


FUNDAMENTAL - THEORET ICAL

QUESTIONS

Intrgduction

Before reviéwing for you the main fields of activity regarding Ehe
fundaments of theory, let me show you a map (Fig. 1) of the different
légical connections among these fields, because, judging from the attendance
fo the discussion sessions, I presume that many of you are not quite as up
to date as they prehaps mightkbe.

I have drawn a boundapy‘separating the results relevant to off-mass
shell theories or field theories in a generalized sense, and the on-mass-
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shell results or f-matrix theory results. Ideally the basic éxioms should
be immediate ;ranslations of our experience. \A very attractive set would be
Lorentz invariance, causality and unitarity. The trouble is that the on}
tractable form of causality up to recently was through loca;ity, which had

to be formulated in terms of fields. Hence the very prominent role of

field theory up to this day in our understanding of the microscopic world.
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7 Mava stress also the importance of the succe§§ kaQuantum Eleptrodynamics.'
as a reason to stick to field theory. ﬁowever; in view of .the very singular
unature of fields, it ﬁas been thbught wiserto4dism1§s the idea offfields and
to.considgr onl} integrals of fields, ovér regions of space time. This
led to the'theory of local observables.
Most'experimentalists‘are really interested only in knowing what happens
‘ §n the mass sﬁell. This has put a hgaQy burden on the theorists. Field
- theory gave the dispersion relations, and a small domain §f analyticity in
momentum transfer (Lehmann ellipse). When combingd with unitarity, the;e
results furnished bounds and relations on the asymptotic behaviour of the
ampiitude. From then on, everything was until recently a matter of sophis-
tiéated guess. Mandelstam started the game by proposing a certain domain
of analyticity compatible with perturbation theory to 4th order and

e
dispersion theory. Then came different hypothes#s: Maximal analyticity,

4

Regge pehaviour, bootstrap.

%

Field Theory
The main effort in field theory has been devoted to the study of the
4 (Rjoone)
mathematical structure involved! It is interesting to note that a number
of tools have been developed, which are useful both‘fof field theory and -
for,sﬁatistical mechanics. The reaspn for this 1s clear: one has to do-in
both cases with systems with an 1nf1n1te_number of degrees of freédom. A
verf 1nteresting example of the mathematical complications involved in
' 2
the simplest cases has been discussed by Prof. Thirring in connection with
the B.C.S. theory of superconductivity. Although the model used is exces =
sively simple an&»explicitly solvable in the case of a .finite number of
degrees of freedom, the passage to the limit exhibits a nuﬁber.ofrunexpected
features, among which the fact that some products of operators have a limitr.
different from the product of the limits.
To sFudy this kind of mathematical trouble, Jaffe.ﬁnd Lanford3 have
built model field theories with an artificially;liﬁited‘nﬁmber of degrees
of freedom. The object is to see which quantities have any qhaﬁce of -

keeping a meaning as the cut-pffs are removed. In an effort to remove

the limitations imposed by the assumption of the existence of fields, and



- considering that the phenomena.of ultraviolet divergenée might make the

4

,fiel&s more singular than they are usually assumed to be, Jaffe has also

‘developed a formglism capable to accomodate some non-renormalizable theories.

. 1& appears that all résulté obtained up to date in conventional fielditheory
tho;d true in thié new Qersibn, except for the asymptotic behaviour at high
énérgy: Conventional dispersion relations may be proved, but might need

an. infinite number of subtractions, if it were not for the results qf Martin
which we sha;l discuss.

Much‘wprk has been devoted to éhevstructure of the theory 6f local
obse;vablés, Iiunderstané that only technical difficult#es prevent
ﬁbrches,from dégiving a concept very close tothat of fields, even unob~
7 servable charéed fields, f?om the theory of local obgervableg. ﬁﬁste1n6
has'élready proye& the TCP theorem in this theory.

Analyticity on the mass-shell

A sequenée of very important results has broadened conéiderably the
bridge between field theory and g-matrix theory. The papers of Bros,

Epstein, and G1aser7 have generalized the concept of crossing to all two=

body amplitudes, whether dispersion relations are proved or not. Also,

e i

an

s e
AL s S

they have shown. that the two-body amblitudes are all analytic in some small
neighborhood of the physical region, this analyticity being in both

variables s (energy variable) and t (momentum transfer variable).

