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ONE of the most natural questions when one looks 
at the mass of uncorrelated data on elementary 

particle interactions' is whether a systematic pattern 
is emerging from this complexity. The penetration of 
controlled laboratory experiments into the multi-Bev 
energy region can only make such a question more 
acute. Several attempts' have already been made to 
unfurl the underlying symmetry of strong interactions, 
such as might exist above and beyond those symmetri es, 
e.g., isotopic symmetry,' which have already su rvived 
experimental tests. 

In this article, we sharpen some tools which prove 
useful in formulating the consequences of proposed 
symmetries of a rather special type, namely, those 
symmetries which are characteristic of the simple Lie 
groups. Since it is as yet too early to est"\blish a defi nite 

1 See, for example, the Proceedings tJj the Tenth A nn:uzl 
Conferenct on High Energy Nuclear Physics , Roc/rester, J!Jtj(), 
University of Rochester (Intersdence Publishers, Inc., New York, 
1960). 

2 See, for example, B. d'E.c;pagnat and J. Pn.ntki, Nuclear Phys . 
I , 33 (1956); J. Schwinger, Ann . Phys. 2, 407 (1957); M. Cell· 
Mann, Phys. Rev. 106, 1296 (1957); A. Pais, ibid. liO, 574 
(1958); J. Tiomno, Nuovo cimcnto 6, 69 (I<JS7); R. E. Rehrcnds. 
ibid. II , 424 (1959); D. C. Peaslee, Phys. Rev. 1!7, 873 (1960); 
j. j . Sakurai, ibid. 115, 1304 (1959). 

1 Sec, for example, W. Heisenberg, Z. Physik 77, I (1932); H. 
Casscn and E. U. Condon, l'hys. Rev. 50. 8-16 (1936); G. llrcit, 
E. U. Condon, and R. D. Present, ibid. 50, 825 (1936); G. Breit 
and E. Feenuerg, ibid. 50, 850 (J93o). 

Copyriaht 0 1961 by the American l'hy:-ical Society. 
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symmetry of the strong interactions, both because of 
the lack of experimental data and the theoretical 
uncertainties about the way in which the symmetries 
will manifest themselves, the formalism developed is 
left quite flexible in order to accommodate a wide 
range of conceivable symmetries. 

Much of the material is an exposit ion of the theory 
of Lie groups and, although most of the results have 
been known for many years, several new features 
appear. Thus the material on the composition and 
decomposition of Lie algebras hy point set theory, the 
explicit construction of the Lie algebras, the tensor 
analysis of the groups B2 and G,, and the possible 
physics associated with the group B, is believed to be 
novel. A large portion of the remaining material is 
possibly unfamiliar to many physicists (as it was to us), 
and so is pedagogical in nature. Although the discussions 
are directed primarily to applications in elementary 
particle physics, many of the techniques have been 
used before in group theoretical treatments of atomic 
and nuclear spectroscopy.' 

An admirable summary of the elementary properties 
of semi-simple Lie algebras is contained in the lecture 
notes of Racah, 6 which treat both the classification of 
semi-simple groups, following Cartan,' and their lil'lear 
representations. A complete and rigorous derivation 
of the properties of semi-simple Lie algebras can be 
found in the work of Dynkin,7 while Weyl's original 
work' remains the standard reference on the repre­
sentation theory of semi-simple groups. For the tensor 
analysis associated with particular groups and with 
the Young tableaux, Weyl's Classical G1'oups' and 
G1'oup Theory and Quantum M echanics10 is recom­
mended. We assume that the reader is mildly conversant 
with the group theoretical treatment of angular 
momentum as given by Wigner,n for example. Finally, 
we give various references" to the basic mathematical 
literature. 

• Sec, for example, G. Racah, Phys. Rev. 61 , 186 (1942); 62, 
438 (1942); 63, 367 (1943); 76, 1352 (1949). T. H. R. Skynne, 
"Lectures in Nuclear Structure (1), General Theory and Shell 
Model," Department of P~ics, University of Pennsylvania, 
Philadelphia, Pennsylvania , 1958. 

• G. Racah, 41 Group Theory and Spectroscopy," Institute for 
Advanced Study, 4ec'ture notes, Princeton, New Jersey, 1951. 

• E. Carlan, rJtese Paris (1894) reprinted in E. Cartan, Oeuvres 
Completes {Gauthiers-Villars, Paris, France, 1952). E. Cartan, 
Bull. Soc.""Math. de France 41 , 53 (1913). 

•·E . B. Dynkin , Am. Math. Soc. T ranslations, No. 17 (1950). 
1 H . Weyl, Z. Math. 24, 3_28, 377 (1925), reprinted in H. Weyl, 

Sekcta (Birkhauser Verlag, Basel und Stuttgart , Germany, 1956), 
p. 262 . 

e H. Weyl, Classical Groups (Princeton University Press, 
Princeton, New Jersey, 1946), 2nd ed. 

10 H . \Veyl, &oup Theory and Qua11tum Mechanics (reprint, 
Dover Publications, New York). 

"E. P. Wigner, Grot<P Theory and Its Applicalion.s to Atomf& 
Structure (Academic Press, Inc., New York, 1960). 

11 S. Lie and F. Engels , Theorie der Transfonnationsgruppen 
(B. G. Teubner, Leipzig, Germany, 1888-1893). V. Killing, 
Math. Ann. 31 , 252 (1888); 33, 1 (1889); 34, 57 (1889); 36, 161 
(1890). L. P. Eisenhart , Groups of Continuous Transformations 
(repr!nt , Dover Publications, New York, 1961).L. S. Pontrjagin, 
Topological Groups (Princeton University Pre, Princeton, 
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As far as the physical application of the group 
theoretical methods is concerned, we are immediately 
faced with the problem of justifying the specific course 
which we pursue in attributing symmetries to strong 
particle interactions. The hope that symmetries exist, 
other than those associated with space-time structure, 
is kindled by the observation that some such "internal" 
symmetries are already apparent. First of all, charge 
independence has so far run the gauntlet of experi­
mental tests11 and has become a commonly accepted 
symmetry. In addition, a second kind of symmetry, 
slightly more mysterious than the former. is afforded by 
the electrodynamic" and weak-<lynamic equivalence" 
of the muon and electron. Both of these symmetries 
call for a closer discussion. 

It is well known that particles belonging to the same 
isotopic multiplet exhibit a remarkable similarity· in 
their strong-interaction dynamics. Differences in be­
havior and in mass of isotopic spin multiplet members 
are quite naturally attributed to the charge-dependent 
electromagnetic interaction, which acts as a weak 
perturbation on the strong-interaction dynamics. 
Indeed, the breakdown of isotopic symmetry is 
evidenced in the high Z nuclear species where the 
coherent Coulomb field no longer can be treated as ·a 
perturbation. By analogy, we may conjecture that a 
basic symmetry exists among, say, baryon-baryon 
interactions, but that the full force of this symmetry 
is ailuted by a relatively weak symmetry-breaking 
interaction. The answer to the question "under what 
circumstances will the symmetry-masking interaction 
be minimized ?" is not yet clear, since the answer 
undoubtedly depends on the specific nature of the 
symmetry-breaking interaction. Of course, the latter 
interaction would most likely, produce the baryon 
mass differences besides its other effects. 

In the case of the dynamic symmetry of muon and 
electron, no interaction is known which can serve to 
break the symmetry and account for the mass difference. 
Most physicists seem to feel that a specific difference 
in muon and electron interactions will ultimately 
emerge even if present experimental circumstances 
have not revealed it. If the proposed strong interaction 
symmetry resembles that of the muon and electron, it 
could conceivably be discernible even in the presence 

New Jersey, 1958). H . Freudenthal, "Lie Groups," Lecture notes, 
Department of Mathematics, Berkeley, California, 1960). D. 
Montgomery, "Topological Groups," Lecture notes, Haverford 
College, Haverford, Pennsylvania, 1956. 

11 See, for example, J. M. Blatt and V. Weisskopf, Tlwweliul 
Ntuko< Physics Uohn Wiley & Sons, Inc., New York, 1952). 

"J. Garwin, L. Lederman, and M. Weinrich, Phys. Rev. 105, 
1415 (1957). G. Charpak, F. Farley, R. Garwin, T . Muller, 
J. Sens, V. Telegdi, and A. Zichichi, Phys. Rev. Letten 6, 128 
(1961). 

"M. Ruderman and R. J. Finkelstein, Phys. Rev. 76, 1458 
(1949) ; J. A. Wheeler and J. Tiomno, Revs. Modem Phyo. 21, 
144 (1949); 0. Klein, Nature 161, 897 (1948); E . Clemente! and 
G. Puppi, Nuovo cimento 5, 505 (1948); T. D. Lee, M. 
Rosenbluth, and C. N. Yang, Phys. Rev. 75, 905 (1949). 

STRONG INTER A CTIOC'< SYMMETR I ES 

of baryon mass differences, . just as is the case with 
muon and electron interactions. 

In summary, we are unable to give any a priori 
justification for the existence of strong interaction 
symmetries, but share the widespread feeling that 
such symmetries arc plausible and not entirely 
unprecedented. 

In Sec. I , the embryonic elements of the application 
of symmetry considerations to elementary particle 
interactions are presented to motivate physically the 
following sections. Section II is devoted to a necessarily 
abbreviated form of the theory of Lie groups, in which 
an attempt is made to appeal as much as possible to a 
physicist's intuition. There then follows (Sec. III) the' 
properties and the construction of linear representa­
tions of Lie groups, of which it is hoped that elementary 
particles provide an instance. The next two sections 
(Sees. IV and V) solve the problem of finding certain 
properties of the Lie algebra representations, in 
particular, the "weights" of the representations and 
the decomposition of direct products of representations 
(generalized Clebsch-Gordan series). Two approaches 
are employed ; one predominantly geometric (Sec. IV), 
the second predominantly algebraic (Sec. V). Section 
V is essentially the tensor analysis associated with 
simple groups. All roads lead to Sec. VI whii:h is 
concerned with physical applications of the mathema­
tical complex of the previous sect ions. From this 
summit, we briefly view the expanding vistas of 
possible strong interaction symmetries. 

I . SYMMETRIES OF THE LAGRANGIAN 

The basic idea behind Heisenberg's introduction of 
the concept of isotopic spin' was the realization that 
the neutron and the proton are, after all, quite similar. 
The differences in mass and in electr01pagnetic inter­
actions are small in the context of the strong inter­
actions. The fact that only two baryons were known 
led unambiguously to the assigrunent of a doublet 
structure to the "nucleon." Later, when strange 
particles were discovered, these were found, as is 
reflected in the name, to have properties so widely 
different from the nucleons that the assignment of the 
proton and the neutron to a doublet was retained 
without question. When one attempts to introduce 
symmetries which treat particles of widely different 
masses as states of the same field, however, it is not 
wise to be so categorical about the number of particles 
to be included in the scheme. Specific conjectures are 
made in the last section; for the present let n be the 
number of baryons treated as states of the same field, 
i.e., as belonging to the same supermultiplet. A favorite 
choice for n is 8, if all the observed' baryons are 
included.' o--18 It could be less than eight if the baryons 

11 R. E. Behrends and D . C. Peaslee, reference 2. 
" T . D. Lee and C. N. Yang, Phys. Rev. 122, 1954 (1961). 
11 M. Geli-Mann, Pbys. Rev. (to be published). 
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~eparate into two or more supermultiplels," or it 
could be larger than 8 if some hypothetical baryons 
not yet discovered are included. 

Let Y,., a=! , 2, · · · , n, denote the n-component 
baryon field, where each component is a Dirac four­
spinor, and let ,.=Y,.t-y,. The free Lagrangian is 

.Co= (~) E ,.(p-im.)Y, •. 
21' a-1 

In the introduction we mentioned several different 
points of view, according to which the masS'Idifferences 
may be argued to be nonessential in the first analysis. 
When then masses are put equal, m1=m2 = · · · =m., 
.Co is invariant under a set of linear transformations, 
acting on the set Y,.= (>/t1 • • ·Y, . ). In fact , let U.b be a 
square nXn matrix, and consider the transformation 

>/t.-+ >/t.' = U.">/t,, 
Y,. -+ t'•= (UY, )t"-y,=t' (Ut),•. 

Clearly, .Co is invariant if and only if U is unitary, i.e., 

(Ut).'(U) ,h=~.•. 

Hence, in matrix notation 

Y,-+UY,, t-+tU-1
, liUt=U'U= !. (I.!) 

The set of all nXn unitary matrices forms a group."' 
That is, if U, V are unitary, so are UV and U..:1• 

Hence .Co is invariant under the group of unitary 
transformations (1.1). This group contains an invariant 
subgroup, which is usually called the baryon gauge 
group. Any unitary matrix U may be written 

U =e'"'U, 

where <P is real and 'lL is uni t.ary and unimodular: 

'lli<U='ll'lll= I, det'll= I. (1.2) 

Invariance under the gauge transformation, represented 
by the factor e'•, corresponds to the conservation of 
baryons. This conservation law is taken for granted, 
and it is therefore unnecessary to include the gauge 
transformations in our analysis. From now on we deal 
with transformation matrices that are unimodular as 
well as unitary. The set of all such matrices forms a 
group" which is denoted SU •. 

In general, the interaction between the fields wili 
break part of the symmetry of the free Lagrangian. 
Invariance under SU. represents the maximum sym­
metry between the 11 baryons, and any group of 
transformations admitted by the fields in interar. tion 
is a subgroup of SU •. In order to explore, in a systematic 
manner, the various groups of interest, it is helpful to 
review some topics from the theory o1 Lie groups. The 
basic concepts of the theory of Lie groups and of their 

"R. E. Behrends and A. Sirlin, Phys. Rev. 121, 324 (1961). 
• This group is called the un;lary tNmp U " ' 
u It is the jac:tor g'oup oi U 'II with respect to the gauge group. 
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representations are reviewed in the next two sections. 
Before that, however, we say a few words about the 
problem of writing down interactions. I t is convenient 
to deal with a simple specific example only, without 
any implication that the problems and their solution 
are peculiar to this case, or to this point of view. By 
way of an example, let us treat the case of a Yukawa­
type ii•teraction, invariant under s;;,, between the 8 
baryons and a number m of bosons. The interaction 
Lagrangian is of the form 

.c·=;p(r.).h..f, .p•, 

where the sum over " runs from 1 to m. The .p• may 
or may not transform under SU3, but once the trar. 
formation character of the .p• is fi xed, generally it is 
not possible, to find matrices (r . ).' such that £ ' is 
invariant . I n order to answer questions of '' is ki nd , it 
is necessary to know the theory of direct products and 
reduction of representations. This is taken up in Sec. 
IV by one method, and in Sec. V by another. The 
answer, in the special case mentioned, is that there 
exist matrices (r.).' that make £ ' invariant in two 
cases only. Either all the .p• are invariant un<lcr SU8, 

or there are at least 63 of them.22 

II. LIE ALGEBRAS OF SIMPLE GROUPS 

An important tool in the study of groups is the 
concept of an infinitesimal transformation. Since 'U is 
unitary, it can be written exp (i<ALA) with LA Hermitian, 
where the •' are a set of real continuous parameters." 
For an infinitesimal transformation the exponential 
may be approximated by" 

'U = 1+i<'LA, 
or (II.l ) 

'll.•= ~.'+i<A (LA)a'· 

The set of linear combinations, with arbitrary complex 
coefficients, of the Hermitian matrices LA, associated 
with the transformations 'U, form the Lu algebra of the 
group. The 'Ua' determine the (LA).• uniquely, and the 
converse is almost true. In fact, the· LA determine the 
'U up to a discrete set of transformations which commute 
with all the 'U.26 We have taken 'U to be unimodular, 
and this requires LA to be traceless: 

(L,).•=O. (II.2) 

According to the fundamental theorem proved by 
Lie and Engels,'' the structure of the group is completely 
specified by the commutation relations among the 

" D. Speiser and J. Tarski (to be published ). 
u Unitarily of CU. requires the (,;ALA) be Hermitian; sometimes 

we shall use non-Hermitian LA, in which case it is implied that the 
"A have appropriate reality properties. 

