ОБЪЕДИНЕННЫЙ
ИНСТИТУТ яДЕРНЫХ НССЛЕДОВАННЙ

Дубна

ПОЛУПРОСТЫЕ ГРУППЫ И СИСТЕМАТИКА ЭЛЕМЕНТАРНЫХ ЧАСТИЦ

ААБӨРАТОРИЯ ТЕФРЕТИИЕТКОЙ ФМЗИКИ
(Сборник статей)

$$
R-1944
$$

ПОЛУПРОСТЫЕ ГРУППЫ
 И СИСТЕМАТИКА ЭЛЕМЕНТАРНЫХ ЧАСТИL

(Сборнии статеи)

Издявие нестоящего сборника вызваво возрастающим ивтересом к

 групповым подходам в төории элементарных частид, В сборник включен ряд новейщих стетей, относящихся как к общей теории компактных групи, так и примөнөнию невоторых из них, таких как SU(3) п SU(6), в төории элемевтарвых тастид.
ОГЛАВ ЛЕ Н Н Е

$R_{\&} E$,Behrends, J.Drelclein, C.Fronsdal and B.W.Lee, "Simple Groups and Strong Interaction Symmetries". 5
Е.Б. Дынкин "Классификация простых групп Ли" 45
A.Salam "The Formalism of Lie Groups" 51
S.Okubo "Note on Unitary Symmetry in Strong Interactions. I" 75
S.Okubo "Note on Unitary Symmetry of Strong Interaction. II". 93
F.Gứrsey and L_A.Radicati "Spin and Unitary Spin Indepen- dence of Strong Interactions" 102
AdPals. "Implications of Spin-Unitary Spin Independence" 10.4
F.Gǘrsey, A.Pais and L_A.Radicati "Spin and Unitary Spin Independence of Strong Interactions" 107
T.K.Kuo and Tisu Yao "Mass Formulas in the SU(6) Sym- metry Scheme". 110
Ma.B.Bég and V.Singh "Splitting of Spin Unitary Spin Superm multiplets" 113
MoA.B.Bég and V.Singh "Splitting of the 70 -plet of SU(6)" 117
M.A.B.Bég, B.W.Lee and A.Pais, "SU(6) and Electromagnetic Interactions". 119
MGell-Mann "A. Schematic Model of Baryons and Mesons" 123
MoGell-Mann "The Symmetry Group of Vector and Axial Vector Currents"。 125
RaPsFeynman, M.Gell-Mann, G.Zweig "Group U(6) xU(6) Generated by Current Components". 138
K.Bardakci, J.M.Cornwall, P.G.O.Freund and B.W.Iee "Intrin- sically Broken $U(6) \times U(6)$ Symmetry for Strong Interactions" 141
W.D.McGlinn "Problem of Combining Interaction Symmetries and Relativistic Invariance ${ }^{H}$. 145
A.Salam "On the Algebra of $\mathrm{SU}(6)$ " 148
RoDelbourgo, A.Salam, J.Strathdee "The Relativistic Structure of $\mathrm{SU}(6)$. 152
R.Delbourgo, A.Salam, J.Strathdee ${ }^{(U S(12)}$ and Broken SU(6) Symmetry ${ }^{\prime \prime}$ 166
R.H.Dalitz "Properties of the Weak Interactions". 174
Я.A. Смородинскй "Унхтарная спмметрия элементарных частни" 2.79

Simple Groups and Strong Interaction Symmetries*

R. E. Behrends, \dagger J. Drettlein $\uparrow \ddagger$ C. Fronsdal, \& and W. Lee $\|$
Universily of Pennsyloania, Philadelphia, Pennsylvania

CONTENTS
Introduction
I. Symmetries of the Lagrangian 3
II. Lie Algebras of Simple Groups 4
III. Representations of Lie Algebras 7
A. General Properties of Representations 7
B. Characters of Representations of SU_{2} 9
C. Characters of Representations of G_{3} 9
D. Characters of Representations of C_{2} 10
E. Synthesis of Representations of Lie Algebras. 10
F. Matrix Representations of SU_{3} 13
G. Matrix Representations of C_{2} 15
H. Matrix Representations of G_{2} 16
IV. Composition and Decomposition of Lie Algebra Representations 16
A. Geometric Characterization of a Representation 17
B. Algebra of Sets of Points. 17
C. Construction of Weights and Multiplicities of Irreducible Representations 18
D. Reduction of Direct Products of Representations 19
V. Tensor Analysis of Simple Lie Groups 20
A. Groups $S U_{m}$. 20
B. Group SU_{3} 22
C. Group $C_{2}\left(B_{2}\right)$ 24
D. Group G_{2} 26

[^0]VI. Applications 28
A. Introductory Remarks 28
B. Analysis of Invariant Amplitudes 29
C. Resonances and Mesons. 31
D. Model Built on $S U_{8}$ 32
E. Model Built on C_{2} 34
F. Model Built on B_{2} 36
G. Model Built on G_{2} 38

INTRODUCTION

ONE of the most natural questions when one looks at the mass of uncorrelated data on elementary particle interactions ${ }^{1}$ is whether a systematic pattern is emerging from this complexity. The penetration of controlled laboratory experiments into the multi-Bev energy region can only make such a question more acute. Several attempts ${ }^{2}$ have already been made to unfurl the underlying symmetry of strong interactions, such as might exist above and beyond those symmetries, e.g., isotopic symmetry, ${ }^{\text {b }}$, which have already survived experimental tests.

In this article, we sharpen some tools which prove useful in formulating the consequences of proposed symmetries of a rather special type, namely, those symmetries which are characteristic of the simple Lie groups. Since it is as yet too early to establish a definite

[^1]symmetry of the strong interactions, both because of the lack of experimental data and the theoretical uncertainties about the way in which the symmetries will manifest themselves, the formalism developed is left quite flexible in order to accommodate a wide range of conceivable symmetries.

Much of the material is an exposition of the theory of Lie groups and, although most of the results have been known for many years, several new features appear. Thus the material on the composition and decomposition of Lie algebras by point set theory, the explicit construction of the Lie algebras, the tensor analysis of the groups B_{2} and G_{2}, and the possible physics associated with the group B_{2} is believed to bo novel. A large portion of the remaining material is possibly unfamiliar to many physicists (as it was to us), and so is pedagogical in nature. Although the discussions are directed primarily to applications in elementary particle physics, many of the techniques have been used before in group theoretical treatments of atomic and nuclear spectroscopy.*
An admirable summary of the elementary properties of semi-simple Lie algebras is contained in the lecture notes of Racah, ${ }^{\text {s }}$ which treat both the classification of semi-simple groups, following Cartan, ${ }^{6}$ and their linear representations. A complete and rigorous derivation of the properties of semi-simple Lie algebras can be found in the work of Dynkin, ${ }^{7}$ while Weyl's original work ${ }^{8}$ remains the standard reference on the representation theory of semi-simple groups. For the tensor analysis associated with particular groups and with the Young tableaux, Weyl's Classical Groups and Group Theory and Quantum Mectanics ${ }^{10}$ is recommended. We assume that the reader is mildly conversant with the group theoretical treatment of angular momentum as given by Wigner, ${ }^{11}$ for example. Finally, momentum as given by ${ }^{\text {wigner, }}$ give various references ${ }^{12}$ to the basic mathematical literature.

[^2]As far as the physical application of the group theoretical methods is concerned, we are immediately faced with the problem of justifying the specific course which we pursue in attributing symmetries to strong particle interactions. The hope that symmetries exist, other than those associated with space-time structure, is kindled by the observation that some such "internal" symmetries are already apparent. First of all, charge independence has so far run the gauntlet of experiindependence has so far run the gauntlet of experimental tests ${ }^{18}$ and has become a commonly accepted symmetry. In addition, a second kind of symmetry,
slightly more mysterious than the former. is afforded by slightly more mysterious than the former. is afforded by
the electrodynamic ${ }^{14}$ and weak-dynamic equivalence ${ }^{15}$ the electrodynamic ${ }^{14}$ and weak-dynamic equivalence
of the muon and electron. Both of these symmetries of the muon and electron.
call for a closer discussion.

It is well known that particles belonging to the same isotopic multiplet exhibit a remarkable similarity in their strong-interaction dynamics. Differences in behavior and in mass of isotopic spin multiplet members are quite naturally attributed to the charge-dependent electromagnetic interaction, which acts as a weak perturbation on the strong-interaction dynamics. Indeed, the breakdown of isotopic symmetry is evidenced in the high Z nuclear species where the coherent Coulomb field no longer can be treated as a perturbation. By analogy, we may conjecture that a basic symmetry exists among, say, baryon-baryon interactions, but that the full force of this symmetry is diluted by a relatively weak symmetry-breaking interaction. The answer to the question under what circumstances will the symmetry-masking interaction be minimized?" is not yet clear, since the answer undoubtedly depends on the specific nature of the symmetry-breaking interaction. Of course, the latter interaction would most likely, produce the baryon mass differences besides its other effects.
In the case of the dynamic symmetry of muon and electron, no interaction is known which can serve to
of baryon mass differences, just as is the case with muon and electron interactions.
In summary, we are unable to give any a priori justification for the existence of strong interaction symmetries, but share the widespread feeling that such symmetries are plausible and not entirely unprecedented.
In Sec. I, the embryonic elements of the application of symmetry considerations to elementary particle interactions are presented to motivate physically the following sections. Section II is devoted to a necessarily abbreviated form of the theory of Lie groups, in which an attempt is made to appeal as much as poesible to a physicist's intuition. There then follows (Sec. III) the properties and the construction of linear representations of Lie groups, of which it is hoped that elementary particles provide an instance. The next two sections (Secs. IV and V) solve the problem of finding certain properties of the Lie algebra representations, in particular, the "weights" of the representations and the decomposition of direct products of representations (generalized Clebsch-Gordan series). Two approuches are employed; one predominantly geometric (Sec. IV), the second predominantly algebraic (Sec. V). Section V is essentially the tensor analysis associated with simple groups. All roads lead to Sec. VI which is concerned with physical applications of the mathematical complex of the previous sections. From this summit, we briefly view the expanding vistas of possible strong interaction symmetries.

I. SYMMETRIRS OF THE LAGRAKGIAN

The basic idea behind Heisenberg's introduction of the concept of isotopic spin ${ }^{8}$ was the realization that the neutron and the proton are, after all, quite similar. The differences in mass and in electromagnetic interactions are small in the context of the strong interactions. The fact that only two baryons were known led unambiguously to the assignment of a doublet structure to the "nucleon." Lster, when strange particles were discovered, these were found, as is reflected in the name, to have properties so widely different from the nucleons that the assignment of the proton and the neutron to a doublet was retained without question. When one attempts to introduce symmetries which treat particles of widely different masses as states of the same field, however, it is not wise to be so categorical about the number of particles to be included in the schbur the number are made in the last section; for the present let n be the number of baryons treated as states of the same field, .e., as belonging to the same supermultiplet. A favorite choice for n is 8 , if all the observed baryons are included. ${ }^{16-18}$ It could be less than eight if the baryons
${ }^{11}$ R. E. Behrends and D. C. Peaslee, reference 2.
${ }^{17}$ T. D. Lee and C. N. Yang. Phys. Rev. 122, 1954 (1961).
${ }^{4}$ M. Gell-Mann, Phys. Rev. (to be published).
separate into two or more supermultiplets, ${ }^{18}$ or it could be larger than 8 if some hypothetical baryons not yet discovered are included.
Let $\psi_{a}, a=1,2, \cdots, n$, denote the n-component Let $\psi_{a}, a=1,2, \cdots, n$, denote the n-component
baryon field, where each component is a Dirac fourspinor, and let $\psi^{2}=\psi_{a}{ }^{\dagger} \gamma_{4}$. The free Lagrangian is

$$
\mathcal{L}_{0}=\left(\frac{1}{2_{i}}\right) \sum_{a=1}^{n} \bar{W}\left(p-i m_{0}\right) \psi_{0} .
$$

In the introduction we mentioned several different points of view, according to which the masspdifferences may be argued to be nonessential in the first analysis. When the n masses are put equal, $m_{1}=m_{2}=\cdots=m_{n}$,
\mathscr{L}_{0} is invariant under a set of linear transformations, acting on the set $\psi_{a}=\left\{\psi_{1} \cdots \psi_{m}\right\}$. In fact, let $U_{a}{ }^{b}$ be a acting on the set $\psi_{a}=\left\{\psi_{1} \cdots \psi_{n}\right\}$. In fact, let U_{a}^{b} be a
square $n \times n$ matrix, and consider the transformation

$$
\begin{aligned}
& \psi_{a} \rightarrow \psi_{a}^{\prime}=U_{a} \psi_{b} \\
& \Psi^{*} \rightarrow \Psi^{\prime}=(U \psi)^{+a} \gamma_{4}=\psi^{b}\left(U^{\prime}\right)_{b}{ }^{4}
\end{aligned}
$$

Clearly, \mathscr{L}_{0} is invariant if and only if U is unitary, i.e.,

$$
\left(U^{\prime}\right) \varepsilon_{e^{e}}(U)_{e}^{b}=\delta_{a}^{b} .
$$

Hence, in matrix notation

$$
\begin{equation*}
\psi \rightarrow U \psi, \quad \Psi \rightarrow \nabla U^{-1}, \quad U U^{\prime}=U^{\prime} U=1 . \tag{I.1}
\end{equation*}
$$

The set of all $n \times n$ unitary matrices forms a group. ${ }^{20}$ That is, if U, V are unitary, so are $U V$ and U^{-1}. Hence \mathcal{L}_{0} is invariant under the group of unitary transformations (I.1). This group contains an invariant subgroup, which is usually called the baryon gauge group. Any unitary matrix U may be written

$U=e^{i} \mathcal{H}$,

where φ is real and \mathfrak{u} is unitary and unimodular:

$$
\begin{equation*}
\text { นเน }=\text { นu }^{\dagger}=1, \quad \operatorname{det} น=1 . \tag{I.2}
\end{equation*}
$$

Invariance under the gauge transiormation, represented by the factor $e^{i p}$, corresponds to the conservation of baryons. This conservation law is taken for granted, and it is therefore unnecessary to include the gauge transformations in our analysis. From now on we deal with transformation matrices that are unimodular as well as unitary. The set of all such matrices forms a group ${ }^{2}$ which is denoted δU_{n}.
In general, the interaction between the fields will break part of the symmetry of the free Lagrangian. Invariance under δU_{n} represents the maximum symmetry between the n baryons, and any group of transformations admitted by the fields in interaction is a subgroup of δU_{n}. In order to explore, in a systematic manner, the various groups of interest, it is helpful to review some topics from the theory of Lie groups. The basic concepts of the theory of Lie groups and of their

WR. E. Behrends and A. Sirlin, Phys. Rev. 121, 324 (1961). This group is called the switary group $U_{\text {. }}$.
representations are reviewed in the next two sections Before that, however, we say a few words about the problem of writing down interactions. It is convenient to deal with a simple specific example only, without any implication that the problems and their solution are peculiar to this case, or to this point of view. By way of an example, let us treat the ciase of a Yukawa type interaction, invariant under SU_{8}, between the 8 baryons and a number m of bosons. The interaction Lagrangian is of the form

$$
\mathcal{L}^{\prime}=\nabla^{a}\left(\Gamma_{d}\right)_{a} \psi_{b} \varphi^{\sigma},
$$

where the sum over σ runs from 1 to m. The φ^{s} may or may not transform under δU_{8}, but once the trar. formation character of the φ^{σ} is fixed, generally it is not possible, to find matrices $\left(\Gamma_{\sigma}\right)_{a}{ }^{b}$ such that \mathcal{L}^{\prime} is invariant. In order to answer questions of + lis kind, it is necessary to know the theory of direct products and reduction of representations. This is taken up in Sec IV by one method, and in Sec. V by another. The answer, in the special case mentioned, is that ther exist matrices $\left(\Gamma_{\sigma}\right)_{a}^{b}$ that make \mathcal{L}^{\prime} invariant in two cases only. Either all the φ^{σ} are invariant under δU_{8} or there are at least 63 of them. ${ }^{2 z}$

II. LIE ALGEBRAS OF SIMPLE GROUPS

An important tool in the study of groups is the concept of an infinitesimal transformation. Since \mathcal{U} is unitary, it can be written $\exp \left(i \epsilon^{A} L_{A}\right)$ with L_{A} Hermitian, where the ϵ^{A} are a set of real continuous parameters. ${ }^{23}$ For an infinitesimal transformation the exponential may be approximated by ${ }^{24}$

$$
\mathcal{L}=\frac{1}{2}+i \epsilon^{A} L_{A},
$$

$$
\psi_{a}^{b}=\delta_{a}^{b}+i \epsilon^{A}\left(L_{A}\right)_{a}^{b} .
$$

(II.1)
or
The set of linear combinations, with arbitrary complex coefficients, of the Hermitian matrices L_{A}, associated with the transformations \mathcal{U}, form the Lie algebra of the group. The $\mathcal{U}_{0}{ }^{b}$ determine the $\left(L_{A}\right)_{d}{ }^{6}$ uniquely, and the converse is almost true. In fact, the- L_{A} determine the u up to a discrete set of transformations which commute with all the $\mathcal{U} .{ }^{25}$ We have taken \mathfrak{U} to be unimodular, and this requires L_{A} to be traceless:

$$
\left(L_{A}\right)_{a}^{s}=0
$$

(II.2)

According to the fundamental theorem proved by Lie and Engels, ${ }^{12}$ the structure of the group is completely specified by the commutation relations among the

${ }^{2} \mathrm{D}$. Speiser and J. Tarski (to be published).

n Unitarity of 4 requires the ($e^{-} L_{A}$) be Hermitian; sometimes we shall use non-Hermitian L_{A}, in which case it is implied that the
${ }^{A}$ have appropriate reality properties. an For a more complete discussion see Casp. L. S. Pontriagin, reference 12, Chap. IX, Sec. 54. In the
case of $S U$, for example, we find that it has the same Lie algebra as the three dimensional rotation group R_{3}, altbough the two groups differ in that a rotation by $2 x$ is the identity transformation in R, while it is -1 in δU_{2}
generators L_{A} of infinitesimal transformations,

$$
\begin{equation*}
\left[L_{A}, L_{B}\right]=C_{A B}^{D} L_{D} \tag{II.3}
\end{equation*}
$$

where the $C_{A B}{ }^{D}$ are called the structure constants and satisfy the conditions

$$
\begin{equation*}
C_{A B}^{D}=-C_{B A}{ }^{D} \quad \text { (Antisymmetry) } \tag{II.4}
\end{equation*}
$$

$C_{A B}{ }^{E} C_{E F}{ }^{\sigma}+C_{B H^{R}} C_{B A}{ }^{\circ}$
$+C_{F A}{ }^{8} C_{B A}{ }^{G}=0 \quad$ (Jacobi identity).
Many different sets of matrices may be found that satisfy the same commutation relations (II.3), with the same structure constants. Such matrix sets may be regarded as different realizations (or representations, see next section) of the same set of abstract operators. The latter, whose only properties are the commutation relations, is designated by a caret, as $\boldsymbol{H}_{\boldsymbol{i}} \hat{E}_{\text {o }}$, etc., in relations, order 1 liza particular realization

A group is simple if it has no invariant subgroups ${ }^{20}$ except the unit element. A group is semi-simple if it has no Abelian (commutative) invariant subgroups. We have disposed of an Abelian invariant subgroup which is the baryon gauge group at the beginning. The distinction between groups which have Abelia invariant subgroups, and those which do not, rests upon the fact that the Abelian subgroups are most troublesome to handle from the viewpoint of represertations. ${ }^{27}$ We therefore restrict ourselves to the study of simple groups. ${ }^{28}$ There are certain cases of simple or semi-simple groups with discrete trans formations added, such as that discussed by Lee and Yang, ${ }^{17}$ which have equal claim for attention, but these are not discussed in this paper.
It is worthwhile to draw an analogy between the possible symmetries of elementary particles and the three dimensional rotation group in ordinary quantum mechanics. ${ }^{11,22}$ In quantum mechanics, one observes that when the potential is spherically symmetric the angular-momentum operators, which are the generators of infinitesimal rotations, commute with the Hamilton. Since the three angular momentum operators do can diagonalize only This is a linear operator, and so the eigenvalue of H_{1}

[^3]for a compound state is the sum of the eigenvalues associated with the component states (to be contrasted with the properties of L^{2}, say)
The conservation of the additive quantum numbers charge and strangeness ${ }^{30}$ (or, equivalently, the third component of the isotopic spin and the hypercharge) in strong interactions is so well established that any group of practical interest must contain at least two commuting linear operators whose eigenvalues are the isotopic spin and the hypercharge. Let us denote these two operators by H_{1} and H_{2}. Since the group is assumed to be the group of the Hamiltonian, i.e., every element of the group commutes with the Hamiltonian, one can diagonalize H_{1} and \boldsymbol{H}_{2} simultaneously with the Hamiltonian, so that the eigenstates of the Hamiltonian have definite eigenvalues of H_{1} and H_{2}, proportional to the J_{3} and hypercharge quantum numbers.
The number of mutually-commuting linear operators ${ }^{38}$ is called the rank of the group. Hence the rank of the three-dimensional rotation group is one. If the rank of the group is larger than two, there exists at least one more operator, H_{3} say, which commutes with H_{1} and H_{2}. But such an operator can mix states which are degenerate with respect to H_{1} and H_{2} only. Among the eight baryons, only the Λ and Σ^{0} have equal charge and strangeness. Among the seven mesons no such degeneracy occurs. Thus, if H_{3} is independent of H_{1} and H_{2}, one or more of the following four possibilities can be considered
(1) H_{3} is the same for all eight baryons ${ }^{\text {sh }}$ and has a different value on a set of other baryons or physical states;
(2) H_{3} mixes observed baryons with other physical states;
(3) H_{3} splits the Δ, Σ^{0} degeneracy, but is of the form $a H_{1}+b H_{2}$ for the other six baryons ${ }^{3 ;}$;
(4) The eight baryons are eigenstates of H_{8} with eigenvalues which cannot be written in the form $a H_{1}+b H_{2}+c$.
Sometimes (3) and (4) leads to the forbidding of certain observed processes. ${ }^{22}$ Although we can offer no arguments against the first two possibilities, we note that for these cases any group of rank three which accommodates the baryons will have a subgroup of rank two whose predictions will be less restrictive. If any of these should be acceptable, the "parent" groups of higher ranks should be investigated.
10. T. Nakeno and K. Nishijime, Progr. Theoret. Phys. (Kyoto)
10. 581 (1953); M. Gell- Mann, Phys. Rev, 92,833 (1953) e.., Casimir operators which commuting operators of the group, e.b., Cosimir operators which are non-linear in the L_{A}.
\triangle The eigenstates of H_{3}, would then be linear combinations of A and Σ, as in the doublet symmetry of Pais, reference 2. A
model based on the seven-dimensional rotalion under thised category, seven- R. E. Behrends, and D. C. Peaslee,
reference reference 2. Pais has shown that the doublet symmetry scheme
leads leads to difficulties, (which are shared ty the R_{7} model), A. Pais,
Phys. Rev. 110, 574 (1958).

In the case of the angular momentum, the commulation relations, or the Lie algebra of the angular momentum operators, are sufficient to specify the physical content of the spherical symmetry of the system as in the classification of states and deduction of selection rules, etc. We now present a way of constructing the algebra of all simple groups, specializing later to those of rank two
We call the number of independent elements of the algebra the order (r) of the group, or the dimension of the algebra. A particular choice of r linearly independent operators forms a basis of the Lie algebra. As an illustration, let us take the three dimensional rotation group R_{3}. The order of the group is three and the usualy choice of the basis is \hat{T}_{s}, \hat{T}_{y}, and \hat{T}_{z}. Instead, we may choose a basis as follows. Take an operator $\hat{H}_{1}=\hat{T}_{A}$ and consider an "eigenvalue" problem:

$$
\left[\hat{T}_{z}, \hat{E}_{\alpha}\right]=r(\alpha) \hat{E}_{\alpha}
$$

The "eigenvectors" are $\hat{k}_{ \pm 1}=\hat{T}_{ \pm}=\hat{T}_{x} \pm i \hat{T}_{y}$ with "eigenvalues," $r(\pm 1)= \pm 1\left(f_{+}\right.$and t_{-}are the "raising and lowering" operators). Here T_{+}, T_{-}and T_{z}, form an alternative basis of the algebra. Note that, while T_{x} and T_{v} are Hermitian in the usual representation, \hat{f}_{+} and T - are not; instead they are related by Hermitian conjugation. ${ }^{22}$
For simple groups of rank l, the basis of the algebra may be so chosen that $\hat{H}_{1}, \cdots, \hat{H}_{l}$ are l elements of the basis and

$$
\begin{equation*}
\left[A_{i}, A_{j}\right]=0 . \quad i, j=1,2, \cdots l . \tag{II.5}
\end{equation*}
$$

The rest of the basis may be chosen to be the $r-l$ elements E_{a} of the algebra satisfying

$$
\left[\hat{A}_{i}, \hat{H}_{a}\right]=\boldsymbol{r}_{i}(\alpha) \hat{E}_{\alpha}
$$

(II.6)
where $r_{i}(\alpha)$ is the i th component of the root $\mathbf{r}(\alpha)$, that is, the $r_{i}(\alpha)$ form a "vector" in an l-dimensional rool space. If $\mathrm{r}(\alpha)$ is a root, then $-\mathrm{r}(\alpha) \equiv \mathrm{r}(-\alpha)$ is also a root, and we denote the corresponding operator by \mathcal{E}_{-a}. Then it can be shown that
$\left[\hat{E}_{a}, E_{-\alpha}\right]=C_{\sigma_{,-\infty}}{ }^{4} H_{i}, \alpha= \pm 1, \pm 2, \cdots \pm \frac{1}{2}(r-l),(\mathrm{II} .7)$ and that
$\left[\hat{E}_{\alpha}, \hat{E}_{\beta}\right]=C_{\alpha, \beta}{ }^{\nu} \hat{E}_{\gamma_{z}} \quad$ (not summed), (1L.8)
if $\mathrm{r}(\gamma) \equiv \mathrm{r}(\alpha)+\mathrm{r}(\beta)$ is a nonvanishing root and $\left[\mathcal{E}_{\alpha} \mathcal{E}_{\beta}\right]=0$, otherwise. These statements can be easily verified for R_{3}. It is possible to normalize the ${A_{i}}_{i}$ such that

$$
\begin{equation*}
\sum_{a} r_{i}(\alpha) r_{j}(\alpha)=\delta_{i j} \tag{II.9}
\end{equation*}
$$

Then it can be shown that

$$
\begin{equation*}
C_{\alpha,-\alpha^{i}} \eta^{\prime}(\alpha)=\varphi_{i}(\alpha)_{s} \tag{II.10}
\end{equation*}
$$

so that

$$
\begin{equation*}
\left[\hat{E}_{\alpha}, E_{-a}\right]=r^{i}(\alpha) A_{i} \tag{II.11}
\end{equation*}
$$

Collecting these results, we have the standard form
of the commutation relations:

$$
\begin{align*}
& {\left[h_{n}, \hat{M}_{j}\right]=0,} \\
& {\left[\hat{H}, \hat{A}_{\alpha}\right]=r_{i}(\alpha) \hat{E}_{\alpha},} \\
& {\left[\hat{E}_{a}, \hat{B}_{\alpha \alpha}\right]=r^{i}(\alpha) \hat{M},} \tag{11.12}\\
& {\left[\hat{E}_{a}, \hat{E}_{\alpha}\right]=V_{a \alpha} \hat{E}_{2},}
\end{align*}
$$

$\mathbf{r}(\gamma)=\mathbf{r}(\alpha)+\mathbf{r}(\beta)$ is a nowamishing root; $\lambda_{\alpha 9}=C_{\alpha, \beta^{\gamma}}$. The explicit form of $X_{\alpha \beta}$ is given in EIf. (II.14).
The graphical representation of the root vectors is cathed a rood diagram. All simple groups can be chassified by reot diagrams." Since roots and structure constants $X_{\text {re }}$ can be deduced simply from the vector diagram for atl simple groups, we describe the vector diagrams for simple groups of rank two in some detail. The following theorem plays, a central role in the construction of the vector diagram:
Throrem 35: If $\mathbf{r}(\alpha)$ and $\mathbf{r}(\beta)$ are two roots, then $2[\mathbf{r}(\alpha) \cdot \mathbf{r}(\beta)] /[\mathbf{r}(\alpha) \cdot \mathbf{r}(\alpha)]$ is an integer and $\mathbf{r}(\beta)-2 \mathbf{r}(\alpha)$ $X[\mathbf{r}(\alpha) \cdot \mathbf{r}(\beta)]|\mathbf{r}(\alpha)|{ }^{*}$ is also a root.
Graphically, this means that a new root $\mathbf{r}(\beta)-2 \mathbf{r}(\alpha)$ $X[\mathbf{r}(\alpha) \cdot \mathbf{r}(\beta)]|\mathbf{r}(\alpha)|^{*}$ (an be olstained from $\mathbf{r}(\beta)$ by reflection with respect to a hyperplane perpendicular to $\mathbf{r}(\boldsymbol{\alpha})$.
Suppose we have two roots, $\mathbf{r}(\alpha)$ and $\mathbf{r}(\beta)$, and let φ be the angle between them. Then it follows from the theorem that

$$
\mathbf{r}(\alpha) \cdot \mathbf{r}(\beta)=\frac{1}{2} m|\mathbf{r}(\alpha)|^{2}=\frac{1}{2} n|\mathbf{r}(\beta)|^{2}, \quad(\mathrm{II} .13 \mathbf{a})
$$

where m and n are integers. From this we further obtain

$$
\cos ^{2} \varphi=\frac{1}{4} m n
$$

(II.13b)

We see that φ can have only the values $0^{\circ}, 30^{\circ}, 45^{\circ}$, 60°, and 90°. From Eq. (II.13a) one deduces that the ratios of the lengths of the two vectors are $\sqrt{3}$ for 30°, $\sqrt{2}$ for $45^{\circ}, 1$ for 60°, and undetermined for 90°.
It is casy to sce that the only possible two dimensional diagrams corresponding to simple groups of rank two, compatible with Eqs. (13a) and (13b), are those drawn in Fig. 1. The first one corresponds to the threedimensional special unitary group $S U_{3}\left(A_{2}\right)$; the second to the five-dimensional orthogonal group $O_{6}\left(B_{2}\right)$, which is also isomorphic to the two-dimensional symplectic group $S p_{2}\left(C_{2}\right)$; the last to the exceptional group G_{2}. The notations in parenthesis are those used by Cartan. The number of parameters of a group (order) is equal to the sum of the number of root vectors and the rank of the group: $S L_{3}$ is a $8(=6+2)$ parameter group; O_{6} a 10 parameter group; G_{2} a 14 parameter group.
Once the vector diagram of a simple group is known, it is a trivial matter to construct the standard form of the commutation relations (12). This is due to the theorem:
Theorem ${ }^{38}$: Form $\left[\hat{E}_{\beta}, \mathcal{E}_{\alpha}\right],\left[\left[\hat{E}_{\beta}, \hat{E}_{\alpha}\right], \hat{E}_{\alpha}\right], \cdots$ and

\#3 See, for example, G. Racah, reference 5, p. 21.
${ }^{3}$ See, for example, G. Kacah, reference 5, p. 24.

Fic. 1. (a) Root diagrann
for SHi. (b) R wot diagranm

$\left[E_{\beta}, E_{-\alpha}\right],\left[\left[E_{\beta}, E_{-\alpha}\right], E_{-\alpha}\right], \cdots$, where $\mathbf{r}(\beta) \neq \pm \mathbf{r}(\alpha)$ These series must terminate. A serics of E_{λ} 's are generated in this manner. Let
$\mathbf{r}(\lambda)=\mathbf{r}(\beta)-m \mathbf{r}(\alpha)$,
$\mathbf{r}(\beta)-(m-1) \mathbf{r}(\alpha), \cdots \mathbf{r}(\beta), \cdots, \mathbf{r}(\beta)+\boldsymbol{m r}(\alpha)$
be the corresponding nonvanishing roots. Then

$$
N_{\alpha \beta}= \pm\left[\frac{1}{2}(m+1) n|\mathbf{r}(\alpha)|^{2}\right]^{4}
$$

Here the signatures of $N_{\alpha \beta}$ must be chosen so that

$$
\begin{align*}
& N_{\alpha \beta}=-N_{\beta \alpha}=-N_{-\alpha,-\beta}, \tag{II.15}\\
& N_{\alpha \beta}=N_{\beta,-\alpha-\beta}=N_{-\alpha-\beta, \alpha} .
\end{align*}
$$

As an example, let us construct the standard as in Fig relations for $S C$ s. Label the root (α) are normalized according to Eq. (10):

$\sum_{\alpha} \mathrm{r}_{i}(\alpha) \mathrm{r}_{j}(\alpha)=\delta_{i j}$.

Let us consider $\left[\hat{E}_{1}, \hat{E}_{3}\right]$. Since $\mathbf{r}(3)+\mathbf{r}(1)$ is a root while $\mathbf{r}(3)+2 \mathbf{r}(1)$ is not, we have $n=1$; since $\mathbf{r}(3)-\mathbf{r}(1)$ is not a root, $m=0$. We choose the sign such that ${ }^{37}$

$$
N_{13}=-N_{31}=\sqrt{\frac{1}{8}}
$$

Equations (15) and (16) give 5 other constants:

$$
N_{-3,-1}=N_{3,-2}=N_{-2,1}=N_{2,-3}=N_{-1,2}=\sqrt{1} . \quad \text { (II.17) }
$$ The roots are

$\mathbf{r}(1)=(1 / \sqrt{3})(1,0) ;$
$\mathbf{r}(2)=(1 / 2 \sqrt{3})(1, \sqrt{3})$
$\mathbf{r}(3)=(1 / 2 \sqrt{3})(-1, \sqrt{3})$.

The $N_{\alpha \beta}$ and the roots listed above give a complete set of commutation relations when inserted in Eq. (14). We summarize a choice of the $N_{\alpha \beta}$ for C_{2}, and for G_{2}. ${ }^{32}$ The number of signs that can be chosen independently is the are roots.

STRONG INTERACTION SYMMETRIES
[The roots can be read off immediately from Figs. 1 (b) and (c).]

C:

$$
\begin{aligned}
N_{24} & =N_{4,-8}=N_{-1,-2}=N_{2,-4}=N_{1,4}=N_{-2,1} \\
& =N_{-2,8}=N_{3,-4}=N_{-1,2}=N_{-4,-1}
\end{aligned}
$$

$G_{2}:$

$$
\begin{array}{r}
N_{28}=N_{4,-6}=N_{-2,4}=N_{2,-1}=N_{2,1}=V_{-2,3}^{7} \\
=N_{5,-6}=N_{1,6}=N_{-1,8}=N_{2,-1}=N_{-6,4} \\
=N_{-3,-6}=1 / 2 V_{2}
\end{array}
$$

$N_{1,5}=N_{8,-6}=N_{-1,2}=\sqrt{\frac{1}{8}}$.

III. REPRESENTATIONS OF LIE aLGEBRAS

A. General Properties of Representations

In a previous section we discussed the r infinitesimal operators of a Lie group and their commutation relations from an abstract point of view, without using an explicit form of the operators. In order to make connection with physical situations, it is necessary to introduce specific realizations of these operators. If we associate a matrix with each operator \hat{H}_{i} and \hat{E} such that these, matrices satisfy the commutation relations of the r operators, then the matrices are said to constitute a representalion of the group. ${ }^{18}$ In what follows, the symbols H_{i} and E_{a} denote a matrix representation. The dimension of these matrices N is called the dimension (or degree) of the representation. If the r matrices of a particular representation can be simultaneously brought into block diagonal form, by a similarity transformation, the representation is said to be decomposable (or fully reducible) into lower dimensional representations. When this is not possible, the representation is called irreducible. ${ }^{2}$
From the commutation relations, we see that the H_{i} commute among themselves, so that it is possible to diagonalize simultaneously these l matrices. We choose a representation in which the \boldsymbol{H}_{i} are diagonal, and write ψ for an N-component basis vector. The eigenfunctions and eigenvalues of A_{3} are defined by

$H_{i} \psi=m_{i} \psi$.

The l-component vector $\mathrm{m}=\left(m_{1}, m_{2}, \cdots, m_{l}\right)$ is called the weight, ${ }^{6}$ and the l-dimensional vector space spanned by the set of weights is called the weighl space.
In order to develop some physical intuition for what we are doing, consider the isotopic-spin rotation group. The commutation relations are the usual angular momentum set. We know that only one of the three

[^4]matrices can be diagonalized at a time (it then corresponds to $H_{1}, l=1$ for this group), and the eigenvalues of this matrix are the components of isotopic spin. The E_{1} and E_{-1} in this case are proportional to the usual isotopic spin raising and lowering operators. This algebra is the only simple or semi-simple Lie algebra of rank one. The three groups of rank two $(l=2)$ were given in a previous section, i.e., B_{3}, G_{3} and $S U_{3}$. For these groups we might identify the eigenvalues of A_{1} and A_{2} with the third component of isotopic spin and with the hypercharge, ${ }^{\text {,o }} \mathrm{J}=N+S$, two good quantum numbers for the strong interactions as well as the electromagnetic interactions. The ψ s which would represent the various particles or states, would then be labeled by their cigenvalues of A, i.e.,
weights m . The ψ 's having different weights are weights \mathbf{m}. The ψ 's having diferent weights are
obviously linearly independent, so that there are at most N different weights. If a weight belongs to only one eigenvector, it is called simple (for groups of rank greater than one, not all weights are simple).
Let us consider the weights more closely. The following powerful theorem is very useful.
Theorem ${ }^{12}$: For any weight m and root $r(\alpha)$, the quantity $2 \mathbf{m} \cdot \mathbf{r}(\alpha) / \mathbf{r}(\alpha) \cdot \mathbf{r}(\alpha)$ is an integer and $\mathbf{m}^{\mathbf{m}}=\mathbf{m}$ $-\mathrm{r}(\alpha) 2 \mathrm{~m} \cdot \mathrm{r}(\alpha) / \mathbf{r}(\alpha) \cdot \mathrm{r}(\alpha)$ is also a weight, and has the same multiphicity as \mathbf{m}. It can be easily verified that this prescription for obtaining \boldsymbol{m}^{\prime} from \mathbf{m} corresponds geometrically, in the weight space, to reflecting m through a hyperplane perpendicular to the root $\mathbf{r}(\boldsymbol{\alpha})$. Weights that are related by a reflection or a product of reflections are said to be equivalem. Reflections and the product of reflections give the set of all equivalent weights. We denote by S the group generated by these reflections. ${ }^{42}$
A weight \mathbf{m} is said to be higher than a weight m^{\prime} if $\mathbf{m}-\mathbf{m}^{\prime}$ has a positive number for its first non-vanishing component, e.g., if $m_{1}-m_{1}^{\prime}=0$ and $m_{8}-m_{8}^{\prime}>0$, then m is higher than m^{\prime}. A dowinant weight is the highest member of a set of equivalent weights, and the highest weight is the dominant weight which is higher than any other dominant weight in a representation. For an irreducible representation, the highest weight is simple. ${ }^{4}$ This concept of a highest weight is useful because two irreducible representations which are related by a similarity transformation (the representations are called equivaleut) have the same highest weight, and vice versa.
With regard to dominant weights, Cartan ${ }^{6}$ hats proved that for every simple group of rank l there are l fundamental dominant weights $\mathbf{M}^{(1)} \ldots \mathbf{M}^{(1)}$ such that
${ }^{*}$ Here S is the strangeness quantum number and N is the baryon number. This is the usual definition of hypercharge, althnugh some authors define it san 11 Sec, for example, G. Racah, reivencr $)$.
${ }^{11}$ Sec, for example, G. Racah, reírence S, $p .35$,
43 This group was first introducel
(Sclecta), p. 338. .
\& Sece, G. Racah, reference 5, p. 37.
behrends, Dreithein, fronsdal, and lee
any other dominant weight \mathbf{M} is a linear combination
\[

$$
\begin{equation*}
\mathbf{M}=\sum_{i=1}^{i} \lambda_{i} \mathbf{M}^{(i)} \equiv \mathbf{M}\left(\lambda_{1} \cdots \lambda_{l}\right), \tag{III.1}
\end{equation*}
$$

\]

with λ_{i} a; non-negative integral coefficients, and that there exist l fundamental irreducible representations which have the fundamental weights as their highest weights. ${ }^{4}$

Let us return to the isotopic spin rotation group. The weights m are $\pm I_{3}$ (weight space is one-dimensional, in this case, since the group is of rank $l=1$). The weight $-I_{3}$ is obtained from I_{3} by reflection through the "plane" perpendicular to the root $\mathbf{r}(1)$ and I_{3} is the dominant weight. For each I_{3} which appears in an irreducible representation, there will be a $-l_{b_{p}}$, which is equivalent and has the same multiplicity. The fundamental dominant weight is $\frac{1}{2}$ in order that $2 m \cdot r(\alpha) / \mathbf{r}(\alpha) \cdot \mathbf{r}(\alpha)$ be an integer for all weights. The highest weight is $I=\lambda \frac{1}{2}$, where λ is a non-negative integer, and is simple in an irreducible representation. The corresponding statements for the groups of rank two are postponed until later
In order to distinguish the difierent irreducible In order to a quantity called the character. This" is "a function of l real variables $\varphi^{3}, \cdots, \varphi^{b}$ defined by

$$
\begin{aligned}
x\left(\varphi^{2}, \cdots, \varphi^{l}\right) & =\operatorname{trace} \exp \left(i H_{i} \varphi^{i}\right) \\
& =\sum_{\Delta} \exp \left[i\left(H_{i} \varphi^{i}\right)_{*}^{d}\right]
\end{aligned}
$$

where, in the last expression, $\left(H_{i}\right)_{a}^{b}$ has been assumed to be in diagonal form. Since the trace of a matrix is invariant under a similarity transformation, the characters of two representations are equal if and only if the two representations are equivalent. In particular, a representation and its complex conjugate are equivlent, if and only if the trace is real
Weyl ${ }^{8}$ has given an explicit formula for calculating the character of any representation of any simple group, namely,
$x\left(\lambda_{i}, \varphi\right)=\frac{\xi\left(\lambda_{i}\right)}{\xi(0)}, \quad \xi\left(\lambda_{i}\right)=\sum s \delta_{s} \exp [i(S K)-\varphi], \quad$ (III.2)
where the sum is over the reflection operations S defined above and $\delta_{S}=+1$ for an even number of reflections and -1 for an odd number. If \mathbf{R} is defined by

$$
\begin{equation*}
\mathbf{R}=\frac{1}{2} \sum_{\alpha,+} \mathrm{I}(\alpha) \tag{III.3}
\end{equation*}
$$

where the sum is over the positive roots, i.e., those roots which have a positive first nonvanishing component, then \mathbf{K} is \mathbf{R} plus the highest weight of the representation, M

$$
\mathbf{K}=\mathbf{R}+\mathbf{M}\left(\lambda_{1}, \cdots, \lambda_{1}\right) .
$$

(III.4)
${ }^{4}$ In fact, every M determines uniquely an irreducible representation with M as the highest weight.

It is obvious from the above definition of the character as a trace that it may also be written as
$\chi\left(\lambda_{i}, \varphi\right)=\sum_{\mathrm{m}} \gamma_{\mathrm{m}} \exp \left(\mathrm{imI}_{\mathrm{II}} \cdot \varphi\right)$,
(III.5)
where the sum is over all the weights and γ_{m} is the number of times a weight m occurs, i.e., the multiplicity of the weight. For $\varphi=0$, the character is just the dimensionality of the representation, i.e.,

$$
N\left(\lambda_{i}\right)=\sum_{m} \gamma_{m}=x\left(\lambda_{i}, 0\right)
$$

(III.6)

The above can be exemplified by referring once again to the isotopic-spin-rotation group. There is one positive root, $\mathbf{r}(1)=1$, therefore, $\mathbf{R}=\frac{1}{\frac{1}{3} ;} \mathbf{M}=I=\lambda \frac{3}{2}$. Thus,

$$
\mathbf{K}=\frac{1}{2}(\lambda+1)=I+\frac{1}{2} .
$$

Since there is only one reflection,

$$
\xi(\lambda)=e^{i(I+i)} \cdot-e^{-i(I+1)} \cdot,
$$

and
$x(\lambda ; \varphi)=\left(e^{i(T+\xi)}-e^{-i(\lambda+i) \varphi}\right) /\left(e^{\frac{2 i \varphi}{}}-e^{-1 i \varphi}\right), \quad I=\frac{1}{2} \lambda$.
T'uis may easily be shown to be

$$
x(\lambda, \varphi)=\sum_{I_{F}=-I}^{+I} e^{i \lambda_{2 \varphi}},
$$

so that the multiplicity of each weight is one, $\gamma_{m}=1$. The dimensions of the irreducible representations are $N=\chi(\lambda, 0)=2 I+1$.

So far, in order to distinguish the various eigenvectors, or bases, we have the l integers ($\lambda_{1}, \cdots, \lambda_{2}$) which are necessary to form the highest weight M. These numbers distinguish between representations of different dimensionalities as well as inequivalent representations of the same dimensionality. However, within an irreducible representation, in addition to the weights we still need $\frac{1}{2}(r-3 l)$ more numbers, $\mu=\left(\mu_{1}, \mu_{2}, \cdots, \mu_{l}(r-1 n)\right.$ in order to distinguish the various eigenvectors of the same weight." Given these numbers, it would then be possible to determine the explicit form of the matrix element

$\psi^{\prime}(\mathbf{M}, \mathrm{m}, \mu) \hat{E}_{\alpha} \psi\left(\mathbf{M}, \mathrm{m}^{\prime}, \mu^{\prime}\right)=f\left(\mathbf{M}, \mathrm{~m}, \mathrm{~m}^{\prime}, \mu_{,} \mu^{\prime}\right)$.

For example, in the isotopic spin rotation group $\frac{1}{2}(r-3 l)=0$, so that we need no additional numbers. $\frac{1}{2}(r-3 l)=0$, so that we need no ad kional
This matrix element is then the

$$
\left.\psi\left(I, I_{3}\right) I_{+} \psi\left(I, I_{8}^{\prime}\right)=\left[\frac{7}{z}\left(I-I_{s} s^{\prime}\right)\left(I+I_{\mathrm{s}}\right)\right]\right]_{I_{v}, I_{8}+1}
$$

We shall show how to circumvent the task of finding the operators whose eigenvalues are the μ^{\prime} 's for groups of higher rank.
Thus far we have used the isotopic spin rotation group as an example. Let us now demonstrate the method with the rank two groups $S U_{b}, C_{a}$ and C_{s}.

B. Characters of Representations of SU_{3}

In order to satisfy the condition that $2 \mathrm{~m} \cdot \mathrm{r}(\alpha)$ / $\mathbf{r}(\alpha) \cdot \mathbf{r}(\alpha)$ be an integer for an arbitrary weight $m=\left(\omega_{1}, m\right)_{2}$ and any root, $r(\alpha)$, it is necessary that $m_{1}=(1 / 2 \sqrt{3})(a+b)$ and $m_{8}=\frac{b}{b}(a-b)$, where a and b are integers. Thus $m=t a(\sqrt{3}, 1)+b b(\sqrt{3},-1)$. By noting that $\left.\frac{1}{3}, 1\right)$ and $(\sqrt{3},-1)$ each lie in a plane perpendicular to a root, we see that each belongs to a set of 3 equivalent weights and that each is a dominant weight of its set, in fact, a fundamental dominant weight. Thus

$$
M\left(\lambda_{1} \lambda_{2}\right)=1 \lambda_{1}(\sqrt{3}, 1)+\frac{2}{8} \lambda_{2}(\sqrt{3},-1) .
$$

The quantity \mathbf{R} for SU_{3} is
$\mathbf{R}=\frac{1}{2} \sum_{\omega,+} \mathbf{r}(\alpha)=(1 / \sqrt{3})(1,0)$,
so that \mathbf{K} is
$K=M+R=1\left(\sqrt{3} \lambda_{1}+\sqrt{3} \lambda_{2}+2 \sqrt{3}, \lambda_{1}-\lambda_{2}\right)$
Thus, $\xi\left(\lambda_{1}, \lambda_{2}\right)$ may be written
$\xi\left(\lambda_{1}, \lambda_{2}\right)=\operatorname{expti}\left[\left(\lambda_{1}+\lambda_{2}+2\right) \sqrt{3} \varphi_{1}+\left(\lambda_{1}-\lambda_{2}\right) \varphi_{2}\right]$
$-\operatorname{expti}\left[-\left(\lambda_{1}+\lambda_{8}+2\right) \sqrt{3} \varphi_{1}+\left(\lambda_{1}-\lambda_{2}\right) \varphi_{2}\right]$ $-\operatorname{exptr}\left[\left(\lambda_{2}+1\right) \sqrt{3} \varphi_{1}-\left(2 \lambda_{1}+\lambda_{2}+3\right) \varphi_{2}\right]$ $+\exp \frac{1}{2}\left[-\left(\lambda_{2}+1\right) \sqrt{3} \varphi_{1}-\left(2 \lambda_{1}+\lambda_{2}+3\right) \varphi_{2}\right]$ $-\operatorname{expti}\left[\left(\lambda_{1}+1\right) \sqrt{3} \varphi_{1}+\left(\lambda_{1}+2 \lambda_{2}+3\right) \varphi_{2}\right]$
$+\operatorname{expt} i\left[-\left(\lambda_{1}+1\right) \sqrt{5} \varphi_{1}+\left(\lambda_{1}+2 \lambda_{2}+3\right) \varphi_{3}\right]$
It should be apparent that dividing $\xi\left(\lambda_{1}, \lambda_{9}\right)$ by $\xi(0,0)$ in order to obtain the character in the form $\sum_{\gamma_{m}} \exp (i m \cdot \varphi)$ is no trivial matter for this group. In the next section, we develop a technique for handling this problem. First let us find the dimensions N of the ireducible representations. In terms of the character, $N=\chi\left(\lambda_{1}, \lambda_{2}, \varphi_{1}=\varphi_{2}=0\right)$. Since $\xi\left(\lambda_{1}, \lambda_{2}\right)$ is zero for $\varphi_{1}=\varphi_{2}=0$, we use L'Hopital's rule ${ }^{e t s}$ to find

$$
N=\left[1+\frac{1}{1}\left(\lambda_{1}+\lambda_{1}\right)\right]\left(1+\lambda_{1}\right)\left(1+\lambda_{2}\right) .
$$

The numbers $\lambda_{1}, \cdots, \lambda_{l}$ are sufficient to identify a representation. For this reason we label the representations by $D^{(N)}\left(\lambda_{1}, \lambda_{2}\right)$ [or occasionally by just $D\left(\lambda_{1}, \lambda_{2}\right)$ or $\left.D^{(N)}\right]$. Thus $D^{(\overline{)}}(1,0)$ denotes one of the 3-dimensional representations, while $D^{(1)}(0,1)$ denotes the complex conjugate (x^{*}) inequivalent 3 -dimensional representation.
We note that $\chi^{*}=x$ only for values of $\lambda_{1}=\lambda_{1} .{ }^{\text {4* }}$ Thus, only in this case are the complex conjugate representations equivalent. In Fig. 2 we have drawn the weight diagrams for a few of the lower dimensional representations of $S U_{4}$. The solid lines with arrows represent the weight vectors while the dotted lines which are perpendicular to the roots represent the

Pende (Parquas, 1730). A. de l'Hopital, Amalyse des Infeniement This follows from the identity $x^{*}\left(\lambda_{1}, \lambda_{z}\right)=x\left(\lambda_{1}, \lambda_{1}\right)$ satisfied by the $S U$, characters.

${ }^{(12)}(1,0)$.
(ω

(e)
$0^{(n)}(0,1), T=\frac{1}{8}(\sqrt{(1)}, 1)$.
(b)

Frg. 2. Weight diagrams
for ${ }^{\text {² }} S U_{\text {. }}^{\text {. Solid lines }}$ with
arrows denote weight vectros; dotered lines represent
the reflection planes.
planes of reflection that leave the weight diagram unchanged (the set of operations S defined above) The 3-dimensional representations $D^{(3)}(1,0)$ and $D^{(4)}(0,1)$ are the fundamental irreducible representa tions, $D^{(8)}(1,1)$ is the regular representation. ${ }^{47}$
C. Characters of Representations of G_{3}

In order that $2 \mathrm{~m} \cdot \mathbf{r}(\alpha) / \mathbf{r}(\alpha) \cdot \mathbf{r}(\alpha)$ be an integer for an arbitrary weight $\mathbf{m}=\left(m_{2}, m_{2}\right)$ and any root, $\mathbf{r}(\alpha)$, it is necessary that $m_{1}=(1 / 4 \sqrt{3})(2 a+3 b)$ and $m_{2}=\frac{1}{4} b$, where (3/2, are integers. Thus $m=(a / 2 \sqrt{3})(1,0)+(b / 2 \sqrt{3})$ $(3 / 2,3)(3 / 2, \sqrt{3} / 2)$ noting that $(1 / 2 \sqrt{3})(1,0)$ and $1 / 2 \sqrt{2}(3 / 2, \sqrt{2})$ each he in a plane perpendicular to root, we see that each belongs to a set of 6 equivalen weights and that each is a dominant weight of its set
"The regular representation is very important and playe prominent role in later sections. It is defined by $L_{A} \rightarrow-C_{A}$ where the coupponents of the matrix C_{A} are the structure constants $C_{A B^{D}}$. That this is a representation can be secen by rewriting the $=-C_{A}{ }^{\prime} C_{z}{ }^{o}$. It can easily be proved that the regular representation is irreducible if and oaly if the group is simple.
in fact, a fundamental dominant weight. Thus
$M\left(\lambda_{1}, \lambda_{2}\right)=\left(\lambda_{1} / 2 \sqrt{3}\right)(1,0)+\left(\lambda_{2} / 4 \sqrt{3}\right)(3, \sqrt{3})$
The quantity \mathbf{R} for G_{2} is

$R=(1 / 4 \sqrt{3})(5, \sqrt{3})$,

so that
$K=(1 / 4 \sqrt{3})\left(2 \lambda_{1}+3 \lambda_{2}+5, \sqrt{3} \lambda_{2}+\sqrt{3}\right)$.
Then, $\xi\left(\lambda_{1}, \lambda_{2}\right)$ may be written
$\xi\left(\lambda_{1}, \lambda_{2}\right)$
$=\left\{\exp \left[i\left(2 \lambda_{1}+3 \lambda_{2}+5\right)_{\varphi_{1}} / 4 \sqrt{3}\right]\right.$
$\left.-\exp \left[-i\left(2 \lambda_{1}+3 \lambda_{2}+5\right) \varphi_{1} / 4 \sqrt{3}\right]\right\}$
$\times\left\{\exp \left[i\left(\lambda_{2}+1\right) \varphi_{2} / 4\right]-\exp \left[-i\left(\lambda_{2}+1\right) \varphi_{2} / 4\right]\right\}$
$-\left\{\exp \left[i\left(\lambda_{1}+3 \lambda_{2}+4\right) \varphi_{2} / 4 \sqrt{3}\right]\right.$
$\left.-\exp \left[-i\left(\lambda_{1}+3 \lambda_{3}+4\right) \varphi_{1} / 4 \sqrt{3}\right]\right\}$
$\times\left\{\operatorname{erp}\left[i\left(\lambda_{1}+\lambda_{2}+2\right)_{\varphi 2} / 4\right]\right.$
$\left.-\exp \left[-i\left(\lambda_{1}+\lambda_{i}+2\right) \varphi_{2} / 4\right]\right\}$
$+\left\{\exp \left[i\left(\lambda_{1}+1\right) \varphi_{1} / 4 \sqrt{3}\right]-\exp \left[-i\left(\lambda_{1}+1\right) \varphi_{1} / 4 \sqrt{3}\right]\right\}$
$\times\left\{\exp \left[i\left(\lambda_{1}+2 \lambda_{2}+3\right) \varphi_{2} / 4\right]\right.$
$\left.-\exp \left[-i\left(\lambda_{1}+2 \lambda_{2}+3\right) \varphi_{2} / 4\right]\right\}$.
The dimensions N of the irreducible representations are $N=x\left(\lambda_{1}, \lambda_{2}, \varphi_{1}=\varphi_{2}=0\right)$. The result is
$N=\left(1+\lambda_{1}\right)\left(1+\lambda_{2}\right)\left[1+\frac{1}{2}\left(\lambda_{1}+\lambda_{2}\right)\right]\left[1+\frac{1}{1}\left(\lambda_{1}+2 \lambda_{2}\right)\right]$
$\times\left[1+\frac{1}{4}\left(\lambda_{1}+3 \lambda_{2}\right)\right]\left[1+\frac{1}{3}\left(2 \lambda_{1}+3 \lambda_{2}\right)\right]$.
We note that $\chi^{*}=\chi$, so that representations related by complex conjunction are always equivalent.
In Fig. 3 we have drawn the weight diagram for the 7. and 14-dimensional representations of G_{2}. The

$5^{[7]}\left(1001,6 \pi=\frac{1}{2 / 2} 5^{(1,0)}\right.$
(${ }^{(1)}$

Fig. 3. Weight diagrams for G_{G}. Solid
lines with antows de note weight vectors; dotted lines represent
the reflection plane.
solid lines with arrows denote the weight vectors while the dotted lines, which are perpendicular to the roots, represent the planes of reflection that leave the weight diagram unchanged (the set of reflections S defined above). These two representations are the fundamental irreducible representations of G_{2}, and $D^{(4)}(0,1)$ is the regular representation. ${ }^{17}$

D. Characters of Representations of C_{2}

In order that $2 \mathrm{~m} \cdot \mathbf{r}(\alpha) / \mathbf{r}(\alpha) \cdot \mathbf{r}(\alpha)$ be an integer for an arbitrary weight $\mathbf{m}=\left(m_{1}, m_{2}\right)$ and any root $\mathbf{r}(\alpha)$, it is necessary that $m_{1}=(2 \sqrt{3})^{-1}(a+b)$ and $m_{2}=b / 2 \sqrt{3}$, where a and b are integers. Thus, $m=(a / 2 \sqrt{3})(1,0)$ $+(b / 2 \sqrt{3})(1,1)$. By noting that $(1 / 2 \sqrt{3})(1,0)$ and $(1 / 2 \sqrt{3})(1,1)$ each lie in a plane perpendicular to a root, we see that each belongs to a set of 4 equivalent weights and that each is a dominant weight of its set, in fact, a fundamental dominant weight. Thus
$M\left(\lambda_{1}, \lambda_{2}\right)=\left(\lambda_{1} / 2 \sqrt{3}\right)(1,0)+\left(\lambda_{2} / 2 \sqrt{3}\right)(1,1)$.
The quantity \mathbf{R} for C_{8} is
$\mathbf{R}=(1 / 2 \sqrt{3})(2,1)$
so that
$\mathbf{K}=\mathbf{R}+\mathbf{M}=(1 / 2 \sqrt{3})\left(\lambda_{1}+\lambda_{2}+2, \lambda_{2}+1\right)$.
Then, $\xi\left(\lambda_{1}, \lambda_{2}\right)$ may be written
$\xi\left(\lambda_{1}, \lambda_{2}\right)$
$=\left(\exp \left[i\left(\lambda_{1}+\lambda_{2}+2\right) \varphi_{1} / 2 \sqrt{3}\right]\right.$
$\left.-\exp \left[-i\left(\lambda_{1}+\lambda_{9}+2\right)_{\varphi_{1}} / 2 \sqrt{3}\right]\right)$
$X\left\{\exp \left[i\left(\lambda_{2}+1\right) \varphi_{2} / 2 \sqrt{3}\right]-\exp \left[-i\left(\lambda_{2}+1\right) \varphi_{2} / 2 \sqrt{3}\right]\right\}$
$-\left\{\exp \left[i\left(\lambda_{2}+1\right) \varphi_{1} / 2 \sqrt{3}\right]-\exp \left[-i\left(\lambda_{2}+1\right) \varphi_{1} / 2 \sqrt{3}\right]\right\}$
$\times\left\{\exp \left[i\left(\lambda_{1}+\lambda_{3}+2\right) \varphi_{2} / 2 \sqrt{3}\right]\right.$
$\left.-\exp \left[-i\left(\lambda_{1}+\lambda_{2}+2\right)_{\varphi_{2}} / 2 \sqrt{3}\right]\right\}$
The dimensions of the irreducible representations, $N=\chi\left(\lambda_{2} \lambda_{2}, \varphi_{1}=\varphi_{2}=0\right)$, are
$N=\left(1+\lambda_{1}\right)\left(1+\lambda_{2}\right)\left[1+\frac{1}{2}\left(\lambda_{1}+\lambda_{2}\right)\right]\left[1+\frac{1}{3}\left(\lambda_{1}+2 \lambda_{2}\right)\right]$.
We note that $\chi^{*}=\chi$, so that representations related by complex conjugation are always equivalent.
In Fig. 4 we have drawn the weight diagrams for the 4,5 , and 10 dimensional representations of C_{2}. The solid lines with arrows denote the weight vectors while the dotted lines, which are perpendicular to the roots, represent the planes of reflection that leave the weight diagram unchanged (the set of reflections S defined above). The 4 and 5 dimensional representations, $D^{(6)}(1,0)$ and $D^{(6)}(0,1)$, are the fundamental irreducible representations of B_{2}, while $D^{(16)}(2,0)$ is the regular representation. ${ }^{47}$

E. Synthesis of Representations of Lie Algebras

For physical application, it is imperative to have explicit matrix representations of the low dimensional Lie algebras. As has been implied in the preceding
paragraph, the straightforward generalization of the favorite method of constructing the matrix representation of a rank one group is somewhat awkward for higher rank groups. Of the several alternative methods which offer promise, we choose one which has useful by-products. In particular, the generalized ClebschGordan coefficients ${ }^{48}$ will materialize as part of the fallout of results.
As a warming-up exercise, we recall certain facts about the group SU_{3}. Let the basis for an irreducible representation $D(J)$, uniquely characterized by the total angular momentum $J(J+1)$, be labeled as ψx^{\prime} where J is an integer or a half-integer and M runs from J to $-J$ in integral steps. In particular, select the spin $\frac{1}{2}$ representation $D\left(\frac{1}{2}\right)$ whose highest weight is the fundamental dominant weight of $S U_{2}$. Then the representation is given in terms of Pauli matrices ${ }^{\boldsymbol{\omega}}$:
$\hat{H}_{1}=\frac{1}{2} \sigma_{3} ; \quad \hat{T}_{+}=(1 / 2 \sqrt{2})\left(\sigma_{1}+i \sigma_{2}\right) ;$

$$
\hat{T}_{-}=(1 / 2 \sqrt{2})\left(\sigma_{1}-i \sigma_{2}\right)
$$

(III.7)

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \tag{121}\\
1 & 0
\end{array}\right) ; \quad \sigma_{2}=\left(\begin{array}{rr}
0 & -i \\
i & 0
\end{array}\right) ; \quad \sigma_{2}=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right)
$$

and the basis is $\psi_{m}^{\frac{4}{4}}, m=\frac{1}{2},-\frac{1}{2}$. It is possible to arrive at a new representation inequivalent to $D\left(\frac{1}{2}\right)$ by forming the direct product representation in the space spanned by the $\psi \mathrm{m}^{4} \mathrm{~m}^{\prime}$. The action of \hat{A}_{1} and $\hat{T}_{ \pm}$on the product basis is, of course,

$$
\begin{aligned}
\hat{T}_{A} \psi_{m^{i}} \psi_{m^{\prime}} & =\left(\hat{T}_{A} \psi_{m^{i}}\right) \psi_{m^{\prime}}+\psi_{m^{i}}\left(\hat{T}_{A} \psi_{m^{\prime}}\right) \\
\hat{T}_{\Delta m^{i}} & =\sum_{m^{\prime}}\left(\hat{T}_{A}\right)_{m^{\prime}} \psi_{m^{\prime}},
\end{aligned}
$$

(III.8)
where \hat{T}_{A} is $\hat{T}_{s}=H_{1}, \hat{T}_{+}$, or \hat{T}_{-}. The product representa tion is, in general, reducible; for example,

$$
\psi_{m} \psi_{m^{\prime}}=\sum_{M, 5}\left(J M \left\lvert\, \frac{1}{2} m\right., \frac{1}{3} m^{\prime}\right) \psi_{M^{y}}
$$

(III.9)
where ($J M \left\lvert\, \frac{1}{2} m\right., \frac{1}{2} m^{\prime}$) are the Clebsch-Gordan coefficients which reduce the representation. To accomplish the reduction, we note that \hat{T}_{+}and \hat{T}_{-}commute with \hat{T}_{2} and, since the eigenvalue of \hat{T}^{2} uniquely characterizes an irreducible representation, they cannot lead out of an irreducible representation when applied in any order and any number of times to a single basis vector The highest weight M in the product representation $\psi_{m} \psi_{m}$, namely $M=\frac{1}{2}+\frac{1}{3}$, belongs to an irreducible representation and hence the space spanned by the
vectors generated by application of \tilde{T}_{+}and T_{-}to $\psi_{1}{ }^{4} \psi_{1}^{1}$ is irreducible under $S U_{2}$. Thus the orthonormal
${ }^{\text {s }}$ We refer here to the ooefficients prescribing the linear combinations of direct praduct states relative to which the ${ }^{4}$ The operators $\hat{T}_{ \pm}$are usuaily defined without the factor $1 / \sqrt{2}$. Throughout this paper, we shall adopt the sign convention of Condon and Shortley (reference 29) for isotopic spin. This
implies that all the signs of $L_{ \pm}$matrix elements are positivcalthough the physical particles are sometimes identified as the negative of the physical particles are sometimes id
the bases defining this representation.

Fig. 4. Weight diagrams for C_{2}. Solid lines denote weight vectors;

vectors

$\psi_{1}{ }^{1}=\psi_{1} \psi_{1}{ }^{*}$

$\psi_{0}^{2} \equiv \hat{T}_{-}\left(\psi_{1} \psi_{1}{ }_{1}\right)=(1 / \sqrt{2})\left(\psi_{-i} \psi_{1}^{i}+\psi_{1} \psi_{-1}^{i}\right) \quad$ (III.10a) $\psi_{-1}{ }^{1} \equiv 2\left(\hat{\Gamma}_{-}\right)^{2}\left(\psi_{i} \psi_{i}^{1}\right)=\psi_{-1} \psi_{-i}^{i}$
are a basis for an irreducible representation $D(1)$ of $S U_{z}$ and the remaining linear independent vector in the direct product space $\psi_{m} \psi_{\mathrm{n}}, \mathrm{t}$ is

$$
\psi_{0}^{0} \equiv(1 / \sqrt{2})\left(\psi_{1}^{2} \psi-t^{3}-\psi_{-1} \psi_{1}^{3}\right) . \quad \text { (III.10b) }
$$

This $\psi_{0}{ }^{0}$ generates $D(0)$ for $S U_{2}$. The Clebsch-Gordan coefficients are read off from Eqs. (III.10a) and (III.10b) while the irreducible Lie algebra follows by computing the \hat{T}_{A} matrix elements by using Eq. (III.8)
To find an arbitrary irreducible representation $D(J)$,
it is only necessary to split off the highest irreducible representation of the direct product space

The orthonormal basis which results is ${ }^{50}$:

$$
\psi_{M^{j}}^{j}=N(J, M)\left(\hat{T}_{-}\right)^{J-M}\left(\psi_{1}^{y}\right)^{2 J},
$$

$$
M=J, \cdots,-J
$$

$N(J, M)=\left[\frac{(J+M)!2^{J-M}}{(J-M)!(2 J)!}\right]^{\frac{3}{3}}$
${ }^{\omega}$ To derive $N(I, M)$, use the identity

to obtain a recursion relation.
and the operators $\hat{T}_{s}, \hat{T}_{+}, \hat{T}_{\text {- enjoy }}$ the properties:
$\psi_{-}^{*} w^{J}=[N(J, M) / N(J, M-1)] \psi_{M-1} J$

$$
\begin{equation*}
=\left[\sqrt{\frac{1}{2}}(J+M)(J-M+1)\right]^{W} \psi_{M-1} J \tag{III.13}
\end{equation*}
$$

$\hat{T}_{+} \psi_{M} J=\left[\frac{1}{2}(J-M)(J+M+1)\right] \psi_{M+1} J$
$\hat{T}_{\Delta} \psi_{X}{ }^{J}=M \psi_{M^{J}}{ }^{J}$
which then gives the constitution of the $D(J)$ representation. We now develop the generalization of the foregoing conclusions to simple groups of higher rank. To construct the irreducible representations of Lie algebras of rank two and higher, we show that all that is required is:
(a) The l fundamental irreducible representations whose highest weights are characterized by one of the l fundamental dominant weights.
(b) a reduction procedure for direct product representations.
Before deriving the theorems needed to synthesize representations, a few words on the characterization of the representation space are in order. In order to specify the representation of the algebra, it is sufficient to give the representations of the basis elements $\boldsymbol{B}_{\text {; }}$ and \hat{E}_{a}. We define the representation by prescribing the action of \hat{H}_{i} and \hat{E}_{α} on an orthonormal complete set of ket vectors $\left|\left\{\lambda_{1} \cdots \lambda_{l}\right\}, \nu\right\rangle$ spanning the N dimensional representation space $(\nu=1, \cdots, N)$. When dimensional representation space $(\nu=1, \cdots, N)$. When
no ambiguities arise, the ket $\left|\left\{\lambda_{1} \cdots \lambda_{l}\right\}, \nu\right\rangle$ will of no ambiguities arise, the ket $\left|\left\{\lambda_{1} \cdots \lambda_{l}\right\}, \nu\right\rangle$, will often
be abbreviated as $|\{N\}, \nu\rangle$ and even $|\nu\rangle$. Since the B_{i} be abbreviated as $|\{N\}, \nu\rangle$ and even $|\nu\rangle$. Since the \boldsymbol{B}_{i},
intercommute, they can be simultaneously diagonalized, and, since they are taken to be Hermitian, their eigenvalues are real. We choose a representation in which the H_{i} are diagonal. Thus the label ν in $|\{N\}, \nu\rangle$ stands for a fixed eigenvalue of each of the H_{i} (the weight \mathbf{m}) in addition to other discriminating labels (g) which are needed in the case of multiple weights. Furthermore, the matrices E_{α} satisfy the relation: $\left(E_{\infty}\right)^{\dagger}=E_{-\alpha}$
If $|\{N\}, v\rangle$ is the basis for one representation of a Lie algebra and $\left|\left\{N^{\prime}\right\}, \nu^{\prime}\right\rangle$ a basis for a second representation, the direct product space spanned by the basis $\left|\{N\}, \nu ;\left\{N^{\prime}\right\}, \nu^{\prime}\right\rangle$ is again a representation of the ie algebra whose elements L_{4} act upon the kets $\left|\{N\}, \nu ;\left\{N^{\prime}\right\}, \nu^{\prime}\right\rangle$ in the following manner:
$L_{A}\left|\{N\}, \nu ;\left\{N^{\prime}\right\}, \nu^{\prime}\right\rangle$
$=L_{A}^{(N)} \otimes 1^{\left(N^{\prime \prime}\right)}\left|\{N\}, \nu ;\left\{N^{\prime}\right\}, \nu^{\prime}\right\rangle$
$+1^{(N)} \otimes L_{A}^{\left(N^{\prime}\right)}\left|\{N\}, v ;\left\{N^{\prime}\right\}, v^{\prime}\right\rangle$. (III.14)
Here $L_{A}^{(N)}, 1^{(N)}$ and $L_{A}{ }^{\left(N^{\prime}\right)}, 1^{\left(N^{\prime}\right)}$ act only on the N and N^{\prime} dimensional representations, respectively. The lirect product representation defined by Eq. (III.14) s , in general, reducible in a way which is shown below. Given the abstract Lie algebra as presented in jec. II, we now seek to construct in a systematic way he matrix sets representing the algebra. The method
is essentially predicated upon four theorems:
Theorem I. If $\boldsymbol{H}_{i}|\mathbf{m}, g\rangle=m_{i}|\mathbf{m}, g\rangle$, then $\boldsymbol{H}_{i} E_{-}\left|\mathbf{m}_{r} g\right\rangle$ $\left.=\left[m_{i}-r_{i}(\alpha)\right] E_{-} \mid m, g\right)^{\prime}$.
Proof: $\left[H_{i}, E_{-}\right]=-r_{i}(\alpha) E_{-}$by Eq. (II.6).
Therefore
$\left.H_{i} E_{-\alpha} \mid \mathbf{m}, g\right)=E_{-a} H_{i}|m, g\rangle-r_{i}(\alpha) E_{-\alpha}\left|m_{1}, g\right\rangle$

$$
=\left[m_{i}-r_{i}(\alpha)\right] E_{-}|m, g\rangle .
$$

We seek the value of a such that the ket $a E_{-}|m, g\rangle$ is of unit length. Note, incidentally, that $a E_{-}|\mathrm{m}, \mathrm{g}\rangle$ is orthogonal to $|\mathrm{m}, \mathrm{g}\rangle$ since the H_{i} eigenvalues of these two states differ.
Theorem II. If $E_{a}|m, g\rangle=0$, then the normalization constant a is $a=[r(\alpha) \cdot m]$
Proof: $\left[E_{a}, E_{-}\right]=\mathbf{r}(\alpha) \cdot \mathbf{H}$ by Eq. (II.7).
Therefore
$\langle\mathrm{m}, \mathrm{g}|\left[E_{a}, E_{-a}\right]|\mathrm{m}, \mathrm{g}\rangle$

$$
=\langle\mathbf{m}, g| E_{a} E_{-a}|\mathbf{m}, g\rangle=|a|^{-2}
$$

$$
=\langle\mathrm{m}, \mathrm{~g}| \mathrm{r}(\alpha) \cdot \mathbf{H}|\mathrm{m}, \mathrm{~g}\rangle=\mathrm{r}(\alpha) \cdot \mathrm{m} \text { Q.E.D. }
$$

In a direct product representation, the greatest dominant weight M is the sum of the greatest dominant weights $\mathrm{M}^{(N)}$ and $\mathrm{M}^{\left(N^{\prime}\right)}$ of the constituent N and N^{\prime} dimensional representations.
Theorem III. The space spanned by the basis vectors generated by application of A_{i} and \hat{E}_{a}, in any order and any number of times, to $|\mathbf{M}\rangle$ is irreducible under the Lie algebra.
Proof: $|\mathbf{M}\rangle$ is a basis vector of an irreducible representation. Hence, the space spanned by application of A_{i} and \hat{E}_{∞} to $|\mathrm{M}\rangle$ provides an irreducible representation for the algebra by the very definition of irreducibility.
The number of orthonormal vectors which span the reduced direct product space generated in the above manner is the dimension of the resulting representation.
To construct the irreducible representations contained in a direct product representation, we proceed as follows:
(a) Select the ket in the direct product space with the highest weight $|\mathbf{M}\rangle$.
(b) Apply the operators $E_{\alpha}, E_{\alpha} E_{\beta}, \cdots$, to $|\mathbf{M}\rangle$. Orthonormalize by the Schmidt process all resulting kets. The orthonormalization is carried out by using the orthonormal properties of the constituent representations, i.e.,
$\left\langle\{N\}, \nu ;\left\{N^{\prime}\right\}, \nu^{\prime} \mid\{N\}, \nu^{\prime \prime} ;\left(N^{\prime}\right\}, \nu^{\prime \prime \prime}\right\rangle$

$$
=\delta_{r r}, \delta_{r_{r}, p, \ldots} \quad \text { (III.15) }
$$

Kets having different weights will automatically come out orthogonal to each other. The dimensions of the irreducible representations of the algebra have been evaluated in a previous
section from the character of the associated group so that this information can be used to predict the number of linearly independent vectors.
(c) Next, in the subspace orthogonal to that generated from $|M\rangle$, select the ket $\left|M^{\prime}\right\rangle$ with the highest weight. Generate from $\left|\mathbf{M}^{\prime}\right\rangle$ another space irreducible under the Lie algebra in the same way as an irreducible space was generated from |M).
(d) The action of the elements of the Lie algebra on the orthonormal vector basis thus generated is readily ascertained by noting the action of \boldsymbol{A}_{i} and E_{α} on the spaces from which the direct product was constructed [Eq. (III.14)].

Given the l explicit representations characterized by each of the l fundamental dominant weights, every irreducible representation of the algebra can be gener ated by reducing a suitably chosen direct product Let $a^{(0)}$ be the matrix algebra $D(0,0, \cdots, 1, \cdots 0)$, where the 1 is in the sth position, whose highest weight is the fundamental dominant weight:

$$
\mathbf{M}^{(\theta)}=\left(M_{1}^{(\theta)}, M_{2}^{(\rho)}, \cdots, M_{1}^{(\rho)}\right) .
$$

The highest weight of an arbitrary irreducible representation is $M=\sum_{8} \lambda_{d} M^{(0)}$

Theorem IV. The irreducible representation of the Lie algebra characterized by the highest weight $\mathrm{M}=\sum_{\cdot} \cdot \lambda_{6} \mathrm{M}^{(s)}$ is the first irreducible representation obtained by reduction of the product algebra
$\underbrace{a^{(1)} \times \cdots \times a^{(1)}}$
λ_{1} times
$\times \underbrace{a^{(2)} \times \cdots \times a^{(2)}}_{\lambda_{2} \text { times }} \times \cdots \times \underbrace{a^{(1)} \times \cdots \times a^{(1)}}_{\lambda_{b} \text { times }}$.
Proof: The highest weight in the product algebra is $\mathbf{M}=\sum, \lambda_{*} M^{(0)}$. By generating a space irreducible under the Lie algebra from the ket $|\mathbf{M}\rangle$, by a generalization of the procedure illustrated above for the direct product of two spaces, an irreducible representation results.
We now go on to use the above method to construct some irreducible representations of $S U_{2}, C_{2}$, and $G 3$. In particular, all the fundamental representations hich go into making the direct product representations will be generated.