Using this information, the known ‘dispersion relations, and unitarity,

8 - . ’
Martin has been able to prove a very large number of results. In view of

the importance of this work, let me go a little into the scheme of the proof.

We start from a conventional dispersion relation.
At = _JA () & J"\_u_b*_iér + Subuackions
TR (sCs) W' w)

Unitarity is used then under the following form:

‘c(“’;{a_)

ﬁl(s) > 0, and all derivatives of P‘t(z)
Nt d k
This allows to expand

As(s,t): %(lhl) i—\m aqls)
with

But—in a -are positive for z» 1.

As( s, t) in a Taylor series int/and to show that
the radius of convergence is the same for all s, by interchange of the order

of integration and summation of the series. Then the dispersion relation

is valid for all values of t for which analyticity has been.prbved for

fixed s. Typical values are:? TR It} < 4'm%
KM |t]< 4 g
K lt1<4md
..:'A 2
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The facF that the dispersion relation stayé valid as iﬁ‘is written lead;'
‘to the consequence that in thede regions, thé asymptotic behavio;~is nearly
the samé as in the forwardvdirection. Hence, By an'almost c;rcular'argu-
ﬁent}using gnitgrity;kone deducesithat, even with ‘dispersion relations

2 la Jaffe--with an.infinité:numﬁer bf éubtractions--to startiwith, the
béhavior oAf the amplitude is 8 ln% s, therefore the dispersioﬁ relations
ére vélid with leubtraq;ions. An interesting fe;ture is that the reason~

_ ing can be started again from the domain of analyticity just found, and a

larger domain is obtained. 'The result for Wq scattering is represented

on Figure 2. The same operation can be pefformed for { K and 7 N scattering.,

The domain obtained in the lagter case goes to larger.valués of ~t than

was proved in the classical proofs of dispersion relation, More work can
undoubtedly be done, by using, in the T case, the domains obtained in
the‘three channels, and finding their holomorphy envelope. To date, the
Jreal part of the analyticity domain is given approximately by the cuts and

region

the dashedAof Figure 3. That is, it goes to the double spectral region
except for a few cases. This gives-a reglon of analyticity for the partial-
wave amplitudes indicated on Figure 4., Possible singularities are far

enough as compared, say to the mass of the)o meson, so that calculations

neglecting far away singularities may be justified.

LY

On-Mass-Shell Causality

Much work is also devoted to get rid of the circuitous--and not
completed-~ logical path connecting causality to analyticity. Many people
think that an axiom like that of locality is probably as unphysical as an
axiom of analyticity, in the sense that it can only be checked indirectly

10,11
through its consequences, As Blokhintsev points out, it is quite
feasible to build theories/@hich are non local on the microscopic scale,

but which exhibit gross éausality. These theories might perhaps only be

distinguished by additional singularities. The works of the "Cambridge

12~
and others «:Lf -
School” - ave shown that an assumption of analyticity of

the amplitude In some neighborhood of the physical region, leads to
Y
20 X ’
uniquely determined singularities, and hence to the usual description of
of successive interactions in multiple scattering. These arguments use
21 .
only postulates of ¢luster decomposition and unitarity.
The work of Stapp22 assumes a weak condition on asymptotlc decrease of
transition probabilities when particles are taken away. The result is to

prove the infinite differentiability of amplitudes on the physical region

except at the points where dingularities are gxpected. A condition of



. o 23 N
exponential decrease of transition probahilities allows Omnés  to derive

J in removing the extra hypothesis such as the existence of a limit of the
a finite domain of analyticity for the 2-body amplitudes in momentum

amplitude--or at least some control over possible oscillations--on the
transfer, apart from some technical difficulties. Some other authors24 - 26 o

$

one hand, and some control over the growth of the real part with respect
have also tried to attack this problem, but without any decisive success.

to the imaginary part.
Asymptotic Theorems ‘ )

45,46
To obviate the need for these requirements, Khuri and Kinoshita ’
We can distinguish between bounds and other theorems such as the

have found a number of inequalities which, unlike ordinary dispersion
. y W,
Pomeranchuk theorem and the connections between the phase and the modulus

relations, allow one to test these ideas with measurements of the forward
s .
of the amplitude. In the first field, no new result hamm been obtained.