14 For a more complete discussion see reference 12, or reference 5, 
Chap. I. 

"L. S. Pontrjagin, reference 12, Chap. IX, Sec. 54. In the 
case of SUs, for example, we find that it has the same Lie algebra 
as the three dimensional rotation group R3, although the two 
groups differ in that a rotation by 2'11' is the identity transformation 
in R, while it is - 1 in SU,. 
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generators !., of infinitesimal transformations, 

[LA,Ls]=CAs0 Ln (II.3) 

where the C.<BD are called the structure constants and 
satisfy the conditions 

C, 8°= -C8 , 0 (Antisymmetry) 

C,.8Cu0 +Cs, 8C&A 0 

+C,A.oC,.s0 =0 Qacobi identity). 
(II.4) 

Many different sets of matrices may be found that 
satisfy the same commutation relations (II.3), with 
the same structure constants. Such matrix sets may be 
regarded as different realizations (or representations, 
see next section) of the same set of abstract operators. 
The latter, whose only properties are the commutation 
relations, is designated by a caret, as B ;, 2a, etc., in 
order to emphasize that we are not dealing with any 
particular realization. 

A group is simple if it has no invariant subgroups" 
except the unit element. A group is semi-simple if it has 
no Abelian (commutative) invariant subgroups. We 
have disposed of an Abelian invariant subgroup which 
is the baryon gauge group at the beginning. The 
distinct ion bet ween groups which have Abelian 
invariant subgroups, and those which do not, rests 
upon the fact that the Abelian subgroups are most 
troublesome to handle from the viewpoint of repre­
scr. tations.27 We therefore restrict ourselves to the 
study of simple groups." There are certain cases of 
simple or semi-simple groups with discrete trans­
formations added, such as that discussed by Lee and 
Yang,17 which have equal claim for attention, bu t 
these are not discussed in this paper. 

It is worthwhile to draw an analogy between the 
possible symmetries of elementary particles and the 
three dimensional rotation group in ordinary quantum 
mechanics11 ·29 In quantum mechanics , one observes 
that when the potential is spherically symmetric, 
the "'<l.ngular-momentum operators, which are the 
generators of infinitesimal rotations, commute with 
the Hamiltonian. Since the three angular momentum 
operators do not commute among themselves one 
can diagonali ze only one of them at a time, call it H •· 
This is a li near operator, and so the eigenvalue of 1I, 

26 A snbgroup is a subset of the elements of the group that has 
the group property . A subgroup S of a group G is an invariant 
subgroup if gS.C 1 is in S fo r every g in G and s in S. In keeping 
with convention , we sha1l call a group simple if the only inva .. iant 
subgroup is discrete. T he reason for this is that the Lie algebra 
of such groups a.re oft en simple . (An algebra is simplt if it bas no 
invariant subalgebra.) 

n Sec reference 5, p. 55. 
"The study of semi·simple groups can be reduced in a trivial 

manner to that of simple groups. 
"E. U. Condon and G. H. Shortley, Th<ory of Atomic S putra 

(Cambridge University Press, New York, 1935 ) j A. R. Edmonds. 
Angrdar Jfoment111n in Quantum .\fu hanics (Princeton University 
Press, Princeton, New Jersey, 1957); M. E. Rose, Ele mtntary 
Thtory of Angular Momtntum (JOhn Wiley & Sons, Inc ., New 
York, 1957 ). 
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for a compound state is the sum of the eigenvalues 
associated with the component sta ll's ( to he contrasted 
with the properties of L', say) . 

The conservation of the additive quantum numbers 
charge and strangeness30 (or, equivalently, the third 
component of the isotopic spin and the hypercharge) 
in strong in teractions is so well established that any 
group of practical interest must contain at least two 
commuting linear operators whose eigenvalues are the 
isotopic spin and the hypercharge. Let us denote these 
two operators by H 1 and H 2• Since the group is assumed 
to be the group of the Hamiltonian, i.e., every element 
of the group commutes with the Hamiltonian, one can 
diagonalize ll1 and H, simultaneously wi th the 
Hamiltonian, so that the eigenstates of the Hamiltonian 
have definite eigenvalues of H, and ll 2, proportional 
to the I , and hypercharge quantum numbers. 

The number of mutually-commuting linear operators" 
is called the rank of the group. Hence the rank of the 
three-dimensional rotation group is one. If the rank of 
the group is larger than two, there exists at least one 
more operator, H 3 say, which commutes with H 1 and H 2• 

But such an operator can mix states which are de­
generate with respect to H, and H2 only. Among the 
'eight baryons, only the A and 2:0 have equal charge 
and strangeness. Among the seven mesons no such 
degeneracy occurs. Thus, if H 3 is independent of H 1 

and H,, one or more of the following four possibilities 
can be considered: 

(1) H 3 is the same for all eight baryons"' and has a 
different value on a set of other baryons or physical 
states; 

(2) H, mixes observed baryons with other physical 
states; 

(3) H. splits the A, 2:0 degeneracy, but is of the form 
aH,+bH, for the other six baryons"; 

(4) The eight baryons are eigenstates of H 3 with 
eigenvalues wliich cannot be written in the form 
aH1+bH2+ c. 

Sometimes (3) and (4) leads to the forbidding of 
certain observed processes." Although we can offer no 
arguments against the first two possibilities, we note 
that for these cases any group of rank three which 
accommodates the baryons will have a subgroup of 
rank two whose predictions will be less restrictive. If 
any of these should be acceptable, the " parent" 
groups of higher ranks should be investigated. 

10 T. Nakano and K. Nishijima, Progr. Theoret. Phys. (Kyoto) 
10, 581 (1953); M. Gell-Mann, Phys. Rev. 92, 833 (1953). 

11 To be contrasted with commuting operators of the group, 
e.g., Casimir operators which are non-linear in the LA. 

"Or, what is equivalent, of the form Ho=aH1+bBs+ c. 
• The eigenstates of H 1 would then be linear combinations of 

A and l:, as in the doublet symmetry of Pais, reference 2. A 
model based on the seven-dimensional rotation group comes 
under this category, see R. E. Behrends, and D. C. Peaslee, 
reference 2. Pais has shown that the doublet symmetry scheme 
leads to difficulties, (which are shared by the R, model), A. Pais, 
Phys. Rev. IIO, 574 (1958). 
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I n the case of the angular momentum, the 
commut ation relat ions, or the Lie algebra of the 
angular moment urn operators, are sufficient to specify 
the physical content of the spherical symmetry of the 
system as in the classification of states and deduction 
of selection rules, etc. We now present a way of con­
structing the algebra of all simple groups, speciali,zing 
later to those of rank two. 

We call the number of independent elements of the 
algebra the order (r) of the group, or the dime~£Sion of 
the algebra. A particular choice of r linearly independent 
operators forms a basis of the Lie algebra. As an 
illustration, let us take the three dimensional rotation 
group R3• The order of the group is three and the 
usualy choice of the basis is f, , f,, and f •. Instead, 
we may choose a basis as follows. Take an operator 
B, = t , and consider an "eigenvalue" problem: 

[ T.,1t]= r (a)2a. 

The "eigenvectors" are 2 ±1= f ±= f,±ifv with "eigen­
values," r (± 1)=±1 (f+ and f _ are the "raising and 
lowering" operators). Here f +, f _ and f , form an 
alternative basis of the algebra. Note that, while f , 
and f , are Hermitian in the usual representation, f+ 
and f _ are not ; instead they are related by Hermitian 
conjugation." 

For simple groups of rank l, the basis of the algebr;. 
may be so chosen tha t B" · · ·, B 1 are l elements of 
the basis and 

[B ,,B ;]= O. i,j= 1, 2, · · ·l. (II.S) 

The rest of the basis may be chosen to be the r-1 
elemen ts 1£. of the algebra satisfying 

[B,,E.]= r;(a )£., (11.6) 

where r,(a) is the i th component of the root r (a), that 
is, the r;(a) form a "vector" in an 1-dimensional root 
space. If r(a) is a root , then - r (a)= r ( -a) is also a 
root, and we denote the corresponding operator by 
E~. Then it can be shown that 

[£a,E~]=Ca ,-•'fl ,, a=±1, ±2, · · ·±!(r - Z), (II.7) 

and that 

[£a,2a]=Ca.67£ 7 , (not summed), (11.8) 

if r (-y)= r (a)+r (.B) is a nonvanishing root and 
[£.,£a]= O, otherwise. These statements can be easily 
verified for R,. It is possible to normalize the B ,, 
such that 

La r;(a)rj (a)= 8;j. 

T hen it can be shown that 

Ca,-•'=r' (a) = r ;(a ), 
so that 

[£.,£~]= r'(a)B ,. 

(II.9) 

(II.IO) 

(II.ll ) 

Collecting these results, we have the standard form 



REHREI\PS, DREITJ.EI :-1 , FRO'>SD :\1 ., A N D LEE 

of th e n munut :1 1iun r~.. · l a t ion :-> : 

[/7 ,/I;] " II , 

[17 J'u] = r ,(u)J:'u, 

[£'..,L .. } - r ' (u ll7 , 

u· ... P"J " r ..• R,. 

(11.1 2) 

if r ('j- ) = r (u) + r (,J) i<a nom·a n i ,hin~ root ; Y,. , ~ C .. . ~' · 
Th<· ' '·' Pii ci t form of .\' .. ~ is ~i , · , · Jl in Eq . ( 11.1~ ) . 

T he g ra ph ica l n ·p rc :-ot:nt ation of thl· root \'l·do rs i:-;. 
calicd a roo/ diagram. :\ II ::-imple group~ l·a n h l.' rlass ili l·d 
hy roo t diagram s_:n ~inn: roots and s truct ure ro nst an h 
.\' ,. 13' r:111 be dcdun·d ~im ply from th e n :dor diagra m 
for all s irnplc grPups, w~..· describe lhl· \"l·ctor d iagram~ 

fu r s imple groups of ra nk t wo in some det ai l. 
The following tlu.:o rcm ) J\;t\· . ..;~;·a cen t r:1 l ro le in 1 he 
ronst ruc l ion of t he n :r tor di~1g;~un: 

Theorem"'• : li r(a) and r (p) ar!' t ii'O roo ts, then 
2[ r (u) · r (B) J [ r (a ) · r (lY)] is an integer and r ({:i) -2r («) 
X[r (a ) · r (tl) ]i / r(a ) f' is also a root. 

Graphically, thi s means that a nell' root r (l:l)-2r (a) 
X[r (a) ·r (p')} i r (a) i' •·an J,e obtained from r (p) by 
reflec tion with n ·spcn to a hyperplane perpendicular 
to r (a). 
Suppos~ we have t\\'u root s, r (a) and r (B), and let .,: 

be the angle between them. Then it follows from the 
theorem tha l 

r(a) · r ({:i) = ?m / r (a) / ' = !n / r(.B) /' , (II.13a.) 

where 111 ancl11 arc int egers. From this we furth er obtain 

ros\o= imu. (II.13b) 

We see that c; can have only the values 0°, 30°, 45 °, 
60°, and 90°. From Eq. (II.13a) one dcdun·s that the 
ratios of the il'ngth s of the two vectors are vJ for 30°, 
V1 for 45°, 1 for <>0°, and undetermined for 90°. 

It is easy to sec that the only possible two dimensional 
diagrams corresponding to simple groups of rank two, 
compatible with Eqs. (13a) and (13b), are those drawn 
in Fig. 1. The fi rst one corresponds to the three­
dimensional special unitary group SU ,(A 2); the second 
to the fi\·e-dimcnsional orthogonal group O,(B2), 

which is also isomorphic to the two-dimensional 
symplectic group Sp,(C,); the last to the exceptional 
group C,. The notations in pa renthesis are those used 
by Carl an. The number of pa rameters of a group 
(order) is equal to the sum of the number of root 
vectors and the rank of the group: S C, is a 8( = 6+ 2) 
parameter group; O, a 10 parameter group ; G, a 14 
parameter group . 

Once the vector diagram of a simple group is known, 
it is a trivia.! matt er to construct the standard form of 
the commutation relations (12). This is due to the 
theorem: 

Theorem": Form [£~,f·. ], [[£~,£.],£'.], · · · anrl 

:u ll . L. \ "all Ucr \\"at:nkn , :\lath . Z.. 37, 4-1-6 (1933 ). 
3a Sec, for t·•..:amplc, G. Ral:ah , reference 5, p . 21. 
a& Set>, for examplr, G. R:tcah, reference 5, p. 2-l. 
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I I 

il! J1" 
-~ : -r -·~0'.-· 

.. A- -2« 0 - 'I 

h) (d 

; c3l 

if 
oj¢.·• 
f1 ,,_,_ '"41 

ti-JI 

; (41 f {t l 

•1 11 

F rG. 1. (a ) Rnot diag:ram 
fu r Sl '1 . (h ) Root clia~ram 
for c·~- (l') Root diag ram 
for G~. 

r ~ .~ ,b~ 
( b) 

[J:?B,.ILJ, [[R~.£·_.] ,£_.], 
ThL'SC se ri es must te rmina te. 
generated in thi s manner. Let 

r (X) = r (B) -mr (a), 

where r(B) ¢±r(a) 
A series of £;'s art• 

r (B) - (m- 1)r(a), · · · r (B), · · ·, r (B)+11r (a) 

be the corresponding nonvanishing roots. Then 

N.~= ±n(m+ 1)n /r (a) /']1. (II.14) 

Here the signatures of ''"·~ must be chosen so that 

N.~= - N~.= - N-a .-3. 

.Ya~ = iV~.-a-~ = lY-o-~ .a· 

(ILlS) 

(II.16) 

As an example, let us construct the standard 
commutation relations for SI.J3. Label the root vectors 
as in Fig. 1(a), where the lengths of the r (a) are 
normali1.cd according to Eq. (10): 

La r;(a)r;(a)= ~ ;;. 

Let us consider [£,,£ ,]. Since r (3)+ r (1) is a root 
while r (3)+2r (1) is not, we have n = 1; since r (3)-r(1) 
is not a root, m= O. We choose the sign such that37 

:Vu= - .V,.=v'! · 

Equations (15) and (16) give 5 other constants: 

:Y_,._,= Na.-2 = N_2., = N,,_,= N_ ,.,=v't. (II.17) 

The root s are 
r (1) = (1/ V3) (1,0) ; 

r (2)= (1/ 2V3)(1 ,V3); 

r (3) = (1/ 2v3)(-1 , VJ) . 

(II.18) 

The II'·~ and the roots listed above give a complete 
set of commutation relations when inserted in Eq. (14). 

We summarize a choice of theN·~ for C,, and for G,. 
37 The numher of signs that can be chosen independently is the 

number of dilTerent pairs of roots with positive a 's whose sums 
are roots. 