F. Matrix Representations of SU_{3}

The fundamental representations are $D^{(a)}(1,0)$ and $D^{(3)}(0,1)$. Besides constructing these representations we also reduce the regular representation $D^{(\alpha)}(1,1)$ out of the product $D^{(a)}(1,0) \& D^{(a)}(0,1)$.
$D^{(a)}(1,0)$. The weight diagram was given in Fig. 2(a);

Fic. 5. Action of $E_{\text {a }}$ on

the highest weight is the fundamental dominant weight

$$
M^{(1)}=\frac{1}{8}(\sqrt{3}, 1)
$$

(III.16)

We may write $|\{3\}, a\rangle, a=1,2,3$ or simply $|a\rangle$ for the three states, and use the labeling of Fig. 5. Then the \boldsymbol{H}_{i} are the diagonal matrices whose eigenvalues are the respective components m_{i} of the weights. That is ${ }^{61}$

$$
\begin{align*}
& H_{2}=\sum m_{1}(a)|a\rangle\langle a|=\frac{1}{2 \sqrt{3}}\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right], \\
& H_{2}=\sum m_{2}(a)|a\rangle\langle a|=\frac{1}{6}\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -2
\end{array}\right] . \tag{III.17}
\end{align*}
$$

According to theorem I (Sec. III E), when $E_{\text {. }}$ operates on a state with weight m, it creates a state with weigh $\mathrm{m}-\mathrm{r}(\alpha)$. This is symbolized in Fig. 5. Clearly, if $m-r(\alpha)$ is not a weight, then $\hat{E}_{-}|m\rangle=0$. Therefore, in this simple case, all the constants of proportionality are given by theorem II (Sec. III E) to be $\pm[\mathrm{r}(\alpha) \cdot \mathrm{m}]^{7}$ Hence
$\left.E_{1} \mid\{3\}, 1\right\}=[r(1) \cdot m(1)]^{4}|\{3\}, 2\rangle$
$=6-1|\{3\}, 2\rangle$,
$E_{3}|\{3\}, 1\rangle=[r(2) \cdot m(1)][\{3\}, 3\rangle$
$=6^{-4}|\{3\}, 3\rangle$,
$E_{-z}|\{3\}, 2\rangle=[r(3) \cdot m(2)]|\{3\}, 3\rangle$
$\left.=6^{-1} \mid\{3\}, 3\right)$.
The phases of E_{1} and E_{-2} are arbitrary, but once they have been selected, the phase of E_{-}is determined by the convention (II.17), since

$$
\left[E_{-1}, E_{2}\right]=N_{-2,2} E_{2}=6-1 E_{2}
$$

(III.19)

In the form of matrices, (III.18) becomes
$E_{-1}=6-1\left[\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]=6-1|2\rangle(1 \mid$,
$E_{-}=6-1\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right]=6-1|3\rangle\langle 1|$,
$E_{\mathrm{d}}=6-\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]=6-4|3\rangle\left(2 \mid, \quad E_{m}=E_{-}{ }^{\mathrm{t}}\right.$.
$D^{(3)}(0, I)$. If qt is a unitary matrix representation of the group $S U_{2}$, then $\mathcal{\Psi}^{*}$, the complex conjugate matrices, are also a representation. Let थI be of the
${ }^{4}$ Here $m_{1}(a)$ is the ith component of the weight of the ath state.

Fig. 6. Action of E_{α} on $D^{(8)}(1,1)$ of $S U_{3}$.
form $\mathcal{U}=\exp \left(i \epsilon^{A} L_{A}\right)$, then $U^{*}=\exp \left(-i \epsilon^{\wedge} \tilde{L}_{A}\right)$ since $\mathcal{U}^{+}=\mathcal{U}^{-1}$. Hence the "contragredient" representation of the Lie algebra is $L_{A}{ }^{\prime}=-L_{A}$ where L_{A} are given in Eq. (20). In view of the reality of these L_{A}, we find

$$
\begin{align*}
& H_{i}^{\prime}=-\vec{H}_{i}=-H_{i_{1}} \tag{III.21}\\
& E_{a}^{\prime}=-E_{a}=-E_{a}=-E_{-\alpha} .
\end{align*}
$$

The first of Eq. (21) shows that the weight diagrams for contragrediently related representations are transformed into each other by reflection through the origin. Thus we get the weight diagram of Fig. 2(b). Equation (21) would not hold with a different labeling. From (17), (20), and (21):
$H_{1}^{\prime}=\frac{1}{2 \sqrt{3}}\left(\begin{array}{lll}-1 & & \\ & 1 & \\ & & \\ & \end{array}\right), \quad H_{2}^{\prime}=\frac{1}{6}\left(\begin{array}{lll}-1 & & \\ & -1 & \\ & & 2\end{array}\right)$,
$E_{1}^{\prime}=-6^{-3}|2\rangle\langle 1|, \quad E_{\prime^{\prime}}=-6^{-1}|3\rangle\langle 1|$,
$E_{3}{ }^{\prime}=-6^{-\mid}|3\rangle\langle 2|, \quad E_{-a}{ }^{\prime}=E_{a}^{\prime \prime}$.
Thus

$$
\begin{aligned}
& \left|\left\{3^{*}\right\rangle, 2\right\rangle=-6^{\top} E_{1}^{\prime}\left|\left\{3^{*}\right\}, 1\right\rangle, \\
& \left|\left\{3^{*}\right\}, 3\right\rangle=-6^{+} E_{2}^{\prime}\left|\left\{3^{*}\right\}, 1\right\rangle, \\
& \left|\left\{3^{*}\right\rangle, 3\right\rangle=-6^{\top} E_{2}^{\prime}\left|\left\{3^{*}\right\}, 2\right\rangle .
\end{aligned}
$$

This representation is inequivalent to $D^{(1)}(1,0)$ because the set of eigenvalues of B_{i} ' is different from that of H_{i}, (See"also Secs." III B and V.)
$D^{(8)}(1,1)$. The highest weight M of this representation is $M^{(1)}+\mathbf{M}^{(2)}$, where $\mathbf{M}^{(1)}=\mathbf{z}(\sqrt{3}, 1)$ and $M^{(1)}=f(\sqrt{3}$, -1) are the fundamental dominant weights of $D(1,0)$ and $D(0,1)$, respectively. Hence $D(1,1)$ is contained in $D(1,0) \otimes D(0,1)$. The weight diagram is given in Fig. 2(e); we shall label the states as in Fig. 6, writing $|\{8\rangle, A\rangle$ for the Ath state.
Each product state $\left|\{3\}, a ;\left\{3^{*}\right\}, b\right\rangle$ has a unique weight equal to the sum of the weights of $|\{3\}, a\rangle$ and $\left|\left\{3^{*}\right\}, b\right\rangle$. Conversely, for $A=1, \cdots, 6$ there is only one product state with the weight of $|\{8\}, A\rangle$. Hence, with a choice of phases that turns out to be convenient later :

$$
\begin{aligned}
& |\{8\}, 1\rangle=\left|\{3\}, 1 ;\left\{3^{*}\right\}, 2\right\rangle, \\
& |\{8), 2\rangle=\left|\{3\}, 1 ;\left\{3^{*}\right\}, 3\right\rangle, \\
& \left.|\{8), 3\rangle=\mid\{3\}, 2 ;\left\{3^{*}\right\}, 3\right\}, \\
& |\{8\rangle, 4\rangle=-\left|\{3\}, 2 ;\left\{3^{*}\right\}, 1\right\rangle, \\
& |\{8\rangle, 5\rangle=-\left|\{3\}, 3^{*} ;\left\{^{*}\right\}, 1\right\rangle, \\
& |\{8\}, 6\rangle=\left|\{3\}, 3 ;\left\{3^{*}\right\}, 2\right\rangle .
\end{aligned}
$$

The states with weight zero are of the form

$$
\begin{equation*}
\sum_{a=1}^{i} p_{a}\left|\{3\}, a ;\left\{3^{*}\right\}, a\right\rangle, \tag{III.24}
\end{equation*}
$$

with real coefficients p_{0}. The transformations of the states by the E_{m} is given by the action of E_{m} on $|\{3\}, a\rangle$ and on $\left|\left\{3^{*}\right\}, a\right\rangle$, and is symbolized in Fig. 6. When Eqs. (23) are operated on by the \hat{E}_{α} or by products of the \hat{E}_{α}, it is easy to see from (21) that the states (III.24) always occur in such linear combinations that

$$
\sum \rho_{0}=0 .
$$

Hence, only two linearly independent combinations (III.24) occur in $D^{(8)}(1,1)$, as is in fact obvious from the fact that $D^{(8)}(1,1)$ is eight-dimensional. A possible choice of two orthonormal states is

$$
\begin{aligned}
& \begin{array}{l}
|\{8\}, 7\rangle \\
=(1 / \sqrt{2})\left[\left|\{3\}, 2 ;\left(3^{*}\right\}, 2\right\rangle-\left|\{3\}, 1 ;\left\{3^{*}\right\}, 1\right\rangle\right], \\
\begin{array}{l}
\mid(8\}, 8)
\end{array} \\
=6^{-4}\left[-\left|\{3\}, 2^{2} ;\left\{3^{*}\right\}, 2\right\rangle-\left|\{3\}, 1 ;\left\{3^{*}\right\}, 1\right\rangle\right. \\
\left.\left.\quad+2 \mid\{3\}, 3 ;\left\{3^{*}\right\}, 3\right\}\right] .
\end{array}
\end{aligned}
$$

(III.25)

Here the state $\{(8\}, 7)$ has been chosen, in anticipation of future convenience, as the state obtained by applying E_{-1} to $|\{8\}, 1\rangle$. Once $|\{8\}, 7\rangle$ has been chosen, $|\{8\}, 8\rangle$ is unique. The E_{u} are given by their effect on each of the product states, for example, using (20) and (22):

$$
\begin{aligned}
\left.E_{2} \mid(8\}, 6\right)=E_{2} \mid\{3\}, 3^{3} ; & \left.\left\{3^{*}\right\}, 2\right\rangle \\
& \left.=6^{-1}\left|\{3\}, 1 ;\left\{3^{*}\right\}, 2\right\rangle=6^{-1} \mid\{8\}, 1\right\} .
\end{aligned}
$$

In this way we get

$$
\begin{equation*}
E_{m}=E_{a} \tag{III.26}
\end{equation*}
$$

The \boldsymbol{B}_{i}, are the diagonal matrices

$$
\begin{equation*}
B_{1}=\sum_{i=1}^{s} m_{1}(A)|A\rangle\left\langle\left. A\right|_{1}\right. \tag{III.27}
\end{equation*}
$$

where $m(A)$ is the weight of the A th state. The phases here are consequences of the phases in (23).
We found that $D^{(8)}(1,1)$ contains only the two linear combination (25) of the three states (24). The third linear combination, orthogonal to (25) and normalized, is

$$
\mid\left\{\left(H\left|=(1 / \sqrt{n}) \Sigma_{d}\right|\{3\} a ;\left\{3^{*}\right\} a\right\rangle,\right.
$$

(III.28)

This is an invariant $\mathbb{R}_{n}=\boldsymbol{H}_{i}=0$. Thus the decomposition of $D(1,0) \oplus D(0,1)$ 侮

$$
D^{(a)}(1,0) \oplus D^{a}(0,1)=D^{(1)}(1,1) \oplus D^{a}(0,0), \quad(\text { III.29 })
$$

$$
\begin{aligned}
& { }^{6}{ }^{1} E_{1}=\sqrt{2}|1\rangle\langle 7|+\sqrt{2}|7\rangle\langle 4|+|2\rangle\langle 3|+|6\rangle(5 \mid \text {, } \\
& { }^{6} E_{1}=\{\sqrt{2} \mid 2)(\langle 7|+\sqrt{3}(8 \mid) \\
& +|\sqrt{2}(\mid 7)+\sqrt{5}| 8)\rangle(5|+| 3\rangle\langle 4|+|1\rangle\langle 6|, \\
& \left.{ }^{6} \cdot E_{2}=-3 \sqrt{2} \mid 3\right)(\langle 7|-\sqrt{3}(8 \mid) \\
& +\frac{1}{2} 2(|7\rangle-\sqrt{3}|8\rangle\rangle(6|+| 4\rangle\langle 5|-|2\rangle\langle 1| \text {, }
\end{aligned}
$$

An easier way of finding $D^{(8)}(1,1)$ uses the fact that this is the regular representation, as we shall show. The regular representation ${ }^{47}$ is that in which L_{A} is represented by the matrices $-\left(C_{A}\right)_{B}{ }^{D}$ whose components are the structure constants $-C_{A A}{ }^{D}$. When the commutation relations are in the standard form (II.12), the capital latin index $A=1, \cdots, 8$ is replaced by $i=1,2$ and $\alpha= \pm 1, \pm 2, \pm 3$. Thus, referring to (II.12), the A_{i} are represented by $-\left(C_{i}\right)_{A}{ }^{B}$, whose nonvanishing matrix elements are $-C_{i \alpha}^{\alpha}=-r_{i}(\alpha)$; the \hat{E}_{α} are represented by $-\left(C_{\alpha}\right)_{A}^{B}$, whose nonvanishing matrix elements are $-C_{\alpha i}{ }^{\alpha}=+r_{i}(\alpha),-C_{\alpha-a}=-r_{i}(\alpha)$, and $-C_{\alpha \beta}{ }^{\gamma}=-N_{\alpha \beta}$. Summarizing
$H_{i}=-C_{i}=-\sum_{\alpha} r_{i}(\alpha)|\alpha\rangle\langle\alpha|$,
$E_{\alpha}=-C_{a}=+\sum_{i} r_{i}(\alpha)|i\rangle\langle\alpha|$

$$
\begin{equation*}
\left.-\sum_{i} r_{i}(\alpha)|-\alpha\rangle\langle i|-\sum_{i} N_{\alpha \beta} \mid \beta\right)\langle\gamma| \tag{III.31}
\end{equation*}
$$

Here, as in (II.12), | $\boldsymbol{\gamma}$) is the state whose root is $r(\alpha)+r(\beta)$.

Comparing (30) and (31) with (27) and (26), and taking $x_{i}(\alpha)$ from (II.18), we find complete agreement with the following identifications

$$
\begin{array}{lll}
|a\rangle \rightarrow|A\rangle: & |-1\rangle \rightarrow|1\rangle, & |-2\rangle \rightarrow|2\rangle, \\
& |-3\rangle \rightarrow|3\rangle, \\
& |+1\rangle \rightarrow-|4\rangle, & |+2\rangle \rightarrow-|5\rangle, \\
& & |+3\rangle \rightarrow|6\rangle, \\
|i\rangle \rightarrow|A\rangle: & |1\rangle \rightarrow-|7\rangle, & \\
& |2\rangle \rightarrow-|8\rangle . &
\end{array}
$$

The complex conjugate of $D^{(3)}(1,1)$ is related to it by reflection through the origin of the weight diagram. This gives the same diagram with a different labeling. The operator reflecting through the origin is

$$
\begin{aligned}
& C=-|1\rangle\langle 4| \pm|2\rangle\langle 5| \pm|3\rangle\langle 6| \pm|4\rangle\langle 1| \\
& \pm|5\rangle\langle 2| \pm|6\rangle\langle 3| \pm|7\rangle\langle 7| \pm|8\rangle\langle 8|
\end{aligned}
$$

The signs are determined by

$$
\begin{equation*}
C L_{A} C^{-1}=L_{A}^{\prime}=-L_{A} \tag{III.33}
\end{equation*}
$$

where L_{A} are the matrices (26), (27). The solution is

$$
\begin{aligned}
C= & -|1\rangle\langle 4|-|4\rangle\langle 1|+|3\rangle\langle 6|+|6\rangle\langle 3| \\
& \quad-|5\rangle\langle 2|-|2\rangle\langle 5|+|7\rangle\langle 7|+|8\rangle\langle 8| \\
= & C=C^{-1} .
\end{aligned}
$$

(III.34)

Fic. 7. Action of $E_{\text {e }}$ on $D^{(1)}(1,0)$ of C_{2}.

[^5]The existence of C means that $D^{(8)}(1,1)$ is equivalent to its contragredient representation. This is both displayed and proved in (33).

G. Matrix Representations of C_{2}

The fundamental representations are $D^{(4)}(1,0)$ and $D^{(6)}(0,1)$ and the regular representation is $D^{(10)}(2,0)$.
$D^{(4)}(1,0)$: The weight diagram was given in Fig. 4(a), we label the states as in Fig. 7, $\mid\{4\}, a), a=1,2,3,4$. The actions of $E_{\alpha}, \alpha=1, \cdots, 4$ are summarized in Fig. 7 ; the action of $E_{-\alpha}$ are the same with the arrows reversed. As in the case of $S U_{3}$, Theorem II is sufficient to allow one to write down the explicit forms of E_{α} almost immediately. Thus, the analogs of (17) and (18) are

$$
\begin{align*}
& H_{i}=\sum_{a=1}^{a} m_{i}(a)|a\rangle\langle a| \tag{III.35}\\
& E_{1}=\left.6^{-i} \mid 1\right)\langle 4|, \\
& E_{2}=(1 / 2 \sqrt{3})(|1\rangle\langle 3|-|2\rangle\langle 4|), \\
& E_{8}=-6^{-4}|2\rangle\langle 3|, \tag{III.36}\\
& E_{4}=(1 / 2 \sqrt{3})(|2\rangle\langle 1|+|4\rangle\langle 3|), \\
& E_{-\alpha}=\left(E_{\alpha}\right) t .
\end{align*}
$$

The weight diagram for the contragredient representation is obtained by reffection through the origin. In this case we get the same diagram with a different labeling. Hence, the operator reflecting through the origin is

$$
C=-|1\rangle\langle 4| \pm|4\rangle\langle 1| \pm|2\rangle\langle 3| \pm|3\rangle\langle 2|
$$

The phases must be chosen to agree with (21), that is

$$
\begin{equation*}
C L_{\Delta} C^{-1}=L_{\Delta}^{\prime}=-L_{\Delta} \tag{III.37}
\end{equation*}
$$

The solution is

$$
\begin{align*}
C & =-|1\rangle\langle 4|+|4\rangle\langle 1|+|2\rangle\langle 3|-|3\rangle\langle 2| \\
& =-C=-C^{-1}=-C^{\dagger} . \tag{III.38}
\end{align*}
$$

The existence of C means that $D^{(1)}(1,0)$ is equivalent to its contragredient representation. This is both displayed and proved in (35).
$D^{(6)}(0,1)$. The weight diagram is that of Fig. 4(b); we use the labeling of Fig. 8. The action of E_{m} is also symbolized in Fig. 8. The matrices are obtained

Fig. 8. Action of $E_{\text {e }}$.on $D^{(a)}(0,1)$ of C_{8}.

BEHRENDS, DREITLEIN, FRONSUAL, AND LEE
exactly as before, namely:

$$
\begin{gather*}
H_{i}=\sum_{k=1}^{B} m_{i}(k)|k\rangle\langle k|, \tag{III.39}\\
E_{1}=5^{-1}(|1\rangle\langle 2|+|4\rangle\langle 5 \mid\rangle, \\
E_{2}=6^{-k}(| | 1\rangle\langle 3|-|3\rangle\langle(5 \mid), \\
E_{3}=6^{-1}(|1\rangle\langle 4|+|2\rangle\langle(5 \mid), \tag{III.40}\\
E_{4}=6^{-s}(|2\rangle\langle 3|+|3\rangle\langle 4|), \\
E_{-a}=\left(E_{a}\right)^{\dagger} .
\end{gather*}
$$

Again the contragredient representation is equivalent. The matrix C in this case is

$$
\begin{align*}
C & =|5\rangle\langle 1|+|1\rangle\langle 5|-|2\rangle(4|-| 4\rangle\langle 2|+|3\rangle\langle 3| \\
& =C . \tag{III.41}
\end{align*}
$$

$D^{(0)}(2,0)$. The weight diagram was given in Fig. 4(c). The highest weight is exactly twice the highest weight of $D^{(4)}(1,0)$, and $D^{(0)}(2,0)$ is contained in $D^{(4)}(1,0)$ $\otimes D^{(4)}(1,0)$. We begin by calling $|\{10\}, 1\rangle$ the state $|\{4\}, 1 ;\{4\}, 1\rangle$. Since the E_{α} operate in the same way on the two factors, it is evident that $\left.E_{\alpha} \mid\{10\}, 1\right\}$, $\left.\left.E_{a} E_{B}\right\}\{10\}, 1\right\}$, etc., are all symmetric in the two factors. Hence we have, with a convenient set of phases,

$$
\begin{align*}
& |\{10\}, 1\rangle=|\{4\}, 1 ;\{4\}, 1\rangle=-|-1\rangle, \\
& |\{10\}, 2\rangle=\frac{1}{2} 2\{(4\}, 1 ;\{4\}, 2\rangle \\
& +\frac{1}{2} 2\{\{4\}, 2 ;\{4\}, 1\rangle=+|-2\rangle, \\
& |\{10\}, 3\rangle=|\{4\}, 2 ;\{4\}, 2\rangle=-|-3\rangle, \\
& \left.|\{10\}, 4\rangle=\frac{1}{3} \sqrt{2},\{4\}, 2 ;\{4\}, 4\right\} \\
& +\frac{3}{2} \sqrt{2}|\{4\}, 4 ;\{4\}, 2\rangle=+|-4\rangle, \\
& |\{10\}, 5\rangle=|\{4\}, 4 ;\{4\}, 4\rangle \quad=+|+1\rangle \text {, } \\
& |\{10\}, 6\rangle=\frac{1}{2} \sqrt{2}|\{4\}, 4 ;\{4\}, 3\rangle \\
& +\frac{1}{2} \sqrt{2}|\{4\}, 3 ;\{4\}, 4\rangle=+|+2\rangle, \tag{III.42}\\
& |\{10\}, 7\rangle=|\{4\}, 3 ;\{4\}, 3\rangle=+|+3\rangle \text {, } \\
& |\{10\}, 8\rangle=\frac{1}{2} \sqrt{2}|\{4\}, 1 ;\{4\}, 3\rangle \\
& \left.\left.\left.+\frac{1}{2} \right\rvert\,\{4\}, 3 ;\{4\}, 1\right\}=-1+4\right\rangle, \\
& |\{10\}, 9\rangle=\frac{1}{2} \sqrt{2}|\{4\}, 1 ;\{4\}, 4\rangle \\
& +\frac{1}{2} \sqrt{2}|\{4\}, 4 ;\{4\}, 1\rangle=+|1\rangle, \\
& |\{10\}, 10\rangle=\frac{1}{3} \sqrt{2}|\{4\}, 2 ;\{4\}, 3\rangle \\
& +\frac{3}{3} \sqrt{2}|\{4\}, 3 ;\{4\}, 2\rangle=-|2\rangle .
\end{align*}
$$

The labeling on the right-hand side is the one that allows us to use Eqs. (30) and (31) directly. The simplest derivation is by means of [cf. (V.5)]

$$
\begin{aligned}
& 6^{+} \sum_{a, b, d} C_{a b}\left(E_{ \pm a}\right)_{b d}|a d\rangle=| \pm \alpha\rangle ; \\
& 6^{1} \sum_{a, b, d} C_{a b}\left(H_{i}\right)_{b d}|a d\rangle=|i\rangle
\end{aligned}
$$

H. Matrix Representations of G_{2}

The fundamental representations are $D^{(n)}(1,0)$ and $D^{(4)}(0,1)$, the latter being the regular representation.
$D^{(r)}(1,0)$. The weight diagram is that of Fig. 3(a), and we use the labeling indicated there, thus $\{\{7\}, k\rangle$, $k=1, \cdots, 7$. As in the other examples, Theorem II (Sec. III E) suffices to determine the matrix elements of E_{α}. The result is
$H_{i}=\sum_{i=1}^{7} m_{i}(k)|k\rangle\langle\langle k|$,
$E_{1}=(1 / 2 \sqrt{3})\left(\frac{1}{2} \sqrt{2}|1\rangle(2|+1 \sqrt{2}| 3\rangle(4|+| 5\rangle\langle 6|+|6\rangle(7 \mid)\right.$,
$E_{8}=(\$ / 2 \sqrt{2})(|5\rangle\langle 4|+|1\rangle\langle 7|)$,
$E_{8}=(1 / 2 \sqrt{3})\left(\frac{1}{3} \sqrt{2}|5\rangle\langle 3|-|6\rangle(4|+| 1\rangle\langle 6|-\frac{1}{2} \sqrt{2}|2\rangle\langle 7|\right)$, $E_{4}=(1 / 2 \sqrt{2})(|1\rangle(3|+| 2\rangle(4 \mid)$,
$E_{6}=(1 / 2 \sqrt{3})\left(|6\rangle\langle 3|-\frac{1}{2} \sqrt{2}|7\rangle\langle 4|-\frac{1}{2} \sqrt{2}|1\rangle\langle 5|+|2\rangle\langle 6|\right)$,
$E_{0}=(1 / 2 \sqrt{2})(-|2\rangle\langle 5|+|7\rangle\langle 3|) ; E_{-\infty}=\left\langle E_{a}\right)^{\dagger} . \quad($ III.43 $)$
The C operator which changes $D^{(1)}$ into its complex conjugate and reflects the weight-diagram through the origin is defined by

$$
C L_{A} C^{-1}=-\tilde{L}_{A}
$$

The solution is

$$
\begin{aligned}
& C=|5\rangle\langle 7|+|7\rangle\langle 5|-|1\rangle\langle 4|-|4\rangle\langle 1| \\
&+|2\rangle\langle 3|+|3\rangle\langle 2|-|6\rangle\langle 6| . \quad(I I I .44)
\end{aligned}
$$

$D^{(4)}(0,1)$. Since this is the regular representation, the matrices H_{i} and E_{a} are given by (30) and (31). The weight diagram is that of Fig. 3 (b).

IV. COMPOSITION AND DECOMPOSITION OF LIE ALGEBRA REPRESENTATIONS

The basis of the vector space affording a representation of a simple group may be characterized by the simultaneous eigenvalues of the maximum number of mutually commuting Lie algebra operators, designated by the symbols $H_{1,}, H_{2,} \cdots, B_{l}$ where l is the rank of the group. However, the characterization of the representation space basis is not complete if only the B_{i} eigenvalues are assigned to the basis vectors because the same set of eigenvalues of the H_{i}, the weight $\left\{m_{1} \cdots m_{l}\right\} \equiv \mathrm{m}$, can occur more than once in a specisc representation, i.e., weights other than the dominant weight $\left\{M_{1} \cdots M_{i}\right\} \equiv M$ are, in general, not simple. The goals of this section are (a) to find the set of weights and their multiplicities in every representation, and (b) to reduce the direct product of irreducible representations into a direct sum of irreducible representations. The course which we pursue is a purely geometric one, and represents an extension of the classical method.

A. Geometric Characterization of a Representation

Let us restrict the considerations to the groups of rank two. The seven-dimensional representation of G_{2} can be characterized by plotting the array of points (m_{1}, m_{3}) whose coordinates are the weights of the representation. ${ }^{s s}$ Figure 9 (a) shows the resulting array of points. In this specific example, the multiplicity of each of the weights is one and so each weight is associated with one and only one point. When the multiplicity of a weight is greater than one, this will be indicated. Such is the case in the eight-dimensional representation of $S U_{k}$, for which the associated point set is given in Fig. 9(b).
Before proceeding with the task of composing and reducing representations, we introduce the formal operations on sets of points which are utilized in the subsequent sections.

B. Algebra of Sets of Points

To illustrate the algebraic manipulations to which sets of points can be subjected, consider first sets of collinear points. A set of points on a line with a center * and with signed multiplicities attached to each point will be associated with a function which is a sum of powers of a single variable x, as follows:
(a) Each point is associated with a term in the function; the latter has as many terms as there are points,
(b) The coordinate of each point relative to the set center * represents the power of x in the relevant
term,
(c) The numerical coefficient of the term is the attached signed multiplicity.
Thus the set of points in Fig, 10(a) represents the algebraic expression $0.3 x^{-4}-x^{-1}+2 x^{2}$.
In what follows, only integral multiplicities come into consideration and if a single point without indicated multiplicity but with an attached sign occurs, the associated term in the algebraic expression is assigned a coefficient ± 1 depending on the indicated sign. A final liberty with the above conventions is to assume that, in the absence of an indicated center of a point set, this coincides with the geometric center of the point set.

Fio. 9. (a) Reprerentation ett for G_{3} (b) representation set for SUs.

WThese arrays are nothing but the weight diagrams of Sec.
III, the multiplicities added.
(a)

Frg. 10. Algebraic processes on linear point sets.
Addition of two sets of points (ζ and ζ^{\prime}) with a common center is defined to be the union of the two sets; $\zeta+\zeta^{\prime} \equiv \zeta \cup 5^{\prime}$, the multiplicities adding algebraically. Subiraction of two sets of points ζ and ζ^{\prime} is defined to be the addition of ζ to the set $-\zeta^{\prime}$ obtained from ζ by changing the signs of all multiplicities.

To mulliply one set of points ζ by another set ξ^{\prime}, the center of the set ζ^{\prime} is placed on each of the points of the set 5 and each term of ξ^{\prime} is multiplied by the multiplicity of the point of ζ upon which its center sits. The new set of points obtained in such a manner is defined to be the product set $\zeta \times \zeta^{\prime}$. For example, Fig. 10(b) is the geometric equivalent of $\left(x^{-1}-x\right)$ $\times\left(x^{-1}+2 x^{3}\right)=\left(x^{-2}-1+2 x^{2}-2 x^{4}\right)$.
Division is defined to be the inverse of multiplication. The most trivial case of division is the case in which the two sets of points ζ and ζ^{\prime} are identical. The result of the division $5 \div \zeta^{\prime}$ is simply a single point at the common center of ζ and ζ^{\prime}. In general, one set of points ζ^{\prime} exactly divides a congruent set ζ if the multiplicities of every point of ζ is a fixed multiple Z of its image point in ζ^{\prime}. The result of this division operation is a point of multiplicity Z which sits where the center of ζ^{\prime} falls when superimposed on ζ. If the set ζ^{\prime} is not congruent to the set 5 , it is possible to create a subset of ζ, denoted by $\zeta^{\prime \prime}$ and exactly divisible by ζ^{\prime}, by adding and subtracting points, of the same multiplicity at appropriate positions in the set ζ. After dividing such a subset $\zeta^{\prime \prime}$ away, we are left with the problem of dividing the residual set $\zeta-\zeta^{\prime \prime}$ by ζ^{\prime}. By continuing this process, we may ultimately arrive at a residual set itself exactly divisible by ζ^{\prime} without modification. As an example, consider the problem illustrated in Fig. 10(c) whose algebraic analog is $\left(x^{3}-x^{-2}\right) /\left(x-x^{-1}\right)$. By adding and subtracting a point of multiplicity +1 at each of the positions -1 and +1 [Fig. 10(d)], the exact division can be effected. If two sets of points are not exactly divisible, division can still be carried out by adding and subtracting points to the dividend set ad infinitum. Figure 10 (c) illustrates the geometric method of carrying out the expansion $1 / 1-x=1+x+x^{2}+\cdots$. In what follows, we use only exactly divisible point sets.
All of the above manipulations are quite trivial for linear sets of points. However, it is possible to generalize
(a)

$$
\left(-+x y^{-1}+x^{-1} y^{-1}\right)+\left(x y+x^{-1} y-y^{-1}\right)=\left(x y-y+E y^{-1}+x^{-1} y-y^{-4}+x^{-3} y^{-2}\right)
$$

(b)

$\left(x^{-1}-y+x^{-1} y^{-1}\right) X\left(x y^{-1}-y+x^{-1} y^{-1}\right)=\left(-2 x+y^{2}-2 x^{-1}+a^{-2} y^{-2}+2 y^{-2}+x^{2} y^{-2}\right)$
(t)

Fig. 11. Algebraic processes on two dimensional sets of points. (a) Addition; (b) multiplication; (c) division.
to an algebra of sets of points in an n-dimensional space, each point being characterized by a coordinate $\mathbf{m}=\left(m_{1} m_{2}, \cdots m_{l}\right)$ and an' assigned multiplicity and the total set being provided with a center. Every such point is again associated with a term in an algebraic expression in n variables. For example, the point at $\mathbf{m}=\left(m_{1} m_{2} \cdots m_{l}\right)$ with multiplicity μ_{m} is the geometric
 cesses on algebraic expressions in n variables of the form $\sum_{m} \mu_{m} x_{1}{ }^{m}+\ldots x_{1}{ }^{\text {in }}$ can now be given a geometric analog.

Since our concern is with functions in two variables, we illustrate in Fig. 11 some algebraic processes carried out on sets of points in two dimensions. It is to be remarked that the operations on the sets of points are completely isomorphic to the corresponding algebraic processes and as such are, for example, associative and commutative.

C. Construction of Weights and Multiplicities of Irreducible Representations

Our goal in this section is to assign to every irreducible representation of a group a set of points

Table I. Coordinates of points in the set $\boldsymbol{\xi}\left(\lambda_{1} \lambda_{1}\right)$ for $S U_{1}$.

$(6 / \sqrt{3}) x$	$6 y$	Multiplicity
$\left(\lambda_{1}+\lambda_{2}+2\right)$	$\left(\lambda_{1}-\lambda_{1}\right)$	+1
$\left(\lambda_{1}+1\right)$	$\left(\lambda_{1}+2 \lambda_{1}+3\right)$	-1
$-\left(\lambda_{1}+1\right)$	$\left(\lambda_{1}+2 \lambda_{1}+3\right)$	+1
$-\left(\lambda_{1}+\lambda_{2}+2\right)$	$\left(\lambda_{1}-\lambda_{1}\right)$	-1
$-\left(\lambda_{2}+1\right)$	$-\left(2 \lambda_{1}+\lambda_{1}+3\right)$	+1
$\left(\lambda_{1}+1\right)$	$-\left(2 \lambda_{1}+\lambda_{2}+3\right)$	-1

(called the representation set from now on) and derive the admissible sets of points constituting a representation. The fundamental observation is the f.llowing: The charscter of the representation is the algebraic expression associated with the representation set. ${ }^{58}$ For a group of rank l the algebraic variables associated with the representation set may be selected as $x_{i}=e^{i \omega}$. Recall now that every representation of a rank two group is characterized by two integers λ_{1} and λ_{2} where λ_{1}, λ_{2} run over all non-negative integers. The general expressions for the characters of all the groups which interest us have been given by Weyl. ${ }^{8}$ Letting $\chi\left(\lambda_{1}, \lambda_{2}\right)$ denote the set of points constituting the representation, the general expression for $\chi\left(\lambda_{1}, \lambda_{2}\right)$ is

$$
\begin{equation*}
x\left(\lambda_{1}, \lambda_{2}\right)=\xi\left(\lambda_{1}, \lambda_{2}\right) / \xi(0,0), \tag{IV.1}
\end{equation*}
$$

where the algebraic expressions $\xi\left(\lambda_{1}, \lambda_{3}\right)$ were given in Secs. III A and III B. The set of points $\xi\left(\lambda_{1}, \lambda_{2}\right)$ is called the girdle of points uniquely characterizing a

Fio. 12. Some girdles of $S U_{5}$.
representation. We thus see that to generate the representation set, the girdle $\xi\left(\lambda_{1}, \lambda_{1}\right)$ must be divided by the girdle $\xi(0,0)$. Since the $\chi\left(\lambda_{1}, \lambda_{2}\right)$ form a finite set of points, $\xi\left(\lambda_{1}, \lambda_{2}\right)$ must be exactly divisible by $\xi(0,0)$.

To illustrate the detailed mechanics of generating representation sets, we turn to the groups $S U_{b} C_{\%}$, and G_{2}.
$S U_{\text {s. }}$. The coordinates of the six points making up $\xi\left(\lambda_{1}, \lambda_{2}\right)$ are given in Table I. They are the values of the components of ($S \mathrm{SK}$) of Eq. (III.4). For $S U_{3}$ the girdle $\xi\left(\lambda_{1}, \lambda_{3}\right)$ forms the vertices of a hexagon which has the following properties:
(a) Every other side is of the same length, either $\frac{1}{3}\left(\lambda_{1}+1\right)$ or $\sqrt{3}\left(\lambda_{2}+1\right)$,
(b) The hexagons are always symmetric about the y axis,
(c) A hexagon is symmetric about the x axis if and only if $\lambda_{1}=\lambda_{9}$. In this case, the hexagon is regular (all sides being equal).

Fig. 13. Some characters of $S U_{3}$ obtained by the division process.

$\mathbf{4 1 , 0)}+\boldsymbol{\$ (0 , 0)}=X_{0}(1,0)$

$(0,1)+\{0,0)=X(1,0)$

If $\chi\left(\lambda_{1}, \lambda_{2}\right)$ is a representation set, then the complex conjugate representation set $\chi^{*}\left(\lambda_{1}, \lambda_{2}\right)=\chi\left(\lambda_{2} \lambda_{1}\right)$ (for $S U_{1}$ only $)$ is obtained by inverting the $x\left(\lambda_{1}, \lambda_{2}\right)$ hexagon through the origin, and changing the signs of the multiplicities. An equivalent procedure is to reflect $x\left(\lambda_{1}, \lambda_{3}\right)$ in the x axis and leave the multiplicities unchanged. Thus, the necessary and sufficient condition for equivalence of $D\left(\lambda_{1}, \lambda_{3}\right)$ and $D^{*}\left(\lambda_{1}, \lambda_{2}\right)$ is that the $\xi\left(\lambda_{1}, \lambda_{2}\right)$ hexagon be regular.

Figure 12 illustrates the girdles of some lowdimensional representations of SU_{4}. Triangular graph paper is admirably suited for the plot.

The construction of the weights and multiplicities of a representation is now effected by dividing $\xi\left(\lambda_{1}, \lambda_{2}\right)$ by $\xi(0,0)$ and identifying the quotient points as the representation set. In Fig. 13, we carry out some representative divisions.
C_{3}. With the use of Table II any girdle can be found; in particular, those illustrated in Fig. 14(n). The points of $\xi\left(\lambda_{1}, \lambda_{2}\right)$ define the vertices of an octagon symmetric about the x and y axes. Every representation is therefore equivalent to its complex conjugate representation. The sides of the octagion alternate in length between $\frac{1}{3}\left(\lambda_{2}+1\right)$ and $(2)\left(\lambda_{1}+1\right)$.

Table II. Coordinates of the point s in the set $g\left(\lambda_{1}, \lambda_{2}\right)$ for $C_{\%}$.

$2 \sqrt{3} x$	$2 \sqrt{3} y$	Multiplicity
$\left(\lambda_{1}+\lambda_{1}+2\right)$	$\left(\lambda_{2}+1\right)$	+1
$\left(\lambda_{1}+1\right)$	$\left(\lambda_{1}+\lambda_{3}+2\right)$	-1
$-\left(\lambda_{2}+1\right)$	$\left(\lambda_{1}+\lambda_{2}+2\right)$	+1
$-\left(\lambda_{1}+\lambda_{1}+2\right)$	$\left(\lambda_{2}+1\right)$	-1
$-\left(\lambda_{1}+\lambda_{3}+2\right)$	$-\left(\lambda_{2}+1\right)$	+1
$-\left(\lambda_{2}+1\right)$	$-\left(\lambda_{1}+\lambda_{2}+2\right)$	-1
$\left(\lambda_{2}+1\right)$	$-\left(\lambda_{1}+\lambda_{2}+2\right)$	+1
$\left(\lambda_{1}+\lambda_{3}+2\right)$	$-\left(\lambda_{3}+1\right)$	-1

Fig. 14. Some girdles and characters of C_{2}.

Figure 14(b) gives the result of dividing the $\xi\left(\lambda_{1}, \lambda_{2}\right)$ of Fig. 14(a) by $\xi(0,0) .{ }^{\text {W }}$
G_{1}. Table III specifies the sets $\xi\left(\lambda_{1}, \lambda_{2}\right)$ as dodecahedrons symmetric about the x and y axis. Thus the compiex conjugate representations are equivalent. As in C_{8} and $S U_{8}$, the sides of the $\xi\left(\lambda_{1}, \lambda_{8}\right)$ polygon alternate in length, in this case between $\frac{1}{3}\left(\lambda_{2}+1\right)$ and $\sqrt{3}\left(\lambda_{2}+1\right)$. Figure 16 contains the representation sets, $x(1,0)$ and $\chi(0,1)$, while Fig. 15 illustrates some girdles.

D. Reduction of Direct Products of Representations

In the previous section, we have shown how to derive all the representation point sets including the multiplicity assignments. However, for the purpose of reducing the direct product of representations, only

Table III. Coordinates of points in the set $\xi\left(\lambda_{1}, \lambda_{2}\right)$ for G_{k}

$4 \sqrt{3} x$	$4 y$	Multiplicity
$\left(2 \lambda_{1}+3 \lambda_{3}+5\right)$	$\left(\lambda_{3}+1\right)$	+1
$\left(\lambda_{1}+3 \lambda_{2}+4\right)$	$\left(\lambda_{2}+\lambda_{1}+2\right)$	-1
$\left(\lambda_{1}+1\right)$	$\left(\lambda_{1}+2 \lambda_{1}+3\right)$	+1
$-\left(\lambda_{1}+1\right)$	$\left(\lambda_{1}+2 \lambda_{2}+3\right)$	-1
$-\left(\lambda_{1}+3 \lambda_{3}+4\right)$	$\left(\lambda_{1}+\lambda_{8}+2\right)$	+1
$-\left(\lambda_{1}+3 \lambda_{2}+5\right)$	$\left(\lambda_{8}+1\right)$	-1
$-\left(2 \lambda_{1}+3 \lambda_{3}+5\right)$	$-\left(\lambda_{1}+1\right)$	+1
$-\left(\lambda_{1}+3 \lambda_{3}+4\right)$	$\left.-\lambda_{1}+\lambda_{3}+2\right)$	-1
$-\left(\lambda_{1}+1\right)$	$-\left(\lambda_{1}+2 \lambda_{3}+3\right)$	+1
$\left(\lambda_{1}+1\right)$	$-\left(\lambda_{1}+2 \lambda_{2}+3\right)$	-1
$\left(\lambda_{2}+3 \lambda_{2}+4\right)$	$-\left(\lambda_{1}+\lambda_{1}+2\right)$	+1
$\left(2 \lambda_{1}+3 \lambda_{3}+5\right)$	$-\left(\lambda_{2}+1\right)$	-1

[^6]

Fig. 15. Some girdies of G_{2}.
the girdle $\xi\left(\lambda_{1}, \lambda_{2}\right)$ associated with the representation is needed, as we now prove.
The direct product of two representations of a simple group reduces completely and uniquely into a sum of irreducible representations some of which may occur more than once. Letting $\nu\left(\mu_{1}, \mu_{2}\right)$ designate the number of times a specific representation $\chi\left(\mu_{1}, \mu_{2}\right)$ occurs in the reduction of a direct product of irreducible representations, we have the following equality between point sets

$$
\begin{equation*}
x\left(\lambda_{1}, \lambda_{2}\right) \otimes x\left(\lambda_{1}^{\prime}, \lambda_{2}^{\prime}\right)=\sum_{\mu_{1} \mu_{3}} v\left(\mu_{1}, \mu_{2}\right) x\left(\mu_{1}, \mu_{2}\right) \tag{IV.2}
\end{equation*}
$$

If we use the fundamental relation Eq. (IV.1), Eq. (IV.2) reduces to

$$
\begin{equation*}
\frac{\xi\left(\lambda_{1}, \lambda_{2}\right) \times \xi\left(\lambda_{1}^{\prime}, \lambda_{2}{ }^{\prime}\right)}{\xi(0,0)}=\sum_{\mu_{1} \mu 2} v\left(\mu_{1}, \mu_{2}\right) \xi\left(\mu_{2}, \mu_{2}\right), \tag{IV.3}
\end{equation*}
$$

where we have multiplied both sides of Eq. (IV.2) by $\xi(0,0)$. Because only the girdles of the irreducible representations $\chi\left(\mu_{1}, \mu_{2}\right)$ occur on the right-hand side of Eq. (IV.3), we need only carry out the point set process $\left\{\xi\left(\lambda_{1}, \lambda_{2}\right) \times \xi\left(\lambda_{1}^{\prime}, \lambda_{2}\right) \div \xi(0,0)\right\}$, and then identify the girdles and their multiplicities $\nu\left(\mu_{1}, \mu_{2}\right)$ in the resulting set to reduce completely the product representations. Use of one of the several alternative forms of $\xi\left(\lambda_{1}, \lambda_{2}\right) \times \xi\left(\lambda_{1}{ }^{\prime}, \lambda_{\lambda^{\prime}}\right) \div \xi(0,0)$, namely

$$
\begin{aligned}
& x\left(\lambda_{1}, \lambda_{2}\right) \times \xi\left(\lambda_{1}^{\prime}, \lambda_{2}^{\prime}\right)=\xi\left(\lambda_{1}, \lambda_{3}\right) \times\left(\lambda_{1}{ }^{\prime}, \lambda_{2}^{\prime}\right) \\
&=\xi(0,0) x\left(\lambda_{1}, \lambda_{2}\right) \times\left(\lambda_{1}^{\prime}, \lambda_{3}\right)
\end{aligned}
$$

will simplify the computations in some cases.
As examples of the reduction process, we carry out
(a) $x(1,0) \times x(1,0)$ and $x(1,0) \times x(0,1)$ in $S U_{3}$
(b) $\times(1,0) \times \times(1,0)$ for C_{z}
(c) $\chi(1,0) \times \chi(1,0)$ for G_{2}.

Figures 17 and 18 illustrate the reduction processes for $S U_{3}$ and C_{2}, respectively. The superimposed girdle

$X(1,0) \sim \mathcal{Z}(0,1)=\boldsymbol{C}(1,1)+\boldsymbol{\xi}(0,0)$

Fig. 17. Geometric derivation of girdles in direct product representation of $S U_{y}$.

diagram of Fig. 15 is the product of $\xi(0,0) \times x(1,0)$ $\times x(1,0)$ for G_{2}.

V. TENSOR ANALYSIS OF SIMPLE LIE GROUPS

In this section we present some results by an alternative, purely algebraic method, which to a certain extent is complementary to the geometric method. The specific advantages of the algebraic method is that it deals directly with the bases of the representation space (the "wave functions"), and that it gives directly the explicit form of invariants, product representations and transformation matrices.
Let m be the dimensionality of any representation of some simple Lie group. The matrix algebra of that representation consists of Hermitian traceless matrices. Since the matrix algebra of an m-dimensional representation of $S U_{\mathrm{m}}$ is the set of all Hermitian traceless matrices, it follows that the group in question is a subgroup of $S U_{m}$. For example, C_{2} and G_{2} are subgroups of $S U_{4}$ and $S U_{7}$, respectively. Therefore the reduction of a product of several m-dimensional representations is a refinement of the reduction according to $S U_{m}$. It is very helpful, then, to begin with a discussion of $S U_{m}$ for arbitrary m.

A. Group $S U_{m}$

Let $\psi_{a}, a=1, \cdots, m$, be a basis for an m-dimensionsl representation of $S U_{\mathrm{m}}$. The matrices representing a basis for the Lie algebra are any set of $m^{2}-1$ independent Hermitian traceless matrices. The coniragredient representation ψ is defined by ${ }^{\text {bs }}$

$$
\begin{equation*}
\psi_{a} \rightarrow\left(\delta_{a}^{b}+i \epsilon^{A} L_{A a^{b}}^{b}\right) \psi_{b}^{b}, \quad \psi \rightarrow \psi^{b}\left(\delta_{b}^{b}-i \epsilon^{A} L_{A b}^{b}\right) \tag{V.1}
\end{equation*}
$$

[For $m=3$, these representations are those labeled $D^{(2)}(1,0)$ and $D^{(3)}(0,1)$ in Secs. III and IV. The weight diagrams are those of Fig. 2(a) and Fig. 2(b).]
Neat consider the "tensors" $\psi_{\text {abo.... } \% \text {... These are }}$ quantities transforming in the same way as products of the representations ψ_{a} and ψ^{2}. Thus $\psi_{a b}$ has m^{2} components which transform among themselves like the

[^7]Fig. 18. Geometric derivation of girdles in the direct product representation of C_{2}.

$x(1,0)=\{(1,0)$

$$
\xi(t,()+\xi(0,1)+\xi(0,0)
$$

m^{2} quantities $\psi_{d} \psi_{b}, \psi_{d}{ }^{b}$ transforms like $\psi_{a} \psi^{b}$, etc. The tensors form bases for representations called product representations; the present definition agrees with that of Sec. III.

Product representations are usually ${ }^{60}$ reducible. The reduction of second-rank tensors according to $S U_{m}$ is entirely elementary. The tensor $\psi_{0}{ }^{\mathbf{b}}$, for example, transforms according to (1), as follows ${ }^{57}$:

$$
\begin{align*}
& \psi_{a}^{b} \rightarrow\left(\delta_{a}^{e}+i \epsilon^{A} L_{A a^{d}}\right)\left(\delta_{d}^{b}-i \varepsilon^{B} L_{B d}\right) \psi_{d}^{d} \\
&=\psi_{d}^{b}+i e^{d}\left(L_{A}{ }^{0} \delta_{d}^{b}-L_{A d} \delta_{a}^{b}\right) \psi_{e^{d}} . \tag{V.2}
\end{align*}
$$

In particular, if we put $a=b$ and sum, we find

$$
\psi_{s}^{*} \rightarrow \psi_{a}^{*} .
$$

Thus the trace is invariant, meaning that the m^{2} dimensional representation $\psi_{a}{ }^{*}$ may be reduced into a one-dimensional representation and the $m^{2}-1$ dimensional representation whose basis is the traceless tensor

$$
\begin{equation*}
\psi_{a}^{b}-\frac{1}{m} \gamma_{a} \psi_{0}^{c}=P_{a}^{b} d_{d} \psi_{d} \tag{V.3}
\end{equation*}
$$

Here $P_{a}{ }^{b}{ }_{d}{ }^{d}$ is the projection operator

$$
\begin{equation*}
P_{a} b_{0} d=\delta_{a} \delta_{v}{ }^{b}-\frac{1}{m_{a}} \delta_{b} \delta_{0}{ }^{d}, \tag{V.4}
\end{equation*}
$$

whose rows are labeled by a, b and whose columns are labeled by c, d.

The proof that (3) is the basis of an irreducible representation is instructive. First, we show that (3) is the regular representation ${ }^{47}$ for $S U_{m}$, and that it contains the regular representation for any subgroup of $S U_{\text {m. . Let }}$ r be the order of the subgroup, and consider

[^8]the r linearly-independent combinations.
\[

$$
\begin{equation*}
\varphi_{A}=L_{A} \delta^{b} \psi_{d}^{b}=L_{A b^{2}}\left(\delta_{a} \delta \delta_{d}{ }^{b}-\frac{1}{m} \delta_{a}^{b} \delta_{d}\right) \psi_{c^{d}} . \tag{V.5}
\end{equation*}
$$

\]

The second equality is a result of the fact that the matrices $L_{A}{ }^{b}$ are traceless, and shows that φ_{A} dcpend on the traceless tensor (3) only. From (2) and (5) we get

$$
\begin{align*}
\varphi_{A} \rightarrow \varphi_{A}+i \epsilon^{B}\left(L_{A d} L_{B_{A}}{ }^{d}\right. & \left.-L_{B d} L_{A c^{c}}\right) \psi_{c}{ }^{d} \\
& =\varphi_{A}+i \epsilon^{B} C_{A B}{ }^{D} L_{D d} \psi_{c}^{d} \\
& =\varphi_{A}+i E^{B} C_{A B}{ }^{d} \varphi_{D} \tag{V.6}
\end{align*}
$$

Hence, the φ_{A} are the basis of that representation of the r-parameter subgroup in which the operators L_{B} are represented by the structure constants $C_{A B}{ }^{D}$, and that is the regular representation. Equation (5) shows that this representation is contained in the traceless $\psi_{0}{ }^{b}$. In the special case of $S U_{m,}=m^{2}-1$, and $L_{A d}{ }^{b}$ is the set of oll Hermitian traceless matrices. Hence, in that case the regular representation φ_{A} is equivalent to the representation whose basis is the traceless $\psi_{a}{ }^{b}$. Since the former is irreducible ${ }^{47}$ (for any simple group), so is the latter.

With the proof that (3) is irreducible, the reduction of $\psi_{a}{ }^{b}$ has been completed. We can also prove that ψ_{a} and ψ° are inequivalent. For suppose that they are equivalent. Then there exists a nonsingular form invariant matrix $A^{a b}$ such that $\psi^{a}=A^{a \alpha} \psi_{\mathrm{b}}$. This could be used to prove that $\psi_{a}{ }^{b}$ and $\psi^{s b}$ were equivalent, which is impossible since $\psi^{\text {bo }}$ reduces quite differently, as we shall see immediately. Hence, no matrix exists for raising and lowering indices.

The reduction problem for tensors of arbitrary rank, but with all indices either upstairs or downstairs, has a complete and beautiful solution in terms of Young tableaux. ${ }^{58}$ We do not present the general theory here, since it is only of marginal interest, and thus do not prove that the representations obtained are irreducible. However, whenever appropriate, we indicate the connection between the representations and the tableaux. The complete reduction of the second-rank tensor $\psi_{a s}$ is given by

$$
\psi_{a b}=\psi_{a b,}+\psi_{a, b}
$$

where

$$
\psi_{\Delta v,}=\frac{1}{2}\left(\psi_{a b}+\psi_{\alpha_{0}}\right), \psi_{e, 8}=\frac{1}{2}\left(\psi_{a b}-\psi_{\infty a}\right) .
$$

The symmetric part $\psi_{\text {ab, }}$ has $\frac{1}{2} m(m+1)$ components and corresponds to the Young tableau of Fig. 19(a). The skew part $\psi_{a, b}$, has $\frac{1}{3} m(m-1)$ components and the Young tableau is that of Fig. 19(b).

Roughly, indices appearing in the same row in a Young diagram are subject to symmetrization, while indices appearing in the same column are subject to

[^9]| | - |
| :---: | :---: |
| [6] | b |
| tmeorl | fom-1) |
| tob. (a) | \downarrow.,
 (b) |

Fig. 19. The Young tablenux related to the reduction of the second-rank tensor in m dimensions.
antisymmetrization. The notation is the following: A comma between the indices separate those of the first row from those of the second row, a second comma separates the indices in the second row from those of the third, and so on. The completely symmetric tensor ψ.... is is furnished with a comma to distinguish it from the general nonsymmetrized tensor $\psi_{\text {a.... }}$

Corresponding to the reduction of the third-rank tensor there are the four Young tableaux of Fig. 20. The irreducible bases, as well as the dimensionalities, are indicated; the latter, of course, add up to m^{3}. Whereas $\psi_{a b a,}$ and $\psi_{a, b, 0}$ are uniquely defined as the completely symmetric and the completely skew parts, respectively, the other two parts have mixed symmetry and their definition is slightly ambiguous. ${ }^{\text {n }}$ This is due to the fact that they are a pair of equivalent representations of $S U_{m}$. A possible choice is:

$$
\begin{aligned}
& \psi_{\mathrm{ab}, 0}=\frac{1}{8}\left(\psi_{\mathrm{cos}_{0}}-\psi_{\text {ant }}+\psi_{\mathrm{mon}}-\psi_{\mathrm{man}}\right) \text {, }
\end{aligned}
$$

With this choice the four parts are orthogonal. This summarizes the complete reduction of ψ abs.

We have seen how covariant tensors are reduced according to their symmetry, and how the mixed tensor $\psi_{a}{ }^{6}$ reduces by separating the trace. For a general mixed tensor, judicious use of both operations gives the complete reduction into irreducible representations of $S U_{m}$. The theorem that is needed is that a mixed tensor is irreducible if and only if; (1) the symmetry of the lower indices is that of a single Young tableau, (2) the symmetry of the upper indices is that of a single Young tableau, and (3) contraction with respect to one upper and one lower index gives zero. The tensor $\psi_{b}{ }^{e}$ is easily reduced into the following four parts; the two m-dimensional representations

Fig. 20. The Young tableaux related to the reduction of the third-rant tensor in w dimensions.

[^10]having the ${ }^{1}{ }^{3} m^{3}(w+1)-m$ components
and the traceless skew part
\[

$$
\begin{equation*}
\psi_{0,0}=\frac{1}{m-1}\left(b_{3} \psi_{6, \theta^{2}}-\delta_{a} \psi_{6, \Delta}\right) \tag{V.8}
\end{equation*}
$$

\]

which has $\frac{1}{} m^{2}(m-1)-m^{2}$ components.

B. Group $S U_{3}$

We have seen how tensors of rank 2 or 3 reduce under $S U_{m}$. A significant simplification occurs in the case $m=3$, because the Levi-Civita tensors $e_{\text {an }}$ and em, which equal $+1(-1)$ if $a b c$ is an even (odd) permutation of 123 and zero otherwise, have only three indices.

The relation between the above reduction of secondrank tensors and the labeling of representations introduced earlier is (more information in Table IV):

$\psi_{\text {\% }}$	-	* , $^{\text {b }}$
$D^{(3)}(1,0)$	$D^{(5)}(0,1)$	$D^{(3)}(0,1)$
(a)	(b)	(c)
*, ${ }^{\text {b }}$	*	per
$D^{(3)}(1,0)$	$D^{(6)}(2,0)$	$D^{(6)}(0,2)$
(d)	(e)	(f)

as we now prove. The first relation, identifying ψ_{0} as the basis for $D^{(3)}(1,0)$, is essentially a definition. Then (9) follows from the fact that ψ^{4} is contragredient to ψ_{a} and $D^{(3)}(0,1)$ is contragredient to $D^{(3)}(1,0)$. Next consider (9c), according to which $\psi_{a, s}$ is equivaleat to ψ^{*}. This equivalence is exhibited and proved by the relation $\psi^{*}=e^{a k} \psi_{b, e}$ which expresses the three components of ψ^{*} in terms of the three linearly-independent components of p, . In general, the operation of converting two lower indices on a tensor into one upper index by means of eth, is nonsingular if and only if the tensor is skew in the two lower indices. This follows from the relation

Finally, relation (9e) follows from the fact that ψ co, is (the highest dimensional) part of $\psi_{\text {ch }}$

In terms of outer products of representations, (9) shows that ${ }^{\circ 0}$

$$
\begin{gather*}
D^{(3)}(1,0) \otimes D^{(3)}(1,0)=D^{(3)}(2,0) \oplus D^{(3)}(0,1), \\
\psi_{0} \otimes \psi_{0} \sim \psi_{\Delta b} \oplus \psi_{\mathrm{a}, \mathrm{~b}} \tag{V.It}
\end{gather*}
$$

A second relation follow from

$$
\begin{gather*}
{\left[D^{(a)}(1,0)\right]^{*}=D^{(0)}(0,1),} \\
\psi_{1}^{\infty} \sim \psi^{(} . \tag{V.12}
\end{gather*}
$$

- The symbol ~ rends "trantorms uke."

TABLE IV．Representations of $S U_{3}$ ．All mixed tensors are supposed to be traceless，e．g．，ψ as ${ }^{\circ}=0$ ．The missing representation＂ 64 ＂is $D^{4}(3,3)$ with the basis ψd efte and the isotopic content $0, \frac{1}{2}, \frac{1}{2}, 1,1,1, \frac{1}{3}, \frac{1}{3}, \frac{3}{3}, \frac{1}{2}, 2,2,2, \frac{1}{2}, \frac{1}{2}, 3$ ．The dimension of $D\left(\lambda_{1}, \lambda_{1}\right)$ is $\frac{3}{2}\left(\lambda_{1}+1\right)$ $\times\left(\lambda_{2}+1\right)\left(\lambda_{1}+\lambda_{2}+2\right)$ ．The regular representation is $D^{*}(1,1)$ ．

Complete designation	Abbr． design	Highest weight	Fig． no．	Isotopic content	Basic	（8）$D^{\prime}(1,0)$	$\otimes D^{*}(2,0)$	（2）$D^{\mathbf{e}}(1,1)$	（8）$D^{n}(3,0)$
$D^{\prime}(0,0)$	1	$(0,0)$		0	ψ	3	6	8	10
$D^{\prime}(1,0)$	3	$1(\sqrt{3}, 1)$	2（a）	0,1	ψ_{0}	$6+3^{*}$	10＋8	$15+6^{*}+3$	$15^{\prime}+15$
$D^{\prime}(0,1)$	$3 *$	$1(\sqrt{3},-1)$	2（b）	0，	ψ^{\prime}	$8+1$	15＋3	$15^{*}+6+3^{*}$	$24+6$
$D^{\infty}(2,0)$	6	$1(\sqrt{3}, 1)$	2（c）	0，4，1	ψ ab	$10+8$	$15^{\prime}+15+6^{*}$	$24+15^{*}+6+3^{*}$	$24+21+15^{*}$
$D^{(}(0,2)$	6^{*}	1 $(\sqrt{3},-1)$	2（d）	0， 1,1	$\psi^{\text {b }}$	$15^{*}+3^{*}$	$27+8+1$	$24^{*}+15+6^{*}+3$	$42+15+3$
$D^{*}(1,1)$	8	1 （ $\sqrt{3}, 0$ ）	2（e）	0，，，，，， 1	$\psi_{*}{ }^{\text {d }}$ ，x_{A}	$15+6^{*}+3$	$24+15^{*}+6+3^{*}$	$27+10+10^{*}+8+8+1$	$35+27+10+8$
$D^{\text {上1 }}(3,0)$	10	$\underline{1}(\sqrt{3}, 1)$	22	0，${ }^{2}, 1,1,13$	Wabe	$15^{\prime}+15$	$24+21+15^{*}$	$35+27+10+8$	$35+28+27+10$
$D^{\text {w }}(0,3)$	10^{*}	$1(\sqrt{3},-1)$		0，，，1，年	$\psi^{\text {abe }}$	$24^{*}+6^{*}$	$42^{*}+15^{*}+3^{*}$	$35^{*}+27+10^{*}+8$	$64+27+8+1$
$D^{18}(2,1)$ $p^{16}(1,2)$	15	$\frac{1}{3}\left(\sqrt{3},{ }^{\left.+\frac{1}{3}\right)}\right\}$		0，$\frac{1}{2}, \frac{1}{3}, 1,1, \frac{3}{2}$	$\psi_{b}{ }^{*}$				
$D^{14}(4,0)$	15^{\prime}	$\begin{array}{r} \left.-\frac{1}{3}\right) \\ (1) \end{array}$							
$D^{16}(0,4)$	15＊＊	（ ${ }^{3}, 1$－1）$\}$		0，$, 1, \frac{1}{2}, 2$	ψ abed				
$D^{\mathbf{n}}(5,0)$ $D^{21}(0,5)$	21 $21 *$	$\left.\left\{\left(\sqrt{3},{ }^{+1}\right)^{-1}\right)\right\}$		0， $\mathbf{z}_{3}, 1, \frac{2}{2}, 2, \frac{1}{2}$	$\psi_{\text {abeds }}$				
$D^{m}(3,1)$ $D^{(1,}(1,3)$	24	$\left\{\left(\sqrt{3}, \begin{array}{l}\left.+\frac{1}{3}\right) \\ \left.-\frac{1}{6}\right)\end{array}\right\}\right.$		0， $1, \frac{1}{2}, 1,1,3,1,2$	$\psi_{\text {bed }}{ }^{\text {a }}$				
$D^{87}(2,2)$	27	f（ $\sqrt{3}, 0$ ）		0，1，象，1，1，1，1，，， 2	$\psi{ }^{\text {ca } 0^{6}}$				
$D^{88}(6,0)$ $D^{s 9}(0,6)$	28 $28 *$	$\left(\sqrt{3}, \begin{array}{l}+1) \\ -1)\end{array}\right\}$		0，4，1，${ }_{2}, 2, \frac{4}{2}, 3$	ψ ebodos				
$D^{3 x}(4,1)$ $D^{s b}(1,4)$	35 35	8（ $\sqrt{3},{ }^{+3}$－3）$\}$		$\begin{gathered} 0, \frac{1}{5}, \frac{1}{2}, 1,1, \\ 3,2,2,2,5 \end{gathered}$	ψ beda ${ }^{\text {a }}$				
$D^{s 6}(7,0)$ $D^{s 6}(0,7)$	36 36	$\overbrace{}^{7}\left(\sqrt{5}, \begin{array}{l}+1) \\ -1)\end{array}\right\}$			ψ nocrefo				
$D^{\text {s }}(3,2)$ $D^{\text {s }}(2,3)$	42	$\left\{\left(\sqrt{3}, \begin{array}{l}+1) \\ -1)\end{array}\right\}\right.$			$\psi \sim a^{a b}$				
$D^{4}(8,0)$ $D^{4}(0,8)$				0，${ }^{2}, 1,4,2,2, \frac{1}{2}, 3, \frac{7}{2}, 4$	＊abedefuh			，	
$\begin{aligned} & D^{\mathfrak{4}(5,1)} \\ & D^{\mathbf{n}}(1,5) \end{aligned}$	$\begin{aligned} & 48 \\ & 48^{*} \end{aligned}$	$\left(\sqrt{3}, \begin{array}{c}\text {＋} \\ -3)\end{array}\right\}$		$\begin{gathered} 0, \frac{1,1,1,1,1, \ldots, 3}{} \\ 2,2, \frac{1}{3}, 1,3 \end{gathered}$	$\psi_{b e d o s * ~}^{*}$				

The reduction of $\psi_{b}{ }^{b}$ was discussed in detail．For $m=3$ ，

$$
\begin{gather*}
D^{(2)}(1,0) \otimes D^{(3)}(0,1)=D^{(3)}(1,1) \oplus D^{(1)}(0,0), \\
\psi_{a} \otimes \psi^{b} \sim\left(\psi_{a}^{b}-\frac{7}{8} \delta_{a} \psi_{\psi^{c}}{ }^{c}\right) \oplus \delta_{a} 4 \psi_{0^{\circ}} \cdot \tag{V.13}
\end{gather*}
$$

The analogs of（11）and（13）for third－rank tensors are

$$
\begin{aligned}
& D^{(1)}(1,0) \otimes D^{(3)}(1,0) \otimes D^{(3)}(1,0) \\
& =D^{(0)}(3,0) \oplus D^{(s)}(1,1) \oplus D^{(s)}(1,1) \oplus D^{(1)}(0,0),(V .14) \\
& \psi_{a} \otimes \psi_{b} \otimes \psi_{0} \sim \psi_{a b_{0}, \oplus \psi_{a b}, \oplus \notin \psi_{a \sigma, b} \oplus \psi_{a, b, b},}
\end{aligned}
$$

and

$$
\begin{aligned}
& D^{(1)}(1,0) \otimes D^{(3)}(1,0) \otimes D^{(8)}(0,1) \\
& =D^{(b)}(2,1) \oplus D^{(\theta)}(0,2) \oplus D^{(1)}(1,0) \oplus D^{(\theta)}(1,0) \\
& \quad \psi_{a} \otimes \psi_{b} \otimes \psi^{0} \sim \psi_{a b}, \oplus \psi_{a, b^{\circ} \oplus \psi_{a c} \oplus \oplus \psi_{c b^{6}}{ }^{6} .} .
\end{aligned}
$$

The equivalence of $\psi_{a b, e}$ with $D^{(8)}(1,1)$ is exhibited by $\psi_{a}{ }^{d}=\varepsilon^{p d d} \psi_{a b, 0}$（obviously $\psi_{a}{ }^{d}$ is traceless）．In（15），by $\psi_{a b,}{ }^{c}$ and $\psi_{a, b}{ }^{c}$ ，we mean the traceless parts（7）and（8）． The equivalence of the latter to $D^{(8)}(0,2)$ is displayed
 argue as follows．Since the traceless part of $\psi_{b, c^{s}}$ is irreducible，and raising of the lower indices by means of $\varepsilon^{b o t}$ is a similarity transformation，the result must be one of the irreducible parts of ψ ．Since the dimension is $\frac{1}{2} m^{2}(m-1)-m=6$ the irreducible part in question must be the six－dimensional symmetric part $\psi^{n e}$ ．

It is clearly possible to convert，in the manner just illustrated by several examples，any tensor of mixed symmetry into tensors of lower rank，symmetric in all upstairs indices and symmetric in all downstairs indices．For the latter，the reduction is completed by
separating out the traceless part. Hence, a complele set of irreducible representations is given by the set of traceless symmetrized tensors $\psi_{d b} \ldots,{ }^{\text {cd }} \cdots$. . If λ_{1} is the number of lower indices, and λ_{2} is the number of upper indices, the irreducible representations may be labeled $D\left(\lambda_{1}, \lambda_{2}\right)$. Since this is the highest ${ }^{61}$ representation contained in the product of λ_{1} factors of $D(1,0)$ and λ_{2} factors of $D(0,1)$, the present labeling agrees exactly with that of Sec. III.
Alternatively, all indices may be lowered, converting each upper index into two lower ones. Starting with a symmetrized traceless mixed tensor with λ_{1} lower and λ_{2} upper indices, this process must give an irreducible representation, i.e., a tensor with the symmetry of a particular Young tableau. It is easily verified that the table in question has two rows, with $\lambda_{1}+\lambda_{2}$ boxes in the first row and λ_{2} bozes in the sccond row. The reason why no tableaux with three rows are obtained is that adding a column with three rows means multiplying with the representation $\psi_{\mathrm{c}, \mathrm{b}, \mathrm{c}}$, which is an invariant.
The dimension of $\psi_{a b \ldots,}$, symmetric in λ_{1} indices, is $\frac{1}{2}\left(\lambda_{1}+1\right)\left(\lambda_{1}+2\right)$. Hence $\psi_{a} \ldots,{ }^{b \cdots,}$, symmetric in λ_{1} lower and λ_{2} upper indices, has $\frac{1}{2}\left(\lambda_{1}+1\right)\left(\lambda_{1}+2\right)\left(\lambda_{2}+1\right)$ $\times\left(\lambda_{2}+2\right)$ components. The tensor obtained by contracting one upper and one lower index has $\frac{1}{\frac{1}{2}} \lambda_{1}\left(\lambda_{1}+1\right) \lambda_{2}$ $\times\left(\lambda_{2}+1\right)$ components. Hence the traceless part has $\frac{1}{2}\left(\lambda_{1}+1\right)\left(\lambda_{2}+1\right)\left(\lambda_{1}+\lambda_{2}+2\right)$ components, and this is therefore the dimensionality of $D\left(\lambda_{1}, \lambda_{2}\right)$. The same result was obtained in Sec. IV by the geometric method, ${ }^{54}$ which is more suited to that kind of calculation.
The reduction of the product of any two representations is easily calculated by the above methods. The results of Table IV have been obtained by this method as well as independently by the geometric method. In Table IV may also be found the "wave functions" for any representation of $S U_{3}$ with dimension less than 50 . The projection operators, which effect the symmetrization and subtracts out the trace, are easily written down as in (3) and (4), and allows us to obtain the transformation matrices explicitly. Ome example may be sufficient to illustrate this. The transformation of the basis (3), obtained from (2) and (4), is given by the representation

$$
\begin{equation*}
L_{\Delta} \rightarrow P_{d}^{\prime} e_{e}^{b}\left(L_{A b}{ }^{d} \delta_{a}{ }^{c}-L_{A_{a}}{ }^{e} \delta_{b}{ }^{d}\right) . \tag{V.16}
\end{equation*}
$$

C. Group $C_{2}\left(B_{2}\right)$

This is the group of 4×4 matrices that leaves a nondegenerate skew form $h^{\text {ab }}$ invariant. ${ }^{\text {a }}$ This is

$$
\begin{aligned}
& { }^{8 t} \text { That is, the one witb the highest weight. } \\
& { }^{62} \text { Any skew metric may be transformed into the form } \\
& \qquad k^{e b}=\left[\begin{array}{ll}
1 & 1^{-1}
\end{array}\right]
\end{aligned}
$$

This is the choice we have made in Eq. (III.36).
evidently a subgroup of $S U_{4}$, and the reduction of product representations is merely a refinement of that carried out for $S U_{m}$, with $m=4$. The fact that the form-invariant $h^{\text {eb }}$ exists, and may be used as a raising and lowering operator if we define $h_{a b}$ by ${ }^{\text {a }}$

$$
h_{a b} h^{b c}=\delta_{a}^{c},
$$

means that the two representations ψ_{a} and ψ° are equivalent. The equivalence is exhibited and proved by noting that $k^{\text {eh}} \psi_{b}$ transforms like ψ^{*}. Both ψ_{a} and ψ^{a} are (different and equivalent) bases for the representation denoted $D^{(1)}(1,0)$ in a previous section. Clearly a tensor of arbitrary mixed rank can be converted into a tensor with all the indices downstairs. The reduction problem then consists of two steps: First reduce according to $S U_{4}$ (that is, split the tensor into its various possible symmetry classes, or Young tables), then separate out the "traces" formed with $h^{6 b}$. Remembering that $h^{\text {eb }}$ is skew, so that taking the trace on a pair of symmetrized indices gives zero, we easily find the results of Table V . [The method of the last section is even easier, and for higher representations, it is the only practical one.] As in the case of $S U_{s}$, the low dimensionality (4 in this case) allows a simplification. Thus the completely skew tensor ψ a,b, is equivalent to $\psi^{d}=\boldsymbol{\epsilon}^{a b c} \psi_{s, b, e}$, where $\epsilon^{a k d}$ is the LeviCivita symbol.
Let $L_{A a}{ }^{b}$ be the infinitesimal generators of the fundamental representation $D^{(6)}(1,0)$ of C_{2}. The form invariance of $h^{\text {ch }}$ means that

$$
h^{a b} \rightarrow h^{a b}-i \epsilon^{A}\left(L_{A c}{ }^{a} h^{e b}+L_{A c}{ }^{b} h^{a c}\right)=h^{e b} .
$$

Writing $h^{c c} L_{A c}{ }^{b} \equiv L_{A}{ }^{c b}$, we get

$$
L_{\Delta}{ }^{a b}=L_{A}{ }^{b \Delta} .
$$

Hence the infinitesimal generators, with the lower index raised, are symmetric. Hence the number of linearly independent $L_{A}{ }^{a b}$ is 10 which is the order of C_{9}. In order to obtain a complete set of 16 independent matrices we introduce 5 linearly-independent skew matrices $\sigma_{i}^{2 b}, i=1,2,3,4,5$ and choose them so that

$$
\sigma_{i}{ }^{a b} h_{a b}=0 .
$$

We are now able to understand the reduction of $\psi_{\text {ab }}$ and the higher tensors in greater detail. We have already noted that $\psi_{a, b}$ contains the invariant $h^{4} \psi_{e, b}$ The five-dimensional representation, which is the traceless part of the skew part, can now conveniently be written

$$
\begin{equation*}
\varphi_{i} \equiv \sigma_{i}^{a} \psi_{a b_{p}} \quad i=1, \cdots, 5 . \tag{V.17}
\end{equation*}
$$

The proof of this statement follows. The six skew components of $\psi_{\mathrm{a}, \mathrm{b}}$ form a basis for a representation,

[^11]Table V. Representations of $C_{2}\left[B_{2}\right]$. The bases satisfy the "subsidiary conditions"

Complete designstion	Abbr. design.	Highest weight	Fig. no.	Isotopic content	Basis	Q $D^{(1,0)}$	$\otimes D^{4}(0,1)$	$\otimes D^{\omega 1}(2,0)$	(1) $D^{\prime \prime}(0,2)$
$D^{\alpha}(0,0)$	1	$(0,0)$		0	ψ	4	5	10	14
$D^{\prime}(1,0)$	4	$\frac{1}{2 \sqrt{3}}(1,0)$	4(a)	0,0, [[$[$, 11]	ψ_{0}	$10 \div 5+1$	$16+4$	$20+16+4$	$40+16$
$D^{\prime}(0,1)$	5	$\frac{1}{2 \sqrt{3}}(1,1)$	4(b)	0, $1,1[0,0,1]$	$\psi_{a, b, \varphi_{i}}$	$16+4$	$14+10+1$	$35^{\prime}+10+5$	$35^{\prime}+30+5$
$D^{\infty}(2,0)$	10	$\frac{1}{2 \sqrt{3}}(2,0)$		$\left\{\begin{array}{l} 0,0,0,1,2,1 \\ {[0,1,1,1} \end{array}\right.$		$20+16+4$	$35^{\prime}+10+5$	$35+35^{\prime}+14+10+5+1$	
$D^{n+(0,2)}$	14	$\frac{1}{2 \sqrt{3}}(2,2)$		$\left\{\begin{array}{l} 0,1,1,1,1,1 \\ {[0,0,0,1,1,2]} \end{array}\right.$	$\varphi_{\text {P }}$;	$40+16$	$35+30+5$		
$D^{16}(1,1)$	16	$\frac{1}{2 \sqrt{3}}(2,1)$			Prituck.	$35+14+10+5$	$40+20+16+4$		
$D^{m}(3,0)$	20	$\frac{1}{2 \sqrt{3}}(3,0)$			Haba				
$D^{\text {m }}(0,3)$	30	$\frac{1}{2 \sqrt{3}}(3,3)$		$\left\{\begin{array}{c} 0,1,1,1,1,1,1,3, \\ 1,1,1,0,0,0,0 \\ 1,1,1,2,2,3] \end{array}\right.$	Qis				
$D^{\mathbf{N}}(4,0)$	35	$\frac{1}{2 \sqrt{3}}(4,4)$		$\left\{\begin{array}{l} 0,0,0,0,0,1,1,1,1 \\ 1,1,1,2,2,2[0,1, \\ 1,1,2,2,2,2,2] \end{array}\right.$, \%abach				
$D^{\text {m }}(2,1)$	35^{\prime}	$\frac{1}{2 \sqrt{3}}(3,1)$		$\left\{\begin{array}{l} 0,0,0,1,1,1,1,1,1 \\ i, 1,1,1,1,1, \\ {[0,0,1,1,1,1,1} \\ 1,2,2,2] \end{array}\right.$	$\varphi_{i, k}$				
$D^{(1,2)}$	40	$\frac{1}{2 \sqrt{3}}(3,2)$			$\varphi_{i s}{ }^{*}$				

that is, they transform among themselves. Therefore the six linearly-independent combinations $\varphi_{i}, i=1$, $2, \cdots, 5$ and $h^{4} \psi_{a b}$ transform among themselves. But $h^{4} \psi_{\text {cs }}$ is invariant and orthogonal to $\varphi_{i .}$. Therefore, the φ_{i} transform among themselves; that is, the φ_{i} form the basis for a five-dimensional representation. We do not prove bere that this representation is irreducible, but it can easily be seen to Be the representation $D^{(s)}(0,1)$ discussed in preceding sections. The way that the φ_{i} transform among themselves is given by

$$
\begin{align*}
& \varphi_{i}=\sigma_{i}^{e} \psi_{a b} \rightarrow \sigma_{i}^{a b}\left(\delta_{a}^{e}+i \epsilon^{A} L_{A A^{e}}\right)\left(\delta_{b}^{d}+i \varepsilon^{B} L_{B b}{ }^{d}\right) \psi_{\mathrm{ad}} \\
&\left.\equiv\left(\delta_{i}^{j}+i \epsilon^{A} L_{A i}\right)\right) \sigma_{i}^{a} \psi_{a b} . \tag{V.18}
\end{align*}
$$

As is the usual treatment of the Pauii o matrices, we interpret $\sigma_{i}^{\text {ch }}$ as a constant tensor. This nomenclature is justified by noting that the above definition of $L_{A v}{ }^{H}$ gives
$\sigma_{i}{ }^{a b} \rightarrow\left(\delta_{c}{ }^{a}-i \epsilon^{A} L_{A c} c^{*}\right)\left(\delta_{d}^{b}-i e^{B} L_{R d} d^{b}\right)$

$$
\left.\times\left(\delta_{i}^{j}+i \epsilon^{c} L_{c c}\right)\right) \sigma_{j}^{e d}=\sigma_{i}^{a b} .
$$

That is, $\sigma_{i}^{\text {ab }}$ is form invariant.

This representation $D^{(b)}(0,1)$ may appropriately be called the vector represontation. The form

$$
\begin{equation*}
g_{i j}=\sigma_{i}{ }^{2} \sigma_{\left.\sigma_{j}\right)} \tag{V.19}
\end{equation*}
$$

is clearly symmetric, nonsingular and constant (form invariant). It may be used to raise and lower vector indices. For example, we have from (18):

$$
L_{A d}^{j}=\sigma_{a}^{a b}\left(L_{A a} \delta_{b}^{d}+\delta_{a}^{d} L_{A b}\right) \sigma_{c d a}^{d}
$$

Clearly $L_{A}{ }^{i}$ are the 10 skew 5×5 matrices, and their skewness is equivalent to the form invariance of $g_{i j}$. Hence, this representation of C_{3} is B_{8}, the orthogonal group in five dimensions. (The isomorphism between C_{2} and B_{2} was pointed out by Cartan.)

