SU}_{6^{\circ}} 77$ Under simple assumptions concerning the quark size one further derives for $A B$ elastic scattering at small momentum transfers and very high energy

$$
\frac{d \sigma}{d t} /\left[\frac{d \sigma}{d t}\right]_{t=0}=\left[S_{A}(t) S_{B}(t)\right]^{2}
$$

where G_{A}, G_{B} are the electromagnetic form factors of A and B (in the Sachs definition for spin $\frac{1}{2}$ particles) ${ }^{78}$), i. . the same relation as proposed by. Wu end Tang at high t 59). The fit is excellent for pp scattering, using for $\alpha \sigma / \alpha t$ an extrapolation of pp and $\overline{\mathrm{p}} \mathrm{p}$ data to a common high energy limit. There is no doubt that the quark model with additive amplitudes has shown a great power of suggesting single, successful relations of an unconventional type among high energy process. Spins can be readily incorporated ${ }^{79}$).

As in the case of other successful applications of the quark model, one has tried to reach similar conclusions for hadroric properties by introducing different assumptions which do not require quarks to exist even as bound objects. In the case of high energy scattering this has been done mainly in two ways. Freund has formulated an assumption of wiversality through dominance of all couplings by meson states ${ }^{80}$). Cabibbo et al 81), on the other hand, combine the Rage pole model for elastic scattering (in the form where two meson nonets are exchanged) with the concepts of current algebra. They coupler the even signature Rage poles to scalar currents, and the odd ones to vector currents, and postulat $\frac{1}{2}$ current commulators as would follow from the quark model. This method can be applied at $t=0$ leaving out the spins; its extension $t 0$ $t \neq 0$ ara spin couplings has not been possible until now. Most of the quark model relations and some others are obtained, but Eq (1) now only holds in absence oi SU_{3} symmetry breaking. Furthermore, the model has the unexpected property that $i t$ can only be fitted to the total cross section data if one assumed all σ° T to decrease with s at the slow rate $\boldsymbol{B} \boldsymbol{\varepsilon}$ ' $\therefore=0.075 \pm 0.008$. The resulting cross section variation at very nigh nares ie illactracen
in Fig. 29, where the curves from to cotum refer t_{0} () the average of σ_{T} (NN) and τ_{T} (NTI), N denotine rulleons, ii) the average of σ_{T} (NN), iii) the average of $\sigma_{T}(\pi N)$, and iv) the average of $\sigma_{T}(K N)$. Tris remarkable suggestion of slowly decreasing total cross secticns will be very stimulating for future experimantation at extremely high energies. 2. Regge pole theory.
a) Parity exchenge.

In a very interesting contribution, Gribov studies with respect to parity the effect of the Mandelstam cuts or branch points which are experted $\leqslant 0$ be present, in the relativistic scattering problem. He consiñers 1.1 partiauiar the cut generated by exchange of several Pomeranchuh trajercories, which might The oaly one n give sizable contributions at very high energy. cursider, Ohe reaction $A+B \quad \rightarrow A^{\prime}+B^{\prime}$, with $t=\left(p_{A^{\prime}}^{\mu}-p_{A}^{\mu}\right)^{2}$, In the , channet Where J is the totafialar momentum and P the parity of the $A+\bar{A}^{\prime}$ state (we consider meson exchange). Gribov's point is that P_{r} is +1 for the. Pomeranchuk pole contribution to the amplitude, whereas it is I- Ior the Pomeranchuk cut contribution. This has important observational consequetices. Take $B=B^{\prime}=$ proton. If A and A^{\prime} are O^{-}and O^{+}mesons respectively, the P pole does not contribute, the P cut does (P stands for Pomeranchuk). The cui produces a cross section with a slow, logarithmic decrease for $s \rightarrow \infty$ If there is no P cut, on the other hand, the cross section will decrease replaly with s (exchange of η trajectory). A less striking difference securs in ine more readily available reaction $0^{-}+\mathrm{p} \rightarrow 1+\mathrm{p}$. The emplitude for P pole exchange vanishes as $\sin \theta$ in the forward direction, while the P cut amplitude is small (in $\sqrt{-t}$) without vanishing. (femember that $t<c$.
at $\theta=0$ if the 1^{-}meson 15 heavier thar the 0^{-}one). Although fribov
does not discuss such cases, me mation that the same distinetion coula be epplié when A is a proton and A^{\prime} a proton isobar, the importance of the P pole anc P cut contributions being essentially reversed depending on the parity of the isobar.
b) General masses and spins.