S T R 0 N G I N T E R A C T I 0 :-< S Y \ I \I 1·: T R I E S 

[The roots can be read off immediately from Figs. 
1(b) and (c) .] 

c,: 

c,: 

1V2o~= lV 4,-t = .V-o~ .-2= lY!! ,-4= }\lt,o~ = .V - 2 , 1 

= N _2•1= N '·- • = N -•.•= N - •.- • 
=N,,_,=N_,=y't. (II.19) 

N!!e=N4,-e= :V-2,o~= 1Y'I.,-t=Na, t =·Y-2,J 

=N•.-•=N ... =N_,,,=N•.- •=N_,,, 
= N_,,_,= 1/ 2V1 ; 

N, ,,= N a.-•= N - •.a= v't. (II.20) 

III. REPRESENTATIONS OF LIE ALGEBRAS 

A. General Properties of Representations 

In a previous section we discussed the r infinitesimal 
operators of a Lie group and their commuta tion 
relations from an abstract point of view, without 
using an explicit form of the operators. In order to 
make connection with physical situations, it is necessa ry 
to introduce specific realizations of these operators. 
If we associate a matrix with each opera tor fl , and £. 
such that these r matrices satisfy the commutation 
relations of the r operators, then the matrices are said 
to constitute a representation of the group." In what 
follows, the symbols H, and E. denote a matrix 
representation. The dimension of these matrices N is 
called the dimension (or degree) of the representation. 
If the r matrices of a particular representation can bt 
simultaneously brought into block diagonal form, by 
a similarity transformation, the representation is said 
to be decomposable (or fully reducible) into lower 
dimensional representations. When this is not possible, 
the representation is called irredtuible." 

From the commutation relations, we see that the H ; 
commute among themselves, so that it is possible to 
diagonalize simultaneously these l matrices. We choose 
a representation in which the H; are diagonai, and 
write 1/t for an N-component basis vector. The eigen­
functions and eigenvalues of fl , are defined by 

H;l/t=m,V,. 

The /-component vector m = (m. 1,m 2, · · · ,m1) is called 
the weight,• and the /-dimensional vector space spanned 
by the set of weights is called the weight space. 

In order to develop some physical in tuition for what 
we arc doing, consider the isotopic-spin rotation group. 
The commutation relations are the usual angular­
momentum set. We know that only one of the three 

11 A representation is fai t hful if the correspondence between 
i.A and LA is onc. to-one. For simple aJ).\'chras, all except the 
ident ity representat ion (LA -0) arc faithful. 

11 A noncompact ~roup has no finite dimensional unitary 
rcpn:scnta tions (sec Pontrjagin , rc£crcncc 12, Chap. Ill). Thcrt'­
forc a ll admissible groups are compact . Rerrcscntat ions of 
compact groups a re either irreducible or fully reducib le. 
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matrices can be diagona.l izcd at a ti me (it then cor­
responds to If., l = 1 for this group) , and the eigenvalues 
of th is matrix are the components of isotopic spin. 
The £ 1 and F._, in this case are p roportional to the 
usual isotopic spin ra ising an<! lowering opera tors. 
This algebra is the only simple or semi-simple Lie 
algebra of rank one. The th ree groups oi rank two 
(I= 2) were given in a previous sec tion, i.e., B,, G, and 
SU ,. For these groups we might identify the cigen­
nlucs of fl , and fl , with the th ird component of 
isotopic spin and wi th the hypcrcha rge,'0 I' = .V +S, 
two good quantum numbers for the strong interactions 
as well as the electromagne tic interactions. The 1/t's 
which would represent the va rious particles or states, 
would then be labeled by th ei r eigenvalues of fl ., i.e. , 
weights m. The 1/t 's havi ng different weights are 
obviously linea rly independent, so that the re arc at 
most N different weights. If a weight belongs to only 
one eigenvector, it is called simple (for groups of rank 
grea.ter than one, not all weights are simple). 

Let us consider the weights mor~ closely. The follow­
ing powerful theorem is very useful. 

Theorem": For any II' eight m and root r (a ), the 
quantity 2m · r (a)/ r (a) · r (a) is an integer and m' = m 
-r(a) 2m·r(a) / r(a) · r(a) is also a weight, and has the 
same multiplicity as m. I t cnn be easily verified that 
this presc ription for obtaining m' from m corresponds 
geometrically, in the weight space, to reflecting m 
th rough a hyperplane perpendicular to the root r (a). 
Weights that are rela ted by a refl ection or a. product 
of reflections are said to he equivalent . Reflections 
and the product of rellections give the set of all equiv­
alent weights. We denote by S the group generated by 
these reflections." 

A weight m is said to be higher than a weight m' if 
m-m' has a positive number for its fi rs t non-vanishing 
component, e.g., if m 1- m,' = O and m,-m,'> O, then 
m is higher than m' . A dominant weight is the highest 
member of a set of equivalent weights, and the highest 
weight is the dominant weight which is higher than 
any other dominant weight in a representation. For an 
irreducible representation, the highest weight . is 
simple." This concept of a highest weight is useful 
because two irreducible representations which arc 
related by a simila rity t ransforma tion (the representa­
tions are call ed equimlent) have the sa me highest 
weight, and vice versa . 

With rega rd to dominant weights, Can an• has 
proved that for every simple group of rank l there arc 
l f mulamenlal dominant weights M<ll. · -M <O such that 

co Here S is the stra ngeness quantu m numLcr .:t nd N is" the 
baryon numbN. This is the usua l definition or hypcrc lmr~c. 
althou~h some authors dcfme it as HN+S). 

4 ' s~·c, for cxamrlc, G. H.;lcah, reference S, p . J.i. 
~ -: Th is g-roup \Yas fi n;t introduc<'d hy 11. \ \'l'yl , n·fcrcnc<· ~­

(Sclecla ), p . 338. 
u Sec, G. Racah, rcfcn.: ncc 5, p. :n . 
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any other dominant weight M is a linear combination 

' M = L: A;M (i) = M (A,· ··A,), (III.! ) 
i-1 

with A; a ; non-negative integral coefficients, and that 
there exist l ju11damental irreducible representations 
which have the fundamental weights as their highest 
weights." 

Let us retu rn to the isotopic spin rotation group. The 
weights m are ±J, (weight space is one-dimensional, 
in this case, since the group is of rank l = 1) . The 
wejght -I3 is obtained from I 3 by refl ection through 
the " plane" perpendicular to the root r (l ) and I 3 i> 
the dominant weight. For each I 3 which appears in an 
irreducible representation, there will be a -I .,, which 
is equivalent and has the same multiplicity. The 
fundamental dominant weight is ! in order that 
2m· r (a)/ r (cr) · r (cr) be an integer for all weights. The 
highest weigh t is I = ft.!, where A is a non-negative 
integer, and is simple in an irreducible representation. 
The corresponding statements for the groups of rank 
two are postponed until later. 

In order to distinguish the difierent irreducible 
representations of a group. Weyl has utili zed extensively 
a quantity called the character. This)s: a)unction of l 
real variables rp1, • • ·, rp 1 defined by 

x(rp1, • • • ,rp1)=trace exp(iH,rp') 

= L• exp[i (H,rp').•], 

where, in the last expression, (H ,).' has been assumed 
to be in diagonal form. Since ' the trace of a matrix is 
invariant under a similarity transformation, the 
characters of two representations are equal if and only 
if the two representations are equivalent . In particular, 
a representation and its complex conjugate are equiv­
alent, if and only if the trace is real. 

Weyl8 has given an explicit formula for calculating 
the character of any representation of any simple 
group, namely, 

H:>..,) 
x(A;,,)=-, HA;)= L: s asexp[i(SK) · ,], (III.2) 

HO) 

where the sum is over the reflection operations S 
defined above and as=+ 1 for an even number of 
reflections and -1 for an odd number. If R is defined by 

R=! L: r (a) (111.3) 
•. + 

where the sum is over the positive roots, i.e. , those 
roots which have a positive first nonvanishing com­
ponent, then K is R plus the highest weight of the 
representation, M 

K = R+M (:>.., ···,A,) . (111.4) 

"In fact , every M determines uniquely an irreducible 
representation with M as the highest weight. 

It is obvious from the above definition of the character 
as a trace that it may also be written as 

x (A;,f')= Lm 'Ym exp(im · , ) , (III.S) 

where the su m is over all the weigh ts and 'Ym is the 
number of Limes a weight m occurs, i.e., the multiplicity 
of the weight. For , = O, the character is just the 
dimensionality of the representation, i.e., 

N(A ;)= Lm 'Ym=x(A;,O). (111.6) 

The above can be exemplified by referring once 
again to the isotopic-spin-rotation group. There is one 
positive root, r (l )= I, therefore, R = !; M = I = :>..!. 
T hus, 

K=HHI)=IH. 

Since there is only one reflection, 

H X) = eHI+I>~- e-HI+I>•, 

and 

x(>.. ,rp)= (e«I+I l ~-e-HI+Il~)/ (el'•-e-1'•), I=!>... 

T'.tis may easily be shown to be 

+I 
x(X,rp)= L: eil••, 

r.--1 

so that the multiplicity of each weight is one, 'Ym = 1. 
The dimensions of the irreducible representations are 
N=x(X,0)=2I+1. 

So far, in order to distinguish the various eigen­
vectors, or bases, we have the l integers (A., · · · ,:>..1) 
which are necessary to form the highest weight M . 
These numbers distinguish between representations of 
different dimensionalities as well as inequivalent 
representations of the same dimensionality. However, 
within an irreducible representation, in addition to 
the weights we still need Hr-3l) more numbers, 
p. = (p.,p.,,. · · ,P.I(~u>) in order to distinguish the 
various eigenvectors of the same weight. 6 Given these 
numbers, it would then be possible to determine the 
explicit form of the matrix element 

1jtt(M,m,p.)2.1/t (M,m',p.')= j(M,m,m',p.,p.'). 

For example, in the isotopic spin rotation group 
H r-31)=0, so that we need no additional numbers. 
This matrix element is then the well known" 

ljtt(I ,I ,)I+Ijt(J,I ,' ) = [HI- I,') (I+ I ,)]lar,,r,•+•· 

We shall show how to circumvent the task of finding 
the operators whose eigenvalues are the p.'s for groups 
of higher rank . 

Thus far we have used the isotopic spin rotation 
group as an example. Let us now demonstrate the 
method with the rank two groups SU,, G1, and Cs. 
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B. Characters of Representations of SU, 

In order to satisfy the condition that 2m ·r (a)/ 
r (a) · r (a) be an integer for an arbitrary weight 
m = (m~,m), and any root, r (a), it is necessary that 
m1=(1/ 2\f.J)(a+b) and m,= t(a-b), where a and b 
are integers. Thus m = ta(v3',1)+ib (v3', -1) . By noting 
that t(v3',1) and l(Y.l', -1) each lie in a plane per­
pendicular to a root, we see that each belongs to a set 
of 3 equivalent weights and that each is a dominant 
weight of its set, in fact, a fundamental dominant 
weight. Thus 

M(A,X,)=t:>.., (v3',1)+t:>..,(v3', -1). 

The quantity R for SU, is 

R=! L: r(a)= (1/ \f.J)(l,O), 
o,+ 

so that K is 

K = M+R=i(v3':>..,+Y.l'A2+2v3', ;>..,-:>..,). 

Thus, t{X 1,:>..,) may be written 

H",,;>.. ,) = expti[(:>..,+:>..:+ 2)v3'rp,+ (;>.. 1-"2) rp1] 

-expti[- (:>..,+:>..:+2)v3'rp,+(X,-;>..,)rp,] 

-expti[(:>..s+ 1)v3'rp1- (2:>.. 1+:>..,+3)rp:] 
+expli[- (:>..s+1)v3'rp1- (2:>..,+:>..s+3)rp2] 

-expti[ (;>.. 1+ 1)v3'rp,+ (A,+ 2:>..,+3)rp,] 
+expii[- (:>..,+ 1)v3'rp,+ (:>..,+2:>..2+3)rp2]. 

It should be apparent that dividing ~(;>...,:>..,) by 
t(O,O) in order to obtain the character in the form 
L'Ym exp(im· .,) is no trivial matterfor this~ group. In 
the next section, we develop a technique for handling 
this problem. First let us find the dimensions N of the 
irreducible representations. In terms of the character, 
N=x(>...,>..,, rp,=rps=O) . Since t{ft.1,:>..,) is zero for 
rp,= rp,= O, we use L'HOpital's rule•• to find 

N = [t+!(;>..,+;>,.,)](t+:>..,) (1+;>..,). 

The numbers :>.. 1, • • ·, :>.. 1 are sufficient to identify a 
representfLtion. For this reason we label the repre­
sentations by Dll<l(A 1,ft. 2) [or occasionally by just 
D(>...,>..,) or D CN> ]. Thus DCil (1,0) denotes one of the 
3-dimensional representations, while n <•> (0,1) denotes 
the complex conjugate (x•) inequivalent 3-dimensional 
representation. 

We note that x•=x only for values of :>..,=:>..,.•• 
Thus, only in this case are the complex conjugate 
representations equivalent. In Fig. 2 we have drawn 
the weight diagrams for a few of the lower dimensional 
representations of SU 1• The solid lines with arrows 
represent the weight vectors while the dotted lines 
which are perpendicular to the roots represent the 

"Mt.rqula G. F. A. de l'H6pital, Aftalyse des /nfinitment 
P.W (Paris, 1730). 

"This follows from the identity x*(~,,>.,)-x (~,,>.,) satisfied by 
the SU, characters. 

ih~·---+/ 
0 ,"' 1 ..... .. .... 
-t / : 

-i 0 i •. 1 

0(1)(1,0), •·i(/J ,1). 

(a) 

;[±;~._,*: -----
t '-: 

I ', - ,.. .. ' : ' 

-t 0 t .!1;,1 

o"1to, ll, T z itlf,ll. 
(b) . ... 

:!1 '-*:' 
I ' 

ir--l/ -tt 
"I -i: 0 f I 

Jll IO,al, iii.~ IJ ,-II, 

(d) 

2 ~. 
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FIG. 2. Weight diagrams 
for 'SU1. Solid lines with 
arrows denote weight vec­
tors i dotted lines represent 
the reflection planes. 

·I -r o 1 • .rr.l 
o'11et,o), "Ia ~tW.n. 

(c) ' 

planes of reflection that leave the weight diagram 
unchanged (the set of operations S defined above). 
The 3-dimensional representations n <•>(1,0) and 
D <ll (0,1) are the fundamental irreducible repr~enta­
tions, DC8l ( l ,1) is the regular representation." 

C. Characters of Representations of G, 

In order that 2m ·r (a)/ r (a)· r(a) be an integer fo r an 
arbitrary weight m= (m 1,m 2) and any root, r (a) , it is 
necessary that m,= (1/ 4\f.J)(2a+3b) and m 2 = t b, where 
a and bare integers. Thus m = (a/ 2v3'}(110)+(b/ 2v'3) 
X (3/ 2,v3'/ 2). By noting that (1/ 2VJ)(1,0) and 
(1/ M)(3/ 2,v3'/ 2) each lie in a plane perpendicular to 
a root, we see that each belongs to a set of 6 equivalen t 
weights and that each is a dominant weight of ;ts set, 

n The regUlar representation is very important and plays a 
prominent role in later sections. It is defined by L, -~ -c ... 
where the COmJ?Onents of the matrix CJ.. are the structure constants 
C,u 0 • That this ia a representation can be seen by rewriting the 
Jacol>i identity (ll.4) in the form CA?CsoP-CarCAF0 

- - C.ui'C.,P. It can easily he woved that the regular represen· 
tation is irreducible if and only if the group is simple. 