. ™~
real interval. The information used on the behavior

i amplitude on a finite
However, many bounds are now rigorously derived from field theory, and even ‘

}
A

from the generalized version due to Jaffe.

at infinity is the positivity of the imaginary part, and the established
This is of course due to the

; fact that there are at most 2 subtractions needed.
work of Martin., I would like to mention specially the bound on form

I would like to end by expressing my apoiogies to the many people who
i 27
factors ‘F (t_)’ > exp -»b/-t derived by Jaffe rigorously, even for the

have been treated unfairly, or whose work I have misrepresented.
cases where no dispersion relations have been proved for the form factor.

Tables ¥, 1IY, and III have been compiled by Martin, and give an up-to-date

|
S
28-43 !
account of the situation.

In the case of other asymptotic theorems, the situation is still

very confused. The Pomeranchuk theorem now holds for all processes,

44
due to B.E.G., but, as pdinted out by Eden no one has yet succeeded
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lAssumption jReferences
Forward scattering :
"IF(s,cosa=1) |< C s logz(s/so)
cr;ota1<c'log2(é/so) (arbitrary spins) Axiomatic 7
P C'< 4n/u2, u= pion mass for wy;vk, kk
c'< 121/u%  for AN 28
Fixed transfer ‘
|F(s,t)] < s(log 3)3/2, t< - <0 29
V|F(s,t)|< s27¢ 0< t< 4y 2 Axiomatic 28
JF(s,t) |< const o<t < 4u?
if |F(s,0)| <« 8B 30
‘Fixed angle ’
|F(s,cos8)] < C(s3/4(1og 5)3/2)/('/335{6) Axiomatic 29
IF(s,cos6) | < Cilog s'°/%/(sin%6) Mandelstam 31
3§ 7éi < C{log 5)3/\/{51;;1'6) s) ,
{in this form valid fuv arbitrary spins) 32 - 3%

d ' .
It log As(s,t)l < Cllog s)? Axiomatic 30

t=0

1 2
I |F(s,cos6 | d cose

-1

+ 0

" Axiomatic | 36 - 37-
|F(s,cos él)lz

%f As(s,coso =l) ;> C/log 8

Upper Bounds

TABLEIIL

4Diffraction Peak
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References ;

<A

Assumption
Elastic cross-section
2
)
a > C _f’_tio_t_gl__ Axiomatic 38
el (log s)2 '
' Forward amplitude (strict for complex 8;
’ average sense for
o :_'eal 8)
a) |r(s,t=0) |> 1/s2
(no unphysical cut)
¢ total> 1/(5610923) Axiomatic 28
b) if F(threshold)<0_ or is small as
compared .to an integral over total
cross-sections at low energies onlx' Axiomatic 28, 39
i |F(s,t=0)|> const > O Axiomatic
2 2
Teotal 1/(s"log s)r
Fixed angle amplitude
L |F(s,cos8 )| > exp~ ¥s log s C(8) ' Mandelstam 40
c(8) for small o v VB ' 41
~Form factors
,|F(£)1 > exp-C . /T—;ﬂ “Axiomatic 42, 27
Fixed t amplitude t< o
|F(s,t) > sN Axiomatic
I Fized u amplitude U <O =
~|F(s,u) | > sV slightly 43
“ more than
if pole at u=M2 axiomatic

TABLE III
Lower Bounds

£y

Figure Captions

Logical map of "Fundamental" concepts.

w .
Continjous lines represent inferences, broken lines indicatioms.

- Topics surveyed in this report are indicated by double lines.

Values of the momentum transfer variable t for which dispersion

relations-are proved in7(~N scattering.

The shaded region is the real trace of the analyticity domain of the
%

T - { scattering amplitude. Within this region the cuts are a la

Mandelstam. The dashed curves are the boundaries of .the Mandelstam

double spectral regionms.

Analyticity domain for -7 scattering partial waves. The thin

neighborhood of the positive real axis is not drawn to scale.