To complete this discussion of the reduction of ψ_{ab}, we note that the ten-dimensional representation $D(2,0)$, which is the symmetric part of $\psi_{a b}$, is jusi the regular representation:

$$
x_{A}=L_{A} A \psi_{a t}
$$

The $\sigma_{i}^{a b}$ play the same role here as in ordinary
spinor analysis, providing the link between the "spinor" indices a, b, \cdots, and the "vector indices," i, j, \cdots. For tensors of higher rank, it may be convenient to employ a mixed notation. Thus, the basis $\psi_{a b}$, is equivalent to $\varphi_{i, j}$ and the basis for $D(1,1)$ is either

$$
\psi_{a b, c} \text { with } h^{b} \psi_{s b, c}=0,
$$

or

$$
\varphi_{i, j} \quad \text { with } \quad \sigma_{a b}^{i} \varphi_{i, j}=0 .
$$

D. Group \boldsymbol{G}_{2}

Because G_{2} is a subgroup ${ }^{84}$ of O_{7} it is helpful first to discuss the latter group. The spinor-representation of O_{7} is eight-dimensional. Let $g^{\text {eb }}$ be a symmetric nonsingular matrix and $g_{a b}$ its inverse:

$$
\mathfrak{g}^{\mathrm{eb}} g_{b_{c}}=\delta_{c}{ }^{\text {e. }}
$$

We use this tensor to raise or lower indices in spinor space (i.e., latin indices a, b, c). Let $\gamma_{i a}{ }^{b}$ be a set of seven 8×8 matrices that satisfy

$$
\begin{aligned}
g^{a c} \gamma_{i c}{ }^{b} & =\gamma_{i}^{a b}=-\gamma_{i}^{b a}, \\
\left(\gamma_{i} \gamma_{i}+\gamma_{i} \gamma_{i}\right)_{a}^{b} & =-2 g_{i j} ; \delta_{a}^{b} .
\end{aligned}
$$

The numbers $g_{i j}$ are defined by these equations, once a fixed $g^{a b}$ and a fixed set of γ matrices have been chosen. The latter should be taken to be linearly independent; then $g_{i j}$ is a nonsingular quadratic form with an inverse defined by

$$
g^{i j} g_{i k}=\delta_{k}{ }^{i} .
$$

These matrices are used to raise and lower latin indices i, j, k, henceforth called vector indices. Hence $g^{a b}$ and $g^{i j}$ are the metric tensors in spinor space and in vertor space, respectively

The γ matrices may be used to construct a complete set of matrices (64 independent ones) in spinor space. The 21 independent matrices

$$
G_{i j a}{ }^{b}=\frac{1}{2}\left[\gamma_{i}, \gamma_{j}\right]_{a}^{b}
$$

are of particular interest. First we note that $G_{i j}{ }^{s b}$ are skew and independent of $\gamma_{i}{ }^{a b}$:

$$
G_{i j}{ }^{\mathrm{Ab}}=-G_{i j}{ }^{\mathrm{ba}}, \quad G_{i j}{ }^{\boldsymbol{A}{ }^{\mathrm{d}} \gamma_{k a b}=0 .}
$$

Therefore, the $21 G_{i j}{ }^{\text {ab }}$ and the $7 \gamma_{\gamma^{a}}$ borm a complete set of 28 linearly independent skew matrices. Next, defining the 35 matrices

$$
G_{i j k a}{ }^{b}=\frac{1}{6}\left[\gamma, \gamma, \gamma_{k}\right]_{a}^{b},
$$

where $\left[\gamma_{i} \gamma_{,} \gamma_{k}\right]$ is the antisymmetrized product of $\gamma_{i}, \gamma_{j}, \gamma_{\boldsymbol{k}_{j}}$ we note that $G_{i j k^{6 b}}$ are symmetric and independent of g^{b}

$$
G_{i j k^{2}}=G_{i j k}, \quad G_{i j j k^{2 b}}^{g_{a b}}=0 .
$$

"The first physical application of this fact appears to have been made by G. Racah, Plys. Rev. 76, 1352 (1949).

Hence, the $G_{i j \lambda^{2 b}}$ and $g^{\text {eb }}$ form a complete set of 36 independent symmetric matrices.

As a simple consequence of the "anticommutativity" of the γ matrices, we find

$G_{i j}, G_{k l}=g_{i j} G_{k j}-g_{i k} G_{i j}+g_{i j} G_{i k}-g_{k j} G_{i b_{j}}$

which are the correct commutation relations for the group of rotations in seven dimensions. ${ }^{66}$ Therefore the $\left(G_{i j}\right)_{b}^{b}$ are the infinitesimal generators of that group.
The group G2 may now be obtained as a subgroup of O_{7} in the following way. ${ }^{66}$ Let η^{6} be a constant spinor. Of course O_{7} does not admit such an object, and η^{2} is not constant under O_{7}. However, there exists a subgroup of O_{7} that does leave η^{n} invariant, and it turms out that this subgroup is G_{2}. Hence r^{r} is constant with respect to G_{2} only. The subspace of spinor space which is normal to $\eta^{\prime \prime}$ is seven dimensional, and there exists a very convenient way of labeling the seven components of ψ_{a} which span this subspace. For, let $\eta_{i}{ }^{8}$ be defined by

$$
\eta_{1}^{a} \equiv-\gamma_{i b} \eta^{b}, \quad \eta_{i a}=\gamma_{i a b} \eta^{b}=\eta_{i}^{b} b_{b a} .
$$

Then clearly $\eta_{i} \eta_{a}=0$. Hence the seven components $\eta_{i} \psi_{a}$ of ψ_{a} are the basis for a representation of that subgroup of O_{7} that leaves η_{a} invariant.

In order to find the matrices of this group, let us define

$$
\Gamma_{i j k}=\gamma_{i a b j, \eta_{k}}{ }^{b}
$$

It is not at first obvious how this can be solved for $\gamma_{i a b}$, since the η_{i}^{*} are singular. It is clear, however, that $\gamma_{i a b}$ is of the form

$$
\gamma_{i s b}=A \Gamma_{i j k \eta_{a} \eta_{\psi}^{k}}+B\left(\eta_{i a} \eta_{b}-\eta_{i b} \eta_{a}\right) .
$$

From the commutation relations we find, with the normalization
$\eta^{4} \eta_{a}=1$, that $\eta_{i} \eta_{j a}=g_{i j}$,
and this immediately gives $A=B=1$, or

$$
\gamma_{i s b}=\Gamma_{i j k \eta^{2 i} \eta^{i k}}+\eta_{i a} \eta_{b}-\eta_{i} \eta_{i b} .
$$

Using this formula in the anticommutation relations, we find that the necessary and sufficient conditions for the $\Gamma_{i j k}$ to yield $\gamma_{i e}{ }^{b}$ with the defining properties (a) that the $\Gamma_{i j k}$ be totally skew, and (b) that

$$
\Gamma_{i}^{l n} \Gamma_{j n}^{k}+\Gamma_{j}^{l n} \Gamma_{i n}^{k}=\delta_{i}^{l \delta_{j}^{k}}+\delta_{j}^{l \delta_{i}} k-2 g u b^{l n} . \quad \text { (V.21) }
$$

Some simple consequences are

$$
\Gamma_{i l} l^{l}=0, \quad \Gamma_{i t l} I^{j+l l}=6 \delta_{i}^{j} .
$$

Although not obvious, it is nevertheless true that the above properties suffice to reduce the product of any three Γ matrices to a sum of terms that are linear in

[^12]'s. The formula is
$\Gamma_{m=} \Gamma_{d}{ }^{i j} \Gamma_{0} j^{i k}=-\delta_{m} \Gamma_{n}{ }^{j k}-\delta_{m} \Gamma_{n}{ }^{k i}-\delta_{m}{ }^{k} \Gamma_{n}{ }^{i j}-g^{i k} \Gamma_{m n}{ }^{j}$
$$
+\delta_{n}^{i} \Gamma_{m^{i k}}^{i k}+\delta_{n} \Gamma_{m}^{k i}+\delta_{n}^{k} \Gamma_{m}^{i j}+g^{i / \Gamma_{m n}}{ }^{k} .
$$

The generators of G_{2} are those linear combinations

$S^{i j} G_{i j m^{j}}{ }^{b}$,

that satisfy
$S^{i j} G_{i j o}{ }^{b^{\eta}}{ }_{b}=0$.
This is easily reduced to
$S^{i j} \Gamma_{i j k}=0$
The general solution (taking $S^{i j=}-S^{i i}$) is a linear combination of the following matrices

$$
P(14)_{(m n)}{ }^{i j} \overline{=} \frac{1}{2}\left(\delta_{m}{ }^{i} \delta_{n}^{j}-\delta_{m}{ }^{i \delta_{m}}{ }^{i}\right)-\frac{1}{8} \Gamma_{k m n} \Gamma^{k i j},
$$

of which 14 are linearly independent. Hence G_{2} has 14 parameters, and the generators are

$$
L_{\left.(m) d^{d} \equiv P(14)_{(m n)}\right)^{i j} G_{i j a}^{b} .}
$$

In vector space this becomes

Hence, the generators of G_{2} is the set of skew matrices orthogonal to $\Gamma_{i j h}$

$$
L_{(m))^{i /} \Gamma_{i j k}=0 .}
$$

The reduction problem for G_{2} can now be solved. Let $D^{(7)}(1,0)$ stand for the representation ψ. The second-rank tensor is first split into the symmetric, and the skew part. The symmetric part $\psi_{i j}$, contains the invariant $g^{i} \psi_{i j}$ and the remaining 27 components form an irreducible representation that we label $D^{(27)}(2,0)$. The 21 skew components ψ i, break up into the $D(1,0)$ $T_{1 j} \psi_{i=1} \varphi^{*}$ and a remainder with 14 components. The latter make up the regular representation $L(=\pi)^{i \pi} \psi_{i j}$, which we call $D^{(w)}(0,1)$. (These labels agree with those of the previous sections.)
The reduction of the third-rank tensor $\psi_{i j k}$ is nontrivial. First write down all the operators that exist for reducing the number of indices, that is, all the form-invariant matrices with 3 to 5 indices:

$$
\begin{aligned}
& A=\Gamma^{i j h}, \quad B_{m}=g^{i \delta_{m}{ }^{b}} \text {, } \\
& A_{m}=1\left(\Gamma^{i j l} \Gamma_{i m}{ }^{k}+\Gamma^{j k i} \Gamma_{b m}+\Gamma^{k i \Gamma^{i}} \Gamma_{m}\right)
\end{aligned}
$$

$$
\begin{aligned}
& A_{m, n}=\frac{1}{2}\left(\Gamma_{m}{ }^{i / \delta_{n}}{ }^{k}-\Gamma_{n}{ }^{i i \delta_{m}}{ }^{k}\right)-k \Gamma_{m}{ }^{l} \Gamma_{l}{ }^{i k} \Gamma_{0}{ }^{i j} .
\end{aligned}
$$

Here A_{m} has been made completely skew in i, j, k, since any symmetric part would reduce to B_{m} by use of (21). We have subtracted the trace A from $A_{m n}$, and the part $A_{m} \sim \Gamma_{m}{ }^{n l} A_{n t}$ from $A_{m, n}$. In this way we are assured that $A_{m n}{ }^{i j k} \psi_{i j k}$ and $A_{m, n}{ }^{n} j_{i k} \psi_{i j k}$ are irreducible. These operators are then applied to each of the symmetry classes of Fig. 20. We start with the skew part $\psi_{i, j, k}$ which has 35 components. Applying B_{m} gives zero trivially; $A_{m, n}$ also yields zero after some calcula-
tion. Thus we are left with

$$
\begin{gathered}
\psi_{i, j, k}=A_{m, 0}{ }^{i, j \psi_{i, j, k} \oplus A_{m^{i j}}^{i j} \psi_{i j k} \oplus A^{i j k} \psi_{i j k},} \\
\therefore \quad D^{(\alpha 7)}(2,0) \oplus D^{(7)}(1,0) \oplus D^{(1)}(0,0) .
\end{gathered}
$$

To each of the two parts $\psi_{i j, k}$ and $\psi_{i k, j}$ with mixed symmetry (having 112 components each), $B_{m,} A_{\mathrm{man}}$ and $A_{m, n}$ gives $D^{(7)}, D^{(27)}$, and $D^{(14)}$, respectively. The remaining components, of which there are $112-7-27-17=64$, are irreducible. Since this is the highest representation ${ }^{61}$ in $D(1,0) \otimes D(0,1)$ it must be $D(1,1)$. Thus
$\psi_{i j, k}=B_{\boldsymbol{m}}{ }^{i j k} \psi_{i j, k} \oplus A_{m m}{ }^{i k}{ }^{i k} \psi_{i j, k}$
$\oplus A_{m, n}{ }^{i k i} \psi_{i j, k} \oplus^{*}$ remainder",
$\therefore \quad D^{(7)}(1,0) \oplus D^{(27)}(2,0) \oplus D^{(1)}(0,1)$

$$
\begin{equation*}
\oplus D^{(\mu)}(1,1) \tag{.23}
\end{equation*}
$$

The "remainder" is the tensor $\psi_{i j, k}$, that satisfies the "subsidiary conditions"

$$
B_{m}{ }^{i j k} \psi_{i j, k}=A_{m w_{0}}{ }^{d k} \psi_{i j, k}=A_{m, k}{ }^{i k i} \psi_{i j, k}=0 .
$$

The result for $\psi_{i k, j}$ is, of course, exactly similar. The completely symmetric part $\psi_{i j k, \text {, }}$ can be contracted with B_{m} only. Therefore, the remaining 77 components are irreducible. Since this is the highest representation in $[D(1,0)]^{3}$, it must be $D^{(7)}(3,0)$. Thus

$$
\begin{aligned}
& \psi_{i j k}=B_{m}{ }^{i j k} \psi_{i j k} \oplus \text { "1 remainder" } \\
& \therefore \quad D^{(7)}(1,0) \oplus D^{(77)}(3,0) .
\end{aligned}
$$

The complete results for $\psi_{i j k}$ are listed in Table VI.
It may be helpful, to support our claim that our method supplies explicit matrices of the transformations for each representation, to write them down for some of the representations that are listed in Table VI.
We found the transformation matrices $L_{(m a) i^{i}}$ for the representation $D^{(7)}(1,0)$. These are given explicitly in terms of the $\Gamma^{i j k}$. For the present purpose the tensor character of the label (mn) on $L_{(m \mathrm{~m})}{ }^{3}$ is irrelevant, and it is perhaps less confusing to replace it by a single index A running from 1 to 14 . Then the transformations of the tensors before symmetrization are
$\psi_{i j} \rightarrow \psi_{i j}+\epsilon^{A}\left(L_{A i}{ }^{k} \delta_{j}{ }^{2}+L_{A j}{ }^{l} \delta_{i}{ }^{k}\right) \psi_{k t_{p}}$

The representation $D^{(2)}(2,0)$ is obtained from $\psi_{, j}$ by the projection operator that symmetrizes and makes traceless, namely,

$$
P(27)_{i j}{ }^{k l}=\frac{1}{2}\left(\delta_{i} \delta_{j}^{l}+\delta_{i} \delta_{j}^{k}\right)-(1 / 7) g_{i j} g^{k l} . \quad(\mathrm{V} .24)
$$

Hence the matrices for $D^{(27)}(2,0)$ are simply,

$$
L_{A} \rightarrow P(27)_{i j}^{k l}\left(L_{A k^{*} b_{i}^{*}}+L_{A i^{*} f_{k}{ }^{m}}\right)
$$

We already found the projection operator $P(14)_{i j^{n t}}{ }^{n t}$ similarly:

$$
\begin{align*}
& P(1)_{i j^{n l}}=(1 / 7) g_{i G_{B}}{ }^{k l}, \\
& P(7)_{i i^{h l}}=t \Gamma_{i j m} \Gamma^{k i m} . \tag{V.25}
\end{align*}
$$

Complete designation	Abbr. design.	Highest weight	Fig. no.	Isotopic content	Basis	$\otimes D^{7}(1,0)$	$\otimes D^{\prime \prime}(0,1)$	$\otimes D^{p 7}(2,0)$
$D^{7}(1,0)$	7		3(a)	t, ${ }^{\text {, }} 1$	ψ	$27+14+7+1$	$64+27+7$	$77+64+27+14+7$
$0^{\prime \prime}(0,1)$	14		3 (b)	0,0,0, 1, \%	$\psi_{i, j}, \chi_{\boldsymbol{X}}$	$64+27+7$	$77+77^{\prime}+27+14+1$	
$D^{\# n}(2,0)$	27				*\%	$77+64+27+14+7$		
$D^{\text {m }}(1,1)$	64			$\left\{\begin{array}{l} 1, \frac{1}{2}, 4,4,4,4,1,4, \\ 2,2,2,2,4, \frac{1}{3} \end{array}\right.$	$\psi ¢ 5,4$			
$D^{\text {rr }}(3,0)$	77				ψ_{i+1}			
$D^{[r}(0,2)$	77'			$\left\{\begin{array}{l} 0,0,0,0,0,0,1,1,1,1, \frac{1}{2} \\ \frac{2}{2}, 2,2, i, 2, y, 1,3,3,3 \end{array}\right.$	$\psi_{i, 0,4, t}$			

It is easily verified that these operators are indeed projection operators, and that they add up to $\delta_{i}{ }^{k} \delta_{j}{ }^{l}$. The reader is now able to write down the matrices for any one of the representations in Table VI.

VI. APPLICATIONS

A. Introductory Remarks

We have presented the tools that are needed to construct a physical theory of the strongly interacting particles. The important question now at hand is to select the group which is appropriate, make the proper identification between the basis of the representations and the physical states (particles, resonances, etc.) and determine the experimental predictions that ensue.
The myriad of schemes that may be constructed is limited only by the imagination of the inventor. Consequently, we have been unable to find a course between the Scylla of being too abstract and the Charybdis of leaving out many logical possibilities. It would seem then, that our purpose is best served by giving illustrative examples, from which the general pattern of procedure may be gleaned. It cannot be emphasized too strongly, however, that all of the remainder of this section is offered for illustration only.
We identify the components of the basis of an irreducible representation of a group with a set of physical states (particles, resonances, scattering states, etc.). Since we have only considered groups of "charge"space transformations, which commute with every space-time transformation, each of the physical states within one irreducible multiplet must have the same space-time properties, i.e., spin, relative parity, baryon number, etc. In particular, the square of the total four momentum, or the mass, of each of these states must be the same. But a cursory examination of the mass spectrum of the known baryons and mesons tends to preclude the possibility that these particles could form, in any meaningful way, the components of the basis of an irreducible representation of any group larger than the four-parameter semi-simple group of isotopic spin and hypercharge conservation. Namely, the only apparent approximate multiplet structure seems to be
that associated with isotopic spin. This is the basis for one possible point of view.
Another point of view can be based on an analogy, which, if fruitful, would allow us to consider meaning fully the baryons as members of a "supermultiplet." That the analogy may be misleading, in whole or in part, is understood; we cite it only as one possible fight of fancy.
Let us consider again the concept of isotopic spin As commonly conceived, the particle interactions break into an isotopic invariant part and a much weaker symmetry-breaking part, most likely due to the electromagnetic field. In the absence of the latter, the neutron and proton are identified as the degenerate members of an isotopic spin doublet, a spin $1 / 2$ basis for an irreducible representation of the isotopic spin rotation group. Being members of such a multiplet all their space-time properties are the same, including their masses. The main effect of the symmetry-breaking interaction, in this case, is to remove the degeneracy in the masses and interactions of the proton and neutron. This is so, because electromagnetic interactions conserves parity and baryon number, and is Lorentz invariant, and hence does not change the other space-time properties of the states, such as spin relative parity and baryon number. That these statements are independent of the symmetry-breaking coupling strength is obvious. It is conceivable that the interaction could change the number of states by giving rise to some new resonant states. In the isotopic spin case, it would seem that these new states either do not exist or are far removed in mass from the perturbed doublet. Thus, it has been found, since the proton and neutron are related states even in the presence of the symmetry-breaking interaction, that to some extent it is still meaningful to consider them as members of a doublet.
One may now carry the analogy over to the case of some higher symmetry. That is, one might speculate that the particle interactions split into a symmetrypreserving and a symmetry-destroying part the latter involving some "fields" not contained in the former.

One such possibility is the global symmetry scheme ${ }^{67}$ where the bosons involved in the symmetry-preserving part are only pions, while in the violating part, they are only K mesons. ${ }^{68}$ Alternatively, the symmetric interaction could involve both K and π mesons, while the symmetry-breaking interaction could be due to some other, as yet unknown, field. It is this latter interaction, then, which would be responsible for the observed mass splittings and other mischief. If the analogy is not misleading, we may, even in the presence of this interaction, still speak in a meaningful way of of this interaction, still speak in a meaningful way of an irreducible representation. Namely, we are able to say that all the components must have the same spin, relative parity, and baryon number. In addition, as before, we assume that if any new states arise as a result of the symmetry-breaking interaction, they are separated by a large mass from the presently known resonances. This guarantees that the number of states will be preserved in the presence of the interaction. Thus, by completely describing one component of a multiplet, we have completely specified all the other components, except as to their masses and widths. If, in addition, we adopt the viewpoint of Lee and Yang ${ }^{17}$ with regard to relating the widths of the various components, we are left with the masses as the main quantum number perturbed by the symmetrybreaking interaction.
According to the methods developed in the preceding sections, the components of the basis of an irreducible representation are identified by the weights m to which they belong.

For representations of simple group of rank two, it turns out that at most two linear combinations of H_{1} and H_{2} can be interpreted as I_{3}. This is because the spectrum of I_{3} must be symmetric about $I_{s}=0$. For both $S U_{:}$and G_{2} only one of the two possibilities, namely $I_{3} \propto H_{1}$, are considered; but for $C_{2}\left(B_{2}\right)$ either choice gives rise to reasonable physical models (see below). In Tables IV-VI the isolopic content of many representations are recorded. This is the number of isotopic spin singlets, doublets, triplets, etc., contained in a representation. It may most easiiy be read off the weight diagram. The number of times that the total isospin I^{\prime} is contained is equal to the number of states with $I_{\mathbf{3}}=I^{\prime}$ minus the number of states with $I_{3}=I^{\prime}+1$.

B. Analysis of Invariant Amplitudes

In most cases, an attempt at a physical theory will begin with associating a particular representation D_{B} of some group G with a set of particles called the "fundamental baryons." Which baryons are fundamental depends on the model; it is not even necessary

${ }^{67}$ See, M. Gell-Mann, reference 2.

a Or vice versa, see J. Schwinger, reference 2.
This assumption, or a similar one, is a sine qua non of any theory of higher symmetries.
that the "fundamental baryons" be stable baryons. To fix the ideas, however, we assume that this is the case, and refer unambigously to "the baryons." Let ψ_{a} be the wave function for these baryons, that is, the basis for D_{B}, and let ψ° be the wave function for the "antibaryons." Clearly ψ^{*} is contragredient to $\psi_{\text {a }}$ and is the basis for $D_{B^{\circ}}=\left(D_{B}\right)^{*}$. The first experiment that may be discussed, even before introducing the bosons, is baryon-baryon or baryon-antibaryon scattering. The relevant four point function is of the form (suppressing the space-time variables)

$$
\begin{equation*}
a=A_{\mathrm{ae}}{ }^{b d}\left\langle T\left\langle\psi^{+} \psi_{b} \psi^{\dagger} \psi^{\top} \psi_{d}\right)\right\rangle, \tag{VI.1}
\end{equation*}
$$

where the coefficients $A_{c \varepsilon}{ }^{\text {bd }}$ must be chosen so as to make a invariant.
Consider first the four-point function for a specified set of baryons, one of the terms in the sum \mathbb{Q} :

$\left\langle T\left(\psi^{+} \psi_{6} \psi^{\dagger} \psi_{d} \psi_{d}\right)\right\rangle$.

A knowledge of the effect of the E_{a} on a basis, ψ, of an irreducible representation can be used to find relations among the four-point functions for different processes. First of all, we insert the operator form of the commutation relations $\left[E_{\alpha}, E_{-\alpha}\right]=r^{2}(\alpha) H_{i}$ into the four-point function above to obtain
$\left\langle T\left(\psi^{+} \psi_{b}\left[E_{\psi}, E_{-\alpha}\right] \psi^{+} \psi_{d}\right)\right\rangle=r^{*}(\alpha)\left\langle T\left(\psi^{+} \psi_{b} H_{i} \psi^{+} \psi_{d}\right)\right\rangle$.
The \vec{E}_{a} and the \boldsymbol{A}_{i} are linear operators acting on the product basis as in (III.14). By remembering that when they act on the vacuum they give zero and that $E_{a}{ }^{\prime}=E_{-a_{b}}$ we find

$T\left\{\left[\left(E_{-\alpha} \psi\right)^{\dagger} \psi_{b}-\psi^{\dagger}\left(E_{*} \psi\right)_{b}\right]\right.$

$$
\left.\left.\times\left[-\left(E_{\alpha} \psi\right)^{\dagger} \psi_{d}+\psi^{\dagger e}\left\langle E_{-\alpha} \psi\right)_{d}\right]\right\}\right\rangle
$$

$$
-\left\langleT \left[\left[\left(E_{\alpha} \psi\right)^{+4} \psi-\psi_{b}^{+\omega}\left(E_{-} \psi\right)_{b}\right]\right.\right.
$$

$\left.\times\left[-\left(E_{-} \psi^{\dagger} \psi_{d}+\psi^{\dagger e}\left(E_{\alpha} \psi\right)_{d}\right]\right]\right)$
$=r^{i}(\alpha)\left[-m_{i}(c)+m_{i}(d)\right]\left\langle T\left\langle\psi^{\top} \psi_{o} \psi \psi^{\dagger} \psi_{d}\right)\right\rangle, \quad(V I .2)$
where $m_{i}(c)$ and $m_{i}(d)$ are the weights of ψ^{e} and ψ_{d}, respectively. Thus, by knowning the effect of the E_{a} on the basis of the baryon representation, we can determine an equality between the four-point functions of two different processes

As an obvious example of the relationship just found, consider the scattering $p+\bar{n} \rightarrow p+\bar{n}$ and let the $E_{-\infty}$ be the isotopic spin lowering operator. The above relation then becomes
$\left\langle T\left(\psi_{p}{ }^{\dagger} \psi_{\pi} \psi_{n}{ }^{\dagger} \psi_{p}\right)\right\rangle$
$=\frac{1}{3}\left(T\left[\left(\psi_{p}{ }^{\dagger} \psi_{p}-\psi_{n}{ }^{\dagger} \psi_{n}\right)\left(\psi_{p}{ }^{\dagger} \psi_{p}-\psi_{n}{ }^{\dagger} \psi_{k}\right)\right]\right), \quad$ (VI.3)
which states that the $I=1, I_{3}=1$ four-point function is equal to the $I=1, I_{3}=0$ function, i.e., that the fourpoint function depends only upon I and not upon I_{n} a well-known result. The remaining equalities can obviously be obtained by repeating the procedure of inserting these commutation relations into the newly formed four-point functions; this procedure clearly
terminates when we reach the $I=1, I_{3}=1$ state in this example. In the general case, when the E_{α} are not just restricted to the isotopic spin operators, we proceed in the same manner. Namely, with repeated use of the general relation we can generate a string of cqual four-point functions. From the example above, it is clear that this string will terminate after a finite number of steps since there can only be a finite number of independent relations. This procedure determines all the four-point functions which are equal to the one we started with. Similar statements, of course, can be made for the n-point function.

If we choose our original four-point function such that $\psi^{\dagger} \psi_{d}$ is a component of the basis of an irreducible representation (as in the above example), then all the related four-point functions may be completely haracterized by this irreducible representation, which in turn is characterized by its highest weight. They will be independent of the other weights (in much the same way as in the above example, they were characterized by I and independent of I_{3}). If $\psi^{\prime} \psi_{d}$ and Fi' $\$ z^{\prime}$ belong to two different irreducible representstions, then the four-point functions in which they appear are, of course, unrelated (just as the $I=0$ amplitude is unrelated to the three $I=1$ amplitudes). We now show that it is possible to gain a much deeper insight into the structure and interrelations of fourpoint functions after we have found the most general matrix $A_{\text {ce }}{ }^{b d}$ that makes (1) invariant.
To find all possible solutions of this problem is the same as determining the onedimensional representations contained in $D_{B^{*}} \otimes D_{B^{*}} \otimes D_{B} \otimes D_{B}$. It is both convenient and traditional to do this in two steps. For example, for baryon-antibaryon scattering, one first decomposes $D_{B^{*}} \otimes D_{B}$:

$$
\begin{equation*}
D_{B^{*}} \otimes D_{B}=\sum \oplus \nu_{\sigma} D_{\sigma} \tag{VI.4}
\end{equation*}
$$

where the sum is over inequivalent irreducible representations, and the ν_{σ} are integers. The invariants in (1) are then the invariants in

$$
\begin{equation*}
\sum \oplus \nu_{*}^{2}\left(D_{s} \otimes D_{*}^{*}\right), \tag{VI.5}
\end{equation*}
$$

where each $D_{\sigma} \otimes D_{*}^{*}$ contains exactly one invariant. Techniques for finding the ν_{σ} in (2) were amply discussed in Secs. IV and V, and many examples were listed in Tables IV-VI. Although the $\nu_{\text {e }}$ contain some information that is quite important in applications to follow, we need a more explicit form of the reduction for the present purpose.

Suppose that a particular N_{1}-dimensional, irreducible representation D_{1}, whose basis we label by the letters μ, ν, ρ, \cdots, is contained in the product $D_{B} \otimes D_{B}$ or $\$ \omega /$. This means that there exists linear combinations
$\left(\Omega_{p}{ }^{(1)}\right) . \psi^{2} \psi_{d}, \quad \mu=1,2, \cdots, N_{1}, \quad$ (VI.6)
which transform among themselves according to D_{1}. The numbers ($\left.\mathcal{Q}_{p}^{(1)}\right)^{d}{ }^{d}$ may be regarded as the com-
ponents of a constant ($=$ form invariant) tensor, and will be called, after proper normalization, an isometry. Although the name may be new, the concept is well known, and several examples have already appeared in previous' sections: (1) The Pauli $\sigma_{i 0^{b}}{ }^{\text {a }}$ matrices connect the product oi two spinors to a vector $\left(\psi^{\dagger} \sigma_{i} \psi\right)$ (2) The matrices $1, \gamma_{\mu}, \frac{1}{2}\left(\gamma_{\mu} \gamma_{\mu}-\gamma_{\nu} \gamma_{\mu}\right), \gamma_{\Delta} \gamma_{\mu}, \gamma_{s}$ used for writing down Lorentz invariant couplings connect the product of two four-spinors to tensors, (3) The matrices of any representation D of a Lie algebra connects the product $D \otimes D^{*}$ to the regular representaion (as was emphasized in Sec. V), and (4) Matrices and $\Gamma_{i j k}$ were introduced in Sec. V.
The normalization that qualifies these operators for the title isometry is

$$
\begin{aligned}
& \left(\Omega_{\mu}^{(1)}\right)_{e}^{d}\left(\Omega^{(1) \nu}\right)_{d}^{d}=\delta_{\mu}{ }^{\prime}, \\
& \left(\Omega_{\mu}^{(1)}\right)_{d}^{d}\left(\Omega^{(1) \mu}\right) d=P(1)_{d}^{d \delta} .
\end{aligned}
$$

(VI.7)

Here $\left(\Omega^{(1) r}\right)_{d}^{d} \equiv g^{p \mu}\left(\Omega_{\mu}^{(1)}\right)_{c}^{d}$ when $g^{p \mu}$ exists; in general it is the isometry of the representation $D_{1}{ }^{*}$ contra gredient to D_{1}. [It may be proved that $D_{1} \otimes D_{1}^{*}$ contains D_{1}^{*} if it contains D_{1}] The matrix $P(1)_{c e}{ }^{d S}$, in which c, d labels the rows and e, f labels the columns, is the projection operator associated with D_{1}. Several examples of (7) are well known:
(1). $\frac{1}{2} \sqrt{2} \epsilon_{a b c} \frac{1}{2} \sqrt{2} e^{b c d}=\delta_{a}^{d}$,

$$
\frac{1}{2} \sqrt{2} \epsilon_{a b c} \sqrt{2} \sqrt{2} \epsilon^{a d e}=\frac{1}{2}\left(\delta_{b} \delta_{\delta} \delta^{g}-\delta_{b} \delta_{c}^{d}\right)=P_{b c}^{d e}
$$

where $P_{b e}{ }^{d_{0}}$ is the antisymmetrization operator;
(2). $\frac{1}{2} \sqrt{2}\left(\sigma_{i}\right)_{a} \frac{b}{2} \sqrt{2}\left(\sigma^{\lambda}\right)_{b}{ }^{\circ}=\delta_{i}{ }^{i}$,

$$
\frac{1}{2} \sqrt{2}\left(\sigma_{i}\right)_{a}{ }^{b} \frac{1}{2} \sqrt{2}\left(\sigma^{i}\right)_{d}^{d}=\delta_{a}{ }^{d} \delta_{e}{ }^{b}-\frac{1}{8} \delta_{a}{ }^{d} \delta_{c}{ }^{d}=P_{a}{ }^{b}{ }^{d}
$$

where the σ_{i} are the Pauli matrices and $P_{d}{ }^{b}{ }_{d}{ }^{d}$ is projection operator that separates out the trace;
(3). In Sec. V, Eq. (V.19) we found that

$$
\begin{aligned}
& \left(\frac{1}{b}\right) \Gamma_{i j k}\left(\frac{1}{b}\right) \Gamma^{l i j k}=t_{i}^{l}, \\
& \left(\frac{1}{b}\right) \Gamma_{i j k}\left(\frac{1}{2}\right) \Gamma^{i l m}=P(7)_{j k}^{l m}
\end{aligned}
$$

where $P(7)_{s_{1}}{ }^{m}$ is the projection operator (V.25) that projects out the 7 -dimensional representation of G_{2} rom $D^{(7)} \otimes D^{(7)}$.
As in (4), let σ label the inequivalent irreducible representations, and write $\Omega^{(\sigma, \varepsilon)}, \kappa=1, \cdots, \nu_{\rho}$ for the ν_{θ} isometries associated with each of the ν_{ν} equivalent representations D_{8}. Then the equivalence between $\left(\Omega_{a}(\sigma, 1)\right)_{d^{d}}$ and $\left(\Omega_{\|}(\sigma, 2)\right)_{{ }^{d}}$ means that there exists a nonsingular matrix $\left(P^{(\sigma, 1,2)}\right)_{d} d /$ such that

$$
\left.\left(P^{(\sigma, 1,2)}\right)_{d} d \Omega_{\rho}^{(\sigma, 2)}\right)^{f}=\left(\Omega_{\mu}(\sigma, 1)\right)_{0} d_{.} .
$$

Using (7) we get

$$
\begin{equation*}
\left(P^{(\sigma, 1, \Omega)}\right)_{d} d f=\left(\Omega_{\mu}(\sigma, 1)\right)_{e}\left(\Omega^{(\sigma, \Omega) \mu}\right) \delta . \tag{VI.8}
\end{equation*}
$$

From this we see that $P^{(\sigma, 1,2)}$ is an isometry. In particular, if the indices are the same as in $P^{(\sigma, 1,1)}$ we get back the projection operators. Thus we label the
projection operators associated with one of the $D_{\text {e }}$ by $p(\sigma .1,1)$. Then the properties of the isometries, and in particular the projection operators, may be summarized by

$$
\begin{equation*}
\left(\Omega_{\mu}{ }^{(\sigma, \varepsilon)}\right)_{e} d\left(\Omega^{\left(\sigma^{\prime}, \varepsilon^{\prime}\right) v}\right)_{d^{e}}=\delta_{s e^{*}} \delta_{k \varepsilon^{\prime}} \delta_{\mu^{\prime}}, \tag{VI.9}
\end{equation*}
$$

$\left(\Omega_{\mu}(\sigma, x)\right)_{c}^{d}\left(\Omega^{\left(\sigma, \varepsilon^{\prime}\right) \mu}\right) d^{f}=\left(P^{\left(\sigma, \varepsilon_{i}, \varepsilon^{\prime}\right)}\right)_{c}^{d f} \quad$ (VI.10)
$\left(P^{\left(\sigma, \alpha, x^{\prime}\right)}\right)_{c}^{d} d^{J}\left(P^{\left(\sigma^{\prime}, x^{\prime \prime}, x^{\prime \prime \prime}\right)}\right)_{\delta_{0}}{ }^{d k}$

A direct result of Schur's lemma ${ }^{70}$ is that the most general form of $A_{\text {ac }}{ }^{\text {bd }}$ that makes (1) invariant is given by

$Q=\sum_{r, x, \varepsilon^{\prime}} F^{\varepsilon, x, z^{\prime}}\left(\Psi^{2} \psi_{b}\right)\left(P^{\left(\sigma, x, x^{\prime}\right)}\right)_{e}{ }^{b}{ }_{d}^{d}\left(\psi^{\psi} / \psi_{d}\right)$.
where $F^{\sigma, 6, z^{\prime}}$ are arbitrary and include all references to space-time coordinates or transformation properties. IJsing (10) :

$$
a=\sum_{\sigma, \varepsilon^{\prime}, \alpha, \psi} F^{\sigma, \alpha_{1} \varepsilon^{\prime}}\left(\Psi \Omega_{\xi}(\sigma, k) \psi\right)\left(\mp \Omega^{\left(\sigma, \varepsilon^{\prime}\right)} \psi\right), \quad(V I .13)
$$

This is the explicit realization of (5). The number of terms with the same σ is $y_{\sigma}{ }^{2}$.
The number of terms in (13) is $\sum v_{\theta}^{2}$ and depends, of course, on the choice of the group G^{-}and the representation D_{B}. The procedure that we have outlined is a direct generalization of the well known treatment of isotopic spin. In that case, the index x is superfluous, since the ν_{g} in (4) are always zero or one. Thus, the summation over $\sigma, \kappa, \kappa^{\prime}$ reduces to a sum over I, the total isotopic spin. If all the ψ_{a} have isotopic $\operatorname{spin} 1 / 2,(13)$ redxaces to
$Q=F^{1}\left(\psi \frac{1}{2} \sqrt{2} \sigma_{i} \psi\right)\left(\psi \frac{1}{3} \sqrt{2} \psi\right)$

$$
+F^{\circ}\left[\psi_{3} \sqrt{2}\left(\delta_{0}^{j}-\frac{1}{3} \sigma_{0} \sigma^{0}\right) \psi\right]
$$

$$
\times\left[\psi \| \sqrt{2}\left(\delta_{j}{ }^{i}-\frac{1}{3} \sigma_{j} \sigma^{i}\right) \psi\right] . \quad \text { (VI.14) }
$$

The process of applying the generator E_{a} and A_{i} to a basis $\psi \psi_{4}$ of an irreducible representation in (12) or (13) clearly can lead to any other basis of the same irreducible representation, but cannot lead out of that representation. Thus the method that was outlined following (1) relates four-point functions within each term of the $\sigma, \kappa^{\prime}, \kappa \operatorname{sum}$ in (13). In fact, that method is simply a way of calculating the isometries. For example, the relation (3) expresses the fact that the right-hand side and the left-hand side occur with equal weight F^{1} in (14).

C. Resonances and Mesons

Scattering in one or more states of $\sigma, \kappa, \kappa^{\prime}$ may exhibit resonances. The resonant states are then ${ }^{\text {º I I. Schur, Sitzber. preuss. Akad. Wiss., Physik.-math. KI. }}$
nultiplets transforming according to $D_{\text {r }}$. In order to determine the possible resonance multiplets and their transformation properties, it is sufficient to know the Clebsch-Gordan Series (4). For simple groups of rank two, and low-dimensional representations, this information is contained in Tables IV-VI.
Nothing in our development thus far distinguishes between stable and unstable resonant states. Therefore, it is impossible to make any definite predictions about the number of mesons in a given model. However, in the limit in which the invariance is exact, the various resonance states within one multiplet will have the same mass, width, etc. This might lead one to expect that if one member of a multiplet is stable, so are all the other members of that multiplet. If this is true, the number of mesons will be related to the dimensionalities of the representations occurring in the decomposition (2). ${ }^{22}$
If one likes to write an unrenormalized Lagrangian involving Yukawa couplings, it is necessary to find the trilinear invariants involving ψ_{a}, ψ^{b}, and the meson field. If stable mesons are indeed possible intermediary states in $B-\bar{B}$ scattering, then these same trilinear forms are needed to write the vertex function. This remains true even if the mesons are regarded as bound states of the $B-\bar{B}$ system. From a mathematical point of view, these trilinear couplings are already known. All that is needed is to reinterpret the quantities ($1 \psi_{1}$) appearing in (12) as the components of the meson field. For practical purposes, however, it is convenient to label the mesons by a single index, as for example φ^{4}, such that each component corresponds to one physical meson. Let D_{M} be the representation or which φ^{μ} is the basis. In order for a trilinear invari ant to exist, D_{M} must be equivalent to one of the terms in (4). That is, an isometry $\left(\Omega_{\mu}{ }^{(N)}\right)_{a}^{b}$ must exist such that φ^{μ} transforms contragrediently to $\left(\psi_{\Omega_{R}}{ }^{(\alpha)} \psi\right)$. Then the trilinear invariants are of the desired form, namely

$$
\begin{equation*}
\left(\downarrow \alpha_{\mu}(\mu) \psi\right) \varphi^{\mu} \tag{VI.15}
\end{equation*}
$$

In the manner of Eq. (1), consider the three-point unction for a specific set of two baryons and a meson, one component of the general invariant three-point function (15),
$\left\langle T\left(\psi+\psi_{\Delta} \varphi^{*}\right)\right\rangle$.
Again, insert the operator commutation relation to obtain
$\left(T\left(\psi+\psi_{\delta}\left[\hat{E}_{\alpha}, \hat{E}_{-\alpha}\right] \varphi^{\mu}\right)\right)=\gamma^{i}(\alpha)\left(T\left(\psi^{+} \psi_{b} \hat{H}_{i} \varphi^{\mu}\right)\right)$.
Proceeding as previously, we find
$\left\langle T\left\{\left[\left(E_{-\alpha} \psi\right)^{\dagger+} \psi_{b}-\psi^{\dagger a}\left(E_{a} \psi_{b}\right)\right]\left[-\left(E_{-a} \varphi^{\mu}\right)\right]\right\rangle\right.$
$-\left\langle T\left\{\left[\left(E_{\alpha} \psi\right)^{\dagger} \psi_{b}-\psi^{\dagger \phi}\left(E_{-a} \psi_{b}\right)\right]\left[-\left(E_{\alpha} \varphi^{\psi}\right)\right]\right\rangle\right.$
$=-r^{i}(\alpha) \omega_{i}(\mu)\left\langle T\left(\psi^{\dagger} \psi_{b} \varphi^{\mu}\right)\right\rangle$
A trivial example is afforded by the pion-nucleon
vertex．Consider
$\left\langle T\left(\psi_{p}{ }^{\dagger} \psi_{n} \varphi_{r}{ }^{+}\right)\right\rangle$
and \hat{E}_{α} as the isotopic spin raising operator．The well－known result follows

$$
\left\langle T\left(\psi_{p} \psi_{\pi} \varphi_{x^{+}}\right)\right\rangle=\frac{1}{\sqrt{2}}\left\langle T\left[\left(\psi_{p} \psi_{p}-\psi_{n} \psi_{n}\right) \varphi_{\mathbf{r}^{\bullet}}\right]\right\rangle
$$

Since we have demonstrated the method both in the case of the three－point and four－point functions，it should be obvious that this method can be generalized to n－point functions involving both mesons and baryons． Let us now proceed to the specific cases of $S U_{3}, B_{2}$ ， C_{2} ，and G_{2} ．In the examples contrived for $S U_{3}$ and G_{2} ， we follow a line of reasoning according to which the eight known baryons are more fundamental physical states than are the baryon resonances，（or baryon excited states）．Specifically，no resonance state or unobserved baryon is to appear in the same multiplet with any of the eight observed baryons．Such a to be the most fashionable procedure at present．We remove this restriction in our examples oi theories built on B_{2} and C_{2}

D．Model Built on SU_{3}

If we assume that the eight baryons can form the bases for one or more representations，then the dimen－ sionality of these representations must add up to eight． An inspection of Table IV for $S U_{3}$ shows that there is only one possibility with the correct isotopic content； the eight－dimensional representation $D^{(8)}(1,1)$ ．This implies that all the baryons must have the same space－time properties．If we assume that there are space－time properties．If we assume that there are
only the seven known mesons，it is impossible to only the seven known mesons，it is impossible to
assign the correct isotopic content under $S U_{3}$ ．In assign the correct isotopic content under $S U_{3}$ ．In
addition，if we require that the meson－baryon vertex addition，if we require that the meson－baryon vertex
function does not vanish，which incidentally corresponds to the existence of pole terms in dispersion relations， the dimensionality of the meson representations must be either $1,8,10$ ，or 27 ．This follows from the fact that the Kronecker product of two eight－dimensional representations of baryons contains representations of only those dimensions（Table IV）．One possible way out of the dilemma is to postulate the existence of an eighth meson which has not been experimentally detected as yet．${ }^{71}$ This is the approach of Gell－Mann，${ }^{18}$ which

Fic．21．Weight diagram for $D^{8}(1,1)$ of SU_{2} with bases associated with baryons． For meson bases，the substitution $\left(p, n, \bar{Z}^{0}, \boldsymbol{\Sigma}^{-}, \boldsymbol{\Sigma}^{+}, \boldsymbol{\Sigma}^{0}, \boldsymbol{\Sigma}^{-}, \mathrm{A}\right) \rightarrow$
$\left(K^{+}, K^{0},-\bar{K}^{0}, \bar{K}^{+}, \boldsymbol{x}^{+}, \boldsymbol{R}^{\infty}, \boldsymbol{x}^{-},,^{\infty}\right)$, should be made．
\qquad
rexample，M．Gettner and W．Selove，Phys．Rev． 120,593 （1960）；J．Poirer and M．Pripstein，Phys．Rev．122，
1917 （1961）．
we follow here．It then follows that the meson repre－ sentation is also eight－dimensional，and that all 8 mesons have the same space－time properties．［For example，Σ and Λ have the same parities，and the parity of $(K \Sigma)$ is the same as that of (πN) ．］
Because $D^{(8)}$ occurs twice in the product $D^{(6)} \otimes D^{(8)}$ ， there are two of the isometries in（15）．To find them is to make a very slight extension of the tensor analysis developed for $S U_{3}$ in Sec．V．The baryon wave function is written ψ_{1} ，in keeping with our convention to use capital Latin indices for the regular representation． The antibaryons are labeled ψ^{B} ．Clearly the structure constants $C_{B D^{A}}$ supply one of the two isometries．The normalization is fixed by the usual definition

$$
g_{D E}=C_{B D}{ }^{A} C_{A E^{B}} .
$$

（VI．16）
From the commutation relations（II．3）we find

$$
C_{B D^{A}}=\operatorname{trace}\left[L_{B} L_{D} L^{A}-L_{D} L_{B} L^{A}\right] . \quad(\text { VI.17 })
$$

We can define the second isometry by

$$
C_{B D^{A}}^{\prime}=\operatorname{trace}\left[L_{B} L_{D} L^{A}+L_{D} L_{B} L^{A}\right] . \quad(\mathrm{VI} .18)
$$

Although these relations are true regardless of which representation L_{A} occurs on the right，the most con－ venient choice is $D^{(3)}(1,0)$ ，given in（III．20）．Both $g_{D E}$ and $C_{B D^{A}}$ were calculated in Sec．III F．
The most general three－point function is
$\left\langle F^{1}\left(\psi^{B} C_{B D^{A}} \psi_{A}\right) \varphi^{D}+F^{2}\left(\psi^{B} C_{B D}^{\prime}{ }^{A} \psi_{A}\right) \varphi^{D}\right\rangle, \quad$（VI．19） where $\varphi_{B}=g_{D E} \varphi^{D}$ is the meson field．
In Fig． 21 we have furnished the weight diagram for $D^{\text {（8）}}(1,1)$ with the appropriate baryon symbols．We associate I_{3} with $\sqrt{3} m_{1}$ ，and Y with $2 m_{2}$ ，and summarize the relations between the four different labels that we have used：
$|A\rangle:|1\rangle,|2\rangle,|3\rangle,|4\rangle,|5\rangle,|6\rangle$,
$|7\rangle,|8\rangle ;$
$|\alpha\rangle:|-1\rangle,|-2\rangle,|-3\rangle,-|+1\rangle$ ，
$|i\rangle: \quad-|+2\rangle,|+3\rangle,-|1\rangle,-|2\rangle$ ；
Baryons：$-\left|\Sigma^{+}\right\rangle,|p\rangle,|n\rangle,\left|\Sigma^{-}\right\rangle,\left|\Xi^{-}\right\rangle,\left|\Xi^{0}\right\rangle$,
$\left|\Sigma^{0}\right\rangle,|\Delta\rangle ;$
Mesons：$-\left|\pi^{+}\right\rangle,\left|K^{+}\right\rangle,\left|K^{0}\right\rangle,\left|\pi^{-}\right\rangle,\left|K^{-}\right\rangle$,

$$
-\left|\tilde{K}^{0}\right\rangle,\left|x^{0}\right\rangle,\left|\pi^{\infty}\right\rangle
$$

The action of the operators A_{i} and \boldsymbol{E}_{a} was given both in（III．26，27）and in（III．30，31）．Using the dictionary（20），this is easily translated．The result for baryons is given in Table VII．
We are now in a position to make the predictions of the theory．Consider the scattering of a meson M and a baryon $B, M+B \rightarrow M^{\prime}+B^{\prime}$ ．The pertinent four－point function（suppressing the space－time variables）is

$$
\left\langle T\left(\psi_{B^{\prime}}{ }^{\dagger} \psi_{M^{\prime}}{ }^{\dagger} \psi_{B} \psi_{M}\right)\right\rangle .
$$

The combination $\psi_{B} \psi_{M}$ is the Kronecker product of

i_{a}	p	n	30	z^{-}	Σ^{+}	2^{0}	z^{-}	A
${ }^{6+E_{1}}$		p		こ゚		$-\sqrt{2 z}+$	$\sqrt{20}$	
${ }_{6} E_{-1}$	n		Ξ		$-\sqrt{25}$	$\sqrt{22}$		
$2 \sqrt{3} E_{2}$			$-\sqrt{2} z^{+}$	$\begin{gathered} 2^{6} \\ +\sqrt{3} A \end{gathered}$		¢	， 2 m	$\sqrt{3}$
$2 \sqrt{5} E_{-8}$	$\begin{array}{r} 20 \\ +\sqrt{3} A \end{array}$	$\sqrt{2} \Sigma^{-}$			$-\sqrt{2} z^{0}$	z		$\sqrt{55}$
$2 \sqrt{3} E_{3}$			$\begin{gathered} \Sigma^{0} \\ -\sqrt{3} A \end{gathered}$	$\sqrt{22}$	$+\sqrt{2} p$	－		$\sqrt{3}$
$2 \sqrt{3} E_{-3}$	$+\sqrt{2} \Sigma^{+}$	$\begin{aligned} & -\Sigma^{0} \\ & +\sqrt{3} A \end{aligned}$				30	$\sqrt{25}$	$-\sqrt{3} 0^{0}$
$\sqrt{3} H_{1}$	$t p$	－${ }^{\text {a }}$	红	-15	Σ^{+}		－${ }^{-}$	
$2 \mathrm{H}_{2}$	p	n	－${ }^{7}$	－${ }^{-}$				

two eight－dimensional representations，one for the meson and one for the baryon．This reduces，according to Table IV，as follows：

$8 \otimes 8=1 \oplus 8 \oplus 8 \oplus 10 \oplus 10^{*} \oplus 27$.

There are eight $\left(=1^{2}+2^{2}+1^{2}+1^{8}+1^{2}\right)$ different four－ point invariants，or equivalently 8 independent amplitudes．${ }^{27}$

So far we have considered the representations for the known baryons and particles，It is conceivable that the other representations of this group might also be realized，not for stable particles，but perhaps for what we might call unstable particles，i．e．，the reso－ nances，excited isobaric states，or whatever．In particular，we concentrate on the well－known $(3,3)$ resonance in pion－nucleon scattering and its possible analogs in other baryon－meson scattering processes． We have emphasized before the limitations of such a procedure（see the general discussion of this Section）． We note again that the product representation of one baryon and one meson decomposes into irreducible representations of dimensions $1,8,8,10,10^{*}$ ，and 27 ． The weight（ m_{1}, m_{2} ）of the compound state $\pi^{+} p$ which is a member of the $(3,3)$ resonance，is $\frac{1}{2}(\sqrt{3}, 1)$ ．This is the highest weight of the 10 －dimensional representation and one of the weights in the 27 －dimensional repre－ sentation．We assume that the $(3,3)$ isobar states are members of the 10 －dimensional multiplet
The weight diagram for the 10 －dimensional repre－ sentation is shown in Fig．22．Besides the $T=3 / 2$ ， $Y=1$ ，multiplet，which we identify as the $(3,3)$ isobar states（ N^{*} ），we have a $T=1, Y=0$ triplet，a $T=1 / 2$ ， $Y=-1$ doublet，and a $T=0, Y=-2$ singlet．The triplet ${ }^{73}$ It is possible to distinguibh between the two equivalent （reflection）to the group．Invariance under this operation would prohibit transitions between the two octets and reduce the number of
reference 18 ．
$T=1, Y=0$ has the same charge quantum rumbers as the excited states Y^{*} of the $A T$ system．${ }^{73}$ It is very attractive to consider the Y^{*} as an analog of the N^{*} ． In order for them to belong to the same supermultiplet， these two multiplets must have the same space－time quantum numbers．We therefore assume Y^{4} to have spin $3 / 2$ and negative orbital parity．
In order to compare these two states and make certain predictions which can be verified by experi－ ments，we must assume certain features of the symmetry－breaking forces．We may assume，after Lee and Yang，${ }^{17}$ that the symmetry－breaking forces are short－range in character and that long－range phenomena are relatively insensitive to them，even though they must be strong enough to account for the mass splittings．Then the same cause that splits the baryon masses is responsible for the difference of the energy levels of N^{*} and Y^{*} ，while the resonance widths should be predictable from the symmetry．This is because the width of a resonance is proportional to the overlap of the resonance－state wave function and the initial－（or final－）state wave function at the ＂channel entrance，＂as we know from nuclear physics，${ }^{1,74}$ so that the relative widths are essentially independent of short range effects．

Fro．22．Weight diagram for
$D^{\text {（io）}}(3,0)$ for $S U U_{1}$ ．The weight Labeled as $\alpha=1$ corresponds to
the isobar state $\left(N^{*}\right)^{+}+\ldots$ the isobar state $\left(N^{*}\right)^{++} ; ~$
to $\left(Y^{*}\right)^{+}$．

${ }^{7}{ }^{73}$ M．Tishonton，L．Alvarez，P．Eberhard，M．Good，W．Graxinno， H．Ticho，and S．Woicichi，Phys．Rev．Letters 5， 520 （1960）．
Company，Inch，Reading，Massachy（Addisets，1953），Chap Publiding

The state corresponding to the highest weight illustration, we have chosen one of the many schemes $\left(I_{\mathrm{y}}, Y\right)=\left(\frac{3}{3}, 1\right)$ of the 10 -dimensional representation is that linear combination

$$
\alpha\left|p \pi^{+}\right\rangle+\beta\left|\Sigma^{+} \kappa^{+}\right\rangle
$$

which is annihilated by E_{1}, E_{2}, E_{3}, and E_{-3} as discussed in Sec. 1 II E. Therefore, the normalized state $|\{10\}, 1\rangle$ can be chosen to be
$|\{10\}, 1\rangle=\frac{1}{2} \sqrt{2}\left[\left|p \pi^{+}\right\rangle-\left|\Sigma^{+} K^{+}\right\rangle\right]$.
The state of interest, consisting of $\Lambda \boldsymbol{\pi}^{+}, \Sigma \Sigma^{+}, \cdots$, can be obtained by operating with E_{-2} on $|\{10\}, 1\rangle$, i.e., $|\{10\}, 2\rangle=\frac{1}{3}\left[\sqrt{3}\left|\Lambda \pi^{+}\right\rangle+\left|\Sigma^{0} \pi^{+}\right\rangle+\sqrt{2}\left|\rho \bar{K}^{0}\right\rangle\right.$
$\left.+\sqrt{2}\left|\Xi^{0} K^{+}\right\rangle-\left|\Sigma+\pi^{0}\right\rangle-\sqrt{3}\left|\Sigma+\pi^{00}\right\rangle\right]$. (VI.22)
The partial width for the transition from a $|\{10\}, \alpha\rangle$ multiplet to a $|B M\rangle$ state is given by

$$
\Gamma_{B M}=\left(q^{2} \frac{E_{B}}{E_{B}+E_{M}}\right)|C|^{2}|\langle\{10\}, a \mid B M\rangle|^{2}, \quad \text { (VI.23) }
$$

where $q=c . m$. momentum, $E_{B}=$ baryon energy in c.m., $E_{M}=$ meson energy in c.m. and the first bracket on the right is the kinematical factor arising from the phase-space and the centrifugal barrier for the p-wave; and C is a quantity independent of the "magnetic quantum number" α. The generalized Clebsch-Gordan coefficient $\langle\{10\}, \alpha| B M$) can be read off directly from the foregoing expressions. We list in Table VIII the relative partial widths predicted by the $S U_{\sigma}$ symmetry. It is interesting to note that, if the mass of $x^{\infty 0}$ is near that of the π, the decay process of the Y^{*} can produce π^{00} copiously, since the branching ratio of $Y^{*} \rightarrow \Lambda+\pi^{+}$ to $\mathrm{Y}^{*} \rightarrow \Sigma^{+}+\pi^{\infty}$ is approximately unity. This does not seem to agree with experimental findings, however.

E. Model Built on C_{2}

For this example we discard the assumption that different components of the same basis of an irreducible representation must be identified with the baryons only or with the resonances only. This allows us a good deal more flexibility in making an identification of the particles with a basis. For the purpose of

Table VIII. Comparison of relative partial widths of the N^{*}

Isobar	$\begin{gathered} \text { Resonance } \\ \text { energy } \\ \text { (experimental) } \\ \text { in Mev } \end{gathered}$	Disintegration products, BM	$\underset{\alpha=1}{\mid\{10\}_{1},}$	$\begin{gathered} \left.\|B M\rangle\right\|^{2} \\ \alpha=2 \end{gathered}$	Relative partial width
$\left(N^{*}\right)^{+*}$	1237	$p{ }^{+}$	1/2		1
$\left(Y^{*}\right)^{+}$	1385	Ax^{+}		1/4	0.38
		$\Sigma^{+} \mathrm{x}^{0}$		1/12	0.03
		$\mathrm{z}^{\text {¢ }} \mathrm{r}^{+}$		1/12	0.03
		$\Sigma^{+} \times^{00}$		1/4	?

which might be devised.
Upon inspection of the lower dimensional weight diagrams for C_{3} in Fig. 4, we see that the N, Λ, and E can be identified as the basis of the five-dimensional "vector" representation, $D^{(b)}(0,1)$, where $I_{3}=\sqrt{3} m_{1}$ and $Y=2 \sqrt{3} m_{2}$. By making the association from Sec III, $(1,2,3,4,5) \rightarrow\left(\phi, n, \Lambda, \xi^{0}, \tilde{m}^{-}\right)$, (compare Figs. 8 and 23), we can use Eqs. (III.37, 38) to construct Table IX. With this assignment, the Σ must be components of a basis for another irreducible representation and as such could have space-time quantum numbers which differ from those assigned to the $N-\Lambda-E$ set specifically, this scheme would admit an odd relative IA parity and an odd $K \Sigma$ parity relative to $\pi N{ }^{35}$ From the weight diagrams (Fig. 4), we see that the owest dimensional representation in which the isotopic spin and hypercharge content allows both the π and K mesons is $D^{(10)}$ (Fig. 24). This is a representation which admits the existence of an invariant effective Yukawa interaction, because, as may be seen from Table $\mathrm{V}, D^{(5)} \otimes D^{(5)}=D^{(2)} \oplus D^{(10)} \oplus D^{(14)}$
In addition to the K and π, however, $D^{(10)}$ requires three isotopic spin zero mesons, D, with $Y=2,0,-2$ (charge, $Q=1,0,-1$, respectively). Of the three, the existence of the charged ones, $D^{ \pm}$, and the consequences thereof, have been discussed by Yamanouchi. ${ }^{76}$. The prediction of the existence of a neutral particle, D^{0}, is a novel feature of the C_{2} scheme. Although it is a neutral isotopic scalar meson, it differs from the $\boldsymbol{\tau}^{00}$ of $S U_{3}$ in that it is a member of a hypercharge rotation riplet. If the mass of the D^{0} were near that of the $D \pm$ riplet. 730 Mev as sugested by Yamanouchi $\mathrm{Da}^{ \pm}$ bould 30 Me as suggested by Yamanouchi, 1 ould hat 2π 3π via the strong ineracion. The 2π mode, how ver, can be shown to be forbidden because of parity while the 3π mode is allowed only insofar as the symmetry of C_{3} is broken (for such a low-energy process, one would expect the symmetry to be violated

Table IX. Action of E_{a} on baryoos for $D^{(d)}(0,1)$ in C_{2}.

E_{0}	p	\cdots	\triangle	3	-
${ }_{6}{ }^{1} E_{1}$		p			3
$6+E_{-1}$	n			-	
${ }^{6} E_{8}$			p		-4
$6^{65} E_{-3}$	\wedge		-5		
$6{ }^{6} \mathrm{E}_{5}$.	p	n
${ }^{61} E_{-3}$	50	z			
$6{ }_{6}{ }_{4}$			*	A	
$61 E_{-4}$		A	z0		
$\sqrt{3} H_{1}$	\$	-1n		$\underline{3}$	-
$2 \sqrt{3} H_{3}$	p	*		- ${ }^{0}$	-

${ }^{36}$ S. Barshay, Phys. Rev. Lettere 1,97 (1958). Recent experimental evidence is compared With this conjecture in
and J. I. Sekurai, Phys. Rev. Letters 6,377 (1961)
re T . Yamanouchi, Phya. Rev. Letters 3,450 (1959)
to a rather large extent). If it were energetically possible for the D^{0} to decay into $K+\vec{K}$, such a mode would again be ruled out by parity conservation.
So far, we have not assigned the Σ 's to an irreducible representation. The lowest dimensional representation that can contain them is easily seen to be $D^{(10)}$. This implies the existence of baryon resonances, associated in the same irreducible representation with the Σ 's, which have the same space-time properties, e.g., $J=1 / 2$, and the following isotopic spin and hypercharge assignments: $I=1 / 2, Y=1 ; I=1 / 2, Y=-1 ;$ and $I=0$ $Y=2,0,-2$. The first isotopic doublet would appear as a nucleon-pion resonance, the second as a Ξ resonance, in the $J=1 / 2$ state. The hypercharg riplet would appear as a resonance in the $N K$, the $N K$ and ΞK, and the $\Xi \bar{Z}$ scattering states. As pointed out before, the masses of such states remain theoretically unknown.
For demonstration purposes, let us use a combination of the techniques developed in Secs. III and V to analyze the product representation $\psi_{i}^{i}=\psi \psi^{i}$, where ψ is the basis of the five-dimensional representation. We choose its components as ($p, n, A, \mathcal{Z n}^{0}, \tilde{w}^{-}$). According to Sec. V, there exists a symmetric metric, $g^{i j}$, which relates ψ^{i} with ψ_{k} In order to determine the form of $g^{\boldsymbol{l}_{j}}$ we first formally form the invariant

$$
x=g^{i i} \psi \psi \psi s .
$$

By remembering that this invariant must have a weight $(0,0)$, it must be a linear combination

$$
x=0 z-b+b E^{0} n+c A \Lambda+d p E^{-}+c n^{2} .
$$

In order to determine the coefficients a, b, \cdots, we use the fact that $E_{\alpha} \chi=0$ for any E_{α}. The immediate result is

$$
x=a\left(\equiv-p-z^{2} n+\Lambda+p=-n \Xi^{0}\right)
$$

With a normalization such that $g^{f}=1$, $g^{i f}$ may now be written as

$$
g_{i j}=g^{i j}=\left\{\begin{array}{llll}
& & & 1 \tag{VI.24}\\
& -1 & & \\
1 & &
\end{array}\right)
$$

50 that

$$
\begin{aligned}
& \left(\psi_{i}\right)=\left(\begin{array}{l}
p \\
n \\
\Lambda \\
\Xi^{0} \\
\Xi^{0}
\end{array}\right), \quad\left(\psi^{i}\right\rangle=\left(\begin{array}{c}
\Xi^{-} \\
-\bar{m}^{0} \\
\Lambda \\
-n \\
p
\end{array}\right) \\
& \left(\psi_{1}\right)=\left[\begin{array}{l}
\bar{p} \\
\bar{n} \\
\bar{X} \\
\overline{0} \\
\bar{\sim} \\
\hline
\end{array}\right] \\
& \left(W_{i}\right)=\left[\begin{array}{r}
\frac{E}{N} \\
-\frac{\tilde{2}}{\bar{L}} \\
-\tilde{n} \\
\tilde{p}
\end{array}\right]
\end{aligned}
$$

```
Fic. 23. Weight diagram for
\(D^{(6)}(0,1)\) of \(C_{5}\) with bases \(D_{\text {ated }}{ }^{(6)}(0,1)\) of \(C_{3}\) with baryons \(\left(\$\right.\), \(A, A_{2}\) ated with
and \(z^{2}\) ).
```


This matrix $g_{i j}$ is the same as that introduced under the pseudonym C in Eq. (III.39). It is now possible to construct the bilinear forms $\psi_{i}{ }^{i}$ for the $10-$ and 14 dimensional representations:

$$
\begin{align*}
& \psi(10)_{i}^{i}=\Psi^{2} \psi_{i}-\Psi_{\psi} \psi^{j} \\
& \psi(14)_{i}^{i}=\Psi \psi_{i}+\psi_{i} \psi^{j}-\delta_{i} \psi_{i} \psi_{k} . \tag{VI.26}
\end{align*}
$$

Specifically, for the 10 -dimensional representation, in terms of $\bar{B} \bar{B}$,

$$
\begin{aligned}
& x_{1}=-\psi_{1}{ }^{2}=-n p-\Xi^{2}, \\
& x_{2}=\frac{1}{\sqrt{2}}\left(\psi_{1}^{1}-\psi x^{2}\right)=\frac{1}{\sqrt{2}}\left(\bar{p} p-n n+z=0-\overline{2} z^{-}\right) \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& x_{b}=\frac{1}{\sqrt{2}}\left(\psi_{2}^{1}+\psi_{2}^{2}\right)=\frac{1}{\sqrt{2}}\left(p p+n n-\Sigma^{2} \Sigma^{0}-\Sigma^{-}\right) \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& \chi_{10}=\psi_{2}{ }^{3}=\bar{\Lambda} p-\overline{\xi^{2}} \Lambda .
\end{aligned}
$$

Since the 10 -dimensional representation is the regular representation, these χ_{A}, if assigned the spacetime properties of a four-vector (i.e., by inserting a γ into each term, e.g., $\left.\bar{p} n \rightarrow \bar{p} \gamma_{\mu} n\right)$, form the baryon part of the current which is conserved due to the group C_{2}. If the spin zero mesons, K, π, etc., were considered compound baryon-antibaryon systems, these \boldsymbol{X}_{A} would, of course, be the complete conserved currents in the interaction representation. ${ }^{77}$ In order to avoid being quoted as not having considered strongly-interacting

${ }^{77}$ The currents can casily be written down in interaction representation. The transformation to Heisenberg representation
will introduce extra terms in the current, if there are derivative will introduce extra termas in the current, if there are derivative
of the feds in the interaction Lagrangion.

Fig. 25. Root diagram for B_{2}.
intermediate vector mesons, ${ }^{78,79}$ we point out here that by the extension to space-time dependent transformations, these ten currents would be coupled to ten such mesons; this technique is trivially extended to the other groups.

On the other hand, if the χ_{A} are given the space-time property of a pseudoscalar, the effective Yukawa coupling between the baryons ((N, Λ, Ω) and the pseudoscalar mesons can be written down. Writing the ten mesons as a 10 -component $M_{A}=\left(-\pi^{+}, \pi^{0}, \pi^{-}, D^{+}, D^{0}, D^{-}, \bar{K}^{+}\right.$, $-\bar{K}^{0}, K^{0}, K^{+}$), the coupling becomes ${ }^{80}$

$$
\begin{equation*}
I=g \chi_{A} M^{A} \tag{VI.27}
\end{equation*}
$$

where

$$
\begin{aligned}
& M^{A}=\left(-\pi^{-}, \pi^{0}, \pi^{+}, D^{-}, D^{0}, D^{+}, K^{+},-K_{,}^{0}, K^{0}, \bar{K}^{+}\right) \\
& M^{A}=g^{A B} M_{B}
\end{aligned}
$$

A simpler method than the above exists for finding the X_{A}. Since they form the basis of the regular representation, they are given by $X_{A}=\tau_{A} L_{A a}{ }^{b} V_{b}$ where the $L_{A c}{ }^{b}$ can be read directly from Table IX. The advantage of the method described above is that we can now also immediately write down the 14 -dimensional basis.

Model Built on B_{2}

Another possible scheme based on the symmetry of $C_{3}\left(=B_{2}\right)$ is obtained by rotating the coordinates of
the root diagram, Fig. 1 (b) of Sec. II by 45°. We recapitulate the procedure of constructing the Lie algebra, using the root diagram, Fig. 25. In this basis of the algebra

$$
\begin{array}{ll}
{\left[A_{1}, \hat{E}_{1}\right]=b^{-4} E_{1},} & {\left[A_{1}, E_{2}\right]=6^{-i} \hat{E}_{2}, \cdots,} \\
{\left[A_{2}, \hat{E}_{1}\right]=0,} & {\left[A_{2}, \hat{E}_{2}\right]=6^{-i} E_{2}, \cdots,} \tag{VI.28}
\end{array}
$$

and we choose the $N_{a s}$ to be
$N_{1,4}=N_{-1,8}=N_{\mathrm{d},-4}=N_{5,8}=N_{-1,8}=N_{3,-8}=6^{-\frac{1}{2}}$.
The highest weight of the representation $\left(\lambda_{1}, \lambda_{2}\right)$ is, in this case,

$$
\begin{equation*}
\text { - } \quad \mathbf{M}=\lambda_{2} / 6^{-\boldsymbol{H}}(1,0)+\lambda_{1} / 6^{-1}\left(\frac{1}{2}, \frac{1}{2}\right) \text {. } \tag{VI.30}
\end{equation*}
$$

The dimensionality is given by

$$
\begin{align*}
& N=\left(1+\lambda_{1}\right)\left(1+\lambda_{2}\right)\left[1+\frac{1}{2}\left(\lambda_{1}+\lambda_{2}\right)\right] \\
& \times\left[1+\frac{1}{3}\left(\lambda_{1}+2 \lambda_{2}\right)\right] . \tag{VI.31}
\end{align*}
$$

The dimensionalities of the representations $D\left(\lambda_{1}, \lambda_{2}\right)$ $=D(0,0), D(1,0), D(0,1), D(2,0), D(0.2), \cdots$, are $1,4,5,10,14, \cdots$, just as before.

We can identify the Λ particle as the basis of the one-dimensional representation. Inspection of the weight diagram, Fig. 26(a), shows that ($\left.p, r, \Sigma^{0}, \Sigma^{-}\right)$and ($K^{+}, K^{0},-\mathbf{K}^{0},+K^{-}$) can be chosen as the bases of the four-dimensional representation.

The isotopic content of the five dimensional representation of Fig. 26(b) requires, in addition to the isotopic triplet with $Y=0$, which we identify with $\Sigma^{+}, \Sigma^{0}, \Sigma^{-}\left(\pi^{+}, \pi^{0}, \pi^{-}\right)$, two more charged baryons $X^{ \pm}$ ($D^{ \pm}$for bosons) with $T_{8}=0, Y=0$.

We now illustrate the tensor analysis of Sec. V on the basis of this model. Since we have identified the H_{i} differently than in the previous case (Sec. III G; Sec. VI E), the matrices derived below are not the same as before. The ten operators may be represented by 4×4 traceless matrices:

$$
\begin{align*}
& \left(H_{1}\right)_{a}^{b}=2(6)^{b}\left[\begin{array}{llll}
1 & & & \\
& -1 & & \\
& & 1 & \\
& & & -1
\end{array}\right], \quad\left(H_{2}\right)_{a}{ }^{b}=2(6)^{b}\left[\begin{array}{llll}
1 & & & \\
& 1 & & \\
& & -1 & \\
& & & -1
\end{array}\right], \\
& \left(E_{1}\right)_{a^{b}}^{b}=2(3)^{\frac{1}{2}}\left[\begin{array}{llll}
0 & 1 & & \\
& 0 & & \\
& & 0 & 1 \\
& & & 0
\end{array}\right], \quad\left(E_{3}\right)_{\mathrm{a}}^{b}=2(3)^{b}\left[\begin{array}{llll}
0^{-} & & -1 & \\
& 0 & & 1 \\
& & 0 & 0
\end{array}\right] \text {, } \tag{VI.32}\\
& \left(E_{3}\right)_{a}^{b}=\sigma^{-1}\left[\begin{array}{llll}
0 & & & 1 \\
& 0 & & \\
& & 0 & 0
\end{array}\right], \quad\left(E_{4}\right)_{a}^{b}=\sigma^{-4}\left[\begin{array}{rrr}
0 & & \\
& 0 & -1 \\
& 0 & 0
\end{array}\right], \quad\left(\psi_{a}\right)=\left[\begin{array}{c}
f \\
n \\
n \\
z_{z}^{0}
\end{array}\right] \\
& \left(E_{-\alpha}\right)_{a}^{b}=\left(E_{\alpha}+\right)_{a}^{b}=\left(E_{\alpha}\right)_{b}{ }^{d} \text {. }
\end{align*}
$$

[^13]These matrices may be derived by the method developed in Sec. IV. The metric $h^{a b}$ is defined to be the skew matrix that makes $k^{2} \psi_{o} \psi_{b}$ form invariant. One can easily verify that

$$
\Xi-p-z^{0} n+n E^{0}-z^{2} p
$$

is form invariant since the E_{∞} operating on it annihilate it. Therefore, we choose $h^{a b}$ to be

$$
h^{a b}=\left(\begin{array}{cc}
& 1^{-1} \tag{VI.33}\\
-1 &
\end{array}\right)=-h_{a b} \quad h_{a c} h^{c b}=\delta_{a}{ }^{b}
$$

Note that $h^{r e}\left(L_{i}\right)_{c}^{b=}\left(L_{i}\right)_{0}{ }^{e} h^{b c}$, i.e., $L_{i}{ }^{a b}=L_{i}{ }^{h c}$. The contragredient bases are

These matrices are chosen such that $X_{i}=\eta^{2}\left(\sigma_{i}\right)_{a}{ }^{6} / \mathrm{b}$ $=\Psi h_{a c}\left(\sigma_{i}\right)^{e \Delta} \psi_{b}$ are normalized bases of the fivedimensional representation that transform as the

$$
\left(\psi_{i}\right)=\left(\Sigma^{0},-\Sigma^{+}, \Sigma^{-},-X^{+}, X^{-}\right)
$$

or the

The symmetric five-dimensional metric $g_{i f}$ is defined as in Eq. (V.19) ;

$$
\begin{align*}
& g_{i j}=\sigma_{i} b_{\sigma_{j} d_{a}}=\operatorname{trace} \sigma_{i j} \\
& \tag{VI.36}\\
&=\left[\begin{array}{rrrrr}
1 & 0 & -1 & \\
& 0 & -1 & 0 & \\
-1 & & 0 & -1 \\
& & & -1 & 0
\end{array}\right]=g^{i j} ; g^{i l} g_{j j}=\delta^{i}{ }_{j}
\end{align*}
$$

The contragredient bases $M^{\text {; }}$ of the five-dimensional

Fig. 26. (a) Weight diagram for $D(1,0)$ of B_{a}. For meson bases, the substitution, $\left(f, m, \#, \xi^{-}\right) \rightarrow\left(K^{+}, K^{0},-K^{0}, K^{+}\right)$, should be made. (b) Weight diagram for $D(0,1)$ of C_{2}. For meson bases, the substitution, $\left(\Sigma^{+}, \Sigma^{0}, \Sigma^{-}, X^{+}, X^{-}\right) \rightarrow\left(\pi^{+}, \pi^{0}, \pi^{-}, D^{+}, D^{-}\right)$, Bhould be made.

We take the five skew 4×4 matrices $\sigma_{i}{ }^{a b}$ just introduced in Eq. (V.17), satisfying $h_{z b} \sigma_{i}{ }^{6 a}=$ trace $^{\left(\sigma_{i}=\right.}=0$, to be

$$
\left.\begin{array}{rr}
0-1 & 0 \tag{VI.35}\\
& \\
& 0 \\
& 0 \\
0-1 & 1
\end{array}\right], \quad \sigma_{8}^{a b=1 / \sqrt{2}}\left[\begin{array}{lllr}
& & & 0 \\
& & & 0 \\
0 & 1 & 0 & 0
\end{array}\right]
$$

representation are obtained by

$$
M^{i}=g^{i i} M_{j}=\left(\begin{array}{r}
\pi^{0} \tag{VI.37}\\
-\pi^{-} \\
\pi^{+} \\
-D^{-} \\
D^{+}
\end{array}\right] .
$$

The explicit form of the L_{A} in the five-dimensional representation is obtained from $\left(L_{A}\right)_{i}{ }^{i}=2 \sigma_{i}^{a b}\left(L_{A}\right)_{b} \sigma^{i}{ }_{c a}$. We can go on to construct explicit forms of tensors ad infinilum. The above examples suffice to illustrate the method.