13 
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in fact, a fundamental dominant weight. Thus 

M (X.,X2) = (X,/2v3)(1,0)+ (X2/ 4v3)(3,v3) . 

The quantity R for G, is 

R= (1/ 4v3)(S,v3), 
so that 

K= (1/ 4v3)(2X,+.3X,+.S, v3X,+.v3). 

Then, HX.,X2) may be written 

Hx.,x,) 
= { exp[i( 2X 1+.3:>- ,+.5)<P>f4v3] 

- exp[ -i(2X 1+.3X,+.S)<P,f 4v3]} 
X {exp[i(X 2+1)'1'2/ 4]-exp[ -i(X2+. 1)'1'2/ 4]} 
- {exp[i(X,+.3X,+.4)'1',f 4v3] 
- exp[ -i(X1+.3:>-,+.4)<P,f 4v3] } 
X ( exp[i(X,+.X,+.2)<P,f 4] 
- exp[ -i (X1+.X,+.2)<PJ4]} 
+ { exp[i (X,+. 1)'1'•/ 4v3]-exp[ - i(X 1+. 1)<P>f4v3]} 
X {exp[i(X,+.2X,+.3)<P2/ 4] 

- exp[ -i(X 1+.2X,+.3) <PJ4]). 

The dimensions N of the irreducible representatioi)S 
are N=x(X,,X,, 'I'•= '1'•=0). The result is 

N = (1 +.:>-,) (1 +.X,)[1 +.!(X,+.X,)][ t+!(X,+.2X,)] 
X[1+. t(X,+.3X,)][1+.! (2X,+.3X,)]. 

We note that x*= x, so that representations related 
by complex conjunction are always equivalent. 

In Fig. 3 we have drawn the weight diagram for the 
7- and 14-dimensional representations of G,. The 

0 

_, 

-· 

·~ -~-~~~-- ! __ ~>-
....... ,....... --

.. "' I ..._ 

- 1 i ...... l ............ 
I ' I ' 

I \ 

-1 ...... 0 i/2 i 2.[3,1 

omu.o>,'G·bJ-u,oJ 
(a) 

' 

' ' . / 

~ / ' 
. , _, -• • i , t .n;., 

0(141 (OJI, ii , hJ t i •li I· 

(b) 

FIG. 3. Weight dia­
grams for G,. Solid 
lines with arrows de­
note weight vectors i 
dotted lines represent 
the reflection plane. 

solid lines wi th arrows denote the weight vectors 
while the dotted lines, wh ich are perpendicular to the 
roots, represent the planes of reflection that leave the 
weight diagram unchanged (the set of reflections S 
defined above). These two representations are the 
fundamental irreducible representations of G2, and 
D '" '(0,1) is the regular representation'' 

D. Characters of Representations of C, 

In order that 2m · r(a)/ r (a) · r (a) be an integer for 
an arbitrary weight m = (m~,m,) and any root r(a), it 
is necessary that m 1= (2v3)- •(a+.b) and m, = b/ 2v3, 
where a and b are integers. Thus, m= (a/ 2v3)(1,0) 
+ (b/ 2v3) (1, 1). By noting that (1/ 2v3) (1,0) and 
(1/ 2v3)(1,1) each lie in a plane perpendicular to a root, 
we see that each belongs to a set of 4 equivalent 
weights and that each is a dominant weight of its set, 
in fact, a fundamental dominant weight. Thus 

M (X1,X 2)= (A 1/ 2v3)(1,0)+(XJ 2v3)(1,1). 

The quantity R for C, is 

R= (1/ 2v3)(2,1), 
so that 

K= R+M= (1/ 2v3)(X,H,+.2, x,+.1). 

Then, C{X 1,X 2) may be written 

C{X 1,X 2) 

= {exp[i(X1+.X,+.2)<PJ2v3] 
-exp[ - i(X,+.X,+.2)<P•/ 2Y!]} 
X { exp[i(X,+. 1)<PJ 2v3]-exp[ -i(X,+. 1)<P,f 2v3]} 
- {exp[i(X2+. 1)<P>f2v3]-exp[ -i(X2+. 1)<PJ2v3]} 
X {exp[i(A,+.X2+.2)<PJ2v3] 

-exp[ -i(X 1+.X,+.2) <Po/2v3]}. 

The dimensions of the irreducible representations, 
N=x(X,,X, , 'I'•= '1'•=0), are 

N = (t+x.) (1 +.>,,)[t+!(x,+.>,,) ][1 H (x,+. zx,)]. 
We note that x*=x, so that representations related 
by complex conjugation are always equivalent. 

In Fig. 4 we have drawn the weight diagrams for 
the 4, 5, and 10 dimensional representations of C2• 

The solid lines with arrows denote the weight vectors 
while the dotted lines, which are perpendicular to the 
roots, represent the planes of reflection that leave the 
weight diagram unchanged (the set of reflections S 
defined above). The 4 and 5 dimensional representa­
tions, n <•>(1,0) and D <•>(0,1), are the fundamental 
irreducible representations of B2, while no•> (2,0) is 
the regular representation." 

E. Synthesis of Representations of Lie Algebras 

For physical application, it is imperative to have 
explicit matrix representations of the low dimensional 
Lie algebras. As has been implied in the preceding 
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paragraph, the straightforward generalization of the 
favorite method of constructing the matrix representa­
tion of a rank one group is somewhat awkward for 
higher rank groups. Of the several alternative methods 
which offer promise, we choose one which has useful 
by-products. In particular, the generalized Clebsch­
Gordan coefficients" will materialize as part of the 
fallout of results. 

As a warming-up exercise, we recall certain facts 
about the group SU 2• Let the basis for an irreducible 
representation D(J) , uniquely characterized by the 
total angular momentum J(J+. 1), be labeled as >/tMJ 
where J is an integer or a half-integer and M runs fro m 
J to - J in integral steps. In particular, select the 
spin 1 representation D (t) whose highest weight is 
the fundamental dominant weight of SU,. Then the 
representation is given in terms of Pauli matrices49 : 

f1,=!u , ; f+ = (1/ 2v'Z)(u1+.iu,) ; 

f _= (1/ 2v'Z)(u, - iu,) 
(III.7) 

u•=G ~) ; u,= C -~) ; u, = (l 0) 
0 -1 

and the basis is Y,,.l, m=!, -!. I t is possible to arrive 
at a new representation inequivalent to D(t) by 
forming the direct product representation in the space 
spanned by the Y, .. l,f ... l. The action of 11, and t± on 
the product basis is, of course, 

TAY, .. IY, .. ·I= (TAY, .. I)>It,.,I+.Y,,.I (TA>/tm•l) 

TA>/tm1= L m' (TA)m'"'f,. .l, 
(III.S) 

where t A is t ,=H,, t +, or t _. The product representa­
tion is, in general, reducible ; for example, 

y,,.iy,,..t= L (JM itm,!m')>/tMJ, 
M.J 

(III.9) 

where (JM / ! m,! m') are the Clebsch-Gordan coefficients 
which reduce the representation. To accomplish the 
reduction, we note that t + and 1"'_ commute with t'>, 
and, since the eigenvalue of T> uniquely characterizes 
an irreducible representation, they cannot lead out 
of an irreducible representation when applied in any 
order and any number of times to a single basis vector. 
The highest weight M in the product representation 
Y, .. ty, ... l, namely M = }+.t, belongs to an irreducible 
representation and hence the space spanned by the 
vectors generated by application of t + and t _ to 
ftl,f11 is irreducible under SU2• Thus the orthonormal 

" \\'e refer here to the coefficients prescribing the linear 
combinations of direct produ\.: t states relative to which the 
representation reduces. 

"Tho operators f., a re usually defined without the factor 1/V'l. . 
Throughout this paper, we sh3.11 adopt the sign convention of 
Condon and Shortley (reference 29) for isotopic spin. This 
implies that all the signs of L* matrix elements are positive although 
the physical particles a re sometimes identified as the negative of 
the bases defi.nin! this representation. 
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FIG. 4. \V eight diagrams for C1 • Solid lines denote weight vectors ; 
dotted lines represent the reflection planes. 

vectors 

"'•'=Y,;l,f;l 

>/to'=f_(fNil)= (1/ v'Z)(¥t- i'¥ti1+¥tN-!1) (III. lOa) 

y,_,,,.,z(t_)'(¥tN i1)=f -tl,f-t1 

are a basis for an irreducible representation D (1) ·of 
su. and the remaining linear independent vector in 
the direct product space Y,mty, .. ,t is 

>/to0"' (1/ v'Z)(¥t8t- t1- ¥t-!l,ft1). (III. tob) 

This Y,0° generates D (O) for SU2• The Clebsch-Gordan 
coefficients are read off from Eqs. (III.lOa) and 
(III.lOb) while the irreducible Lie algebra follows by 
computing the TA matrix elements by using Eq. (III.S). 

To find an arbitrary irreducible representation D(J ), 
it is only necessary to split off the highest irreducible 
representation of the direct product space 

>/tm(l)lytm (2) I . • ·>/tm(:J)IE (Y,~i)!J. 

The orthonormal basis which results is00 : 

>/tMJ =N(J,M)(f _)J- M(fti)2J, 

[
(J+M)! 2J- MJI 

N(J Ml= 
' , (J-M) !(2J)! 

M =J, ··· , - J , 

10 To derive N (J ,M), use the identity 

t+f--Hi"+f-+fJ++T~)=H1'"-f.•-f,J 
to obtain a recursion relation. 

(III.!!) 

(III.12) 
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and the operators f,, f +• f _ enjoy the properties : 

t -"'"'' = [N (J,M )/ N(J, M - 1) JfM- 11 

=["'i(J+M)(J-M+ 1)]1..p,v- 11 (!II.13) 

f +l/-J£1 =[!(J - M)(J+M+ I)Ji,pMTI J 

f ,,P.u'"=M..P.v 1 

which then gives the constitution of the D(J) repre­
sentation. We now develop the generalization of the 
foregoing conclusions to simple groups of higher rank. 

To construct the irreducible representations of Lie 
algebras of rank two and higher, we show that all that 
is required is: 

(a) The l fundamental irreducible representations 
whose highest weights are characterized by one of the 
I fundamental dominant weights. 

(b) a reduction procedure for direct product 
representations. 

Before deriving the theorems needed to synthesize 
representations, a few words on the characterization 
of the representation space are in order. In order to 
specify the representation of the algebra, it is sufficient 
to give the representations of the basis elements n. 
and P. •. We define the representation by prescribing 
the action of n. and P.. on an orthonormal complete 
set of ket vectors I(X,· ··X,),v) spanning the N 
dimensional representation space (v= 1, · · · ,N). When 
no ambiguities arise, the ket I(X,· · ·X1},v) will often 
be abbreviated as I {N},v) and even I v). Since the H; 
intercom mute, they can be simultaneously diagonalized, 
and, since they are taken to be Hermitian, their 
eigenvalues are real. We choose a representation in 
which the ll; are diagonal. Thus the label v in I {N} ,v) 
stands for a fixed eigenvalue of each of the H; (the 
weight m) in addition to other discriminating labels 
(g) which are needed in the case of multiple weights. 
Furthermore, the matrices E. satisfy the relation: 
(E.,)I=E-. 

If I { N }, v) is the basis for one representation of a 
Lie algebra and I {N' ),v' ) a basis for a second repre­
sentation, the direct product space spanned by the 
basis I {N},v; (N' ),v') is again a representation of the 
Lie algebra whose elements LA act upon the kets 
I {N},v; (N') ,v') in the following manner : 

LA I {N),v; {N'),v' ) 
=LAIN>®1<N'> I(N),v; (N'),v' ) 
+1 <N>® LA<N'>I (N),v; {N'),v'). (III.14) 

Here LA <N>, 1 <N> and LA <N'>, 1 <N'> act only on theN and 
"'' dimensional representations, respectively. The 
iirect product representation defined by Eq. (III.14) 
s, in general, reducible in a way which is shown below. 

Given the abstract Lie algebra as presented in 
)ec. II, we now seek to construct in a systematic way 
.he matrix sets representing the algebra. The method 

is essentially predicated upon four theorems: 

Theorem I . If H;l m,g)=m;l m,g), then H,E-Im,g) 
= [m;-r;(a)JF--..1 m,g). 

Proof: [H,,E-J = -r,(a)E- by Eq. (II.6). 

Therefore 

H,E-. Im,g)=E-H, Im,g)-r,(a)E-al m,g) 
= [m;-r;(a) JE-1 m,g). 

We seek the value of a such that the ket aE- Im,g) is 
of unit length. Note, incidentally, that aE-!m,g) is 
orthogonal to I m,g) since the H; eigenvalues of these 
two states differ. 

Theorem II. If E. lm,g)= O, then the normalization 
constant a is a=[r(a)·m]l. 

Proof: [E.,E-]=r(a)· H by Eq. (II.7). 

Therefore 

(m,g I [ E.,E_] I m,g) 
= (m,g iE.E-I m,g)= lal-2 

= (m,g l r (a) · n I m,g)= r (a) ·m Q.E.D . 

In a direct product representation, the greatest 
dominant weight M is the sum of the greatest dominant 
weights M <N> and M<N'l of the constituent N and N' 
dimensional representations. 

Theorem Ill. The space spanned by the basis vectors 
generated by application of n i and P.. , in any order 
and any number of times, to I M) is irreducible under 
the Lie algebra. 

Proof : I M) is a basis vector of an irreducible 
representation. Hence, the space spanned by application 
of n i and P.. to I M) provides an irreducible repre­
sentation for the algebra by the very definition of 
irreducibility. 

The number of orthonormal vectors which span the 
reduced direct product space generated in the above 
manner is the dimension of the resulting representation. 

To construct the irreducible representations con­
tained in a direct product representation, we proceed 
as follows : 
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(a) Select the ket in the direct product space with 
the highest weight I M). 

(b) Apply the operators E., E.E~, · · · , to IM). 
Orthonormalize by the Schmidt process all 
resulting kets. The orthonormalization is carried 
out by using the orthonormal properties of the 
constituent representations, i.e., 

({N},v; {N'),v'l (N),v"; {N') ,v'") 
=8., .. 8,.,.... (III.15) 

Kets having different weights will automatically 
come out orthogonal to each other. The 
dimensions of the irreducible representations of 
the algebra have been evaluated in a previous 
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section from the character of the associated 
group so that this information can be used to 
predict the number of linearly independent 
vectors. 

(c) Next, in the subspace orthogonal to that 
generated from l M), select the ket I M') with 
the highest weiglit. Generate from I M' ) another 
space irreducible under the Lie algebra in the 
same way as an irreducible space was generated 
from IM). 

· (d) The action of the elements of the Lie algebra on 
the orthonormal vector basis thus generated is 
readily ascertained by noting the action of n i 
and P.. on the spaces from which the direct 
product was constructed [Eq. (III.14)]. 

Given the l explicit representations characterized by 
each of the l fundamental dominant weights, every 
irreducible representation of the algebra can be gener­
ated by reducing a suitably chosen direct product. 
Let a.<•> be the matrix algebra D(O,O,· · · ,1,- · ·0), 
where the 1 is in the sth position, whose highest weight 
is the fundamental dominant weight: 

M 1•>= -(M, 1•>,M,1•1, · ··,M,<•>). 

The highest weight of an arbitrary irreducible 
representation isM= :E. X,M<•>. 

