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FUNDAMENTAL THEORETICAL 

QUESTIONS 

Introduction 

Before reviewing for y,ou the main fields of activity regarding the 

fundaments of theory, let me shaw you a map (Fig, 1) of the different 

logical connections among these fields, because, judging from the a'ttendance 

~ to the discussion sessions, I presume that many of you are not quite as up 
..... 
~ 

to date as they prehaps might be. 

I have drawn a bounda~y separating the results relevant to off-mass 

shell theories or field theories in a generalized sense, and the on-mass-

d (<At·) 

shell results or ;-matrix theory results. Ideally the basic axioms should 

be immediate translations of our experience. A very attractive set would be 

Lorentz invariance, causality and ·unitarity. The trouble is that the onJ 

tractable form of causality up to recently was through locality, which had 

to be formulated in terms of fields. Hence the very prominent role of 

field theory up to this day in our understanding of the microscopic world. 
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Hay I stress also the importance of·tbe success of Quantum Electrodynamics 

as a reason to_ stick to field theory. However, in view of.the very singular 

nature of fields
1 

it has been thought wise to dismiss the idea of. fields and 

to consider only integrals of fields, over regions of space time. This 

led _to the theory of local observables. 

Host experimentalists are really interested only in knowing what happens 

on the mass shell. This has put a heavy burden on the theorists. Field 

theory gave the dispersion relations, and a small domain of analyticity in 

momentum transfer (Lehmann ellipse). When combined with unitarity, these 

results furnished bounds and relations on the asymptotic behaviour of the 

amplitude. From then on, everythi~g was until recently a matter of sophis-

ticated guess. Mandelstam started the game by proposing a certain domain 

of analyticity compatible with perturbation theory to 4th order and 

~ 

dispersion theory. Then came different hypothesis: Maximal analyticity, 

~ 
Regge ~ehaviour, bootstrap. 

\ 

.. 

~-

..... 

Field Theory 

The main effort in field theory has been devoted to the study of the 

~ ~~~~u) 

mathematical structure involved( It is interesting to note that a number 

of tools have been developed, which are useful both for field theory and 

for statistical mechanics. The reason for this is clear: one has to do in 

both cases with systems with an infinite number of degrees of freedom. A 

very interesting example o.f the mathematical comp~ications involved in 

2 
the simplest cases has been uiscussed by Prof. Thirring in connection with 

the B.C.S. theory of superconductivity. Although the model used is exces-

sively simple and explicitly solvable in the case of a.finite number of 

degrees of freedom, the passage to the limit exhibits a number ofrUnexpected 

features, among which the fact that some products of-operators have a limit 

different from the product of the limits. 

To study this kind of mathematical trouble, Jaffe and Lanford
3 

have 

built model field theories with an artificially. limited number of degrees 

of freedom. The object is to see which quantities have any chance of' 

keeping a meaning as the cut•pffs are removed. In an effort to remove 

the limitations imposed by tha assumptiOn of the existence of fields, and 



cons:i.derin8 that the phenomena of ultraviolet divergence might make the 

fields more singular than they are usually assumed to be, Jaffe4 has also 

developed a fo~lism capable to accomodate some non-renormalizable theories. 

It appears that all re-sults obtained up to date in conventional field theory 

hofd true in this new version, except for the asymptotic behaviour at high 

energy. Conventional dispersion relatious may be proved, but might need 

an infinite number of subtractions, "if it were not for the results of Martin 

which we shall discuss. 

Much work has been devoted to the structure of the theory bf local 

5 
observables. 1 understand that only technical difficulties prevent 

Borches_ from qeriving a concept very close to that of fields, even unob-

servable charged fields, froin the theory of local observables. 

has already proved the TCP theorem in this theory. 

Analyticity on the mass-shell 

6 
Epstein 

A sequence of very important results has broadened considerably the 

s 
bridge between field theory and ;-matrix theory. The papers of Bros, 

7 Epstein, and Glaser haye ge"eralized the concept of crossing to all two• 

body amplitudes, whether dispersion relations are proved or not. Also, 

• 

I 

I 
( 
i . I 

lit· 

tltl .. e.t. 
;"'~~ 

they have shown that the two-body amplitudes are all analytic in some small 

neighborhood of the physical region, this analyticity being in both 

variables s (energy variable) and t (momentu~ transfer variable) • 

Using this information, the known ~ispersion relations, and unitarity, 

8 
Martin has been able to prove a very large number of results. In view of 

the importance of this work, let me go a little into the scheme of t!Je proof. 