DISCUSSIdN OF FROISSART'S PAPER: ''FUNDAMENTAL THEORETICAL QUESTION"
QNAUENBERG (SLAC):{ Could you give some more details on what results have
been obtained about Regge behavior from fundamental assumptions?
FROISSART: From the fundamental side I haven't drawn any continous arrow
on the map. There are some inequalities which have been proved to hold
asymp;otically, and which are consistent with Regge behavior, but I don't
thiﬁk that anything more dehai}ed has been proven.

SﬁDARSHAN (Syracuse): ‘It was ﬁy»impression that you had said that Borchers
' hadlprOVed‘;qﬁething about the connection Bétween local observables and
the e#iétenée,of a vacuum.
fROISSART: Yes, the proof suffers a little technical difficulty now, but
I don't think it's very essential. Modulo such technical difficulties, he
proves that i; a theory of local observables there exists a vacuum state
which has all good properties.
_SUDARSHAN: I must hgve been misunderstood. If you took a free field,

a Wick polynomial of second degree as Wightman and other people have done,

" then the states of this particular system split into two classes, those

corresponding to an odd number of particles of the original field, and

. those corresponding to an even number of particles. If you consider that

particular subset of states which consists only of odd numbers of parti-
cles of the original free field, the new field we have introduced seems
to be able to connect only to other odd numbers of particles. iIn such
é theory there seems to be no vacuum at all, and I don't quite understand
how one could have proved the existence of a vacuum. This is a free
field theory; there are no divergences of any kind.
FROISSART: The idea of Borchers is very simple. You start by takiﬁg any
state, and then you essentially average out over the whole space §

o shant ““‘H‘l,
that is,if there are any particles h#ga:ynn:awerage—eue-ehzzstarz:nuurzzil
transtationgg tﬁen these particles shduld not contribute at all to the acwqayb‘
state§. Thatfs the essence of Borchers' préof. I d—hb; know which of
the axioms the phenomena you are mentioningb contradict.
SUDARSHAN: This assumes'thét there exists ; discrete mags spectrum of
the field?

WIGHTMAN: (Princeton) May I comment on that? The point is that Borchers

is using a definition of phygical equivalence which is appreciably weaker



than that to which many people are accustomed, so that he would not have
to Assume that there was, a priori, a discrete point in the spectrum.

He would count fﬁa theories'equivalent if they give arbitrarily close
:esu}ts for all measurements in bounded regions of space time. Presumbly
he will take your example and prove it equ#valent to another example in
whi;h there was a vacuum state but only in this weak sense. However, -it
-has to be said that this weak sense is a very ?hysical sensé, because it
corresponds to measu;ementsvin actual laboratories as best we know ho@
to describe fhem. ’

TQDOROV (Dubna): I would like to make thé following iemark, concerning
the derivation of Pomeranchuk's theorgm.

It is not neces;ary tec utilize the far non-triviél results of Bros,
Epstein and Glaser about the analyticity domain of any two body scattering
amplitude in order to prove a Pomeranchuk type theorem for it.. It is
sufficient to take into account the analyticity properties of the so called
asymptotic amplitude, introduced py ﬂeiman {1964). (Tﬁe exact conditio;s
under which the physical amplitude has the same high energy behavior as the

asymptotic one practically coincide with the smoothness assumﬁtion needed

for the proof of PomeYanchuk's theorem.) The advantage of such, a method

results from the fact that it applies to production amﬁlitudes too (cf.

Logunov'é‘ report at the 12th International C;nferencelqn High Energy

Physics, Dubna, 1964).

SUCHER (Maryland): Could you extend the remarks you made apout going from

the local observable theory to field theory, that is, the possible exis~
W

tence of fields once you have the local observable theory?

FRéISSART: This is not really a rigorous connection. You have a number

the
of stages of g theory., You have first the theory of local observables.

Then you have fields a la Borchers, that is, ;hings which are defined in
the whole space but which are not quite local. They have some finite
range, arbitrarily small, but f£inite. Otherwise, they enjoy ail the

» ?roperties of fields. They you have fields a la Jjaffe, where the fields
are local but are not distributions. lThey are generalized functions of
a higher order. And then you have fields g 1; Wightman wnere the fields
are distributions. Now, the step which has bgén accomplished is o show

that local observables imply the existence of fields : la Borchers. Also,

o .
Jaffe has proved that fields a la Jaffe are just as good as fields £ 1a



'Wightman for all practical purposes, So, we only have,tq cross now the

gap between Borchers #nd Jaffe.