Th4oretn IV. The irreducible representation of the 
Lie algebra characterized by the highest weight 
M =:E. X,M <•> is the first irreducible representation 
obtained by reduction of the product algebra 

a.<•>x · · · x a.<u 

x, times 
xa.<•>x · · · xa.<•>x · · · xa.mx. · · xa.m. ..._____ __ --+--- , 

>.Jtlmes X1 times 

Proof: The highest weight in the product algebra is 
M= :E. X,M<•>. By generating a space irreducible under 
the Lie algebra from the ket I M), by a generalization 
of the procedure illustrated above for the direct 
product of two spaces, an irreducible representation 
results. 

We now go on to use the above method to comtruct 
some irreducible representations of SU 1, C1, and G2• 

In particular, all the fundamental representations 
which go into making the direct product representations 
will be generated. 

F. Matrix Representations of SU1 

The fundamental representatiom are D<l> (1,0) and 
D<•>(0,1). Besides comtructing these representations 
we also reduce the regular representation D<l> (1,1) out 
of the product D<1>(1,0)0D<I>(0,1). 

D 11>(J,O). The weight diagram was given in Fig. 2(a); 
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F1c. 5. Action of E. on 
D' ' '( l,O) of SU,. ·~· 

3 v 
3 

the highest weight is the fundamental dominant weight 

M<u=f(v3",1) (III.16) 

We may write l{3),a), a=1, 2, 3 or simply Ia) for the 
three states, and use the labeling of Fig. 5. Then the 
H, are the diagonal matrices whose eigenvalues are the 
respective components m; of the weights. That is" 

H1=:E.m1(a) la)(al=- 0 -1 0, 1 [1 0 OJ 
2v3 0 0 0 

1 [1 0 OJ Ho=:E.m,(a)l a)(al=- 0 1 0. 
6 0 0 -2 

(III.17) 

According to theorem I (Sec. III E), when L. operates 
on a state with weight m, it creates a state with weight 
m- r(a). This is symbolized in Fig. 5. Clearly, if 
m-r(a) is not a weight, then P.-. lm)=O. Therefore, 
in this simple case, all the constants of proportionality 
are given by theorem II (Sec. III E) to be ±[r(a) · m]l. 
Hence 

E_,J {3},1)= [r(1) ·m(1)J'I {3},2) 
=6-11 {3),2), 

E-ol (3},1)= [r(2) ·m(1)J'I {3},3) 
=6-11 {3},3), 

E-1 1 {3),2)=[r(3) ·m(2)]11 {3},3) 
=6-1 1 {3},3). 

(III.18) 

The phases of E_, and E_, are arbitrary, but once they 
have been selected, the phase of E_1 is determined by 
the convention (II.17), since 

[E-,,E,]= N-uEa=6-IE1• (III.19) 

In the form of matrices, (III.18) becomes 

[
0 0 OJ E...,=6-l 1 0 0 =6-112)(11, 
0 0 0 

[
0 0 0] 

E...t=6-t 0 0 0 =6-113)(1 1, 
1 0 0 

(III.20) 

[
0 0 OJ 

E...,-6- 1 0 0 0 =6-+13)(21, E.=E....,f. 
0 1 0 

D<l> (0,1). If 'II. is a unitary matrix representation of 
the group SU,, then 'II.•, the complex conjugate 
matrices, are also a representation. Let 'II. be of the 

11 Here ,.,(a) is the ;th component of the weight of the ath •lat~. 
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FIG. 6. Action of !'.0 on D '" (l ,l ) of SU,. 

form 'U=exp(ie'LA), then 'U*=exp(-i<AfA) since 
'U+='U-1• Hence the "contra_gredient" representation 
of the Lie algebra is L...' =-LA where LA are given in 
Eq. (20). In view of the reality of these LA, we find 

H /=-Bi= -Hi, 

E.'= -E.= -E.'= -E-.. 
(III.21 ) 

The first of Eq. (2 1) shows that the weight diagrams 
for contragrediently related representations are trans­
formed into each other by reflection through the 
origin. Thus we get the weight diagram of Fig. 2(b). 
Equation (21) would not hold with a different labeling. 
From (17), (20), and (21) : 

1 (-1 ) H 1'=- 1 , 
2¥1 0 

1(-1 1 ) 
H.'=6 - 2 ' (III.22) 

E,'= -6- 113)(11 , E,'= -6- 112)(11, 

E,'= - 6-113)(21, E_a'= Ea.'t. 

Thus 
I (3*},2)= - 61E,' I (3*} ,1), 

I (3*},3)= -61E,' I (3*} ,1), 

I (3*},3)= -6'Ea' l (3*},2 ). 

This representation is inequivalent to v <•>(1,0) because 
the set of eigenvalues of H / is different from that of H ,. 
(See"also Secs.'III B and V.) 

v <•>(J,J). The highest weight M of this representa­
tion is M U> +M <•>, where M U> = l(Y.f,1) andM <2> =i(Y.f, 
- 1) are the fundamentaldominantweightsofD (1,0) and 
D (O, I ), respectively. Hence D (1,1) is con tcoined in 
D (I ,O)®D(O, I ). T he weight diagram is given in Fig. 
2(e); we shall label the states as in Fig. 6, writing 
I (8) ,A ) for the A th sta te. 

Each product state I (3},a; (3*).b) has a unique 
weight equal to the sum of the weights of I (3) ,a ) and 
I (3*},b ). Conversely, for A = I , · · ·, 6 there is only one 
product state with the weight of I ( 8) ,A). H ence, with 
a choice of phases that turns out to be convenient later: 

I ( 8 ) , 1 )~ I (3},1 ; {3*) ,2}, 

I (8},2)= I {3} ,1 ; (3*} ,3), 

I (8) ,3)= I (3).2 ; (3*).3 ), 

I (8},4)= -I (3) ,2 ; (3*).1 ), 

I (8},5 )= -I {3) ,3 ; (3") ,1), 

I (8).6 ) = I (3) ,3 ; {3*) ,2). 

(III.23) 

T he states with weight zero are of the form 

• L Pal (3},a; (3*},a), (III.24) 
·-I 

with real coefficients p •. The transformations of th e 
states by the E. is given by the action of P.. on I ( 3} ,u ) 
and on I {3*},a ), and is symbolized in Fig. 6. When 
Eqs. (23) are operated on by the P.. or by products of 
the P.., it is easy to see from (2 1) that the sta tes 
(III.24) always occur in such linear combinations that 

L;p.=O. 

Hence, only two linearly independent combinations 
(III.24) occur in D <8>(1,1), as is in fact obvious from 
the fact that D <8>(1,1) is eight-&mensional. A possible 
choice of two orthonormal states is 

I (8} ,7) 
= (1/ Yl)[ l (3},2 ; (3") ,2)- 1 {3) ,1; (3*} ,1)], 

I (8} ,8) (III.25) 

=6-1[ - I {3).2; (3*) ,2)- 1 {3} ,1; (3*},1 ) 

+2 1 (3} ,3 ; {3*).3)]. 

Here the state I { 8}, 7) has been chosen, in anticipation 
of future convenience, as the state obtained by applying 
L 1 to I (8} ,1). Once I (8).7 ) has been chosen, I (8},8) 
is unique. The E. are given by their effect on each of 
the product states, for example, using (20) and (22) : 

Eal {8},6)= E ,I {3) ,3 ; {3*) ,2) 
=6- 11 (3),1; {3*} ,2)= 6- 11 (8},1 ). 

In this way we get 

61E, - Yl l1)(7 1 +Yl l7)(41 + 12)(31 + 1~)(5 1, 

61Ea= !Yl l2) ((71 +Y.f(SI) 
+tvz<I7>+Y.f l8))(5 l + 13)(41 + 11)(6 1' 

61E, - -!Yl i3)((7 1-Y.f(8 1) 
HY1C I7)-Y.fl8))(61+ 14)(5 ! -12)(11, 

E--a • E. t. (III.26) 

The H ,, are the diagonal matrices 

• Ht• L: m;(A) I.4)(A I, (III.27) 
A- 1 

where m (A) is the weight of the A th state. The phases 
here are consequences of the phases in (23) . 

We found that D <81 (1 ,1) contains only the two linear 
combination (25) of the three sta tes (24). The third 
linear combination, orthogonal to (25) and normalized, 
i~ 

I {J}O = (l/~~. 1 {3}a ; {3*}a). (III.28) 

Thla I~ M invllJ'i~mt1 E.s'"' H;;;; g. Thus the decom­
posi tion of D(l,O)t1Nl11) !§ 

1)<1> (1,0)®1)<1) (0,1) - D<fl (1,1)EDDU> (0,0) . (III.29) 
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An easier way of finding D ts>(1,1 ) uses the fact that 
this is the regular representation, as we shall show. 
The regular representation" is that in which LA is 
represent ed hy 1 he matrices - (C_. )8° whose com­
ponents arc 1 he s tructure constants -C .. 8 °. When the 
commutation relations a re in the standard form (II.12) , 
the capital latin index A= I , · · ·, 8 is replaced by 
-i= I, 2 and a = ±I, ±2, ±3. Thus, referring to (II.12), 
the fl , arc represented ' hy - (C;)./ 1, whose non­
vanishing matrix elements arc -C,.•= - r, (a); the 
£. are represented by - (C.) .. 8 , whose nonvanishing 
matrix clements arc -C.,• = + r,(a}, - C._j= -r,(a), 
and -C•6'=- Na6· Summarizing 

11,= -C,= - L r ,(a) la ) (a l, (III.30) 

E.= -C.=+L;r; (a) li )(a l 
- L r;(a) 1-a)(il- L6 N.6 ltl)('yJ. (III.31) 

Here, as in (II. I2), I'Y) is the state whose root is 
r (a)+r(.B). 

Comparing (30) and (31) with (27) and (26) , and 
taking r ;(a) from (II.18), we find complete agreement 
with the following identifications 

la)->IA ): l - 1)->11), 

1+1)->-14), 

l-2)-> 12), 
l-3)-> 13), 

1+2)-+-15), 
1+3)-> 16), (III.32) 

li) -> lA): 11)-> -17), 
12)-> -1 8). 

The complex conjugate of v <•> (1, 1) is related to it by 
reflection through the origin of the weight diagram. 
This gives the same diagram with a different labeling. 
The operator reflecting through the origin is" 

C= -1 1)(4 1 ± 12)(51 ± 13)(6 1 ± 14)(11 
• ± 15)(21 ± 16)(3 1 ± 17)(71 ± 18)(8 1. 

T he signs are determined by 

CL,G-1 = L/ = -LA, (III.33) 

where L ,, are the matrices (26), (27). The solution is 

C= - 11)(41 -14)(11 + 13)(61 + 16)(3 1 

-15)(21-'-12)(51+ 17)(71 + 18)(81 

=C=c-'. 

Eo 

....... ~,, 
.~1 
'../ 

" 

la E.a 

·<;~ ·<r>~ 
~ ~ 3 

(III.34) 

Eo 

/~ 
·v~ 

• 
- --- FIG. 7. Action of E. on D '' '(I,O) of C,. 

u This operator is the same as will be introduced later as a 
"metric tensor." It could also have been defined by the property 
that 

x c.<Bi {8}.A; (8} ,Bl-l (Il l 
A.B 

is an invariant. 

The existence of C means that v <•> (1, 1) is equivalen 
to its contragredient representation. This is bot! 
displayed and proved in (33) . 

G. Matrix Representations of C, 

The fundamental representa tions are D<•>(1,0) an< 
D<•>(O,I) and the regular representation is vu•>(2,0). 

v <•>(l,O) : The weight diagram was given in Fig. 4(a ) 
we \ahcl the states as in Fig. 7, I {4}.a), a= l , 2, 3, 4 
The actions of E., a = I , · · ·, 4 arc summarized in Fig 
7; the action of £ _. are the same with the arrow! 
reversed. As in the case of SU 3, Theorem II is sufficient 
to allow one to write down the explicit forms of K 
almost immediately. Thus, the analogs of (17) and 
(18) are 

• 
B,=L: m,(a) la ) (a l (III.35) 

•-I 

E,=6- l l 1)(4l, 

E,= (1/ M )(I 1)(3 I-I2)(41), 

E ,=-6-1 12)(31, (III.36) 

&= (1/M)(I2 )(11 + 14){31), 

E .... = (E.)t. 

The weight diagram for the contragredient repre­
sentation is obtained by reflection through the origin_ 
In this case we get the same diagram with a different 
labeling. Hence, the operator reflecting through the 
origin is 

C= - 11)(41 ± 14)(11± 12)(31± 13)(21 . 

The phases must be chosen to agree with (21), that is 

CL .. G-1=Li =-LA. (III.37) 

The solution is 

C= -11)(4 1 + 14)(1 1+ 12}(3 1-1 3)(21 

=-C= -G-1=-Ct. (III.38) 

The existence of C means that v <•> (1,0) is equivalent 
to its contragredient representation. This is both 
displayed and proved in (35). 

D<•>(O,J). The weight diagram is that of Fig. 4 (b}; 
we use the labeling of Fig. 8. The action of E. is also 
symbolized in Fig. 8. The matrices are obtained 
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e transformations of the 
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S TRO .'\G INTERACTIO :-< SYMMETRIES 

An easier way of finding D'"(1,1) uses the fact that 
this is the regular reprcsentat ion , as we shall show. 
The regula r representation" is that in which LA is 
represented by th e matrices - (C.,)8° whose com­
ponents a rc the st ructure constants -C. 8 °. When the 
commutation relations a re in th e standard form (II.12), 
the capi tal lati n index A = 1, · · · , 8 is replaced by 
i = I, 2 and a= ±1, ±2, ±3. Thus, referring to (II.12), 
the fl , arc represented · by - (C,)A " , wh ose non­
vanishing matrix clements arc -C .• " = - r,(a.); the 
12. arc represented by - (C.) . 8 , whose nonvanishing 
matri x clement s arc -C.,•= +r, (a.) , -C.-.'= -r,(a), 
and -C.p'=-N.~. Summarizing 

FI,= -C.=-L• r ,(a)/ a )(a /. (III.30) 

E.= -C.=+L;r;(a) /i)(a / 
- L;r,(a. ) 1-a )(i/ - L:~ N.~/tl)(y/. (III.31) 

Here, as in (II.12), I 'Y) is the state whose root is 
r (a)+r(,B). 

Comparing (30) and (31) with (27) and (26), and 
taking r,(a) from (II.18), we find complete agreement 
with the following identifications 

/a)--> /A): /-1)--> /1), /-2)--+ /2), 
/-3)--> /3), 

/+ 1)-->-/4), /+2)--+-/5), (ll32) 
/+3)--+ /6), . 

/i) --+ /A): /1)--+ -/7), 
/2)--> -/8). 

The complex conjugate of Dt8l(1,1) is related to it by 
reflection through the origin of the weight diagram. 
This gives the same diagram with a different labeling. 
The operator reflecting through the origin is" 

C= -/1)(4/ ± /2)(5 I± /3)(6/ ± /4)(1/ 
± /5)(2/ ± /6)(3/ ± /7)(7/ ± /8)(8 /. 

The signs are determined by 

CLAG-1= L/ = -LA, (III.33) 

where L,, are the matrices (26), (27). The solution is 

C= -/ 1)(4 / -/4)(11 + /3)(6/ + /6)(3/ 

- /5)(2/-'-/2-)(5/ + /7)(7/ + /8)(8/ 

3 

____ Fro. 7. Action of E. on D'' '(I,O) of c,. 

(III.34) 

" This operator is the same as will be introduced later as a 
11mctric tensor." It could also have been defined by the property 
that 

2: Cui (S},A; (S) ,B)-1 (I) ) 
A ,B 

is an invariant. 