The problems of Regge pole theory for reactions with, unequai masses anc/or generei spin) which have been known for some time to sontain major compilcations, have been tackled in some contributions and discuss ions durine tre. Conference. It was realized that some of the complicatins which coscur alceady in the spin $1 / 2$ case with equal masses (nucleon-nucleon s(atitering), had been cleared up several years ago by Gribov and Volkov. 46,47

Amorg the five amplitudes of the t-channel reaction NN \rightarrow NN, only three sen remain independent when $t=0$. Gribov and Volkov write the two resur-ine relations between the five amplitudes. They derive from them that, if the amplitudes belonging to the singlet state ${ }^{3} J_{J}$ and the triplet state $I_{J_{J}}$ ao not decouple altogether at $t=0$ (i.e. if there are spin-dependent terms in the NN amplitudes at $t=0$), their Regge poles must satisfy for $t=0$ the relation

$$
\alpha\left({ }^{1} \bar{J}_{J},:=0\right)=\alpha\left({ }^{3} J_{J}, t=0\right) \pm 1=\alpha\left({ }^{3}(J \pm 1)_{J}, t=0\right)
$$

wh:re $\alpha\left({ }^{2}(J \pm 1, t, 0)\right.$ is a Regge pole beionging to the vemerining Nif states $\sum_{J},|\quad| J \pm 31 . \quad$ In addition, the residues develop S ngularities at $t=0$, uhe efferts 0 which must compensate each other 1. the tota: amplitude. sin short, a "conspiracy" ve several trajectories non singurer is needed so obtain a spin-dependent ampiitude at $t=0$. As strmaed by

Gribov and Volkov, the vaildity of the aioue relaticns beineen trajectories must be regarded as a consequence of the fact that the space-iime symmetry of the system is higher for $t=0$ than for $t \neq 0$.

Regarding collisions $A+B \rightarrow A^{\prime}+B^{\prime} \quad$ in the unequal masa case, every Regge pole, when considered to higher order in the asymptotic. expansion for $\xi=\left(p_{A}+p_{B}\right)^{2} \rightarrow \infty$, is known to generate terms which are sing alar at $t=\left(p_{A}-p_{A}\right)^{2}=0$ (these singluarities are absent if $m_{A}=m_{A^{\prime}}$! and $u_{B}=m_{B^{\prime}}$). These singularities have veen studied by Freedman and Wang 83 in the case of spinless particles. To eliminate them from the amplitude, they propese that each Regge trajectory $\alpha_{j}(t)$ is necescarily accompaniea by daughter trajectories $\alpha_{j, k}(t), k=1, ? . \ldots .$, which verify $d_{j}, k(0)=\alpha_{j}(0)-k$ Tat α_{j}, k should have the same quantum numbers as $\alpha_{j}, ~ e x c e p t ~ f o r ~ t h e ~ s i g n a-~-~$ ture which is opposite for odd k (being the same for k even). The daughter poies all have singular residues at $t=0$, with such relations among them that the total amplitude remains regular at $t=0$. All this is verified to hold in a model basea on the ladder approximation and the Salpete
Bethe gainors equation.
It was reported that E. Leader had undertaken a study of the general care of arbitrary masses and spins, where the two types of conspiracies described above must somehow act simultaneously if the amplitude has to have its general spin dependence at $t=0$ without becoming singular. While these developments complicate considerably the formalism of Regge pole Theory [remember that each set of pcies is expected furthermore tc jenerate liardelstam [uts], they are of now great theoretical interest. It shouid be hopea .hat their phenomenologica! implications will not increase too much the complexity of the Regge poie analysis of experimental ciata, which is already considerable.

V. Concluding Remarks

In summary, we would like to list some of the classes of questions which can be expected to play an important role in the near future. 1. In two-body meson-nucleon processes near the forward direction, the simple cases where few sets of quantum number can be exchanged and consequently few Regge trajectories contribute, will receive continued attention. Is it true that all relevant trajectories except the Pomeranchuik are about the same? Do they all contribute to dips? What is the actual slope α^{\prime} p of the Pomeranchuk trajectory? We know that it is much smaller than ali other slopes determined so far, which are of order $1(\mathrm{GeV} / \mathrm{c})^{2}$. Is $\alpha_{p}^{\prime}=0$ favored by the facts, or can one show that $\alpha_{p}^{\prime}>0$ with large probability? And, more immediately, what happens with effects, like polarization in $\pi^{-} p \rightarrow \pi^{0} n$, which Regge poles do not explain?
2. In meson nucleon backward scattering the neat description in terms or Regetized nucleon exchange will be scrutinized carefully as soon as new accurate data are available. A broad experimental programme is here desirable, including charge exchange and polarization phenomena.
3. The time has come to measure accurately those two-body processes at seal mciaentum transfers where no known particles or resonances, and hence. no Regge trajectoreis, can be exchanged. Examples are $\pi^{-} n \rightarrow \pi^{+} N^{*-}$ forward, a $K^{-} p \rightarrow K^{0} \Xi^{0}$ forward and $K^{-} p \rightarrow K^{-} p$ backward.