We start. from a conventional dispersion relation. 

A(s
1
1:)= s11J ~s(s',I:)Js' 

rr s't( (s'..: s) 
IL"J A .. { Ll',l:) a..~' + Su.\:.t.Ac:J..W ... ~ 

+ -r( li..'~'~(u.'-~) 

Unitarity is used then under the following form: 

As(s,t):: l:Phl) r~ctQ(s) TE(Ilrfr~) 
"'·~ e.-

B:ttt:::i:%1. aHl(s) > 0 , and all derivatives of P4t (Z) ·are positive for z > 1· 

'-t.c.J 
This allows to expand AS( s, t} in a Taylor series i1~J"and to show that 

the radius of convergence is the same for all s, by interchange of the order 

of integration and summation of the series. Then the-dispersion relation 

is valid for all values of t for whtch analyticity has been.proved for 

fixed s. Typical values are: 9 ~ ~ 

KJl 

It I < 4· m
2 
n 

It I< 4 m
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The fact that the dispersion relation stays valid as it is written leads 

to the consequence that in these regions, the asymptotic behavior ·is nea.rly 

. 
the same as in tlf~. forward direction. Hence, by an almost ctrcular argu-

ment
1

using unitarity0 one deduces that, even with ·dispersion relations 
• I . . 

a la Ja£fe--with an infinite. number of subtractions--to start with, the '· 

behavior of the amplitude is 
2 . 

s J,., s, therefore the dispersion relations 

are valid with 2 subtra~tions. An interesting feature is that the reason-

ing can be started again £rpm the domain of analyticity just found, and a 

larger domain is obtained. The result for ll"ll scattering is represented 

on Figure 2. The same operation can be performed for T{ K and Tt' N scattering •. 

The domain obt;ained in the latter case goes to larger. values of -·t than 

was proved in the classical proofs of dispersion relation. More work can 

undoubtedly be done, by using, in the -n: Jt case, the domains obtained in 

the three channels, and finding their holomorphy envelope. To date, the 

real part of the analyticity domain is given approximately by the cuts and 

region 
che dashedAof Figure 3. That is, it goes to the double spectral region 

except for a few cases. Thi~ gives·a region of analyticity for the partial-

~ l 

'I 

wave amplitudes indicated on Figure 4. Possible singularities are far 

enough as compared, say to the mass of thejP meson, so that calculations 

neglecting far away singularities may be justified. 

l 

"'' 