The existence of C means that v <•>(1,1) is equivalent 
to its contragredient representation. This is both 
displayed ;end proved in (33). 

G. Matrix Representations of C, 

The fundamental representations are Dt•>(1,0) and 
v <» (0,1) and the regular representation is voo> (2,0). 

v <<> (J ,O): The weight diagram was given in Fig. 4(a), 
we lahcl the states as in Fig. 7, I {4},a), a= 1, 2, 3, 4. 
The acti ons of E., a= 1, · · · , 4 arc summarized in Fig. 
7; the action of E_. arc the same with the arrows 
reversed. As in the case of SU 3, Theorem II is sufficient 
to allow one to write down the explicit forms of E. 
almost immediately. Thus, the analogs of (17) and 
(18) a re 

• 
H; =L: m;(a)/a)(a/ (III.35) 

·-· 
£ 1= 6- 1/1}(4/, 

E,= (1/M)(/ 1)(3/-/ 2)(4/ ), 

E 3= -6-1/2)(3/, (III.36) 

E.= (1/2v3)(/2)(1/ + /4)(3/ ), 

E-a= (E.) t. 

The weight diagram for the contragredient repre­
sentation is obtained by reflection through the origin. 
In this case we get the same diagram with a different 
labeling. Hence, the operator reflecting through the 
origin is 

C= - /1) (4 / ± /4)(1/ ± /2)(3/ ± /3}(2/. 

The phases must be chosen to agree with (21), that is 

The solution is 

C= -/1 )(4/ + /4)(1/+ /2}(3 1-/3)(2/ 

= -C=-G-1=-C'. 

(ll.37) 

(III.38) 

The existence of C means that Dt•> (1,0) is equivalent 
to its contragredient representation. This is both 
displayed and proved in (35) . 

D<•> (0,1). The weight diagram is that of Fig. 4 (b); 
we use the labeling of Fig. 8. The action of E. is also 
symbolized in Fig. 8. The matrices are obtained 

I lo I 

[:-] 
• 4 

f iG. 8. Action of E0~on D'" (O,t) of c,. 
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exactly as before, namely: 

• 
H,= L, m,(k)l k)(kl, 

·-· 
E 1=:S-I( 11)(21 + 14)(51 ), 

E,= 6- l(ll )(3l-l3)(51 ), 

E,= 6- l (l l )(41 + 12)(51 ), 

E4 = 6- l (l 2)(31 + 13)(41 ), 

E~=(E.)t. 

(III.39) 

(III.40) 

Again the contragredient representation is equivalent. 
The matrix C in this case is 

C= 15)(11 + 11)(51-1 2)(-l l-1 4)(21 + 13)(31 

=C. (III.41) 

D(1°l (Z,O). The weight diagram was given in Fig. 4(c). 
The highest weight is exactly twice the highest weight 
of D<•>(l ,O), and D(l0l(2,0) is contained in D<•>( l ,O) 
0 D«l( l ,O). We begin by calling 1{10} ,1) the state 
I {4},1 ; {4},1 ). Since the E. operate in the same way 
on the two factors, it is evident that E. I {10},1 ), 
E.E~I {10},1 ), etc., are all symmetric in the two 
factors. Hence we have, with a convenient set of 
phases, 

1{10} ,1 )= 1{4} ,1; {4},1 ) =-l -1), 

1 {10},2 )= !v'11 {4} ,1; {4},2 ) 
Hv'11 {4},2 ; {4},1 )= + l-2), 

1{10},3 )= 1{4} ,2; {4},2) =-l-3), 

1 {10},4)=!v71 {4},2; {4},4) 
Hv71 {4},4; {4},2 )= + 1-4), 

1{10},5)= 1{4},4; {4},4) =+1 +1), 

1 {10},6)=!v'11 {4},4; {4} ,3) 
+!v'11 {4} ,3; {4},4 )= + I +2), 

1{10},7 )= 1{4} ,3 ; {4},3) = + 1+3 ), 

I {10},8)= !v'11 {4},1 ; {4},3 ) 
Hv'1 1 {4},3; {4},1 )= -I +4), 

1 {to},9)=!v'11 {4} ,1; {4} ,4) 
Hv'1 1 {4},4 ; {4},1 )= + Il l, 

1 {t0),10)=!v'11 {4},2; {4} ,3) 
Hv'11 {4},3; {4},2 )= -12). 

(III.42) 

The labeling on the right-hand side is the one that 
allows us to use Eqs. (30) and (31) directly. The 
simplest derivation is by means of [cf. (V.5)] 

61 L c •• (E±.) ... Iad)= l±a ) ; 
a,b ,d 

61 L. c.,(H,)..,Iad)= !i ). 
o,b ,d 

H. Matrix Representations of G, 

The fundamental representations are D(7l(1 ,0) and 
D(l< l(0,1), the latter being the regular representation. 

D <1l (J ,O). The weight diagram is that of Fig. 3(a), 
and we use the labeling indicated there, thus I {7},k ), 
k = 1, · .. , 7. As in the other examples, Theorem II 
(Sec. III E) suffices to determine the matrix elements 
of E •. The result is 

7 

H,=L, m,(k)l k )(kl, .... 
E,= (l/M)(!v1 11)(21 +!v'1 13)(41 + 15)(61 + 16)(71), 

E,= (l'/2v'1)(1 5)(41 + 11 )(71 ), 

E1= (l/ 2v'3)(!v'11 5)(31- 16)(41 + 11)(61- !v'112)(71 ), 

&= (1/2v'1)( 11 )(31 + 12)(41 l. 
E,= (1/ M)( l6)(31-!v'1 17)(41-tv'1 11)(5 I+ 12)(61 ), 

Ee=(l/ 2v'1) (- l2)(5l+l7 )(3l); E~= (E.)t. (III.43) 

The C operator which changes D(7) into its complex 
conjugate and reflects the weight-diagram through the 
origin is defined by 

CLAC- •= -LA. 

The >elution is 

C= 15)(71 + 17)(51-11)(41-14)(11 
+12 )(31 +13 )(21- 16)(61. (III.44) 

DU•> (0,1). Since this is the regular representation, 
the matrices H, and E. are given by (30) and (31). 
The weight diagram is that of Fig. 3(b). 

IV. COMPOSITION AND DECOMPOSITION OF 
LIE ALGEBRA REPRESENTATIONS 

The basis of the vector space affording a representa­
tion of a simple group may be characterized by the 
simultaneous eigenvalues of the maximum number of 
mutually commuting Lie algebra operators, designated 
by the symbols H., H ,, · · ·, H 1 where lis the rank of 
the group. However, the characterization of the re­
presentation space basis is not complete if only the H, 
eigenvalues are assigned to the basis vectors because 
the same set of eigenvalues of the H ,, the weight 
(m,· · ·m1}= m, can occur more than once in a speci::ic 
representation, i.e., weights other than the dominant 
weight (M, · · ·Mi}=M are, in general, not simpie. 
The goals of this section are (a) to find the set of 
weights and their multiplicities in every representation, 
and (b) to reduce the direct product of irreducible 
representations into a direct sum of irreducible re­
presentations. The course which we pursue is a purely 
geometric one, and represents an extension of the 
classical method. 
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STRONG INTERACTION SYMMETRIES 

A. Geometric Characterization of 
a Representation 

(0) -----.---·-
cu -· t 

Let us restrict the considerations to the groups of 
rank two. The seven-dimensional representation of G, 
can be characterized by plotting the array of points 
(m1,m2) whose coordinates are the weight~ of the 
representation ... Figure 9(a) shows the resul~m~ .array 
of points. In this specific example, the mult1pli.c1ty ~f 
each of the weights is one and so each weight IS 
associated with one and only one point. When the 
multiplicity of a weight is gr~ater th~n on:, this. will 
be indicated. Such is the case m the e1ght-dimenswnal 
representation of SU,, for which the associated point 
set is given in Fig. 9(b). 

11>1 -1---- X -- • ----·- c - - • --------• -
+1 -1 +I +I +I •I +I -1 

(C) 
--·-- = -.. ---..----
-· +I +r +I +I 

"' -·-----· ---- ·--= -· ., -·---·-·------... , !; ~: - 1 
(ol -;r- + -::·::;- == •r:r + -;r--:.- = 

------ + __ ...., ___ + --* ·•··- = · --- .o - •-4--
+J ~ ··-· +1+ 1+1 +1+1 

Fm. 10. Algebraic processes on linear point sets. 

Addition of two sets of points (! and r') with a 
common center is defined to be the union of the two 
sets· r+r'=rUr' the multiplicities adding algebraic­
ally.' Subtraction of two sets of points i and !' is defined 
to be the addition of r to the s~t - r' obtained from r 
by changing the signs of all multiplicities. 

Before proceeding with the task of composing and 
reducing representations, we introduce the formal 
operations on sets of points which are utilized in the 
subsequent sections. 

B. Algebra of Sets of Points 

To illustrate the algebraic manipulations to which 
sets of points can be subjected, consider first sets of 
collinear points. A set of Points on a line with a center 
* and with signed multiplicities attached to each 
point will be associated with a function which is a 
sum of powers of a single variable x, as follows : 

(a) Each point is associated with a term in the 
function ; the latter has as many terms as there 
are point.s, 

(b) The coordinate of each point relative to the set 
center* represents the power of x in the relevant 
term, 

(c) The numerical coefficient of the term is the 
attached signed multiplicity. 

Thus the set of points in Fig. 10(a) represents the 
algebraic expression 0.3:r'-:r'+ 2r. 

In what follows, only integral multiplicities come 
into consideration and if a single point without indicated 
multiplicity but with an attached sign occurs, the 
associated term in the algebraic expression is assigned 
a coefficient ±1 depending on the indicated sign. A 
final liberty with the above conventions is to assume 
that, in the absence of an indicated center of a point 
set, this coincides with the geometric center of the 
point set. 

Flo. 9. (a) Repre­
sentation set for G., 
(b) representation set 
for SU,, 

r-----\ 
I \ 

·/ \ 
·< +J >• 

\ I 
\ I 
\ I 

:-----; 

. . r---, 
' \ ' \ 

I ' •<' ., \ .. 
' ' \ I 

\ / \_ ____ J 

• + 
(0) ,., 

~rrays are nothing but the weight diagrams of Sec. 
nr, with the multiplicities added . 

To multiply one set of points r by another set .r', the 
center of the set r' is placed on each of the pomts of 
the set r and each term of r' is multiplied by the 
multiplicity of the point of r upon which its center 
sits. The new set of points obtained in such a manner 
is defined to be the product set !Xi'. For example, 
Fig. 10(b) is the geometric equivalent of (x-'-x) 
x (:r'+2r)= (:.--'.., 1+2 .. ~-2x"). . . . 

Division is defined to be the inverse of multiphcatwn. 
The most trivial case of division is the case in which 
the two sets of points i and !' are identical. The 
result of the division r+r' is simply a single point at 
the common center of r and ( . In general, one set of 
points r' exactly divides a congruent set r ~f the multi­
plicities of every, point of r is a fi~ed ~~l.ttple z of .tts 
image point in r 0 The result of thts diVISIOn operation 
is a point of multiplicity Z which sits where the, :enter 
Of !

1 
falls when SUperimposed On l. If the Set l IS not 

congruent to the set r, it is possible to create a subset 
of r. denoted by r" and ex.actly divisible by !', b! 
adding and subtracting points, of the same multi­
plicity at appropriate positions in the set r .. After 
dividing such a subset )" away, we are left With the 
problem of dividing the residual s~t !-!" b~ )'. By 
continuing this process, we may ultimately arnve at a 
residual set itself exactly divisible by I' without 
modification. As an example, consider the prublem 
illustrated in Fig. lO (c) whose algebraic analog is 
(r-x--<~)j (x- :.-- 1 ). By adding and subtracting a point 
of multiplicity + 1 at each of the positivns - 1 and + 1 
[Fig. lO(d)], the exact division can ~e. effec:e~ .. If 
two sets of points are not exactly diVIstble, UIVISion 
can still be carried out by adding and sub tracting 
points to the dividend set ad inji11itum. Figure 10(c) 
illustrates the geometric method of carrying out the 
expansion 1/ 1-x= 1+x+r+ · · ·. In what follows, we 
use only exactly divisible point sets. 

All of the above manipulations are quite trivial for 
linear sets of points. However, it is possible to generalize 

21 



nEIIRE:-1 11 S , DREITLE I N , FRONSDAL, ANI) LEE 

(ol 

(b ) 

(cl 

- ! •! +) •.•-.••} 
>c + * = .. 

+I +I .:I +i-·.;, 

(. .... ,..; •• -•;•) •«•r••-'y-j') • t•r-r+~:y·•.a•,-;a •• ·a,-a) 

-I -! 
•! 

.. X * = . ". 2 2 
•i +I +I +I 

+I +2 +I 

<•r""!,. ;.t;')Xt•i'-r•i'f'J • (-2••Y2 -2~t. ... +i1Y1+2i1 +1r""~J 

•.1 
... . 

-2 -2 

+I +2 +I 

~I .. 
+I +I 

~I 

* 
+I +I 

t-21 ••'-2i'•i'l"'+ti'•..,'"~ +t••~-•• ~~ 1 •tlli'-Hf';'J 

FIG. 11 . Algebraic processes on two dimensional sets of points. 
(a) Addition; (b) multiplication ; (c) division. 

to an algebra of sets of points in an n-dimensional 
space, each point being characterized by a coordinate 
m = (m1m, · · ·m,) and an' assigned multiplicity and the 
total set being provided with a center. Every such 
point is again associated with a term in an algebraic 
expression in tl variables. For example, the point at 
m = (m1m,· · ·m ,) with multiplicity I'm is the geometric 
representation of Jlm Xtm•x,m• .. ·xr•. All algebraic pro­
cesses on algebraic expressions in n variables of the 
form Lm Jlmx ,mt. · ·xr• can now be given a geometric 
analog. 

Since our concern is with functions in two variables, 
we illustrate in Fig. 11 some algebraic processes carried 
out on sets of points in two dimensions. It is to be 
remarked that the operations on the sets of points are 
completely isomorphic to the corresponding algebraic 
processes and as such are, for example, associative and 
commutative. 

C. Construction of Weights and Multiplicities 
of Irreducible Representations 

Our goal in this section is to assign to every ir­
reducible representation of a group a set of points 

TABLE I. Coordinates of points in the s~t HXoXo) for SU,. 

(6/ v':f )x 6y Multiplicity 

(Xo+X,+2) (x,-x,) +1 
(Xo+ l ) (Xo+:ZX,+3) -1 

-(Xo+ l ) (Xo+2X,+3) +1 
-(Xo+>-,+2) (x,-x,) -1 
- (X, +l) - (2Xo+Xo+3 ) +1 

(Xo+l) - (2Xo+Xo+3) -1 
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(called the representation set from now on) and 
derive the admissible sets of points constituting a 
representation. The fundamental observation is the 
i •llowing: The character of the representation is the 
algebraic expression associated with the representation 
set." For a group of rank l the algebraic variables 
associated with the representation set may be selected 
as x;= e'"'· Recall now that every representation of a 
rank two group is characterized by two integers At 
and X, where At, X, run over all non-negative integers. 
T he gene.ral expressions for the characters of all the 
groups which interest us have been given by Weyl.8 

Letting X(A 1,X2) denote the set of points constituting the 
representation, the general expression for X (X .,X,) is 

x(Xt,X,) = HXt,X,)/ HO,O), (IV.l ) 

where the algebraic expressions ~ (A,,X,) were given in 
Sees. III A and m B. The set of points HX1,X,) is 
called the girdle of points uniquely characterizing a 
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FIG. 12. Some girdles of SUa. 

representation. We thus see that to generate the 
representation set, the girdle ~(At,Ao) must be divided 
by the girdle HO,O). Since the X(X,,X,) form a finite 
set of points, E(X.,X2) must be exactly divisible by E(O,O). 