N N scattering, and $M N \rightarrow A B, N N \rightarrow A B$, 4. In the whole field of NN and $\lambda \bar{N} N \rightarrow A B$ reactions ($N=$ nucleon, $M=$ meson, A and B particles or resonances, many new data will accumulate, but a systematic interpretation will be difficult. Regge pole theory must be extended to include 0^{-}and 1^{+}particle trajectories as well as to cope with spins $>1 / 2$ and unequal masses, end the "conspiracy" complications
described above must be faced. For two body inelastic prosesses, any theoretical interpretation must deal with decay distributions and decay correlations, a field where the absorption model is superior to any other and may therefore inspire further theoretical developments.
5. Large angle two-body processes have most intriguing properties, and more experimental informat \pm, also on inelastic two body reactions, seems a prerequisite beforemuch further theoretical insight can be gained. 6. The problem of deuteron effects in high energy scattering is of great theoretical and practical intern, c . It deserves attention for its own sake.
7. Many body reactions deserve more systematic study than has been the case In the past., Rough theoretical ideas, inspired by the Regge description. of two body processes, are available to analyze three and four body reactions. The search for unconventional statistical properties and correlations in high multiplicity collisons may eventually lead to important clues for breaking the barrier imposed by the present lack of realistic dynamical models.

Ir conclusion, we feel that during the lest few years, the field of high energy hadron collisons has mede rapid progress, and the interplay between experiment and theory has been particular close. At each stage, basing itself on known facts, theory presents various possible descriptions, or conjectures various possible forms of behavior, and new experiments make decisive choices among them. This procedure, which has worked so well in more advanced branches of physics, is beginning to bear fruit in hadron physics. One can be confident that it will continue to do so, movided theory in its development remembers that only nature can guide it through and unsuspected the maze of all suspected mathematical possibilities, and provided adequate experimental facilities, techniques and results become available for answering without undue delay some of the decisive questions.
 cline for their invaluable help, as sciautific secretaries, especially the separation of this report.