On-Mass-Shell Causality 

Much work is also devoted to get rid of the circuitous--and not 

completed-- logi¢~1 path connecting causality to analyticity. Many people 

think that an axiom l~ke that of locality is probably as unphysical as an 

axiom of analyticity, in the sense that it can only be checked indirectly 

10,11 
through its consequences. As Blokhintsev points out, it is quite 

feasible to build theories/which are non local on the microscopic scale, 

but which exhibit gross causality. These theories might perhaps only be 

distinguished by additional si.ngularities. The works of the "Cambridge 

~~~~ 
School"~_7 -··- -------\.5ave ·shown that an assumption of analyticity of 

the amplitude in some neighborhood of the physical region, leads to 
~ 

~ 
uniquely determined singularities, and hence to the usual.description of. 

of successive interactions in multiple scattering. These arguments use 

21 
only postulates of cluster decompo,s it ion and unitarity. 

22 The work of Stapp assumes a weak condition on asymptotic decrease of 

transition probabilities when particles are taken away. The result is to 

prove the infinite differentiability of amplitudes on the physical region 

except at the points where singularities are expected. A condition of 



. . ' 23 
exponential decrease of transition probabilities allows Ornnes to derive 

a finite domain of analyticity for the 2-body amplitudes in momentum 

. . 24 - 26 
transfer, apart from some technical difficulties. Some other authors 

have also tried ·to attack this problem, but without any decisive success. 

·Asymptotic Theorems 

We can distinguish between bounds and other theorems such as the 

Pomeranchuk theorem and. the connections between the phase and the modulus 

of the amplitude. In the first field, no new result ha~ been obtained. 

However, many bounds are now rigorously derived from field theory, and even 

from the ~eneralized version due to Jaffe. This is of course due to the 

work of Martin. I would like to mention specially the bound on form 

factors . I 21 j F ( 1::.> ) exp - b Ft derived by Jaffe rigorously, even for the 

cases where no dispersion relations have been proved for the form factor. 

Tables I, II, and III have been compiled by Martin, _and give an up-to-date 

H-43. 
account of the situation. 

In the case of other asymptotic theorems, the situation is still 

very confused. The Pomeranc4uk theorem now holds for all processes, 

~7 44 
due to B.E.G., but, as pcHnted out by Eden no one has yet succeeded 

.. 

! 
l ; 
.'? 

1 
'; 

in removing the extra hypothesis such as the existence of a limit of the 

amplitude--or at least some control over possible oscillations--on the 

one hand, and some control over the growth of the real part with respect 

to the imaginary part. 

b h d f 
. 45,46 

To o viate t e nee or these requirements, Khuri and K~noshita 

have found a number of inequalities which, unlike ordinary dispersion 

relations, allow one to test these ideas with measurements of the forward 

amplitude on a iiE!!£ real interval. The information used on the behavior 

at infinity is the positivity of the imaginary part, and-the established 

fact ~ha~ there are at most 2 subtractions needed. 

I would like to end by expressing my apologies to the many people who 

have been treated unfairly, or whose work I have misrepresented. 
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Forward scattering 

l . I. 2 F(s,cosa=l) < C s log (s/s ) 
2' 0 

~otal<C'log (s/s0 ) (arbitrary spins) 

C'< 4n/~ 2 , ~= pion.mass for wy;wk, kk 

C'< 12n/~ 2 for ~N 

Fixed transfer 
3/2 IF (s,t) I < s (log s) , t< - t<O 

IF(s,t) I< 5 2-t 0< t< h 2 

IF (s,t) I< const O<'t < 4~ 2 

if IF (s,O) I < s-s 

Fixed angle 

IF(s,costi) I < C(s314 nog s) 312
)/( /sin a) 

!F(s,coso) ! < C(log 5 1 ~1 1;(sin2 e) 

dfJ/d•~.: C{loq s) 3/{1si.;/'o) s) 
{in this foL-rr• valid ·F:.:· arbitrary spins) 

~ssumption !References 

AXiomatic I 7 

28 

29 

AXiomatic 28 

30 

Axiomatic 29 

Mandelstam 31 

32 - 34 

,__ _______ ··---------------'----......!.----'""" 

T A B L E I 

Upper Bounds 

.. 

I 
f~. 
I 
,\ 
\. 

'i_~( 
.. } 
l 

1\ssumption References 

[= ,,- l' -J] d log A (s t) I > ~ total None 35 at s ' 9 - ha 1 t=O e 

d 
< C(log s) 2 at log A

8
(s,t) I AXiomatic 30 

t .. o ' 

II 

11 IF(s,cosa 
2 

I d coso 
-1 

+ 0 

IF(s,_cos =ll F AXiomatic 36 - 37-

I f~ A8 (s ,coso •l) > C/log s I l 
·- -

TABLE II 

Diffraction Peak 



. 

Elastic cross-section 
( )2 

> c 
a total 

a 
(log s) 2 el 

Forward amplitude (strict for complex SJ 
average sense for 
real s) -

a) IF (s, t=O) I> l/s2 

(no unphysical cut). 

a total> l/(s6log2s) 

b) if F (threshold)< 0 or is small as 

compared to an integral over total 

cross-sections at low· energies only 

IF(s,t=O)I> const > 0 

a total > l/(s2log2s) 

-

Fixed an~le amelitude 

IF (s ,cos a ) I > exp- Is log s c(e) 

c (a) for small a .IV 16 

Form· factors 

IF (t) I > exp-C rrt1 

Fixed t amelitude t< 0 

IF(s,t) > s-N 

F1»ed u arnE 1tude u <o 

IF(s,u) I > s-N 

if pole at u=M2 
....__-

TABLE III 
Lower Bounds 

I 
Assumption References ; 

Axiomatic 38 
I 

Axiomatic 28 

1\xiomatic 28, 39 

~iomatic 

~andelstam 40 

I 41 

· 1\xiomatic 42:, 2:7 

Axiomatic 

Slightly 43 
more than 