Let us now turn back to physics. As an example, let us consider the invariant Yukawa type coupling of the (π, D) to the (N, \bar{Z}). It is clear that, by construction, the $\sigma_{* a^{b}}{ }^{b}$ are just the $\left(\Omega_{\mu}{ }^{(r)}\right)_{a}^{b}$ discussed in the early part of this section where τ refers to the five-dimensional representation and $i=\mu$. The invariant coupling $i s$, therefore,

$$
\begin{aligned}
& I=\| \operatorname{agg}_{\mathrm{is}} \psi_{8} M^{i} \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& +\sqrt{2}\left[\left(\eta_{0} \gamma_{b}-e^{-2} \gamma_{0}\right)_{\pi^{-}}\right.
\end{aligned}
$$

In this case, the number of independent coupling constants required is one, because the product repre-

$$
\begin{aligned}
& \left(M_{i}\right)=\left(\pi^{0},-\pi^{+}, \pi^{-},-D^{+}, D^{-}\right) ;
\end{aligned}
$$

$$
\begin{aligned}
& x_{2}=\frac{1}{\sqrt{2}}\left(-\tilde{n} p+\sum_{n} \xi^{0}\right), \quad x_{1}=\frac{1}{\sqrt{2}}\left(\sum_{2}-n+\xi_{0} p\right), \\
& x_{1}=\frac{1}{\sqrt{2}}\left(p n-2 z_{2}\right), \quad x_{5}=\frac{1}{\sqrt{2}}\left(-\sqrt{n} z^{2}-p m^{0}\right) .
\end{aligned}
$$

$D^{\text {Fric. }}$ 27. Weight diagram for $D^{(7)}(1,0)$ with bases associated with
baryons. For meson bases, substitute $\left(K^{+}, K_{1}^{0}-K^{0}, R^{+}, \pi^{+}, \pi^{0}, \pi^{-}\right)$
for $\left(p, n, \tilde{\Sigma}^{0}, \bar{\Sigma}^{-}, \Sigma^{+}, \Sigma^{0}, \Sigma^{-}\right)$.
sentation $D^{()^{\bullet}} \otimes D^{(4)}$ contains the irreducible representation $D^{(5)}$ only once.
There are three independent amplitudes for scattering of (N, \mathcal{Z}) and ($\bar{N}, \hat{Z})$, corresponding to the decomposition (Clebsch-Gordan series) $D^{(6)} \otimes D^{(1)}=D^{(1)} \oplus D^{(6)} \oplus D^{(10)}$ Let us consider the process

$$
a+b \rightarrow a^{\prime}+b^{\prime}
$$

where a, b, a^{\prime}, and b^{d} label members of the (N, \ldots multiplet. The T matrix for this process can be written $\left(a^{\prime} b^{\prime}|T| a b\right)=F^{\prime} \delta_{a^{\prime}} b^{\prime} \delta_{b}{ }^{a}$

$$
+F^{2} \sigma_{i a^{\prime}}{ }^{b^{\prime} \sigma_{b}^{i}}{ }^{6}
$$

$$
+F^{7}\left(\Omega_{A}{ }^{(10)}\right)_{a^{b^{\prime}}}{ }^{b^{\prime}}\left(\Omega_{A}{ }^{(10)}\right)_{b^{a}}, \quad \text { (VI.39) }
$$

where the isometric operators $\left(\Omega_{\Lambda}{ }^{(10)}\right)_{b}{ }^{\text {a }}$ are proportional to $L_{A b}{ }^{\text {a }}$:

$$
\left(\Omega_{A}^{(10)}\right)_{b}== \pm \frac{10}{\left(\text { trace } L_{B} L^{B}\right)^{s}} L_{A b^{a}} .
$$

Finally, let us discuss the Y^{*} isobar states in this scheme. Since the five-dimensional representation is the lowest dimensional one with the right isotopic spin and hypercharge content to accommodate the triplet $\left(Y^{*}\right)^{+},\left(Y^{*}\right)^{0}$, and $\left(Y^{*}\right)^{-}$, we propose to identify the Y^{*} with components of a basis of $D^{(6)}(0,1)$. We have with components of a basis of $D^{(b)}(0,1)$. We have
already assigned the Σ and $X^{ \pm}$to a five-dimensional representation. Therefore, the Y^{*} and the Σ would have representation. Therefore, the X and the 2 would have
to have the same transformation properties in charge to have the same transformation would be described by space-time quantum numbers. An interesting feature of this model is that the decay process $Y^{*} \rightarrow \Sigma+\pi$ is forbidden by symmetry while $Y^{*} \rightarrow \Lambda+\pi$ is allowed, independent of spin of the Y^{*} or the relative $\Lambda \Sigma$ parity. The reason is as follows. The π and the Σ are members of five dimensional representations. Since the product representation $D^{(6)} \otimes D^{(5)}$ does not contain any irreducible $D^{(8)}$, it is impossible for a Y^{*} to decay into a π and a Σ. On the other hand, since the Λ particle is a basis of the one dimensional representation, the product representation of the Λ and the x multiplet naturally gives rise to a five dimensional representation.

G. Model Built on G_{2}

If we assume that there are eight baryons which can form the bases for one or more representations, then the dimensionality of these representations must add up to eight. An inspection of Table VI for G_{2} shows that the only possibility involves two representations, $D^{(8)}(0,0)$ and $D^{(7)}(1,0)$. This implies that seven of the ${ }^{4}$ This is in accord with experimental observation (see reference 73).
baryons must have the same space-time quantum numbers; the eighth baryon may have a different set of these quantum numbers. In contrast with $\mathrm{SO}_{\mathbf{h}}$, we see that there is a seven-dimensional representation which allows the possibility of using only the seven known mesons, i.e., $D^{(7)}(1,0)$ In this scheme, of course, it would also be possible to accommodate an eighth meson, the π^{00} which would then correspond to the one-dimensional representation, $D^{(1)}(0,0)$. Until such time as this meson is experimentally detected, we shall consider only the known particles. It is again clear that these seven mesons must have the same space-time quantum numbers.
In Fig. 27 we have drawn the weight diagram for the seven-dimensional representation of G_{2}. From this, it is clear that if we associate $2 \sqrt{3} H_{1}$ with the operator for I_{2} and $4 \hat{H}_{2}$ with the operator for Y (hypercharge), then each of the baryons has a specific weight associated with it. There remains only the question of the Σ^{0} and Λ which both have zero eigenvalues for these two operators. Since we want charge independence to hold or the strong interactions (this implies the existence of the isotopic spin lowering operator as one of the E_{α}), the Σ^{0} must belong to the seven-dimensional representation and that the Λ is the basis for the onedimensional representation. Because the Σ and Λ belong to different representations, we see that G_{2} can accommodate opposite parities for the $\boldsymbol{\Sigma}$ and $\boldsymbol{\Lambda}$. It predicts specifically, however, that the ΣK parity must be the same as that of $N \pi$
In order to give the usual isotopic spin and hypercharge assignment to the $N, \boldsymbol{\Sigma}$, and $\bar{\Xi}$, in accordance with the association of H_{1} and H_{2} with I_{3} and Y given above, we must make the following connection between the states given in Sec. III B and the particles
$|A\rangle:|1\rangle|2\rangle|3\rangle|4\rangle|5\rangle|6\rangle|7\rangle$
Baryons: $p \quad n \quad \Xi^{0} \quad \Xi^{-}-\Sigma^{+} \quad \Sigma^{0} \quad \Sigma^{-}$(VI.40) Mesons: $K^{+} K^{0}-K^{0} \quad K^{+}-\pi^{+} \quad \pi^{0} \quad \pi^{-}$.
With the aid of this dictionary, it is easy to construct Table X for the particles from the results of Sec. III H. We proceed now to analyze the scattering $B+M \rightarrow B^{\prime}+M^{\prime}$ in the same manner as described in the general part of this section. The pertinent our-point function is

$$
\left\langle T\left[\psi_{B^{\prime}} \psi_{M^{\prime}} \psi_{B} \psi_{M}\right]\right\rangle .
$$

The combination $\psi_{B} \psi_{M}$ is the Kronecker product of two seven-dimensional representations, one for the meson and one for the baryon. This reduces, following Table VI, according to $7 \otimes 7=1 \otimes 7 \otimes 14 \otimes 27$. In the manner described previously, we conclude that there are only four different four-point functions or amplitudes for the scattering of the seven baryons by the bosons.

EThe model built on G_{2} was first suggested by Behrends and sirlin (reference 19) and, independently, by another of the authors (C.F.) (unpublished).

STRONG INTERACTION SYMMETRIES

For further physical predictions, it is necessary to find the metric tensor. This can be done by noting that the invariant part of the compound representation $x=g^{i} \psi_{i} \varphi_{j}$ must be a linear combination of the form
$\chi=a \rho \bar{K}^{+}+b n \bar{K}^{0}+c \Sigma^{+} \pi^{-}+d \Sigma^{-} \pi^{+}+e \Sigma^{0} \pi^{0}$
$+f=K^{+}+g \Xi^{0} K^{\circ}$
By use of the fact that $E_{a} \chi=0$, we can readily find the coefficients $a, b, c \cdots$, and thereby find

where
$\left(\psi_{i}\right)=\left(p, n^{\boldsymbol{I}^{0}}, \tilde{\Xi}^{-},-\Sigma^{+}, \Sigma^{0}, \Sigma^{-}\right)$.
It follows that

$$
\left(\psi^{i}\right)=\left(\Xi^{-},-\Xi^{0},-n, p,-\Sigma^{-}, \Sigma^{0},+\Sigma^{+}\right) .
$$

[This matrix was introduced in Eq. (III.42).]

We further need to determine the isometries $6^{-4} \Gamma^{i j k}$ This is most easily done by noting that the basis for the seven-dimensional compound representation is given by $\chi^{i}=\Gamma^{i i} \psi_{j} \varphi_{k}$. We proceed by noting that the x^{i} with the fundamental dominant weight $M^{(1)}$ is a linear combination of the form:

$$
-x_{5}=x^{7}=a p K^{0}+b \Xi^{0} K^{+}+a \Sigma \Sigma^{+} \pi^{0}+a \Sigma^{0} x^{+} .
$$

Since $E_{1} X_{8}$ and $E_{3} X_{5}$ would have weights that cannot elong to $D^{(7)}$, they must vanish. These conditions are sufficient to determine the constants a, b, c, and d. The result is

$$
x^{7}=\sqrt{2}\left(p K^{0}+\Xi^{0} K^{+}\right)-\Sigma^{+} x^{0}+\Sigma^{0} x^{+} .
$$

The matrix $\Gamma^{7 j k}=-\Gamma_{5}{ }^{j k}$ may readily be found from this expression. By operating on X_{B} with $E_{b_{n}}$ we find, [remembering that

$$
\left.E_{a} \psi_{b}=-E_{b}\left(\Sigma^{+}\right)=-\frac{1}{} \sqrt{2} p=-\frac{1}{3} \sqrt{ } \psi_{4} \psi_{4}\right]
$$

$p_{n} n^{0}+\sqrt{2} r \pi^{+}-\Sigma^{0} K^{+}+\sqrt{2} \Sigma+K^{0}=x_{1}=x^{4}$.
Proceeding successively in this manner, we can determine all the χ^{i}, and thereby all the $\left(\Gamma^{i j i}\right)$. For determine all the χ^{\prime}, and thereby
convenience, we list these matrices

Table X. Action of E_{a} an baryons for $D^{m}(1,0)$ in G_{k}. Table for bosons is obtained by substitution

E_{a}^{*}	\%	n	3	告	E	F	E
2 (6) E_{1}		\%		I		$-\sqrt{22}+$	$\sqrt{20}$
$2(6){ }^{2} E_{-1}$	*		\%		-220°	$\sqrt{22}$	
$2 \sqrt{2} E_{2}$				$-{ }^{+}$			p
$2 \sqrt{2} E_{-2}$	z-				-z		
2(6) ${ }^{\text {E }}{ }_{3}$			-2^{+}	$-\sqrt{20}$		$\sqrt{2} p$	-
2(6) E $_{E_{-8}}$	$\sqrt{25}$	-2			-3	$-\sqrt{25}$	
$2 \cdot 2 E_{4}$			p	n			
$2 \sqrt{2} E_{4}$	3	z					
$2(6)+E_{5}$			$\sqrt{220}$	-	+	$\sqrt{2 n}$	
$2(6){ }^{4} E_{-6}$	$+2^{+}$	$\sqrt{2} 2^{0}$				$\sqrt{27}$	-
$2 \sqrt{2} E_{6}$			z-	-	+		
$2 \sqrt{2} E_{-4}$		$-\Sigma^{+}$					2
$2{ }^{3} \mathrm{H}_{1}$	$1 p$	-14	180	-	Σ^{+}		$-z^{-}$
$4 H_{2}$	p	\%	-	-			

It is now a trivial matter to list various amplitudes in a compact notation. For example, the invariant three-point function is

$$
\begin{equation*}
\Gamma^{i i_{k}}\left\langle T\left(\Psi_{i} \psi_{j} \varphi_{k}\right)\right\rangle . \tag{VI.43}
\end{equation*}
$$

Another simple example is afforded by A production mesons on baryons, $M+B \rightarrow \mathbf{M}^{\prime}+\boldsymbol{A}$. The four-point function is

$$
\begin{equation*}
\Gamma^{\psi i k}\left\langle T\left(\psi_{\Delta} \psi_{i} \varphi_{i} \varphi_{k}\right)\right\rangle \tag{VI.44}
\end{equation*}
$$

With regard to G_{2}, it might be interesting to play again the game of finding the processes which might have resonances corresponding to the $(3,3)$ pion-nucleon resonance. At this point, we re-emphasize, the limitations of this game (see the general discussion above). First, the product representation of one baryon and one meson decomposes into representations with dimensionalities of $1,7,14$, and 27 . But the weight of the $\pi^{+} \phi$ state, say, which is a member of the $(3,3)$ resonance, is $(1 / 4 \sqrt{3})(3, \sqrt{3})$. This is just the highest weight for the 14 -dimensional representation $D(0,1)$ and it is one of the weights for the 27 -dimensional representation. Thus the $(3,3)$ resonance must belong to either the 14 or 27 dimensional representation.

Again, as an example, we have drawn the weight diagram for the 14 -dimensional representation in Fig. 3(b). From this, it is clear that besides the $I=\frac{3}{3}$, $Y=1$ multiplet, which we might identify as the 3,3 resonance, the isotopic content includes an $I=\frac{3}{3}$, $Y=-1$ multiplet, an $I=1, Y=0$ multiplet, and three singlets, $I=0, Y=2,0,-2$. All of these multiplets must have $J=\frac{3}{3}$. The actual product representation written in terms of the product $M B$ may be found in the manner illustrated above. Namely, the basis for the highest weight of the 14 -dimensional representation must be of the form $a p x^{+}+b \Sigma^{+} K^{+}$. But $E_{\text {a }}$, for a positive root $r(\alpha)$, acting on this basis must be zero. Specifically, application of E_{-1} gives $a=-b$, so that the basis for the highest weight is $\frac{1}{2}\left(p \pi^{+}-\Sigma^{+} K^{+}\right)$. The bases for the other weights can be obtained by repeated use of all the E_{0}. In contrast with $S U_{3}$ the $\pi \Lambda$ resonance cannot be associated with the $(3,3)$ pion nucleon resonance, since the $\pi \Lambda$ resonance must be 7 -dimensional which does not contain an $I=\frac{3}{3}$ multiplet.

If the $(3,3)$ resonance were identified with the 27 -dimensional representation, we would proceed in the same manncr. The result would be that the $(3,3)$ resonance would be associated with a different set of isotopic spin multiplets.

Классификация простых групп Лн

Е. Б. Дынкин (Москва)

1. Простые группы Ли перечислил впервые Киллинг в 1890 г. Первое полное доказательство результата Киллинга принадлежит Картану (1894 г.). В 1933 г. Ван-дер-Варден [1] предложил, опираясь на работу Г. Вейля [2], новый более геометричный метод классификации простых групп Ли. В настоящей заметке доказывается, что полупростая группа определяется системой своих простых корней, и задача перечисления всех простых групи Ли сводится этим к простой геометрической задаче: построить в n-мерном эвклидовом пространстве всевозможные реперы такие, что для любых двух векторов a и $b \frac{2(a, b)}{(a, a)}$ - целое неположительное число (a, b)-скаляриое произведеиие a и b).
2. Г. Вейль относит всякой полупростой группе Ли \&\& с комплексными параметрами систему $\Sigma(\&)$ ее корневых векторов, заданием которой группа \& полностью определяется. $\Sigma($ (\&) - конечное миожество векторов п-мерного веществениого эвклидова пространства R^{n}, обладающее следующими свойствами:

2 (1). Если $a \in \Sigma$, то $-a \in \Sigma$, но для $k=2,3, \ldots k a \bar{\in} \Sigma$.
2 (2). Пусть a и b-различные корни. Если для- $p \leqslant l \leqslant q, b+i a \in \mathbb{\Sigma}$, но $b-(p+1) a \bar{\epsilon} \Sigma$ и $\bar{b}+(q+1) a \bar{\epsilon} \Sigma$, то $p-q=\frac{2(b, a)}{(a, a)}$.

2 (3). Если системы $\Sigma\left(\oiiint_{1}\right)$ и $\Sigma\left(\oiint_{2}\right)$ подобны, т. е. переходят одна в другую при некотором растяжении пространства R^{n}, то они равны.

Если, в частности, (6) - простая группа, то
$2(4) . \Sigma$ (ङ) не распадается на две взаимно ортогоиальные подсистемы Σ_{1} и Σ_{2}.
3. Приведем примеры простых групп и выпишем системы их корневых векторов. Эти примеры подробно изучены Вейлем [2].
$A_{\text {ת }}$ - группа линейных преобразований с детерминантом 1 пространства $L^{n+1}-(n+1)$-мерного пространства над полем комплексных чисел. $\sum\left(A_{n}\right):\left\{e_{p}-e_{q}\right\}_{p, q=1}^{n+1}\left(p \neq q ; e_{1}, \ldots, e_{n+1}\right.$ - ортогональный нормированный базис R^{n+1}).
B_{n} - группа ортогональных преобразований $L^{2 n+1}$.
$\sum\left(B_{n}\right): \quad\left\{ \pm e_{p}, \pm e_{p} \pm e_{q}\right\}_{p, q=1}^{n} \quad(p \neq q)$.
C_{n}-комплекс-группа, т. е. группа линейных преобразований $L^{2 n}$, оставляющих инвариантной дифференциальную форму

$$
\begin{aligned}
& \sum_{n=1}^{n}\left(x_{k} d x_{n+k}-x_{n+k} d x_{k}\right) . \\
& \sum\left(C_{n}\right): \quad\left\lfloor \pm 2 e_{p}, \pm \varepsilon_{p} \pm e_{q}\right\}_{p, q-1}^{n} \quad(p \neq q) .
\end{aligned}
$$

D_{n}－группа ортогоналіьных преобразований $L^{2 n}$ ．

$$
\Sigma\left(D_{n}\right): \quad\left\{ \pm e_{p} \pm e_{q}\right\}_{p, q=1}^{n} \quad(p \neq q)
$$

4．Мы назовем вектор из $R_{\text {？}}^{n}$ положительным，если ero первая координата，отличная от нуля，полюютельна．Множество P всех поло－ жительных векторов удовлетворяет следую山им условиям：

4 （1）．Пусть $a \neq 0$ ．Тогда либо $a \in P$ ，либо－$a \in P$ ，но невозможно， чтобы $a \in P$ и $-a \in P$ ．

4 （2）．Если $a \in P, \quad \in P, \lambda>0, \mu \geqslant 0$ ，то $\lambda a+\mu b \in P$ ．
Мы условимся писать $a>0$ ，если $a \in P$ ，и $a<0$ ，если $-a \in P$ ．
Лемма І．Если векторы $a_{1}, a_{3}, \ldots, a_{p}$ положсительны $и\left(a_{i}, a_{k}\right) \leqslant 0$ （ $i, k=1, \ldots, p ; i \neq k$ ），то эти бекторы линейно незсвисимы．

Пусть，в самом деле，$a_{p}=\sum_{i=1}^{p-1} \lambda_{i} a_{i}=\Sigma^{\prime} \lambda_{i} a_{i}+\Sigma^{\prime \prime} \lambda_{i} a_{i}$ ，где к Σ^{\prime} отнесены слагаемые с положительными козффициентами λ_{i} ，а к $\Sigma^{\prime \prime}$－ слагаемые с отрицательными λ_{i} ．Положим $b=\Sigma^{\prime} \lambda_{i} a_{i}, c=\Sigma^{\prime \prime} \lambda_{i} a_{i}$ ．Тогда $(b, c) \geqslant 0, a_{p}=b+c$ ，причем $c \leqslant 0$ ，так что $b \neq 0$ ．Мы имеем $\left(a_{p}, b\right)=$ $=(b, b)+(c, b)>0$ ，но，с другой стороны，$\left(a_{p}, b\right)=\Sigma^{\prime} \lambda_{i}\left(a_{p}, a_{i}\right) \leqslant 0$ ．

5．Положительный корень a называется простым，если его нельзя разложить на сумму двух положительных корней．Всякий положитель－ ный корень можно представить в виде суммы простых корней．

Если b－положительный корень и a－простой корень，то $a-b$ не будет положительным корнем．Поэтому разность двух простых корней a_{1} и a_{2} не будет корнем，и формула 2 （2）дает для них $\frac{2\left(a_{1}, a_{3}\right)}{\left(a_{1}, a_{1}\right)}=-q \leq 0$ ． Следовательно，$\left(\mathfrak{a}_{1}, a_{2}\right) \leqslant 0$ и，в силу леммы I，простые корни линейно независимы．Произвольный положительный корень однозначно разла－ гается на простые．

Положительный корень，являющийся суммой k простых корней， назовем корнем порядка к．Покажем，что всякий корень с порядка k имеет вид $a+b$ ，тде a－простой корень，b－корень порядка $k-1$ ． В самом деле，если $a_{1}, a_{2}, \ldots, a_{n}$－система всех простых корней，то система $c, a_{1}, a_{2}, \ldots, a_{n}$－линейно зависима и，в силу леммы I，одно из произведений（ c, a_{i} ）положительно．Это означает，что в формуле $2(2)$ $p \neq 0$ и $с-a_{i}$－корень．

6．Теорема I．Полупростся групnа（G）определяется системой ІІ（ङ）своих простых корней．

Для доказательства достаточно построить по простым корням груп－ пы（3）все ее корни．В силу ？（1），можно ограничиться построением положительных корней．Bсе корни первого порядка нам даны，ибо это－простые корни．Пусть мы уже построили все корни порядка， меньшего k ．Корни порядка k имеют вид $b+a$ ，где b－корень порядка
$k-1, a-$ простой кореть $\left(\mathrm{n}^{\prime \prime} 5\right)$ ．Формула $q=p-{ }_{(a, a)}^{2(b, a)}(\mathbf{c м . 2 (2)) ~ п о з в с і - ~}$ ляет решить вопрос п том，будет ли сумма простого корня а и корня b порядка $k-1$ корнем．Действительно，все корни серин $b, b-a, b-2 a$ ，
положительны и порядка，меньше．о k ，так что p известно по предпо－ дожению индукции．Таким образом мы можем построить все корни порядка k ．

7．Не представляет труда определить системы простых корней для групп из $n^{\prime \prime} 3$.

$$
\begin{gathered}
\Pi\left(A_{n}\right): \quad\left\{e_{p}-e_{p+1}\right\}_{1}^{2} ; \\
\Pi\left(C_{n}\right): \quad\left\{e_{p}-e_{p+1}, 2 e_{n}\right\} ; \quad \\
\Pi\left(B_{n}\right): \\
\quad\left\{e_{p}-e_{;}, e_{n}\right\}_{p=1}^{n-1} ; \\
\left\{e_{p}-e_{p+1}, e_{n-1}+e_{n}\right\}_{p=1}^{n-1} .
\end{gathered}
$$

8．Назовем конечную систему I＇векторов пространства R^{n}（II）－сис－ темой，если она удовлетворяет следующим условиям：

8 （I）．Если $a \in I^{\prime}$ и $b \in I^{\prime}, a \neq b$ ，то $\frac{2(a, b)}{(a, a)}$－целое неположительное число．

8 （2）．I－линейно независимая система．
8 （3）．I не распадается на две взаимно ортогональные подсистемы．
В силу $2(2), 2(4)$ и $n^{\prime \prime} 5$ ，имеет место
Теорема ІІ．Система Π（ङ）простых корней простой зруппы Ли （b）еспиь（П）－система．

Теоремами I и II задача о классификации простых групп Ли све－ дена к задаче о построении всевозможных（II）－систем．

9．Пусть a и b－два различные вектора（II）－системы I＇．Тогда угол (a, b) между a и b равен либо 90^{\prime} ，либо 120° ，либо 135° ，либо 150° ．

Действительно，поскольку $\underset{(a, a)}{2(a, b)}$ и $\frac{2(a, b)}{(b, b)}-$ цельне числа，то $4 \cos ^{2}(\widehat{a, b})=\frac{2(a, b)}{(a, a)} \cdot \frac{2(a, b)}{(b, b)}$ также целое число；стало быть， $0,1,2$ или 3. Таким образом，единственно возможные значения для $\cos (a, b)$ суть $0,-\frac{1}{2},-\sqrt{2},-\frac{\sqrt{3}}{2}$ ．

10．Отнесем каждому элементу（П）－системы I＇точку на чертеже． Спединим две точки однии，двумя или тремя отрезками，смотря по Тмму，образуюю ли соответствующие векторы угол，равный $120^{\circ}, 135^{\circ}$ ！1．11 150 ．Пару точек，соответствующих ортогональным векторам，не пия．и соединять вовсе．Построенную таким образом схему мы будем пизывать схемой углов системы l^{\prime} ．Если под каждой точкой схемы $\because \therefore$ вов выписать квадрат длины（ a, a ）соответствующего вектора a ，то ぃいічим схему，полностью определяющую систему l^{\prime}－схему системы Г．

В качестве примера построим схемы систем $\Pi\left(A_{n}\right), \Pi\left(B_{n}\right), \Pi\left(C_{n}\right)$ ， $H\left(D_{n}\right)$ ．

11. Лемма II. Схема үглов (II)-системь не может иметь вио $I_{1}-I_{2}, \quad I_{2}-I I_{4}, I I_{1}-I I_{5}$.

Допустим, что некоторая (II)-система I' имеет схемой углов одну из этих схем. Пусть a_{1}, \ldots, a_{p}-векторы системы I'. Положнм $b_{i}=\lambda_{i} a_{i}$, где $\lambda_{i} \neq 0(i=1,2, \ldots, p)$. Тогда

$$
\sum_{i=1}^{p} \sum_{k=1}^{p}\left(b_{i}, b_{k}\right)=\left(\sum_{i=1}^{p} b_{i}, \sum_{i=1}^{p} b_{i}\right)>0
$$

Мы придем к противоречию, подобрав длины b_{i} так, чтобы $\sum_{i=1}^{p} \sum_{k=1}^{p}\left(b_{i}, \boldsymbol{b}_{k}\right) \leqslant 0$. Как эго сделать, видно из схем $\mathrm{I}_{1}^{0}-\mathrm{I}_{\mathbf{q}}^{0}, \mathrm{II}_{1}^{\prime}-\mathrm{II}_{4}^{\prime}$, III ${ }_{1}^{\prime}$ - III ${ }_{5}^{\prime}$, где, кроме величин ($b_{i}, \boldsymbol{b}_{i}$), подписанных под соответствующими точками, вычислены и надписаны над соответствующими отрезками величины (b_{i}, b_{k}).

Лемма II допускает, очевидно, следующее усиление: схема углин (II)-системы не содержит подсхемы вида $I_{1}-$ II $_{5}$.
 uз cxem $1, I^{1}-\mathrm{H}^{2}, \mathrm{HI}^{2}-\mathrm{II}^{3}$:

В самом деле, схема, содержащая тройной отрезок и оттичная от схемы I, необходимо содержит подсхемой 'одну из схем $I_{1}-I_{2}$ леммы II, что невозможно. Аналогично, если схема содержит двойной отрезок, то в силу $\mathrm{II}_{1}-\mathrm{II}_{4}$ она совпадает с одной из схем $\mathrm{II}^{1}-\mathrm{II}^{2}$. Наконец, III, - IIIs $_{3}$ исключают для схемы, не содержащей ни тройных, ни двойных отрезков, все возможности, кроме $11 I^{1}$-- III ${ }^{5}$.
13. Пусть a и b-векторы (II)-системы l^{\prime}, делающие угол в 120 . Torда $\frac{2(a, b)}{(a, a)} \cdot \frac{2(a, b)}{(b, b)}=4 \cos ^{3}(a, b)=1$. В силу 8 (1) $\underset{(a, a)}{2(a, b)}=\frac{2(a, b)}{(b, b)}=-1$. Следовательно, $(a, a)=(b, b)$. Точно так же мы получим, что при $(\widehat{a}, b)=135^{\circ}(a, a)=2(b, b)$ и при $(a, b)=150^{\circ} \quad(a, a)=3(b, b) \quad$ (предполагая, что $(a, a) \leqslant(b, b))$. Из сопоставления этого замечания и леммы \{ 11 немедленно получается

Теорема III. Произвольная (П)-система либо подобна одний из систеж $\Pi\left(A_{n}\right), \Pi\left(B_{n}\right), \Pi\left(C_{n}\right), \Pi\left(D_{n}\right)$ (пn" 7 и 12), либо имеет схеной олну из схем

(множитель пропорчиональности λ - произвольнос положсительное число).
14. Нз теорем I, II, ІІІ вытекает, что если простая группа я не входит ни в одну из серий $A_{n}, B_{n}, C_{n}, D_{n}$, то система П(5) ес иростых корней имеет схемой одну из схем (I)-(5) n" 13. (Множитель λ одноэначно определен в силу $2(3)$). Сославшись на сушествовавие пяти различных простых групп, не входящих в серии $\boldsymbol{A}_{n}, \boldsymbol{B}_{i}, \boldsymbol{C}_{n}, D_{n}$, мы можем формулировать окончательную теорему:

Теорема IV. Bсе простые аруппы Ли исчерпыважтся четырьмя бесконечными сериями $A_{n}, B_{n}, C_{n}, D_{n}$ и пятью изолированныни группами © $\boldsymbol{\xi}_{1}, F_{4}, E_{9}, E_{7}, E_{8}$. Системы проствх корней изолировєниьх птти групп даются, соответственно, схемами (1)-(5) n" 13.

Лятература

. B. L. van der \mathbf{W} aerden, Die Klassifikation der einfachen Lieschen Gruppen, Math. Zeitschr., Bd. 37, 1933 (русский перевод-см. «Успехи математических наукп, вып. IV, cтр. 258-274).
Ha W in
 lineare Transformationen, mith. помецен (Поступило в редакцию $19 / \mathrm{X} 1944$ г.)

Classification of the simple Lie groups

E. Dynkin (Moscow)
(Résumé)
Following H. Weyl, the structure of a semi-simple Lie group is completely described by the system $\Sigma(\mathbb{S})$ of its root vectors. $\Sigma(\mathbb{S})$ is a finite set of vectors of an n-dimensional Euclidean space R^{n}.

We shall say that a vector from R^{n} is positive if its first coordinate not equal to zero is positive. We shall call a positive root simple, if it cannot be resolved into positive roots.

The present paper contains the following precise version of Weyl's result: a semi-simple Lie group is completely determined by the system of its simple roots. The problem of classification of simple Lie groups is thus reduced to a simple geometrical problem, namely to find in the space R^{n} all possible systems of vectors. I such that.

1. If $a \in \Gamma, b \in \Gamma$ and $a \neq b, \frac{2(a, b)}{(a, a)}$ is a non-positive integer, where (a, b) denotes the scalar product of the vectors a and b.
2. Γ is the bilineary independent system of vectors.
3. I cannot be decomposed into orthogonal subsystems Γ_{1} and Γ_{1}.

An elementary study shows that all solutions of this problem are given by the system of simple roots of the groups $A_{n}, B_{n}, C_{n}, D_{n}, G_{n}, F_{4}$ E_{6}, E_{1}, E_{0}.

THE FORMALISM OF LIE GROUPS

A. SALAM

IMPERIAL COLLEGE OF SCIENCE AND TECHNOLOGY, LONDON,
UNITED KINGDON

1. INTRODUCTION

Throughout the history of quantum theory, a battle has raged between the amateurs and professional group theorists. The amateurs have maintained that everything one needs in the theory of groups can be discovered by the light of nature provided one knows how to multiply two matrices. In support of this claim, they of course, justifiably, point to the successes of that prince of amateurs in this field, Dirac, particulatly with the spinor representations of the Lorentz group.

As an amateur myself, I strongly believe in the truth of the non-proessionalist creed. I think perhaps there is not much one has to learn in the way of methodology from the group theorists except caution. But this does not mean one should not be aware of the riches which have been amassed over the course of years particularly in that most highly developed of all mathematical disciplines - the theory of Lie groups

My lectures then are an amateur's attempt to gather some of the fascinating results for compact simple Lie groups which are likely to be of physical interest. I shall state theorems; and with a physicist's typical unconcern rarely, if ever, shall I prove these. Throughout, the emphasis will be to show the close similarity of these general groups with that most familiar of all groups, the group of rotations in three dimensions.

In 1951 I had the good fortune to listen to Prof. Racah lecture on Lie groups at Princeton. After attending these lectures I thought this is really too hard; I cannot learn this; one is hardly ever likely to need all this complicated matter. I was completely wrong. Eleven years later the wheel has gone full cycle and it is my turn to lecture on this subject. I am sure many of you will feel after these lectures that all this is too damned hard and unphysical. The only thing 1 can say is: I do very much hope and wish you do not have to learn this beautiful theory eleven years too late.

2. SOURCES

A word about the sources [1] and the scheme I wish to follow. The chief sources in this theory are the famous thesis of Cartan in which most of this subject was created Hermann Weyl and his classical text on "Classical Groups" and Racah's Princeton lectures [2]. However, I believe conceptually the most concise existing treatment of the subject is in the works of DYNKIN [3]. Dynkin's paper has a magnificent appendix which gives a review of the known results and this appendix is my major source. From the point of view of a physicist working on symmetry problems perhaps the best
A. SALAM
reference is to the review paper of BEHRENDS, LEE, FRONSDAL and DREITLEIN [4]. I have checked with Lee that apparently while these authors knew of Dynkin's work they did not have it accessible when they were writing their review. Thus their treatment of the fundamentals resembles Cartan and Racah more closely rather than Dynkin. Another excellent paper for physicists is SPEISER and TARSKI [5]. For a fuller exposition of Dynkin, reference may also be made to two Imperial College theses - those of NE'EMAN [6] and IONIDES [7].

3. DEFINITIONS

The general theory of Lie groups follows closely the pattern of the one group we are all thoroughly familiar with, the theory of the three-dimensional rotation group O_{3}. It is indeed a matter of deep regret that the elementary expositions of this familiar case do not employ the same terminology as that of the general theory. Half the conceptual difficulties of the subject would simply disappear if this had consistently been done in our undergraduate courses. To iilustrate and to anticipate notation we summarize known facts about the rotation group O_{3}. (All statements made here will be formalized later.) We know that this group is completely determined by three infinitesimal generators:

$$
\mathrm{J}^{ \pm}=1 / \sqrt{2}\left(\mathrm{~J}_{1} \pm i \mathrm{~J}_{2}\right), \mathrm{J}_{3}
$$

and their commutation relations:

$$
\left[\mathrm{J}^{+}, \mathrm{J}_{3}\right]=\mathrm{J}^{+},\left[\mathrm{J}^{-}, \mathrm{J}_{3}\right]=-\mathrm{J}^{-},\left[\mathrm{J}^{+}, \mathrm{J}^{*}\right]=\mathrm{J}_{3} .
$$

The commutation relations tell us that
(i) The number of operators (out of these three) which can be diagonalized is one (J_{3}). Call this number the "rank" of the group. Thus the rank of $\mathrm{O}_{3}=1$.
(ii) Call the eigenvalues of J_{3} (i.e. the magnetic quantum numbers) by the name "weights". The highest eigenvalues j of J_{3} uniquely labels a representation. We shall call this "the highest weight"
(iii) The commutation relations tell us (from $\left[J^{t}, J_{3}\right]= \pm J_{3}$) that, irrespective of what the weights are, the difference of two consecutive weights is ± 1. These numbers ± 1 which are characteristic of the commutation relations of the group and not of any particular representation are called "roots". In the subsequent general study of Lie groups these three concepts, "rank" of the group, "roots" of the group and "weights" (and particularly the highest weight will be generalized and will play crucial roles.
(iv) Another way of labelling the representations of O_{3} is to use the operator J^{2}. This operator commutes with all other operators and thus for a given representation equals a constant multiple of unity. If j is the highest weight, $\underline{J}^{2}=\mathrm{j}(\mathrm{j}+1) \underline{1}$. This operator is called the "Casimir operator". We shall find that the concept of a general "Casimir operator" is not as highly developed, and for this reason we shall treat this concept at an early stage (section 5) and then not mention it at all later.

4. MATHEMATICAL PRELIMINARIES

4.1. A group G is a set of elements a, b.... with a composition law (multiplication) such that the following conditions are fulfilled:
(i) if a and b are elements of the set, then also the product $c=a b b e$ longs to the set,
(ii) the composition is associative: $a(b c)=(a b) c$,
(iii) the set contains a unit element e such that $a e=e a=a$,
(iv) to any element a of the set, there exists one and only one element a^{-1} of the set such that $a^{-1} a=a a^{-1}=e$.

The definition of a group does not imply that the two elements ab and ba are equal; i.e., the composition is not necessarily commutative. A group in which all elements commute is called abelian.

A sub-group H of a group G is a sub-set of elements of G, which again fulfils the group postulates. G and the group consisting of the unit element, e, are called trivial sub-groups of G. A sub-group N is called an invariant sub-group of G if for any element n of $N(n \in N), s n s^{-1}$ is again an element of N where s is any element of $G(s \in G)$.

A group is called simple if it contains no non-trivial invariant sub-groups, except possibly discrete ones.

A group is called semi-simple if it contains no non-trivial invariant abelian sub-groups, except possibly discrete ones.
4.2. A representation of a group G is a mapping of the group into a set of linear transformations D of a vector space R such that
if

$$
\begin{aligned}
& a b=c \\
& D(a) D(b)=D(c), \\
& D\left(a^{-1}\right)=D^{-1}(a), \\
& D(e)=I,
\end{aligned}
$$

where I is the unit operator.
A representation is reducible if it leaves a sub-space of R invariant. Then every transformation matrix can be brought into form:

$$
\left[\begin{array}{ll}
A & B \\
0 & D
\end{array}\right]
$$

A representation is fully reducible if every transformation matrix can be written as

4.3. A Lie group is a group whose elements form an analytic manifold in such a way that the composition $a b=c$ is an analytic mapping of the manifold $G \times G$ into G and the inverse $a \rightarrow a^{-1}$ is an analyiic mapping of G into G. A Lie group can thus be viewed from an algebraic, topological or analytical

A. SALAM

point of view. The topological concepts of importance are connectedness, compactness and invariant integral on the group (see SPElSER and TARKSI [5]).

A group G is compact if every infinite sequence in G has a limit point in 3 . For a compact group one can define a finite total volume which is invariant under the group.

For example, the group of rotation in three dimensions O_{3} without reflections is a connected and compact group. The proper Lorentz group is connected but not compact and the improper Lorentz group is neither connected nor compact.

The study of simple groups is important because every semi-simple connected group is essentially a direct product of simple groups, and any connected compact Lie group ls essentially a product of a semi-simple and a one-parameter (abelian) cominct group.

$$
\text { Ex. } \mathrm{O}_{4} \approx \mathrm{O}_{3} \times \mathrm{O}_{3} ; \quad O_{3} \text { simple; } \quad \mathrm{O}_{4} \text { semi-simple }
$$

The symbol \approx means locally isomorphic. From now on we consider only simple compact Lie groups.

5. SIMPLE COMPAC' LIE GROUPS

So far as a physicist is concerned, a Lie group is a group of transformation of variables which depend analytically on a finite set of parameters. The fundamental idea of Lie was to consider not the whole group but that part of it which lies close to the identity consisting of the so-called infinitesireal transformations. To formalize this, we have Theorem I.

Theorem 1

Every representation of a compact Lie group is equivalent to a unitary representation and is fully reducible (RACAH, WEYL [2]). Thus, since the matrices $\mathrm{D}(\mathrm{g})$ can be taken as unitary, they can be put into the form:

$$
D=\exp \left(i \epsilon^{\alpha} X_{\alpha}\right)
$$

where X_{α} are constant hermitian matrices ($X_{\alpha}^{+}=X_{\alpha}$), which are called infinitesimal generators of the group. $\epsilon^{\alpha}(\alpha=1,2 \ldots, N)$ are N real parameters on which the set of transformations D depend.

The group is called unimodular if for any $D(S), \operatorname{det}[D(s)]=1$.
Then $\operatorname{tr} X=0$.
Theorem 2
Fundamental Theorem of Lie
The local structure of a Lie group is completely specified by the commutation relations between the operators X_{α} :

$$
\begin{equation*}
\left[\mathrm{X}_{\alpha}, \mathrm{X}_{\beta}\right]=\mathrm{C}_{\alpha 8}^{\gamma} \mathrm{X}_{\gamma} ; \alpha, \beta, \gamma=1,2 \ldots, \mathrm{~N} \tag{5.1}
\end{equation*}
$$

where the coefficients $C_{\alpha B}^{\gamma}$ which are independent of the representations of

THE FORMALISM OF LIE GROUPS

the group are numbers (called the structure constants of the group). These numbers satisfy two requirements
(a) antisymmetry in the two lower indices

$$
C_{\alpha \beta}^{\gamma}=-\dot{C}_{\beta \alpha}^{\gamma},
$$

(b)

$$
C_{\alpha B}^{\delta} C_{\delta \gamma}^{\epsilon}+C_{\gamma \alpha}^{\delta} C_{\delta \beta}^{\epsilon}+C_{\beta \gamma}^{\delta} C_{\delta \alpha}^{\epsilon}=0 .
$$

Note that conditions (a) and (b) are equivalent to the antisymmetry of the Commutator bracket $\left[\mathrm{X}_{\alpha^{\prime}} \mathrm{X}_{\mathrm{B}}\right.$] and the Jacobi identity:

$$
\left[\left[\mathrm{X}_{\alpha}, \mathrm{X}_{\mathrm{B}}\right], \mathrm{X}_{\gamma}\right]+\left[\left[\mathrm{X}_{\gamma}, \mathrm{X}_{\alpha}\right], \mathrm{X}_{\mathrm{g}}\right]+\left[\left[\mathrm{X}_{8}, \mathrm{X}_{\gamma}\right], \mathrm{X}_{\alpha}\right]=0
$$

Rewrite (b) in the form:

$$
\left(C_{\alpha}\right)_{\delta}^{\epsilon}\left(C_{\beta}\right)_{\gamma}^{\delta}-\left(C_{\beta}\right)_{\delta}^{\varepsilon}\left(C_{\alpha}\right)_{\gamma}^{\delta}=C_{\alpha \beta}^{\delta}\left(C_{\delta}\right)_{\gamma}^{\epsilon}
$$

Thus, we have shown the following:
Theorem 3
The N matrices C_{α} with matrix elements $\left(C_{\alpha}\right)_{\gamma}^{\kappa}$ form the so-called regular or adjoint represeatation of the Lie algebra*.

The problem of classification of Lie groups is the probiem of finding the numbers c^{\prime} s which satisfy (a) and (b) and then of finding N constant matrices which satisfy the fundamental commutation relation of Theorem 1. This problem was completely solved by Cartan in 1913. Before however we state Cartan's results, we first wish to recast the fundamenal commutation relation (5.1) in a "canonical" form and also get over a number of auxiliary results connected with Casimir operators.

6. CASJMIR OPERATORS

From the structure constants we can define a meiric tensor:

$$
g_{\mu u}=C_{\mu c}^{\beta} C_{v a}^{\alpha}
$$

Theorem 4
The necessary and sufficient condition for a lie group to be seme simat ple is that

* The set of N matrices X_{α} span a linea: vector space oves the fieid of compiex numbers and defint a ie Algebra; the sum of two matrices is an element of the aigejra and so is their commutao:, Lie aigebras nd Lie groups possess a one-one correspondencen anditis pussible to ge ireely from tie yroup; to tip agebraThe study of Lie algebras (first introduced by weyl) te in eftect the study of the inimitesimal ajpect of tis group theory. Even though it is galling to bring in a be, concent fof a ite algebsa) ar his stage, the dpparently improves the mathematicai rigour of the statemenis made in these lectures!

THE FORMALISM OF LIE GROUPS

we rewrite (7.1) as

$$
\begin{align*}
& {\left[\mathrm{J}_{ \pm}, \mathrm{J}_{3}\right]= \pm \mathrm{J}_{t}} \\
& {\left[\mathrm{~J}_{+}, \mathrm{J}_{-}\right]=\mathrm{J}_{3}} \tag{7.2}
\end{align*}
$$

There are two virtues of this canonical form:
(1) If J_{3} is diagonalized $\left(J_{3} \mid m\right)=m \mid m$), we infer from (7.2) that the operators J_{+}act as "creation" and "annihilation" operators.
(2) (7.2) shows that the consecutive eigenvalues m of J_{3} differ by ± 1. Our first task is to cast the commutation relations (5.1) in the "canonical form".

Assume that among the N generators, there are ℓ which mutually commute and can thus be simultaneously diagonalized. This number ℓ is called the rank, and we shall designate these ℓ (hermitian) operators as $\mathrm{H}_{1}, \mathrm{H}_{2} \ldots$ $\ldots \mathrm{H}_{\ell}$. (For $\mathrm{O}_{3}, \ell=1$). These operators have a direct physical meaning since their eigenvalues for any representation provide us the quantum numbers.

Let us consider $\mathrm{H}_{1}, \mathrm{H}_{2} \ldots . \mathrm{H}_{\ell}$ as the components of an ℓ-dimensional operator-valued vector \underline{H}. The components of \underline{H} clearly satisfy the commutation relations:

$$
\left[H_{i}, H_{j}\right]=0 \quad \text { for } i, j=1,2, \ldots \ldots, x
$$

If the dimension of the algebra is N (i.e. the number of parameters of the corresponding group is N), we still need ($N-\ell$) elements to complete a basis of the algebra. A suitable choice of these is provided by the following:

Theorem 7
There exists a basis of the Lie algebra consisting of the elements H_{1}, $\mathrm{H}_{2} \ldots, \mathrm{H}_{\ell} ; \mathrm{E}_{ \pm 1}, \mathrm{E}_{42} \ldots \mathrm{E}_{ \pm(\mathbb{N}-\ell) / 2}$ such that the following commutation relations hold:

$$
\begin{align*}
& {\left[\underline{H}, E_{\alpha}\right]=\underline{r}(\alpha) E_{\alpha},} \tag{7,3}\\
& {\left[E_{\alpha}, E_{\alpha}\right]=\underline{r}(\alpha) \underline{H},} \tag{7,4}
\end{align*}
$$

with $\alpha, \beta= \pm 1, \pm 2, \ldots \pm(N-\ell) / 2$. E's are non-hermitian matrices and $\underline{r}(\alpha)$ are real vectors in an ℓ-dimensional space. The r's are called ronts of the algebra; they have the property that

$$
\begin{equation*}
\underline{r}(\alpha)=-\underline{r}(-\alpha) . \tag{7.6}
\end{equation*}
$$

Clearly the total number of the roots is ($N-i$).
The scalar product appearing in (7.4) is the usual Euclidean scalar product provided the H's are chosen in such a way that the following normalization conditions hold:

$$
\begin{equation*}
\sum_{\alpha} r_{i}(\alpha) r_{j}(\alpha)=R \delta_{i j} ; i j=1,2 \ldots 2, \tag{7.7}
\end{equation*}
$$

A. SALAM

with an arbitrary scale constant. Finally, $N_{\alpha \beta}$ are real numbers which are different from zero if and only if $\underline{r}(\alpha)+\underline{r}(\beta)$ is also a root.

The roots, being essentially our old friends the structure constants, specify completely the group (at least in the local sense). They possess a twin role in the theory. First, as may be inferred from (7.3), the roots are the differences of the eigenvalues of H. Second and more important for our present purposes, the roots allow us to classify Lie groups. In terms of the roots we can state Cartan's solution of the problem of finding all simple Lie groups. The crucial theorem here is Theorem 8 which lists further properties of the roots and in terms of these gives a complete classification of Lie groups.

8. CLASSIFICATION OF LIE GROUPS

A root is said to be positive if its first non-vanishing component (in an arbitrary basis) is positive. f rot is called simple if it is a positive root and in addition it cannot be decomposed into the sum of two positive roots.

Theorem 8

(i) For a simple grour 8^{+}rank ℓ there exist ℓ simple roots and they are all linearly independent. We shall call the set of simple roots the π-system.)
(ii) Every positive non-simple root can be expressed as a linear combination $\underset{I(\alpha) \in \pi}{\sum_{\alpha}} \mathrm{R}_{\alpha} \underline{r}(\alpha)$ where R_{α} are non-negative integers.
(iii) If $\mathrm{r}(\alpha)$ and \underline{r} (β ! are two simple roots, the angle $\theta_{\alpha \beta}$ between these can take only the following values:

$$
90^{\circ} \quad 120^{\circ} \quad 135^{\circ} \quad \text { and } \quad 150^{\circ}
$$

so that $2 \underline{r}(\alpha) \cdot \underline{r}(i) / \underline{r}(\sigma) \cdot \underline{r}(\alpha)$ and $2 \underline{r}(\alpha) \cdot \underline{r}(\beta) / \underline{r}(\beta) \cdot \underline{r}(\beta)$ are both integers.
(iv) For evary simple group, all the simple roots either have the same length or their lemgh ratios assume simple values. More explicitly one has

$$
\begin{array}{rlll}
1 & \text { if } & \theta_{\alpha \beta}=120^{\circ} \\
\frac{\left.\mathrm{r}(\alpha)\right|^{2}}{|\mathrm{r}(\beta)|^{2}}= & 2 & \text { if } & \theta_{\alpha \beta}=135^{\circ} \\
3 & \text { if } & \theta_{\alpha B}=150^{\circ} .
\end{array}
$$

If $\theta_{\alpha B}=90^{\circ}$, the ratio of lengths is undetermined.

Dynkin diagrams

As we shall see in a moment, the geometrical properties of the simple roots in the π-system characterize in a unique manner the corresponding Lie groups. Therefore it is most convenient to incorporate them in a schematic diagram. These diagrams (the so-called Schouten-Dynkin diagrams) are drawn in Fig. !

From Theoren: 3. the lengths of the simple roots of a given simple Lie group can assume at most two different values. This fact together with the

THE FORMALISM OF LIE GROUPS

Cartan solution of all possible single ide groups.
properties about the angles enumerated above can be symbolically described by associating with each simple root a small circle. For the roots of greatest length the circle is marked in black. If the angle between two consecutive simple roots is equal to $120^{\circ}, 135^{\circ}$ or 150°, the corresponding circles are joined by simple, double or triple lines respectively. If the angle is 90°, the circles are not joined. For a group of rank ℓ there are ℓ simple roots and therefore ℓ circles (black or white).

In terms of these diagrams we give now the Cartan solution of all possible simple Lie groups. Broadly these fall into two categories: the socalled "classical groups" and the five "exceptional groups"

To anticipate we shall find that the classical Lie groups are some of the well known objects:
A_{f} is the group of unitary unimodular matrices in complex space of $(\ell+1)$ dimensions $\left(\mathrm{SU}_{\mathrm{p}+1}\right)$.
B_{i} and D_{f} are groups of orthogonal transformations (rotations) in real spaces of $2 \ell+1$ and 2ℓ dimensions respectively $\left(O_{2 \ell-1}\right.$ and O_{2})
C_{p} is the group of unitary matrices $[$ in complex suace of 2 , dimensions which fulfil the condition $U^{T} J U=J$ where J is a non singular antisymmetric matrix (the symplectic group)*.

[^14]
A. SALAM

To take simple examples of root structures:
For ${ }_{\lambda}=1$ (i. e. group O_{3}) there is just one simple root +1 . The space spanned by simple roots (the π-space) is $\{1\}$. For $i=2$, the space is a plane the relevant groups being

$\mathrm{A}_{2}:$	Two simple roots of equal length, and the angle between them is 120°.
$\mathrm{B}_{2}:$	Two simple roots. Their length ratio is 2. $\mathrm{C}_{2}:$
$\mathrm{G}_{2}:$	The arate between them is 135°.

$D_{2}: \quad o_{1} \quad$ is semi-simple, $D_{2} * A_{1} \times A_{1}$

Summarizing this section then, from the Dynkin diagrams we read off immediately the rank ℓ of the group, the lengths of the simple roots and their mutual angles (and of course the dimensionality of the Euclidean space ((x) spanned by these ℓ independent vectors $)^{*}, \neq *$. The simple roots $\underline{r}(1)$, $r(2), \ldots . r(\ell)$, are given by the following formulae:

* It is pertaps worthwhile to make the reminder at this tage that not all roots are simple. In fact the toral number of rooss is $(\mathbb{N}-\mathrm{f})$, the distinct ones being $(\mathbb{N}-1) / 2$ in virtue of $[(\alpha)=-I(-\alpha), \alpha=1,2, \ldots,(N-1) 2$ The remaining ($\mathrm{N}-3 \mathrm{p}$)/2 distinct non-simple roots can easily be constructed, and in Footnote ${ }^{*}+\mathrm{we}$ give a rumpiete ansatz for drawing a complete root diagram (for $\ell=2$ for example in a plane; for $\ell=3$ in $\{3\}$ pace and so on). Personally, I consider these diagrams pointless. However, to satisfy current prejudice the roor diagrams for A_{2}, B_{2} and G_{2} are reproduced in Fig. 2.

A_{2}
$\mathrm{N}=8$

B_{2}
$=10$
Fig. 2
Root diagrams for A_{2}, B_{2} and G_{2}
** The following scheme incorporates all the requirements about angles and lenght of simples foots specified by the diagrams.

For A_{ℓ} define the following vectors:

$$
\lambda_{1}, \lambda_{2}, \ldots \lambda_{\ell+!}
$$

by the conditions

$$
\begin{aligned}
& \underline{\lambda}_{1}+\lambda_{2}+\ldots .+\lambda_{\ell+1}=0 \\
& \underline{\lambda}_{1}^{2}=\underline{\lambda}_{2}^{2}=\ldots .=\underline{\lambda}_{t+1}^{2}=\ell_{A} \\
& \underline{\lambda}_{p} \cdot \underline{\lambda}_{q}=-A, \quad p \neq q=1,2, \ldots .!\ell+1 .
\end{aligned}
$$

THE FORMALISM OF LE GROUPS

$$
\begin{align*}
& \underline{r}(\ell)=\underline{\lambda}_{\ell}-\underline{\lambda}_{\ell+1} \\
& \underline{r}(\ell-1)=\underline{\lambda}_{\ell-1}-\underline{\lambda}_{\ell} \tag{8.1}\\
& \vdots \\
& \underline{r}(1)=\lambda_{1}-\lambda_{2} \\
& O-O-O-O-O
\end{align*}
$$

For B_{ℓ} : the simple root structure is as follows:

$$
\begin{align*}
& \underline{r}(\ell)=\underline{\lambda}_{\ell}, \text { (This is the smallest root) } \\
& \underline{r}(\ell-1)=\underline{\lambda}_{\ell-1}-\underline{\lambda}_{\ell}, \tag{8.2}\\
& \underline{r}(1)=\underline{\lambda}_{1}-\underline{\lambda}_{2},
\end{align*}
$$

where

$$
\begin{align*}
& \frac{\lambda}{1}_{2}^{=} \underline{\lambda}_{2}^{2}=\ldots \ldots \underline{\lambda}_{1}^{2}=A \\
& \underline{\lambda}_{p} \underline{\lambda}_{q}=0, p \neq q \tag{8,3}\\
& =0-0-0
\end{align*}
$$

For C_{ℓ} : the simple roots are given by:

where the λ 's satisfy (8.3).

For D_{ℓ} : the simple roots are given by:

$$
\begin{align*}
& \underline{r}(\ell)=\underline{\lambda}_{f-1}+\underline{\lambda}_{p} . \\
& \underline{r}(\ell-1)=\underline{\lambda}_{e-1}-\underline{\lambda}_{e} \tag{8.5}\\
& \underline{r}(1)=\underline{\lambda}_{2}-\underline{\lambda}_{2} \\
& {\underset{0}{1}}_{\substack{1-2}}^{1-2}
\end{align*}
$$

The λ^{\prime} 's satisfy (8, 3). So much for simple roots. All roots are given for the classical groups by the following expressions:
$A_{p}:\left(\underline{-}_{p}-\underline{\lambda}_{q}\right) ; p, q=1,2, \ldots \ldots, \ell+1$

A．SALAM

The \pm signs are to be taken in arbitrary combinations．

Similar expressions can be given for the exceptional groups．Also one can give a full correspondence between the＂canonical＂expressions for the commutation relations and the more familiar manner in which one writes the commutation relations for the orthogonal，symplectic groups，etc．

Thus，for the orthogonal group in $(2 L+1)$ dimensions which leaves in－ variant the quadratic form

$$
\sum_{p=-2}^{\ell} X^{p} X^{-p}
$$

one may write the infinitesimal operators：

$$
X_{p q}=-X_{q p}=X^{p} \frac{\delta}{\delta X^{-q}}-X^{q} \frac{\delta}{\delta X^{-\phi}}
$$

with the commutation relations：

$$
\left[\mathrm{X}_{\mathrm{ik}}, \mathrm{X}_{\mathrm{mn}}\right]=\delta_{\mathrm{k}+\mathrm{m}} \mathrm{X}_{\mathrm{in}}-\delta_{\mathrm{k}+\mathrm{n}}-\mathrm{X}_{\mathrm{im}}-\delta_{\mathrm{i}+\mathrm{m}} \mathrm{X}_{\mathrm{kn}}-\delta_{\mathrm{l}+\mathrm{n}} \mathrm{X}_{\mathrm{km}}
$$

where $\delta q=1$ if $q=0$ and zero otherwise．These operators correspond to the $E^{\prime} s$ and the H＇s of B_{q} if we make the following identifications：

$$
X_{p-p} \equiv H_{p}, X_{ \pm p \pm q} \equiv E_{ \pm \lambda p \pm \lambda q^{\prime}} X_{0 \pm p}=E_{ \pm \lambda p} ; p, q>0 .
$$

Similar correspondence can be stated for $A_{\ell}, C_{\ell}, D_{\ell}$ etc．（Racah＇s notes）．

9．REPRESENTATIONS OF LIE GROUPS：WEIGHTS

9．1．Now we come to physically the most important problem of all－the problem of finding representations of the group，i．e．the matrices corre－ sponding to H and $\mathrm{E}_{\alpha^{*}}$

Consider a representation of dimension（or degree）d．Since H_{1}, H_{2}, ．． \ldots, H_{1} are hermitian matrices，and since they commute with each other，we can simultaneously diagonalize these．Let $|\mathrm{m}\rangle$ be a simultaneous eigenket：

$$
\begin{equation*}
\underset{\sim}{H}|m\rangle=\underline{m}|m\rangle . \tag{9.1}
\end{equation*}
$$

Since $H^{t} s$ are $d \times d$ matrices，the total number of such eigenkets $|m\rangle$ is d ． The $\underline{m}^{\prime} s$ in Eq．（9．1）are real numbers and are called＂weights＂．They form ℓ－dimensional vectors in a Euclidean space for whose basis one may take the r－space of the group（the space spanned by the ℓ simple roots）． Summarizing，for the case of a group of rank ℓ and for a given representa－ tion of dimensionality d ，there are

THE FORMALISM OF LIE GROUPS

$\ell \quad$ ：simple root vectors
（N－3り／2 ：distinct non－simple root vectors
d ：weight vectors（provided we count each weight vector as many times as its multiplicity indi－ cates，the multiplicity being defined as the number of independent eigenkets $|\mathrm{m}\rangle$ corre－ sponding to a given weight m ）．

Note that root vectors are characteristic of the group．They are really the structure constants．The weight vectors on the other hand are characteristic of the representation．There are only llinearly independent roots（simple roots）．There are also only ℓ linearly independent weight vectors．The sim－ plest（oblique axis）basis for the weight vectors is that provided by the sim－ ple root vectors．

All this intertwining of weights and roots is exciting enough，but still further and the more exciting result comes when we look for the analogue of the result in O_{3} that all weights are either integers or half－integers．The analogous result is Theorem 9，which gives the＂component＂of any weight－ vector along a simple root－vector．

Theorem 9

For every weight \underline{m} ，the number $\underline{m} \cdot \underline{r}(\alpha) / \underline{r}(\alpha) \cdot \underline{r}(\alpha)$ ，where $\underline{r}(\alpha) e \pi$ ，is an integer or a half－integer，$\geqslant 0$ ．

Theorem 9 provides the justification for Dynkin＇s insistence on simple roots as the primary entities on which all conceptual emphasis should be placed．Dynkin cares neither for the non－simple roots nor for the weight vectors．Given the simple roots．Theorem 9 tells us what the weights look like through the simplest possible generalization of the familiar results for the（3）rotation group＊．In this insistence on simple roots possibly lies the superiority of Dynkin＇s presentation of Lie group theory．

10．IRREDUCIBLE REPRESENTATIONS AND THEIR DIMENSIONALITY

Definition：A weight \underline{m} is said to be higher than \underline{m}^{\prime} if $\underline{m}-\underline{m}^{\prime}$ has a posi－ tive number for its first \bar{n} on－vanishing component in $\overline{\mathrm{n}}$ arbitrary basis．The weight $\underline{\Lambda}$ which is higher than all the others is called the highest（or greatest） weight，

Theorem 10

A representation is uniquely characterized by its highest weight A ，and the highest weight always has multiplicity one．
＊Earlier it was mentioned that roors are differences of weights．The formal result is：if \mid 加少 is an eigenket of $\underset{\sim}{H}$ corresponding to weight $\underline{m}, E_{\alpha} \mid$ II $)$ is alse an cigeniket with weight $\underline{m}{ }^{+}(\alpha)$ ．The retult fol－ lows from

$$
\left[E_{\alpha}, \underline{H}\right]=\underline{r}(\alpha) E_{\alpha}
$$

Note the role of E_{α} as a creation operator．

Theorem 11
In order that a vector Δ be the highest weight of some irreducible representation, it is necessary and sufficient that j_{α}, definedas $j_{\alpha}=\underline{\Lambda} \cdot \underline{r}(\alpha) \underline{r}(\alpha) \cdot r(\alpha)$, is a non-negative integer or half-integer.

Thus to get the irreducible representations of any Lie group, we should mark each circle in the Dynkin diagram with a non-negative integer or halfinteger j_{α} These numbers characterize uniquely the irreducible represen tion with Λ as its highest weight, the "components $-\underline{r}(\alpha) / \underline{r}(\alpha) \cdot \underline{r}(\alpha)$ of Λ being just ($j_{1}, j_{2}, \ldots .$.). The dimensionality of this representation is given by the following theorem of Weyl:

Weyl's Theorem: Theorem 12
Let Σ_{+}be the system of all positive roots of a semi-simple Lie algebra, and let an irreducible representation be uniquely characterized by the highest weight Λ. Then its dimensionality d is given by the formula:

$$
\mathrm{d}=\prod_{\underline{\mathrm{r}}(\alpha) \in \Sigma_{+}}[1+\underline{\Delta} \underline{r}(\alpha)] / \underline{g} \cdot \underline{r}(\alpha),
$$

where

$$
\underline{g}=\frac{1}{2} \underset{\underline{r}(\beta) \in \Sigma_{+}}{\sum} \underline{r}(\beta)
$$

If one writes the vectors $\underline{\Lambda}$ and \underline{g} in terms of the auxiliary quantities λ 's previously introduced in the third footnote of section 8 ,

$$
\begin{aligned}
& \underline{\Lambda}=\Sigma \mathrm{f}_{\mathrm{i}} \underline{\lambda}_{\mathrm{i}} \\
& \underline{\mathrm{~g}}=\Sigma_{\mathrm{g}} \underline{\lambda}_{\mathrm{i}}
\end{aligned}
$$

The Weyl formula above gives the explicit expressions listed in Table I. As examples consider some of the interesting physical cases, namely, the case of rank $\ell=2$. In this case the number of commuting matrices in the algebra is two, and we can associate them, for example, with the third omponent of the isotopic spin and the hypercharge. The only simple compact Lie groups of rank 2 are A_{2}, B_{2}, C_{2} and G_{2}. Any irreducible representation of these groups can be labelled by means of two non-negative integers j_{1}. The formulae for the dimensionality given in Table I can be written
explicitly in a simple way and is shown in Table II. . j_{1}, j_{2} one gets the For instance, for the simplest choices of the arrays $\mathrm{j}_{1}, \mathrm{j}_{2}$ one gets the
following dimensions:
$A_{2}: d(0,0)=1$
$d(1,0)=3$
$d\left(0, \frac{1}{2}\right)=3$
$d(1,0)=6$
$d\left(\frac{1}{2}, \frac{1}{2}\right)=8$
$B_{2}\left(\approx C_{2} \approx O_{5}\right)$
$d(0,0)=1$
$G_{2}: d(0,0)=1$
$d\left(\frac{1}{2}, 0\right)=4$
$d\left(\frac{1}{2}, 0\right)=7$
$d\left(0, \frac{1}{2}\right)=5$
$\mathrm{d}\left(0, \frac{1}{2}\right)=14$
$d(1,0)=10$
$d(1,0)=27$
$d\left(1, \frac{1}{2}\right)=15$
$d(0,1)=14$
$d(1,1)=27$
$d\left(\frac{1}{2}, \frac{1}{2}\right)=16$

		=	=	*
			*	
	$\begin{array}{r} \approx 9 \\ \vdots \\ =0 \\ =0 \\ =0 \end{array}$	$\begin{aligned} & 0= \\ & i \\ & i \\ & i= \\ & i \\ & i \end{aligned}$		$\begin{gathered} 9= \\ 9= \\ =- \end{gathered}$
	$\begin{aligned} & \text { ָ } \\ & + \\ & \approx \end{aligned}$	$\stackrel{+}{+}$	$\begin{gathered} + \\ \stackrel{I}{\circ} \end{gathered}$	$\begin{gathered} \text { IN } \\ \text { N } \end{gathered}$
a 0 0 0	<	-	-	-

A. SALAM

TABLE II

Group	Number of parameters N	Dimension of the irt. rep.
A_{2}	8	$\mathrm{t}\left(\mathrm{J}_{1}\right)\left(\mathrm{J}_{2}\right)\left[\mathrm{J}_{1}+\mathrm{J}_{2}\right]$ B_{2} C_{2} G_{2}

$\left\{\right.$ Note: Here $\mathrm{J}_{1}=\left(2 \mathrm{j}_{1}+1\right)$ and $\left.\mathrm{J}_{2}=\left(2 \mathrm{j}_{2}+1\right)\right\}$

These numbers $d\left(j_{\mu} j_{2}\right) *$ represent the number of particles which can be accomodated in any given multiplet in physical applications.

The adjoirt (or regular) representation R plays a very important role in vector meson theories. For the case of $\ell=2$, these representations are the following:

$$
\begin{array}{lll}
A_{2}: & d_{R}=d\left(\frac{1}{2}, \frac{1}{2}\right)=8, \\
B_{2}\left(C_{2}\right): & d_{R}=d(1,0)=10, \\
G_{2}: & : & d_{R}=d\left(0, \frac{1}{2}\right)=14 .
\end{array}
$$

These groups, therefore, can accommodate 8, 10 and 14 vector gauge mesons respectively if these mesons correspond to the adjoint representation.

11. COMPUTATION OF ALL WEIGHTS OF A GrVEN IRREDUCIble REPRESENTATION

Notwithstanding the fact that the greatest weight uniquely characterizes an irreducible representation, it is important for physical applications to be able to compute all the weights of an irreducible representation. Later we shall construct weight diagrams for some irreducible representation of low dimensionality for the case of rank 2 groups ($\mathrm{A}_{2}, \mathrm{~B}_{2}, \mathrm{C}_{2}, \mathrm{G}_{2}$). In contrast to the root diagrams, the weight diagrams are directly of physical interest.

An explicit method to calculate all the weights in terns of the highest weight and the simple roots is given by the next theorem. We have learnt earlier that the roots equal differences of weights.

[^15]
THE FORMALISM OF LIE GROUPS

Let Λ and W be the highest weight and the set of all weights respectively of a given irreducible representation.

An element $\underline{m} \in W$ is said to belong to the layer $\Delta^{(k)}$ if it can be obtained by subtracting K simple roots from $\underline{\Lambda}$. Clearly $\Delta^{(0)}$ consists only of $\underline{\Lambda}$, and

$$
W=\Delta^{(0)} \cup \Delta^{(1)} \cup \Delta^{(2)} \ldots .
$$

Note that all the layers are disjointed.
Theorem 13
Every element $\mathrm{m}^{(k)} e \Delta^{(k)}$ can be expressed as

$$
\underline{m}^{(k)}=\underline{m}^{(k-1)}-\underline{r}(\alpha),
$$

where

$$
\underline{\mathrm{m}}^{(k-1)} \in \Delta^{(k-1)}
$$

and

$$
\underline{r}(\alpha) \in \pi
$$

However, if $\frac{n^{(k-1)}}{(n-1)}$ belongs to $\Delta^{(k+1)}$ and $\underline{r}(\alpha)$ is an arbitrary simple root, the difference $\underline{m}^{(\mathrm{k}-1)}$ - $\underline{r}(\alpha) e \Delta(\mathrm{k})$ if and only if the following condition is satisfied:

$$
2 \underline{m}^{(k-1)} \cdot \underline{r}(\alpha) / \underline{r}(\alpha) \cdot \underline{r}(\alpha)+Q>0,
$$

where the number Q is defined by the requirements:

$$
\begin{aligned}
& m^{(k-1)}+q \underline{r}(\alpha) \in W \text { for } q \leqslant Q \\
& m^{(k-1)}+q \underline{r}(\alpha) \quad \bar{e} W \text { for } q=Q+1
\end{aligned}
$$

Example:
Perhaps the best way to show that the theorem is actually quite harmless and simple in practice is to construct the weights for a specific case. Consider the group $\mathrm{A}_{2} \approx \mathrm{SU}_{3}$ for which $\ell=2$. The Dynkin diagram is $0-0$. The π-space is two-dimensional; and if we call the roots α and β, the diagram tells us that their lengths are equal $\left(|\alpha|^{2}=|\beta|^{2}\right)$ and the angle between them is 120° so that

$$
\underline{\alpha} \cdot \underline{\beta} / \underline{\alpha} \cdot \underline{\alpha}=-\frac{1}{2}
$$

Consider now the regular representation $\left(\frac{1}{2}, \frac{1}{2}\right)$. The dimensionality in this case is $d=8$, so that the representation could accommodate 8 particles. The "components" of the highest weight $\underline{\Lambda}$ (ie) $)_{\alpha}, j_{B}$ are given by

$$
\begin{align*}
& \mathrm{j}_{\alpha}=\underline{\Lambda} \cdot \underline{\alpha} / \underline{\alpha} \cdot \underline{\alpha}=\frac{i}{2}, \tag{11.1}\\
& \mathrm{j}_{\beta}=\underline{\Lambda} \cdot \underline{\beta} / \underline{\beta} \cdot \underline{\beta}=\frac{1}{2} . \tag{11.2}
\end{align*}
$$

A. SALAM

Noticing that α and $\underline{\beta}$ do not form an orthogonal basis, we find from (11.1) and (11.2) that

$$
\underline{\Delta}=\underline{\alpha}+\underline{\beta} .
$$

Now tising Theorem: $: 3$, if we are given an arbitrary weight M and we winh ti knuw whether \underline{M} - $\underline{\alpha}$ is a possible weight or not, we proceed as folbws:

Write the suries $\underline{M}, \underline{M}+\underline{\alpha}, \underline{M}+2 \underline{\alpha}, \ldots \underline{M}+(Q+1) \underline{\alpha}$ where Q is an \therefore riruer. The series terminates for a $\bar{Q} \overline{d e f i n e d}$ by the requirement that while $\because, N+\alpha, \ldots M+Q \underline{Q}$ are weights, $\underline{M}+1) \underline{\alpha}$ is not a weight. Now compute the number,

$$
Q+M_{a} \text { where } M_{\alpha}=2 \underline{M} \cdot \underline{\alpha} / \underline{\alpha} \cdot \underline{\alpha}
$$

If $M_{\alpha}+Q>0$, then $\underline{M}-\underline{\alpha}$ is a weight; otherwise it is not. In starting this procedure the crucial point to remember is that $\underline{\Lambda}+\underline{\alpha}$ where $\underline{\alpha}$ is a simple root is never a possible weight.

Consider now the case when $\underline{M}=\underline{\Lambda}$. Since $\underline{\Lambda}+\underline{\alpha}$ is not a weight, $Q=0$. Since

$$
\begin{equation*}
\Lambda_{\alpha}=\underline{\Lambda} \cdot \underline{\alpha} / \underline{\alpha} \cdot \underline{\alpha}=j_{\alpha}>0 \tag{11.3}
\end{equation*}
$$

we see from (11.3) that $\underline{\Lambda}-\underline{\alpha}$ is indeed a weight. Likewise, since $j_{B}>0$, $\underline{\underline{\Lambda}} \underline{\beta}$ is also a weight.

We can now start with $(\underline{\Lambda}-\underline{\alpha})$ and test if $(\underline{\Lambda}-\underline{\alpha})-\underline{\alpha}$ and $(\underline{\Lambda}-\underline{\alpha})-\underline{\beta}$ are possible weights or not. It is easy to see that $\underline{\Lambda}-\overline{2} \underline{\alpha}$ is not a weight, but $\underline{\Lambda}-\underline{\alpha}-\beta$ is. Proceeding in this fashion, we find that all possible weights are given by the diagram shown in Fig. 3.

Fig. 3

THE FORMALISM OF LIE GROUPS

Notice that the weight $\underline{\Lambda}-\underline{\alpha}-\underline{\beta}$ is of multiplicity two. The diagram does not further fan out, and we obtain a totality of eight weights. Writing $\Lambda=\underline{\alpha}+\underline{\beta}$, we have the following system of weights:

$$
\begin{equation*}
\underline{\alpha}+\underline{\beta}, \underline{\alpha}, \underline{\beta}, 0,0,-\underline{\beta},-\underline{\alpha},-(\underline{\alpha}+\underline{\beta}) . \tag{11.4}
\end{equation*}
$$

The multiplicities are spindle-shaped: they increase, come to a maximum and decrease again. (The weight zero has multiplicity two.) This is a general result which will not be discussed further.

Fig. 4
Euclidean diagrams

Fig. 4 gives the Euclidean diagram of these weights. The two rings in the centre indicate the two zero weights. A tentative identification of the stable baryons with the appropriate weights has also been made in the figure, provided we identify

$$
\begin{aligned}
& \mathrm{m}_{1}=\mathrm{I}_{3} \\
& \mathrm{~m}_{2}=(2 / \sqrt{3}) \mathrm{U}
\end{aligned}
$$

where $\underline{m}=\binom{m_{\mathrm{I}}}{\mathrm{m}_{\mathrm{l}}}$ in a Euclidean basis.
For illustrative purposes, here are some more weight diagrams corresponding to the representations [4] shown in Fig. 5.

Before concluding this section we state one important theorem and make one final remark.

Theorem 14

For the adjoint representation, the root vectors and the non-zeroweight vectors coincide. The weight zero occurs with a multiplicity equal to the rank of the group.

An illustration of this theorem is given by the weight diagram of the $\left(\frac{1}{2}, \frac{1}{2}\right)$ representation of SU_{3} computed earlier in this section. Because of
A. SALAM

this rather remarkable property clearly the adjoint representation has a greater claim to attention than any other.

Remark

In O_{3}, the eigenvalues of J_{3} (the weights) are non-degenerate for any given representation and hence suffice to label the representation. For general Lie groups, except for the highest weight, all others may possess multiplicities of >1 (compare the weight $(0,0)$ for SU_{3} which has multiplicity 2). If the multiplicity is >1 we need additional operators all commuting with each other and with the H^{\prime} 's, whose eigenvalues will enable us to re-
move the degeneracy and label uniquely the eigenvectors of the H 's, belonging to the same given weight. (A Casimir operator which has the same eigenvelue for all vectors of a given representation is clearly useless for this purpose.) The number of extra operators needed can be shown to equal ($N-\ell$)/2- ℓ $=(\mathrm{N}-3 \ell) / 2$. For $\mathrm{O}_{3}, \mathrm{~N}=3, \ell=1$ so that no extra operator is needed to characterize all the eigenkets of J_{3} in a representation specified (uniquely) by the highest weight $j_{\text {. For }} S U_{3}$, however, $N=8, t=2$ so that we need one more operator besides I_{3} and U to label uniquely the eigenkets of I_{3} and U. It is not hard to show that in this case such an operator is given by 1^{2}. For $C_{2},(N-3 l) / 2=2$. Thus, even additional to \mathcal{L}^{2} (and U and $\left.I_{3}\right)$, one more quantum number is needed to form a complete set of commuting observables. For $G_{2},(N-3 \ell) / 2=4$.

12. REDUCIBLE REPRESENTATIONS

Let us take stock of the siturtion. For a physicist working in symmetry problems, the information necessary for progress is the following:
(i) Classification of irreducible representation for a group of rank ℓ. We possess a complete solution of this problem.
(ii) The eigenvalues of the commuting operators $\mathrm{H}_{1}, \ldots, \mathrm{H}_{\mathrm{f}}$. This is the same problem as the problem of determination of weights. Again we possess a complete solution of this.
(iii) Determination of the extra $(\mathrm{N}-3 \rho) / 2$ operators to enable a unique labelling of the eigenkets of $\mathrm{H}_{1}, \ldots, \mathrm{H}_{\ell}$. For groups like $\mathrm{A}_{2}, \mathrm{~B}_{2}$, \bar{C}_{2}, D_{2} we know how to construct such operators but a general systematic procedure apparently is not known.
(iv) The reduction of a reducible representation into the direct sum of Irreducible representations. There are two parts of this problem: first, IInding out which irreducible representations make their appearance in this direct tum; second, to find the Clebsch-Gordon coefficients. Theorem 15 will give the procedure for solving the first problem. The second problem will be dealt with by Ruegg and Goldberg in their lectures for some special (fortunately for the physicist, extremely important) cases. No general solution however exists.
First, some obvious definitions:

Kronecker products

If R_{1}, R_{2}, R_{3} are three linear spaces of dimensions m, n and mn respectively, we shall say R_{3} is the Kronecker product of R_{1} and $R_{2}\left(R_{3}\right.$ $\left.=R_{1} \times R_{2}\right\}$ provided to every vector $\left|\xi_{1}\right\rangle \in R_{1},\left\{\xi_{2}\right\rangle \in R_{2}$, there corresponds a vector $\left|\xi_{3}\right\rangle e R_{3}$ (notation $\left.\left|\xi_{3}\right\rangle=\left|\xi_{1}\right\rangle \times\left|\xi_{2}\right\rangle\right)$ such that:
(i) The operation $\left|\xi_{1}\right\rangle \times\left|\xi_{2}\right\rangle$ is linear in each argument;
(ii) R_{3} is sparned by vectors of the form $\left.\left|\xi_{1}\right\rangle \times\left.\right|_{2}\right\rangle$.