REFFERENCES

1. A. A. Nomofilov, I. M. Situik, L. A. Slepets, I. N. Strunov, and. L. S. Zoliu, Measurements of the Real. part of $\pi^{-} p$ Elastic Scattering Amplitudes in the Coulomb Interference Region at $3.5 \mathrm{GeV} / \mathrm{c}$ and $6.0 \mathrm{GeV} / \mathrm{c}$, Report submitted to the XIII th Conference.
2. V. S. Barashenkov, Check of Dispersion Relations of High Energies, Report submitted to the XIII th Conference.
3. K. J. Fóley, R. S. Gilmore, R. S. Jones, S. J. İndenbaum, W. A. Love, S. Ozaki, E. H. Willen, R. Tammada, L. C. L. Yuan, Phys. Rev. Letters 14, 862 (1965).
4. G. Hohler, J. Baachke, and n. Strauss, Phys. Ietters 21,223 (1966).
5. C. T. Coffin, N. Dikmen, L. Ettlinger, D. Meyer, A. Saulys, K. Terwilliger, and D. W1lliams, $\pi^{+} p$ Elastic Differential Cross Sections from 2.3 to $4.0 \mathrm{GeV} / \mathrm{c}$, Report submitted to the XIII th Conference.
6. G. HÖhler, J. Baacke, M. Schlaile, and P. Sonderegger, Phys. Letters 20, 79 (1966); and
F. Aroab and C. Chiu, UCIRL Report 16686 (1966).
7. 6. Frautsch1, Regge Trajectories and Minima in Differential Cross Sections, submitted to Phys. Rev. Leiters (also submitted to the XIII th Conference).
1. M. Borghini, G. Colques, L. Dick, K. Kuroda, L. di Lella, A. Michaluwicz, P. C. Macq, and J. C. Olivier, Measurement of the Polarization Parameter In $r^{ \pm} p$ and $p p$ Elastic Scattering at $6.0,8.0,10.0$, and $12.0 \mathrm{GeV} / \mathrm{c}$; Report submitted to the. XIII th Conference.
2. C. B. Chiu, R. J. N. Phillips, and W. Rarita, IN Polarizatior and Regge Poles, University of Cailfornia Report UCRL-16940, also submitted to the XIII th Conference.
3. K. A. Ter-Martirosyan, Simplest Inelastic Processes at High and Very High Energies, Report submitted to the XIII th Conference:
4. P. Bonamy, P. Borgeand, S. Brehin, C. Bruneton, P. Falk-Vairaut, O. Guisan, P. Souderegger, C. Cauersasio, J. P. Guilland, J. Schneicer , M. Yvert, I. Mannelli, F. Sergiavipietri, and L. Vincelli, $\pi^{-} p \rightarrow \pi^{\circ} u$ Polarization at $\sigma^{6} \mathrm{GeV} / \mathrm{c}$, Report submitted to the XIII th Conference, and a more recent paper by the same authors,
New Results on High Energy $\bar{i} p$ Charge Exchange Scattering on Polarizea Target, submitted to the XIII th Conference.
5. Y. J. N. Phylips, Resonance Tails and High Energy πN Charge Exchange, Submitted to II Nuovo Cimento (also submitted to the XIII th Conference on High Energy Physics).
i3. \mathbf{u}. Baacke and M. Yvert, Regge Poles and Resonances in $\pi^{-} p$ Charge Exchange Scattering between 2.5 and $6 \mathrm{GeV} / \mathrm{c}$, Report submitted to the XIII th Conference.
6. R. K. Logan and L. Sertorio, Urbana preprint (1966).
7. H. Högaasen and A. Frisk, Phys. Letters 22, 90 (1966).
8. H. Högaasen and W. Fisher, CERN preprint (1966).
9. M. Ie Bellac, Il Nuove Cimento XIII A, 443 (1966).
10. P. Guisan, J. Kirz, P. Souderegger, A. V. Stirling, P. Brogeand, C. Bruneton, P. Falk-Vairant, B. Amblard, C. Cauersasio, J. P. Guiliana, and M. Ivert, Phys. Letters 18, 200 (1965).
-9. F. I. Thews, MIT Preprint, Quoted in D. R. O. Morrison, Review of Inelastic Two-body Reactions, Report presented at the Conference on High Energy Two Body Reactions, Stony Brook, April 1966.
11. F. R. Korlev, R. H. Hartung, and D. D. Reader, the Reaction $\pi^{+} p \Sigma^{-8} K^{+}$ at $3.23 \mathrm{GeV} / \mathrm{c}$, Report subinitted to the XIII th Conference on High Energy Physics.
Chan Heng-mo
Intemal Report
12. Ho-M.-Chan, H. Högaasen, and K- Kajantic, CERN Preprsnt (1966). 22. W. Selove, Backward Π p Scattering, Paper presented at the Conference on High Energy Two-body Reactions, Stony Brook, April 1966;
H. Brody, R. Lanza, R. Marshall, J. Niedever, W. Selove, M. Shochet, and R. Van Berg, Phys. Rev. Letters 16, 828 (1966).
13. W. R. Frisken, A. L. Read, H. Ruderman, A. D. Krisoh, J. Oreer, F.: Rubinstein, D. B. Scarl, and D. H. White, Phys. Rev. Letters 15, 309 (1965); and Phys. Rev. Letters 15, 313 (2965). 24. J. Orear, R. Rubinstein, D. B. Scarl, D. H. White, A. D. Krisch, W. R. Frigken, A. L. Reed, and H. Fuderman, Large Angle Pion-Proton Elastic Scattering at High Energies, Submitted to the Fhyscial Review (also submitted to the XIII th Conference).
14. T. Dobrowolski, B. I. Guskev, M. P. Iilichachev, A. L. Lyubimor, Ya. A. Matulenko, V. S. Stavlavsky, and A. S. Vovenko, The Energy Dependence of the $\pi^{+} p$ Elastic Scattering Cross. Section near 180°, In the 2-5 GeV Range, submitted to the XIII th Conference.
15. V. Berger and D. Cline, Regge Recurrence Parity Assignments for the $B=0$ Regge Recurrences, Report submitted to the XIII th Conference on High Energy Physics.
16. C. B. Chiu and J. D. Stack, Regge Pole Molel for Backverd T^{+}p Scattering, Submitted to Phys. Rev, Intters (also suimjtted to the XIII th Conference). 28. Y. Mott, R. Anmar, R. Loris, W. Kropec, S, opeper, M. Derrick, N, Lielun, L. Hyman, J. Ioken, Fs Schvaingruber, ard J. Siopson, $X-2$ Inantie. Scattering at 5,5 and 4.1 rev/a, yeport subaitted to the XrSt th. Conference.
17. R. J. H. Fhilips end W. Nerita, Fays. Rev. 139,2336 (1965).
18. P. Astbury, G. Brautti, G. Finocehiano, A. Micieitri, R. Permiluger.
D. Websdale, C. H. West, P. Zanelia, H. Esusch, W. Flsher, B. Cobbi, M. Pepin, and E. Polgar, K-p Charge Excharge of 5 end $7 \mathrm{GeV} / \mathrm{c}$, Report Submitted to the XIII th Conference.
19. 3. Astbury, G. Finocchiano, A. Michelini, C. Verkerk, D. Websdale,
C. H. West, W. Peusch, R. Gobbi, M. Fepin, M. A. Fouction, and
E. Polgar, Phys. Ietters 16, 328 (1965).
1. R. J. N. Fhilips end W. Rarita, Dhys. Rev. Letters 25 , 80% (1065).
2. Y. Goldschmidt-clermonf, V. P. Zenir, B. Jongejens, A. Noisseev, D, Muller, J. M. Perreau, A. Probes, V. Yarbe, W. de Eneve, U., Debeisievx, P, Dufour, F. Grara, J. Beughebaert, L. Zape, P. Pecters, F: Verbevine, ond Re Vindmoldere TWo Body Chennels in the Reactionn of $3,3.5$, and 5 Cev/c Fosititre
 Letters (elso submitted to the XaII th Conferenes on High Energy Fnjeics,). 34. V. Franco and F. J. G1auber, Znys. Rev. 142,1195 (1955); V. Franco, Phys. Rev. Lettere 15, 944 (1955).
3. V. Franco and E. Colemen, University of California Preprint No. UCLRL 16993 (AUE, 1966).
4. C. Wilkin, eNL, Ereprint Ho. 10415 (July 1965).
5. Kh. Chernev, N. Dalkhazhav, P. Devinski, L. Khristov, L. Kirillova, Z. Korbel, P. Markov, V. Nikitiu, L. Rob, M. Shafranova, V. Sviridov, D. Tuvdendorzle, Z. Zlatanov, and L. Zoliu, Small Angle Proton-Deuteron Elastic Scattering at the Energy $1-10 \mathrm{GeV} / \mathrm{c}$, Report submitted $u 0$ the XIII th Conference.
6. A. A. Garter and D. V. Bugg, Rutherford Laboratory Preprint RPP/4/12 (1966).
7. M. N. Kraislev, F. Martin, M. L. Perl, M. J. Longo, and S. T. Powell, Phys. Rev. Letters 16, 1217 (1966).
8. B. Barish, D. Fong, R. Gomez, D. Hartill, J. Pine, A. Tollestrup, 4. Maschke, and T. Zipf, Sumbitted to Phyb. Rev. Letters for publication. 41. See Ref. 8.
9. P. Grannis, J. Arens, F. Betz; O. Chamberlain, B. Dieterle, C. Schultz, E. Shapiro, H. Steiner, L. Van Rossum, and D. Weldon, University of Caliiornia Preprint UCRL 16750, March 1966 (Submitted to the Phy. Rev.).
10. 2. Astioury, G. Brautti, G. Finccchiano, A, Michelini, D. Websdale, 2. H. West, E. Polgar, W. Beusch, W. E. Fischer, B. Gobbi, and M. Pepin, She Cnarge Exchange $\bar{p} p \rightarrow$ nn at $5,6,7$, and $9 \mathrm{GeV} / \mathrm{c}$, Report submitted Oo the XIII th Conference on High Energy Physics.
1. N. Byers, High Energy np Charge Exchange Scattering and One Pion Exchange, Report submitted to the XIII th Conference on. High Energy Physics. 45. V. N. Melnikov and K. A. Ter-Martirosyan, K-meson and Nucleon Charge Exchange Reaction at High Energy, Report submitted to the XIII th Conference.
2. V. N. Gribov and D. V. Volkov, Proceedings of the 1962 International Conference on High Enerey Physics at CERN (ed. oy J. Prentki) p. 552.
3. D. V. Toikov and V. N. Gribov, J.E.T.P. 44, 1068 (1963);