To illustrate the detailed mechanics of generating 
representation sets, we tum to the groups SU 1, C2, 

andG2• 

SU •· The coordinates of the six points making up 
E(Xt,Ao) are given in Table I. They are the values of 
the components of (SK) of Eq. (111.4). For SU 1 the 
girdle E(X,,X,) forms the vertices of a hexagon which 
has the following properties: 

(a) Every other side is of the same length, either 
iv.J(Xl+l) or iv.J(X,+l), ' · 

(b) The hexagons are always symmetric about the 
y axis, 

(c) A hexagon is symmetric about the ~ axis if and 
oniy if At= x,. In this case, the hexagon is regular 
(all sides being equal). 
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FIC. 13. Some char­
acton of SU, obtained 
by the division process. 
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If x (>.,,>.,) is a representation set, then the complex 
conjugate representation set x*(X,,X,)=x(X2,X1) (for 
SU, only) is obtained by inverting the x(X1,X2) hexagon 
through the origin, and changing the signs of the 
multiplicities. An equivalent procedure is to reflect 
x (>.,,>.,) in the x axis and leave the multiplicities 
unchanged. Thus, the necessary and sufficient condition 
for equivalence of D(X1,X2) and D*(X1,X2) is that the 
e(x.,x,) hexagon be regular. 

Figure 12 illustrates the girdles of some low­
dimensional representations of SU 1. Triangular graph 
paper is admirably suited for the plot. 

The construction of the weights and multiplicities 
of a representation is now effected by dividing HX1,X2) 

by HO,O) and identifying the quotient points as the 
representation set. In Fig. 13, we carry out some 
representative divisions. 

C,. With the use of Table II any girdle can be 
found; in particular, those illustrated in Fig. 14(a). 
The points of H>..,X,) define the vertices of an octagon 
symmetric about the x andy axes. Every representation 
is therefore equivalent to its complex conjugate 
representation. The sides of the octagon alternate in 
length between !Y.f(>-,+1) and (t)I(X1+1). 

TABL E II. Coordinates of the points in the set HX1,A1) lor C,. 

2~% 2~ y Multiplicity 

(X,+Xo+2) (Xa+l) +I 
(Xo+l) (X,+Xo+2) -I 

-(Xo+l) (x,+x.+2) +I 
-(X,+Xo+2) (Xo+l) -I 
-(x,+Xo+2) -(X,+ I) +I 
-(Xo+l) - (Xt+Xo+2) -I 

(X,+ I) - (x,+x.+2l + I 
(X,+Xo+2) - (Xo+l) -I 

FIG. 14. Some girdles and 
characters of Ct. 
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Figure 14{b) gives the result of dividing the HX 1,X2) 

of Fig. 14(a) by HO,O) ... 
G,. Table III specifies the sets HX1,).,) as dodeca­

hedrons symmetric about the x and y axis. Thus the 
complex conjugate representations are equivalent. As 
inc, and SUa, the sides of the e(X.,X,) polygon alternate 
in length, in this case between t(X2+ 1) and iv3 (>.1+ 1). 
Figure 16 contains the representation sets, x(l,O) and 
x{0,1), while Fig. 15 illustrates some girdles. 

D. Reduction of Direct Products of 
Representations 

In the previous section, we have shown how to 
derive all the representation point sets including the 
multiplicity assignments. However, for the purpose of 
reducing the direct product of representations, only 

TABLE nr. Coordinates of points in the set C(X, ,X,) for G,. 

4~x 4y Multiplici ty 

(2X,+3x,+ S) (X,+l) + I 
(X, +3Xo+4) (X,+Xa+ 2) - I 
(X,+ !) (X,+2Xo+3) + L 

- (X,+I) (X,+ 2x,+3l - I 
-(X,+ 3Xo+4) (X,+Xo+2) +I 
- (2X,+3Xo+ 5) (X,+ I) -I 
- (2X,+3Xo+5) -(X,+ I) +I 
- (X,+3Xo+4) - (Xo+Xo+2) -I 
-(X, +!) - (X,+2Xo+3) -H 

(Xo+!) - (X,+2Xo+3) -l 
(X 1+3X1+ 4) - (Xo+Xo+2) +I 
(2x, +3x,+5) -(x,+l) - l 

"The method of dividing point sets by point sets turns out 
to be quite powerful. Further details will be found in a paper by 
two of the authors (J.D. and C.F.). 

2.8 
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FIG. 15. Some girdles 
of G,. 

the girdle H>.,,>.,) associated with the representation 
is needed, as we now prove. 

The direct product of two representations of a simple 
group reduces completely and uniquely into a sum of 
irreducible representations some of which may occur 
more than once. Letting "V.t,J.<2) designate the number 
of times a specific representation xV.t,!-'2) occurs in the 
reduction of a direct product of irreducible representa­
tions, we have the following equality between point 
sets 

x (X,,>.2)®x(>. ,' ,>.,')= L: "V.t,J.<2)X(J.<, ,J.< ,). (IV.2) 
~ l l't 

If we use the fundamental relation Eq. (IV.1), Etj . 
(IV.2) reduces to 

H>., ,>. 2)XH>..',>.,') 
L: "0tt,J.<2)HJ.<t ,J.<2), (IV.3) 

HO,O) I'll'! 

where we have multiplied both sides of Eq. (IV.2) by 
HO,O). Because only the girdles of the irreducible 
representations x (J.< lol-'2) occur on the right-hand side 
of Eq. (IV.J), we need only carry out the point set 
process {H>.,,>.2)XH>.,',>.2')+HO,O)}, and then identify 
the girdles and their multiplicities "V.t,!-'2) in the 
resulting set to reduce completely the product repre­
sentations. Use of one of the several alternative forms 
of H>.,,>.2)XH>.,',>.,')+HO,O), namely 

x(>.,,>.2)X H>-.',>.2')= H>.,,>. ,)x(>./ ,>.2') 
= HO,O)x(>.,,>.2)x(>.,',>.2') 

will simplify the computations in some cases. 
As examples of the reduction process, we carry out 

(a) x(1,0)Xx(l,O) and x (1,0)Xx(0,1 ) in SU, 

(b) x(1,0)Xx(1 ,0) for C, 

(c) x (1,0)Xx(1,0) for G2. 

Figures 17 and 18 illustrate the reduction processes 
for SU, and C2, respectively. The superimposed girdle 
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FtG. 17. Geometric 
derivation of girdles in 
direct product repre­
sentation of SUJ. 

diagram of Fig. 15 is the product of HO,O)Xx(l,O) 
Xx(l,O) for G2. 

V. TENSOR ANALYSIS OF SIMPLE LIE GROUPS 

In this section we present some results by an 
alternative, purely algebraic method, which to a certain 
extent is complementary to the geometric method. 
The specific advantages of the algebraic method is 
that it deals directly with the bases of the representation 
space (the "wave functions"), and that it gives directly 
the explicit form of invariants, product representations 
and transformation matrices. 

Let m be the dimensionality of any representation 
of some simple Lie group. The matrix algebra of that 
representation consists of Hermitian traceless matrices. 
Since the matrix algebra of an m-dirnensional repre­
sentation of S U" is the set of aU Hermitian traceless 
matrices, it follows that the group in question is a 
subgroup of SU ... For example, C2 and G2 are subgroups 
of SU, and SU,, respectively. Therefore the reduction 
of a product of several m-dimensional representations 
is a refinement of the reduction according to SUm· It 
is very helpful, then, to begin with a discussion of SU .. 
for arbitrary m. 

A. Group SUm 

Let>/>., a= 1, · · ·, m, be a basis for an m-dirnensional 
representation of SU ... The matrices representing a 
basis for the Lie algebra are any set of m' -1 in­
dependent Hermitian traceless matrices. The contra­
gredient representation VI' is defined by" 

"'·-> W+i<'-L, .... )>h, 1/1'-> ,P(O,•- i<'-LA,•) . (V.1) 

[For m= 3, these representations are those labeled 
D<•>(1,0) and D <!l(0,1) in Sees. III and IV. The weight 
diagrams are those of Fig. 2(a) and Fig. 2(b) .] 

Next consider the "tensors" 1/>.,, .. . •f · .. . These are 
quantities transforming in the same way as products of 
the representations ,Y. and 1/1'. Thus "'·• has m2 com­
ponents which transform among themselves like the 

" This will be recognized as agreeing with the definitions of 
Eqs. (1.1 ) and (III.21). 
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m' quantities o/1.1/>., >/>.' transforms like ,Y.,Y•, etc. The 
tensors· form bases for -representations calle<l .product 
representations; the present definition agrees with that 
of Sec. III. 

Product representations are usually" reducible. The 
reduction of second-rank tensors according to SU .. is 
entirely elementary. The tensor >/>.', for example, 
transforms according to (1), as follows" : 

.Y.'-> (~.·+ i<'-LA.'){U-i<B L&J')>I>." . 
=>/>.'+i<'-(LAo'6l-LAl6~')>/>,". (V.2) 

In particular, if we put a= b and s~, we find 

"'~·-> "'·"· 
Thus the trace is invariant, meaning that the m2 

dimensional representation >/>.' may be reduced into a 
one-dhnensional representation .and the m'-1 din;len­
sional representation whose basis is the traceless tensor 

1 . 
1/>.'----IJ."o//,•=P.',">/>•'· 

m 

Here P .' ." is the projection operator 

1 
P.'~~,d= 8otltJ,&---1J."tJcd, 

m 

· (V.3) 

(V.4) 

whose rows are labeled by a, .b and whose columns are 
labeled by c, d. 

The proof that (3) is the basis of an irreducible 
representation is instructive. First, we show tpat (3) 
is the regular representation" for su,;., and that it 
contains the regular representationJor any subgroup of 
SU". Let r be the order of the sub$toup, and consider 

. "~e only exceptioq. is the case. when one of the factors is the 
1denhty representation. 

"The tensor '~-•' would be written I {m} ,a; {m},b) in the 
notation of Sec. lli E. Equation (V.2) is an application of 
Eq. (lli.14). . .. 

the r linearly-independent combinations. 

1 
<I' A= LA.">/>.'= LA,·(~.'6i--o.'o. ')>/>.". (V.s 

m 

The second equality is a result of the fact that th 
matrices L.t.' are traceless, and shows that \?A dcpen• 
on the traceless tensor (3) only. From (2) and (5 
we get 

\?A-> V'A+i<8 (LA./'Ls.'-LoiLAb')o/l," 
= V'A+i<8CAsDLDd'if!,d 
=<PA+i<BCABDV'D· (V.6 

Hence, the \?A are the basis of that representation o 
the r-parameter ~ubgroup in which the operators L, 
are represented by the structure constants C_. 8

8 , an< 
that is the regular representation. Equation (5) show, 
that this representation is contained in the traceless .Y~' 
In the special case of SU .. , r=m'- 1, and LA.' is th• 
set of all Hermitian traceless matrices. Hence, in tha · 
case the regular representation <I' A is· equivalent to tht 
representation whose basis is the tracelesS >/!.'. Sine< 
the former is irreducible" (for any simple group), s< 
is the latter. 

With the proof that (3) is irreducible, the reductior 
of-{;.' has been completed. We can also prove that .;,, 
and VI' are inequivalent. For suppose that they an 
equivalent. Then there exists a nonsingular forrr 
invariant matrix A•' such that 1/I'=A•"o/1,. This could 
be used to prove that >/>.' and yA were equivalent, 
which is impossible since VI'' reduces quite differently, 
as we shall see immediately. Hence, no matrix exists 
for raising and lowering indices. 

The reduction problem for tensors of arbitrary rank , 
but with all indices either upstairs or downstairs, has 
a complete and beautiful solution in terms of Young 
tableaUJ<.68 We do not present the general theory here, 
since it is only of marginal interest, and thus do not 
prove that the representations obtained are irreducible. 
However, whenever appropriate, we indicate the 
connection between the .. representations and the 
tableauX. The complete reduction .of .the second-rank 
tensor >/>.~ is given by 

-{1 •• = 1/> ••. +,Y •.• , 
where 

"'""·=H>/> •• +1/> .. ), >/I ••• =H>f!.,-o/1 .. ). 

The sy~etric part "'·•· has !m(m+ 1) components 
and corresponds to the Young tableau of Fig. 19 (a)­
The skew part >/> •.• , has !m(m-1) components and the 
Young tableau is that of Fig. 19(b). 

Roughly, indices appearing in the same row in a 
Young diagram are subject to symmetrization, while 
indices appearing in . the same column ·are subject to 

"A r~dable exposition is given in D. Rutherford; Substitutional 
A nat1sis (Edinburgh University Press, Edinburgh, Scotland, 
1948). . 
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m' quantities Y,.Y,,, Y,,' transforms like Y,.Y,', etc. The 
tensors form bases for representations called .product 
representations; the present definition agrees with that 
of Sec. Ill. 

Product representations are usually16 reducible. The 
reduction of second-rank tensors according to su .. is 
entirely elementary. The tensor Y,.', for example, 
transforms according to (1), as follows" : 

Y,.'-. (6,•+i~LAo'){6l-i<8L&J')f,d 
=f.'+i~(LA.'6l-LAl6,')f,d. (V.2) 

In particular, if we put a= b and su':", we find 

Y,.•-.y,.•. 

Thus the trace is invariant, meaning that the m2 

dimen~ional representation Y,.' may be reduced into a 
one-dimensional representation .and the m'-1 din;>.en­
sional representation whose basis is the traceless tensor 

1 . 
f,'--ll,'f,•=P.',"fd'· 

m 

Here P,•,d is the projection operator 

1 
Po"o4=0odO."--Q.~>tJ04, 

"" 

· (V.3) 

(V.4) 

whose rows are labeled by a, b and whose columns ar.e 
labeled by c, d. 

The proof that (3) is the basis of an irreducible 
representation is instructive. First, we show t}:lat (3) 
is the regular representation" for SU,., and that it 
contains the regular representation for any subgroup of 
SU,.. Let r be the order of the sub~oup, and consider 

"The only exceptio~ is the case when one of the factors is the 
identity representation. 

" The tensor .p.• would be written II m) ,a; { m) ,b) in the 
notation of Sec. nr E. Equation (V.2) is an application of 
Eq. (III.I4). . . 

the r linearly-independent combinations. 

I 
'I' A= LA,.,.'= LA,•(a.·ai- - a.'a.')f/. (V.S) 

m 

The second equality is a result of the fact that the 
matrices LA.' are traceless, and shows that 'I'A depend 
on the traceless tensor (3) only. From (2) and (5) 
we get 

'I' A-> 'PA+i•8 (LAd'Ls.'- LsiLA,') f,d 

= 'I'A+i<8 CAs0 Lod..,,d 
= I"A+i•8CABD I"D· (V.6) 

Hence, the I"A are the basis of that representation of 
the r-parameter subgroup in which the operators LB 
are represented by the structure constants CA 8°, and 
that is the regular representation. Equation (S) shows 
that this representation is contained in the traceless Y,.'. 
In the special case of SU .. , r=m'-1, and LA.' is the 
set of all Hermitian traceless matrices. Hence, in that 
case the regular representation I"A is equivalent to the 
representation whose basis is the traceless Y,.'. Since 
the former is irreducible" (for any simple group), so 
is the latter. 