If ϕ_{1} and ϕ_{2} are linear representations of a Lie algebra operating in R_{2} and R_{2}, the representation ϕ_{3} defined in $R_{1} \times R_{2}$ by the formula,

$$
\phi_{3}\left\{\left|\xi_{1}\right\rangle \times\left|\xi_{2}\right\rangle\right\}=\left\{\phi_{1}\left|\xi_{1}\right\rangle\right] \times\left|\xi_{z}\right\rangle+\left|\xi_{1}\right\rangle \times\left\{\phi_{2}\left|\xi_{2}\right\rangle\right\}
$$

is called the Kronecker product of ϕ_{1} and ϕ_{2} and will be denoted as

$$
\phi_{3}=\phi_{1} \times \phi_{2} .
$$

Theorem 15
(i) Addition of weights

If $\Delta_{\emptyset_{1}}$ is the weight space of ϕ_{1} and $\Delta_{Q_{2}}$ is the weight space of the representation ϕ_{2}, then $\Delta_{\Phi_{3}}=\Delta_{\Phi_{1}}+\Delta_{\Phi_{2}}$.
(ii) If $\underline{\Lambda}_{1}$ and $\underline{\Lambda}_{2}$ are the greatest weights of ϕ_{1} and ϕ_{2}, the greatest weight of ϕ_{3} is $\Lambda_{1}+\underline{\Lambda}_{2}$.
This theorem is an obvious generalization of the addition theorem for angular momenta in O_{3} which we consider in detail. If j_{1} and j_{2} are the highest weights of two irreducible representations $\phi\left(\mathrm{j}_{1}\right)$ and $\phi\left(\mathrm{j}_{2}\right)$, the (reducible) product representation has the highest weight $j_{1}+j_{2}$. Also the totality of its weights is given by

Weight $\rightarrow j_{1}+j_{2}$,	$j_{1}+j_{2}-1$,	$j_{1}+j_{2}-2, \ldots$,	$-j_{1}-j_{2}$	
muiti- plicity\rightarrow	1,2	3	,\ldots,	1

The multiplicities are easily deduced. For example, $j_{1}+j_{2}-1$ arises in two ways: either as the sum $j_{1}+\left(j_{2}-1\right)$ or equally as the sum of the weights $\left(j_{1}-1\right)+j_{2}$. The usual procedure to find the irreducjple representations contained in $\phi\left(j_{1}\right) \times \phi\left(j_{2}\right)$ can be stated thus: Take away from the totality of weights those which belong to the representation $\phi\left(j_{1} * j_{2}\right)$. Among the remaining weights occurs the weight $j_{1}+j_{2}-1$ with unit multiplicity. Clearly this must be the highest weight of the representation $\phi\left(j_{1}+j_{2}-1\right)$ which therefore must also be contained in $\phi\left(j_{1}\right) \times \phi\left(j_{2}\right)$. Taking away all the weights belonging to $\phi\left(j_{1}+j_{2}-1\right)$, we next identify the occurrence of $\phi\left(j_{1}+j_{2}-2\right)$ in the direct sum from the fact that the highest weight left is $\left(j_{1}+j_{2}-2\right)$. This procedure is continued till we reach $\phi\left(\left|j_{1}-j_{2}\right|\right)$. At this stage all weights are exhausted, leading to the inference that

$$
\phi\left(j_{1}\right) \times \phi\left(j_{2}\right)=\phi\left(j_{1}+j_{2}\right)+\phi\left(j_{1}+j_{2}-1\right)+\ldots+\phi\left(\left|j_{1}-j_{2}\right|\right)
$$

The procedure is obviously completely general. Its only drawback is that in order to apply it we need to know all the weights. A simpler version has been developed by Racah, Speiser and Ruegg where, if $j_{1} \geqslant j_{2}$, one adds all weights belonging to the representation $\phi\left(j_{2}\right)\left(i . e . j_{2}, j_{2}-1, \ldots,-j_{2}\right)$ to the highest weight j_{1} of $\phi\left(j_{1}\right)$. For O_{3}, the resulting weights are clearly the highest weights of the irreducible representations contained in $\phi\left(\mathrm{j}_{1}\right) \times \phi\left(\mathrm{j}_{2}\right)$. For the more general cases this sum may lead to a certain number of negative weights which certainly cannot qualify as highest weights. These then have to be excluded, and the procedure for this is explained in Ruegg's lecture.

Cartan composition

If ϕ_{1} and ϕ_{2} are two irreducible representations, the Kronecker product $\phi_{1} \times \phi_{2}$ is in general a reducible representation. Consider its greatest com-
ponent, $\bar{\phi}_{1} \times \phi_{2}$. This is an irreducible representation with the highest weight $\underline{\Lambda}_{1}+\underline{\Lambda}_{2}$ The operation of Kronecker multiplication of two irreducible representations followed by the operation of isolating the greatest component lead to the formation of a new irreducible representation $\left(\phi_{1} \times \phi_{2}\right)$ and is called the cartan composition of irreducible representations.

Those irreducible representations of an algebra which cannot be obtained from other irreducible representations are called basic representations by Cartan. These representations are characterized by the fact that their highest weights cannot be spiit into the sums of two elements that are themselves highest weights. Clearly a representation ϕ is basic if, and only if, all the labelling numbers $j_{1}, j_{2}, \ldots, j_{\ell}$ are zero except one which equals \dot{z}_{2}. Thus every simple algebra of rank ℓ has ℓ basic representations.

One can go further and show that all basic representations themselves can be constituted from a few so-called elementary representations by Kronecker multiplications followed by an antisymmetrization procedure which is somewhat familiar in ordinary tensor theory and will not be described here in detail. For A_{p} and B_{p} there are just two elementary representations. C_{ℓ} has one elementary representation and D_{ℓ} has three. One of the elementary representations ϕ of A_{ℓ} is realized as the group SL($\left.\ell+1\right)$ of all matrices of order $\ell+1$ with determinant +1 , the other being given by

$$
\phi^{\prime}=-\left(\phi_{1}\right]^{\mathrm{T}} .
$$

For B_{ℓ}, one of the elementary representations is obtained by considering the group $\mathrm{O}(2 \ell+1)$ of all unimodular orthogonal transformations of the $(2 \ell+1)$ dimensional space, while the second elementary representation is the so-called spinor representation. The realization of the group C_{ℓ} in the form of the group $\mathrm{Sp}(2 \mathrm{n})$ of the symplectic matrices of order 2ℓ gives its elementary representation, while for $D_{l}(\ell \geqslant 5)$ one elementary representation is given by the group of unimodular orthogonal matrices of order 2ℓ and in addition there are two distinct spinor representations. For the elementary representations of the exceptional groups reference may be made to Dynkin.

This brief description of the results in representation theory does not even touch the practical problem of reduction of representation in the manner the physicist wants it solved. For this we must fall back on our amateur methods, multiplying matrices, symmetrizing and antisymmetrizing tensor indices, though perhaps somewhat emboldened by the knowledge that this is also the entire, and when I say entire - I mean entire, stock-in-trade of the professional group theorist.

REFERENCES

(1] PAUL W.. "Contınuous groups in quanturn mechanics", lecture aotes (CERN-31).
(2] RACAH, G.. "Group theory and spectroscopy". Institute for Advanced Smdies lecnure notes (i95l)(ieprinted: CEON 61-8).
[3] DYNKIN, E.B., Amer. Math. Soc., Tranti. II Voi. 6, "Maximal sub-groups ar the classica! groups". Appendix.
[4] BEHRENDS, R.E., DREITLELN, J., FRONSDAL. C. and LEE, B. W.. Rev. Mod. Phys. 34 (1962) 1
[5] SPEISER, D. and TARKSI, J.. "Possible schemes for global symmetry". Princeton preprint (1961).
[6] NE'EMAN, Y., "Gauges group and an invariant theory of stroag interactions" (1961); Thesis, Imperial College, London (1962).
$[7]$ IONIDES, P., Thesus, Impenal College, London (1962).

Note on Unitary Symmetry in Strong Interactions*'

Susumu (OKL'BO

Lepartmem of I'hysics, University of Tokyo. Tokyo and
Department of Physics, Unizersity of Kochester.
Rochester, N.Y., U.S.A
(Received December 6, 1961)

Assuming invarionce of theory under three-dimensional unitary group, various consequences have been investigated. Both Sakata's and Gell-Mann's scheme can be treated in the same fachion and in a simpler way. Mass formula for particles belonging to the same irreducible representation has been derived and compured with experiments.

§1. Introduction

The purpose of this note is to investigate consequences of the three-dimensional unitary group (denoted as U_{3} hereafter), which is a certain generalization of the usual isotopic space group. Though many authors ${ }^{1,2,8,3}$ have examined this problem, our procedure is simpler and some new results have been obtained. Also, we can treat different schemes of U_{s} such as Sakata's ${ }^{1, \mathbf{2 l}^{1}}$ or Gell-Mann's ${ }^{1 /}$ on the same footing by our method.

First of all, we shall give some motivations for introducing U_{3}. All known interactions obey certain symmetries, i.e. they are subject to the corresponding transformation groups. We can classify all known groups appearing in the studies of elementary particles into the following three categories.
(I) Space-group
(i) Lorentz group
(ii) Charge conjugation
(II) Isotopic-groups
(i) Isotopic spin rotation $R_{s}{ }^{\prime \prime}$
(ii) Baryon gauge transformation $\boldsymbol{R}^{\left({ }^{(B)}\right.}$
(iii) Charge gauge transformation $\boldsymbol{R}_{\mathbf{2}}{ }^{(\boldsymbol{e} \mid}$
(iv) Strangeness gauge transformation $R_{1}{ }^{\prime s_{3}}$
(v) Leptonic gauge transformation $R_{2}{ }^{L_{j}}$
(III) Gauge-dransformation of the 2nd kind
(i) Electro-magnetic field
(ii) Yang-Mills field
*) A part of this paper has been prevented at the La-Jolla Conference held e: ise-Jolta, California. June 12, 1961.

In this list, we have included the charge conjugation into the space-group, because of the TCP theorem. These three groups of transformations are correlated with each other in some degrec, but here we do not go into details. Furthermore, we restrici ourselves only in the study of the iso-space groups (II), in this paper. Moreover, we do not take account of leptons also, though they might the treated on the same footing." Then, the groups (II) consist of 4 groups. However, by virtue of the Nakano-Nishijima-Gell-Mann formula, we have one following relation :

$$
\begin{equation*}
Q=I_{3}+9 \cdot(N+S) . \tag{1}
\end{equation*}
$$

Thus, only 3 out of the 4 groups are independent. So, the known strong interactions have to be invariant under the following group G :

$$
G=R_{1}^{(f)} \times R_{2}^{\left(B_{2}\right)} \times R_{2}^{(U)}
$$

Now, for the moment, let us suppose that the nature obeys some higher symmetry than this. Then, the invariant group U of this higher symmetry must include G as a sub-group. One of them including G is U_{30}, which is relatively uncomplicated. This is one motivation for adopting U_{s}. Besides, we may note that the 3 -dimension is the minimum dimension for non-trivial representation of the group G. This may be taken as another motivation for $U_{3}{ }^{\text {b }}$ "

In the next section, we shall give the classification of particles belonging to a given irreducible representation by means of restricting U_{3} into U_{3} (twodimensional unitary group). In $\$ 3$ we shall give applications of U_{3}. Furthermore, the following mass formula will be proved:

$$
\begin{equation*}
M=a+b \cdot S+c \cdot\left[I(I+1)-1 / 4 \cdot S^{2}\right] . \tag{2}
\end{equation*}
$$

This relation bolds for particles belonging to a given irreducible representation of U_{3}, and S and I stand for the strangeness and isospin of particles contained in the representation, respectively. This formula has been proved in the lowest order perturbation violating U_{5} symmetry of the type $\bar{A} A$, but in any orders for the strong U_{3}-invariant interactions. The proof of Eq. (2) will be given in the Appendix. As an application of Eq. (2), we note that if N, A, Σ and Ξ beiong to an irreducible representation as in the Gell-Mann scheme, we have

$$
1 / 2 \cdot\left[M_{N}+M_{2}\right]=3 / 4 \cdot M_{1}+1 / 4 \cdot M_{5}
$$

which is sat fied in good accuracy. Another application of our formula Eq. (2) is that the mass of a neutral-isoscalar meson $\pi 0_{0}^{\prime}$ would be given by

$$
M\left(\pi_{0}{ }^{\prime}\right)=4 / 3 \cdot M(K)-1 / 3 \cdot M(\pi) \simeq 600 \mathrm{Mev}
$$

where π_{0}^{\prime} is the meson belonging to the same representation as π, K and \bar{K} mesons. Similarly, we should have

$$
M\left(K^{*}\right)=3 / 4 \cdot M(\omega)+1 / 4 \cdot M(\rho)
$$

where $\rho,(1)$ and K^{*} are bosons representing resonant states of (x-x), ($\left.\pi-\pi-\pi\right)$ and $(x-K)$ system, respectively. We note that this relation is satisfied within an error of 12%.

§ 2. Claseification of particles in $\boldsymbol{U}_{\mathbf{s}}$

The three-dimensional unitary group U_{3} is defined by the following transformation on a vector $\phi_{n}(\mu=1,2,3)$:

$$
\begin{equation*}
\phi_{,} \rightarrow \sum_{\lambda=1,2,3} a_{3^{2}}{ }^{2} \phi_{\lambda} \quad(\mu=1,2,3) \tag{3}
\end{equation*}
$$

where $a_{\mu}{ }^{\text {a }}$ satisfies

$$
\begin{equation*}
\sum_{A=1,2,3}\left(a_{\beta}{ }^{\wedge}\right)^{*} a_{\mu}{ }^{*}=\delta_{\lambda}{ }_{\lambda}(\nu, \lambda=1,2,3) . \tag{4}
\end{equation*}
$$

In the Sakata model, ${ }^{\text {b }}$, we identify ϕ_{1}, ϕ_{n} and ϕ_{3} with the proton, the neutron and the A, respectively. However, this is not the only way. We shall assume that ϕ_{1}, and ϕ_{n} form an isotopic doublet and ϕ_{3} an isotopic singlet. As for other quantum numbers, we can assign according to the following cases:
(a) ϕ_{1}, ϕ_{2} and ϕ_{2} have the baryon number $N=1$. ϕ_{1} and ϕ_{2} have the strangeness quantum number $S=0, \phi_{2}$ has the strangeness $S=-1$.
(b) We do not assigh any baryon numbers to ϕ_{1}, ϕ_{2} and ϕ_{3}, but assign $Y=0$ for ϕ_{1} and ϕ_{2}, and $Y=-1$ for ϕ_{2} where Y stands for the hypercharge $\boldsymbol{Y}=\boldsymbol{N}+\boldsymbol{S}$.
(c) We do not assign any baryon numbers to ϕ_{1}, ϕ_{3} and ϕ_{3}, but assign a new quantum number $Z=N+3 \cdot S$ as $Z=1$ for ϕ_{1} and ϕ_{3}, and $Z=-2$ for ϕ_{3}.
The first assignment (a) corresponds to the usual Sakata model, and the second one (b) is practically the same as the Geil-Mann scheme," and so we refer to it as "Gell-Mann scheme" for simplicity,"? though not exactly. The third scheme is actually convenient if we consider the unitary-unimodular group of 3 dimensions instead of U_{3}, and so refer to it as "the unitary-unimodular scheme". We may give possible schemes other than (a), (b) and (c), but it will hot be so fruitful.

First, let us consider the case (a) (referred to as "Sakata scheme" hereafter). In this scheme, consider a special transformation:

$$
\begin{gather*}
\phi_{1} \rightarrow \varepsilon_{1} \phi_{4}, \quad \phi_{h} \rightarrow \varepsilon_{3} \phi_{2}, \quad \phi_{h} \rightarrow \varepsilon_{i \phi} \\
\left|\varepsilon_{\theta}\right|=1 \quad(\mu=1,2,3) . \tag{5}
\end{gather*}
$$

This is a apecial transformation of Eqs. (3) and (4). Then, a component of

[^16]
S. Okuho

$$
T \longrightarrow \varepsilon_{1}^{a} \varepsilon_{2}^{A} \varepsilon_{3}{ }^{T} T
$$

In cur case, the baryon number N and the strangeness S is obviously given by

$$
\begin{align*}
& N=\alpha+\beta+\gamma \\
& S--\gamma . \tag{6}
\end{align*}
$$

Now, all irreducible tensor representation of U_{3} are characterized by three integers f_{1}, f_{2} and f_{3} satisfying a condition $f_{1} \geq f_{7} \geq f_{3}$. We shall denote it as $U_{3}\left(f_{1}, f_{2}, f_{3}\right)$, hereafter. -The dimension of the representation is given ${ }^{7 \prime}$ by

$$
\begin{equation*}
D=1 / 2 \cdot\left(f_{1}-f_{2}+1\right)\left(f_{1}-f_{3}+2\right)\left(f_{2}-f_{3}+1\right) . \tag{7}
\end{equation*}
$$

Also, comparing the character of $l_{3}\left(f_{i}, f_{2}, f_{3}\right)$ with Eq. (6), we find that the baryon number N of this representation is

$$
\begin{equation*}
N-f_{1}+f_{2}+f_{3} \tag{8}
\end{equation*}
$$

Now, to specify sub-quantum numbers S and the isospin I in $\left(_{3}\left(f_{1}, f_{2}, f_{3}\right)\right.$, we fix the direction of the 3rd component ϕ_{3}. So, we restrict ourselves within the two-dimensional unitary group U_{2}, whose irreducible representations are specified by two integers f_{1}^{\prime}, and f_{3}^{\prime} satisfying $f_{1}^{\prime} \geq f_{3}^{\prime}$ and will be referred to as $U_{3}\left(f_{1}^{\prime}, f_{3}^{\prime}\right)$. Then, the branching rule ${ }^{n /}$ for this decomposition tells us that U_{3} can be decomposed according as

$$
\begin{equation*}
U_{2}\left(f_{1}+f_{2}, f_{3}\right) \overrightarrow{\left.U_{3}, f_{2}\right)^{2}} \underset{U_{1}}{ }\left(f_{2}^{\prime}, f_{2}^{\prime}\right) \tag{9}
\end{equation*}
$$

where we sum over all possible integer pairs ($f_{1}^{\prime}, f_{z}^{\prime}$) satisfying the following conditions:

$$
\begin{equation*}
f_{1} \geq f_{1}^{\prime}=f_{2} \geq f_{2}^{\prime} \geq f_{3} \tag{10}
\end{equation*}
$$

The decomposition Eq. (9) is an analogue of the well-kntwan decompesition of $R_{\mathbf{4}}$ into R_{3} (R_{n} being the n-dimensional rotation group).

Now, two-dimensional unitary group is a product of two-dimensional unitaryunimodular group (which we can identify as the usual isotopic rotation group) and a gauge group, which defines the nucleon charge. Then, the isospin I is immediateiy given by

$$
\begin{equation*}
I=1 / 2 \cdot\left(f_{i}^{\prime}-f_{i}^{\prime}\right) \tag{11}
\end{equation*}
$$

and also, comparing the character of $U_{3}\left(f_{2}^{\prime}, f_{1}^{\prime}\right)$ with Eq. (6), we get

$$
\begin{equation*}
S=\left(f_{1}^{\prime}+f_{3}^{\prime}\right)-\left(f_{2}+f_{2}+f_{2}\right) . \tag{12}
\end{equation*}
$$

In this way, we could specify sub-quantum numbers S and I. Furthermore, we note ${ }^{n}$ that two representations $U_{3}\left(f_{1}, f_{1}, f_{3}\right)$ and $U_{3}\left(-f_{2},-f_{2},-f_{1}\right)$ are contra. gradient to each other, i.e. they are charge-conjugate of each other in our case.

This remark does not apply to the cases (b) and (c), since the nucleon number is not defined in these cases.

In order to explain our procedure, consider various cases:
(i) $\left(f_{1}, f_{2}, f_{3}\right)=(1,0,0)$

This is a 3 -dimensional representation by Eq. (7) and the decomposition Eqs. (9) and (10) tells us two choices $\left(f_{1}^{\prime}, f_{3}^{\prime}\right)=(1,0)$ or (0,0). By Eqs. (8), (11) and (12), $N=1$ and the former belongs to ($I=1 / 2, S=0$), and the latter to $(I=0, S=-1)$. S, the natural identification would be the triplet (p, n, A). (ii) $\left(f_{1}, f_{1}, f_{3}\right)=(1,0,-1)$

By Eqs. (7) and (8), this is a boson representation with 8 components. Also, by the remark given after Eq. (12), it must be self-conjugate, i.e. it must contain a particle and its anti-particle together. Now, the decomposition Eqs. (9) and (10) gives us the choice $\left(f_{1}^{\prime}, f_{2}^{\prime}\right)=(1,0),(0,-1),(1,-1)$ and $(0,0)$, and by Eqs. (11) and (12) they have ($I=1 / 2, S=1),(I=1 / 2, S=-1),(I=1, S=0)$, and ($I=0, S=0$). respectively. By the remark given in the beginning, the first two must be charge conjugate of each other and the last two must be self. conjugate under charge conjugation operation. Natural identification would be $\left(K_{+}, K_{0}\right),\left(\bar{K}_{+}, \bar{K}_{0}\right),\left(\bar{\pi}_{+}, \pi_{0}, \pi_{-}\right)$and π_{0}^{\prime}, where the last one is a new pseudoscalar boson: We may identify the newly found states K^{*}, \bar{K}^{*}, ρ and ω mesons under the same category.
(iii) $\left(f_{1}, f_{1}, f_{3}\right)=(2,0,-1)$

This is a fermion state with 15 components by Eqs. (7) and (8), and they contain the following particles by Eqs. (10), (11) and (12).

$$
\begin{aligned}
& (I=1 / 2, S=-2), \quad(I=1, S=-1), \quad(I=0, S=-1) \\
& (I=1 / 2, S=0), \quad(I=1, S=+1), \quad(I=3 / 2, S=0)
\end{aligned}
$$

We might identify the first four as Ξ, \pm, I and N, respectively, but then we have two other unwanted particles. This interpretation is originally due to Yamaguchi,") but as we will see in a later section this identification seems to give small masses for ($I=1, S=1$) and ($I=3 / 2, S=0$) particles so as to make them stable, and so it would be more natural to adopt the case (i) as representing A and N. Furthermore, if we take the viewpoint (ii) for bosons, then $(I=1 / 2, S=-2)$ has to be identified still as \equiv particles. This is because the transition $\Xi \rightarrow A+K$ must be possible and therefore Ξ (and also Σ since $\Sigma \rightarrow A+\pi$) has to be in a product representation $U_{3}(1,0,0) \times U_{2}(1,0,-1)$. However, ${ }^{\text {² }}$) we have

$$
\begin{aligned}
U_{\mathrm{a}}(1,0,0) \times U_{3}(1,0,-1)=U_{2}(2,0,-1) & +U_{1}(1,1,-1) \\
& +U_{3}(1,0,0)
\end{aligned}
$$

but $U_{1}(1,1,-1)$ and $U_{3}(1,0,0)$ do not contain a particle with $(I=1 / 2, S=-2)$. As for Σ, the same argument shows that it must belong either to $U_{3}(2,0,-1)$ or to $U_{3}(1,1,-1)$. Ikeda et al. ${ }^{1}$ identify $(I=3 / 2, S=0)$ in $U_{3}(2,0,-1)$ as
V^{*} (the first $\pi-N$ scattering resonance), then the spin of \equiv has to be $3 / 2$, since N * has the spatc-spin 3.2. Similarly, $(I-1, S--1)$ and $(1,0, S:=-1)$ states in $U_{3}(2,0,-1)$ may Be interpreted as $\gamma_{1}^{*}\left(\pi, 1\right.$ scattering resonance) and γ_{s}^{*} (π - - scattering resonance), respectively. Then, they must have spin $3 / 2$ also In this case, we have to assign $(1,(1,1,-1)$ for (iv) $\left(f_{1}, f_{2}, f_{3}\right)=(1,1,-1)$

This is a fermion state with six components. We have ($I=1 / 2, S=0$), $(I=0, S=+1)$ and $(I=1, S=-1)$, and the last one may be interpreted as Σ. However, we have a new state with $(I=0, S \cdots 1)$, so, we should observe a resonance for the reaction K. n scatre ing, which has not so far been found experimentally.

Up to now, we have investigated the case (a), i.e. the Sakata-scheme. Now, let us consider the case (b). In this case, we cannot assign any baryon numbers to ϕ_{A}, so that Eq. (8) has no meaning as to indicate the baryon number. Eq. (11) is unchanged as before, but in Eq. (12), S has to be replaced by Y so that in our scheme (b), we have

$$
\begin{align*}
& I=1 / 2 \cdot\left(f_{1}^{\prime}-f_{2}^{\prime}\right) \\
& Y=-\left(f_{1}^{\prime}+f_{2}^{\prime}\right)-\left(f_{1}+f_{2}+f_{2}\right) . \tag{13}
\end{align*}
$$

In this case, the representation $(1,0,-1)$ gives four states; $(I=1 / 2, Y=1)$, $(I=1 / 2, Y=-1),(I=1, Y=0)$ ahd $(I=0, Y=0)$. As for bosons, our assign. ment is unchanged, since S and Y are the same for bosons. So, we can assign $\left(\pi, K, K, \pi_{0}{ }^{\prime}\right.$) and ($i^{\prime}, K^{*}, K^{*},(\omega)$ to $U_{3}(1,0,-1)$. A new phenomenon is that we can also assign ($N, \Xi, \pm, 1$) to $U_{2}(1,0,-1)$ since the nucleon number is no longer defined and the corresponding quantum numbers Y and I can be given correctly. This is exactly the same as in Gell-Mann's scheme, though the starting points are quite different. As we shall see in the next section, our scheme is essentially the same as Gell-Mann's as for all practical purposes, and so we can call our scheme (b) as (iell-Mann's. We may note the following decomposition: ${ }^{10,}$

$$
\begin{aligned}
U_{3}(1,0,-1) & \times V_{3}(1,0,-1)=2 U_{3}(1,0,-1)+U_{3}(0,0,0)+U_{3}(2,0,-2) \\
& +U_{3}(2,-1,-1)+U_{3}(1,1,-2)
\end{aligned}
$$

s) that $\because_{1}^{*}, y_{0}^{*}$ and N^{*} in the Gell-Mann scheme have to be included in one of the right-hand side, since they decay into one-boson and one-fermion state. This will be treated in a forthcoming paper.

Finally, we may study the consequence of our scheme (c). This was given, since it is more natural when we think of the unitary-unimodular group of 3 dimension (we sefer to it as $S L(3)$) rather than U_{3}. In $S L(3)$, there is no distinction between covariant and contravariant tensors. This is because a constant totally anti-symmetric tensor $6^{\text {mer }}$ is invariant under $S L(3)$, so that ϕ^{2} behaves like $\epsilon^{2 \mu} T_{p,}$ where $T_{p,}$ is a tensor. More generally, we have that the behaves like $e^{\lambda \mu} T_{p,}$ where $T_{p,}$ is a tensor. More generall, we
representation (f_{1}, f_{2}, f_{3}), which we have written ${ }^{1 \prime}$ as $U_{3}\left(f_{1}, f_{2}, f_{3}\right)$ up to now, is the same representation as ($\left.f_{1}^{+} e, f_{2}+e, f_{3} e\right)$ where e is an arbitrary integer. Then, obviously Eqs. (12) or (13) is not invariant under $S L(3)$, since it is not invariant under $f_{0}, f_{f}=c(f=1,2,3)$ and $f_{n}^{\prime} \rightarrow f_{s}^{\prime}-e(f=1.2)$. Invariant quantum numbers under $S L(3)$ under our decomposition Eq. (9) are given by

$$
\begin{align*}
& Z-3\left(f_{1}^{\prime}-f_{2}^{\prime}\right)-2\left(f_{1}+f_{2}+f_{3}\right) \tag{14}\\
& f-1,2\left(f_{1}^{\prime}-f_{2}^{\prime}\right)
\end{align*}
$$

where $Z=N+3 \cdot S$. We omit the details for these derivations. In this case, we can reptat the same procedures as before, but it gives almost the same results as in the case (a), so we will not go too far. Here we may note also that if we give up additivity of quantum numbers, we may assign $Z=3 \cdot \mathbf{Y}-\mathbf{N}(\mathbf{N}-1)$ for E.q. (14). In this case, we can assign ($1,0,-1$) both for bosons and fermon, and we have the same result as liell-Mann's again. We shall not condiscu. : n, h_{i}, ases anger in this paper, and restrict ourselves only in

First, let us consider the Sakata sotheme (a), and we take the represantataso $U_{3}(1,0,0)$ and $U_{3}(1,0,-1)$ for (i, n, p) and $\left(\alpha, z_{0}, K, K\right)$ sysimas respectively. Then, p, n and 1 can be represented by a vector s^{2}.

$$
s_{1}^{\prime}=p, y_{2}^{b_{2}=n, s_{3}=.1}
$$

and ($n, \pi_{0}^{\prime}, K, K$) can be represented by a traceless tensor I_{0}^{*}, so that $f_{n}{ }^{*}=0$. The identification is

$$
\begin{aligned}
& \pi=f_{1}^{\prime}, \pi-f_{2}^{1}, \pi_{0}=\frac{1}{V_{2}}\left(f_{1}^{1}-f_{2}^{2}\right), \pi_{0}^{\prime}=-\frac{3}{V 6} f_{2}^{3}, \\
& K .=f_{2}^{2}, K_{0}^{\prime}=f_{2}^{3}, K_{-}=f_{3}^{\prime}, K_{0}-f_{3}^{2}
\end{aligned}
$$

and also ($u^{\prime}, \infty, K^{*}, \bar{K}^{*}$) can be represented by a traceless tensor $F_{:}^{*}$ exactly in the same fashion as Eq. (16) by replacing $\boldsymbol{\pi} \rightarrow \boldsymbol{A}, \pi_{0}{ }^{*} \rightarrow \infty, K \rightarrow K^{*}, K \rightarrow K^{*}$. Actually, F : has a vector suffix due to space-spin, but we onit it for simplicity.

The invariant interactions among baryon-boson and among boson-boson would be given by

$$
\begin{align*}
& H_{i}=i!\bar{\zeta}_{0} T_{b} s_{v}^{\prime} f_{N}^{*} \tag{17}\\
& H_{2}=i g F_{0}^{\rho} \cdot\left(f_{\lambda}^{\lambda} \cdot \partial f_{e}^{\lambda}-\partial f_{2}^{*} \cdot f_{2}^{\lambda}\right) \tag{18}
\end{align*}
$$

where the repeated indices mean summations over 1,2 and 3 . In Eq. (17), we note that $\bar{\psi}$, behaves as a contra-variant vector $\phi^{\prime \prime}$. Using the represeatations Eqs. (15) and (16), these Hamiltonians can be written as

$$
H_{2}=i g \frac{1}{\sqrt{2}} \bar{N}_{r}(r \cdot m) N+i g \bar{N}_{J} A K+i g \bar{J}_{2} N K
$$

$$
\begin{equation*}
+i g \frac{1}{\sqrt{6}}\left(\bar{N}_{\gamma_{B}} N-2 \overline{N r}_{s} A\right) \pi_{0}^{\prime} \tag{17}
\end{equation*}
$$

$$
\begin{aligned}
& H_{2}=i_{V 2}^{i g} p(\bar{K}+\partial K-\partial \bar{K} \tau K)+V 2 \cdot!\cdot \rho(\boldsymbol{\sim} \times \partial \pi)
\end{aligned}
$$

$$
\begin{align*}
& +\frac{3}{\sqrt{6}} \text { iger }[\bar{K} \partial K-\partial \bar{K} K \text {. } \tag{18}
\end{align*}
$$

We note that Eq. (18)' agrees with that given by Cell-Mann. ${ }^{2}$)
Now, let us consider the Gell-Mann scheme (b). Herep, as for bosons, Eq. (16) is unchanged. For baryons, we introduce two traceless tensors N_{0}. and M_{*}^{*} (so that $M_{p}{ }^{*}=N_{\mu}{ }^{n}=0$) as representing

$$
\begin{align*}
& \Sigma_{0}=N_{1}{ }^{2}, I_{-}=N_{2}{ }^{1}, E_{0}=\frac{1}{V_{2}}\left(N_{1}{ }^{1}-N_{2}^{2}\right), I=-\frac{3}{V_{6}} N_{3}{ }^{2}, \tag{19a}\\
& p=N_{1}{ }^{3}, n=N_{3}^{1}, \Xi_{-}=N_{3}{ }^{1}, \Xi_{0}=N_{3}{ }^{2} \text {, } \tag{19b}
\end{align*}
$$

$$
\begin{aligned}
& \overline{\bar{\Xi}}_{-}=M_{1}{ }^{3}, \overline{\bar{B}}_{0}=M_{2}{ }^{1}, \bar{p}=M_{3}{ }^{1}, \bar{n}=M_{3}{ }^{2} .
\end{aligned}
$$

Then, we have two invariant forms for baryon-boson interactions.

$$
\begin{align*}
& H_{3}=i q M_{n}^{A} T_{s} N_{4}^{n} f_{n}^{\lambda} \tag{30a}\\
& H_{4}=i!, M_{n}^{A} i_{s} f_{n}^{v} N_{n}^{A} \tag{20b}
\end{align*}
$$

Explicit calculation gives

$$
\begin{aligned}
& H_{3}=\frac{i y}{\sqrt{2}} \bar{N}_{\gamma_{b}}(T \cdot \pi) N+\frac{y}{\sqrt{2}}\left(\bar{\Sigma} \gamma_{1} \times \Sigma\right) \pi+\frac{y}{\sqrt{6}}\left[i \bar{\Sigma} r_{H} A+\text { c.c. }\right]
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{g}{\sqrt{2}}\left[\bar{K}+i_{i} \overline{\bar{E}_{r}} \mathbf{\Sigma}+\text { c.c. }\right]
\end{aligned}
$$

$$
\begin{align*}
& -\frac{i y}{\sqrt{2}} \bar{E}(r \cdot x) r_{1} \bar{x} \\
& +\frac{g}{\sqrt{6}}\left[i \bar{N}_{1} K A+\text { c.c. }\right] \\
& -\frac{24}{\sqrt{6}}\left[\bar{A}_{0} \equiv \bar{s}_{1} K+\text { c.c. }\right] \\
& +\mathscr{V}_{2}\left[i \overline{N r}_{r} r K \Sigma+\text { c.c. }\right] \tag{21b}
\end{align*}
$$

where we have put

$$
N=\binom{p}{n}, \quad \mathbf{\Sigma}=\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{2}
\end{array}\right), \quad \equiv=\binom{-E_{0}}{E_{-}}, \quad K=\binom{K_{+}}{K_{0}}, \quad \quad \quad=\left(\begin{array}{l}
x_{1} \\
\tilde{x}_{3} \\
x_{3}
\end{array}\right),
$$

and Eqs. (21a) and (21b) are connected with L_{D} and L_{r}, of Gell-Mann ${ }^{8}$ by

$$
\begin{aligned}
& H_{1}=\frac{1}{2 V 2}\left[L_{B}+L_{F}\right], \\
& H_{A}=\frac{1}{2 \sqrt{2}}\left[L_{D}-L_{F}\right],
\end{aligned}
$$

when we take the same coupling constants.
As applications of our formalism, we may think of the boson-baryon acattering in the case of the Sakata scheme. In this case, we can form the following invariants of which the S-matrix element is a linear combination:
where we have put $T_{0^{*}}=\vec{\phi}_{A} \psi_{2}$, and $f_{\text {, }}$, and \hat{f} represent for incoming and outgoing bosons. From this, we can prove the following identities among total crose sections.

$$
\begin{aligned}
& \sigma\left(\pi_{+}+p\right)=\sigma\left(K_{+}+p\right), \quad \sigma\left(K_{-}+n\right)=\sigma\left(\pi_{+}+A\right) \\
& \sigma\left(\pi_{-}+p\right)=\sigma\left(K_{-}+p\right)=\sigma\left(K_{+}+A\right), \text { etc. } \\
& \sigma\left(x_{0}^{\prime}+p\right)=1 / 3 \cdot \sigma\left(\pi_{0}+p\right)+2 / 3 \cdot \sigma\left(K_{+}+p\right)
\end{aligned}
$$

These have been derived also by Hara and Singh. ${ }^{\text {mp }}$ They are also investigating similar identities in the case of Gell-Mann scheme. We can get simile identities wong magnetic moments of baryons. In the case of Salkatescheme, lei wist sume that the electromagnetic current j, has a transformation property an component of a tensor $T_{\therefore}{ }^{\circ}$. This can be taken, since the usual current infor ϕ has such form. Then, the method mentioned in the ahove immediately gives
$\mu()=,\mu(n)$ and also we can prove that K_{0} and K_{0} have no electromagnettic structures. This is because we can prove $\left.\left\langle K_{0} j_{0}, K_{0}\right\rangle=\left\langle K_{n}\right\rangle, K_{0}\right\rangle$ similarly, but i_{0} changes its sign under charge conjugation, and therefore $\left.K_{0}^{\prime} j_{0} K_{0}\right\rangle$ has to be identically zero.

In the case of Gell-Mann scheme (b), we can give some relations anmons magnetic moments of baryons. By the same reason as in the above, let us assume that the electromagnetic current j_{r}, behaves as $T_{1}{ }^{1}$ of a tensor $T_{n}{ }^{n}$, with respect to U_{3}. We have to take the expectation value of j_{N}, i.e. $T_{1}{ }^{1}$. From invariance, we have

$$
\left.T_{n}^{*}\right\rangle=\alpha M_{A}^{A} \cdot N_{\nu}^{\prime}+b_{2}^{\prime} \cdot N_{\lambda}{ }^{*}+c \cdot \dot{b}_{2}{ }^{n} \cdot\left(M_{A}^{a} N_{a}{ }^{A}\right)
$$

where M and N represent baryons as in Eq. (19) and we have omitted spinor indices. By putting $\mu=\nu=1$, and comparing with Eq. (19), we have $\mu(p)=a+c$, $\mu(n)=c$, etc. Then, we have the following relations:

$$
\begin{align*}
& \mu(p)=\mu\left(\Xi_{-}\right), \\
& \mu\left(\Xi_{0}\right)=\mu(n), \\
& \mu(\Xi)=\mu\left(\Xi_{-}\right), \\
& \mu(1)=1 / 6 \cdot\left[\mu(p)+\mu\left(\Xi_{-}\right)+4 \mu(n),\right. \\
& \mu\left(\Xi_{0}\right)=1 / 2 \cdot\left[\mu\left(\Xi_{+}\right)+\mu\left(\Xi_{-}\right),\right.
\end{align*}
$$

Furthermore, if we demand that T_{*}^{*} is traceless, i.e. $T_{n}^{*}=0$, then we should have $a+b+3 c=0$ and then this condition gives one more relation:

$$
\begin{equation*}
\ell(, 1)=(1 / 2) / \ell(n) \tag{23}
\end{equation*}
$$

Relations Eqs. (22) and (23) have been given also by Coleman and Glaschow ${ }^{13}$ by somewhat more direct method. We note that they used $T_{\beta}{ }^{*}=M_{\lambda}{ }^{*} N_{B}{ }^{2}$ - $M_{\Delta}{ }^{N} N_{\lambda}{ }_{n}{ }_{n}$ so that obviously $T_{a}{ }^{a}=0$ is satisfied. From our derivation, however, it is clear that the explicit form for $T_{1}{ }^{1}$ is unnecessary.

We can give other applications of our method for the weak leptonic decays of bosons and fermions. In case of the strangeness-violating leptonic decays, the interaction Hamiltonian would be given by
where 1 , is the strangeness-violating current. Let us consider the nsse of $C \mathrm{~s}$. Mann scheme, and assume that \mathfrak{T}, has the transformation property as T_{3} : component of a tensor $T_{n^{\prime}}$, so that it has the same character as K_{+}. Then, we may construct two tensors $M_{\lambda}{ }^{3} N_{1}{ }^{\lambda}$ and $M_{1}{ }^{\lambda} N_{\lambda}{ }^{2}$ out of M and N, and it would be natural to take

$$
\begin{aligned}
& \boldsymbol{\beta}_{\rho}=a M_{\lambda}^{2} N_{1}{ }^{2}+b M_{1}{ }^{2} N_{\lambda}{ }^{2}
\end{aligned}
$$

$$
-l\left[{ }_{V^{\prime} 6}^{1}(\vec{f} \cdot p)+\left(\Sigma_{-} \cdot n+\frac{1}{V_{2}} \dot{\Sigma}_{0} \cdot p\right)-V^{V} 6(\Xi \cdot 1)\right]
$$

wher: we umitted γ-matrices. Of course, this behaves as a component of an isotopic spinor ${ }^{14}$, in the usual isospin assignment.

§ 4. Applications of mase formula

If there are no interactions violating U_{3} symmetry, all particles betonging to the same irreducible representation have to have the same mass, the same spin and parity. So we should have the same mass for pion and kaon, which is nev true. We nust therefore have some interactions violating U_{3}. According to : \%aumuchs," we may suppose that such interactions may be moderately strong, as compared with the very strong U_{s}-conserving interactions. Our purpose in this note is to investigate the result of mass-splitting among particles in a given irreducible representation due to this moderately strong U_{3}-violating interaction. In the Appendix, we shall prove that the mass splitting is given by the following formula.*

$$
\begin{equation*}
\left.M=a+b \cdot S+c \cdot 1 / 4 \cdot S^{1}-I(l+1)\right] \tag{26}
\end{equation*}
$$

Eq. (26) has been proved in the lowest order perturbation for such U_{s}-violating interaction with the transformation property T_{3}^{3} of a tensor $T_{*}{ }^{*}$ but in any orders for U_{s} conserving very strong interactions. In Eq. (26), a, b and c are constants which do not depend upon such sub-quantum numbers as the strangeness S and isospin I, but may depend upon the nature of the interaction and upon the irreducible representation to be considered. Eq. (26) may be rewritten as

$$
\begin{equation*}
M=a^{\prime}+b^{\prime} Y+c^{\prime}\left[1 / 4 \cdot Y^{\prime x}-l(I+1)\right] \tag{27}
\end{equation*}
$$

if we wise the hypercharge $Y-N+S$ instead of S. Formula Eqs. (26) or (27) holds for both the Sakata and the Gell-Mann schume. For the details, the reader may ronsult the Appendix.

Now, in this section, we shall investigate the result of Eqs. (26) or (27). First. let us consider boson system ($\pi, \pi_{0}{ }^{\prime}, K$ and K). An application of (26) or ($\because 7$) immediately gives that we have a relation

$$
\begin{equation*}
M(K)=1 / 2 \cdot[M(K)+M(\bar{K})]=3 / 4 \cdot M\left(\pi_{0} \theta^{\prime}\right)+1 / 4, M(\pi) \tag{28}
\end{equation*}
$$

From this, we can calculate the mass of $\pi_{0}{ }^{\prime}$ with $M\left(\pi_{0}{ }^{\prime}\right) \simeq 600 \mathrm{Mev}$. It is in teresting to note that a similar value has been predicted by other methods. ${ }^{\text {as }}$ Thes same iormula as Eqs. (28) holds for the ($0, ~\left(p, K^{*}, K^{*}\right.$) system.

$$
\begin{equation*}
M\left(K^{*}\right)=1 / 2 \cdot\left[M\left(K^{*}\right)+M\left(\bar{K}^{*}\right)\right]=3 / 4 \cdot M(\text { (s) })+1 / 4 \cdot M\left(p^{\prime}\right) \tag{29}
\end{equation*}
$$

A similar formula has already been suggested by R. P. Feynman at Gatlingburg Conference
neid is. isto.

S. (knbo

The calculated value for $M\left(K^{*}\right)$ by using $M(m)$ and $M\left({ }^{\prime \prime}\right)$ is 780 Mev , compared to the experimental value 885 Mev . This relation Eq. (29) holds as long as (ρ, (1). $K^{* *}, K^{*}$) belongs to the same irreducible representation. Previously we have assigned $(1.0,-1)$ for these, but another possibility is that these may belong to \because-dimensional representation ($2,0,-3$) instead of the 8 -dimensional $U_{3}(1,0,-1)$ representation. Then, the method of 59 tells us that we have 5 more states
 Then, we can use our formula Eq. (26) and we can calculate the mass of these tates in terms of $M\left(f^{\prime \prime}\right)$ and $M(10)$, to get

$$
\begin{aligned}
& M(I=1, S==2)=770 \mathrm{Mev} \\
& M(I=3, S= \pm 1) \quad 720 \mathrm{M}, \quad M(I=2, S \quad 0) .700 \mathrm{Mev} .
\end{aligned}
$$

However, we do not observe $I=3 \mu$ resonance fur the $K-5$ sytem, and so this value for $M\left(J=3, S, S^{-} \pm 1\right)$ contradicts the experiment. Accordingly, it seem hat our assignment of $(1,0,-1)$ for (${ }^{\prime \prime}, \omega, K^{*}, K^{*}$) is more reasonable than that of $(2,0,-2)$. The above argument equally applies botb to the Sakata and the (iell.Mann schemes.

As for baryons, let us first consider the Gell.Mann scheme ; then ($1, \pm, N, E$) belongs to $C_{3}(1,0,-1)$ representation. Then, by using Eq. (27), we have a relation

$$
\begin{equation*}
1,2 M(N)+M(\equiv)=3 / 4 \cdot M(1)+1 / 4 \cdot M(\underline{V}) \tag{30}
\end{equation*}
$$

which is satisfied with good accuracy.
In the case of Sakata scheme, we do not have such relation unless we indit:e ($N, \equiv, 1, \underline{\prime}$) in $U_{3}(2,0,-1)$ representation as we mentioned in $\S 2$. Then, we have Eq. (30) still. However, $U_{3}(2,0,-1)$ representation contains iwo ether states with ($I=3 / 2, S=0$) and ($I=0, S=+1$). We can calculate the masses of these particles by Eq. (26) and by using the experimental masses of λ, I, and \because. Then, we get

$$
\begin{aligned}
& M(I=3,2, S=0)-1050 \mathrm{Mev}(<M(N)+M(\pi)), \\
& M(I=0, S=+1)-770 \mathrm{Mev}(<M(N))
\end{aligned}
$$

anen seem, to have too small masses not to be detected experimentally. Thus, this assignment originally due to Yamaguchi would not be so grod. Therefore, we take the view that $U_{3}(2,0,-1)$ represents $Z, N^{*}, Y_{0}{ }^{*}, Y_{1}{ }^{*}$, etc., as has been mentioned in §3. In this case, we have the following relations:

$$
\begin{align*}
& \left.M\left(Y_{1}^{*}\right)=1 / 2, M(\Xi)+M\left(N^{*}\right)\right], \\
& \left.M(I=1 / 2, S=0)=1 / 2 \cdot M\left(Y_{0}^{*}\right)+M(I=1, S=+1)\right], \tag{31}\\
& \left.M(I=1, S=: 1)=M\left(Y_{1}^{*}\right)+2 M\left(Y_{0}^{*}\right)-M(\Xi)\right] .
\end{align*}
$$

The first relation gives us $M\left(Y_{1}^{*}\right) \ldots 1280 \mathrm{Mev}$ by using the experimental values

Note an Unitary Summotry in Strong Jiverickitions

for $M(\Xi)$ and $M\left(N^{*}\right)$ and it whould be compared to the experimental valve of $M\left(Y_{1}^{*}\right) \simeq 1385 \mathrm{Mev}$. Similarly, the last two equations give us

$$
\begin{aligned}
& M(I=1, S=+1) \simeq 1560 \mathrm{Mev}, \\
& M(I=1 / 2, S=0) \simeq 1180 \mathrm{Mev}
\end{aligned}
$$

where we have used the experimental masses for $Y_{0}{ }^{*}$ and $Y_{1}{ }^{*}$. Consequently, we may identify the ($I=1 / 2, S=0$) state as the 2nd pion-nacleon remorance, if it corresponds to the $p_{j,}$ resonsince instead of the usual $d_{3 / 2}$ resonance. As for $(I=1, S=+1)$, resonance for $K_{+}+n$ or $K_{+}+p$ scattering has not been discov. ered yet, and this gives a trouble to this scheme.

Ackmowledrements

A part of this work was carried out when the author was at CERN. He is grateful for the hompitality at CERN. He would like to express his thanks to Professors R.E.Marshak and Y. Yamaguchi for their encouragements and discussions. He is almo grateful to Profesmors H. Miyazawa and H. Umezawa and to Drs. M. Fukui, Y. Hars and T. Okabayashi, for the hospitality extended to him at the University of Tokyo.

Appendis

Lerivation of Mass formasla

Here, we shall prove the mass formula Eq, (26).
Let us consider infinitesimal U_{3} tranatormation. Thẹn, the infiniteaimal generator A_{*}^{*} of U_{3} satisfies the Lie equation:

$$
\left[A_{A}{ }^{*}, A_{1}^{n}\right]=d_{A^{n}} \cdot A_{0}^{n}-d_{n} \cdot \cdot A_{p^{\prime}} .
$$

This relation holds actually for general linear transformation of arbitrary dimension. The unitary rentriction given

$$
\left(A_{p^{*}}\right)^{\prime}=A_{A^{\prime \prime}}
$$

where Q^{\prime} meana the hermitian conjugate of Q. For comparimon's sake, ous $A_{*}{ }^{\prime \prime}$ is related to Ikeda et al. ${ }^{1 \prime \prime} X_{\text {ac }}$ by

$$
\begin{align*}
& A_{t}^{\prime}=-1 / 2 \cdot\left[(1+i) X_{v n}+(1-\infty) X_{s s}\right] \\
& X_{p n}=-1 / 2 \cdot\left[(1+i) A_{0}^{n}+(1-i) A_{n}{ }^{n}\right] .
\end{align*}
$$

However, their notation X_{A} maken the mixod teneor charucter of $A_{0}=$ oneurt For an arbitrary mixed teneor T_{i}, the commutation relation is givers by

$$
\left[A_{a}{ }^{A}, T_{n}{ }^{n}\right]=d_{n}^{A} \cdot T_{v}{ }^{4}-d_{s}=T_{n} A
$$

$$
\{\{, 8\}
$$

Comparing this with E4. ($A, 1$), we wee thut $A_{*}{ }^{*}$ has the property of a mixed tensor.

S. (Nalw)

Cieneralized Casimir operators of our Lie algebra can be given by

$$
\begin{align*}
& M_{1}=1_{4}^{*}-(A), \\
& M_{2}=A 1_{n}^{\prime} \cdot I_{n}^{*}=\langle A \cdot A\rangle \tag{A.5}\\
& \left.M_{3}=A 1_{n}^{\prime} \cdot A_{2}^{*} \cdot A A_{n}^{N} \quad d \cdot A \cdot A\right\rangle
\end{align*}
$$

where the repeated indices mean summation over 1,2 and 3 , and we used the notations $\backslash Q\rangle$ and defined product tensor $Q \cdot R$ of two tensor Q, and R, ${ }^{\text {n }}$ by

$$
\begin{align*}
& \left\rangle=Q_{r}{ }^{A}\right. \\
& (Q \cdot R)_{n}{ }^{\prime}=Q_{A} \cdot \tag{A.6}\\
& R_{r}{ }^{A}
\end{align*}
$$

It is easy to see that $M_{1}, M I_{2}$ and M_{3} commute with all $A_{0}{ }^{*}$ and therefore they commute with each other. Thus, they are constants in a given irreducible representation. Agsin, wow will give a relation between our M_{1} and N, M, M^{\prime} of Ikeda et al. ${ }^{1 /}$

$$
\begin{aligned}
& N=-M_{1} \\
& M=1,2 \cdot M_{2} \\
& M^{\prime}=-1 / 2 \cdot M_{3}+3 / 4 \cdot M_{1}-1 / 4 \cdot\left(M_{1}\right)^{2}
\end{aligned}
$$

and so the relation between eigenvalues of M_{1} and f_{i}, f_{2}, f_{3} of $U_{3}\left(f_{1}, f_{2}, f_{3}\right)$ is given ${ }^{1)}$ by

$$
\begin{align*}
M_{1}= & -\left(f_{1}-f_{2}-f_{3}\right), \\
M_{2}= & \left(f_{1}^{2}-f_{2}^{3}+f_{3}^{2}\right)+2\left(f_{1}-f_{3}\right), \\
M & M_{2}= \tag{A.7}\\
& -\left(f_{1}^{3}-f_{3}^{2}+f_{3}^{2}\right)+\left[-3 / 2 \cdot f_{2}^{2}+3 / 2 \cdot f_{2}^{2}+9 / 2 \cdot f_{2}^{2}\right] \\
& -1 / 2 \cdot\left(f_{1}+f_{2}+f_{3}\right)^{2}+\left(2 f_{1}+2 f_{1}-4 f_{3}\right) .
\end{align*}
$$

Note that $M_{4}=\langle A \cdot A \cdot A \cdot A\rangle$, etc., are unnecessary. They are given as functions of M_{1}, M_{2} and M_{3} as will be seen shortly.

Now, we will prove the following theorem. Theorem l?

In any irreducible representations of U_{20} any mixed tensors $T_{0}^{\prime \prime}$ can be resarded as a linear combination:

$$
\begin{equation*}
T_{v}{ }^{n}=a \cdot \delta_{n}^{*}+b \cdot A_{v}^{*}+c(A \cdot A)_{n}{ }^{n} \tag{A.8}
\end{equation*}
$$

Eq. (A.8) means that it holds good when we take matrix elements of both sides in a given irreducible representation. Constant a, b and c are independent of tensor suffices μ and ν and of sub-quantum numbers S and I of the representation, but may depend upon f_{1}, f_{3} and f_{i} and upon the nature of the tensor $T_{i}{ }^{\text {. }}$. Eq. $(A \cdot 8)$ is an analogue of the socalled vector algebra in R_{s}, i.e.

$$
\langle J, m| V|J, m\rangle=\langle J||V||J\rangle\langle J, m| J_{\beta}\left|J, m^{\prime}\right\rangle
$$

Note on Unilary Symmetry in Strong Imerachions:
where $V_{p}(\mu=1,2,3)$ is a vector in $R_{3,}$, and J_{p} means the angular momentum operator in R_{3}.

Before proving our theorem, we will show that this equation will give the desired mass formula Eq. (26).

First, let us consider the case of Sakata scheme. In that case, the nucleon number N, the strangeness quantum number S, and the isotopic spin operator I are defined ${ }^{\text {1) }}$ by

$$
\begin{align*}
& N=-\left\langle A_{i},\right. \\
& S=A_{2}{ }^{3}, \\
& I_{2}=\left(I_{1}+i I_{3}\right)=-A_{1}{ }^{3}, I_{-}=\left(I_{1}-i I_{2}\right)=-A_{2}{ }^{1}, \\
& I_{2}=1,2\left(A_{2}{ }^{2}-A_{1}{ }^{2}\right) .
\end{align*}
$$

Now, let us suppose that the mass-splitting interaction is given by $T_{3}{ }^{3}$ which has the same property as $\bar{A} \cdot A$ in the case of Sakata model. Then, the mass splitting is given by diagonal matrix element of $\boldsymbol{T}_{3}{ }^{3}$.

$$
J M=\langle i| T_{\mathbf{3}}{ }^{\mathbf{3}}|i\rangle .
$$

Then, noting (A9) and

$$
(A \cdot A)_{3}^{3}=1 / 2 \cdot\langle A \cdot A\rangle+1 / 2 \cdot S^{3}+1 / 2(3 \cdot S-\langle A\rangle)-(I)^{2}-1 / 4 \cdot(S-\langle A\rangle)^{3}
$$

we find that our theorem I (Eq. (A.8)) gives the desired mass formula Eq. (26).
In the case of Gell-Mann scheme, we have only to replace S by Y, hence we get Eq. (27). In this case, N is simply a parameter to distinguish representations.

Now, let us prove our theorem Eq. (A.8). First, we will show the following lemma.
[Lemma I]
In the three-dimensional space, suppose that a tensor $S_{p, 0}^{E \&}$ is anti-symmetric with respect to exchanges of α and β and of μ and ν and furthermore $S_{\beta \beta}^{\beta A}=0$, i.e. traceless; then $S_{p,}^{a A}$ is identically zero. Schematically, this means that $S_{p,}^{a \beta}=-S_{p,}^{A A}=-S_{p \beta}^{a \beta}$ and $S_{\beta p}^{\beta A}=0 \rightarrow S_{\beta p}^{a \beta} \equiv 0$.
[Proof]
Let us consider a tensor

Then, $T_{\beta=1}^{s, h}$ is totally anti-symmetric for any two exchanges of α, β and γ and satisfies traceless condition $T_{\text {and }}^{\text {a/ }}=\mathbf{0}$. However, such tensor must be identically zero in the three-dimensional space, since only non-zero independent cumponent must be $T_{\rho n \mathrm{in}}^{\mathrm{man}}$ and by traceless-condition, this has to be identically zero, (for example, consider the case $\mu=1$). Thus we have $T_{p, \lambda}^{a \in N} \equiv 0$. Then, by putting $\gamma=\nu$ and summing over ν, we find

$$
T_{\mu N}^{a A_{y}}=S_{\mu \lambda}^{\alpha A}-S_{\mu \mu}^{G A}=2 S_{\mu A}^{G A}==0 . \quad \text { (Q.E.D.) }
$$

Our lemma I is not surprising at all, since such tensor $S_{\mu=0}^{s A}$ must be an irreducible representation in U_{n} but such type of irreducible representation is not possible in U_{3}. (However, it is possible in $U_{n}(n \geq 4)$ and has signature $(1,1,-1,-1)$ in U_{4})
[Lemma II]
In U_{3}, for any two arbitrary tensors M_{*}^{*} and $N_{*^{*}}$, we have the following identities:

$$
\begin{aligned}
& -\delta_{A}{ }^{[}\left[\langle M\rangle N_{A^{*}}+M_{A}{ }^{\prime}\langle N\rangle-(M \cdot N)_{B^{n}}-M_{A}^{A} \cdot N_{A^{A}}\right] \\
& -\delta_{A}{ }^{[}\left[\langle M\rangle \cdot N_{v}{ }^{\alpha}+M_{*}{ }^{\alpha} \cdot\langle N\rangle-(M \cdot N)_{*}^{*}-M_{*}{ }^{2} \cdot N_{\lambda}^{*}\right]
\end{aligned}
$$

$$
\begin{aligned}
& -\left(\delta_{s}{ }^{n} \cdot \grave{\boldsymbol{o}}_{\beta}{ }^{\alpha}-\delta_{\theta^{*}}{ }^{*} \cdot \boldsymbol{\delta}_{\beta^{\mu}}\right) \cdot\left[\langle M\rangle \cdot\langle N\rangle-\left\langle M \cdot N^{\prime}\right\rangle\right] .
\end{aligned}
$$

[Proof]
Define a tensor $Q^{a{ }_{\beta D}^{A B}}$ by

$$
Q_{r+}^{A B}=\left(M_{A}^{a} \cdot N_{r}^{B}-M_{p}^{A} \cdot N_{*}^{\alpha}\right)-\left(M_{*}^{\alpha} \cdot N_{f}^{A}-M_{*}^{A} \cdot N_{f}^{*}\right) \cdot
$$

Then, $Q_{\mu, \beta}^{\alpha \beta}$ is anti-symmetric for exchanges of α and β and of μ and ν. Furtheremore, construct a new tensor $S_{n=0}^{a A}$ by

We can see that $S_{\mu_{\nu}^{A}}^{a A}$ satisfies the conditions of lemma 1 , and must be identically zero. This gives the desired identity. (Q.E.D.)

[Theorem II]

In U_{3}, for any tensor $T_{0}{ }^{\circ}$ and for infinitesimal operator $A_{0}{ }^{n}$, which satisfy the commutation relations Eqs. (A-1) and (A-4), we have the following identity.

$$
\begin{aligned}
& 2 \cdot\left[(A \cdot T \cdot A) n^{n}+(T \cdot A \cdot A) n^{*}+(A \cdot A \cdot T):^{n}\right]-(2\langle A\rangle+9) \cdot\left[(A \cdot T) n^{n}+(T \cdot A) \cdot\right] \\
& -2 \cdot\langle T\rangle(A \cdot A) n^{\prime \prime}+\left[6\langle A\rangle+12+(\langle A\rangle)^{2}\right] T \text { : } \\
& -1 / 2 \cdot\left[\langle A \cdot A\rangle T_{n}{ }^{n}+T_{n}^{n} \cdot\langle A \cdot A\rangle\right]+[6\langle T\rangle+2\langle A\rangle\langle T\rangle-2\langle A \cdot T\rangle] A_{n}{ }^{n} \\
& +\boldsymbol{\delta}_{s^{\prime}} \cdot\left(-\langle T\rangle \cdot\left[(\langle A\rangle)^{2}-\langle A \cdot A\rangle+4\langle A\rangle+4\right]+(2\langle A\rangle+6)\langle A \cdot T\rangle\right. \\
& -2\langle A \cdot A \cdot T\rangle) \equiv 0 .
\end{aligned}
$$

Note that $\left[\langle A\rangle, T_{n^{*}}\right]=0,\left[\langle T\rangle, A_{n^{*}}\right]=0$ but $\left[\langle A \cdot A\rangle, T_{n}{ }^{*}\right] \neq 0$.
[Theorem III]

$$
6(A \cdot A \cdot A) \cdot-[6\langle A\rangle+18] \cdot(A \cdot A) n^{n}+\left[3 \cdot(\langle A\rangle)^{2}-3 \cdot\langle A \cdot A\rangle+\right.
$$

Note on Unitary Symmetry in Sitrong Interactions

$$
\begin{aligned}
& +12 \cdot\langle A\rangle+12] \cdot A r_{r}^{n} \\
& \begin{aligned}
&-\Gamma(\langle A\rangle)^{2}+4(\langle A\rangle)^{2}+4\langle A\rangle-3\langle A\rangle \cdot\langle A \cdot A\rangle+2\langle A \cdot A \cdot A\rangle \\
&-6\langle A \cdot A\rangle] d_{n}=0
\end{aligned}
\end{aligned}
$$

Theorenn III can be obtained from theorem II by putting $T=A$. From this, we see that $(A \cdot A \cdot A \cdot A))^{n}$ can be expressed as a linear combination of $\delta_{r}{ }^{*}, A_{1}{ }^{n}$, $(A \cdot A){ }^{f}$ and $(A \cdot A \cdot A) \cdot A$ and so $\langle A \cdot A \cdot A \cdot A\rangle$ is a function of $\langle A\rangle,\langle A \cdot A\rangle$ and $\langle A \cdot A \cdot A\rangle$. So are $\left\langle A^{n}\right\rangle(n \geq 4)$, as has already been mentioned.

To prove thenrem II, we put $M_{0}^{*}=N_{+}^{*}-A_{*}^{*}$ in lemma II, and multiply T_{a}^{*} from the left, and using commutation relations Eqs. (A-1) and (A.4), we find our theorem II, when we change the indices suitably. We may give another direct proof of theorem II as follows. Any tensor Q and which is anti-symmetric with respect to any exchanges of two variables among a, β, γ and θ must be identically zero in U_{2}. Therefore, we have

$$
\sum_{Y}(-1)^{p} T_{*} * \cdot A_{A}{ }^{\beta} \cdot A_{v}{ }^{7} \cdot D_{\mu}{ }^{\prime}=0
$$

where P means permutations among α, β, γ and σ. Then puting $\pi=\beta, \gamma=\lambda$, $\theta=\nu$ and taking traces, we find our theorem II again after sumewhat long calculations.

Now, we shall prove our theorem I, Eq. (A.8). Using the commutation relations

$$
\begin{aligned}
& {\left[M_{2}, T_{n} \cdot\right]=3(A \cdot A \cdot T),-3(T \cdot A \cdot A):^{n}-3\left[M_{1}, T_{n}{ }^{*}\right],} \\
& \left\ulcorner M_{2}, S_{n}^{n}\right]=2(A \cdot S)_{n}^{*}-2(S \cdot A), n
\end{aligned}
$$

we can rewrite theorem II as follows.

$$
\begin{align*}
& 3(T \cdot A \cdot A)_{n}^{\prime \prime}-(T \cdot A)_{n}^{\prime} \cdot(2\langle A\rangle+9)+T_{t} \cdot\left[1 / 2 \cdot(\langle A\rangle)^{\prime}\right. \\
& -1 / 2 \cdot\langle A \cdot A\rangle+3\langle A\rangle+6] \\
& =-1 / 2 \cdot\left[M_{3},(T A){ }^{n}-(\langle A\rangle+3) T n^{n}\right]-1 / 3\left[M, T n^{n}\right] \\
& \div(A \cdot A) \cdot{ }^{n} \cdot\langle T\rangle-A \cdot^{n} \cdot[(\langle A\rangle+3) \cdot\langle T\rangle-\langle T \cdot A\rangle] \\
& -d_{n}\left([\langle A\rangle+3]\langle T \cdot A\rangle-\langle T \cdot A \cdot A\rangle-1 / 2 \cdot\langle T\rangle \cdot\left[(\langle A\rangle)^{2}-\langle A \cdot A\rangle+4\langle A\rangle+4\right]\right) \tag{-}
\end{align*}
$$

Now, in a given arreducible representation, M_{1} and M_{3} are coristants, wo the matrix elements $\left\langle\alpha\left\langle M_{2}, Q\right] \beta\right\rangle=0$ and $\left\langle\alpha\left[\left[M_{3}, Q\right]!\beta\right\rangle=0\right.$, hence we can orin. the first and second terms in the right-hand side of Eq. (A.9) in our cask Thus, we have

$$
\begin{aligned}
& 3(T \cdot A \cdot A)_{n}^{n}-(T \cdot A) r^{\prime \prime}(2\langle A\rangle+9)+T T_{n}^{n} \cdot\left[1 / 2 \cdot(\langle A\rangle)^{2}-1 / 2 \cdot\langle A \cdot A\rangle+9\langle A\rangle+6\right] \\
& \quad=(A \cdot A) n^{\prime} \cdot\langle T\rangle-A_{n}^{n} \cdot[(\langle A\rangle+3)\langle T\rangle-\langle T \cdot A\rangle] \\
& -\delta_{n}^{\prime \prime}([\langle A\rangle+3]\langle T \cdot A\rangle-\langle T \cdot A \cdot A\rangle-
\end{aligned}
$$

$$
\left.\left.-1 \cdot 2 T\rangle-(\langle A\rangle\rangle^{2}-\langle 1 \cdot A\rangle+4\langle A\rangle+4\right]\right) .
$$

Eq. (A.10) is true when we take any matrix elements in a given irreducible representation. Now, T^{\prime} ' is arbitrary, as long as it satisfies the commutation relation E.q. (A $\cdot 4$), and so we can replace T by $T \cdot A$ and $T \cdot A \cdot A$ in Eq. (A•10). For quantities like $T \cdot A \cdot A \cdot A$ or $T \cdot(A \cdot A \cdot A \cdot A)$, we use our theorem III and we can reduce them to a linear combination of $T, T \cdot A$ and $T \cdot A \cdot A$. Then, Eq. (A•10) gives three equations of the form

$$
\begin{align*}
& a_{1 i}(T \cdot A \cdot A)^{n}+a_{2 i}(T \cdot A)_{i}{ }^{n}: a_{3 i}(T)_{i}^{\prime \prime} \\
& =b_{1 i}(A \cdot A)_{n}^{*}+b_{3 i}(A) n^{n}+b_{3 i} \cdot \quad(i=1,2,3) \tag{A•10}
\end{align*}
$$

We can give an explicit form for a_{t}, and $b_{i j}$, but as it is a little complicated, here we simply remark that $a_{1,}$ are functions of only $\langle A\rangle,\langle A \cdot A\rangle$ and $\langle A \cdot A \cdot A\rangle$, i.e. $a_{i j}$ depend only upon f_{i}, f_{2} and f_{3} by Eq. (A.7), $b_{i j}$ depend upon f_{1}, f_{2} and f_{3}, and also upon $\langle T\rangle,\langle T \cdot A\rangle$ and $\langle T \cdot A \cdot A\rangle$, which are constants in the irreducible representation which we are considering. We can solve Eq. (A•10), since the determinant $\operatorname{det}\left(a_{i j}\right)$ is, in general, not identically zero; thus we get

$$
T_{v}^{\prime \prime}=a \cdot \hat{n}_{v}^{\prime \prime}+b \cdot A_{v}^{\prime}+c(A \cdot A)_{v^{\prime}}
$$

and two other equations for $(T \cdot A)$, and $^{\circ}(T \cdot A \cdot A) \therefore$ This is the desired formula theorem I.

Reference:

M. Ikeda, S. Ogawa and Y. Ohnuki, Prog. Theor. Phys. (1969), 715; 2 (1960), 1073 Y. Yamaguchi, Prog. Theor. Phys. Suppi. 11 (1960), 1 and 37.

M Gell-Mann, preprint: A Theory of Strong Interaction Symmetry, California Institute of Technology. March 15, 1961; Phys. Rev. 125 (1962), 1067.
4. A Gamba, R. E Marshak and S. Okubo, Proc. Nat. Acad. Sci. 45 (1959), 881
R. E. Marshak and S. Okubo, Nuovo Cimento is (1961), 1226.
5) A similar analysis has been done by W. E. Thirring, Nuclear Phys. 10 (1959), 97.
6) S Sakata, Prog. Theor. Phys. 16 (1956), 686.
7) H. Weyl, The Classical Groups (Princeton University Press, 1939).
8) H. Weyl. The Theory of (iroups and Quantum Mechamics (Dover Publications. Inc., 1931), see the last chapter
9) H. Weyl. reference 7), see Theorem (4.5. A), p. 135
10) H. Weyl, reference 7), use Theorem (7.10. A), pp, 231-232.
11) H. Weyl, reference 7), pp. 132 and 208.
2) Y. Hara and G. P. Singh, private communication
3) S. Coleman and S. L. Glaschow, Phys. Rev. Letters (1961), 423.
14) S. Okubo, R. E. Marshak, F. G. Sudarshan, W. Teutsch and S. Weinbers, Phys. Rev. 112 (1958), 665 .
15) K. Maturnoto, Prog. Theor. Phys. 18 (1956), 583.
S. Sawada and M. Yonezawa, Prog. Theor. Phyg. 23 (1960), 662.

Note on Un'tary Symmetry in Strong Interaction. II
——Excited States of Baryons-
Susumu OKUBO
Department of Physics, University of Tokyo, Tokyo and
Department of Physics, University of Rochester
Rochester, N.Y., U.S.A.
(Received February 15, 1962)
A classification of the baryon isobars has been investigated on basis of the unitary symmetry model which has been developed in a previous paper under the same title.

The purpose of this note is to investigate problems of baryon isobars from the viewpoint of the unitary symmetry model. ${ }^{1)}$ In this model, the mass differences among mesons and among baryons are neglected. As the result, one may wonder if such a model can be applicable to the study of the baryon isobars which appear in the meson-baryon scattering, where these mass differences are certainly not negligible. It, is almost probable that our model will present a very poor approximation for this problem if compared quantitatively. However, it might be possible that many of qualitative features could be roughly explained by our model. It is due to this hope that this work has been undertaken. So all results given in this paper should not be taken in its face value, but only in a qualitative sense. In this paper, we shall concern ourselves with the case of studies of Yamaguchi-Gell-Mann scheme,") since the case of the Sakata scheme has been treated already ${ }^{1,3)}$ and would not produce any new results. We may note that our results here could be applied also for study of meson-meson resonances or for baryon-baryon scattering resonances, with small changes.

As has been noted in the previous paper, ${ }^{1,21}$ the baryon octet (N, Ξ, Σ, A) and the meson octet ($K, \bar{K}, \pi, \pi_{0}{ }^{\prime}$) belong to irreducible representations $U_{3}(1,0,-1)$ of the 3 -dimensional unitary group U_{3}, and they are represented by two traceless tensors $N_{\nu}{ }^{\mu}$ and $f_{*}{ }^{*}$, respectively, as follows:

$$
\begin{align*}
& \pi_{+}=f_{1}^{2}, \pi_{-}=f_{2}^{1}, \pi_{0}=\frac{1}{\sqrt{2}}\left(f_{1}^{1}-f_{3}^{3}\right), \pi_{0}^{\prime}=-\frac{3}{\sqrt{6}} f_{3}^{3}, \\
& K_{+}=f_{1}^{3}, K_{0}=f_{2}^{3}, \vec{K}_{+}=f_{3}^{1}, \widetilde{K}_{0}=f_{8}^{2}, \tag{1}\\
& \Sigma_{+}=N_{1}^{3}, \Sigma_{-}=N_{3}^{1}, \Sigma_{0}=\frac{1}{\sqrt{2}}\left(N_{2}^{1}-N_{3}^{2}\right), A=-\frac{3}{\sqrt{6}} N_{3}^{3},
\end{align*}
$$

$$
p=N_{1}^{3}, n=N_{2}^{3}, \Xi_{-} N_{3}^{1}, \Xi_{1} \cdots N_{3}^{2} .
$$

We may note that the same representation licf. (1) has been given by many others ${ }^{4}$ in matrix notations. Now, as has been remarked in (i), the baryon isobars $N^{*}, N^{* *}, Y^{*}$ and $)_{i}^{*}$ have to belong to some of the following irreducible representations in the right-hand side of the next equation.

$$
U_{3}(1,0,-1) \times U_{3}(1,0,-1)=2 U_{3}(1,0,-1)+U_{3}(0,0,0)+U_{3}(2,0,-2)
$$

$$
\begin{equation*}
+U_{2}(2,-1,--1)+U_{3}(1,1,-2) \tag{2}
\end{equation*}
$$

The same is also true for meson-meson scattering isobars or for baryon-baryon scattering resonances, since both the mesons and the baryons belong to the same irreducible representations $U_{3}(1,0,-1)$, and therefore their scattering states to the product representation $U_{3}(1,0,-1) \times U_{3}(1,0,-1)$. Thus all results given in this paper can be immediately translated from our baryon isobar case into the meson-meson and baryon-baryon scattering cases, but here we study only in the case of meson-baryon scattering problem. Below, we list a classification of particles contained in each of these irreducible representations. This can be easily done by applying the technique developed previously. ${ }^{\text {b }}$
(a) $U_{3}(1,0,-1)$

$$
(I=1 / 2, Y=1), \quad(I=1 / 2, \quad Y=-1), \quad(I=1, Y=0), \quad(I=0, Y=0) .
$$

(b) $\quad U_{3}(0,0,0)$

$$
(I=0, Y=0)
$$

(c) $\quad U_{3}(2,0,-2)$

$$
(I=2, Y=0),(I=3 / 2, Y=+1),(I=3 / 2, Y=-1)
$$

$$
(I=1, Y=2), \quad(I=1, Y=-2), \quad(I=1, Y=0)
$$

$$
(I=1 / 2, Y=1), \quad(I=1 / 2, Y=-1), \quad(I=0, Y=0)
$$

(d) $\quad U_{3}(2,-1,-1)$

$$
(I=3 / 2, Y=1),(I=1, Y=0),(I=1 / 2, Y=-1)(I=0, Y=-2) .
$$

(e) $\quad U_{3}(1,1,-2)$

$$
(I=3 / 2, Y=-1),(I=1, Y=0),(I=1 / 2, Y=+1)(I=0, Y=+2)
$$

where Y stands for hypercharge, so that $Y=S+1$ in terms of the strangeness S in the present case. First of all, we note that a particle with $I=1$ and $Y=0$ is contained in all representations except in $U_{s}(0,0,0)$. Thus, we cannot identify the representation to which $Y_{1}{ }^{*}$ belongs. We shall investigate all of these in turn.
Case (a): $\quad U_{3}(1,0,-1)$
If $Y_{1}{ }^{*}$ belongs to this representation, we have to identify other three particles

S. Okubo

in this representation. Obviously, we can identify the particle with ($I=0, Y=0$) as $Y_{0}{ }^{*}$, and the one with $(I=1 / 2, Y=1)$ as the second pion-nucleon resonance $N^{* *}$, while the one with $(I=1 / 2, Y=-1)$ can be considered as an excited state of Ξ. Now, the second resonance $N^{* *}$ of the pion-nucleon system is to be considered likely to have the character of a $d_{3: 2}$ resonance. ${ }^{6)}$ Accordingly, we have to assign the same $d_{3 / 2}$ resonances for all $Y_{1}{ }^{*}, Y_{0}{ }^{*}$ and Ξ^{*} in this case. This is not so bad, because the $\operatorname{spin}^{b^{\prime}}$ of $Y_{1}{ }^{*}$ appears to be $3 / 2$. However, we should remark that it is unnecessary to identify the ($I=1 / 2, Y=1$) state as $N^{* *}$. As has been stated in the beginning, our approximation is quite poor, and as the result the state with ($I=1 / 2, Y=1$) might disappear when we take account of the mass differences among meson octet and among the baryon octet. The above statement is meant to indicate the following: "When we neglect these mass differences, the state with $(I=1 / 2, Y=1)$ then certainly exists because of U_{3} symmetry. Now, we have to change the masses of the pion and the kaon and of the nucleon and the E-particle from the common values. We may suppose that we can take such a procedure continuously with respect to these masses. Then, in course of these operations, the state with ($I=1 / 2, Y=1$) may cease to represent a resonance state." If such thing could ever happen, then we cannot say anything about the spin of $Y_{1}{ }^{*}$ and $Y_{0}{ }^{*}$. But we do not adopt such a view here.

The irreducible representation $U_{3}(1,0,-1)$ can be characterized by a traceless tensor $T_{\nu}{ }^{\mu}$ whose identifications with the real isobar states can be ex. pressed exactly in the same way as Eq. (1). Let us consider the decay of these isobars into one baryon and one meson states. We can form the following two invariant expressions for these processes:

$$
\begin{align*}
& S_{1}=M_{\nu}{ }^{\mu} f_{\lambda}{ }^{\nu} T_{\mu}{ }^{\lambda} \\
& S_{\mathrm{s}}=M_{\nu}{ }^{\mu} f_{\nu}{ }^{\lambda} T_{\lambda}{ }^{\nu} \tag{3}
\end{align*}
$$

where we have put $M_{\nu}{ }^{\mu}=\left(N_{\mu}{ }^{n}\right)^{\dagger}$ for creation operators of baryons. This oc currence of two independent forms corresponds to the double appearance of $U_{3}(1,0,-1)$ representation in the product $U_{3}(1,0,-1) \times U_{3}(1,0,-1)$ as we can see from Eq. (2), and thus the same situation does not happen to other representations in the right-hand side of Eq. (2). At any rate, we cantor determine the branching ratio of $Y_{1}^{*} \rightarrow V_{-\pi}$ against $Y_{1}^{*} \rightarrow .1+\pi$ in our case. unless we make some additional assumptions. One rempting hypothesis is to assume the invariance of our theory under the transpose operation; i.e. we assume the invariance under interchanges of lower and upper suffixes. By this operation, a tensor $F_{t}{ }^{\mu}$ is changed into $F_{\mu}{ }^{\circ}$, so that $S_{1} \mapsto S_{2}$ in Eq. (3) and we have the following from Eq. (1).

$$
\begin{align*}
& \bar{\pi}_{+} \leftrightarrow \pi_{-}, \bar{n}_{0} \leftrightarrow \pi_{0}, K_{+} \leftrightarrow \bar{K}_{1}, K_{0} \leftrightarrow \bar{K}_{0}, \pi_{0}^{\prime} \leftrightarrow \pi_{0}^{\prime}, \\
& \Sigma_{+}^{\prime} \leftrightarrow \Sigma_{-}^{\prime}, \Sigma_{0}^{\prime} \leftrightarrow \Sigma_{0}^{\prime}, p \leftrightarrow \Xi_{-}, n \leftrightarrow \bar{\Xi}_{0}, 1 \leftrightarrow, 1 . \tag{4}
\end{align*}
$$

We may note that similar transformations have already been proposed by many authors. ${ }^{7}$ Then, we can compute the kinematical weights for the various processes, since the only invariant expression is now $S_{1}+S_{2}$ instead of an arbitrary linear combination of S_{1} and S_{3} of Eq. (3). We list our results obtained in this fashion in the following tables. In Table I the relative weights have their origin in numerical coefficients due to generalized Clebsch-Gordon coefficients. If we could neglect the mass differences among baryons, then the widths for these processes are proportional to the relative weights. However, we should take account of the baryon mass differences at least for the calculation of the phasevolume. Thus, for evaluations of relative widths, we should multiply to these weights the d-wave phase volume which is given by

$$
\begin{equation*}
\frac{1}{M^{2}} \cdot k^{5} \tag{5}
\end{equation*}
$$

where M is the mass of the mother isobar, and k is the magnitude of the spatial momentum of the meson in the rest system of the isobar.