Engl. Translation Soviet Physics JETP 17,720 (1963).
48. E. W. Anderson, E. J. Bieser, G. B. Collins, T. Fujil, J. Menes, F. Turkot, R. A. Carrigan, R. M. Edeist,ein, N. C. Hien, T. J. McMahon, and I. Nádelhaft, Peripheral and Central Proton-Proton Interactions in the Energy Range $6-30 \mathrm{BeV}$, Report submitted to the XIII th Conference (also Phys. Rev. Letters 16, 855 (1966).
4.
49. I. M. Blair, A. E. Taylor, W. S. Chapman, P. I. P. Kalmus, J. Litt, M. C. Miller, D. B. Scott, H. J.Shermar, A. Astoury, and I. G. Walker, Rutherford Laboratory Preprin $=\mathrm{RPP} / \mathrm{M} / 15$ (1966).
50.. I. Ya. pomeranchuk and E. L. Feinoers, Dokl. Akaí, Nauk USSR 93, 439 (1953), and suppi. Nuovo Cimento 3 , 652 (1956).
51. M. L. Good and W. D. Walker, Phys. Rev. 120, 1957 (1960).
52. B. Margoifs and A. Rotsstein, A. Comparisor of the Absorbtion Model end a Regge Pole Model for Nucleon Isooar Excitation, to be publishea in
II Nuovo Cimento (alco swhitted to the XIII tin Conference).
53. H. L. Anderson, S. Fuku1, D. Kessler, K. A. Klare, M. V. Sherbrook, H. J. Evans, R. L. Martin, E. P. Hincks, N. K. Sherman, and P. I. P. Kalmus, Missing Mass Spectrum from p-p Collisions at $12.3 \mathrm{BeV} / \mathrm{c}$, Report submitted to the XIII th Conference.
54. J. F. Aliard, D. Drijard, J. Hernessy, R. Huson, A. Lloret, J. Six, , J. J. Veillet, G. Eellin1, M. di Corato, E. Fiorini, P. Negri, M. Roller, J. Crusseard, J. Ginestet, A. H. Tran, H. F. Bingham, C. Farwell, W. B. Fretter, H. J. Lubatt1, W. Micheel, and K. Mcriyasu, Study of $\pi^{+} 2 \pi$ - Fina π^{2} States Cóherently Produced on Nuclei by $16 \mathrm{GeV} / \mathrm{c} \pi \bar{\pi}$, submitted to Nuovo Cimento (also submitted to the XIII th Conference).
55. J. V. Allaby, G. Belletini, G. Cocconi, M. L. Gcoi, A. N. Diddens, G. Matthiae, E. J. Sacharidis, A. Silverman, and A. M. Wetherell, The Large Angle Differential Cross Section of Proton Proton Elastic Scattering of $16.9 \mathrm{GeV} / \mathrm{c}$, Report submitted to the XIII th Conference. 56. T. Ericson, CERN Report TH 406 (1964); T. Ericson and T. Mayer-Kuckuk, CERN Report TH 686, to appear in Ann. Rev. of Nucl. Science, Vol 16 (1966).
57. R. Hagedore, Nuovo cimento 35 , 216 (1965) and other papers there quoted. 58. J. Orear, Phys. Letters 13, 190 (1964).
59. T. T. Wu and C. N. Yang, Phys. Rev. 137, B 708 (1965).
60. F. Huang, Two-Body Reaction at High Energies and Large Angles, Report sumbitted to the XIII th Conference.
61. ज. Domokos and R. Karplus, Speculations Concerning Large Angle MesonNucleon Scattering at High Energies, Report submitted to the XIIIth Conference.
62. A, Biatas and O. Czyzewski, Nucleon-Nucleon and Nucleon-Antinucleon Elastic Scattering at High Momentum Transferg, Report submitted to the XIII th Conference.
63. A. Biatas and 0. Czyzewski, Presented 8, the XIII th Internetional Conference on High Finergy Fhysics.
64. A. A. Lolsunov, M. A. Mestvirishvili, and I., N. Silin, Asymptotic Behavior of the Scattering Amplitude at Large Momentum Transfers, Report sumbitted to the XIII th Conference.
65. S. O., Alliluyev, S. S. Cershtein, and A. A. Longunov, Phys, Ietters 18, 195 (1965).
66. J. Bartke and 0 . Czyzewski, Cross sections for "Central" Collisions and Maltiplicity Distributions in Plon Production in Pion-Proton Collisions of $4-10 \mathrm{GeV} / \mathrm{c}$, Report sumbitted to the XIII th Conference.