axiomatic 

.. 

'I· 

;t. 

Fit;ure Captions 

1. Locical map of "Fundamental" concepts. 

~ 

Continfous lines represent inferences, broken lines indications. 

Topics surveyed in this report are indicated by double lines. 

2. Values ~f the momentum transfer variable t for which dispersion 

relations· are proved in 1(- Jt scattering. 

3. The shaded region is the real trace of the analyticity domain of the 

~ rr- ~ scattering amplitude. Within this region the cuts are ala 

Mandelstam. The dashed curves are the boundaries of .the Maridelstam 

double spectral regions. 

4. Analyticity domain for 1T -Jt scattering partial waves. The thin 

neighborhood of the positive real axis is not drawn to scale. 



DISCUSSION OF FROISSART'S PAPER: "FUNDiUffiNTAL THEORETICAL. QUESTION" 

.NAUENBERG (SLAC)~ Could you give some more details on what results have 

been obtained about Regge behavior from fundamental assumptions? 

FROISSART: From the fundamental side I haven't drawn any continous arrow 

on the map. There are some inequalities which have been proved to hold 

asymptotically, and which are consistent with Regge behavior, but I don't 

thin!~ that anything mot:e detailed has been proven. 

SUDARSHAN (Syracuse): It was my_ impression that you had said that Borchers 

had proved· something aboui: the connection between local observables and. 

the exis-tence .of a vacuum. 

FROISSART: Yes; the proof suffers a little technical difficulty now, but 

I don't think it's very essential. Modulo such technical difficulties, he 

proves that in a theory of local observables there exists a vacuum state 

which has all good properties. 

SUDARSHAN: I must have been misunderstood. If you took a free field, 

a lHck polynomial of second <iegree as Wightman and other people have done, 

then the states of this part!cular system split into two classes, those 

.. 

"t· 

corresponding to an odd number of particles of the original field, and 

those corresponding to an even number of particles. If you consider that 

particular subset of states which consists only of odd numbers of parti-

cles of the original free field, the new field we have introduced seems 

to be able to connect only to other odd numbers of particles. In such 

a theory there seems to be no vacuum at all, and I don't quite understand 

how one could have proved the existence of a vacuum. This is a free 

field the~ry; there are no divergences of any kind. 

FROISSART: The idea of Borchers is very simple. You start by taking any 

state, and then you essentially average out over the whole space j 

'to s~~ ~~-~ 
that is 

1 
if there are any p,articles iffiae J 0" • erase eal! tl: • sr t •• ald 

txaualatehit!Ji4 then these particles shd'uld not contribute at all to the CV.'fA-"0"-

state.. That{s the es.sence of Borchers' proof. I dfO~ know which of 

the axioms the phenomena you are mentioning contradict, 

SUDARSHAN: 
I 

This assumes that there exists a discrete ma$s spectrum of 

the field? 

WIGH1}~: (Princeton) May I comment on that? The point is that Borchers 

is using a definition of phy~ical equivalence which is appreciably weaker 



for the proof of Pomeranchuk 1 s theorem.) Th; advantage of such. a method 
than thai: to which many people are accustomed, so that he would not have 

results from the fact that it applies to production amplitudes too (cf. 
to assume that there was, a priori, a discrete point in the spectrum. .. 

Logunov's report at the 12th International Conference on High Energy 
He wou1d count tWa theories equivalent if they give arbitrarily close 

Physics, Dubna, 1964). 

results for all measu~ements in bounded regions of space time. Presumbly 

~(Maryland): Could you extend the rem.~rks you made about going from 
he will fake your example and prove it equivalent to another example in 

the local observable theory to field theory, that is, the possible exis-
which there was a vacuum state but only in this weak sense. However, it 

)\_, 

tence of fields once you have the local observable theory? 

-has to be said that this weak sense is a very physical sense, because it 

FROISSART: This is not really a rigorous connection. You have a number 
corresponds to measurements in actual laboratories as best we know how 

~L 
of stages of • theory. You have first the theory of local observables. 

to describe them. 

Then you have fields a la Borchers, that is, things which are defined in 

TODOROV (Dubna): I would like to make the following remark, concerning 

the whole space but which are not quite local. They have some finite 

the derivation of Pomeranchuk' s the-orem. 

range, arbitrarily small, but finite. Otherwise, they enjoy all the 

It is not necessary to utilize the far non-trivial results of Bros., 

properties of fields. They you have fields a la Jaffe, where the fields 

Epstein and Glaser about the analyticity domain of any o~o body scattering 

are local but are not distributions. They are generalized :unctions of 

amplitude in order to prove a Pomeranchuk type theorem for it.· It is 

a higher order. Arid then you have fields : la Wightrnar. where the fields 

sufficient to take into account the analyticity properties of the so called 

are distributions. Now, the step which has been acco~plished is to shew 