Table I. Relative weights and widths for decays in case (a).

type of process	relative weight	relative width
$\left(N^{* *}\right)_{+} \rightarrow\left\{\begin{array}{l}n+\pi_{+} \\ p+\pi_{0}\end{array}\right.$	1	1
$\left(Y_{1}{ }^{*}\right)_{+} \rightarrow \Lambda+\pi_{+}$	$4 / 9$	0.014
$\left(Y_{1}{ }^{*}\right)_{+} \rightarrow \Sigma_{+, 0}+\pi_{0,4}$	0	0
$\left(Y_{0}{ }^{*}\right)_{n} \rightarrow \Sigma_{ \pm, 0}+\pi_{F, 0}$	$4 / 3$	0.008
$(\Xi)_{-}{ }^{*} \rightarrow \Xi_{0,-}+\pi_{-, 0}$	1	$?$

One interesting aspect is that $Y_{1}{ }^{*}$ does not decay into a pion and a Σ, in agreement with experiment. However, this is not characteristic only of the present scheme, since the representation $U_{3}(2,0,-2)$ also forbids $Y_{1}{ }^{*} \rightarrow \underline{y}^{\prime}+\pi$. Actually, it is a natural consequence of the invariance of theory under the transpose operation Eq. (4), as has been shown by Sakurai. ${ }^{7)}$ As we shall see shortly, the representation $U_{3}(2,0,-2)$ is also invariant under this operation.

Now, we will investigate the case (c), since the case (b) is quite trivial. Case (c): $U_{3}(2,0,-2)$

This is a 27-dimensional representation, which is characterized by a tensor $T_{\alpha B}^{\beta / \mu}$ having the following properties:

$$
\begin{equation*}
T_{\alpha \beta}^{\mu \nu}=T_{\alpha \beta}^{\nu \beta}=T_{\beta \alpha}^{\mu \nu}, T_{\beta \beta}^{\mu \nu}=0 . \tag{6}
\end{equation*}
$$

We can form a base of the unitary representation $U_{3}(2,0,-2)$ from this $T_{\alpha, \beta}^{\beta \nu}$, which is given by
(i) $\quad(I=2, Y=0)$

$$
T_{11}^{22}, T_{13}{ }^{12}-T_{11}^{12}, \frac{1}{\sqrt{6}}\left(T_{11}^{11}+T_{22}^{12}-4 T_{12}{ }^{12}\right), T_{12}^{11}-T_{22}^{12}, T_{42}^{11}
$$

(ii) $\quad(I=3 / 2, Y=1)$

$$
\sqrt{ } \overline{2} T_{12}{ }^{28}, \sqrt{\frac{2}{3}}\left(2 T_{12}^{28}-T_{11}{ }^{18}\right),-\sqrt{\frac{2}{3}}\left(2 T_{12}^{18}-T_{32}{ }^{28}\right),-\sqrt{2} T_{23}{ }^{13} .
$$

(iii) $\quad(I=3 / 2, Y=-1)$

$$
\sqrt{2} T_{13}{ }^{23},-\sqrt{\frac{2}{3}}\left(2 T_{13}{ }^{13}-T_{23^{29}}{ }^{29}\right),-\sqrt{\frac{2}{3}}\left(2 T_{33^{11}}-T_{13}{ }^{11}\right), \sqrt{2} T_{23^{11}}
$$

(iv) $\quad(I=1, Y=2)$

$$
T_{11}{ }^{23}, \sqrt{ } 2 T_{12}^{35}, T_{23}^{38}
$$

(v) $\quad(I=1, Y=-2)$

$$
T_{s 8}{ }^{13},-\sqrt{2} T_{83}{ }^{18}, T_{s 3}^{11}
$$

(vi) $\quad(I=1, Y=0)$

$$
\sqrt{5} T_{31}^{38}, \sqrt{\frac{5}{2}}\left(T_{23}^{28}-T_{18}{ }^{18}\right),-\sqrt{5} T_{33^{13}}
$$

(vii) $\quad(I=1 / 2, Y=1)$

$$
\sqrt{\frac{10}{3}} T_{81}^{38}, \quad \sqrt{\frac{10}{3}} T_{82}
$$

(viii) $\quad(I=1 / 2, Y=-1)$

$$
\sqrt{\frac{10}{3}} T_{\mathrm{ss}}^{23},-\sqrt{\frac{10}{3}} T_{a a^{18}} .
$$

(ix) $\quad(I=0, Y=0)$

$$
\sqrt{\frac{10}{3}} T_{{ }^{38}}{ }^{88}
$$

In the table listed in the above, all terms in a given sub-classification as (I, Y) have the same transformation properties as spherical harmonics $Y_{M^{\prime \prime}}(M=I, I-1$, $\cdots,-I$) in the decreasing order from the left to the right. The relative numerical coefficients belonging to different sub-classifications with different (I, Y) have been determined from a requirement that

$$
\begin{equation*}
\sum_{A, N, \alpha, \beta}\left(T_{a \beta}^{\mu \beta}\right) * T_{a \beta}^{\mu \beta}=\sum_{A=1}^{97}\left(X_{A}\right) * X_{A} \tag{7}
\end{equation*}
$$

where $X_{\Delta}(A=1, \cdots, 27)$ represents each term listed in the above. The condition Eq. (7) shows that these $27 X_{\mathbf{A}}$'s form the desired unitary base of our representation $U_{3}(2,0,-2)$. Thus, we can identify each X_{A} with each isobar states appearing in $U_{\mathbf{3}}(2,0,-2)$ as in Eq. (1).

In this case, we have an undesired isobar with ($I=1, Y=2$), which could be detected in kaon-nucleon scattering but so far not found. However, we may
$F_{\alpha}^{\text {du }}$ having the following properties:

$$
\begin{equation*}
F_{\alpha \beta}^{\mu \nu}=F_{\beta \alpha}^{\mu \nu}=-F_{\alpha \beta}^{\nu \mu}, F_{\mu \beta}^{\mu \nu}=0 . \tag{9}
\end{equation*}
$$

The unitary base $X_{A}(A=1, \cdots, 10)$ of $U_{3}(2,-1,-1)$ can be formed from $F_{\alpha \beta}^{\mu \nu}$ in the same way as in the previous case, giving that
(i) $\quad(I=3 / 2, Y=1)$

$$
F_{11}^{23}, \sqrt{3} F_{12}^{23}\left(\equiv-\sqrt{3} F_{12}^{13}\right),-\sqrt{3} \cdot F_{12}^{13}\left(\equiv \sqrt{3} \overline{3} F_{32}^{23}\right),-F_{22}^{18} .
$$

(ii) $\quad(I=1, Y=0)$.

$$
\sqrt{3} F_{13}^{23}\left(\equiv \sqrt{3} F_{11}^{12}\right), \sqrt{6} F_{12}^{12}\left(\equiv-\sqrt{ } 6 F_{13}{ }^{13} \equiv \sqrt{ } 6 F_{23}{ }^{23}\right),
$$

$$
-\sqrt{3} F_{23}^{13}\left(\equiv \sqrt{\overline{3}} F_{32}{ }^{19}\right)
$$

(iii) $\quad(I=1 / 2, Y=-1)$
$\sqrt{3} F_{13}{ }^{12}\left(\equiv \sqrt{3} F_{33}{ }^{23}\right),-\sqrt{3} F_{33}{ }^{18}\left(\equiv \sqrt{3} F_{23}{ }^{18}\right)$.
(iv)

$$
\begin{aligned}
& (I=0, \quad Y=-2) \\
& F_{33^{19}} .
\end{aligned}
$$

It is interesting to note that we have a particle with the strangeness -3. The decay matrix element is again unique and has the same form as Eq. (7') when we replace $T_{\alpha \beta}^{\mu \nu}$ by $F_{\alpha \beta}^{\mu \nu}$. Then, once again we can compute the weights and the relative widths. Now, we have the decay $Y_{1}{ }^{*} \rightarrow \pi+\Sigma$ in this case.

Table III. Relative weights and widths for decays in the case (d).

type of decay	relative weight	relative width
$\left(N^{*}\right)_{++} \rightarrow p+\pi_{+}$	1	1
$\left(Y_{1}\right)_{+} \rightarrow A_{+}+\pi_{+}$	$1 / 2$	0.30
$\left(Y_{1}{ }^{*}\right)_{+-} \rightarrow \Sigma_{0_{+}+}+\pi_{+, 0}$	$1 / 3$	0.043

Case (e): $U_{\mathbf{3}}(1,1,-2)$

This is the contragradient representation of $U_{3}(2,-1,-1)$; i.e. the one which can be obtained from $U_{3}(2,-1,-1)$ by the transpose operation. Thus, it is specified by a tensor $G_{a \beta}^{\mu \nu}$ satisfying the following conditions.

$$
\begin{equation*}
G_{\alpha \beta}^{\mu \nu}=G_{\alpha \beta}^{\mu}=-G_{\beta \alpha}^{\mu \nu}, G_{\mu \beta}^{\mu \nu}=0 . \tag{10}
\end{equation*}
$$

Similarly, we can construct the unitary base by
(i) $\quad(I=3 / 2, Y=-1)$
$G_{13}{ }^{22},-\sqrt{3} G_{13}{ }^{12}\left(\equiv \sqrt{3} G_{23}{ }^{23}\right),-\sqrt{3} G_{23}{ }^{12}\left(\equiv \sqrt{3} G_{18}{ }^{11}\right), G_{23}{ }^{11}$.
(ii) $\quad(I=1, Y=0)$
$-\sqrt{3} G_{18}{ }^{28}\left(\equiv \sqrt{3} G_{12}{ }^{28}\right),-\sqrt{6} G_{12}{ }^{12}\left(\approx \sqrt{6} G_{18}{ }^{13}=-\sqrt{6} \quad G_{98}{ }^{35}\right)$,
$\sqrt{3} G_{23}{ }^{18}\left(\equiv \sqrt{3} G_{12}{ }^{12}\right)$.
(iii) $\quad(I=1 / 2, Y=1)$
$\sqrt{3} G_{13}{ }^{33}\left(=-\sqrt{3} G_{13}{ }^{23}\right), \sqrt{3} G_{13}^{18}\left(\equiv \sqrt{3} G_{23}{ }^{33}\right)$.
(iv)

$$
\begin{gathered}
(I=1 / 2, Y=+2) \\
G_{13}{ }^{35} .
\end{gathered}
$$

We may identify ($I=1, Y=0$) and ($I=1 / 2, Y=1$) with $Y_{1}{ }^{*}$ and $N^{* *}$, respectively, and we can compute the widths in a similar fashion.

Table IV. Relative weights and wirths for decays in the case (e).

type of decay	relative weight	relative width
$\left(N^{* *}\right)_{+} \rightarrow N+\pi$	1	1
$\left(Y_{1}{ }^{*}\right)_{+\rightarrow \Sigma_{+, 0}+\pi_{0_{+}+}}$	$2 / 3$	1.9×10^{-8}
$\left(Y_{1}^{*}\right)_{+\rightarrow} \rightarrow A+\pi_{+}$	1	3.2×10^{-8}

Finally, we shall give an application of the mass formula, which has been derived in (I). For particles belonging to the same irreducible representation, we have a relation among masses of these particles. It is given by

$$
\begin{equation*}
M=a+b \cdot Y+c \cdot\left[1 / 4 Y^{2}-I(I+1)\right] \tag{11}
\end{equation*}
$$

where a, b and c are some constants. This relation has been proved in the lowest order perturbation of a certain type of interactions causing the massdifferences, but in all orders of the U_{B}-conserving interactions. As has been stated in the beginning, this would not be a good approximation for the mesonbaryon scattering problem, where the mass differences between the pion and the kaon is quite important. Thus, we should not expect that our results to be given in the below have some quantitative meanings. At any rate, Eq. (11) has three unknown constants, a, b and c. Thus, we have six relations among masses of particles contained in $U_{s}(2,0,-2)$. If we use the experimental masses of $Y_{1}{ }^{*}, Y_{0}{ }^{*}$ and N^{*}, then the masses of six other particles in $U_{3}(2,0,-2)$ can be computed in terms of these three masses. In this way, we have

$$
\begin{align*}
& M(I=2, Y=0) \simeq 1345 \mathrm{Mev} \\
& M(I=3 / 2, Y=-1) \simeq 1505 \mathrm{Mev} \\
& M(I=1, Y=2) \simeq 1125 \mathrm{Mev} \\
& M(I=1, Y=-2) \simeq 1665 \mathrm{Mev} \\
& M(I=1 / 2, Y=1) \simeq 1265 \mathrm{Mev} \\
& M(I=1 / 2, Y=-1) \simeq 1535 \mathrm{Mev} \tag{12}
\end{align*}
$$

A serious trouble is that the mass of the particle with ($I=1, Y=2$) is so low that it is stable against the decay into a nucleon and a kaon. However, this difficulty may not be so serious, since such state may disappear as remarked

S. Okubo

already. We may note that we have a similar trouble in the case of the Sakata scheme." It is also interesting to compare Eqs. (11) and (12) to those obtained in the case of the global symmetry model, ${ }^{9,}$ and to those of the Sakata scheme. ${ }^{11,10)}$

We have made a group-theoretical classification of isobar states. As has been mentioned in the beginning, almost all of the results given in this paper are also immediately applicable to the study of the meson-meson resonances or of the baryon-baryon scatterings, with small modifications. However, we would not go into details for these cases. From our analysis on baryon isobars, it seems to be difficult to identify the best irreducible representation for these at the moment. One interesting problem is to determine the parity of the resonances so as to enable us to distinguish whether the resonances are of the $p_{3,2}$ or $d_{3} / 2$ character.

Acknowledgement

The author would like to express his thanks to Professor H. Miyazawa and other members of the University of Tokyo for their hospitality.

References

1) S. Okubo, Prog. Theor. Phys. 27(1962), 949. This paper will hereafter be referred to as (I).
2) Y. Yamaguchi, private communication, 1960.
M. Gell-Mann, Phys. Rev. 125 (1962), 1067.
3) M. Ikeda, S. Ogawa and Y. Ohnuki, Prog. Theor. Phys. 22 (1959), 715; 23 (1960), 1073.
4) For example, Y. Ne'eman, Nuclear Phys. 26 (1961), 222.
A. Salam and J. C. Ward, Nuovo Cimento 20 (1961), 419
5) J. O. Maloy et al., Phys. Rev. 122 (1961), 1338.
B. J. Moyer, Rev. Mod. Phys. 33 (1961), 367.
6) R. P. Ely et al., Phys. Rev. Letters 7 (1961), 461.
7) For example, G. Feinberg and R. E. Behrends, Phys. Rev. 115 (1959), 745. J. J. Sakurai, Phys. Rev. Letters 7 (1961), 426.
8) M. Uehara, talk given at a seminar held in Kyoto, Oct., 1961.

It appears that J. Franklin also has done a similar analysis. This was pointed out by J. J. Sakurai in a footnotè of his paper which has appeared in Phys. Rev. Letters 7 (1961), 355.
9) R. E. Marshak and S. Okubo, Prog. Theor. Phys. 26 (1961), 380.
T. D. Lee and C. N. Yang, Phys. Rev. 122 (1961), 1954.
10) K. Matumoto, Prog. Theor. Phys. 16 (1956), 583.
S. Sawada and M. Yonezawa, Prog. Theor. Phys. 23 (1960), 662.

SPIN AND UNITARY SPIN INDEPENDENCE OF STRONG IITTERACTIONS*
F. Gürsey ${ }^{\dagger}$ and L. A. Radicati ${ }^{\ddagger}$

Brookhaven National Laboratory, Upton, New York (Received 15 July 1964)

The purpose of this Letter is twofold. We want first to point out that the group $\mathrm{SU}(4)$ introduced by Wigner ${ }^{1}$ to classify nuclear states can be extended to the relativistic domain and it is, therefore, relevant for particle physics. We will next show that when strangeness is taken into account the group $\mathrm{SU}(4)$ becomes enlarged $\mathrm{to}^{2} \mathrm{SU}(6)$ which contains, as a subgroup, $\mathrm{SU}(3) \otimes[\mathrm{SU}(2)]_{q} .[\mathrm{SU}(2)]_{q}$ is the unitary subgrou (little group) of the Lorentz group that leaves invariant the momentum four-vector q.
The group we consider here embodies $\operatorname{SU}(3)$ and the ordinary spin in the same way as Wigner's \$U(4) embodies isotopic spin and ordinary spin. Preliminary results on the classification of particles based on $\operatorname{SU}(6)$ seem encouraging enough to motivate a study of this group. ${ }^{3}$

We begin by discussing the first point. Let us assume that the ρ, ω, and π mesons are coupled to the nuclear field through a symmetrical Lagrangian of the form
$L_{N M}$

$$
=g\left\{\overline{\psi \gamma} \gamma_{\mu} \psi \psi \omega_{\mu}+\bar{\phi} \gamma_{\mu} \tau^{a} \psi \rho_{\mu}^{a}+i \psi \gamma_{5} \gamma_{\mu} \tau^{a} \psi \varphi_{\mu}^{a}\right\}
$$

where a denotes the isotopic spin index. Let us further impose the subsidiary conditions

$$
\begin{gather*}
\partial_{\mu} \omega_{\mu}=0, \quad \theta_{\mu}{ }_{\mu}^{a}=0, \\
\partial_{\lambda} \varphi_{\mu}^{a}-\partial_{\mu} \varphi_{\lambda}^{a}=0, \tag{2}
\end{gather*}
$$

which insure that $\omega_{\mu}, \rho_{\mu}^{a}, \varphi_{\mu}^{a}$ describe, respectively, particles with ($\left.J=1^{-}, T=0\right),\left(J=1^{-}, T=1\right)$,
and ($J=0^{-}, T=1$). The pion field π^{a} is related to the axial vector field $\varphi_{\mu}{ }^{a}$ through $\varphi_{\lambda}{ }^{a}=(1 / \mu) \partial_{\lambda}$ μ being the mass common to all mesons.
The conditions (2) are compatible with the tions of motion only if L includes, besides L_{N} [Eq. (2)], additional terms such that the mes (ρ, ω, π) are coupled to conserved currents. ω and ρ are coupled to the conserved baryon isotopic-spin currents, respectively, while the pion is coupled to a conserved axial-vector cur rent.
It can now be shown ${ }^{4}$ that L is invariant unde a group ${ }^{5} S_{4}$ which induces for each momentum of the mesons a unitary unimodular transforma tion among the 15 degenerate states ω, ρ, and In counting the multiplicity we include, for a gi momentum, the spin states just as for Wigner' supermultiplets. Under this transformation th nucleon ($S=\frac{1}{2}, T=\frac{1}{2}$) transforms like the fourdimensional representation of the group.
In the nonrelativistic limit, $L_{N M}$ gives rise a potential which describes spin-and isospindependent exchange forces (Majorana forces) tween nucleons. This potential is, therefore, variant under Wigner's group SU(4). If now a purely spin-dependent perturbation is introduc ω and ρ remain degenerate whereas the pion sp from them within the supermultiplet. We note ω, ρ, and π are associated with the adjoint rep sentation of $\operatorname{SU}(4)$. When this representation i reduced under the subgroup $\mathrm{SU}(2) \otimes[\mathrm{SU}(2)]_{q}$ it splits into states with $\left(J=1^{-}, T=0\right),\left(J=1^{-}, T=\right.$ and ($J=0^{-}, T=1$).
These considerations are readily extended to include strange particles. In this case the SU(
sotopic-spin group is replaced by SU(3) so that jegtopic-spiner into a group \mathcal{S}_{8} whose little group $g_{6}[\operatorname{su}(6)]_{q}$ which admits $\mathrm{SU}(3) \otimes[\mathrm{SU}(2)]_{q}$ as a subroup.
The representation of $\operatorname{SU}(6)$ can be charactertive integers $\left(\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{8} \lambda_{s}\right)$ where the λ_{i} 's. are functions of the five Casimir operators. Taare functons some of the representations of $\operatorname{SU}(6)$ ble I shows some oir $\operatorname{SU}(3)$ and spin structure. The together with their $S U(3)$ and spin structure. Th gmbols (m, n) in the third column refer
$\operatorname{sU}(3)$ and spin multiplicity, respectively. The lowest nontrivial representation (10000) has six dimensions. It represents a fundamenta $\mathrm{gU}(3)$ triplet with (ordinary) spin $\frac{1}{2}$. Its $\mathrm{SU}(3)$ QSU(2) content is $(3,2)$. The conjugate representation (00001) describes the antiparticle and its content is $\left(3^{*}, 2\right)$.
A Lagrangian similar to (1) can be written which couples invariantly the fundamental triplet to mesons corresponding to the 35 -dimensional adjoint representation. When a spin-dependent perturbatlon is introduced the 35 states split into a pseudo scalar octet and a.degenerate vector nonet ${ }^{9}$ with magative parity. These can be identified with the observed (π, K, η) and $\left(\rho, \omega, K^{*}, \varphi\right)$ multiplets. SU(6) provides, therefore, a natural explanation of the degeneracy of the vector octet and the vector singlet in the nonet. - All other meson-meson resonances must belong to self-conjugate representations of $\operatorname{SU}(6)$. Possible candidates are (00000) with even or odd parity, (10001) with even parity, (11011) with even or odd parity, etc. The baryon octet and the $J=\frac{3}{8}$ decuplet can be grouped as a 56-dimensional representation obtained from the symmetrical combination of three fundamental triplets. The reduction of the direct product of $\underline{6} \otimes \underline{6} \otimes \underline{6}$ gives rise to three representa-

Table I. Some representations of $\operatorname{SU}(6)$ and their unitary spin and spin content.

Labeling $\left(\lambda_{1} \lambda_{1} \lambda_{y} \lambda_{1} \lambda_{5}\right)$	Dimensions $D\left(\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{1} \lambda_{8}\right)$	Unitary spin and apin multiplicities (n, m)
(00000)	1	$(1,1)$
(10000)	6	$(3,2)$
(00001)	6^{*}	$\left(3^{*}, 2\right)$
(01000)	15	$\left(3^{*}, 3\right),(6,1)$
(00100)	20	$(8,2),(1,4)$
(20000)	21	$(8,3),\left(3^{*}, 1\right)$
(10001)	35	$(8,3),(8,1),(1,3)$
(1000)	56	$(10,4),(8,2)$
(11000)	70	$(10,2),(8,4),(8,2),(1,2)$

tions with 20, 70, and 56 dimensions. The fact that the ground state of the three-body configuration is symmetrical (56 -dimensional representation) in the spin and unitary-spin variables implies that the two-body forces between them are repulsive. This seems to exclude a sçeme based on only three fundamental quarks ${ }^{7}$ whereas it is consistent with model II discussed in Appendix IV of reference 6. The connection of higher representations with possible baryon resonances is discussed by Pais. ${ }^{3}$

The splitting between the $J=0^{-}$octet and the J $=1^{-}$nonet suggests that the mass operator contains a spin-dependent term which can only be a function of $J(J+1)$: A simple mass formula for an $\mathrm{SU}(6)$ supermultiplet is the mass squared ${ }^{6}$ formula

$$
\mu^{2}=\mu_{0}^{2}+\alpha J(J+1)+\gamma\left[T(T+1)-\frac{1}{4} Y^{2}\right]
$$

for mesons and

$$
M=M_{0}+a J(J+1)+b Y+c\left[T(T+1)-\frac{1}{4} Y^{2}\right]
$$

for baryons.
These are by no means the most general mass formulas that can be written on the basis of a broken $\mathrm{SU}(6)$ symmetry. Thé mass formula problem is further discussed by Pais. ${ }^{3}$
The interaction Lagrangian with conserved cur rents is generated from the free Lagrangian through a gauge transformation ${ }^{4}$ associated with the group B_{8}. As in the case of the electromagnetic interaction this implies parity conservation for the strong interactions invariant under g_{s}. Hence all the states of an $\operatorname{SU}(6)$ supermuitiplet must have the same parity. Our scheme is, therefore, different from others that have been discussed recently ${ }^{2}, 9,10$; in particular it does not predict 0^{+}and 1^{+}mesons degenerate with the existing 0^{-}and 1^{-}mesons. The degenerate states associated with the meson states for given momentum q and given $\mathrm{SU}(6)$ quantum numbers are simply the states corresponding to the opposite momentum and the same $\operatorname{SU}(6)$ quantum numbers. It is a pleasure to thank G. C. Wick for very constructive criticism and A. Pais for stimulating discussions.
*Work supported by the U. S. Atomic Energy Commission.
On leave from the MIddle East Technical University Ankara, Turkey.
TOm leave from Scuola Normale Superiore, Pisa, Italy ${ }^{1}$ E. P. Wigner, Phys. Rev. 51, 105 (1937). For recent evidence on the valdity of the supermultiplet model.
see P. Franzini and L. A. Radicati, Phys. Letters 6, 322 (1963).
${ }^{2}$ The group $\mathrm{SU}(6)$ has been suggested in a somewhat different context by M. Gell-Mann, to be published. Gell-Mann's point of view 1s, however, different from the one discussed here, being based on the algebra of the conserved and quasiconserved currents.
${ }^{3}$ For a more detailed analysis of the applications, see A. Pals, following Letter [Phys. Rev. Letters 13, (1964)].
${ }^{4}$ F. Gürsey and L. A. Radtcati, to be published.
${ }^{5}$ The group gi is noncompact and may be regarded as an extension of the Lorentz group by means of the 180topic spin group. The generators of 8 are the covariant spin operators, the isotoplc spin operators and their
products. The little group of $\mathrm{g}_{\mathbf{1}}$ for fixed momentum q is $[\mathrm{SU}(4)] q$.
${ }^{6}$ F. Gürsey, T. D. Lee, and M. Nauenberg, Phys. Rev. 135, B467 (1964).
${ }^{\prime}$ M. Gell-Mann, Phys. Letters 8, 214 (1964).
${ }^{3}$ It is clear that the fundamental triplets will be coupled to the mesons through F-type coupling only. Since the baryons do not belong to the lowest representation of SU(6), the gauge operators generate a larger algebra which produces F-type couplings with the vector mesons and F - and D-type couplings with the pseudoscalar mesons.
${ }^{3}$ P. G. O. Freund and Y. Nambu, Phys. Rev. Letters 12. 714 (1964).
${ }^{10}$ A. Salam and J. C. Ward, unpublished.

IMPLICATIONS OF SPIN-UNITARY SPIN INDEPENDENCE*

A. Pais ${ }^{\dagger}$
Brookhaven National Lsboratory, Upton, New York
(Received 15 July 1084)

It is the purpose of this note to discuss further the possibility ${ }^{1}$ that a broken $[S U(6)]_{ष}^{+}$is a useful symmetry in strong interactions.

To introduce some questions which arise, consider Wigner's nuclear SU(4)-multiplet theory.' Representations of this group label multinucleon states in a given nuclear l shell. This is useful largely because spin-orbit coupling can be neglected to a good approximation for low-lying states. Spin-orbit forces will lead to some recoupling and accordingly the classification under SU(4) gets less good for higher excitations, as emphasized by Wigner.

Likewise for $\mathrm{SU}(\mathrm{B})$. Call (M) ${ }_{\square}$ and (E_{q} the respective meson and baryon representations. For $M-B$ scattering one must reduce out $\{(B)$ $\otimes(M)\}_{\alpha}$ where α represents the orbtal variables. After taiking out the center of mass, one can choose $\alpha=\left(k, l, l_{k}\right), l=$ orbital angular momentum. For each partial wave there may be recoupling between l and the (B, M) spins. Where this is unimportant, we can just reduce out $(B) \otimes(M)$.

This leads to a maximum possible spin for the baryon resonances, namely with the proposed choice of representations. ${ }^{1}$ Higher spins are a sure sign of (l, s) coupling. In the region where this starts to happen (it appears ${ }^{3}$ to be $\sim 2 \mathrm{BeV}$), the assignment of resonances to "new" $\operatorname{SU}(6)$ multiplets becomes considerably more compllcated.

In view of this complexdty, to may be asked whether it is necessary to put $(8,2)$ and $(10,4)$ in 56, as proposed, ${ }^{1}$ because the breakdown $\mathrm{SU}(8)$

- factorized [SU(3) $\otimes \operatorname{SU}(2)$] (first stage) - broken $\mathrm{BU}(3)$ (second stage) has a first stage of which the scale is not known beforehand. However, the chotce 56 becomes more suggestive through mass considerations. The success of the Gell-MannOlubo formula as an effective first-order perturbation leads one to try the assumption that $\mathrm{SU}(6)$ \rightarrow braken SU(3) is additive in the first- and secondstage breakdowns with coeffictents that depend on the (five) Casimir operators C_{i} of $\$ U(6)$ only. This ts achleved by $M=M_{0}+a_{0}\left(C_{i}\right) F_{8}+b_{0}\left(C_{i}\right)$ $\times{ }_{8 j}{ }_{j k} F_{j} F_{k}$, or ${ }^{6}$

$$
\begin{equation*}
M=M_{0}+a\left(C_{i}\right) Y+b\left(C_{i}\right)\left[I(I+1)-\frac{1}{5} Y^{2}-\frac{1}{5} F^{2}\right] \tag{1}
\end{equation*}
$$

($F^{3}=F_{i} F_{i}$). $\quad M_{0}$ is the central mass of an $\operatorname{SU}(3)$ multiplet,

$$
\begin{equation*}
M_{0}=M_{00}\left(C_{i}\right)+m\left(C_{i}, F^{2}, d_{i j k} F_{i} F_{j} F_{k}, J(J+1)\right) . \tag{2}
\end{equation*}
$$

$M_{\infty 0}$ is the central mass of the $\mathrm{SU}(6)$ multiplet. We shall see shortly that the dependence of the SU(6)-breaking term m on both sptn and unitaryspin invariants ts essential, and the same is true for the C_{i} dependence of the quantities a, b, etc.
Application of Eq. (1) to the meson 35 yields (using the quadratic mass relation) $D^{5}-\pi^{2}=K^{* 2}-K^{2}$, known' to be true within the ρ-mass accuracy. Equation (1) as a innear mass formula gives for the 56 a calculated $(10,4)$ equidistance $\approx 130 \mathrm{MeV}$, derived from the (8,2), close enough to the expertmental value $\quad 145 \mathrm{MeV}$ to make the choice 56 quite attractive. ${ }^{\text {© }}$ The first-stage aplit be-
tween $(10,4)$ and $(8,2)$ is $\approx 235 \mathrm{MeV}$, comparable in magnitude to a, the F-type octet split.

There is an important new aspect to the (effective) $\bar{B} B M$ coupling in this theory. It follows from

$$
\begin{equation*}
56 \otimes 56=1+35+405+2695 \tag{3}
\end{equation*}
$$

that this coupling is, in fact, unique, because of the single occurrence of 35 . Hence, the F / D ratio is determined by $\mathrm{SU}(6)$. The fact that both F and D must occur in this coupling was noted by Gürsey and Radicati. ${ }^{7}$ Hence, there is no R invariance (unless one "doubles" the theory which is unattractive).

Let us next consider a few consequences based on the additional assumption that the (spin, F spin) multiplets need not be strongly recoupled to l. As $(10,4)$ decays into baryon and meson (where energetically possible) one should at least know whether 56 is in $35 \otimes 56$. It is, as

$$
\begin{equation*}
\{35 \otimes 56\}_{\alpha}=1134+700+70+56 . \tag{4}
\end{equation*}
$$

For the decay of the $(10,4)$ the label a now specifically refers to $l=1$. [For the one-particle states on the right-hand side of Eq. (4) we may imagine to be in their rest irame.] Equation (3) also indicates which other $\mathrm{SU}(6)$ representations are possible candidates for resonances which can decay into (octet + meson) or (decuplet + meson).

It is natural to consider next the other "small" representation, 70, of Eq. (3) with content

$$
\underline{70}=(1,2)+(8,4)+(10,2)+(8,2) .
$$

It is tempting to fill $(1,2)$ with $Y_{0}{ }^{*}(1405)$. For this to work, one needs $\operatorname{spln}\left(Y_{0}{ }^{*}\right)=\frac{1}{2}$. It is furthermore desirable for $Y_{0}{ }^{*}$ to have odd parity, in order that it can be the resonant state sought for in the interpretation of $\left(K^{-}, p\right)$ data. ${ }^{8}$ This would fix the parity of the other terms in Eq. (3) to be negative. Thus, the incomplete γ octet ${ }^{\ominus}$ becomes a possible candidate for $(8,4)^{-}$in 70^{-}. There would then be harmony between the spinparity of this last multiplet and the desirable properties of $Y_{0}{ }^{*}(1405)$.

Concerning the status of the γ octet, for both $Y_{0}{ }^{*}(1520)$ and $N^{* *}(1512)$ the evidence for $\frac{3}{2}^{-}$is good. ${ }^{20}$ The assignment ${ }^{*}$ to $Y_{2}{ }^{* *}(1660)$ seems dubious. ${ }^{11}$ However, according to Willis ${ }^{12}$ this possibility cannot be excluded. In connection with the $S U(3)$ mass formula this assignment for $Y_{1}{ }^{* *}$ would imply a 亘\# (1600) with $\frac{y^{*}}{}{ }^{-}$. If this at all existe, ${ }^{13}$ its production seems to be at most
~1-2\% of ${ }^{\text {E }}$ *(1530). [This would mean a firststage split $(8,4)-(1,2)$ of $\approx 185 \mathrm{MeV}$, comparable to the one for $(10,4)-(8,2)$.] It seems that a $\frac{3}{2}^{-}$ octet could well be there, even though not all the correct ingredients may be at hand as yet.

If these assignments within the representation 70^{-}are correct, there is a prediction of the existence of an $\frac{\frac{1}{2}^{-}}{}$octet and decuplet. In the spirit of Eq. (1), one may anticipate that there should be octet-decuplet relations also within the 70. If this is so and if we assume, to give an example, that the γ octet is fixed by the masses $1512,1520,1660$, and (1600?) then the equidistance in $(10,2)^{-}$should be $\sim-60 \mathrm{MeV}$, i.e., it is a 10 with its " Ω " as lowest state. This, in turn, would imply a sum rule for $(8,2)^{-}$, namely, Σ^{*} \sim 写* +60 MeV . These assignments to 70 can only possibly work if the first-stage split m of Eq. (2) depends on unitary spin as well as on spin. The simplest possibility of a dependence of m on F is $\alpha\left(C_{i}\right) F^{2}$ with $\alpha\left(C_{i}\right)>0$ which would give equidistant central masses for the sequence $(1,2),(8,2)$, and $(10,2)$ with $(1,2)$ lowest. Note that a and b in Eq. (1) are generally different for the 56 and the 70 , due to their C_{i} dependence. ${ }^{14}$

The content of 1134 and 700 is, of course, very complex. In particular one $(1,2)$ and one $(1,4)$ are herein contained. The assignment of $Y_{0}{ }^{*}$ to 70 is therefore not unambiguous; one must hope that some simplicity prevails.

Finally, note that the small baryon representation $^{1} 20$ is a baryon-two-meson state (for example, $\ln 70 \otimes 35$). One can also discuss two-meson states, using $35 \otimes 35=1+35+35+189+280+280^{*}$ $+405$.

It is a pleasure to thank F. Gürsey and L. A. Radicati for very stimulating discussions.

[^17]Ifmit is amusing in that it closely resembles the old strong-coupling treatment for the $(3,3)$ resonance which has, in fact, $S U(4)$ characteristics in its algebra
[W. Palili and S. Dancoff, Phys. Rev. 62, 85 (1942)].
${ }^{\text {Th}}$ Reference 1, footnote 8.
${ }^{8}$ R, H. Dalitz, Ann. Rev. NucI. Sci. 13, 338 (1963).
'S. Glashow and A. Rosenfeld, Phys, Rev. Letters 10, 192 (1963).
${ }^{10}$ For $Y_{0}{ }^{*}$, see R. D, Tripp, M. B, watson, and M. Ferro-Luzzi, Phys. Rev. Letters 9, 66 (19.62). For $\mathbf{N}^{* *}$, see P. P. Auvil and C. Lovelace, Imperial College Geport No. ICT P/64/37 (unpublished); M. Olsson and No. 358 (unpublished). 11 .
11 M. Taher-Zadeh et al., Phys. Rev. Letters 11, 470
(1963).
${ }^{12}$ w. w. Willis, private communication
${ }^{13}$ P. L. Connolly et al. , Proceedings International Conference on Eleedings of the Sienna (Società Italiana di Fisica Elementary Particles p. 125 .
${ }^{14}$ One should also consider the (l, s) coupling as a "third stage" which may lead to recurrences of SU(6) multiplets with higher J values. This coupling is not the same as the spin-orbit coupling of T. Kycia and K. Riley, Phys. Rev. Letters 10, 266 (1963) (K-R). An effective ($1, s$) coupling in the present meaning ma be responsible for the $\Delta I=2$ recurrences noted by $K-R$. If this picture makes sense, then the K-R mass plot - licates that the third stage is (once again) linearly independent of the first one and that both 56 and 70 recur
with J ralsed by 2 .

SPIN AND UNITARY SPIN INDEPENDENCE OF STRONG INTERACTIONS**

F. Gürsey, ${ }^{\dagger}$ A. Pais, ${ }^{\ddagger}$ and L. A. Radicatis ${ }^{\text { }}$
Brookhaven National Laboratory, Upton, New York
(Received 5 August 1964)

In this note we pursue further the consequences of the assumption that strong interactions are spin and unitary spin (F-spin) independent. ${ }^{1,2}$ In particular we discuss the meson-baryon vertex and some subgroups of $S U(6)$.

Within a representation of $\mathrm{SU}(6)$, states of given four-momentum may be partially labeled by the eigenvalues of five commuting elements in the Lie algebra, ${ }^{3}$ for which we may take (S_{i} $\left.=\mathrm{spin}, F_{\lambda}=F \mathrm{spin}\right) \mathrm{S}_{\mathrm{s}}, F_{\mathrm{y}}, F_{\mathrm{B}}, S_{\mathrm{y}} F_{\mathrm{y}}, S_{3} F_{\mathrm{s}}$.
In this approach, a Fourler component $P_{B}{ }^{A}(q)$ of the pseudoscalar octet $(A, B=1,2,3$ are the SU(3)-tensor indices, q is the momentum) is united with a Fourier component $V_{B}{ }^{A}(k, q)$ of the vector nonet $\left(\left\langle S_{2}\right\rangle \equiv k=-1,0,1\right.$ is a polarization index) in the representation 35 of $\mathrm{SU}(6)$, described by a 6×6 matrix $M(q)$ given by

$$
\begin{gather*}
M(q)=\sigma_{\mu} M_{\mu}(q), \tag{1}\\
M_{\mu}=\left(i q_{\mu} /|q|\right)\left(F_{A}^{B}-\frac{1}{8} \delta_{A}^{B} F_{C} C^{B}\right) P_{B}^{A}(q) \\
+\sum_{k} n_{\mu}(k, q) F_{A}^{B} V_{B}^{A}(k, q) \tag{2}
\end{gather*}
$$

with $\mu=1, \ldots, 4$. σ_{μ} are the Pauli spin matrices ($\mu=1,2,3$) and the unit matrix $(\mu=4) . q_{\mu} /|q|$ and $n_{\mu}(k, q)$ form an orthogonal tetrad $\left(|q|^{2}=q_{0}{ }^{2}\right.$ - \vec{q}^{2}). In particular, we have (see below)
$V_{3}{ }^{2}(k, q)=\varphi(k, q), \quad V_{1}{ }^{1}(k, q)+V_{2}{ }^{2}(k, q)=2^{2 / 2} \omega(k, q)$
where φ and ω stand for the corresponding vector mesons.

A matrix element of $M(q)$ is written as $M_{\alpha}{ }^{\beta}(q)$, $\alpha, \beta=1, \cdots, 6$, and we have $M_{\beta}^{\beta}(q)=0$. With this notation, the 56 representation of $\mathrm{SU}(6)$ which unites ${ }^{1,2}$ the baryon octet (b) and decuplet (d) is written as $B^{\alpha \beta \gamma(q) ; ~ t h e ~ a n t i-p a r t i c l e s ~ a r e ~}$ $\bar{B}_{\alpha \beta \gamma}(q)$. In both cases there is total symmetry in α, β, and γ.

We turn to the (\bar{B}, B, M) vertex in the pure $\operatorname{SU}(5)$ limit, where all B 's have mass M_{∞} and all M 's have $\mu_{\infty 0}$. This vertex will, for example, contain the minimal coupling of protons to ρ° which we normalize to $g \bar{p} \gamma_{\mu} \rho \rho_{\mu}{ }^{\circ}$. The general (\bar{b}, b, V) vertex also contains $\sigma_{\mu \nu} q_{\nu}$ coupling, which we leave aside for the moment. At low energies this minimal part of the vertex will then contain only the s-wave ($\bar{b} b V$) and the p-wave ($\bar{b} b P$)
coupling. The minimal vertex is unique ${ }^{3}$ and has the form (for given Fourier components of the fields)

$$
\begin{gather*}
J_{\gamma}^{\delta}(-q) M_{\delta}^{\gamma}(q)=6 g \widetilde{B}_{\alpha \beta \gamma}(p) B^{\alpha \beta \delta}\left(p^{\prime}\right) M_{\delta}^{\gamma}(q), \\
q=p-p^{\prime} \tag{4}
\end{gather*}
$$

${ }_{J_{\gamma}}{ }^{\delta}$ is the baryon part of the strong current. The full current, which also contains M terms, can be decomposed into an axial current octet $\left(a_{\mu}\right) A^{B}$ and a vector current nonet $\left(U_{\mu}\right)_{A}^{B}$ by the method of Eq. (2). We have

$$
\begin{equation*}
\partial_{\mu}\left(v_{\mu}\right)^{B}=0 ; \partial_{\mu}\left(a_{\nu}\right)_{A}^{B}-a_{\nu}\left(a_{\mu}\right)_{A}^{B}=0 . \tag{5}
\end{equation*}
$$

By simultaneous reduction in $s \mathrm{pin}$ and $F-$ spin we can decompose (4) into b, d and P, V. We state some results for this minimal vertex.
(1) $(\bar{b} B V)$. Its strength is normalized as noted above. Hence, from the fact that ρ is coupled to the conserved isospin current, g is determined by the rate for $\rho \rightarrow 2 \pi$. Thus ${ }^{3}$

$$
\begin{equation*}
\frac{g^{2}}{4 \pi} \approx \frac{1}{2} . \tag{6}
\end{equation*}
$$

The coupling is pure F, as v is conserved [see Eq. (5)].
(2) ($\bar{b} b P$). As noted before ${ }^{1}$ this is a mixture of D and F. We call their ratio $(D / F)_{A}$ and find

$$
\begin{equation*}
(D / F)_{A}= \tag{7}
\end{equation*}
$$

This ratio will reappear in the weak decays if we assume that the same $e x i a l$ vector curreat is involved in weak interactions.

In order to define the total strength of this coupling we again go to low energles and consider the p-wave term $g_{A} p^{\dagger}+p_{p} \cdot \nabla \pi^{0} / \mu_{00}$. We lind

$$
\begin{equation*}
g_{A}=5 g / 3 \tag{8}
\end{equation*}
$$

As \& is not renormalized, the same is true for g_{A}. This comes about because v and a currents can transform into each other in the SU(6) 11mit. In order to go from g_{A} to the pseudoscaltar constant $g_{P S}$, we use the central mass values of $\operatorname{SU}(6)$. In this way we get

$$
\begin{equation*}
\frac{g_{P S}^{2}}{4 \pi}=\frac{25}{9}\left(\frac{2 M_{00}}{\mu_{00}}\right)^{\frac{2}{2}} \frac{g^{2}}{4 \pi} \tag{8}
\end{equation*}
$$

Using Eq. (6) and mean masses $M_{00} \simeq 1100 \mathrm{MeV}$, $\mu_{\infty} \simeq 700 \mathrm{MeV}$, we get $g_{P S} / 4 \pi \simeq 12.5$. We do not attach significance to the precise value, but belicve that the estimate is fair and the result encouraging.
(3) $(\bar{d} b P)$. This d-decay vertex is also contained in Eq. (4). Its strength is related to the width $\Gamma_{s 3}$ of $N_{33}{ }^{*}$ by the following formula:

$$
\begin{equation*}
\Gamma_{33}=\frac{12}{25} \frac{g_{P S}{ }^{2}}{4 \pi} \frac{k^{3}}{m_{33}{ }^{2}}\left[\frac{m_{N} m^{2}}{M_{00^{2}}}\right] \tag{10}
\end{equation*}
$$

The true masses m_{N} and $m_{s y}$ for nucleon and $N_{83} *$ enter through the usual device of using the true phase space. $g_{P S}$ is defined by Eq. (9). With the factor in square brackets ≈ 1, we get $\Gamma_{33} \sim 60 \mathrm{MeV}$. This is of the right order, but these d widths cannot be too precise in the symmetry limit, as we know from ${ }^{6}$ the properties of $Y_{1}{ }^{*}-\Sigma+\pi$.
(4) ($\bar{d} d P)$ and $(\bar{d} d V)$. The p-wave transition $N^{*++}\left(S_{3}=\frac{3}{3}\right)-N^{*++}\left(\frac{3}{2}\right)+\pi^{0}$ and the corresponding S-wave transition with a ρ^{0} each have strength $3 g$. Thus there is strong direct $d-P$ and $d-V$ interaction. It would be interesting to know whether this could explain to some extent the different value for $(D / F)_{A}$ found here as compared to other estimates.?

Remarks. - (i) The above considerations can be readily extended to include induced terms. Since in the low-energy limit the vertex is SU(6)-invariant for each partial wave, the static limit is obtained by taking the s-wave contribution of the minimal vector meson coupling together with the contribution of the induced pseudoscalar meson coupling. For the p wave the induced vector meson Pauli term completes the minimal pseudoscalar term.
(ii) For each partial wave the four-point function for $B-M$ scattering contains only three independent amplitudes. Likewise, $B-B$ scattering can be expressed in terms of four independent amplitudes. This implies a large number of selection rules.

We now turn to the discussion of an important subgroup of $\operatorname{SU}(6)$, which we denote by $W(Y)$ $\otimes \operatorname{SU}(4)(T) \otimes \operatorname{SU}(2)(X)$. To define this subgroup we follow the usual procedure to study the aigebra associated with the fundamental (6-dimensional) representation. Let

$$
\begin{equation*}
\lambda_{ \pm}=\frac{1}{2}(1 \pm \xi), \quad \xi=(4 / \sqrt{3}) F_{8}+\frac{1}{3} \tag{11}
\end{equation*}
$$

Thus $\xi^{2}=1, \lambda_{t}{ }^{2}=\lambda_{t}, \lambda_{+} \lambda_{-}=\lambda_{-} \lambda_{+}=0 . W(Y)$ has the elements $\lambda_{+}, \lambda_{-} \cdot \operatorname{SU}(4)(T)$ is generated by $\lambda_{+} S_{i}, F_{i}$, and $\lambda_{+} S_{i} F_{k}(i, k=1,2,3)$, and $\operatorname{SU}(2)(X)$ by $X_{i}=\lambda_{-} S_{i}$,

In Table I we list for some of the representations of $S U(6)$ those representations of $\mathrm{SU}(4)(T)$ $\otimes \operatorname{SU}(2)(X)$ which correspond to a definite elgenvalue of $\lambda_{+} F_{g}$. We recall that ω, π, and ρ form the adjoint 15 -dimensional representation of $\operatorname{SU}(4)(T)$ while φ is a scalar under $\operatorname{SU}(4)(T)$. Conversely, the requirement that the physical φ and ω belong to definite representations of $\mathrm{SU}(4)(T)$ defines the mixing of the "unphysical" $S U(3)$ singlet $\omega^{(0)}$ and the octet member $\varphi^{(0)}$, for these physical mesons. Equation (3) is in accordance with this choice.
N appears in a 20 representation, together with N^{*}. This differs Irom Wigner's assignment for the nucleon which was also provisionally used earlier. ${ }^{\text { }}$ It is most probable that Whgner's theory appears as a valid approximation to the $\operatorname{SU}(6)$ model in the nonrelativistic limit.

Table I. SU(4) multiplets in $\mathrm{SU}(6)$.

Representations ${ }^{\text {a }}$ and dimensions of SU(6) $\left(\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4} \lambda_{3}\right), D_{1}$	Representations ${ }^{b}$ and dimensions of $\mathrm{SU}(4)(T)$ (PP'Pๆ), D_{4}	Representation of $\operatorname{SU}(2)(X)$ X	G'-parity $G^{\prime}=G \xi$	Particles
(10000), 6	$\begin{aligned} & \left(\frac{1}{2} \frac{1}{2} \frac{1}{4}\right), 4 \\ & (000), 1 \end{aligned}$	$\begin{aligned} & 0 \\ & \frac{1}{2} \end{aligned}$		
(10001), 35	(110), 15	0	-1	ω, π
	(000), 1	1	$\begin{aligned} & +1 \\ & +1 \end{aligned}$	ρ
(30000), 56	$\begin{aligned} & \left(\frac{1}{2} \frac{1}{2}\right), 20 \\ & (000), 1 \end{aligned}$	$\begin{aligned} & 0 \\ & \frac{3}{8} \end{aligned}$		$\begin{aligned} & N_{1}, N^{*} \\ & \Omega^{-} \end{aligned}$

[^18]In the fourth column of Table I, we list for the mesons ω, π, ρ, and φ the elgenvalues of the operator $G^{\prime}=G \xi$, where G is the usual G parity. Just as G is convenient for dealing with (π, ρ, ω), so G^{\prime} will be convenient for dealing simuitaneously with (π, ρ, ω) and φ. For these particles G^{\prime} coincides with Bronzan and Low's number A.? The (N, \bar{N}) system is closed under G^{\prime}, and so are each of the systems $(K, \bar{K}),\left(K^{*}, \bar{K}^{*}\right),\left(N^{*}, \bar{N}^{*}\right)$, and (Ω, \bar{n}). The other particles involved (for example the η) are all definite mixtures of states even and odd under G^{\prime}. The behavior of all particles under G^{\prime} is therefore fully specified and hence G^{\prime} provides selection rules in the $\operatorname{SU}(4)$ limit. For example, the reactions $\pi+N \rightarrow N+n \pi$ $+\varphi, N+N \rightarrow N+N+n \pi+\varphi$, and $N+\bar{N} \rightarrow n \pi+\varphi$ should be suppressed compared to the corresponding ω reactions. On the other hand, $\varphi-K+\bar{K}$ and K^{-} $+p-\Lambda+n \pi+\varphi$ are "allowed"; that is, not SU(4)inhibited relative to ω. All these results appear to be in qualitative agreement with experiment. It may be stressed that these consequences of the theory carry no restrictions on particles present in intermediate states.

The reduction of the two-meson product (110) $x(110)$ in $\operatorname{SU}(4)(T)$ is worth noting. It yields (in terms of dimensions) $1+15+15+20+45+45^{*}+84$. The 20, which is characterized by the representation $(2,0,0)$, has (T, S) content $(1,1)+(1,5)+(5,1)$ $+(3,3)$ and thu contains an isoscalar of spin 2 which could be identified with the $f^{\circ}(1250 \mathrm{MeV})$ with positive parity. If this is correct, then the 20^{+}would also contain an isotriplet of axial vector mesons. However, as was the case for higher baryon resonances, ${ }^{2}$ one must be prepared for a possible nonuniqueness. Thus in the present ${ }^{10}$ case, the 84 also contains a (1,5).

Finally, we note that $\operatorname{SU}(6)$ invariance may also prove useful in the analysis of nuclear forces. In the static limit the mesons ($0, \omega, \pi$) will still generate $\operatorname{SU}(4)(7)$-invariant Majorana forces between nucleons. φ will not contribute in the limit of perfect symmetry, while a contribution to Wigner forces will arise from η exchange. While $S U(4)(T)$ allows for an arbitrary mixture of Wigner versu: Majorana forces, $S U(6)$ invariance
makes this mixture unique. It would be interesting to investigate the relationship with the Serber mixture ${ }^{12}$ of nuclear forces.

One of us (F.G.) would like to thank Dr. R. Serber for many stimulating discussions. Details of this work will be published elsewhere. ${ }^{\text {is }}$
*Work performed under the auspices of the U. S. Atomic Energy Commission.
TOn leave from the Middle East Technical University, Ankara, Turkey.
${ }^{\text {Permanent address: }}$ Rockefeller Institute, New York, New York.
${ }^{8}$ On leave from Scuola Normale Superiore, Pisa, Italy.
${ }^{1}$ F. Gürsey and L. A. Radicatl. Phys. Rev. Letters 13, 173 (1964).
${ }^{2}$ A. Pals, Phys. Rev. Letters 13, 175 (1964). In the foarth line from the end of this paper please read " 280 $+280{ }^{* \prime \prime}$ for " $280+280$ "
${ }^{1}$ The F_{λ} are normalized by the same convention as in M. Gell-Mann, Phys. Rev. 125, 1067 (1962), Eq. (4.18), For the S_{i} we have $\left[S_{1}, S_{2}\right]=i S_{3}$, cyclically.
${ }^{4} M_{\beta}{ }^{3}(q)$ is a separate representation of $\operatorname{SU}(6)(q)$ and describes a spinless unitary singlet.
${ }^{5}$ M. Gell-Mann, D. Sharp, and W. G. Wagner, Phys. Rev. Letters 8, 261 (1962).
${ }^{\text {'V }} \mathrm{V}$. Gupta and V. Singh, to be publiched.
${ }^{7}$ R, Cutkosky, Ann. Phys. (N. Y.) 23, 415 (1963); S. Glashow and L. Rosenfeld, Phys. Rev. Lettere 10 , 192 (1963); A. Martin and K. Wall, Nuovo Cimento 31, 1324 (1964).
${ }^{8}$ E. P. Wigner, Phys. Rev, 51, 106 (1937).
'J. E. Bronzan and F. E. Low, Phys. Rev. Letters 12, 522 (1964).
${ }^{12}$ The complete (T, S) contents are follows: 45 (and $\underline{45}^{*}$) $=(1,3)+(3,1)+(3,3)+(3,5)+(5,3) ; \underline{84}=(1,1)$ $+(1,5)+(5,1)+2 \times(3,3)+(3,5)+(5,3)+(5,5)$. The 84 representation provides a first instance of multiple occurrence of the aame (T, S) submultiplet.
${ }^{11}$ E. Feenberg and E. P. Wigner, Rept. Progr. Phys. 8, 274 (1941).
${ }^{72}$ J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Phyaics (John Wiley \& Sons, Inc., New York. 1952), p. 170.
${ }^{13}$ After completion of this work, one of us (F, G.) was informed by Dr. B. Sakita that hes, independently, had the idea of extending Wigner's supermultiplet theory to elementary particles and putting the mesons in the adjoint representation of $\mathrm{SU}(8)$.

MASS FORMULAS IN THE SU(6) SYMMETRY SCHEME*

T. K. Kuo and Tsu Yao
Brookhaven National Laboratory, Upton, New York
(Received 31 July 1964)

Recently it was proposed by Gürsey and Radicati ${ }^{2}$ and Pais ${ }^{2}$ that the $\operatorname{SU}(6)$ symmetry scheme incorporating spin and unitary spin may have important consequences in particle physics. They discussed, among other things, a possible mass formula and applied it to some low-dimensional representations. In this note ${ }^{3}$ we propose that the $\operatorname{SU}(6)$ symmetry is broken analogously as in $\operatorname{SU}(3),{ }^{4,5}$ namely, the primary symmetrybreaking term in the Hamilionian transforms Like the $I=0, Y=0, J=0$ member of the 35 representation. The major result of this assumption is that in a given $\operatorname{SU}(6)$ representation, states with the same I, Y, and J belonging to different $\operatorname{SU}(3)$ multiplets are mixed in a definite way.
The 36 traceless operators $B_{\mu}{ }^{\nu}$ of $\operatorname{SU}(6)$ are defined such that their representation in the sixdimensional vector space C_{6} are given by

$$
\begin{equation*}
\left(B_{\nu}{ }^{\mu}\right)_{i j}=\delta_{\mu j} \delta_{\nu i}-\frac{1}{8} \delta_{\mu \nu} \delta_{i j}, \tag{1}
\end{equation*}
$$

$(\mu, \nu, i, j=1,2, \cdots, 6)$. These operators satisfy the commutation relations

$$
\begin{equation*}
\left[B_{\nu}^{\mu}, B_{\beta}^{\alpha}\right]=\delta_{\beta}^{\mu} B_{\nu}^{\alpha}-\delta_{\nu}^{\alpha} B_{\beta}^{\mu} \tag{2}
\end{equation*}
$$

The symmetry-breaking term is proposed to be $T_{3}{ }^{3}+T_{6}{ }^{6}$, where

$$
\begin{equation*}
\left[B_{\nu}^{\mu}, T_{\beta}^{\alpha}\right]=\delta_{\beta}^{\mu} T_{\nu}^{\alpha}-\delta_{\nu}^{\alpha} T_{\beta}^{\mu} \tag{3}
\end{equation*}
$$

Note that the hypercharge operator Y is $-\left(B_{3}{ }^{9}\right.$ $+B_{8}{ }^{6}$). It can be shown that ${ }^{6}$

$$
\begin{align*}
T_{\nu}^{\mu} & =a_{0} \delta_{\nu}^{\mu}+a_{1} B_{\nu}^{\mu}+a_{2}(B \cdot B)_{\nu}^{\mu}+a_{3}(B \cdot B \cdot B)_{\nu}^{\mu} \\
& +a_{4}(B \cdot B \cdot B \cdot B)_{\nu}^{\mu}+a_{5}(B \cdot B \cdot B \cdot B \cdot B)_{\nu}^{\mu}, \tag{4}
\end{align*}
$$

where the a_{i} 's are constants depending only on the five Casimir operators of the group.

For the few low-dimension representations discussed below, only the first three terms in Eq. (4) are needed. Therefore, for those SU(6) supermultiplets we can write down the following mass formula:

$$
\begin{equation*}
M=M_{0}+a Y+b\left\{(B \cdot B) \operatorname{SU}(4)^{\left.-2 Q(Q+1)-\frac{1}{2} Y^{2}\right\}}\right. \tag{5}
\end{equation*}
$$

For mesons mass squared is to be used in Eq. (5). The symbol $(B \cdot B)_{S U(4)}$ denotes the quadratic Casimir operator of the $\operatorname{SU}(4)$ subgroup which is considered by Girsey, Pais, and Radicati. ${ }^{7}$ \vec{Q} is an angular momentum vector with components

$$
\begin{align*}
& Q_{3}=\frac{1}{2}\left(B_{3}^{3}-B_{6}{ }^{6}\right), \\
& Q_{+}=B_{3}{ }^{6} \\
& Q_{-}=B_{8}^{3} \tag{6}
\end{align*}
$$

In the quark language, ${ }^{8} Q=\frac{1}{\frac{1}{2}}$ for the $S= \pm 1$ quarks and $Q=0$ for the $S=0$ quarks. In Table I we shall give all the eigenvalues of $(B \cdot B) \mathrm{SU}(4)$ and Q of all the particles in the 20, 35, 56, and 70 representations.

Now let us discuss the 35 representation 35 $=(\underline{8}, \underline{1})+(\underline{8}, \underline{3})+(\underline{1}, 3)]$ which has as members the pseudoscalar-meson octet and the vector-meson nonet. Since

$$
\begin{equation*}
35 \otimes 35=1 \oplus 35 \oplus 35 \oplus 189 \oplus \underline{280} \oplus \underline{280} * \oplus 405, \tag{7}
\end{equation*}
$$ the matrix element

$$
\left\langle\underline{35 \mid T_{\nu}}{ }^{\mu} \underline{\underline{35}\rangle}\right.
$$

$$
\begin{equation*}
=a_{0}+a_{1}\langle 35| B_{\nu}^{\mu}|35\rangle+a_{2}\langle 35|(B \cdot B)_{\nu}^{\mu}|35\rangle \tag{8}
\end{equation*}
$$

Table 1. $\mathrm{SU}(4) \mathrm{multiplets}$ in $\mathrm{SU}(6)$.

Particles	No. of states	Representation of $\mathrm{SU}(4)$	$(B \cdot B){ }^{\text {SU(4) }}$	4
35				
ρ, ω, π	15	15	8	0
K^{*}, K	8	4	4	$\frac{1}{1}$
克*,	8	$\underline{4}^{*}$	4	$\frac{1}{2}$
φ	3	1	0	1
η	1	1	0	0
56				
N^{*}, N	20	20	16	0
$Y_{1}^{*}, \underline{\Sigma}, \Lambda$	20	10	9	$\frac{1}{2}$
	12	4	4	1
Ω	4	1	1	$\frac{1}{2}$
70				
$N_{3 / 2}{ }^{1 / 2}, N_{1 / 2}{ }^{1 / 2}, N_{1 / 2}{ }^{3 / 2}$	20	20	10	0
${ }^{N / 2}{ }_{Y}{ }^{1 / 2}, Y_{0}^{1 / 2}{ }^{1 / 2}, Y_{0}^{1 / 2}$	12	6	5	1
$Y_{1}{ }_{1}^{1 / 2}, Y_{0}{ }^{1 / 2}, Y_{1}^{3 / 2}$	20	10	9	$\frac{1}{2}$
	12	4	4	1
${ }^{-1 / 2}{ }^{1 / 1 / 2}$	4	4	4	0
$\mathrm{\Omega}_{0}^{1 / 2}$	2	$\underline{1}$	1	$\frac{1}{2}$
20 (20				
$Y_{0}{ }^{1 / 2}, Y_{1}{ }^{1 / 2}, Y_{0}{ }^{3 / 2}$	12	6	5	$\frac{1}{4}$
$N_{1 / 2}^{1 / 2}$	4	4*	4	0
$\underline{E}_{1 / 2}^{1 / 2}$	4	$\underline{4}$	4	0

This simplification from Eq. (4) is the result that in Eq. (7) 35 occurs only twice in $35 \otimes 35$. The immediate consequence of Eq. (5) is as follows:
(1) For vector mesons we get the familiar result

$$
\begin{gather*}
m_{\omega}^{2}=m_{\rho}^{2} \\
m_{\varphi}^{2}+m_{\rho}^{2}=2 m_{K^{+}}^{2} \tag{9}
\end{gather*}
$$

(2) For pseudoscalar mesons we get the usual mass sum rule, ${ }^{4,5}$

$$
\begin{equation*}
m_{K}^{2}=\frac{1}{1}\left(3 m_{\eta}^{2}+m_{\pi}^{3}\right) \tag{10}
\end{equation*}
$$

(3) We also obtain the relation

$$
\begin{equation*}
m_{K^{*}}^{2}-m_{\rho}^{2}=m_{K}^{2}-m_{\pi}^{2} \tag{11}
\end{equation*}
$$

which was noticed before. ${ }^{2}$
(4) In connection with Eq. (9), we also obtain from Eq. (8) the mixing of φ° and ω^{0} unambiguously, such that the physical φ and ω are given by

$$
\begin{align*}
& \varphi=-\left(\frac{2}{3}\right)^{1 / 2} \varphi^{0}+\left(\frac{1}{3}\right)^{1 / 2} \omega^{0}, \\
& \omega=\left(\frac{1}{3}\right)^{1 / 2} \varphi^{0}+\left(\frac{2}{3}\right)^{1 / 2} \omega^{0} . \tag{12}
\end{align*}
$$

(5) We further notice that the primary sym-metry-breaking term $\left(T_{8}{ }^{3}+T_{8}{ }^{6}\right)$ still leaves ρ and π degenerate (also K^{*} and K). This degen-
eracy can be lifted by a spin-dependent mass term which can only be a function of $J(J+1)$. We emphasize that the inclusion of this spindependent term will not affect the results in Eqs. (9)-(12). (See below for more details.)
We next come to a discussion of the 56 representation $[56=(10,4)+(8,2)]$ which has as members the baryon octet and decuplet. Since

$$
\begin{equation*}
\underline{35} \otimes 56=\underline{56} \oplus 70 \oplus 700 \oplus 1134 \tag{13}
\end{equation*}
$$

56 occurs only once, the matrix element

$$
\begin{equation*}
\langle 56| T_{\nu}^{\mu}|56\rangle=a_{0}+a_{1}\langle 56| B_{\nu}^{\mu}|56\rangle . \tag{14}
\end{equation*}
$$

Thus the mass formula for 56 reduces to the stimple form

$$
\begin{equation*}
M=M_{0}+a_{1} Y \tag{15}
\end{equation*}
$$

(1) Now both the decuplet and the octet are equally spaced:

$$
\begin{gather*}
M_{\Omega}-M_{\Xi \Xi^{*}}=M_{\Xi \Xi *}-M_{Y_{1}^{*}}=M_{Y_{2}{ }^{*}-M_{N^{*}}} \tag{16}\\
M_{\Xi}-M_{\Sigma}=M_{\Sigma}-M_{N^{\prime}} \tag{17a}\\
M_{\Lambda}=M_{\Sigma} \tag{17b}
\end{gather*}
$$

(2) Furthermore,

$$
\begin{equation*}
M_{\Xi^{*}}-M_{Y_{4}^{*}}=M_{\underline{\Xi}}-M_{\Sigma} \tag{18}
\end{equation*}
$$

(3) We still have the degeneracy between ${ }^{\circ}$ * and Ξ, etc., which can be removed by a spindependent mass term as before.
(4) Now Λ and Σ are stij! degenerate. This degeneracy can be remor ed by adding a term of the form $X\left[I(I+1)-\frac{1}{4} Y^{2}\right]$ to Eq. (5). Equations (17a) and (17b) are now combined to give the usual octet mass formula,

$$
\begin{equation*}
2\left(M_{\Xi}+M_{N}\right)=3 M_{\Lambda}+M_{\Sigma} \tag{17c}
\end{equation*}
$$

We note that Eqs. (10)-(12), (16), and (18) are not changed. [Equation (9) becomes. $m^{9} \varphi^{2}+\frac{1}{2}\left(m_{\rho}{ }^{2}\right.$ $\left.+m_{\omega}{ }^{2}\right)=2 m_{K^{*}}{ }^{2}$] The general mass formula can now be written as

$$
\begin{align*}
M=M_{0} & +a Y+b\left[(B \cdot B) \mathrm{SU}(4)^{\left.-2 Q(Q+1)-\frac{1}{2} Y^{2}\right]}\right. \\
& +\mu J(J+1)+\lambda\left[I(I+1)-\frac{1}{4} Y^{2}\right] \tag{19}
\end{align*}
$$

So far we have only reproduced some familiar results. Now we proceed to a discussion of the 70 representation $[70=(8,4)+(10,2)+(8,2)+(\underline{1}$, 2)]. Again we obtain an equation similar to Eq. (8), since

$$
\underline{35} \not 70=20 \oplus 56 \oplus 70 \oplus 70 \oplus 540 \oplus 560 \oplus 1134 . \quad(20)
$$

For the spin- baryon resonances we have the familiar octet mass formula. ${ }^{2}$ In the case of the spin- $\frac{1}{3}$ resonances we again encounter the mixing problem iust as in Eq. (12) where φ^{0} and ω^{0} get mixed by the symmetry-breaking term. Here the $I=0, Y=0$ members of $(\underline{8}, \underline{2})$ and $(1, \underline{2})$ are mixed. Furthermore, the $I=\frac{1}{1}, Y=-1 \overline{\mathrm{mem}}$ bers of $(8,2)$ and $(10,2)$ are mixed. So are the $I=1, Y=0$ members of $(8,2)$ and $(10,2)$. The mixing angle is found to be $\theta=45^{\circ}$ in all three cases. From Eq. (19) there are six mass sum rules among the nine (in general) nondegenerate
particles:

$$
\begin{gather*}
N_{3 / 2}^{\prime}+3 \Xi_{ \pm}^{\prime}=\Omega^{\prime}+3 \Sigma_{ \pm}^{\prime} \tag{21a}\\
\Omega \Omega^{\prime}+N_{3 / 2}^{\prime}=\Xi_{\mp}^{\prime}+\Sigma_{ \pm}^{\prime} \tag{21b}\\
2\left(N_{1 / 2}+\Xi_{ \pm}^{\prime}\right)=3 \Lambda_{ \pm}^{\prime}+\Sigma_{\mp^{\prime}} \tag{21c}
\end{gather*}
$$

where $N_{3 / 2,1 / 2}$ have $I=\frac{3}{2}, \frac{1}{2}$, respectively. The subscript + denotes the heavier, and - the light er of the two particles with the same I and Y. We note that Eq. (21a) takes a form hitherto not discussed. So far very few spin- $\frac{1}{2}$ resonances have been positively identified in the experiments. It is hoped that Eqs. (21) may be helpful in finding spin- $\frac{1}{2}$ resonances in the future.
It is a pleasure to thank Professor F. Gursey and Professor A. Pais for stimulating discussions.
Note added in proof. - The transformation properties of the terms $J(J+1)$ and $\left[I(I+1)-\frac{1}{4} Y^{2}\right]$, which are not considered in this Letter, have since been discussed by Beg and Singh. ${ }^{10}$ In fact, their Eq. (22) reduces to our Eq. (19) for $b=f=0$.

[^19]
SPLITTING OF SPIN-UNTTARY SPIN SUPERMULTIPLETS

Mirza A. Baqi Bég
and
Virendra Singh*
Institute for Advanced Study, Princeton, New Jersey
(Received 20 August 1964)

1. Recent work of Girsey, Pais, and Radicati 1^{1-3} appears to indicate that the ideas propounded by Wigner ${ }^{4} 27$ years ago may, with appropriate generalization to accommodate strangeness, find spectacular fulfillment in the domain of particle physics. In the Sakata model one immediately gets $\mathrm{SU}(6)$ in place of Wigner's $\mathrm{SU}(4)$; in the eightfold way a similar picture is easily constructed with the help of quarks. ${ }^{\text {b }}$ In a relativistic theory the full invariance group, of course, is not SU(6); however, the classification of particle states with respect to $\operatorname{SU}(6)$ still seems permissible. ${ }^{*}$

The qualitative success of SU(6) classifications, in spite of the marked lack of degeneracy in the supermultiplets, prompte one to ask: What is the nature of the phenomenological interaction responsible for the breakdown? Unless one can pin down the transformation propertles of this interaction the symmetry will be of little practical use. In this connection it should be noted that mass formulas were written down in references 1 and 2 on the basis of physical intuition. It is not clear, a priori, whether these formulas can he derived by starting with any number of SU(6) tensor operators.

The purpose of this note is to report some results that have emerged in a systematic study of the problems mentioned above. We consider all the mass formulas that can be derived by considering tensor operators transforming according to real representations of dimensionality less than 1000, which can contribute to the meson, baryon, and low-lying resonance spectra. These representations and their $\operatorname{SU}(3)$)SU(2) content are ${ }^{7}$

$$
\begin{align*}
\underline{35}= & (\underline{1}, \underline{3}) \oplus(\underline{8}, \underline{3}) \oplus(\underline{8}, \underline{1}), \tag{1}\\
\underline{189}= & (\underline{1}, \underline{1}) \oplus(\underline{(8,1}) \oplus(\underline{27}, \underline{1}) \oplus 2(\underline{8}, \underline{3}) \oplus(\underline{10}, \underline{3}) \\
& \oplus(\underline{10}, \underline{3}) \oplus(\underline{1}, \underline{5}) \oplus(\underline{8}, \underline{5}), \tag{2}\\
\underline{405}= & (\underline{1}, \underline{1}) \oplus(\underline{(0,1) \oplus(\underline{27}, \underline{1}) \oplus 2(\underline{8}, \underline{3}) \oplus(\underline{10}, \underline{3})} \\
& \oplus(\underline{(10}, \underline{3}) \oplus(\underline{27}, \underline{3}) \oplus(\underline{1}, \underline{5}) \\
& \oplus(\underline{8}, \underline{5}) \oplus(\underline{27}, \underline{5}) . \tag{3}
\end{align*}
$$

The tensors we consider will, of course, be singlets under $\operatorname{SU}(2)$; under $\mathrm{SU}(3)$ we shall take the ones that either are singlet or transform like the $I=Y=0$ member of an octet.

Incidentally, the 35 representation has already been considered by Kuo and Yao. ${ }^{8}$ The choice turns out to be rather inadequate since the spin degeneracy is not lifted at all and for baryons the isospin degeneracy is not lifted either.

Before we write down the mass formulas it is necessary to establish the requisite notation.
2. The first problem is to set up a scheme for labeling SU(6) states. Mathematically, such a scheme is afforded by the reduction chain

$$
\begin{equation*}
\operatorname{SU}(6) \supset U(1) \otimes S U(5) \supset U(1) \otimes U(1) \otimes S U(4) \cdots \tag{4}
\end{equation*}
$$

We are unable, however, to find any physical meaning for the quantum numbers that emerge in this chain. We begin therefore by considering the physical chain (P chain)

$$
\begin{equation*}
\operatorname{SU}(6) \supset \mathrm{SU}(2) \otimes \mathrm{SU}(3) \supset \mathrm{SU}(2) \otimes \mathrm{U}(1) \otimes \mathrm{SU}(2) \tag{5}
\end{equation*}
$$

which fails to furnish us with enough labels. We therefore supplement this chain with an unphysical chain (U chain)

$$
\begin{align*}
& \mathrm{SU}(6) \supset \mathrm{U}(1) \otimes \mathrm{SU}(2) \otimes \mathrm{SU}(4) \\
& \supset \mathrm{U}(1) \otimes \mathrm{SU}(2) \otimes \mathrm{SU}(2) \otimes S U(2) . \tag{6}
\end{align*}
$$

The subgroups in one chain do not generally commute with those in another and appropriate "recoupling" transformations are needed.
3. We denote by $A_{\beta}{ }^{\alpha}, a, \beta=1,2, \cdots, 6$, the 35 infinitesimal generators of SU(6) satisfying the canonical commutation rules. From an inepectlon of the adjoint representation one can pick out the generators of the commuting $\mathrm{SU}(3)$ and $\mathrm{SU}(2)$, respectively. These are

$$
\begin{gather*}
\mathrm{SU}(3): A_{i}^{j}+A_{i+3}{ }^{j+3}, i, j=1,2,3 ; \tag{7}\\
\mathrm{SU}(2) J_{i} J_{+}=\sum_{i=1}^{3} A_{i}^{i+3}, \\
J_{-}=\sum_{i=1}^{3} A_{i+3}^{i},
\end{gather*}
$$

$$
\begin{equation*}
J_{3}=\frac{1}{3} \sum_{i=1}^{3}\left(A_{i}^{i}-A_{i+3}{ }^{i+3}\right) \tag{8}
\end{equation*}
$$

The subscript J implies ordinary spin. The isospin and hypercharge operators in SU(3) are, of course,

$$
\begin{align*}
\mathrm{SU}(2) I_{1}: I_{+} & =A_{2}{ }^{2}+A_{4}{ }^{6}, \\
I_{-} & =A_{2}{ }^{1}+A_{3}{ }^{4}, \\
I_{3} & =\frac{1}{2}\left(A_{1}{ }^{2}-A_{2}{ }^{3}+A_{4}{ }^{4}-A_{3}{ }^{5}\right) ; \tag{9}\\
\mathrm{U}(1): \quad Y & =-\left(A_{3}{ }^{3}+A_{6}{ }^{6}\right), \tag{10}
\end{align*}
$$

Equations (7)-(10) complete the identification of operators in the P chain. For the U chain one has

$$
\begin{align*}
& \mathrm{SU}(4): A_{i}^{j}+\frac{1}{1} \delta_{i}^{i}\left(A_{3}^{3}+A_{6}^{6}\right), i, j=1,2,4,5 ; \tag{11}\\
& \mathrm{U}(1): \tag{12}\\
& \mathrm{YU} ; \\
& \mathrm{SU}(2)_{S}: \\
& S_{+}=A_{3}^{0}, \tag{13}\\
& \\
& S_{-}=A_{0}^{3} \\
& \\
& S_{3}=\frac{1}{2}\left(A_{3}^{3}-A_{8}^{3}\right) .
\end{align*}
$$

We use the subscript S to make explicit the fact that in the defining representation $\overrightarrow{\mathbf{S}}$ is the spin of the strangeness-bearing quark. The commuting subgroups of $\operatorname{SU}(4)$ are $\operatorname{SU(2)})_{I}$ and

$$
\begin{align*}
\mathrm{SU}(2) N^{:} N_{+} & =A_{1}{ }^{4}+A_{2}{ }^{6}, \\
N_{-} & =A_{4}^{1}+A_{6}^{2}, \\
N_{3} & =\frac{1}{8}\left(A_{1}{ }^{2}-A_{4}{ }^{4}+A_{3}{ }^{2}-A_{3}{ }^{8}\right) \tag{14}
\end{align*}
$$

\vec{N} is the spin of quariks with no strangeness. Note the relationship between the two chains and the identity

$$
\begin{equation*}
\overrightarrow{\mathrm{J}}=\overrightarrow{\mathrm{N}}+\stackrel{\rightharpoonup}{\mathrm{S}} . \tag{15}
\end{equation*}
$$

We shall need only the quadratic Casimir operators of the various groups. For SU(6) our definition is

$$
\begin{equation*}
C_{2}^{(6)}=\frac{1}{1} \sum_{\lambda=1}^{6}(A \cdot A)_{\lambda}^{\lambda}=\frac{1}{2} \sum_{\lambda, \mu=1}^{6}\left\{A_{\mu}^{\lambda}, A_{\lambda}^{\mu}\right\} . \tag{16}
\end{equation*}
$$

Similarly, $C_{2}{ }^{(3)}, C_{8}^{(4)}$, and $C_{2}^{(s)}(L)=L(L+1)(L$ $=I, J, S, N)$.
4. We proceed to the construction of tensor operators. For $T^{(35)}$ a general construction is immediately available from Ginibre's theorem ${ }^{\text { }}$ and an analogous construction can be worked out for $T^{(109)}$ and $T^{(205)}$. We shall not quote these
general constructions since we are interested only in representations α such that $\alpha^{*} \otimes \alpha$ contains 189 and 405 no more than once.

For $T^{(189)}\left[T^{(\$ 05)}\right]$, we first extract the antisymmetric (symmetric) part of $6 \otimes 6=15 \oplus 21$ to obtain the basis tensors of the $1 \overline{5}-\overline{(21-)}$ dimensional representation and at the same time identify the quantum numbers associated with each component. With this information in hand we can write down the five $I=J=Y=0$ states that occur in the reducible representation $15 * \otimes 15$ $=\underline{1} \oplus 35 \oplus 189\left(\underline{21}{ }^{*} \otimes 21=1 \oplus 35 \oplus 405\right)$. The extrac tion of orthogonal linear combinations with prescribed transformation properties is then a straightforward task. A knowledge of the basis tensor leads immediately to the correaponding tensor operator.

All of these tensor operators can be expressed in terms of the Casimir operators of subgroups in either the P or the U chains. The mass operators ${ }^{10}$ can then be read off from these expres sions.
5. We indicate by $M_{(n)}^{(m)}$ the mass operator containing a symmetry-breaking term transforming like an $\operatorname{SU}(6)$ tensor of multiplicity n with an $\mathrm{SU}(3)$ component of multiplicity m and $I=Y=0$, and singlet under $\mathrm{SU}(2)_{J}$.