GT. K. 2alewski, private commnication.
68. M. Bardedin-Otwnowska, M. Danysz, T. Hormokl, S. Otwinowski, H. Plotvowska, R. Sosnowki, M. szeptycka, and A. Hroblewski, six prong Interactions. of $8 \mathrm{GeV} / \mathrm{c}$ In Hydrogen, Report sumbitted to the XIII th Conference.
69. J. Bartke, O. Czyzewski, J. Danysz, A. Eskreys, J. Loskiewiç, P. Malecki, K. Eakreys, K. Juazczak, D. Kisielewska, and H. Zielinaki, some Aspects of Many-Fion Froduction by $8 \mathrm{cev} / \mathrm{c} \pi^{+}$, Report presented to The XIII th Conference.
70. G. Goldhaber, S. Goldhaber, W. Iee, and A. Fais, Phys. Rev. 1200, 300 (2960).

T1. V. A. Beljakov, E. N. Kiednitkaja, E. S. Kurnetsova, E. Balea, C. Balen, A. Mihul, and M. Sabal, Four Prong $\pi^{-} p$ Interactions at 7.5 GeV Fart Is Recotion $\pi+p \rightarrow p+\pi^{+}+\pi^{-}+\pi^{+}+\pi \eta_{0}$, Report sibmitted to the XIII th Conference.
72.
E. M. Levin and L. L. Frankfurt, JSPP, P. R. 2, 105 (1957) [Emalish Traseiation: Societ Physics JEMP Letters 2, 62 (1966)].
T3. H. J. LSplein and F. Sotock, Phys. Rev. Letters 16, 71 (1966) and 2ater papere by Inpin and collaborators.
14. J. J. J. Kokicodee and L. Ven Hove, Nuovo Cimento 42, 711 (1966).
75. A syatematie review is given in L. Van Bove, lectures at 1966 Seottiah Daiveraities Evimer school, CERN preprint (1966).
76. H. J. Liphein, Fays. Rev. Letters i6, 1015 (1966).

TT. K. Johncon and 8. B. Treiman, Fhyi., Rev. Letters 14,189 (1965).
78. Lo Van How, Puppr presented at the Conference on High Energy Two Body Collisions, stony Brook (April 1966), CERN preprint (1966).
79. C. Itzykson and M. Jacob, Saclay preprint (1965).
80. P. G. O. Freund, Phys. Rev. Letters 15, 129 (1965).
81. N. Cabibbo, L. Horwitz and Y. Ne'eman, CERN preprint (1966) and N. Cablbbo, L. Horwitz, J. J. J. Kokkedee and Y. Ne'eman, CERN Preprint (also submitted to the XIII th Conference).
82. V. N. Gribov, on the possibility of experimental investigation of Mandelstam branch points, Report Submitted to the XIII th Conference.
83. D. Z. Freepman and J. M. Wang, Regge Poles and unequal mase scattering process, Report sumbitted to the XIII th Conference.