LICHTENBERG (Indiana): Could you write down some of the asymptotic theorems
that Martin has proved recently?

FﬁOISSART: No new asymptotic theorems have been proved since the Dubna
Conference. The only refinements which have been prbved is that the

total cross sectioﬁs are bounded-sodn~that the constant in front of ;he

2
(log) term is now known for ®.X, xK, and KK scattering:

: 4 s 5 lstaee
Teot < -_2 log2 (#/?o)
b

Werstill don't know fg. For the case of TN sca;tefing the coefficient -

is 121(/m1€; See Tables I through III.

LOGﬁNOV (SerpukhﬁvS: What behavior at infinity qf the form faétor was
assumed in the work of Jaffe in order to éet the lower bound?

FROISSART: He did it using his thgory, with generaliged function? of a
higher order. See References & and 27.

CHEW (Berkeley): Does the anglyticity domai; established by Martin suffice

to allow the definition of theFroissart=Gribov continuation in angular

momentum for large angular momentum?

FROISSART: No, At does not go to infinity.
MARTIN (CERN): The only result on the FroissarF-Grtbgv continuation is that
you can do it for any s which is inside the region of analyticity. (see

Fig. 2) Of course, tha {s quite ‘obvious because then you have dispersion
relations with two subtractions. But for physical energies I have nothing
at all.

EDEN (Cambridge): Could you com@ent on what has been done on the relation

S “

between spin and statistics. in f-matrix theory in the past two years?

S
FROISSART: The relation between spin and statistics in §-matrix theory
is largely a matter of semantics because the arguments on analyticity are
not very well .standardized. The question is better understood now in
that we see better how this relation comes about but it is very hard to

S

say what has been derived and what has not been derived in }-matrix
theory, in the sense that some authors take as postulates other authors’
theorems, and conversely. The connection between spin and statistics has
been proved now for four years by Stapp, using quite a number of axioms.

Now, one by one these axioms have been removed but the seam is not com~

pletely tight, I would say.



STAPF (Berkeley): I think it's been proved now, on the basis of some
well-stated assumptions. We know what we're assuming and we know what we

can proVe. The assumptions, aside from unitarity and cluster decomposition

- that go into it, are roughly as follows. One assumption 1s that the pole

singularities which are usually associated with one particle exchange
diagrams do not lie on top of other poles. We start with the assumption
that all the singularities are associated with Landau diagrams, -and im

you assume that there are no'accideﬁtal singularities lying on top of

the singularities associated with one particle exchange diagrams, which

are also polesi You fufthermore assume that -the pale factorization property,

which has’ been established in the physical region, just on the basis of

- unitarity and cluster decomposition and the ig prescription associated with

causal behavior, holds everywhere. Then you can actually derive the analy-
ticity property that you need to prove the connection between spin and

statistics completely on the mass shell, Some - progress has been made in

- proving these from analyticity and unitarity but that has not yet been

carried out.

.

HEPP (Princeton): I want to comment on the connection between spin and
statistics for local observables. It has not been proved, up to now,
for the particles connected with fields "3 1la Borchers," and it's a
challenge for everybody. The TCP theorem has recently been proven by

6 .
Epstein .under the frame work of local observables, but only for the

N

#-matrix.

BLOKHINTSEV (Dubna): Prof. M. Froissart included in his diagram "thel
Field Theory." This gives me the.opportunity to attract your attention
to the work concerning non-linear field theory done by B. Barbashev and

N. Chernicov (Dubna). About thirty years ago M. Born and L. Infeld

. q/ ’ -
developed non-linear field theory. The scalgr field of the Born-Infeld

: 2

Lagrangian is L =j 1= (?{-)2 + (?—){ and coincides with the
°
Lagrangian for the “soap film" in Minkowski space. They obtained an
explicit and rigorous solution of the‘quanti;éd‘ non-linear equations
corresponding to this Lagrangian., Instead of x and t, they use the
variables A , fav which only asymptotically coincide with x=~t and x + t;
; e

but~for small x, tyok and ﬁS are quantum operators, so that space and time

are automatically quantized In the region of high non-linearity. This result

seems to be very instructive from the mathematical point of view. .
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