The five "irreducible" mass formulas are

$$
\begin{align*}
& M_{\text {(3s) }}{ }^{(\text {() })}=a_{1}+b_{1} Y+c_{2}\left[2 S(S+1)-C_{1}{ }^{(1)}+\frac{1}{1} Y^{2}\right] \text {, } \tag{17}\\
& M_{(109)^{(1)}}=a_{2}+b_{2}\left[2 J(J+1)-C_{8}^{(8)}\right] \text {, } \tag{18}\\
& M_{(189)^{(a)}}=a_{3}+b_{3}\left\{\left[2 J(J+1)-C_{2}{ }^{(8)}\right]+3[2 I(I+1)\right. \\
& \left.-\frac{1}{2} Y^{2}-2 N(N+1)+2 S(S+1)\right] \\
& -3\left[2 S(S+1)-C_{2}^{(4)}+\left\{Y^{2}\right]\right\} \text {, } \tag{19}\\
& M_{(\cos)}{ }^{(1)}=a_{4}+b_{1}\left[2 J(J+1)+C_{2}^{(8)}\right] \text {, } \tag{20}\\
& M_{(\cos)}{ }^{(a)}=a_{s}+b_{8}\left\{\left[2 J(J+1)+C_{1}^{(s)}\right]+(21 / 8)[2 S(S+1)\right. \\
& \left.-C_{2}^{(\omega)}+\frac{1}{4} Y^{2}\right]+3[2 I(I+1) \\
& \left.\left.-\frac{1}{1} Y^{2}+2 N(N+1)-2 S(S+1)\right]\right\}, \tag{21}
\end{align*}
$$

where the coefficients depend only on the Casimir operators of $\mathrm{SU}(6)$.

If the symmetry-breaking term in the actual mass operator contains contributions from all the five tensors listed above, the mass operator ${ }^{10}$ is

$$
\begin{align*}
M=a & +b C_{2}^{(4)}+c J(J+1)+d Y \\
& +e\left[2 S(S+1)-C_{1}^{(1)}+\frac{1}{4} Y^{2}\right] \\
& +f[N(N+1)-S(S+1)] \\
& +g\left[I(I+1)-\frac{1}{4} Y^{2}\right] \tag{22}
\end{align*}
$$

We proceed to examine the consequences of
Eq. (22) for the 56- and 35-dimensional representations.
6. In the 56 -dimensional representation there exist the following identities:

$$
\begin{align*}
2 J(J+1)-C_{2}^{(2)} & =-\frac{9}{3}, \tag{23}\\
2 S(S+1)-C_{2}^{(4)}+\frac{1}{4} Y^{2} & =-8 Y-15 / 2, \tag{24}\\
I(I+1)-\frac{1}{4} Y^{2}-N(N+1)+S(S+1) & =-Y+\frac{3}{8} . \tag{25}
\end{align*}
$$

Equation (22) therefore collapses into

$$
\begin{equation*}
M=M_{0}+M_{1} J(J+1)+M_{2} Y+M_{3}\left[J(I+1)-\frac{1}{2} Y^{1}\right], \tag{26}
\end{equation*}
$$

a result conjectured by Gürsey and Radicati. ${ }^{1}$ Mass relationships based on this formula are satisfied to great accuracy. One now has an explanation for the empirically known fact that the mass formula for the baryon octet can be used with the same coefficients for the resonance decuplet in broken SU(3).
7. For the 35-dimensional representation, Eq. (22) must be used with care since there is no analog of the identity (23) and hence the mass operator is not a priori diagonal in either the \mathbf{P} or the U chains. Only the ω and φ states, however, are affected.

Let $\omega_{\mathrm{U}}, \varphi_{\mathrm{U}}$ be eigenstates of operators in the U chain, and $\omega_{\mathrm{p}}, \varphi_{\mathrm{P}}$ of those of the P chain. They are related through the equations

$$
\begin{align*}
& \omega_{U}=\left(\frac{1}{1}\right)^{1 / 2} \omega_{P}+\left(\frac{1}{3}\right)^{1 / 2} \varphi_{\mathbf{P}} \tag{27}\\
& \varphi_{U}=-\left(\frac{1}{2}\right)^{1 / 2} \omega_{P}+\left(\frac{1}{3}\right)^{1 / 2} \varphi_{P} \tag{28}
\end{align*}
$$

Since the bulk of the mass operator is diagonal in the U chain, it is convenient to start with ω_{U} and φ_{U} as the basis and subsequently carry out the diagonalization of the mass matrix. The new eigenvectors are the physical ω and φ.

By a straightforward evaluation of the quantum numbers that occur in Eq. (22) (see Table I), we can write down the squares of meson masses ${ }^{11}$ in terms of a, b, c, d, e, f and obtain sum rules by elimination. For pseudoscalar mesons one recovers the usual sum rule [meson label \equiv (meson mass $)^{2}$]

$$
\begin{equation*}
4 K-\pi=3 \eta \tag{29}
\end{equation*}
$$

No other sum rules are possible since our original formula was much too general.

If we drop the contribution of $M_{(109)}{ }^{(8)}$, we get the constraint $f=g$. One extra sum rule is now obtained, to wit,

$$
\begin{align*}
\omega \varphi= & \frac{1}{1}\left(\pi+K^{*}-K\right)\left(3 K^{*}-\rho+K-\pi\right) \\
& -\frac{1}{1}\left(4 K^{*}-\rho\right)\left(5 K^{*}-\rho+\pi-K-2 \omega-2 \varphi\right) . \tag{30}
\end{align*}
$$

Table I. Quantum numbers of mesons and baryons. Center dots mean "not an eigenstate."

Particle	I	N	S	J	$C_{2}{ }^{(3)}$	$C_{2}{ }^{(4)}$
π	1	0	0	0	6	8
ρ	1	1	0	1	6	8
${ }_{\omega} \mathrm{U}$	0	1	0	1	*.	8
${ }^{\omega}$	0	\cdots	-	1	6	* .
η	0	0	0	0	6	0
K	1/2	1/2	1/2	0	6	15/4
K^{*}	1/2	1/2	1/2	1	6	15/4
\bar{K}	1/2	1/2	1/2	0	6	15/4
$\overline{\mathbf{K}}^{*}$	1/2	$1 / 2$	1/2	1	6	15/4
φ_{U}	0	0	1	1	-••	0
φ_{P}	0	-*	. \cdot	1	0	* .
N	1/2	1/2	0	1/2	6	63/4
N^{*}	3/2	3/2	0	3/2	12	63/4
Σ	1	1	1/2	1/2	6	9
A	0	0	1/2	$1 / 2$	6	9
$Y_{1}{ }^{*}$	1	1	1/2	$3 / 2$	12	9
E	1/2	1/2	1	1/2	6	15/4
馬	1/2	1/2	1	3/2	12	15/4
Ω	0	0	$3 / 2$	$3 / 2$	12	0

With the present mass values Eq. (30) appears to be obeyed quite well. We are thus led to conjecture that the 188-octet contribution is indeed absent. It is important to state, however, that no further contributions can be dropped without running into serious contradiction with physical reality.
8. The mass operator, ${ }^{10}$ we are led to propose, is therefore

$$
\begin{align*}
M=a & +b C_{2}^{(S)}+c J(J+1)+d Y \\
& +e\left[2 S(S+1)-C_{2}^{(4)}+\frac{1}{4} Y^{3}\right] \\
& +f\left[I(I+1)-\frac{1}{4} Y^{M}+N(N+1)-S(S+1)\right] . \tag{31}
\end{align*}
$$

Applications of this formula to the 70-dimensional representation will be the subject of a forthcoming communication.

If one uses Eq. (31) to define the meson central mass and Eq. (26) to define the baryon central mass, one obtains $\sim 610 \mathrm{MeV}$ and $\sim 970 \mathrm{MeV}$, respectively. Equation (θ) of reference 3 now glves $g_{\mathrm{ps}}{ }^{2} / 4 \pi \sim 13$, a gratifying result.

We are deeply indebted to Professor A. Pais for his interest and enthusiastic encouragement. Many conversations with Profecsor F. J. Dyson are gratefully acknowledged. One of us (V.S.) wishes to thank Professor J. R. Oppenheimer for hospitality at the Institute for Advanced Study.

[^20]Tata Institute for Fundamental Research, Bombay, India.
${ }^{1}$ F. Gürsey and L. Radicati, Phys. Rev. Letters 13, 173 (1964).
${ }^{2}$ A. Pai3, Phys. Rev. Letters 13, 175 (1964).
${ }^{3}$ F. Gürsey, A. Pais, and L. Radicati, Phys. Rev. Letters 13, 299 (1964).
${ }^{4}$ E. Wigner, Phys. Rev. 51,105 (1937).
${ }^{5}$ M. Gell-Mann, Phys, Letters 8, 214 (1964).
${ }^{8}$ F. Gürsey, A. Pais, and L. Radicati, private communication.

TWe are aware that representations are not, in general, determined by their dimensionality. However,
there is no ambiguity in the representations considered in this paper.
${ }^{\text {日 }}$ T. K. Kuo and T. Ygo, preceding Letter (Phys. Rev. Lettera 13, 415 (1964)].
${ }^{9}$ J. Ginibre, J, Math. Phys. 4, 720 (1963).
${ }^{10}$ Note that these mass operators commute with all the Casimir operators of $S U(6)$ and thus cannot reproduce the off-diagonal elements of the symmetrybreaking interaction. The dependence on state labels, in a given $\operatorname{SU}(6)$ representation, is, however, correctly reproduced (Wigner-Eckart theorem).
${ }^{11}$ We have followed the canonical practice of using arases for fermions and (masses) ${ }^{2}$ for bosons.

SPLITTING OF THE 70-PLET OF SU(6)

Mirza A. Baqi Bég

The Rockefeller Institute, New York, New York
and

Virendra Singh*

Institute for Ajvanced Study, Princeton, New Jersey
(Received 18 September 1964)

1. In a previous note, ${ }^{1}$ hereafter called I, we proposed an expression for the mass operator responsible for lifting the degeneracies of spinunitary spin supermultiplets $[E q$. (31)-I]. The purpose of the present note is to apply this expression to the 70 -dimensional representation of SU(6).

The importance of the 70 -dimensional represenLation has already been underlined by Pais. ${ }^{2}$ Since

$$
\begin{equation*}
35 \therefore 26-56+70+700+1134 \tag{1}
\end{equation*}
$$

: blinwe that io is the matural cand date for atcommodating the higher mesun-baryon reso.
nances. Furthermore, since the $\operatorname{SU}(3) \otimes S U(2)$ content is

$$
\begin{equation*}
\underline{70}=(\underline{1}, \underline{2})+(\underline{8}, \underline{2})+(10, \underline{2})+(\underline{8}, \underline{4}) \tag{2}
\end{equation*}
$$ we may assume that partial occupancy of the 70 representation has already been cstablished through the so-called $\gamma \operatorname{octet}^{2}\left(\frac{3}{2}\right)^{-}$. Recent experiments appear to indicate that some $\left(\frac{1}{2}\right)^{-}$ states may also be at hand. ${ }^{3}$ With six masses at one's disposal, our formulas can predict the masses of all the other occupants of 70 and also provide a consistency check on the input. Our discussion of the 70 representation thus appears to be of immediate physical interest.

The question of numerical predictions cannot be properly treated without a critical analysis of the available experimental input. Such an analysis, however, is outside the proper province of this note. ${ }^{4}$
2. The first problem at hand is the construction of basis tensors of the 70-dimensional representation and identification of the I, Y, J values associated with each component. The simplest procedure is to start with the reducible representation $15 \otimes 6=20 \oplus 70$ and remove the completely antisymmetric part. Alternatively one can start with $\underline{21} \otimes 6=56 \pm 70$ and remove the completely symmetric part.
3. The $J=\frac{3}{2}$ tensors are pure under $\operatorname{SU}(3)$. For the $J=\frac{1}{2}$ tensors the $\operatorname{SU}(3)$ reduction is accomplished by separating out the part completely symmetric in $\mathrm{SU}(3)$ indices (decuplet), the part completely antisymmetric (singlet), and the part with "mixed symmetry" (octet). By taking appropriate linear combinations one can then write down all the eigenstates of the P chain. If $\operatorname{SU}(3)$ representations are labeled by the usual (p, q), then

$$
\begin{equation*}
C_{2}^{(3)}=\frac{2}{3}\left(p^{2}+q^{2}+p q+3 p+3 q\right) \tag{3}
\end{equation*}
$$

4. Next one takes linear combinations of states in the P chain in order to obtain eigenstates of N and S. States which share the same values of Y and S can be combined into one or more sets, each set providing a basis for an irreducible representation of $S U(4)$. These representations can be reduced with respect to $\mathrm{SU}(2)_{I} \propto S U(2)_{N}$; this reduction, in fact, provides a puwerful check on the SU(4) assignments and the Wigner numbers ${ }^{5}$ characterizing $S U(4)$ representations. If the Wigner numbers are denoted by ($Q, Q^{\prime}, Q^{\prime \prime}$), then

$$
\begin{equation*}
C_{2}^{(4)}=Q^{2}+4 Q+Q^{\prime 2}+2 Q^{\prime}+Q^{\prime \prime 2} \tag{4}
\end{equation*}
$$

5. Our notation for particle states which are eigenstates of uperators in the P chain is as follows ${ }^{8}$:

$$
\begin{align*}
& \text { (1, 2): } \Lambda_{\mathbf{p}}{ }^{\prime} \text {, } \tag{5}\\
& (\underline{8}, \underline{2}): \tilde{N}^{2} \dot{\Sigma}_{\mathrm{P}}, \bar{\Lambda}_{\mathrm{P}}, \bar{\Xi}_{\mathrm{P}} ; \tag{6}\\
& (10, \underline{2}): \bar{N}^{*}, \bar{Y}_{\mathrm{P}}{ }^{*}, \ddot{Z}_{\mathrm{P}}{ }^{*}, \bar{\Omega} ; \tag{7}\\
& \text { (8, 4): } N_{\gamma}, \Sigma_{\gamma}, \Lambda_{\gamma}, \bar{\Xi}_{\gamma} . \tag{8}
\end{align*}
$$

For the eigenstates in the U chain, we have ${ }^{8}$

$$
\begin{align*}
& \left(1,0 ; \frac{3}{2}, \frac{1}{2}, \frac{1}{2}\right): N_{\gamma}, \hat{N}, \hat{N}^{*} ; \tag{9}\\
& \left(0, \frac{1}{2} ; 1,1,1\right): \Sigma_{\gamma} \text { or } \bar{\Sigma}_{U}, \wedge_{U} ; \tag{10}\\
& \left(0, \frac{1}{2} ; 1,0,0\right): \Lambda_{\gamma} \text { or } \bar{\Lambda}_{U}, \tilde{Y}_{U}{ }^{*} ; \\
& \left(-1,0 ; \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right): \text { "}_{U} \text {; }
\end{align*}
$$

$$
\begin{aligned}
& \left(-2, \frac{1}{2} ; 0,0,0\right): \bar{\Omega} .
\end{aligned}
$$

Here the numbers in parentheses are ($Y, S ; Q$, Q ', $Q^{\prime \prime}$) and " A or B " implies that A and B are states distinguished by J spin but totally identical with respect to $\mathrm{U}(1) \otimes \mathrm{SU}(2) \mathrm{S}^{\otimes \mathrm{SU}(4) \text {. }}$

Recoupling formulas, relating states in the two chains, are all of the form

$$
\binom{U_{1}}{U_{2}}=\left(\begin{array}{c}
1 / \sqrt{2}-1 / \sqrt{2} \tag{15}\\
1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right)\binom{P_{1}}{P_{2}}
$$

where $U_{1}=\Lambda_{U^{\prime}}, \bar{\Sigma}_{U}$, and ${ }^{\Xi_{U}}$ correspond, respect tively, to $U_{2}=\bar{\Lambda}_{U}, \bar{Y}_{U^{*}}$, and $\stackrel{\overline{\bar{亏}}}{U}^{*}$. Similarly, we obtain the correspondences between P_{1} and P_{2} from the foregoing by changing the subscripts.
6. We have tabulated, in Table I, the quantum numbers associated with the states listed above. In order to use this table it is convenient, as in I, to start with the U chain as the basis and diagd onalize the mass operator. One obtains in this way the masses of the real particles as well as the corresponding eigenvectors.
7. We obtain the following seven "sum" rules," four additive and three multiplicative, connectin the 13 masses which occur in the 70-dimensional representation of $\mathrm{SU}(6)$ (notation; particle label三particle mass):

$$
\begin{align*}
& 3 \Lambda_{\gamma}+\Sigma_{\gamma}=2\left(N_{\gamma}+\Xi_{\gamma}\right), \tag{16}\\
& 4\left(\bar{Y}_{R}{ }^{*}+\bar{\Sigma}_{R}\right)-2\left(\bar{N}^{*}+\bar{N}+\underline{E}_{R}+\bar{E}_{R}\right) \\
& =6(\tilde{N} *-\bar{N})-3\left(\tilde{Y}_{R}{ }^{*}+\Sigma_{R}-\Lambda_{R}-\Lambda_{R}{ }^{\prime}\right), \tag{17}
\end{align*}
$$

$$
\begin{align*}
& 2\left(\tilde{\Omega}-\tilde{N}^{*}\right)=3\left(\Sigma_{\gamma}+\Lambda_{\gamma}\right)-6 N_{\gamma}, \tag{10}
\end{align*}
$$

SU(6) AND ELECTROMAGNETIC INTERACTIONS

M. A. B. Bég

The Rockefeller Institute, New York, New York
and
B. W. Lee*

Institute for Advanced Study, Princeton, New Jersey
and
A. Pais

The Rockefeller Institute, New York, New York
(Received 23 September 1964)

1. The purpose of this note is to discuss some properties of the electromagnetic vertex of baryons under the assumption that the effective electromagnetlc current associated with the strongly Interacting particles transforms according to the adjoint representation of the group ${ }^{1-3} \mathrm{SU}(6)$. In particular we show that, In the limit where SU(6) is broken by electromagnetism only, all of the following quantities can be expressed uniquely in
terms of the proton magnetic moment $\mu(p)$: (a) the magnetic moments of all baryon octet members, (b) those of the spin- $\frac{7}{2}$ decuplet, (c) all allowed transition moments between octet and decuplet. We recall ${ }^{1,2}$ that the octet and the decuplet are united in the 56 -dimensional representation of $\operatorname{SU(6)}$ and that $56 * 56$ contains 35 only once. All our results about baryons stem from this single occurrence of 35 .

In a pure $\operatorname{SU}(3)$ treatment it is customary to define the charge operator Q as follows：

$$
\begin{equation*}
Q=\left(F_{3}+F_{d} / \sqrt{3}\right) . \tag{1}
\end{equation*}
$$

The magnetic moment operator is

$$
\begin{equation*}
\vec{M}=\mu_{0} Q^{\prime} \vec{J} \tag{2}
\end{equation*}
$$

\vec{J} is the appropriate spin matrix（ $\vec{J}=\vec{\sigma} / 2$ for spin $\frac{1}{2}$ ），μ_{0} is a scale factor．Q^{\prime} is an operator with the same $S U(3)$ transformation properties as Q ．The quantity commonly called the magnet－ ic moment is the matrix element of M_{3} between states of highest J_{3} ．The（diagonal）magnetic moments within any given $\operatorname{SU}(3)$ multiplet are given by＊

$$
\begin{equation*}
\mu=b Q+c\left[U(U+1)-\frac{1}{4} Q^{2}-\frac{1}{b} C_{2}^{(3)}\right] \tag{3}
\end{equation*}
$$

U being the usual U spin．${ }^{3}$ The embedding of $\mathrm{SU}(3) \otimes \mathrm{SU}(2)$ in $\mathrm{SU}(6)$ removes the D / F arbitrari－ ness reflected in Eq．（3）and gives the unique re－ lations mentioned earlier．We next state our re－ sults：
（a）Baryon octet，－We find

$$
\begin{equation*}
\mu_{\text {米 }}=\frac{3}{3}\left[\left(\frac{1}{2} Q+1\right)^{2}-U(U+1)\right] \mu(p) . \tag{4}
\end{equation*}
$$

Beyond the $\operatorname{SU}(3)$ relations，first tabulated by Coleman and Glashow，${ }^{6}$ Eq．（4）gives the addition－． al $\mathrm{SU}(6)$ relation

$$
\begin{equation*}
\beta=\mu(n) / \mu(p)=-\frac{2}{3}, \tag{5}
\end{equation*}
$$

in remarkable agreement with the experimental ratio $x-0.684$ ，
（b）The spin－量 decuplet．－As $U=1-Q / 2, \operatorname{SU}(3)$ predicts that $\mu_{10}=$ const $\times Q$ ．More specifically we find from $\operatorname{SU}(6)$ that

$$
\begin{equation*}
\mu_{10}=Q \mu(p) . \tag{6}
\end{equation*}
$$

Thus，for example，$\mu(\Omega)=-\mu(p)$ ．
（c）Decuplet－octet transitions．－We denote the amplitude of the M_{1} transitions by $\left\langle n^{\prime} J^{\prime} M^{\prime}\right| \mu|n J M\rangle$ ， where n^{\prime} and n are particle labels．In this nota－ tion $\left\langle p \frac{1}{2} \frac{1}{2}\right| \mu\left|p \frac{1}{2} \frac{1}{2}\right\rangle \equiv \mu(p)$ ．For the decuplet－octet transitions $J=\frac{2}{2}, J^{\prime}=\frac{1}{2}$ ，and it is sufficient to quote the results for $M=\frac{1}{2}$ and $M^{\prime}=\frac{1}{2}$ ．Amplitudes for other M and M^{\prime} can be obtained by elementa－ ry $\mathrm{SU}(2)$ rotations．In the following it is there－ fore understood that $J=\frac{3}{2}, M=\frac{1}{2}, J^{\prime}=M^{\prime}=\frac{1}{2}$ ，and the explicit dependence need not be exhibited．
Note that $\mathrm{SU}(3)$ alone gives the following rela－ tionships for transitions allowed by conservation of charge and hypercharge ${ }^{7}$ ：

$$
\begin{align*}
\langle p| \mu\left|N_{+}^{*}\right\rangle & =-\left\langle\Sigma_{+}\right| \mu\left|Y_{+}^{*}\right\rangle=\langle n| \mu\left|N_{0}^{*}\right\rangle=2\left\langle\Sigma_{0}\right| \mu\left|Y_{0}^{*}\right\rangle \\
& =\frac{1}{2} \sqrt{3}\left(\Lambda|\mu| Y_{0}^{*}\right\rangle=\left\langle\Xi_{0}\right| \mu\left|\Xi_{0}^{*}\right\rangle, \tag{7}
\end{align*}
$$

$$
\begin{equation*}
\left\langle\Sigma_{-}\right| \mu\left|Y_{-}^{*}\right\rangle=\left\langle\Xi_{-}\right| \mu\left|Z_{-}^{*}\right\rangle=0 . \tag{8}
\end{equation*}
$$

$\mathrm{SU}(6)$ now gives the additional relation

$$
\begin{equation*}
\langle p| \mu\left|N_{+}^{*}\right\rangle=\frac{2}{3} \sqrt{2} \mu(p) . \tag{9}
\end{equation*}
$$

This is in qualitative agreement with the esti－ mates of Gourdin and Salin ${ }^{8}$ who obtain $\langle p| \mu\left|N_{+}{ }^{*}\right\rangle$ $\cong 1.6 \times(2 \sqrt{2} / 3) \mu(p)$ from a study of $\gamma+p \rightarrow \pi+N$ near the 33 resonance．

2．Derivations．－For given momentum $\overrightarrow{\mathrm{q}}$ ，the states of the 56－dimensional representation of $S U(6)_{\mathrm{q}}$ are described by the completely symmet－ ric tensor $B^{\alpha \beta \gamma}(\overrightarrow{\mathrm{q}}), \alpha, \beta, \gamma=1,2, \cdots, 6$ ．This ten－ sor is reducible under the group $\operatorname{SU}(3) \otimes S U(2)_{q}$ ， the explicit reduction ${ }^{0}$ in the rest frame $(\vec{q}=0)^{2}$ being

$$
\begin{align*}
B^{\alpha \beta \gamma}(0)= & B^{\alpha \beta \gamma}=\chi^{(i j k)} d^{(A B C)} \\
+ & \frac{1}{3 \sqrt{2}}\left[\left(2 \epsilon^{i j} \chi^{k}+\epsilon^{j k} \chi_{\chi}^{i}\right) \epsilon^{A B D} b_{D}^{C}\right. \\
& \left.+\left(\epsilon^{i j} \chi^{k}+2 \epsilon^{j k} \chi^{i}\right) \epsilon^{B C D} b_{D}{ }^{A}\right], \tag{10}
\end{align*}
$$

$i, j, k=1,2 ; A, B, C, D=1,2,3$ ．Here $\epsilon^{i j}$ and $\epsilon^{A B C}$ are the Levi－Civita symbols in two and three dimensions，respectively．x^{i} is a（normalized） Pauli spinor．The $\chi^{(i j k)}$ are the spin－$\frac{8}{2}$ wave functions．${ }^{10}{ }_{b}{ }_{B}{ }^{A}$ is the usual baryon octet ten－ sor，${ }^{11} d(A B C)$ is the $\operatorname{SU}(3)$－decuplet tensor．${ }^{11}$
Our assumption is that the charge operator transforms like an（ $\underline{8}, \underline{1}$ ）member of a 35 repre－ sentation，and the magnetic moment operator transforms like an（ $8, \underline{3}$ ）member of a 35 repre－ sentation ${ }^{12}$（we do not assume that the same 35 representation appears in both cases）．Under these assumptions，the effective，low－frequency limit of the electromagnetic vertex of the baryons may be written as ${ }^{13}$

$$
\begin{gather*}
3 B_{\alpha \beta \gamma}{ }^{+}{ }_{B}{ }^{\alpha \beta \delta}\left[e \varphi \delta_{l}{ }^{k}+\mu(p) \cdot i(\vec{\sigma} \cdot \overrightarrow{\mathrm{q}} \times \vec{\epsilon}){ }_{l}{ }^{k}\right] Q_{D}{ }^{C} ; \\
\gamma=(k, C), 8=(l, D), \tag{11}
\end{gather*}
$$

where φ is an electrostatic potential and $\vec{\epsilon}$ a ypolarization vector $山_{\mathrm{q}}$ ．Expanding the coefficient of φ in terms of particle states we get the re－ spective charges of the particles，while the mag－ netic term yields the results quoted in Eqs．（4）－ （9）．${ }^{14}$

3．Remarks．－（a）A more general definition of Q has been proposed ${ }^{15}$ which would lead to the addition on the right－hand side of Eq．（3）of a constant（independent of Q, U ，and $C_{2}^{(3)}$ ）．The inclusion of such a term would diminish the pre－
dictive power of $\operatorname{SU}(6)$ and would in particular render β arbitrary [see Eq. (5)].
(b) It has been noted ${ }^{3}$ that the subgroup $\mathrm{SU}(4)(T)$ of SU(6) gives an arbitrary mixture of Wigner versus Majorana forces between nucleons, while this mixture is unique for $S U(6)$. This statement has an electromagnetic analog, namely, the isoscalar vs isovector ratio is fixed in $\operatorname{SU}(6)$ but arbitrary in $\operatorname{SU}(4)(T)$, so that $\operatorname{SU}(4)(T)$ does not make any predictions for β. However, if one assumes that the effective electromagnetic current transforms according to the adjoint representation of $\operatorname{SU}(4)(T)$, one obtains ${ }^{16} \beta=-1$.
(c) It has been noted in reference 3 and independently by Sakita ${ }^{17}$ that $\mathrm{SU}(6)$ relates the structure of Pauli-type vector-meson terms to that of the p-wave pseudoscalar term. Sakita has studied an assignment where the baryon octet is contained in the 20 -dimensional representation of $\operatorname{SU}(6) . \beta$ is unique also for this choice and we find $\beta=-2$ in this case. This may serve as a further indication that the 56 representation is preferable.
(d) All our results can also be obtained by the method of vector addition of magnetic moments, ${ }^{18}$ by regarding the baryons as composite structures built up out of spin- $\frac{1}{2}$ quarks ${ }^{19}$ with composite wave functions dictated by $\mathbf{S U}(6)$. This method can of course be applied to other SU(6) representations as well. In this way one easily shows that $\operatorname{SU}(6)$ yields a new relation for the 35 meson representation, namely $\mu\left(\rho_{+}\right)=3\left\langle\pi_{+}, 0,0\right| \mu \mid \rho_{+}$, $1,0\rangle$. We hasten to add that this remark is not meant to shed light on the existence of quarks.
4. Finally, we discuss some implications of our results from the point of view of a local Lagrangian field theory. It should be stressed that the conclusions obtained so far have come from an analysis of an effective vertex ${ }^{14}$ under the assumption that this vertex has prescribed SU(6) properties. Likewise the results found in reference 3 referred exclusively to an $\operatorname{SU}(6)$ invarlant effective strong-interaction vertex. However, in the present electromagnetic case we are in the unique position to be able to compare a specific numerical prediction of the $S U(6)$ theory with an equally specific answer of local field theory. Loosely speaking, the situation is the following: According to Eq. (5),$\beta=-$? , This comfortable value for β is a pure number, independent of any coupling constants. In field theory we have been accustomed for many years to say, "In the limit where the strong interactions are 'turned off,' we should have $\mu(n)=0, \mu(p)=1$,
hence $\beta=0$; or, conversely, the 'anomalous' magnetic moments of nucleons come about by "turning on' the strong interactions." Thus we arrive at a paradox which comforts while it mocks: We cannot assume both that the $\operatorname{SU}(6)$ group is valld and that local field theory with minimal electromagnetic interactions applies to nucleons.

We shall next attempt to state this imcompatibility in more precise terms. Let us consider the following set of assumptions: (I) Strong and electromagnetic effects are derivable from a Lagrangian $\mathcal{L}=\mathscr{L}_{0}+\mathcal{L}(g)+\mathcal{L}(e)$. Here \mathcal{L}_{0} is the free Lagrangian, $\mathcal{f}(g)$ symbolizes all stronginteraction terms, and $\mathcal{L}(e)$ stands for the electromagnetic terms, $\mathscr{L}_{0}, \mathscr{L}(g)$, and $\mathfrak{L}(e)$ contain explicitly the local nucleon fields. (II) $\mathscr{L}(e)$ is minimal, that is, it contains no derivatives of the electromagnetic potentials, while also the SU(3) trace of the charge operator shall vanish $\left(Q=F_{3}\right.$ $\left.+F_{g} / \sqrt{3}\right)$. (III) $\mathscr{L}_{0}+\mathcal{L}(g)$ is invariant under a group which contains $\operatorname{SU}(6)$ as a subgroup. As SU(6) is a linear group, this means in particular that \mathscr{L}_{0} and $\mathscr{\perp}(g)$ are separately $\mathrm{SU}(6)$-invariant. Furthermore, $\mathscr{L}(e)$ shall have the definite $S U(6)$ properties assumed above for the effective electromagnetic vertex. (IV) It is possible to calculate in such a theory the magnetic moment of the neutron, which we denote by $\mu_{n}(e, g)$, and likewise for other particles. Moreover, $\mu_{n}(e, 0)$ exists and is identical with the neutron magnetic moment calculated from $\mathcal{L}=\boldsymbol{L}_{0}+\mathcal{L}(e)$; likewise for the proton. We conclude that the assumptions (I) to (IV) are incompatible.

We are now faced with two connected questions. First, one should prove this statement in a direct fashion rather than having recourse to the numerical result for β. Second, if one belleves (as we do) that the results obiained with the SU(6) assumptions are not a series of numerical coincidences, one will have to revise some of the assumptions (I) to (IV) and the question is which ones. These questions will be studied further.

One of the authors (B.W.L.) wishes to thank Professor J. R. Oppenheimer for his hospitality at the Institute for Advanced Study.

[^21]SU(3) as defined in M. A. B. BGg and V. Singh, Phys. Rev. Letters 13, 418 (1964). The eigenvalues of $\mathrm{C}_{2}{ }^{(5)}$ in the 8 - and 10 -dimensional representations are, respectively, 6 and 12.
${ }^{\text {W}}$ S. Meshkov, C. A. Levinson, and H. J. Lipkin, Phys. Rev. Letters 10, 361 (1963).
©S. Coleman and S. L. Glashow, Phys. Rev. Letters 6, 423 (1961).
${ }^{1}$ Some of these relationships have been written down by H. J. Lipkin, Unitary Symmetry for Pedestrians (Argonne National Laboratory Informal Report, 1963 (unpublished). That all the $8-t 0-10$ transition moments can be expressed in terms of one parameter follows from the simple reducibility of $8 \$ 10$.
${ }^{8}$ M. Gourdin and Ph. Salin, Nuovo Cimento 27, 193 (1963). In their notation $\left\langle p \mid \mu\left(N_{+}\right\rangle\right\rangle=\left\langle\frac{?}{2}\right)^{1 / 2} \frac{1}{2}\left(C_{1}+2 m_{N} C_{2}\right)$ m_{π}) in units of nuclear magneton.
To each fixed α correaponds a fixed pair of labels (i,A). For $\alpha=1, \cdots, 6$ these respective pairs are $(1,1),(1,2),(1,3),(2,1),(2,2)$, and $(2,3)$. In Eq. (11) we use the correspondence $\alpha=(i, A) ; \beta=(j, B), \gamma=(h, C)$. Note that $\epsilon A B D_{b} C+\varepsilon B C D_{b} A+\varepsilon C A D_{b} B=0, \varepsilon^{i j} \chi^{i}$ $+e^{j h} x^{i}+\epsilon^{h i} x^{j}=0$.
${ }^{16} \chi^{(i j k)}$ is totally symmetric in i, j, and k. Normalizations are $\left\|\chi^{(i 11)}\right\|=1,\left\|x^{(412}\right\|=\frac{1}{3}$, etc.
${ }^{11}$ We ase a normalization such that $b_{3}{ }^{1}=p$. Further-
more, $d^{(111)}=N_{++}{ }^{*}, d^{\left(11 D^{2}\right.}=N_{+}{ }^{*} / \sqrt{3}$, etc. For fixed α, β, γ, the norm of $B^{\alpha \beta \gamma}$ is equal to 1 if $\alpha=\beta=\gamma ; \frac{1}{3}$ if α $=\beta * \gamma_{i} \frac{1}{f}$ if $\alpha * \beta=\gamma$.
${ }^{18}$ Note that in terms of SU(6) generators the charge and magnetic moment operators are given by: $\varphi=e$ $\left.\times\left(A_{1}{ }^{1}+A_{4}{ }^{4}\right) ; M_{+}=\mu_{0} i{ }^{2} T_{1}{ }^{6}-\frac{1}{3} T_{2}{ }^{5}-\frac{1}{3} T_{5}{ }^{6}\right] ; M_{-}=\mu_{0} I \frac{1}{3} T_{4}{ }^{1}-\frac{1}{3} T_{6}{ }^{2}$ $\left.-\frac{1}{8} T_{4}\right]_{i} M_{3}=\mu_{0}\left[\frac{1}{2}\left(T_{1}{ }^{j}-T_{4}{ }^{d}\right)-\frac{1}{(}\left(T_{2}{ }^{2}-T_{5}{ }^{5}\right)-\frac{1}{j}\left(T_{3}{ }^{3}-T_{5}{ }^{6}\right)\right]$, where $T_{\alpha}{ }^{\beta}$ is an irreducible tensor operator transforming as the generator $A_{\alpha}{ }^{\prime}$ (see Bég and Singh, reference 4).
${ }^{18}$ The normailuation factors are so chogen that for the proton Eq. (11) reduces to $e p^{+} p \varphi+\mu(p) p^{+} \bar{\sigma} p \cdot \vec{H}$.
${ }^{4} \mathcal{B}_{\alpha \beta \gamma}{ }^{+}$means the wave function complex conjugate to $B^{\alpha \beta \gamma}$. In the present paper we do not discuss the extenaion to the crossed channel.
${ }^{15}$ S. Okubo, Progr. Theoret. Phys. (Kyoto) 27, 958 (1961); M. Naueuberg, Phys, Rev. 135, B1047 (1964).
${ }^{18}$ This is like an oid strong-coupling resuit. See W. Paull, Meson Theory of Nuciear Forces (Intersclence Publishers, Inc., New York, 1946).
${ }^{17}$ B. Sakita, to be published.
${ }^{18} \mathrm{~J} . \mathrm{M}$. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics (John Wiley \& Sons, Inc., New York, 1952), p. 30 .
${ }^{15}$ M. Gell-Mann, Phys. Letters 3, 214 (1964).

A SCHEMATIC MODEL OF BARYONS AND MESONS*
 M. GELL-MANN
 Calffornia Institute of Technology, Pasadema, Caltfornia

Received 4 January 1964

If we assume that the strong interactions of baryons and mesons are correctiy described in terms of the broken "eightfold way" 1-3), we are tempted to look for some fundamentai explanation of the situation. A highly promised approach is the purely dynamical "bootstrap" model for all the strongly interacting particles within which one may try to derive isotopic spin and strangeness conservation and broken efghtfold symmetry from self-consistency alone 4). Of course, with only strong interactions, the oriantation of the asymmetry in the unitary space cannot be specified; one hopes that in some Way the selection of specific components of the F spin by electromagnetism and the weak interactions determines the choice of isotopic spin and hypercharge directions.

Even if we consider the scattering amplitudes of strongly interacting particles on the mass shell only and treat the matrix elements of the weak, electromagnetic, and gravitational interactions by means of dispersion theory, there are still meaningful and important questions regarding the algebraic properties of these interactions that have so far been discussed only by abstracting the properties from a formal field theory model based on fuadamental entities 3) from whith the baryons and mesons are built up.

If these entities were octets, we might expect the underlying symmetry group to be SU(8) instead of SU(3); it is therefore tempting to try to use unitary triplets as fundamental objects, A unitary triplet t consists of an isotopic singlet s of electric charge 2 (in units of e) and an isotopic doublet (u, d) with charges $z+1$ and z reapectively. The anti-triplet \bar{t} has, of course, the opposite stgns of the charges. Complete symmetry among the members of the triplet gives the exact eightfold way, while a mass difference, for example, between the isotopic doublet and singlet gives the first-order violation.

For any value of z and of triplet spin, we cah construct baryon octets from a basic neutral baryon singlet b by taking combinations ($b t l$), ($b+t t b$), etc. ${ }^{* *}$. From ($b t$), we get the representations 1 and 8 , while from (btttt) we get $1,8,10, \overline{10}$, and 27. In a similar way, meson singlets and octets can be made out of (t $\bar{t})$, ($t \mathrm{t} \overline{\mathrm{t}} \overline{\mathrm{t}}$), etc. The quantum num-
ber n_{t} - n_{t} would be zero for all known baryons and mesons. The most interesting example of such a model is one in which the triplet has spin $\frac{1}{2}$ and $z=-1$, so that the four particies d^{-}, s^{-}, u° and b^{0} exhibit a parallel with the leptons.

A simpler and more elegant acheme can be constructed if we allow non-integral values for the charges. We can dispense entirely with the basic baryon b if we assign to the triplet t the following properties: spin $\frac{1}{2}, z=-\frac{1}{3}$, and haryon number $\frac{1^{\frac{1}{3}} \text {. }}{}$ We then refer to the members $u^{\frac{3}{3}}, d^{-\frac{1}{3}}$, and $s^{-\frac{1}{3}}$ of the triplet as "quarks" 6) q and the members of the anti-triplet as anti-quarks á. Baryons can now be constructed from quarks by using the combinations ($q q q$), ($q q q q q$), etc., while mesons are made out of ($q \bar{q})$, $(q q \bar{q} \bar{q})$, etc. It is assuming that the lowest baryon configuration (q qq) gives just the representations 1, 8, and 10 that have been observed, while the lowest meson conftguration ($q \bar{q}$) similarly gives just 1 and 8.

A formal mathematical model based on field theory can be built up for the quarks exactly as for p, n, Λ in the old Sakata model, for example ${ }^{3}$) with all strong interactions ascribed to a neutral vector meson field interacting symmetrically with the three particles. Within such a framework, the electromagnetic current (in units of e) is just

$$
\left\{\left\{\frac{2}{8} \mathbb{\square} \gamma_{\alpha} u-\frac{1}{3} \mathbb{d} \gamma_{\alpha} d-\frac{1}{3} 玉 \gamma_{\alpha} s\right\}\right.
$$

or ${ }^{5} 3 \alpha+58 \alpha / \sqrt{3}$ in the notation of ref. 3). For the weak current, we can take over from the Sakata model the form suggested by Gell-Mann and Leevy ${ }^{7}$), namely i $\bar{p} \gamma_{\alpha}\left(1+\gamma_{5}\right)(n \cos \theta+\Lambda \sin \theta)$, which gives in the quaris scheme the expression **

$$
1 \bar{u} \gamma_{\alpha}\left(1+\gamma_{5}\right)(d \cos \theta+s \sin \theta)
$$

* Work supperted in part by the U.S. Atomic Energy Commisslon.
** This is similar to the treatment in ref. 1). See also ref. 5).
 is obvious. Likdowiae, the model with $\mathrm{d}^{-}, \mathrm{s}^{-}, u^{\mathrm{o}}$, and b^{0} discussed above, we would take the weak current to be $\left.16^{\circ} \cos \theta+\mu_{1}^{\circ} \sin \theta\right) Y_{a}\left(1+Y_{5}\right) a^{-}$ $+1\left(\bar{u}^{\circ}\right.$ cos $\left.\theta-\bar{b}^{\circ} \operatorname{stn} \theta\right) Y_{a}\left(1+Y_{5}\right) d^{-}$. The part with

or, in the notation of ref. ${ }^{3)}$,

$$
\begin{aligned}
{\left[F_{1 \alpha}+F_{1 \alpha}^{5}\right.} & \left.+i\left(F_{2 \alpha}+F_{2 \alpha}^{5}\right)\right] \cos \theta \\
& +\left[F_{4 \alpha}+F_{4 \alpha}^{5}+i\left(5_{5 \alpha}+F_{5 \alpha}^{5}\right)\right] \sin \theta
\end{aligned}
$$

We thus obtain all the features of Cabibbo's picture ${ }^{8)}$ of the weak current, namely the rules $|\Delta I|=1$, $\Delta Y=0$ and $|\Delta I|=\frac{1}{2}, \Delta Y / \Delta Q=+1$, the conserved $\Delta Y=0$ current with coefficient $\cos \theta$, the vector current in general as a component of the current of the F-spin, and the axial vector current transforming under $\mathrm{SU}(3)$ as the same component of another octet. Furthermore, we have ${ }^{3 \text {) }}$ the equal-time commutation rules for the fourth components of the currents:
$\left[{ }_{j 4}(x) \pm F_{j 4}^{5}(x), F_{k 4}\left(x^{*}\right) \pm F_{k 4}^{5}\left(x^{*}\right)\right]=$

$$
-2 f_{j k l}\left[{ }^{F} / 4{ }^{(x)} \pm{ }^{5}{ }_{l 4}^{5}(x)\right] \delta\left(x-x^{k}\right)
$$

$\left[\mathscr{F}_{j 4(x)} \pm \mathscr{F}_{j 4}^{5}(x), \mathscr{F}_{k 4}\left(x^{\prime}\right) \mp \mathscr{F}_{k 4}^{5}\left(x^{\prime}\right)\right]=0$,
$i=1, \ldots 8$, yielding the group $\mathrm{SU}(3) \times \mathrm{SU}(3)$. We can also look at the behaviour of the energy density ${ }^{\theta} 44(x)$ (in the gravitational interaction) under equaltime commutation with the operators $\widetilde{F}_{j 4}\left(x^{\prime}\right) \pm \Psi_{j 4} 5^{5}\left(x^{\prime}\right)$. That part which is non-Invariant under the group will transform like particular representations of $\operatorname{SU}(3) \times \operatorname{SU}(3)$, for example like $(\mathbf{3}, \mathbf{3})$ and $(\mathbf{3}, 3)$ if it comes just from the masses of the quarks.

All these relations can now be abstracted from the field theory model and used in a dispersion theory treatment. The scattering amplitudes for strongly interacting particles on the mass shell are assumed known; there is then a system of linear dispersion relations for the matrix elements of the weak currents (and also the electromagnetic and gravitational interactions) to lowest order in these interactions. These dispersion relations, unsubtracted and supplemented by the non-linear commutation rules abstracted from the field theory, may be powerful enough to determine all the matrix elements of the weak currents, including the effective strengths of the axial vector current matrix elements compared with those of the vector current.

It is fun to speculate about the way quarks would behave if they were physical particles of finite mass
(instead of purely mathematical entities as they would be in the limit of infinite mass). Since charge and baryon number are exactly conserved, one of the quarks (presumably $\mathrm{u}^{\frac{2}{3}}$ or $\mathrm{d}-\frac{1}{\frac{1}{s}}$) would be absolutely stable *, while the other member of the doublet would go into the first member very slowly by β-decay or K -capture. The isotopic singlet quark would presumably decay into the doublet by weak interactions, much as A goes into N . Ordinary matter near the earth's surface would be contaminated by stable quarks as a result of high energy cosmic ray events throughout the earth's history, but the contamination is estimated to be so small that it would never have been detected. A search for stable quarks of charge $-\frac{2}{3}$ or $+\frac{2}{8}$ and or stable di-quarks of charge $-\frac{2}{3}$ or $+\frac{1}{\frac{1}{3}}$ or $+\frac{1}{2}$ at the highest energy accelerators would help to reassure us of the non-existence of real quarks.

These ideas were developed during a visit to Columbia University in March 1963; the author would like to thank Professor Robert Serber for stimulating them.

References

1) M.Gell-Mann, Calfornia Institute of Technology Synchrotron Laboratory Report CTSL-20 (1961).
2) Y. Ne'eman, Nuclear Phys. 26 (1961) 222.
3) M. Gell-Mann, Phys.Rev. 125 (1962) 1067.
4) E.g.: R.H. Capps, Phys.Rev.Letters 10 (1963) 312; R.E. Cutkosky, J. Kalckar and P. Tarjanne, Physics Letters 1 (1962) 93;
E.Abers, F. Zachariasen and A.C . Zemach, Phys. Rev. 132 (1963) 1831;
S. Glashow, Phys. Rev. 130 (1963) 2132;
R.E.Cutkosky and P. Tar janne, Phys. Rev. 132 (1963) 1354.
5) P.Tarjame and V.L.Teplitz, Phys. Rev. Lettera. 11 (1963) 447.
6) James Joyce, Finnegan's Wake (Viking Preas, New York, 1939) p. 383.
7) M.Gell-Mamn and M. Lévy, Nuovo Cimento 16 (1960) 705.
8) N. Cabibbo, Phys.Rev. Letters 10 (1963) 531.
[^22]
THE SYMMETRY GROUP OF VECTOR AND AXIAL VECTOR CURRENTS*

MURRAY GELL-MANN
California institute of Technology, Pasadena, California

(Received 25 May 1964)

Abstract

We review, modify slightly, generalize, and attempt to apply a theory proposed earier of a higher broken symmetry than the eightfold way. The integrals of the time components of the vector and axial vector current octets are assumed to generate, under equal time commutation, the algebra of $\mathrm{SU}(3) \times \operatorname{SU}(3)$. The energy density of the strong interactions is as. sumed to consist of a piece invariant under the algebra, a piece that violstes conservation of the axial vector currents only and belongs to the representation (3, 3*) and (3*, 3), and a piece that violates the eightfold way and probably belongs to (1,8) and (8,1). Assummg the algebraic structure is exactly correct, there is still the question of whether ane can assign particles approximately to super-supermultiplets. The pseudoscalar meson octet, together with a pseudoscalar singlet, a scalar octet, and a scalar singlet, may belong to (3, 3*) and (3*, 3). The vector meson octet, together with an axial vector octet, may betong to (1,8) and (8, 1). The baryon octet with $\mathrm{J}=1 / 2^{+}$, together with a singlet with $\mathrm{J}=1 / 2^{-}$, may belong to ($3,3^{*}$) and ($3^{*}, 3$), as suggested before. Several crude coupling patterns and mass rutes emerge, to zeroth or first arder in the symmetry violations. Some are roughly in agreement with experiment, but certain predictions, like that of the existence of a scalar octet, have not been verified. Whether or not they are useful as an approximate symmetry, the equal time commutation rules fix the scale of the weak interaction matixix elements. Further rules of this kind are found to hold in certain Lagrangian field theory models and may be true in reality. In particular, we encounter an algebraic system based on $\mathrm{SU}(6)$ that relates quantities with dilferent kinds of behavior under Lareniz transformations.

I. Introduction

THE "eightfold way" theory of a broken higher symmetry for strong interactions was proposed $[i, 2]$ at a time when the value of a badly violated symmetry was unclear for two reasons:
(1) It was not obvious what real significance could be assigned to the algebrsic properties of the higher symmetry.
(2) It was not known whether the particle spectrum would show unmistakable evidence of the higher symmetry.

A solution was offered to the first problem when we pointed out [3] that the weak vector carrents with $|\boldsymbol{\Delta}|=1 / 2, \Delta Y / \Delta Q=+1$, and $|\boldsymbol{\Delta}|=1, \Delta \boldsymbol{Y}=0$ generate an algebraic system through the equal-time commutation relations of their time-components and that this algebra is preserved even though the conservation of the strangeness-changing currents is violated. We assumed that the algebra in question is that of $\operatorname{SU}(3)$; no matter how badly the eightfold way is broken, the vector current octet is then the current of the \mathbf{F}-spin. (This result was a simple generalization of the conserved vector current hypothesis, that the $\Delta \boldsymbol{Y}=0$ vector

[^23]current is the current of the I-spin.) We went on to consider the equal-time commutation relations of the vector currents with the energy density, which interacts with gravitation. The assumption of the broken eightold way is that the energy density is the sum of two pieces, one of which is invariant under the $\mathrm{F}-\mathrm{spin}$, and the other of which transforms like one component (by definition, the eighth) of an octet:
\[

$$
\begin{equation*}
x^{p}=x_{\operatorname{inv}}-c \phi_{s} . \tag{1}
\end{equation*}
$$

\]

The second problem arose when we attempted to arrange the isotopic multiplets of strongly interacting particles in supermultiplets that correspond, in order c°, to irreducible representations of SU(3). We then derived, to zeroth and first order in c, coupling pattems and mass rules that were to be compared with experiment. We had no guarantee, however, even if our algebraic system was the right one, that these rules would be sufficiently well obeyed to show traces of the higher symmetry and the manner in which it is violated. Fortunately, ample evidence is now available to support the eightfold way aymmetry, together with the pattern of violation in equation (1). In fact, the mass rules derived to first order in c are surprisingly accurate.

The success of the broken eightfol? way, despite the large violations of symmetry involved, suggests that it may be worthwhile to study in detail the still higher symmetry associated with the axial vector currents. We proposed [3] that the axial vector currents with $|\Delta \mathcal{N}|=1 / 2, \Delta Y / \Delta O=+1$, and $|\Delta \mathbb{|}|=1, \Delta Y=0$ belong to an octet with respect to $\mathrm{F}-\mathrm{spin}$ and that the time-components of the vector and axial vector octets together generate, under equal time commutation, the algebra $\operatorname{SU}(3) \times \operatorname{SU}(3)$. Moreover, we suggested that the term $S_{\text {inv }}$ in the energy density in equation (1) consists of two parts

$$
\begin{equation*}
x_{\mathrm{inv}}=\bar{x}-\lambda u_{0} \tag{2}
\end{equation*}
$$

where $\overline{\bar{F}^{5}}$ is invariant under the full algebra and leaves both vector and axial vector curtents conserved, while the terr: $-\lambda u_{0}$, transforming like a particular pair of representations of $\operatorname{SU}(3) \times \operatorname{SU}(3)$, violates conservation of the axial vector currents, while still commuting with the F-spin. These algebraic statements do not, of course, depend for their proposed validity on the smallness of the parameter λ.

We did not take altogether seriously, in ref. 3, the idea that these algebraic relations might be applied, like those of the eightfold way, by trying to assign particles to irreducible representations and finding rules to zeroth and first order in λ, to be compared with experiment. The success of the broken eightfold way, however, now makes it less ridiculous to see whether we can find traces of this even more badly broken symmetry. We would try tc group the strongly interacting particle supermultiplets into auper-Bupermultiplets, usually including particles of both parities, and to check by experiment very crude relations derived to low order in λ. In Section IV we describe the most plausible scheme of this kind, and note that an octet of scalar mesons is required for its success. Since no such octet has been clearly established at this time, we must reserve judgment on whether the approximation of small λ is of any use in describing the strong interactions.

It was mentioned in ref. 3 that an algebre is generated by the time-componente of the vector and axial vector curtents together with the symmetry-breaking term u_{0} in the energy density. In Section VII we follow up this idea and discuss the possibility that the "extended algebra" may be rather small; we show that in a special model it is the algebra of $S U(6)$ and suggest that such may be the case in reality. It is interesting that the axteaded algebra ties together quantitien with different Lorents trangormation properties, such as the acalar u_{0} and the four-vector currents.

The algebra [preaumably $S U(3) \times S U(3)$] of the vector and axial vector currenta and the extended algebra [possibly SU(6)] can be used, in the form of equal time commutation relations, to supplement dispersion reletions in the calculation of weak current matrix elements. It may also be true that more and more information about the strongly interacting particles can be expressed in algebraic language by sepeated use of the notion of equaldime commutation relations.

II. Review of the Theory

We treat the strong interactions exactiy, and the electromagretic, weak, and gravitational interactions in lowest order. Even though we discuss the scattering amplitudes for strongly interacting particles on the mass shell only (by the method of dispersion relationa or "S-matrix theory") we must etill acknowledge that
in lowest order the matrix elements of the weak and electromagnetic interactions can be determined for arbitrary mementum transfer by measurement and by analytic continuation of the measurable amplitudes. Presumably the same is true in principle of gravitation. Thus we may deal with electromagnetic and weak cur. rent operators and a stressenergy-momentum tensor operator $\theta_{a \beta}$, all functions of a space-time variable x, with the matrix elements for any momentum transfer k given by Fourier transform and with time derivatives given by commutation with the space integral of the energy density $W^{P}=-\theta_{4}$.

Incidentally, we notice in this way that the "S-matrix theory" of atrong interactions, with electromagnetism, weak interactions, and gravitation treated as small purturbations, is just a branch of abstract field theory, since the current operators and $\theta_{a \beta}$ are all field operators.

The weak current may be broken up, according to quantum numbers conserved by the strong interactions, first into a vector and an axial vector part, and then into pieces characterized by different values of $|\Delta|$ and $\Delta Y / \Delta Q$. We restrict our attention here to the familiar terms with $|\Delta|=1, \Delta Y=0$, and $|\Delta \mathbb{L}|=1 / 2$, $\Delta Y / \Delta Q=+1$. If there are others, they may lead to bigger algebras than we have here, but need not invalidate our conclusions.

The integrals of the time components of all these currents generate some minimal algebraic system under equal time commutation. For those currents that are conserved, the corresponding integrals (like the electric charge) are constant operators; the others vary with time. But the structure constants of the algebra remain unchanged under all conditions and correspond to a law of nature that specifies the minimal algebra of the vector and axial vector currents that we are studying.

In ref. 3, we made three assumptions that determine the algebra: (a) The vector weak current, like the electromagnetic current, is a component of the F-spin current $F_{i a}(x)$, where $i=1 \ldots 8$ and a is a Lorentx index. We have, then,

$$
\begin{align*}
F_{1}(t) & =-i \int F_{i 4} d^{3} x \tag{3}\\
{\left[F_{i}(t), F_{j}(t)\right] } & =i f_{i / k} F_{k}(t) . \tag{4}
\end{align*}
$$

Of course, F_{1}, F_{2}, and F_{3} are conserved by the strong interactions and are just the components of the isotopic spin; thus the conserved vector current hypothesis is included here. The components F_{4}, F_{5}, F_{6}, and F, actually vary with time. (b) The axial vector weak current is the same component of another current $F_{1 a^{3}}(x)$ that transforms like an octet with respect to F-spin. We have

$$
\begin{align*}
F_{i}^{5}(t) & =-i \int \mathscr{F}_{i 4}^{5} d^{3} x \tag{5}\\
{\left[F_{i}(t), F_{j}^{5}(t)\right] } & =i f_{i j k} F_{k}^{5}(t) \tag{6}
\end{align*}
$$

(c) The commatation rules of the operatora $F_{l}^{3}(t)$ close the algebraic system by giving

$$
\begin{equation*}
\left[F_{i}^{S}(t), F_{j}^{3}(t)\right]=i i_{1 / k} F_{k}(t) \tag{7}
\end{equation*}
$$

We now define

$$
\begin{equation*}
2 F_{1}^{ \pm}(t) \equiv F_{1}(t) \pm F_{i}^{5}(t) \tag{8}
\end{equation*}
$$

and notice that F_{i}^{+}and F_{i}^{-}wre two commuting F-spins, so that we are really dealing with the algebra of SU(3) \times SU(3). The two sets of operators, which we may think of as "left-handed" and "right-handed" F-Ipins reapectively, are connected by parity:

$$
\begin{equation*}
P F_{i}^{ \pm} P^{-1}=F_{i}^{\mp} \tag{9}
\end{equation*}
$$

The total F-spin itself is, according to equation (8), just the sum of the left-and right-handed pa: 3:

$$
\begin{equation*}
F_{1}=F_{1}^{+}+F_{1}^{-} \tag{10}
\end{equation*}
$$

We will be concerned with irreducible representations of the syatem consisting of F_{i}^{+}, F_{1}^{-}, and P. We indicate [3] the behavior with respect to $\left(F_{1}^{+}, F_{i}^{-}\right)$by a peir of representations, such as ($3,3^{*}$), $(8,8)$, etc. Since parity interchanges F_{i}^{+}and F_{1}^{-}, an irreducible reprementation with respect to parity and the two F-spins will have such forms as $(8,8)$ or $\left(3,3^{*}\right)$ and $\left(3^{*}, 3\right)$ or $(1,8)$ and $(8,1)$.

If e representation of F_{i}^{+}, F_{1}^{-}, and P is to contain a component invariaut under F_{i}, it must have the form (1,1) or ($\left(\underline{3}, 3^{*}\right)$ and $\left(3^{*}, 3\right)$ or (8,8), etc., so that the product of the two indicated representations will contain 1 .

The simplest choice, then, for the term λu_{0} in equation (2), which violates the conservation of $F_{i}{ }^{+}$and F_{i}^{-}separately while conserving F_{i}, is to have it belong to ($3,3^{*}$) and ($\mathbf{3}^{*}, 3$), as proposed in sef. 3. The operator u_{0} thus belongs to aset of nine scalar and rine peeudoscalar quantities, in each case forming an octet and a singlet with respect to total F-apin. The scalar octet is labeled $u_{1} \ldots u_{s}$ and the singlet u_{0}, while the pseadoscalar octet and ainglet are labeled $v_{1} \ldots v_{\mathrm{B}}$ and v_{0} respectively.

To specify the transformation properties of the u's and v^{\prime} 's, we introduce [3] a generalization of the symbols $f_{i / k}$ and $d_{i j k}$ to the case $i=0,1, \ldots 8$ instead of $i=1 \ldots 8$. To the 3×3 matrices λ_{1} ($i=1 \ldots 8$) we adjoin the matrix $\lambda_{0}=(2 / 3)^{\not / 2} 1$ and obtain the rules

$$
\begin{align*}
& {\left[\lambda_{i}, \lambda_{j}\right]=2 i I_{i j k} \lambda_{k}} \tag{11}\\
& \left\{\lambda_{k}, \lambda_{j}\right\}=2 d_{i j k} \cdots_{k} \tag{12}\\
& \operatorname{Tr} \lambda_{j} \lambda_{i}=2 \delta_{i j} \tag{13}
\end{align*}
$$

where i, $j_{\text {, and }} k$ run from 0 to 8 . Here, $f_{i j k}$ vanishes when any index is cero, and $d_{i j k}$ equala $(2 / 3)^{\text {/ }} \delta_{i j}$ when k is zero, etc.

We then obtain, for the transformation properties of the u_{1} and v_{i}, the results [3]

$$
\begin{align*}
& {\left[F_{i}, u_{j}\right]=i I_{i j k} u_{k}} \\
& {\left[F_{i}, v_{j}\right]=i i_{i j k} v_{k}} \tag{14}\\
& {\left[F_{i}^{3}, u_{j}\right]=-i d_{i j k} v_{k j}} \\
& {\left[F_{i}^{3}, v_{j}\right]=i d_{i, k} u_{k} .}
\end{align*}
$$

We note that equations (4), (6), and (7) indicate the representation to which the currents \mathscr{F}, x) and $\mathscr{F}_{i a}^{5}(x)$ belong, namely $(1,8)$ and $(8,1)$, with $i=1 \ldots 8$. At equal times, we have

$$
\begin{align*}
& {\left[F_{i}, T_{j a}\right]=i i_{i j k} F_{k a},} \\
& {\left[F_{i}, F_{i a}^{s}\right]=i i_{i j k} F_{k a} a_{1}} \tag{15}\\
& {\left[F_{i}^{5}, F_{j a}\right]=i i_{i j k} F_{k a^{s}},} \\
& {\left[F_{i}^{3}, F_{k a}^{s}\right]=i f_{i j k} F_{k a} .}
\end{align*}
$$

The ensential physice of the thoory is contained in the equetions written so far and is taken over directly from ref. 3. Two more pointm need to be added, however, which are modifications of the corresponding points in the earlier article. One of these concerna the component of $J_{1 a}{ }^{+}$utilized for the weak current, and in discussed in the next section. The other point is connected with the transformation properties under $\operatorname{SU}(3) \times \operatorname{SU}(3)$ of the term in the energy denaity that violetes the eightiold way, namely ϕ_{g} in equetion (1). The simpleat posaibilities for a unitary octet are, of course, $\left[\left(3,3^{*}\right)\right.$ and ($\left.\left.3^{*}, 3\right)\right]$ and $[(1,8)$ and (8,1)]. It now appears that the latter may be more nearly satisfactory than the former, o ed see in the next section. We had previously assumed not only that ϕ_{s} tranaformed $\mathbf{m}\left[\left(3,3^{*}\right)\right.$ and (3; , 3)], i.e., like u_{g}, but also that ϕ_{g} was equal to \tilde{u}_{s}.

III. Universality of the Weak Inferactions

We know that the electromagnetic current of the strongly interacting particles (or "hadrons" to wse Okun's expression) is given by the formula

$$
\begin{equation*}
j_{a}=e\left(F_{3 a}+\frac{1}{\sqrt{3}} \mathscr{F}_{8 a}\right) \tag{16}
\end{equation*}
$$

(A constant term may have to be added if there exist hadrons corresponding to certain kinds of spinor representations of $\operatorname{SU}(3)$, as discussed in Section VI.)

What about the hadron weak current coupled to leptons? It must be a linear combination of $F_{1 a}{ }^{+}+$
 Section II, The choice of the linear combination is motivated in part by the requirement of universality of the weak interactions: the algebraic properties of the total weak current should be the seme for leptons and for hadrons $[4,5]$.

We write the effective weak interaction in the local approximation (or an least the part coming from a product of charged currents) as

$$
\begin{equation*}
\frac{G}{\sqrt{2}} J_{a}^{+} J_{a} \tag{17}
\end{equation*}
$$

where $J_{a}=J_{a}$ (leptons) $+J_{a}$ (hadrons). The situation is then the following, as described in ref. 4.
For the now obsolete case of one neutrino for electron and muon, J_{a} (leptons) has the form

$$
\bar{\nu} \gamma_{a}\left(1+\gamma_{5}\right) e+\bar{\nu} \gamma_{a}\left(1+\gamma_{3}\right) \mu=2 \sqrt{2} \bar{\nu} y_{a} \frac{\left(1+\gamma_{5}\right)}{2} \frac{(e+\mu)}{\sqrt{2}}
$$

The "weak charge" - $i \int d^{3} x J_{4}$ (leptons) evidently may be ofritten in the form $2 \sqrt{2}\left(K_{1}+i K_{2}\right)$, where K_{1}, K_{2}, and $-i\left[K_{1}, K_{2}\right]$ have the commutation rules of an angular momentum or an isotopic spin. The weak charge and its hermitian conjugate, for leptons, generate the algebra of $\operatorname{SU}(2)$, with $\frac{1+\gamma_{s}}{2} \frac{e+\mu}{\sqrt{2}}$ and $\frac{1+y_{9}}{2} v$ appearing as the lower and upper components of a spinor.

With distinct neutrinos for electron and muon, as in the real situation, $J_{\text {fopen }}$ (leptons) becomes

$$
\begin{equation*}
\bar{\nu}_{0} \gamma_{a}\left(\hat{3}+\gamma_{5}\right) e+\bar{\nu}_{\mu} \gamma_{a}\left(1+\gamma_{s}\right) \mu=2 \bar{\nu}_{a} y_{a} \frac{1+\gamma_{s}}{2} e+2 \bar{\nu}_{\mu} \gamma_{a} \frac{1+\gamma_{5}}{2} \mu \tag{18}
\end{equation*}
$$

This time the leptonic weak chasge has the form $2\left(K_{1}+i K_{2}\right)$, where again K_{1} and K_{2} are the first fwo components oi an angular momentum and the algebra of $S U(2)$ is generated. Now $\frac{1+y_{5}}{2}$ e and $\frac{1}{2}+\frac{\gamma_{s}}{2} u$, farm a spinor and so do $\frac{1+\gamma_{5}}{2} \mu$ and $\frac{1+\gamma_{5}}{2} \nu_{\mu}$.

Let us now demand univessality for the weak interactions. In the one-neutrino cese, we would requise that the weak charge for hadrons have the form $2 \sqrt{2}\left(K_{1}+i K_{2}\right)$ and in the twoneutrino case that is have the form $2\left(K_{1}+i K_{2}\right)$, where K_{1} and K_{2} are the first two components of an angular momention. Witing the weak charge for hadrons in the general form

$$
A\left(F_{1}^{+}+i F_{2}^{+}\right) \cos \theta+A\left(F_{4}^{+}+i F_{g}^{+}\right) \sin \theta
$$

we may verify that we have $A\left(K_{2}+i K_{2}\right)$, where

$$
\begin{aligned}
& K_{1}=F_{1}^{+} \cos \theta+F_{4}^{+} \sin \theta \\
& K_{2}=F_{2}^{+} \cos \theta+F_{5}^{+} \sin \theta \\
& K_{3}=F_{3}^{+} \cos ^{2} \theta+\left(\frac{\sqrt{3}}{2} F_{8}^{+}+\frac{1}{2} F_{3}^{+}\right) \sin ^{2} \theta-F_{6}^{+} \sin \theta \cos \theta .
\end{aligned}
$$

Now from the approximate equality of vector coupling constanta in the decay of the muon and the decay of the nucleus 0^{14}, we know that $A \cos \theta$ is around 2.

Clearly, then, universality in the one-neutrino case givea us $A=2 \sqrt{2}, \theta=45^{\circ}$ or

$$
J_{a}=2\left(S_{1 a}^{+}+i F^{+}+F_{4 a}^{+}+i S_{5 a^{+}}^{+}\right)
$$

as in ref. 3. However, for the actual case of two neutrinos, we mult take $A=2$ with θ small and have

$$
\begin{equation*}
J a=2 \cos 9\left(5_{1 a}^{+}+i 5_{2 a}^{+}\right)+2 \sin \theta\left(5_{4 a^{+}}^{+}+i F_{1 a}^{+}\right) \tag{19}
\end{equation*}
$$

In a recent paper, Cabibbo [6] has combined our assumptions (a) and (b) quoted in Section II with the choice (18) of current components suitable for universality in the two-neutrino case and has shown that such a theory is in reasonable agreement with present information on leptonic decays of hadrons, with $\theta=0.26$. We may therefore adopt equation (18) with some confidence, provided experimental leptonic and hadronic weak interactions exhibit no further complications.
5 The weak charge in general thus has the form $2\left(K_{1}+i K_{2}\right)$. Moreover, the electric charge in units of e has the general form $K_{3}+K_{0}$, where K_{0} commutes with K_{1}, K_{2}, and K_{3}. The weak and electric charge operators, for both leptons and hadrons, thus generate the algebra of $\mathrm{U}(1) \times \mathrm{SU}(2)$. It is only when we take these charges for hadrons and break them up according to the quantum numbers conserved by the stronf interactions that we get the group $S U(3) \times \operatorname{SU}(3)$.

IV. Crude. Results for Smoll λ

We now attempt to make use of the broken symmetry model for rough predictions about the strongly interacting particles. For the most part we shall put $c=0$ and forget about violations of the eightfold way, coocentrating on axial vector current conservation and its violation. In the limit $\lambda \rightarrow 0$, where all the axial vector currents are conserved, if the axial vector β-decay coupling constant is not to venish, we ml . have either vanishing baryon masses or vanishing pseudoscalar meson masmes. We choose vanishing baryon masses, and thus the point of view expressed here differs from that of many authors [7]. Under these conditions, the "renormalization constant" for the axial vector current becomes unity in the limit $\lambda \longrightarrow 0$. The β-iecay interaction in the zero-momentum transfer case is thus completely fized, in the limit $1 \longrightarrow 0$, by the symmetry pattem.

Since we are going to try agsigning dominant representations to the particles, let us begin with the eight baryons having $J=1 / 2^{+}$. For convenience we describe them, in the limit $\lambda-\infty$, by "fields" $\psi_{1} \ldots \psi_{\mathrm{g}}$. If they belonged to $(1,8)$ and $(8,1)$, then ψ_{j} and $\gamma_{s} \psi_{j}$ would transform under F_{i} and F_{i}^{5} in the same way that $J_{j a}$ and $S_{j a}{ }^{5}$ respectively transform in equation (15). In the zero momentum transfer case, then, in the limit $\lambda \longrightarrow 0$, we would have the following pattern for the weak current $F_{A}{ }^{+}$:

$$
-i f_{i j k} \bar{\psi}_{i} \gamma_{a}\left(1+\gamma_{s}\right) \psi_{k} .
$$

Both the vector and axial vector currentre would be coupled through F rather than D. This seems to be far from the truth [6].

Instead, we try the other baryon representation suggested in ref. 3, namely (3, 3*) and (3*, 3). We then have to add a ninth particle, described by ψ_{0}. Under F_{i} and $F_{i}{ }^{5}, \psi_{i}$ and $\gamma_{s} \psi_{i}$ transform $1 i^{1}=w_{i}$ and i_{i} in equation (14). The coupling pattern as $\lambda \rightarrow 0$, for any momentum transfer, is then

$$
\begin{equation*}
-i f_{i j k} \bar{\psi}_{i} \gamma_{\alpha} \psi_{k}+d_{i j k} \bar{\psi}_{i} \gamma_{a} \gamma_{s} \psi_{k} \tag{20}
\end{equation*}
$$

with $i, j, k=0,1, \ldots 8$. For the baryon octet, then, the vector current is coupled through F and the axial vector current through D, with equal coefficients. This situation resembles the experimental one [6], the admixture of F in the axial vector pattern being of the order of 30%. There is a single form factor for the whole expression (20) in the limit $\lambda \longrightarrow 0$, and the anomalous magnetic and induced pseudoscalar form factors vanish. Since the vector coupling is through F, the neutron has no electrical interaction in the limit.

The interpretation of the ninth baryon depends on whether the mass associated with ψ_{0} is positive or negative. A negative mass would lead us to treat $\gamma_{s} \psi_{0}$ as the appropriate operator, so that the new particle with positive mass would have $J=1 / 2^{-}$. Now in first order in λ we can compute the ratio of octet and singlet masses, using the transformation property ($3, \underline{3}^{*}$) and ($3^{*}, 3$) of the mass term u_{0}. The result is that the mass associated with the singlet is minus twice that of the octet. Thus $\gamma_{s} \psi_{0}$ should describe, to first order in λ, a baryon with $J=1 / 2^{-}$and twice the average mass of the baryon octet with $J=1 / 2^{+}$. If the extra baryon is identified with $\Lambda(1405)$, the spin and parity assignments may well be right but 1405 MeV is a far cry from twice the average mass of the baryon octet. We should perhaps not expect better agreement, however, with an approximation that treats baryon masses in first order.

The pseudoscalar octet should be assigned to the same representation as the divergence of the axial vector current, so that the Goldberger-Treiman relation can have some validity even to lowest order in λ. As explained in ref. 3 , we have

$$
\begin{align*}
\int d^{3} x \partial_{a} F_{i a^{5}}^{5} & =F_{i}^{5}=i\left[\int \mathscr{X} d^{3} x, F_{i}^{3}\right]=\lambda i\left[F_{1}^{3}, \int u_{0} d^{3} x\right] \\
& =\lambda d_{i o k} \int v_{k} d^{3} x=\sqrt{\frac{2}{3}} \lambda \int v_{i} d^{3} x \tag{21}
\end{align*}
$$

neglecting c. So the divergence of the current, in lowest order, belongs to ($3,3^{*}$) and ($3^{*}, 3$) and we make the same assignment for the pseudoscalar octet, along with a pseudoscalar singlet, a scalar octet, and a scalar singlet. For convenience, we describe these by "fields" π_{i} and $\sigma_{i}, i=0, \ldots 8$, transforming like v_{i} and u_{1} respectively.

To order λ^{0}, these eighteen mesons all have a common mass. In order λ, they split according to the following pattern: the scalar singlet has a squared mass equal to $\overline{\mu^{2}}-2 \Delta$, the pseudoscalar octet has $\overline{\mu^{2}}-\Delta$, the scalar octet has $\overline{\mu^{2}}+\Delta$, and the pseudoscalar singlet has $\overline{\mu^{2}}+2 \Delta$. It is possible that the scalar singlet may be identified with a low-lying $J=0^{+}, I=0$ mesonic state decaying quickly into 2π; such states have been reported at various masses and at least one of them may exist. We then expect a scalar octet lying higher than the pseudoscalar one and a pseudoscalar singlet lying still higher.

The matrix elements of the weak current between one of these mesons and another follow the same pattem, in the limit $\lambda \longrightarrow 0$, as for the baryons in equation (20), since these mesons and the nine baryons belong to the same representation:

$$
\begin{equation*}
-i f_{i j k}\left(\pi_{j} \partial_{a} \pi_{k}+\sigma_{j} \partial_{a} \sigma_{k}\right)+d_{i j k}\left(\sigma_{j} \partial_{a \pi_{k}}-\pi_{j} \partial_{a} \sigma_{k}\right) . \tag{22}
\end{equation*}
$$

In the limit, there is a common form factor for the whole of (22).
If the scalar singlet meson represented by σ_{0} (let us call it σ) really has a lower mass than K^{+}, then the K_{-4} decay $K^{+} \longrightarrow \pi^{+}+\pi^{-}+\mathrm{e}^{+}+\nu$ should be dominated by the chain $K^{+} \longrightarrow a+\mathrm{e}^{+}+\nu_{\mathrm{s}}$ $\sigma \longrightarrow \pi^{+}+\pi^{-}$. Treating σ as stable and using the zeroth order pattern (22), we may compute the ratio of the rates of $K^{+} \longrightarrow \sigma+e^{+}+\nu$ and $K^{+} \longrightarrow \pi^{0}+e^{+}+\nu$:

$$
\begin{equation*}
\frac{K^{+} \longrightarrow \sigma+e^{+}+\nu}{K^{+} \longrightarrow \pi^{6}+e^{+}+\nu}=\frac{8}{3} \frac{f\left(m_{\sigma} / m_{K}\right)}{f\left(m_{\pi} / m_{K}\right)} \tag{23}
\end{equation*}
$$

where

$$
\begin{equation*}
f(\beta)=1-8 \beta^{2}+24 \beta^{4} \ln \beta^{-1}+8 \beta^{6}-\beta^{5} \tag{24}
\end{equation*}
$$

Roughly, then, the relative rate of $\mathrm{K}^{+} \longrightarrow \pi^{+}+\pi^{-}+e^{+}+\nu$ should be given by $2 / 3$ of the exprestion (23) and the mass of the $\pi^{+} \pi^{-}$system should be clustered around mo. The experimental data [8] still do not permit any firm conclusions, except that the ratio calculated in (23) must be a few times 10^{-3} if the docay through σ takes place. By contrabt, if the σ mass is as low as 310 MeV , our rough formula gives about 0.21 , in conplete disagreement with observation. With a mass near 400 MeV , agreement is possible.

The symmetry, in the limit $\lambda \longrightarrow 0$, permits trilinear couplinge of the scalar and peeudoscalar mesons to one another and to the nine baryons. In each case the allowed coupling pattern is formed with the symbol $d_{j / k}$, which equals $d_{i / k}$ except when one index is zero and the other two equal but not zero; the value of d^{\prime} in then $-\sqrt{1 / 6}$. The effective couplings are:

$$
\begin{gather*}
26 d_{i j k}^{\prime} \psi_{i}\left(\sigma_{j}+i \pi_{l} \gamma_{5}\right) \psi_{k}, \tag{25}\\
(h / 6) d_{i j k}^{\prime}\left(\sigma_{i}+i \pi_{i}\right)\left(\sigma_{j}+i \pi_{j}\right)\left(\sigma_{k}+i \pi_{k}\right)+\text { hermitian conjugate. } \tag{26}
\end{gather*}
$$

The coupling of the pseudoscalar octet to the beryon octet through D is, of courae, in reasonable agreement with experiment, as we migh have expected from the Goldberger-Treiman relation and the axial vector current coupling through D.

Other predictions, however, are not in good agreement with the present experimental situation. No scalar octet has been found. The nuclear forces arising from the scalar particles should be gigantic, according to (25), and evidence for such forces is not convincing at the present time. Also the scalar coupling of the ninth baryon $\gamma_{5} \psi_{0}$ to the pseudoscular octet and the baryon octet should also be very atrong, acconding to (25), and lead to a width of several $\mathrm{BeV}(!)$ for the ninth baryon if we take the prediction literally. An estimate in the next section of h in equation (26) indicates large widths also for the acalar mesons if they are significantly above the thresholds for decay into two pseudoacalar mesons.

We may thus adopt several different attitudes:
(1) The $\operatorname{SU}(3) \times S U(3)$ algebraic system, asmuming it is correct, does not provide a useful appt: imate symmetry.
(2) Higher order affects in λ, for example as indicated by the Goldberger-Treiman relation (see next section), may reduce some of the coupling constants.
(3) The scalar mesons will turn up with large couplings, and the ninth beryon will tum up as a very vague bump with a huge width.
(4) Something is wrong with our choices of representations.

At present, it is not easy to choose among these pessibilities. They are discussed further in Secuon V. Meanwhile, we return to the assignment of representations.

The vector meson situation is complicated by the $\phi-\omega$ mixing and will not be fully treated here, but we should expect a vector meson octet that dominates the vector form factors to transform like the currents, i.e., according to $(1,8)$ and $(8,1)$. Thus there should be an axial vector octet nearby. In fact, the aplitting between the two octets is of second order in λ, since we cannot make $\left(3,3^{*}\right)$ and $\left(3^{*}, 3\right)$ out of $[(1,8)$ and $(8,1)]$ times itself.

In conclusion, we mention the violation of the eightfold way by the term in ϕ_{g}. If ϕ_{a} were to belong to ($3,3^{*}$) and ($3^{*}, 3$), then the aplitting of the baryon octet with $J=1 / 2^{+}$would go mainly with D, since to onder $\lambda^{0} c^{1}$ the only allowed coupling is analogous to (25). In fact, the splitting is mostly F. We may thersfore consider the possibility that ϕ_{a} belonge to $(1,8)$ and $(8,1)$. The baryon octet is ther aplit only in onder $\lambda^{1} c^{1}$ and both F and D come in.

The scalar and preudoscalar octets are split open in order $\lambda^{0} c^{1}$ by a term ϕ, transforming like $(1,8)$ and $(8,1)$. Moreover, is that order, the specing is the same for both octets.