Figure Captions

Fig. 1. A comparison of the energy dependence of the $\pi^{\prime} p$ charge exchange. cross section $\left(\sigma_{e x}\right)$ and of of (the ratio of real to imaginary part of the forward scattering amplitude in $\pi^{ \pm} p$ scattering) oith the predictions of forward dispersion relations as obtained by V. Barashenkov. 2 The dashed line represents the values of: $\left(\sigma_{\text {ex }}\right)_{\text {minimum }}$ assuming zero real amplitude and the hatched area shows the inaccuracies due to errors in total cross section measurements.

Fig. 2. Comparison of $\pi^{+} p$ and $\pi^{-} p$ elastic scattering differential cross sections at laboratory momenta of $2.5,3.0,3.5$ and $4.0 \mathrm{GeV} / \mathrm{c}$ by Coffin et al. 5 Also shown is a freehand fit to the $\pi^{-} p$ charge exchange in the same momentum region.

Fif. 3. The polarization $P(t)$ versus the invariant four momentum transfer
t for πp elastic scattering at laboratory momenta of $6 ; 8$ and $10 \mathrm{GeV} / \mathrm{c}$ as given by Borghini et al. The theoretical curve is from a iit to the data by Chiu et al.?

Fig. 4. The polarization $P(t)$ versus tiae invariant four monentum transfer t for $\pi^{+} p$ elastic scattering at laboratory momenta of 6 and 10 8
$\mathrm{GeV} / \mathrm{c}$. The theoretical curve is a prediction of the polarization by Chiu et al. 9 using a Regge pole model.

Fig. 5. The π^{\prime} ? charge exchange differential cross section at various laboratory momenta. The references to experimental data can de found in Ref. 6.

Fig. 6. The ρ and R trajectories as determined by Ter-Martirosyan ${ }^{10}$ u: n^{\prime} a Regge pole fit to $\Gamma^{r} p \rightarrow \pi_{n}$ anc $\pi \bar{p} \rightarrow \eta n$ experimental data.

Fig. 7. The polarization $P(t)$ in π^{-}p charge exchange scattering as measured by Bonamy et al. "using a pelarized target.:
Fig. 8. Regge pole fit to the experimental data for (1) $\pi^{0} p \rightarrow \pi^{0} N^{f 0}$ (1238) and $(2) K_{P}^{+} P K^{0} N^{\alpha+1}$ (1^{2},. The fit was made by R. I. Thews ${ }^{19}$ assuming a Regge ρ contribution for reaction (1) and a Regge ρ and R contribution for reaction (2).

Fig. 9. The differential cross section for $\Pi^{+} \mathrm{P} \rightarrow \mathcal{S}^{+} \mathrm{K}^{+}$for a laboratory momentum of $3.23 \mathrm{GeV} / \mathrm{c}$ measured by Kofler et al. 20

Fig. 10. The S^{+}polarization as a function of for the reaction $\Pi^{+} p \rightarrow \Sigma^{+} \mathrm{K}^{+}$ at $3.23 \mathrm{GeV} / \mathrm{c}$ as measured by Kofler et al. ${ }^{20}$.

F: 0 11. The differential cross section for $\pi^{+} p$ elastic scattering near the backward direction. "This experiment" refers to the data of the Pennsylvania group reported by Sciove. ${ }^{22}$ References for the 1.
other data are given in Ref. 22 .

Iig. 12. The differential cross section for π^{-}p elastic scattering near the backward direction. "This experiment" refers to tiae data reported by the Rennsylvania sroup reported by Selove 22 References tor the other data are given in Ref. . 22.

Fig. 13. A proposed classification of the known $I=3 / 2$ isobars on a Regge trajectory of u versus the isobar spin as suggested by Barger and Cline. 26 The filled boxes represent experimentally observed isobars whereas the open boxes represent predicted isobars. Only the two lowest mass isobars have experimentically determined spin and parity. Analysis of charge exchanges scattering ${ }^{13}$ and backward $\pi^{+} p$ elastic scattering ${ }^{26}$ suggests positive parity for the 2450 and 2840.

Fig. 14. A proposed classification of the high mass $I=1 / 2$ isobars on two Regge trajectories as suggested by Barger and Cline. ${ }^{26}$ Ti.e \bullet
filled boxes represent experimentally observed isobars wherea:
the open boxes represent predicted isobars. The two lowest
members of each trajectory are known to have the correct spin and parity for the Regge recurrence assignment. Analysis of charge exchange scattering suggests negative parity for the 2640 in accordance with this classification. Analysis of backward π^{-}p scattering ${ }^{26}$ also suggests negative parity for the 2640 and the 3020.

Fig. 15. The differential cross section for the reaction $X_{p} \rightarrow \mathbb{K}_{n}$ at laboratory momenta of 5,7 and $9.5 \mathrm{GeV} / \mathrm{c}$ as reported by Astbury et al. The theoretical curves are for a Regge pole model fit of Phillips and Rarita. In this fit only the $9.5 \mathrm{GeV} / \mathrm{c}$ data was used and, therefore, the 5 and $7 \mathrm{GeV} / \mathrm{c}$ theoretical curves are predictions of the model.