asymptotic amplitude, introduced by Meiman (1964). (The exact conditions 

that local observables imply the existence of fields ! la Borchers. Also, 

under which the physical amplitude has the same high energy behavior as the 
~ ~ Jaffe has proved that fields a la Jaffe are just as good as fields a la 

asymptotic one practically coincide with the smoothness assumption needed 



Wightman for all practical purposes. So, we only have to cross now the 

gap between Borchers and Jaffe. 

LICHTENBERG (Ind~a?a): Could you write do1m some of the asymptotic theorems 

that l!artin.has proved recently? 

FROISSAR'F: No new asymptotic theorems have been proved since the Dubna 

Conference. The only refinements which.have been proved is that the 

total cross sections are bounded sO~· that the constant in front of the 

2 
(log) term is now known for 'I( 1{, 1( K, and KK scattering: 

crtot < 4 

2 
ml{ 

s 5 !o..<.c-& 

log2 <fifo> 

We still don't; know ~!· For the case of 7l.N scattering the coefficient-

is 121( /m;{, See Tables I through III. 

LOGUNOV (Serpukhov): t~hat behavior at infinity of the form factor was 

assumed in the work of Jaffe in order to get the l~ver bound? 

FROISSART: He did it using his theory, with generalized functions of a 

higher order. See References 4 and 27. 

.!lliill! (Berkeley): Does the analyticity domain established by Martin suffice 

to allow the definition of the Froissat't~ribov continuation in angular 

momentum for large angular momentum? 

.. 

~:~ 

FROISSART: No, -i.t does not go to infinity. 

~(CERN): The only result on the Froissart-Grtbov continuation is that 

you can do it fat: .any s which is inside the region of analyticity. (see 

Fig. 2) Of course, thaits quite ·obvious because then you have dispersion 

relations with two subtractions. But for physical energies I have nothing 

at all. 

~(Cambridge): Could you comment on what has been done on the relation 

s (~· 

bebveen spin and statistics. in #~matrix theory in the past avo years? 

s 
FROISSART: The relation beoveen spin and statistics in f·matrix theory 

is largely a matter of semantics because the arguments on analyticity are 

not very well -standardized. The question is better understood now in 

that we see better how this relation comes about but it is very hard to 

8 
say what has been derived and what has not been derived in ;-matrix 

theory, in the sense that some authors take as postulates other authors' 

theorems, and conversely. The connection beoveen spin and statistics has 

bee·n proved now for four years by Stapp, using quite a number of axioms. 

Nmv, one by one these axioms have been removed but the seam is not com-

pletely tight, I would say • 



~(Berkeley): I think it's been proved now, on the basis of some 

well-stated assumptions. IVe know what we're assuming and we know what we 

can prove. The assumptions, aside from unitarity and cluster decomposition • 

that go into it, are roughly as follows. One assumption is that the pole 

singularit;i.es lfhich are usually associated with one particle exchange 

diagrams do not lie on top of other poles. We start with the assumption 

that all the singularities are associated with Landau diagrams, and tn '\'c 

you assume that there are no accidental singularities lying on top of 

the singularities associated with one particle exchange diagrams, which 

are also poles: You furthermore assume that·the pole factorization property, 

which has"been established in the physical region, just on the basis of 

unitarity and cluster decomposition and the i £ prescrip-tion associated with 

causal behavior, holds everywhere. Then you can actually derive the analy-

ticity property that you need to prove the connection between spin and 

statistics completely on the mass shell. Some-progress has been made in 

proving these from analyticity and unitarity but that has not yet been 

carried out. 

~(Princeton): I want to comment on the connection between spin and 

statistics for local observables. It has not been proved, up to now, 

for the particles· connected with fields ~~~-la Borchers," and it's a 

challenge for everybody. The TCP theorem has recently been proven by 

6 
Epstein -under the frame·work of local observables, but only for the 

s 
--matrix. 

BLOKHINTSEV (Dubna): Prof. M. Froissart included in his diagram "the. 

Field Theory." This gives me the-opportunity to attract your attention 

to the work concerning non-linear field theory done by B. Barbashev and 

N. Chernicov (Dubna). About thirty years ago M. Born and L. Infeld 

.q, 
developed non-linear field' theory. The scalfr field of the Born-Infeld 

Lagrangian is L = J 1 - ( '()q> ) 
2 + {~ y 

ut ;>x 
and coincides with the 

Lagrangian for the "soap film" in Minkowski space. They obtained an 

explicit and rigorous solution of the quantized non-linear equations 

corresponding to this Lagrangian. Instead of x and t, they use the 

variables o<. , (3 which only asymptotically coincide with x-t and x·+ t; 

~,.,~., 

but-for small x, tro<. and (b are quantum operators, so that space and tine 

are automatically quantized ln the region of high non-linearity. This result 

seems to be very instructive from the mathematical point of view. 
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