V. The Goldberger-Treimon Relation

The Goldberger-Treiman relation states in easence that certain matrix elements of L divergence $\partial_{a} F_{1 a}^{3}$ of the axial vector current compronenta obey unsubtracted dispersion relations in the invariant momentum squared carried by the current and that these dispersion relations are dominated by the intermediste state with one preudoccalar meson [3,9].

The pion decay amplitude is described by the quantity f_{m}, which is defined, as in ref. 3 , by 'he formula

$$
\begin{equation*}
\left.<0\left|\partial_{a} F_{i a}^{3}\right| \pi\right\rangle=\frac{m_{\pi}^{2}}{2 f_{\pi}} \Phi_{i}, \quad(i=1,2,3) \tag{27}
\end{equation*}
$$

where Φ_{t} is the wave function of the pion. The width for the decay $\pi^{+} \longrightarrow \mu^{+}+\nu_{\mu}$ is then

$$
\begin{equation*}
\Gamma_{\pi}=G^{2} \cos ^{2} \theta m_{\pi} m_{\mu}^{2}\left(1-m_{\mu}^{2} / m_{\pi}^{2}\right)^{2}\left(\frac{f_{\pi}^{2}}{4 \pi}\right)^{-1}\left(64 \pi^{2}\right)^{-1} \tag{28}
\end{equation*}
$$

which differs by the factor $\cos ^{2} \theta$ from the corresponding expression in ref. 3. Likewise, we have

$$
\begin{equation*}
<0\left|\partial_{a} \mathscr{F}_{i Q}{ }^{5}\right| K>=\frac{m_{K}^{2}}{2 f_{K}} \Psi_{i}, \quad(i=4,5,6,7) \tag{29}
\end{equation*}
$$

where Ψ_{l} is the wave function of the kaon. The width for the decay $K^{+} \longrightarrow \mu^{+}+\nu_{\mu}$ is

$$
\begin{equation*}
\Gamma_{K}=G^{2} \sin ^{2} \theta m_{K} m_{\mu}^{2}\left(1-m_{\mu}^{2} / m_{K}^{2}\right)^{2}\left(\frac{t_{K}^{2}}{4 \pi}\right)^{-1}\left(64 \pi^{2}\right)^{-1} \tag{30}
\end{equation*}
$$

where in ref. 3 we would not have had the factor $\sin ^{2} \theta$. Cabibbo [6] has pointed out that with $\theta \approx 0.26$ we get $f_{\pi} \approx f_{K}$. (The attempt [3] to make $f_{\pi} / f_{K}=m_{\pi} / m_{K}$ is thus unnecessary.)

The Goldberger-Treiman relation for neutron β decay now states that

$$
\begin{equation*}
2 m_{N}\left(\frac{-G_{A}}{G \cos \theta}\right)=B_{N N \pi} f_{\pi}^{-1} \tag{31}
\end{equation*}
$$

where $\left(-G_{A} / G \cos \theta\right)$ is the axial vector "renormalization factor" for the nucleon. The matrix element between neutron and proton of the divergence of the axial vector current has been approximately expressed as the product of the pionanucleon coupling constant $\mathbb{g}_{N N \pi}$ and the pion decay constant f_{π}^{-1}. Experimentally, equation (31) is satisfied with an error of around 10%.

If we now generalize to the baryon octet and the pseudoscalar meson octet, in the approximation of the eightfold way (which includes $f_{\pi}=f_{K}=f$), we have in general a part of 8 that goes with the D coupling and a part with the F coupling; the same is true of $\left(-G_{A} / G \cos \theta\right)$. Not only should the relation (31) hold, then, but also the F / D ratios should be the same for the meson-baryon coupling and for the axial vector current. Cabibbo's value of $0.30 / 0.95$ for the F / D ratio for the current agrees well with all estimates of F / D for the meson coupling.

If scalar mesons exist, the Goldberger-Treiman relation should apply to the β-decay matrix elements between scalar and pseudoscalar meson states, in relation to the strong coupling constants for the scalar-pseudoscalar-pseudoscalar ($\sigma \pi \pi$) vertices.

Now let us examine what happens to the Goldberger-Treiman relation foi the $N N \pi$ and $\sigma \pi \pi$ cases when we have approximate conservation of both vector and axial vector currents, i.e., $c=0$ and $\lambda \longrightarrow 0$, assuming our assignments of both baryons and mesons to ($3,3^{*}$) and ($\mathbf{3}^{*}, \underline{3}$) are correct. In the limit $\lambda \longrightarrow 0$, the matrix elements $\langle 0| u_{i}\left|\sigma_{i}\right\rangle$ and $\langle 0| v_{i}\left|\pi_{i}\right\rangle$ are all non-zero and equal. The quantity f^{-1}, proportional to $\langle 0| \partial_{a} F_{i a}^{5}\left|\pi_{i}\right\rangle$, is evidently of order λ. Likewise, the mass of the nucleon is of order λ. The renormalization $\left(-G_{A} / G \cos \theta\right)$ approaches unity, with the octet pattern becoming pure D. The coupling constant $\delta_{N N T}$ remains finite and the octet coupling pattern here too becomes pure D. Evidently, then, the GoldbergerTreiman relation (27) can nold approximately in the limit $\lambda \longrightarrow 0$ with both sides of order λ. We have, then, in the double approximation of $\lambda \longrightarrow 0$ and exact validity of the Goldberger-Treiman relation,

$$
\begin{equation*}
2 m_{N}=g f^{-1} \tag{32}
\end{equation*}
$$

where 8 multiplies the whole baryon-baryon-mes a coupling pattern, as in (25). The analogous equation for the $\sigma \pi n$ vertices is

$$
\begin{equation*}
2 \Delta=h f^{-1} \tag{33}
\end{equation*}
$$

where 2Δ is the difference in mass squared between the scalar and pseudoscalar octeta in order λ and h multiplies the whole trilinear meson coupling pattern, as in (26). This double approximation is equivalent to saying that the violation of $S U(3) \times S U(3)$ mass degeneracy is accomplished formally by the displacement

$$
\begin{equation*}
\sigma_{0} \longrightarrow \sigma_{0}-\sqrt{\frac{3}{8}} t^{-1} \tag{34}
\end{equation*}
$$

in effective couplings such as (25) and (26).
Now if we consider large vilationa of symmetry, so that higher order effecte in λ are important (and even effect involving C, which violate the eightfold way), we may suppose that the Goldberger-Treiman approximation is still good. For example, as we mentioned above, the actual value of ($-G_{A} / G \cos \theta$) is around 1.25 , with about 0.95 going with the D pattern and about 0.30 with the F pattern, in contrast with the velue 1 and the pure D coupling that we would have in the limit $\lambda \longrightarrow 0$. Likewise, the baryon-baryon-menon coupling departs from the pure D coupling that is acquired in the llmit $\lambda \longrightarrow 0$, but these two departuree seem to follow the Goldberger-Treiman relation in that the F / D ratio is similar in the two cases.

We may look, for example, at the decay of the ninth baryon into $\Sigma+\pi$. In order λ, the mass difference between the two baryons in the same as m_{N} and in order 1 the coupling constant is the same as $\mathbf{G}_{N N \pi}$, with the appropriate ratio of $d_{i / k}^{\prime \prime}$ coefficienis. If, now, in higher order in λ and c the mass difference becomes quite different, we might expect the coupling constant to change in proportion, keeping the GoldbergerTreiman equation approximately valid. Insted of having the offective coupling constant 8 for the decay equal to $2 \mathrm{~m}_{N} f_{\pi}$, as in (32), we would have approximately $2\left(m_{m}-f_{\pi}\right) f_{\pi}$, where m is the real mass of the ninth baryon and r is the renormalization factor for the axial vector current matrix element between $\boldsymbol{\Sigma}$ and the ninth baryon. If m is 1405 MeV , for instance, then the coupling constant 8 in question is reduced by the factor $r\left(m-m_{2}\right) m_{N}^{-1} \approx 0.23 r$ and the width of the ninth baryon is then

$$
\Gamma=4 \frac{\left[2 f_{\pi}\left(m-m_{\Sigma}\right) r\right]^{2}}{4 \pi} k \frac{m+E}{2 m}
$$

where k ia the decay momentum. The width comes out about $200 \mathrm{MeV}\left(r^{2}\right)$ instead of about $3 \mathrm{BeV}\left(r^{2}\right)$; the actuel width of $\Lambda(1405)$ is around 60 MeV .

Similar corrections should be applied to the various coupling constants h for the various ($\sigma \pi \pi$) rertices; insted of the completely symmetrical formula (33) we can use similat expressions in which aie actual differences of mass squased are inserted in place of the first order pattern based on the single qu itity Δ. For a scalar K particle of mess μ, the dacay into $K+n$ would be regulated by a value of h appreximately equal to $f_{\pi}\left(\mu^{2}-m_{m^{2}}{ }^{2}\right) r_{\text {, }}$ where t is the renormalization factor for the axial vector cument matrix element between the scalar K particle and K itself, The decay width for thls case is then

$$
\Gamma=\frac{3}{2} \frac{\left[f_{\pi}\left(\mu^{2}-w_{g}^{2}\right) r\right]^{2}}{4 \pi} \frac{k}{\mu^{2}}
$$

where 4 is the decmy momentum. For $\mu=725 \mathrm{MeV}$, for example, Γ comen out around $80 \mathrm{MeV}\left(\mathrm{r}^{2}\right)$.
None of this is of much use, of course, if the scaler octet does not exist, If it is not found, we will have to abandon the idee of uring the group $S U(3) \times S U(3)$ of the vector and axial vector currente an an ap proximate symmetry of the atrong Interactions.

We should mention one intermediate poesibility, which involvea different angnoent of reprecentation to the peeudoncalar octet, namely $(1,8)$ and $(8,1)$. No sealar or paeudoacular unitary singlet would be predicted. The Goldberger-Trelman relation could not in this case be approximately valid for amall $\lambda_{\text {, }}$ since the two sides would be of different order in λ, with the pseudoscalar octet not transforming like v_{i} under $\operatorname{SU}(3) \times \operatorname{SU}(3)$. Conceivably, however, for a particular value of λ, not particulatly mall, we could hava the relation. The coupling of baryons to the paeudoscalar and acalar mesons would be forbidden as $\lambda \longrightarrow 0$ and the pseudoncalar octet would ecquire ite coupling through the violation of the symetry. The scalat octet would have the opposite properties under charge conjugation to the ecalar octet hitherto discused. Thus in
the limit $c \longrightarrow 0$ ot the eightfold way, this scalar octet could have no Yukawa coupling to the baryon octet and no coupling to two mesons of the pseudoscalar octet. When the violation of the eightfold way is turned on, the non-strange members of the scalar octet would still lack these couplings, but the strange members could have them by violating the eightfold way. Such an "abnormal" scalar octet would have very different experimental properties from a nomal one, particularly for the $Y=0$ members, and would be readily identifiable as such.

VI. Triplets, Real and Mathematical

So far, we have concerned ourselves with the assumption that the group of the vector and axial vector octets of currents is $S U(3) \times S U(3)$, with the transformation properties under the group of the terms λu_{0} and $c \phi_{\mathrm{g}}$ in the energy density, and with the possibility that in a crude approximation λ as well as c might be treated as small. We may, however, go further and ask whether there are additional algebraic relations among the quantities we have introduced. In order to obtain such relations that we may conjecture to be true, we use the method of abstraction from a Lagrangian field theory model. In other words, we construct a mathematical theory of the strongly interacting particles, which may or may not have anything to do with reality, find suitable algebraic relations that hold in the model, postulate their validity, and then throw away the model. We may compare this process to a method sometimes employed in French cuisine: a piece of pheasant meat is cooked between two slices of veal, which are then discarded [10].

In ref. 3, the Sakata model was employed in this way. However, certain adjustments had to be made to get to the eightfold way. Instead, we may \in mploy the quark model [11], which gives the eightiold way directly; there are also other models [11], based on a fundamental triplet and a fundamental singlet, that are perfectly compatible with the eightfold way.

Any such field-theoretic model must contain some basic set of entities, with non-zero baryon number, out of which the strongly interacting particles can be made. If this set is a unitary octet, the theory is very clumsy; it is hard to arrange any coupling that will reduce the symmetry from $\mathrm{SU}(8)$ to $\mathrm{SU}(3)$ without introducing [1, 2] in addition a Yang-Mills octet of fundamental vector mesons. Thus the only reasonably attractive models are based on unitary triplets and perhaps singlets.

If we adopt such a viewpoint, we should say that the correct dyramical description of the strongly interacting particles requires either the bootstrap theory or else a theory based on a fundamental triplet. In neither case do the familiar neutron and proton play any basic role.

It is, of course, a striking fact that no unitary triplets have so far been identified among the strongly interacting particles; however, they may tum up. Their appearance may, of course, be consistent with either the bootstrap theory of a theory with a fundamental triplet. Their non-appearance could certainly be consistent with the bootstrap idea, and also possibly with a theory containing a fundamental triplet which is hidden, i,e., has effectively infinite mass.

Thus, without prejudice to the independent questions of whether the bootstrap idea is right and whether real triplets will be discovered, we may use a mathematical field theory model containing a triplet in order to abstract algebraic relations.

If we want to use just a triplet and no singlet, we must have quarks, with baryon number $1 / 3$ and electric charges $-1 / 3,-1 / 3$, and $+2 / 3$. Such particles presumably are not real but we may use then in our field theory model anyway. Since the quark model is mathematically the simplest, we shall in fact employ it in the next section, as in re؟. 11 , for our process of abstraction.

If we consider a model with a basic triplet \mathbb{t} and a singlet b, then we are free to take for these particles integral electric charges and baryon number equal to one; say we do so. The singlet must be neutral, and we can then form the known supermultiplets from (b), (bic), (b $\bar{b} \quad b \bar{l} i \bar{l} i)$, etc. The triplet can have electric charges $q, q, q+1$ or $-q,-q,-q-1$, where q is any integer. In the former case, the electric charge Q in units of e is quiven by the selation

$$
Q=(q+1 / 3)\left(n_{1}-n_{7}\right)+F_{3}+\frac{F_{3}}{\sqrt{3}}
$$

where $n_{t}-n_{\mathrm{F}}$ is the number of triplets minus the number of antitriplets. In the later case we have the relation

$$
Q=-(q+1 / 3)\left(n_{t}-n_{t}\right)+F_{3}+\frac{F_{3}}{\sqrt{3}}
$$

With integral charges and baryon number one, there is no reason to require any member of a real triplet to be absolutely stable; we may permit them all to decay into ondinary baryons. However, the question arises whether such decays take place by weak interactions or by moderately strong interactions that violate SU(3) but not isotopic spin conservation. If the latter, we want the violation of $\operatorname{SU(3)}$ to transform like 3 and $\mathbf{3}^{\text {事, }}$, so that in second order it gives the familiar octet behavior of the violation. But $I=0, Q=0$ occurs in 3 and 3^{*} only when $q=0$. Thus if the decay of triplets into bazyons is to be attributed to moderately strong interactions that give rise, in second order, to the octet violation of $\operatorname{SU}(3)$, we must have $q=0$. This is the model used by Maki [12] and by Tarjanne and Teplitz [13].

With other values of q, we presumably have the triplet decaying into ordinary baryons by the weak interaction. As pointed out previously $[11,14]$, the most interesting case of this kind is the one with $q=-1$. where the four members of the basic triplet and singlet present a perfect analogy with the known leptons.

Absolute stability of one member of a triplet is of coure, a possibility for any value of q.
These kinds of triplets with :ntegral charges are, of course, more likely to comespond to real particles than the quarks, and we may also use them in field theory models to abstract algebraic relations, obtaining essentially the same ones as for the quarks in the next section.

VII. Further Algebraic Re.ations

We start with the simple Lagrangian model of quarks discussed in sef, 11. There is a triplet t of termion fields corresponding to three spin $1 / 2$ quarks: the isotopic doublet u and d, with charges $2 / 3$ and $-1 / 3$ respectively, and the isotopic singlet s, with charge $-1 / 3$. A neutral vector meson field B_{a} is introduced, too. The Lagrangian is simply

$$
-\bar{t} \gamma_{a} \partial_{a} t-\mathscr{L}_{B}-i F B_{a} \bar{t} \gamma_{a} t
$$

as $\lambda \longrightarrow 0$ and $c \longrightarrow 0$, where \mathscr{L}_{B} is the free Lagrangian for the field B and

$$
\bar{t} y_{a} t=\bar{u} y_{a} u+\bar{d} y_{a} d+\bar{s} y_{a} s_{0}
$$

Now we may add to the Lagrangian a quark mass term

$$
\lambda u_{0}=m_{0}(\bar{u} u+\bar{d} d+\bar{s} s)=m_{0} \bar{t} t
$$

The energy density acquires a term that is just the negative of this. In the model we may put

$$
u_{i}=-\frac{\lambda_{i}}{2} t_{1} \quad v_{i}=-i \vec{t} y_{5} \frac{\lambda_{i}}{2} t_{1} \quad i=0,1, \ldots 8
$$

and $\lambda=\sqrt{6} m_{0}$. Likewise, we have, in the model,

$$
F_{i a}=i \frac{\lambda_{1}}{2} \gamma_{a} t, \quad F_{i a}^{3}=i \frac{\lambda_{1}}{2} \gamma_{a} \gamma_{5} t
$$

For the moment, we forget the term $c \phi_{s}$ that breaks the eightfold way.
The non-singularity of the model enables us to generalize $[3,11]$ the commutation relations (14) and (15) and equation (20) to the local relations

$$
\begin{align*}
& {\left[F_{14}(\underline{\underline{I}}, t), u_{j}\left(\underline{\underline{z}}^{\prime}, t\right)\right]=-i_{i j k} \sigma_{i k}(\underline{z}, t) \delta\left(\underline{z}-\underline{x}^{\prime}\right) \text {, etc. }} \tag{35}\\
& {\left[F_{14}(\underline{\underline{I}}, t), F_{14}\left(\underline{\underline{E}}^{\prime}, t\right)\right]=-f_{f 1 k} F_{k 4}(\underline{\underline{x}}, t) \delta(\underline{\underline{x}}-\underline{\underline{\underline{x}}}) \text {, etc., }} \tag{36}\\
& \partial_{a} F_{i a^{5}}=\sqrt{\frac{2}{3}} \lambda v_{i}+O(c) \text {. } \tag{37}
\end{align*}
$$

We have proposed that these relations be abstracted from the model and postulated as true. In an exact calculation of the matrix elements of the $F_{i a}, u_{i}$, and v_{i} by means of linear homogeneous dispersion relations"without subtractions, the nonlinear relations (35) and (36) supply the scale factors that determine such things as the axial vector current renormalization.

In the quark model, the term $c \phi_{\mathrm{B}}$ in the Lagrangian could be put in as a mass difference between singlet and doublet quarks, but ϕ_{a} would then be the same as u_{8} and would transform like ($3_{1}, 3^{*}$) and ($3^{*}, 3^{3}$). If we want ϕ_{8} to belong to (1,8) and (8,1), we could put it into the model as a coupling of the meson B_{a} to the current $\mathscr{S}_{8 q}$. Such a term is reminiscent of Ne eman's "Fifth Interaction" [15] or of Sakurai's use [16] of $\phi-\omega$ mixing as a dynamical mechanism for violating the eightfold way.

We mentioned in ref. 3 that in the model there are further commutation relations, besides (35) and (36), which we might or might not take seriously, namely the commutation relations of the u 's and $v^{\prime} s$. It is interesting that when these operators are commuted, in the model, they bring back the operators F_{14} and $F_{14}{ }^{5}$, along with a new operator, the helicity charge density, which we may call $F_{04}{ }^{5}$. The algebra of the u_{1}, v_{1}, F_{14}, and $T_{14}{ }^{5}$ then closes; we have $18 u^{\prime}$ s and $v^{\prime} s, 8 \mathscr{F}_{14}$'s, and $9 F_{14}{ }^{5} s$, corresponding to the 35 generators of the algebra $S U(6)$. In the model, the new current $\mathscr{F}_{0 a}^{5}$ is just (i/2) $\bar{t} \lambda_{0} \gamma_{a} t$.

Evidently, we can look upon all 35 operators as generating infinitesimal unitary transformations among the three left-handed quarks and the three right-handed quarks. This algebraic system connects scalars and pseudoscalars with four-vectors and four-pseudovectors and thus represents a new stage in the generalization of symmetry. Whereas F-spin connects only systems of the same parity and behavior under proper Lorentz transfomations, the group $\operatorname{SU}(3) \times \operatorname{SU}(3)$ of the vector and axial vector currents connects systems which may have different parity but must still have the same behavior under the proper Lorentz group, and SU(6) now connects systems with different parity and/or different space-time behavior.

Of course, it is not clear, even in the model, that $S U(6)$ is of any use as an approximate symmetry. If it were, it would arrange particles of various spins and parities in super-super-supermultiplets. However, it does appear to be true that a huge number of special algebraic properties can be abstracted from a field theory model. The situation is reminiscent of the growth of disperaion relations from an obscure equation for forward scattering of light to a huge set of relations among all scattering amplitudes, rearly sufficient to determine the whole S-matrix. Conceivably, the study of algebraic relations will undergo a comparable transformation.

References

1. M. GELL-MANN, California Institute of Technology Synchrotron Laboratory Report CTSL-20 (1961) (unpublished).
2. Y. Ne'EMAN, Nucl. Phys. 26, 222 (1961).
3. M. GELL-MANN, Phys, Rev. 125, 1067 (1962).
4. M. GELL-MANN, Proceedings of the 1960 Annual International Conference an High Energy Physics at Rochester pp. 508-513. Interacience, New York (1960),
5. M. GELL-MANN and M. LÉVY, Nuovo Cim. 16, 705 (1960).
6. N. CABIBBO, Phys. Rev. Letters 10, 531 (1963).
7. See, for example, Y. NAMBU and J. J. SAKURAI, Phys. Rev. Letters 11, 42 (1963).
8. R. W. BIRGE et al., Phys. Rev. Letters 11, 35 (1963).
9. J. BERNSTEIN, S. FUBINI, M. GELL-MANN and W. THIRRING, Nuovo Cim. 17, 757 (1960).
10. I am indebted to Professor V. L. TELEGDI for a discussion of this point.
11. M. GELL-MANN, Phys, Lettere E, 214 (1964). We note that the mathematical quark model, which illustrates our theory, is not at all symmetrical under the operation R that exchanges N and 3,10 and 10*, etc. Thus our selection of D-type couplings in the limit $\lambda \rightarrow 0$ is accomplished without necessarily having R invariance in that limit.
12. 2. MAKI, Prosir. Theor. Píys. 31, 331 (1964).
1. P. TARJANNE and V. L. TEPLITZ, Phys, Rev. Letters 11, 447 (1963).
2. Y. HARA, Phys. Rev. 134, B701 (1964).
3. Y. NE'EMAN, Phys. Rev. to be published.
4. J. J. SAKURAI, Phys. Rev. Letters 9, 472 (1962).

GROUP U(6) $\mathrm{Z}(6)$ GENERATED BY CURRENT COMPONENTS*

R. P. Feynman, M. Gell-Mann, and G. Zweig \dagger
California Institute of Technology, Pasadena, California
(Received 2 November 1964)

It has been suggested ${ }^{1-3}$ that the equal-time commutation rules of the time components of the vector and axial-vector current octets ($\overbrace{i \alpha}$ and $\Im_{i \alpha}{ }^{3}$, respectively) are the same as if these currents had the simple form Gic and $S_{i a}{ }^{1}$, defined as follows:

$$
\begin{gather*}
S_{i \alpha}=\frac{1}{2} i \bar{q} \lambda_{i} \gamma_{\alpha} q, \\
g_{i \alpha}{ }^{s}=\frac{1}{2} i \bar{q} \lambda_{i} \gamma_{\alpha} \gamma_{5} q, \tag{1}
\end{gather*}
$$

where q is an $\operatorname{SU}(3)$ triplet with spin $\frac{1}{2}$-for example, the quarks ${ }^{2}$ or aces. ${ }^{*}$ Here the matrices $\lambda_{i}(i=1, \cdots, 8)$ are the $\operatorname{SU}(3)$ analogs of the Pauli matrices, as defined in reference 1. The operators

$$
\begin{gather*}
F_{i}(t)=-i \int d^{3} x F_{i 4}, \\
F_{i}{ }^{8}(t)=-i \int d^{3} x \mathscr{S}_{i 4}, \tag{2}
\end{gather*}
$$

then generate at equal times the algebra of $\operatorname{SU}(3) \otimes \operatorname{SU}(3)$, which may be a very approximate symmetry of the strong interactions, ${ }^{1,3}$ while the F_{i} generate a subalgebra corresponding to SU(3), which is a fairly good symmetry of the strong interactions.
We now propose to extend these considerations to the space components of the currents as well. First we define ${ }^{1-3}$ a ninth λ matrix $\lambda_{0} \equiv\left(\mathcal{C}^{1}\right)^{1 / 2} 1$ and a corresponding ninth pair of currents $\mathscr{F}_{0 \alpha}$ and $\mathscr{F}_{0 \alpha}{ }^{5}$ (where $\mathscr{F}_{0 \alpha}$ would be $\sqrt{6}$ times the baryon current in a true quark
or ace theory). We then assume that the equaltime commutation relations of all the 72 components of the $\mathscr{F}_{i \alpha}$ and $\Im_{i \alpha}{ }^{B}(i=0, \cdots, 8)$ are the same as those of the $\mathrm{g}_{i \alpha}$ and $\mathrm{S}_{1 \alpha}{ }^{3}$, at least as far as terms proportional to the spattal ofunction are concerned. (There are also, in general, terms ${ }^{8}$ involving gradients of the δ function, which vanish on space integration and which we ignore here.) The system of 8 ia and $g_{i \alpha}{ }^{6}$ is closed under equal-time commutation, and the space integrals / $9 \operatorname{tad}^{3} x$ and $\int \operatorname{Gia}^{5} d^{3} x$ generate the algebra of $\mathrm{U}(B) \otimes \mathrm{U}(6)$. Our assumption thus implies that $\int \mathcal{F}_{i o} d^{2} x$ and $\int \Im_{4 \alpha}{ }^{3} d^{3} x$ also generate the algebra of $U(6)$ QU(6). We assume further that this algebra is a very approximate symmetry of the strong interactions.
We now exhibit some of the structure of the algebra by looking at the $\mathrm{Si}_{i \alpha}$ and $\mathrm{Si} \mathrm{\alpha}_{\mathrm{a}}{ }^{\text {b }}$. We note that the space integrals of the densities

$$
\bar{q} \lambda_{i} \gamma^{\prime} q=q \dagger_{\lambda_{i}} q \quad(i=0, \cdots, 8)
$$

and

$$
i \bar{q} \lambda_{i} \gamma_{n} \gamma_{5} q=q \dagger \lambda_{i} \sigma_{n} q \quad(n=1,2,3)
$$

generate the subalgebra corresponding to $U(8)$; the same is then true of the corresponding components of the s 's. We may refer to the algebra of the space integrals of these 9 components as the A spin, with generators A_{r} $(r=0,1, \cdots, 35)$. Now the space integrals of
the densities $q \lambda_{i} \frac{1}{2}\left(1+\gamma_{5}\right) q$ and $q{ }^{\dagger} \lambda_{i} \sigma_{n} \frac{1}{2}\left(1+\gamma_{5}\right) q$ also generate a group $U(6)$, and so do the corresponding terms with $\frac{1}{2}\left(1-\gamma_{s}\right)$. The corresponding integrals of \mathcal{F} components thus give a left-handed $A \operatorname{spin} A_{r}{ }^{+}$and a right-handed $A \operatorname{spin} A_{r}{ }^{-}$, respectively, with

$$
\begin{equation*}
A_{r}=A_{r}^{+}+A_{r}^{-}(r=0,1, \cdots, 35) \tag{3}
\end{equation*}
$$

Those 36 components of $\mathfrak{F}_{i \alpha}$ and $\mathcal{F}_{i \alpha}{ }^{6}$ (out of a total of 72) that are the densities of the A_{r} do not go just into themselves under Lorentz transformations, but yield instead the complete system of 72 components of the $\mathcal{F}_{i \alpha}$ and ${ }^{\mathcal{F}}{ }_{i \alpha^{5}}$, which form the densities of $A_{r}{ }^{+}$and $A_{r}{ }^{-}$
We have assumed above that the A^{+}and A^{-} spins are separately very approximate symmetries of the strong interactions. We may now add the further assumption that the total A spin is a good symmetry, nearly as good as the subset that constitutes the F spin. This approximate conservation of A spin is then our way of describing the success achieved by the $\operatorname{SU}(6)$ symmetry of Gürsey and Radicati, ${ }^{8}$ Sakita, ${ }^{7}$ and Z weig, ${ }^{8}$ treated further in a series of recent Letters. ${ }^{9-14}$ In reference 10, our interpretation of the symmetry is hinted at, but otherwise it is described in different language, which does not make clear the physical identification of the symmetry operators with integrals of components of the vector and axial-vector currents occurring in the weak and electromagnetic interactions. Also, the Lorentz-complete system, obeying the commutation rules of $\mathrm{U}(6) \otimes \mathrm{U}(6)$, is not given.

In a relativistic situation, where a state like ρ exists part of the time as 2π, part of the time as $N+\bar{N}$, part of the time as $\Delta+\bar{\Delta}$, etc., with a different set of channel spins in each case, it is evidently not sufficiently specific to talk of "spin independence" of strong interactions. In contrast, our statement in terms of the approximate conservation of the Gamow-Teller operator $\int \mathscr{F}_{i n}{ }^{5} d^{5} x(n=1,2,3)$ does have a definite meaning.

One set of consequences of our approach is that the Gamow-Teller matrix elements within an $S U(6)$ supermultiplet can be exactly computed in the limit of SU(8) symmetry. We adopt the assignments of the $J^{\pi}=\frac{1+}{\frac{1}{+}}$ baryon octet and $J^{\pi}=\frac{3}{8}$ baryon decimet to the $\operatorname{SU}(6)$ representation 56, and the assignment of the vector-meson octet and singlet and the pseudoscalar octet to the representation 35 ; these
assignments have explained at least six wellknown facts. ${ }^{15}$ The axial-vector strength, within the baryon octet, comes out to be $1(D)+\frac{2}{3}(F)$; for the nucleon, this gives $\left(-G_{A} / G_{V}\right)=5 / 3$, as indicated in reference 10 , to be compared with an observed value more like 1.2. The agreement is fair, as is the agreement of the D / F ratio with the results on leptonic hyperon decays. The matrix elements of the GamowTeller operator between octet and decimet are also exactly specified in the limit of $\mathrm{SU}(6)$ symmetry and can be checked by neutrino experiments.

Let us now go on to discuss the badly broken symmetry $U(6) \otimes U(6)$, which bears about the same relation to $U(6)$ symmetry as the $U(3)$ \& U(3) symmetry generated by the time components of vector and axial-vector currents ${ }^{1,3}$ bears to the eightfold way. On the way from the full $U(6) \& U(6)$ down to $U(3)$, we could pass through $U(6)$ or through $U(3) \otimes U(3)$ symmetry as an intermediate stage; these are alternatives in somewhat the same way as are $L-S$ and $j-j$ coupling in atomic physics. It seems that the operators of $U(6)$, all of which have nonrelativistic limits, form a much better symmetry system than those of $U(3) \otimes U(3)$; hence, the useful procedure is to go from $U(6)$ $8 \mathrm{U}(6)$ to $\mathrm{U}(6)$, and then to $\mathrm{U}(3)$ and $\mathrm{U}(2)$. [Actually $U(6)$ is not much worse than $U(3)$.]

The baryons are presumed to have zero mass in the limit of $U(6) \otimes U(6)$ symmetry, as in the limit of $\mathrm{U}(3) \otimes \mathrm{U}(3)$ symmetry. ${ }^{1,3}$ The perturbation that reduces the symmetry of $U(6)$ is assumed to transform like ($\underline{6}, \underline{6}^{*}$) and ($\underline{6}^{*}, \underline{6}$) under $\left(A^{+}, A^{-}\right)$, and like 1 under A. Thus it transforms like a common quark mass term $q q$, which takes a left-handed q going like ($\underline{6,1)}$ into a right-handed q going like (1,6), and vice versa. ${ }^{18}$ The $J^{\pi}=\frac{1_{2}^{+}}{4}$ octet and $J^{\bar{\pi}}=\overline{\frac{3}{2}}+$ decimet belonging to 56 can be placed either in (1,56) and $(56,1)$, or in $(6,21)$ and (21, 6), if we restrict ourselves to representations that transform like $3 q$. The latter is very attractive, because it splits into a 56 and a 70 , where the masses to first order in the perturbation are in the ratio 1:-2; as in reference 3, we must interpret negative mass as posltive mass with negative parity, and so we are led to a 56 with unit mass and a 70 with opposite parity and roughly twice the mass. The 70 contains a $\frac{3-}{1-}$ octet, a $\frac{1^{-}}{2}$ singlet, a $\frac{1}{\frac{1}{-}}$ octet, and a $\frac{1}{2}^{-}$ decimet. Thus the prediction of reference 3 that the $\frac{1}{2}^{+}$octet is accompanied by a $\frac{1}{}^{-}$sing-
let of roughly twice the mass is contained in our present result. The $\frac{3}{2}^{-}$octet has probably been seen [including $N(1512)$], but the 1^{-}octet and decimet have not so far been identlfied.
In the limit of $\mathrm{U}(6) \& \mathrm{U}(6)$ symmetry, the vector and pseudoscalar mesons of the 35 can be put into either of two pairs of representations that transform like $q+\bar{q}$. The mesons could go like (35,1) and (1,35), or else like $\left(6, \underline{6}^{*}\right)$ and $\left(6^{*}, 6\right)$. If they belong to the adjoint representation patr (1,35) and (35,1), as the current components do, then the usual 35 is accompanied by another 35, consisting of a normal axial-vector octet and singlet and an abnormal scalar octet. [Here, "normal" means that the $Y=0, I=0$ member of an axial vector, scalar, or pseudoscalar SU(3) multiplet is even under charge conjugation; "abnormal" means it is odd.) If the mesons belong to ($6,6^{*}$) and ($6^{*}, 6$), then the usual 35 is accompanied by a 1 (a normal pseudoscalar singlet), another 1 (a normal scalar singlet), and a 35 consisting of an abnormal axial-vector octet and singlet and a normal scalar octet. In either case, the perturbation that reduces $\mathrm{U}(6) \otimes \mathrm{U}(6)$ to $U(6)$ does not split the mesons into $U(6)$ multiplets in first order; in second order, they are split. The assignment to $\left(6, \underline{6}^{*}\right)$ and ($\left.\underline{6}^{*}, \underline{6}\right)$ is appealing because the pseudoscalar singlet could be identified with $\eta(960)$, the scalar octet may include $\kappa(725)$, and the abnormal axial octet may include the meson at about 1220 MeV with $I=1$ that decays into $\pi+\omega$.
*Work supported in part by the U. S. Atomic Energy Commission. Prepared under Contract No. AT (11-1) -68 for the San Francisco Operations of fice, U. S. Atomic Energy Commission.
tWork partially supported by the U. S. Air Force

Office of Scientific Research under an NAS-NRC

 Fellowship.${ }^{1}{ }^{2}$ M. Gell-Mann, Phya. Rev. 125, 1067 (1962).
${ }^{2}{ }^{2}$ M. Geil-Mann, Phys. Letters 8 , 214 (1964).
${ }^{3}$ M. Gell-Mann, Physics 1,63 (1964).
'G. Zweig, CERN Reports No. 8182/TH. 401 and No. 8419/TH. 412, 1964 (unpublished).
SSee, for example, J. Schwinger, Phy
SSee, for example, J. Schwinger, Phys. Rev. Letters 3, 296 (1959).
${ }^{\text {'F. Giursey and L. Radicati, Phys. Rev. Letters }}$ 13, 173 (1964).
B. Sakita, Phys. Rev. (to be published).
${ }^{8}$ G. Zweig, unpublished.
${ }^{10}$ A. Pais, Phys. Rev. Letters 13,175 (1964). ${ }^{10}$ F. Glirsey, A. Pais, and L. A. Radicati, Phys. Rev, Letters 13, 299 (1964).
${ }_{11}$ T, K, Kuo
${ }^{11}$ T. K. Kuo and Tsu Yao, Phys. Rev. Letters 13, 415 (1964).
12 M. A. B.
${ }^{12}$ M. A. B. BEg and V. Singh, Phys. Rev. Letters 13, 418 (1964).
M. A. B. Beg and V. Singh, Phys. Rev. Letters 13, 509 (1964).
M. A. B. Bég, B. W. Lee, and A. Pals, Phys. Rev. Letters 13, 514 (1964).
${ }^{15}$ The ratio of p and n magnetic moments, the relation of octet and decimet spacing, the inditial degeneracy of φ and ω, the amouns of mixing of φ and ω, the equality $m_{K}{ }^{2}-m_{\pi}=m_{K}{ }^{*}{ }^{2}-m_{\rho}{ }^{2}$, and the absenc
18 appreciable mixing between η and $\eta(960)$
At the end of reference 3, it is auggested that peduces $\mathrm{U}(3) \otimes \mathrm{U}(3)$ symmetry to $\mathrm{U}(3)$ denmity hat rences (3) g small al ase of U(G) is, which courd be the of $U(6)$. such cusaing in this Letter yowever, we might r the analogoue poselbility that the perturbation in the energy density that reduces U(B) \otimes U(8) to $U(6)$) $Q(6)$, the algebre of $U(12)$. corresponding to all unitary tranaformations on the four Dirac compo nents and the thre unitary-spin componente of quark field. Even if this is true, of course, U(12) need not be a useful symmetry of strong interactions.

INTRINSICALLY BROKEN $U(6) \otimes U(6)$ SYMMETRY FOR STRONG INTERACTIONS
K. Bardakci,* J. M. Cornwall, * P. G. O. Freund,* \dagger and B. W. Lee \ddagger

The Institute for Advanced Study, Princeton, New Jersey
(Received 4 November 1964)

With an ever increasing internal-symmetry group for hadrons, the possibility of combining internal symmetry and space-time symmetry has become all the more appealing. Recent attempts ${ }^{1,2}$ in this direction have, however, been confined to essentially nonrelativistic situations where the spin degrees of freedom can be regarded as internal. The group that has emerged from these investigations as a likely global group is SU(6). Following up this line of thought, we wish to extend these results to relativistic quantum field theory. We shall produce a chain of symmetries culminating in $W_{B} \equiv \mathrm{U}(6) \otimes \mathrm{U}(6)$ that arises naturally in this case. In contradistinction to symmetries previously considered in physics, the largest members of this chain are intrinsically broken. In other words, there does not exist a total Lagrangian that possesses W_{8} symmetry, since the kinetic energy and mass terms will automatically break it. The symmetry will show up only in the interaction term and will consequently make sense in terms of a strong-coupling limit.

Let us consider a triplet of spin- $\frac{1}{2}$ fermions (quarks), ${ }^{3}$ and let $\psi^{i}(x), i=1,2,3$, be the corresponding Dirac fields." Introducing their
left- and right-handed Weyl components R and L

$$
\begin{equation*}
\binom{L}{0}=\frac{\left(1+\gamma_{g}\right)}{2} \psi_{,}\binom{0}{R}=\frac{\left(1-\gamma_{g}\right)}{2} \psi_{;} \tag{1}
\end{equation*}
$$

we consider the following 72-parameter group of transformations:

$$
\begin{align*}
& L-\left(1+i a_{i \mu} \sigma^{\mu} \lambda_{i}\right) L, \\
& R-\left(1+i a_{i \mu}^{*} \sigma^{\mu} \lambda_{i}\right) R, \tag{2}
\end{align*}
$$

where $\sigma^{\mu}=(1, \vec{\sigma}) ; \lambda_{i}, i=0,1, \cdots, 8$, are the 3×3 Hermitean matrices defined by Gell-Mann ${ }^{8}$ $\left[\lambda_{0}=\left(\frac{3}{3}\right)^{1 / 2} 1\right]$, and $a_{i \mu}$ are complex parameters. The generators of the transformations (2) can be written as

$$
\begin{equation*}
\lambda_{i}, \sigma_{\mu \nu} \lambda_{i}, i \gamma_{5} \lambda_{i} \tag{3}
\end{equation*}
$$

in the space of Dirac spinors. The matrices in (3) are reducible; the irreducible components are

$$
\begin{equation*}
\sigma_{\mu}^{\lambda} i, \pm i \sigma_{\mu}^{\lambda} i . \tag{4}
\end{equation*}
$$

The generators with upper (lower) sign act on $L(R)$. This makes clear that the transfor-
mation group (2) is the complexification of $\mathrm{U}(6)$ - the full linear group in six dimensions GL(6). Finite-dimensional representations of GL(6) of physical interest can be classified by a method similar to the "unitary trick" of Weyl for the Lorentz group. ${ }^{\text {b }}$ We form out of the set (3) the generators
$\frac{1}{2}\left(1 \pm \gamma_{5}\right) \Sigma_{\mu} \lambda_{i}, \Sigma_{\mu}=\left(1, \sigma_{23}, \sigma_{31}, \sigma_{12}\right)$,
which span the group $W_{e} \equiv U(6) \otimes U(6)$. The generators in (5) induce on R and L the infinitesimal transformations

$$
\begin{aligned}
& R \rightarrow\left(1+i \alpha{ }_{\mu}{ }^{i}{ }_{\sigma}{ }^{\mu} \lambda_{i}\right) R, \\
& L-\left(1-i \beta{ }_{\mu}{ }^{i}{ }_{\sigma}{ }^{\mu} \lambda_{i}\right) L
\end{aligned}
$$

where $\alpha_{\mu}{ }^{i}$ and $\beta_{\mu}{ }^{i}$ are real.
A parity-conserving, Lorentz-invariant fourFermion interaction which is invariant under GL(6) is^{7}

$$
\begin{align*}
& \mathcal{L}_{I}= g\left\{\frac{1}{2} \sigma_{\mu \nu} \lambda_{i} \psi \overline{\psi \sigma} \sigma^{\mu \nu} \lambda_{i} \psi+\bar{\psi} \lambda_{i} \psi \psi \lambda_{i} \psi+\overline{\left.\psi \gamma_{5} \lambda_{i} \psi \bar{\psi} \gamma_{5} \lambda_{i} \psi\right\}}\right. \\
&=2 g \sigma_{\mu \nu}\left\{R^{+} \sigma_{\mu} \lambda_{i} L R^{+} \sigma_{\nu} \lambda_{i} L\right. \\
&\left.+L^{+} \sigma_{\mu} \lambda_{i} R L^{+} \sigma_{\nu} \lambda_{i} R\right\} . \tag{6}
\end{align*}
$$

The equal-time commutation relations satisfied by the field ψ are not in general invariant under GL(6), and therefore it cannot be an invariance of the underlying Hilbert space. We consider it rather to be a dynamical symmetry possessed by the interaction Lagrangian and physical matrix elements in some approximation.
Another interaction Lagrangian invariant under GL(6) is

$$
\begin{equation*}
\mathscr{L}_{I}^{\prime}=g^{\prime}\left\{\bar{\psi} \gamma_{\mu}{ }_{i} i \psi \bar{\psi} \gamma^{\mu} \lambda_{i} \psi-\bar{\phi} \gamma_{\mu} \gamma_{5} i_{i} \psi \bar{\psi} \gamma^{\mu} \gamma_{5} \lambda_{i} \psi\right\} \tag{7}
\end{equation*}
$$

There is a $\mathrm{U}(6)$ subgroup of $\mathrm{GL}(6)$ obtained by taking the $a_{i \mu}$ real. This is the group considered in reference 1. Both interaction Lagrangians (6) and (7) are invariant under this subgroup, which leaves the canonical commutation relations invariant.
The complete Lagrangian is the sum of kinetic energy, mass, and interaction terms:

$$
\begin{gathered}
\boldsymbol{\mathcal { L }}=\boldsymbol{\mathcal { L }}_{\boldsymbol{K}}+\mathfrak{L}_{M}+\boldsymbol{\mathcal { L }}_{I^{\prime}} \\
\boldsymbol{L}_{K}=i \bar{\psi} \gamma \cdot \hat{f}_{\psi}, \\
\boldsymbol{f}_{M}=-\eta \overline{\psi \psi} .
\end{gathered}
$$

Since the four-momentum has four components, while GL(6) [or, for that matter, any of its SU(6) subgroups] has no icur-dimensional representation, it is clear that there is no possibility of making \mathcal{L}_{K} GL(6)-invariant (a similar argument applies to \mathscr{L}_{M}). Thus the only term of \mathfrak{L} that is GL(6) invariant is \mathfrak{L}_{I}. If in some strong-coupling sense $\AA_{J} \gg \mathcal{L}_{K}+\AA_{M}$, then it is fair to claim that \mathcal{L} exhibits intrinsically broken GL(6) invariance. Before we analyze ir. more detail this intrinsic synmetry breaking, let us give the representations to which the quarks and their bilinear covariants belong. The quarks form the representation ${ }^{4}(1,6)$ $\otimes(6,1)$ of W_{B}, and the bilinear covariants $\bar{\psi} \gamma_{\mu}\left(1+\gamma_{5}\right) \lambda_{i} \psi$ and $\bar{\psi} \gamma_{\mu}\left(1-\gamma_{5}\right) \lambda_{i} \psi$ form, respectively, the representations $(35,1) \oplus(1,1)$ and $(1,35) \oplus(1,1)$. Finally, $\bar{\psi} \sigma_{\mu} \lambda_{i} \psi \oplus \bar{\psi}_{i} \psi \oplus \bar{\psi}_{\gamma_{5}} \lambda_{i} \psi$ together form $\left(6^{*}, 6\right) \oplus\left(6,6^{*}\right)$. The particle contents of all these representations are given in Table I. It is important to remember that irreducible representations of W_{B} do not, in general, have definite Lorentz-tiansformation properties. In order to build up objects with well-defined transformation properties under the Lorentz group, one must consider reducible representations of W_{3}. There is some latitude in choosing the representations

Table 1. Spin-parity-unitary-spin content of representations of W_{8}.
Representation of $W_{\mathbf{B}}$
in which one places the baryons. One obvious candidate is $(56,1) \oplus(1,56)$.
We now return to the intrinsic symmetry breaking, coming from the kinetic energy and mass terms in \mathcal{L}. Their transformation properties (as members of incomplete W_{s} multiplets) are easily found to be $(35,1)$ $\oplus(1,35)$ and $\left(6^{*}, 6\right) \oplus\left(6,6^{*}\right)$. We are treating the kinetic energy and mass terms as perturbations on an otherwise symmetric Lagrangian. Such a procedure is nonconventional (i.e., not describable in terms of the usual Feynman diagrams), but if this feature is ignored, one can proceed formally with groupthearetical arguments. It is simplest to think of the symmetry-breaking terms in the language of spurions, with the spurions possessirg che requisite W_{e} transformation properties. Spurions can only contribute in pairs to self-mass terms, with the pairs necessarily possessing the quantum numbers of the vacuum. These spurion pairs are of particular interest when classified according to the $\mathrm{U}(6)$ subgroup of W_{g} mentioned above ($a_{i \mu}$ real). For the breakdown of this $U(6)$ symmetry our spurion-pair mechanism implies that to lowest order the symmetry-breaking terms in the mass formulas transform like members of the 35-, 189-, and 405-dimensional representation, as assumed by Beg and Singh. ${ }^{9}$
Because of this subgroup most of the nonrelativistic results ${ }^{10}$ based on $U(6)$ can be obtained from W_{b}. However, W_{b} predicts a super-supermultiplet structure on top of $\mathrm{U}(6)$, most characteristically the axial-vector and scalar mesons listed in Table I. Correspondingly, more general mass formulas can be dertved on the basis of W_{8} symmetry.
It is of interest to find the "would-be-conserved" currents of our model, and to calculate their (nonvanishing) divergences. ${ }^{\text {a }}$ For example, corresponding to the parameter $a_{i 2}$ there is a current

$$
j_{\mu}^{i 2}=\frac{\delta \mathcal{L}}{\delta a_{i 2, \mu}}=\frac{i}{2} \bar{\psi}\left[\gamma_{\mu}, ज_{31}\right]_{+}\left(\frac{1+\gamma_{\Omega}}{2}\right) \lambda^{i} \psi,
$$

and its divergence

$$
\begin{aligned}
\partial_{\mu} j_{\mu}^{i 2}=\frac{\delta \mathcal{L}}{\delta a_{i 2}}= & \bar{\psi}\left(\gamma_{3} \partial_{1}-\gamma_{1} \partial_{s}\right)\left(\frac{1+\gamma_{\mathrm{g}}}{2}\right) \lambda^{i} \psi \\
& +m \bar{\psi} \sigma_{31} \gamma_{\mathrm{B}} \lambda^{i} \psi .
\end{aligned}
$$

We then ascribe in the sense of a Goldberger-

Treiman argument particles to these nonvanishing divergences of currents. In this way we may introduce a nonet each of vector, axial-vector, and pseudoscalar (the last arising from the noninvariant mass term) mesons, that form together an incomplete W_{6} multiplet. The coupling of these particles to other physical states may be viewed as an effect of W_{8} breakdown.
In conclusion we wish to point out that W seems to be the natural group of hadrons. ${ }^{12}$ One crucial test of its approximate validity would be the experimental discovery of the 1^{+}and 0^{+}mesons it predicts.
It is a pleasure to thank Professor J. R. Oppenheirner for his kind hospitality at The institute for Advanced Study. We would also like to thank Professor Y. Nambu for pointing out an error in an earlier yersion of this paper.
*'The study was supported by the U. S. Air Force Office of Scientific Research, Grant No. AF-AFOSR-42~64.
tom leave of absence from the Enrico Fermi In stitute for Nuclear Studies and the Department of Physics of the University of Chicago, Chicago, Hlinois.
\ddagger Alfred P. Sloan Poundation Fellow on leave from the Department of Physics, The University of Pernsylvania, Philadelphia, Peunsylvania.
${ }^{1}$ F. Gilrsey and L. A. Radicati, Phys. Rev. Leters 13, 173 (1964); A. Pais, Phys. Rev. Letters 13, 175 (1964). Pais actually comments on the possible relation of $\mathrm{SU}(6)$ and the nonrelativistic strong coupling theory. B. Sakila, Phys. Rev. (to be pubished).
${ }^{2}$ M. Gell-Mann, Physies 1, 63 (1964); P. G. O. Freund and Y. Nambu, Phys, Rev. Letters 13, 221 1964); A. Salsm and J. C. Ward, to be puhlished.
${ }^{3}$ M. Gell-Mann, Phys. Tetters 8 , 216 (1964); G. Zweig, to be published.
${ }^{4} \psi(v)$ is a 1.2 -component spinor.
${ }^{5}$ M. Gell-Maar, Phys. Rev, 125, 1067 (1962). ${ }^{6}$ The finite dimensional representations of GL(6) so generated are not unitary. However, under the decomposition GL(6) $\rightarrow \mathcal{L}^{\prime}$ © SU(3), where $\mathcal{L}^{\prime \prime}$ is a group of Dirac γ matrices isomorphtc with the Lorentz group, the representations decompose into sum of direct preducts made up of nonunitary finisasmensional representations of \mathcal{L}^{\prime} and unitary repre sentations of SU(3).
We use four-Fermion interactions only as a gulde in our search for symmetries.
${ }^{8}$ We tabel the representatione of of by the dimensionalities of the representations of its two commuting U(6) factors.
${ }^{1}$ M. A. B. Bég and V. Singh, Phys. Rev, Lettera

13, 418 (1964). Note that the kinetic-energy term 13, 11 not break the SU(3) symmetry; however, one can use the mass term to accomplish this by, e,g. can use the mird quark of different mass.
${ }^{16} \mathrm{~F}$. Gulrsey, A. Pais, and L. A. Radicatl, Phys. Rev. Letters 13, 299 (1964); M. A. B. Beg, B. Lee, and A. Pats, Phys. Rev. Letters 13, 514 (1964); P. G. O. Freund and B. W. Lee, Rev. Letters 13, 592 (1964).
${ }^{11}$ See, e.g., M. Gell-Mann and M. Lévy, Nuovo Cimento 16, 705 (1960).
${ }^{12}$ There is a larger contender for the titie of symmetry group of hadrons, a 144 -parameter group, which we do not discuss bere.
About the strong-coupling limit on which our above About the strong-coup, we would still like to make the following remark: One possible way of handling the following remark:
 tions in the limo chain diagrams and found that fo $g \rightarrow \infty$ the vertex functions exhiblt W_{1} symmetry

PROBLEM OF COMBINING INTERACTION SYMMETRIES AND RELATTVISTIC INVARLANCE

W. D. McGlinn

Argonne National Leboratory, Argonne, Illinols (Rocelved 13 March 1984)
Recently there has been discussion ${ }^{2}$, concerning the possibility of combining interaction aymmetries (for instance SU(3) for strong interactions) and relativistic invariance in a nontrivtal way. One of the motivations is the possibility of obtaining exact mass formulas ${ }^{3}$ for particles belonging to the same representations of the interaction group. In this paper the imposibibility of
such combinations, under a certain restrictive condition, is pointed out.
Consider en interaction symmetry defined by a semisimple Lie group I. When combined with Lorente invarlance, the usual assumption is that the group T that describes the full symmetry is $T=I \times L$, where L is the inhomogeneous Lorentz group. This, of course, leads to the conclusion

ing in a similar way we find

$$
\begin{equation*}
C_{i k}^{j}=C_{i} \delta_{j k}, \quad i \leqslant n, n+1 \leqslant j, k \leqslant n+4 . \tag{12}
\end{equation*}
$$

Now consider Eq. (7) with $n+1 \leqslant p, k \leqslant n+4$, and $i, j \leqslant n$. From the previous discussion forthis case we can write

$$
\begin{align*}
& C_{i k}^{s}=\delta_{s k} C_{j}, C_{j s}^{p}=\delta_{s p} C_{j}, \\
& C_{k s}^{p}=-\delta_{p k} C_{s}, C_{i s}^{p}=\delta_{p s} C_{i}, \tag{8}\\
& C_{k i}^{s}=-\delta_{s k} C_{i} .
\end{align*}
$$

Inserting these relations in Eq. (7) leads to the conclusion that

$$
\begin{equation*}
C_{s} C_{i j}{ }^{s}=0 \text { for } i, j \leqslant n . \tag{13}
\end{equation*}
$$

If one introduces a standard coordinate system ${ }^{4}$ of the group I, it is easy to see that Eq. (13) implies $C_{S}=0$, Thus

$$
\begin{equation*}
C_{i j}^{k}=0 \text { for } i \leqslant n, n+1 \leqslant j, k \leqslant n+4 \tag{14}
\end{equation*}
$$

Now consider Eq. (7) with $i, j<n, n+1 \leqslant k$ $\leqslant n+4, p>n+4$. From the original assumption and the previous discussion, it follows that $C_{j s} p$ $=C_{\text {is }} p=0$ for this case. Thus Eq. (7) reduces to

$$
\begin{equation*}
C_{k s}{ }^{P} C_{i j}{ }^{s}=0 \tag{15}
\end{equation*}
$$

We will denote the generators of the group I by $J_{i}, i=1, \cdots, n$, where n is the dimension of the by $J_{i}, n+1 \leqslant i \leqslant n+10$. In particular,

$$
\begin{gathered}
p_{i}=J_{n+i} \text { for } 1 \leqslant i \leqslant 4, \\
M_{12}=J_{n+5}, M_{13}=J_{n+6}, M_{14}=J_{n+7} \\
M_{23}=J_{n+8}, M_{24}=J_{n+9}, M_{34}=J_{n+10^{\circ}}
\end{gathered}
$$

The full symmetry group T is determined by the commutation relations

$$
\begin{equation*}
\left[d_{j}, J_{k}\right]=C_{j k}{ }^{i} J_{i} \tag{5}
\end{equation*}
$$

In Eq. (11) both s indexes need only range be tween $n+1$ and $n+4$. Consider the particular case $j=n+5$ and $k=n+1$. With the aid of Eq. (3), Eq. (1) can be reduced to

$$
\begin{gather*}
C_{i, n+2}{ }^{p} C_{j k}{ }^{n+2}+C_{i, n+1}{ }^{p} C_{n, i}{ }^{n+1} \tag{3}\\
+C_{j, n+2}{ }^{p} C_{k i}^{n+2}=0 \tag{4}
\end{gather*}
$$

where the structure constants must satisfy

$$
\begin{equation*}
C_{i s}^{P} C_{j k}^{s}+C_{k s}^{P} C_{i j}^{s}+C_{j s}^{D} C_{k i}^{s}=0 \tag{7}
\end{equation*}
$$

The restriction imposed immediately after Eq. (1) implies

$$
C_{j k}^{i}=0 \text { for } j \leqslant n \text { and } k>n+4 .
$$

Consider Eq. (7) for $i \leqslant n, j>n+4, n+1 \leqslant k$ $\leqslant n+4, p \leqslant n$. The restriction on T impli

$$
c_{i s}{ }^{p} C_{j k}^{s}=0
$$

Frum Eq. (3) there is at most one value of s in this sum for a given j and k for which $C_{j k}{ }^{s} \neq 0$ and for a given value of $s, n+1 \leqslant s \leqslant n+4$, 2 palr of values j and k exist for which $C_{j k}{ }^{s} \neq 0$. Thus

$$
\begin{equation*}
c_{i s}^{p}=0 \text { for } i \leqslant n, n+1 \leqslant s \leqslant n+4, p \leqslant n . \tag{10}
\end{equation*}
$$

Now consider Eq. (7) for $n+1 \leqslant p \leqslant n+4, i \leqslant n$, $j>n+4$, and $n+1 \leqslant k \leqslant n+4$. For this case $C_{i j}{ }^{s}$ $=0$ and Eq. (7) reduces to

$$
\begin{equation*}
C_{i s}^{p} C_{j k}^{s}+C_{j s}^{p} C_{k i}^{s}=0 \tag{11}
\end{equation*}
$$

where

$$
C_{f, n+1}^{p}=0 \text { unless } p=n+2,
$$

$$
c_{f, n+2}^{p}=0 \text { unless } p=n+1 .
$$

This implies $C_{i, n+2}{ }^{p}=0$ for all i unless $p=n+1$ or $p=n+2$. Letting $p=n+2$, one obtains

$$
c_{i k}^{k}=c_{i, n+2}{ }^{n+2}
$$

If one considers Eq. (7) for the case $j=n+8$ and If one
$k=n+3$ one concludes $C_{i, n+2}^{n+1}=0$. Continu-

Combining Eqs. (8), (10), (13), and (14) leads to

$$
C_{k j}^{i}=0 \text { for } k \leqslant n, j \geqslant n+1, \text { all } i:
$$

that is, $T=I \times L$. Thus if one demands that the i teraction symmetry commute with the homogeneous Lorentz transformation and requires the existence of a Lie group T whose generators are those of the interaction-symmetry group and the Lorentz group, then it follows that $T=I \times L$. Th: applies in particluar to the group SU(3).
In conclustion, if one wishes to combine such ai Interaction symmetry with Lorentz invariance to form a larger group that will give mass splitting one must accept not only lack of commutation of the symmetry-interaction generators with the Lorentz translation generators but also their lack of commutation with the homogeneous Loren generators. It is felt that this will, in general, lead to interpretation difficulties.
It should be noted that Eqs. (13) and (15) are true even if the interaction-symmetry group is not semisimple; for some such groups one can still deduce Eqs. (14), (16), and (18).
The author wishes to thank Dr. M. Hamermesh for valuable discussions.
${ }^{1}$ A, O. Barut, Proceedings of the Conference on Sym metry Principles at High Energy, University of Miami Miarni, Florida (unpublished),
'Behram Kursunaglu, Proceedings of the Conference on Symmetry Prinoiples at High Energy, University of Miami, Miami, Florida (unpublished).
${ }^{3}$ M. Gell-Mann, Phys. Rev, 125, 1067 (1962); s. Progr. Theoret. Phys. (Kyoto) 27, 949 (1962).
"See, for example, G. Racah, Group Theory and Spectroscopy Lecture Notes, Institute for Advanced Study, Princeton, New Jereey, 1961

International Atomic Energy Agency

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

ON THE ALGEBRA OF SU_{6}

Abdus Salem

Trieste
December 1964

by

Abduce Salem
International Centre for Theoretical Physics, Trieste

The remarkable success of SU_{6} ideas [1] in elementary particle physics makes it imperative to look for its relativistic basis. Consider the free Dirac Lagrangian $\mathcal{L} * \bar{\psi}(\nmid-m) \psi$ for a single particle. L is invariant for the Pauli-Lubaneki transformation

$$
\begin{equation*}
\psi^{\prime}=\left(1+i E_{\mu} w_{\mu}\right) \psi \tag{1}
\end{equation*}
$$

Where

$$
\omega_{\mu i}=\frac{1}{4} E_{\mu r \rho \alpha} \sigma_{r \rho} P_{k}
$$

Since ${ }^{\circ} \psi_{\mu} \omega_{\mu} \equiv 0$, there are three independent generators with the $[2]$ commutation relation

$$
\begin{equation*}
\left[\omega_{\mu}, \omega_{V}\right]=i E_{\mu r \rho k} \hat{p}_{\rho} \omega_{k} \tag{2}
\end{equation*}
$$

The generators give rise to an SU_{2}-like (in general non-compact) structure which satisfies for the spin $1 / 2$ case the anti-commutation relation:

$$
\begin{align*}
\left\{\omega_{\mu}, \omega_{r}\right\} & \left.=-\frac{1}{4}\left(\gamma_{s}\left[\gamma_{\mu}, \not{ }^{\prime}\right], \gamma_{s}\left[\gamma_{r}, \not\right)^{\prime}\right]\right) \tag{3}\\
& =2\left(p_{\mu} p_{r}-p^{2} g_{\mu}\right)
\end{align*}
$$

Consider now the ouse when Y is a three-component Sakata-like entity (representing quarks). It is possible to extend (1) to the general (SO_{6}) transformation:

$$
\begin{equation*}
\psi^{\prime}=\left(1+i E^{i} T^{i}+i E_{\mu}^{\alpha} T^{\alpha} \omega_{\mu}\right) \psi^{\prime} \tag{4}
\end{equation*}
$$

Here $T^{\alpha}\binom{\alpha=0, \ldots, 8}{i=1, \ldots, 8}$ are the usual U_{3} generators with $\cdot T^{0}=1$ and from (2.),

$$
\begin{align*}
& {\left[T_{\mu, 1} T^{\beta} \omega_{r}\right]=\frac{1}{2}\left\{\omega_{\mu 1} \omega_{r}\right\}\left[T^{\alpha}, T^{\beta}\right]+\frac{1}{2}\left[\omega_{\mu}, \omega_{r}\right]\left\{T^{\alpha}, T^{B}\right]} \\
& =i\left(p_{\mu} p_{r}-p^{2} g \mu r\right) c_{i j k} T^{h}+\frac{i}{2} E_{\mu r \rho k} \beta_{\rho} \omega_{k}\left(\frac{1}{3} \delta_{i j} T_{0}^{0}+\alpha i j k T^{k}\right) \tag{5}
\end{align*}
$$

$\left[T^{i} U_{\mu}, T j\right]=\frac{k}{2} \omega_{\mu} c_{i j k} T^{k}$
and $\bar{\psi} \gamma_{\mu} T^{T h} \psi$ adjoint representation-densities are given by $\bar{\psi} \gamma_{\mu} \omega_{v} T^{\alpha} \psi$

$$
\begin{equation*}
\bar{\psi} \not p \omega_{r} T^{\alpha} \psi=\bar{\psi} p T^{i} \psi=0 \tag{6}
\end{equation*}
$$

One may now generalize the case of SU_{6} above to the more general case $[3]\left(\mathrm{SU}_{6}\right)_{L}=\left(\mathrm{SU}_{6}\right)_{R}$; i.e., start with the fields $\psi_{L}, R=\frac{1}{2}(1 \pm \gamma \delta) \Psi$ Clearly $m \bar{\psi} \psi$ term is not invariant for the full group (though the invariance is unaffected for the pure ω_{μ} transformations). There are altogether now 70 generators $\bar{\psi}_{L R} \quad \gamma_{\mu} \omega_{r} T^{\alpha} \psi_{L} R, \psi_{\sim} \psi_{R} \gamma_{\mu} T^{i} \psi_{L}, R$.
The oonservation equations (6) however need modifying; thus:

$$
\begin{aligned}
& \bar{\psi} p \omega_{r} \gamma_{5} T^{\alpha} q \neq 0=\left(2 m \quad \bar{\psi} \omega_{r} \gamma_{5} T^{\alpha} \psi\right) \\
& \psi \not \psi \gamma_{5} T^{i} \psi \neq 0=\left(2 m \quad \bar{\psi} \gamma_{5} T^{i} \psi\right)
\end{aligned}
$$

From this point of view the $0^{-}, 1^{-} 35-f o l d$ (represented by the field operators $\bar{\psi} \omega_{s} \gamma_{5} T^{\alpha} \psi$ and $\left.\bar{\psi} \gamma_{5} T^{c} \psi\right)$ is a remnent of the broken ($\left.\mathrm{SU}_{6}\right)_{L} x$ $\left(\mathrm{SU}_{6}\right)_{\mathrm{R}}$ Bymmetry.

The author's thanks are due to Drs. P.T. Matthews and J. Charap for stimulating discussions and to Drs. R. Delbourgo and J. Strathdee for oarefully reading through the manugcript.
[1] F. Gursey and L.A. Radicati, Phys. Letters, 13, 5, 173 (1964); A. Pais, ibid, 13, 5, 175 (1964); B. Sakita, Phys. Letters, to be published.
[2] By the usual procedure one oonstructs the conserved currentdensity $\bar{\psi} \gamma_{\mu} \omega_{r} \psi$ so that a representation for ω_{r} is given ${ }^{\text {by }} d^{3} x \bar{\psi} \gamma_{4} \omega_{v} \psi$.
In oheoking the C.R. (2), (5) and (6) oare is needed in writing anti-commutators like $\{\tilde{\psi}(x), \psi \psi(y)\} \delta\left(x_{0}-y_{0}\right)$.
[3] This is analogous to study of the extended Algebras $\left(\mathrm{SU}_{3}\right)_{\mathrm{L}} x$ $\left(\mathrm{SU}_{3}\right)_{R}$ by A. Salam and J. C. Yard (Il Nuovo Cimento, 19, 267 (1961)), M. Gell-Mann (Phys. Rev. 125, 1067 (1962)) and
Y. Nambu and P. Freund (Phys. Rev. Letters, 12, 714 (1964)).

[^0]: * Supported in part by the National Science Foundation and by the Atomic Energy Commission.
 \dagger Now at the Graduate School of Science, Yeshiva University, New York.
 \ddagger National Science Foundation Postdoctoral Fellow 1960-1961. Now at Stanford University, Stanford, California.
 8 On leave of absence from the University of Bergen, Norway. Now at University of California, Los Angeles, California.
 || Now on leave of absence at the Institute for Advanced Study, Princeton, New Jersey.

[^1]: ${ }^{1}$ See, for example, the Proceedings of the Tenth Anntual Conference on High Energy Nuclear Physics, Rochesier, 1050, University of Rochester (Interscience Publishers, Inc., New York, 1960).
 'See, for example, B. d'Espagnat and J. Prontki, Nuclear Phys. 1, 33 (1956); J. Schwinger, Ann. Phys. 2, 407 (1957); M. GellMann, Phys. Rev. 106, 1296 (1957); A, Pais, ibid. 110, 574 (1958) ; J. Tiomno, Nuovo cimento 6, © (1957); R. E. Behrends, ibid. 11, 424 (1959); D. C. Peaslee, Phys. Rev. 117, 873 (1960); J. J. Sakurai, ibid. 115,1304 (1959).
 ${ }^{3}$ See, for example, W. Heisenberg, Z. Physik 77, 1 (1932); I3. Cassen and E. U. Condon, Phys. Rev. 50, 846 (1936); G. Breit, E. U. Condon, and R. D. Present, ibid. 50, 825 (1936); G. Breit and E. Feenberg, ibiod. 50, 850 (1936).

[^2]: © See, for example, G. Racah, Phys. Rev. 61, 186 (1942); 62,
 438 (1942); 63, 367 (1943); 76, 1352 (1949). T. H. R. Skyrme, 438 (1942); 63,367 (1943); 76, 1352 (1949). T. H. R. Skyrme,
 "Lectures in Nuclear Structure (I), General Theory and Shell Model," Department of Physics, University of Peansylvania, Philadelphia, Pennsylvania, 1958.
 Advanced Sactudy, Leceture notes, Princeton, New, Jersey, 1951 . Advanced Study, Lecture notes, Princeton, New Jersey, 1951.
 E. Cartan, Thess Paris (1894) reprinted in E Cartan, Oesores Completes (Gauthiers Villars, Paris, France, 1952). E. Cartan, Bull. Sec. Math. de France 41, 53 (1013).
 7. . . Dynkin, Am. Math. Soc. Translations, No. 17 (1950).
 ${ }^{8}$ H. Weyl, Z. Math. 24, 328, 377 (1925), , reprinted in H. Weyl, 8 H . Weyl) Z. Math. 24,
 Selecla (Birkhauser Verlag, Basel und Stuttgart, Germany, Weyl, 1956), p. 262. Weyl, Classical Groups (Princeton University Press, Princeton, New Jessese, 1946), 2nd ed.
 10 H. Weyl, Grout Theory and Quantum Mechamics (reprint, ${ }^{10} \mathrm{H}$. Weyl, Group Theory
 Dover
 und
 Dover Publications, Now York).
 11 E. P. Wigner, Group Theory and Its Applications to Atowic
 Inructure (Academic Press, Inco, New York, 1960).
 Struciure (Academic Press, Inc., New York, 1960).
 12. S. Lie and F. Engels, Theorie der Transformationsgruppen
 (B. G. Teubner, Leipi, (B. G. Teubner, Leipzig, Germany, 1888-1893) V Vgipiling
 Math. Ann. 31, 252 (1888); 33, 1 (1889); 34, 57 (1889); 36, 161
 (1890). L. P. Eisenhart (reprint, Dover Publications, New York, 1961). L. S. Pontriagin Topological Groups (Princeton University Pres, Princeton, break the symmetry and account for the mass difference. Most physicists seem to feel that a specific difference in muon and electron interactions will ultimately emerge even if present experimental circumstances have not revealed it. If the proposed strong interaction symmetry resembles that of the muon and electron, it could conceivably be discernible even in the presence

 New Jersey, 1958). H. Freudenthal, "Lie Groups," Lecture notes,
 Department of Mathemen Department of Mathematics, Berkeley, Californies 1900). D. Montgomery, "Topological Groups," Lecture notes, Hiaverford
 College, Haverford, Pennsylvenia, 1956 .
 "Sec, for example, J. M. Blatt and V. Weisakopf, Theorelical
 Nuckear, Physics (fohn Wiley \& Sons, Inc., New York, 1952). 11 J . Garwin, L. Lederman, and M. Weinrich, Phys. Rev. 105 , 1415 (1957). G. Charpale, F. Farley, R. Gewin, T. Muller, (1961).
 ${ }^{16}$ M. Ruderman and R. J. Finkelstein, Phyw. Rev. 76, 1458
 (1949); J. A. Wheeler and $\}$. Tiomno, Reva. Modern Phys. 21 , 144 (1949); O. Klein, Nature 161, 897 (1948); E. Clementel and G. Puppi, Nuovo cimento 5, 505 (1948); T. D. Lee, M.
 Rosenbluth, and C. N. Yang, Phys. Rev. 75, 905 (1949).

[^3]: ${ }^{26} \mathrm{~A}$ subgroup is a subset of the elements of the group that has the group property. A subgroup S of a group G is an ineariant subgroup if $g S_{\mathrm{g}} \mathrm{g}^{-1}$ is in S for every g in G and s in S. In keeping
 with convention, we shall call a group simple if the only inva jant subgroup is discrete. The reason for this is that the Lie algebra of such groups are often simple. An adgebra is simple if it has no ${ }^{27}{ }^{27}$ See reference 5 , p. 55.
 ${ }^{29}$ The study of semi-simple groups can be reduced in a trivial manner to that of simple groups.
 ${ }^{20} \mathrm{E}$ U C (Cambridge University Press, New York, 1935); A. R. Edmonds Angular Momentum in Quantham Mechamics (Princeton University Press, Princeton, New Jersey, 1957); M. E. Rose, Elementary Theory of Ansular Momentum (John Wiley \& Sons, Inc., New York, 1957).

[^4]: A representation is faithful if the correspondence between L_{A} and L_{A} is one-to-one. For simple alycloras, all except the identity representation ($L_{A}=0$) are fait hful.
 requesentations (see prout has has no finite dimmsonsional unitary forcesent ations (see Ponissible groups are cecempect. Representations of compact groups are either irreducible or fuily reducible.

[^5]: *This operator is the same as will be introduced later as a "metric tensor." It could also have been defined by the property that

 $$
 \sum_{A, B} C_{A B}|(8), A ;\{8\}, B\rangle=|\{1\}\rangle
 $$

 is an invariant.

[^6]: "The method of dividing point sets by point sets turns out to be quite powerful. Further details will be found in a paper by two of the authors (J.D. and C.F.).

[^7]: $"$ This will be recognized as agreeing with the definitions of Eqs. (I.1) and (III.21).

[^8]: WThe only exception is the case when one of the factors is the idendty representation.
 ${ }^{6}$ The tensor ${ }^{\text {b }}$, would be written $|\{m\}, a ;(m), b\rangle$ in the notation of Sec. II E. Equation (V.2) is an application of Eq. (III.14).

[^9]: - A readable exposition is given in D. Rutherford; Swhstitutional Anclysis (Kdipburgh Univergity Press, Edinburgh, Scotland, 1948).

[^10]: *For tensors of higher mank, the ambiguity is much greater. T. Yamanouchi has prescribed a general procedure which alwaye leads to orthogonal wave functions io Proc. Phys. Math, Soc. Japan, 18, 623 (1936); 19, 436 (1937).

[^11]: ${ }^{s}$ If $k^{\text {bl }}$ is as in reference 62, then

 $$
 h_{a b}=\left[\begin{array}{ll}
 & 1^{-1} \\
 1 & -1
 \end{array}\right]
 $$

[^12]: ${ }^{4}$ The differential operators $(1 / i)\left(x_{i} \partial_{j}-x_{j} \partial_{i}\right)$ are a realization of these commulation relations.
 of The following development was suggested by the calculation

[^13]: 73. J. J. Sakurai, Ann. Phys. 11, 1 (1960).
 w R. Utiyama, Phys. Rev. 101, 1597 (1956); S. L. Glashow and M. Gell-Mann (to be published). The Iatter authors have independently suggested the B_{2} and C_{8} models discussed in this section.
 ${ }_{6}$ The relation between M_{A} and $M^{A}=g^{A B} M_{B}$ is most easily determining by requiring $X^{A} X_{A}=g^{A B} \chi_{A} X_{B}$ to be invariant.
[^14]: * Note from the Dymikis diagrams:
 (1)
 $D_{3}=a_{0}$
 $\underset{\text { isomorphic }}{\underset{\sim}{b}}$
 Also

 $$
 \text { 1. }=\sigma_{6}=S U_{4} .
 $$

 (ii)

[^15]: * I have introduced a small change of notation in the labelling of representations. Dyakin and Behrends et al. Label irreducible representations with numbers $a_{1}, a_{2}, \ldots, a_{\ell}$ where a_{i} are (non-negative) integers. I have used for tabelling the numbers j_{1}, j_{2}, \ldots, j where the j 's are (non-negative) integers or half-integers, The new notation possibly brings out still more the fact that a general Lie group of rank ℓ is a simple "gener alization" of O_{3} and has $\mathrm{\ell}$ distinct "angular momenta" $\mathrm{j}_{1}, \mathrm{j}_{2}, \ldots, \mathrm{j} \boldsymbol{\mathrm { l }}$, rather than just one (j_{1}).

[^16]: (4) Note added in proof: Enactly the same scheme hen been propesed by Y. Yassagochi to 1800, Not that we in proof: Exactly the sumpe chell it is Yameruchi-Gell-Mnan nchemp hereafier. Y. Yameguchi: privis commenication.

[^17]: *Work supported by the U. S. Atomic Energy Commission.
 \dagger Permanent address: Rockefeller Institute, New York, New York.
 ${ }^{1}$ F. Gürsey and L. Radicati, preceding Letter [Phys. Rev. Letters 13, 173 (1964)I. Notations used here are the same as in this Letter.
 ${ }^{2}$ E. Wigner, Phys. Rev. 51, 105 (1937).
 ${ }^{3}$ J. Helland et al., Phys. Rev. Letters 10,27 (1963).
 'The formula of R. J. Oakes and C. N. Yang, Phys. Rev. Letters 11, 174 (1963), gives (in our notation) an a which does depend on the $\operatorname{SU}(3)$ representation.
 ${ }^{5}$ S. Coleman and S. L. Glashow, Phys. Rev. 134, B671 (1964).
 ${ }^{6}$ This closeness has been noted by many people. The fact that the $(10,2)$ is stable in the central $\operatorname{SU}(3)$-mass

[^18]: ${ }^{\text {a }}$ Defined as in reference 1.
 $b_{\text {Defined as in reference } 11 .}$

[^19]: ${ }^{*}$ Work performed under the auspices of the U, S. Atomic Energy Commission.
 1ㅍ. Gürsey and L. A. Radicati, Phys. Rev. Letters 13, 173 (1964)
 ${ }^{2}$ A. Pais, Phys. Rev. Letters 13, 175 (1964).
 ${ }^{\text {s }}$ Details of this Letter will be published elsewhere.
 M. Gell-Mann, Phys. Rev, 125, 1067 (1962).
 ${ }^{5}$ S. Okubo, Progr. Theoret. Phys. (Kyoto) 27, 949
 (1962).
 ${ }^{6}$ This is a generalization of Eq. (A.8) in Okubo's paper.
 ${ }^{7}$ F. Gürsey, A. Pais, and L. A. Radicati, Phys,
 Rev. Letters 13, 299 (1964).
 ${ }^{3}$ M. Gell-Mann, Phys. Letters 8, 214 (1964).
 ${ }^{2}$ F. Gïrsey, T. D. Lee, and M. Nauenberg, Phys.
 Rev. 135, B467 (1964).
 ${ }^{10}$ M. A. B. Beg and V. Singh, following Letter (Phys. Rev. Letters 13, 418 (1964)].

[^20]: *On leave from (and address after 1 Septomber 1964)

[^21]: ${ }^{1}$ F. Gürsey and L. A. Radicati, Phys. Rev. Letters 13, 173 (1964).
 ${ }^{7}$ A. Pals, Phys. Rev. Letters 13, 175 (1964).
 ${ }^{3}$ F. Gürsey, A. Pals, and L. A. Radicat!, Phys. Rev. Letters 13, 299 (1964).
 "See, for example, S. P. Rosen, Phys. Rev. Letters 11, 100 (1963); and R. J. Oakes, Phys. Rev. 132, 2349 (1963). $\mathrm{C}_{3}{ }^{(3)}$ is the quadratic Casimir operator of

[^22]: * There is the alternative possibility that the quarks are unstable under decay into baryon plus anti-di-quark or anti-baryon plus quadri-quaris. In any case, some particle of fractional charge would have to be abeolutely stable.

[^23]: *Work eupported is part by the U. S. Atomic Energy Commission.