Fig. 26. The total cross sections fort np and pp scattering. (The references Act slices

Fig. 17. The ratio of real to imaginary forward scattering amplitude for np elastic scattering. The filled circles represent the data presented by Chernev et al ${ }^{37}$. The theoretical curves are dispersion calculations of Carter and Bugs ${ }^{38}$.

Fig. 12. The differential cross section for the reaction $\overline{\mathrm{p}} \rightarrow \mathrm{n}$ n for the momenta $5,6,7$ and $9 \mathrm{GeV} / \mathrm{c}$ as measured by Astbury et al^{43}. The theoretical predictions are for the coherent droplet model $20-$ presented by to. byers. 44

Fig. 19. The cross section for isobar production in the process $p p \rightarrow N *$ as a function of laboratory momentum. The experimental data comes from Anderson et al ${ }^{48}$ and Blair et al. 49

$$
\pi^{+}+2 \pi^{-}+A
$$

Fig. 20. Differential cross section for the process (a) $\pi+A \rightarrow+\mathcal{L}+\infty$

> heavy
where A is a mixture of hearing nuclei $\left(C_{2} F_{5} C 1\right)$. The 3π system
Is shown to have an appreciable fraction of events of the type
(b) $\pi+\rho$ and (c) $\pi+f^{0}$. The differential cross section for the subsample of events is shown as (b) and (c). The experimental results are reported by Allard et al. 54

F18. 21. Some cross sections generated according to the Ericson mechanism, compared with the experimental data for pp elastic scattering at $16.9 \mathrm{GeV} / \mathrm{C} \cdot$ reported by Allaby et $\mathrm{al} .{ }^{55}$

Fig. 22. Experimental angular distribution for pp scattering at $16.9 \mathrm{GeV} / \mathrm{c}$ on a logarithmic scale. The best fit low and Orear's fit are 6
shown for comparison.

Fib. 23. Average transverse momentum o° pions as a function of multiplicity for multiple pion production by 8 dev/c π^{+}. The experimental results were compiled by Bartke et al. 69

Fig. 24. Average transverse momentum of the nucleon as a function of pion multiplicity for multiple pion production by $8 \mathrm{GeV} . \mathrm{c} \pi^{+}$. Included on the graph are channels with a neutron in the final state as well as channels with a proton in the final state. The experimental results were compiled by Bartke et a1. 69

Fig. 25. Mean trantsverse momentum of pions and nucleons observed in multiple pion production in $8 \mathrm{GeV} / \mathrm{c} \pi^{+}$p reactions. The experimental tesults are compiled by Bartke et al. 69

Fig. 26. Distribution of C.M.S. angles between pions plotted separately for pions of like charge and unlike charge for the reaction. $\pi^{+} p-1 p 4 \pi^{r} 3 \pi^{-}$. These results are reported by Bartke et a1. 67

Fig. 27. The dependence of the average transverse momenta $\left\langle\mathcal{P}_{1}\right\rangle$ of the π^{-}and π^{+}on different intervals of longitudinal momenta in the C.M.S. for the reaction $\pi p \rightarrow p \pi^{+} 2 \pi+m\left(\pi^{\circ}\right)$ as reported by 71
Bel jakov et al.

Fig. 28. Schematic representation of meson-nucleon interaction as pictured in the quark model $\because 1, A^{\prime}$ represents a meson states and B, B^{\prime}; representp $\&$ baryon states.

Fig. 29. Theoretical fit of Cabibbo et al to total cross section data using a Regge pole--current algebra model with a nonet of mesons. The curves starting from the top refer to (a) the average of the $N N$ and $N N$

(b) the average of the NN total cross section; (c) the average of the πN cotal cross section; (d) the average of the kN total cross sections.

Figure caption for new Fig. 16

Proton-proton ank proton-neutron total cross sections. The errors on, the data of Buge et al. are less than or equal to the size of the points.

The data are from:
D.V. BuÉc, D.C. Salter, G.H. Staffora, R.F. George, K.F. Riley and
K.J. Tapper, Phys.ReV. 146,980 (1966)
R. Galoraith, E.W. Jenkins, T.F. Kycia, B.A. Leontic, R.H. Phillips, H.I. Read and R. Rubinstein, ?hys.Rev. 238, B913 (1965)
G. Bellettini, G. Cocconi, A.N. Diddens, E. Lillethun, J. Panl, J.P. Scanion, J. Waiters, A.M. Wetherel1 anc P. Zanella, Physics Letters 14, 164 (1965)
G. Bellettini, G. Cocconi, A.N. Diddens, E. Lillethun, G. Mathiae, J.P. Scanion and A.M. Wetherell, Physics Letters 19, 341 (1965).

Mundsis3

Eind

Fig 2.

8in

(b)

FIGURE 3

$I=3 / 2, Y=+1$ Regge Recurrences

$I=1 / 2, \quad Y=1 \quad$ Regge Recurrences
a Knoivn Resonance

- Predicied Resonance
$\alpha(P=t, T=t)$. $r(P=-, \tau=-1)$

FIG 1

INC.MOMENT (GEV/C)