With the proof that (3) is irreducible, the reduction 
of Y,.' has been completed. We can also prove that Y,. 
and y,• are inequivalent. For suppose that they are 
equivalent. Then there exists a nonsingular form 
invariant matrix A'' such that .,.= A•'f,. This could 
be used to prove that Y,.' and ,_, were equivalent, 
which is impossible since ,_, reduces quite differently, 
as we shall see immediately. Hence, no matrix exists 
for raising and lowering indices. 

The reduction problem for tensors of arbitrary rank, 
but with all indices either upstairs or downstairs, has 
a complete and beautiful solution in terms of Young 
tableaux.•• We do not present the general theory here, 
since it is only of marginal interest, and thus do not 
prove that the representations obtained are irreducible. 
However, whenever appropriate, we indicate the 
connection between the .. representations and the 
tableaux. The complete reduction of .the second-rank 
tensor f,~ is given by 

Y, .. =Y, ••. +., ... , 
where 

Y, ... =Hf,,+f .. ), f •.• =Hf •• -y, .. ). 
The sy~etric part y,,,_ has !m(m+ 1) components 
and corresponds to the Young tableau of Fig. 19(a). 
The skew partY,,,,, has !m(m-1) components and the 
Young tableau is that of Fig. 19(b). 

Roughly, indices appearing in the same row in a 
Young diagram arc subject to symmetrization, while 
indices appearing in . the same column · are subject to 

,,·A r~dahle ex:position is given in D. Rutherford; Subslitution!Jl 
Anai;Ym (Edinburgh University Press, Edinburgh, Scotland, 
1948). 
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FIG. 19. The Young tableaux 
related to the reduction of 
the second·rank tensor in m 
dimensions. 

antisymmetrization. The notation is the following: 
A comma between the indices separate those of the 
first row from those of the second row, a second comma 
separates the indices in the second row ·from those of 
the third, and so on. The completely symmetric tensor 
>/! . ..... is furnished with a comma to distinguish it from 
the general nonsymmetrized tensor Y, . ..... 

Corresponding to the reduction of the third-rank 
tensor there are the four Young tableaux of Fig. 20. 
The irreducible bases, as well as the dimensionalities, 
are indicated; the latter, of course, add up to m1• 

Whereas y, •••. and >/! • •••• are uniquely defined as the 
completely symmetric and the completely skew parts, 
respectively, the other two parts have mixed symmetry 
and their definition is slightly ambiguous." This is 
due to the fact that they are a pair of equivalent 
representations of SU ... A possible choice is: 

y, ••.• =i(Y, ••• -y,.,.+ofN.->/Ib .. ), 

"'····= i (y,,,.-Y, ••• +'/1 ... -Y,N.). 

With this choice the four parts are orthogonal. This 
summarizes the complete reduction of '/tok· 

We have seen how covariant tensors are reduced 
according to their symmetry, and bow the mixed 
tensor Y,.' reduces by separating the trace. For a 
general mixed tensor, judicious use of both operations 
gives the complete reduction into irreducible repre­
sentations of SU •. The theorem that is needed is that 
a mixed tensor is irreducible if and only if; (1) the 
symmetry of the lower indices is that of a single 
Young tableau, (2) the symmetry of the upper indices is 
that of a single young tableau, and (3) contraction with 
respect to one upper and one lower index gives zero. 
The tensor Y,6,• is easily reduced into the following 
four parts; the two m-dimensional representations 
Y,6=Y,bo• and Y,6'=Y,.6•, the traceless symmetric part 

~ twJ ~ ~ 
i•··•••IJ ..... _. ~ .... _,j ·-··-11 

....... ~ . ... .... 
··---· FiG. 20. The Young tableaux related to the reduction of the 

tbird.rank tensor in "' dimensions. 

" For tensors of higher rank, the ambiguity is much greater. 
T. Yamanouchi has prescribed a general procedure which always 
leads to orthogonal wave functions in Proc. Phys. Math. Soc. 
Japan, 18, 623 (1936) ; 19, 436 (1937). 

having the !m'(m+l)-m components 

1 
.., ••. ·--- (6•'>/1• •. •+6,">/l ••. d). 

m+l 

and the traceless skew part 

1 

(V.7) 

'f• .• •---(6•">/l•.l-6.">/1•.•"> (V.8) 
m-1 

which has !m'(m-1)-m' components. 

B. Group SU, 

We have seen bow tensors of rank 2 or 3 reduce 
. under SU •. A significant simplification occurs in the 
case m= 3, because the Levi-Civita tensors ,_.,and _. .. , 
which equal + 1 ( -1) if abc is an even (odd) permuta­
tion of 123 and zero otherwise, have only three indices. 

The relation between the above reduction of second­
rank tensors and the labeling of representations 
introduced earlier is (more information in Table IV): 

t. 
v<•>(t,o) 

(a) 

y,-.• 
v<•>(t,o) 

(d) 

"'" v<•>(o,t) 
(b) ' 

t ... 
v<•>(2,o) 

(e) 

t •.• 
v<•>(0,1) 

(c) 

..,... 
D<ll(0,2) 

(f) 

(V.9) 

as we now prove. The first relation, identifying of, as 
the basis for v<•> (1,0), is essentially a definition. Then 
(9b) follows from the fact that >/!" is contragredient to 
of., and D<•>(O,l) is contragredient to D<l>(t,O). Next 
consi(ler (9c), according to which of •.• is equivalent to 
y,o. This equivalence is exhibited and proved by the 
relation '/~"= ~ •.• , which expresses the three com­
ponents off" in terms of the three linearly-independent 
components of 1/t•.•· In general, the operation of con­
verting two lower indices on a tensor into one upper 
index by means of f"", is nonsingular if and only if 
the tensor is skew in the two lower indices. This 
follows from the relation 

.... .-4·~a.•a:-a.•a,•. (V.10) 

Finally, relation (9e) follows from the fact that t ... is 
(the highest dimensional) part oft ... 

In terms of outer products of representations, (9) 
shows that• 

vm(tO)®Dm(tO)•Dm(20)eDm(o1) 
' ' ' I ' (V.U) t.®t.-t ... et •.•. 

A second relation follows from 

[D<1>(1,0)]*•DIIl(0,1), 

--- t.•-f<. 
• The oymbol - reado "tranoformollke." 
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S TRONG I NTERAC TIO N SYMMETRIES 

TABLE IV. Representations of SU1• AU mixed tensors are supposed to be traceless, e.g., 1/Joe•=O. The missing representation uM" is 
D"(3,3) with the basis >f•·l''' and the isotopic content 0, !, !, 1, 1, 1, !, !, !, !, 2, 2, 2,!, i, 3. The dimension of D(A.,A,) is !(A1+ 1) 
X(Az+1)(A 1+A1+2). The regular representation is D'(1,1). 

Abbr. Highest Fig. Complete Isotopic 
designation design weight no. content Basic ®D'(1,0) ®D'(2,0) ®D1 (1,1) ®D"(3,0) 

D'(O,O) (0,0) 0 

"' 
6 8 10 

D'(1,0) H¥.!,1) 2(a) 0,! "'· 6+3* 10+8 15+6*+3 1.1'+ 15 
D'(0,1) 3* i(Y.!,- 1) 2(b) 0,! •>//' 8+ 1 15+3 15*+6+3* 24+6 
D'(2,0) 6 t(¥.!, 1) 2(c) 0,!,1 "'·' 10+8 15'+15+6* 24+ 15*+6+3* 24+21+15* 
D'(0,2) 6* i(Y.!,- 1) 2(d) 0,!,1 >//'' 15*+3* 27+8+1 24*+ 15+6*+3 42+15+3 
D'(l,t) i(Y.f,O) 2(e) 0,!.!,1 ""~~" , XA 15+6*+3 24+ 15*+6+3* 27 +tO+ 10*+8+8+ 1 35+27+ 10+8 
D10 (3,0) 10 !(¥.!,1) 22 0,!,1,! "'"'' D10 (0,3) w• !(Y.!,-1) 0,!,1,! ~··' 
D"(2,1) 15 

Hll !(VJ, 0,!,!,1,1, ~ "'''" D"(1,2) 15* -i) 
D"(4,0) 15' 

+Ill i(Y.!, 0,!: ,1,!,2 1/!~;~b~d 
D"(0,4) 15'* - I ) 
D''(5,0) 21 

+Ill !(¥.!, 0,!, 1,!,2,4 1/labrdr 
D''(0,5) 21* -1 ) 
D"(3,1) 24 

Hll lM, 0,!,!, 1 , 1 ,l,~,2 ~bcd4 

D''(1,3) 24* -!) 
D'7 (2,2) 27 i(Y.!,O) 0,!,!,1,1,1,1,!,2 J/.lcdoll 

D'8 (6,0) 28 
+l)l (¥.!, 0,!, 1,!,2 ,l,3 l/labt:dr/ 

D'0(0,6) 28* - I ) 
D"(4,1) 35 

+3) 1 0,!,!,1,1, i(Y.!, 1/Jb~dra 
D"(1,4) 35* -3) !,! ,2,2,! 

D'1(7,0) 36 
+l)l i (Y.!, 0,!, 1' !,2,!,3,! 1/tab(dt/11 

D''(0,7) 36* -1) 
D" (3,2) 42 

+1l l 0,!,!, 1,1 ,1 , t(Y.!, !.U,2,2,t 1/lcd."b 
D"(2,3) 42* -I) 
D''(8,0) 45 

+Ill t(Y.!, O,j,l,j,2,!,3,!,4 l/totudr/11lt 
D''(0,8) 45* -1) 
D'1 (5,1) 48 

H l l 0,!,!,1,1,!,!. (¥.!, 1/;bcdr/11 

D'1 (1,5) 48* -J) 2,2,i,i ,3 

The reduction of 1/1.' was discussed in detail. For m=3, 

D <•> (1,0)®D<•> (0,1) = D <8> (1,1 )<±> D0l (0,0) , 
(V.13) 

1/1.®1/1'~ (1/1.·- i6."o/t,')<±>~."o/t.'. • 

The analogs oi (11) and (13) for third-rank tensors 
are 

D(J) (1,0)®D<Il (1,0)®D<•> (1,0) 

=D<10>(3,0)<±>D<8>(1,1) <±> D<8>(1,1) <±> D <' >(O,O), (V.14) 

1/1.®1/1.®1/1,~1/1 •• ,.<±>1/1 ••. ,<±>1/1., .• <±>>/1 •.•. ,, 
and 

D<•>(t,O)®D<8>(1,0)®D <•>(0,1) 

=D<">(2,1)<±>D«>(0,2)<±>D<3>(1,0)<±>D<3>(1,0) (V. 15) 

1/1.®1/1.®1/1'~1/1 ••. '<±>1/1 •. •'<±>>/1.,'<±>1/1,.'. 

15'+ 15 24+21+15* 35+27+10+8 35·1-28+27+10 
24*+6* 42*+ 1.1*+3* 35*+27+10*+8 64+27+8+1 

The equivalence of 1/1 ••. , with D <•>( t ,1) is exhibited by 
1/l.a= •"'d..f ••. , (obviously 1/1.• is traceless). In (15), by 
1/1.•.' and Y,.,,', we mean the traceless parts (i) and (8). 
The equivalence of the latter to D <•> (0,2) is displayed 
by •"''[1/I •. :-H~•"1b•./-~,"1b•.•d)]=l/l~·. We might also 
argue as follows. Since the traceless part of 1/1•.<" is 
irreducible, and raising of the lower indices by means 
of •"'' is a similarity transformat ion, the result must 
be one of the irreducible parts of Y,M. Since the 
dimension is !m'(m-1)-m=6 the irreducible part 
in question must be the six-dimensional symmetric 
part 1/1'"·. 

It is clearly possible to convert, in the manner just 
illustrated by several examples, any tensor of mixed 
symmetry into tensors of lower rank, symmetric in all 
upstairs indices and symmetric in all downstairs 
indices. For the latter, the reduction is completed by 
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separating out the traceless part. Hence, a complete 
set of irreducible representations is given by the set of 
t raceless symmetrized tensors if; ..... :• · · ··. lf X1 is the 
number of lower indices , and X, is the number of upper 
indices, the irreducible representations may be labeled 
D(X1,X,). Since thi ' is the highest" representation 
contained in the product of X1 factors of D(l ,O) and X, 
factors of D (0,1), the present label ing agrees exactly 
with that of Sec. I II . 

Al ternatively, all indices may be lowered, converting 
each upper index into two lower ones . Starting with a 
symmetrized traceless mixed tensor with X1 lower and 
X, upper indices, this process must give an irreducible 
representation, i.e. , a tensor wi tb the symmetry of a 
particular Young tableau. I t is easily verified that the 
table in question has two rows, with ~'I +X, boxes in 
the first row and X, boxes in the second row. The 
reason why no tableaux with three rows are obtained 
is that adding a column with three rows means mul ti­
plying with the representation if/ •.•. " which is an 
invarian t. 

The dimension of if;., ....• symmetric in X1 indices, is 
H XI+1 )(Xl+2). Hence Y, •... ,'·· ··, symmetric in X1 
lower and X, upper indices, has t(X1+ 1) (XI+2)(X,+l) 
X (X,+ 2) components. The tensor obtained by con­
tracting one upper and one lower index has t XI (XI+l)X, 
X (X,+ 1) components. Hence the traceless part has 
H Xl+ l ) (X, + 1)(Xl+ X,+2) components, and this is 
therefore the dimensionality of D(X~,X,) . The same 
resul t was obtained in Sec. IV by the geometric 
method," which is more sui ted to that kind of 
calculation. 

The reduction of the product of any two representa­
tions is easily calculated by the above methods. The 
results of T able I V have been obtained by this method 
as well as independently by the geometric method. In 
Table IV may also be found the "wave functions" for 
any representation of SUa with dimension less than SO. 
The projection operators, which effect the symmetriza­
tion and subtracts out the trace, are easily written 
down as in (3) and (4), and allows us to obtain the 
transformation mat rices explicitly. One example may 
be sufficient to illustrate this. The transformation of 
the basis (3), obtained from (2) and (4), is given by 
the representation 

L,.-> P.',' (L,.,•a.'- L,..'a,•). (V.16) 

C. Group C2(B,) 

This is the group of 4 X 4 matrices that leaves a 
nondegenerate skew form h•6 invariant." This is 

u That is , the one with the highest weight. 
1101 :\ny skew metric may be transformed into the form 

h-' = [ 
- 1 l -1 

This is the choice we have made in Eq. (III.36). 
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evidently a subgroup of SU,, and ' the reduction of 
product representations is merely a refinement of that 
carried out for SUm, with m = 4. The fact that the 
form-invariant h•• exists, and may be used as a raising 
and lowering operator if we define h., by" 

hobhbc = 00 c, 

means that the two representations Y,. and if;" are 
equivalent. The equivalence is exhibited and proved 
by noting that h"'if/6 transforms like if;". Both if;. and if;• 
are (different and equivalent) bases for the representa­
t ion denoted D<•> (1,0) in a previous section. Clearly a 
tensor of arbitrary mixed rank can be converted into 
a tensor with all the indices downstairs. The reduction 
problem then consists of two steps: First reduce 
according to SU, (that is, split the tensor into its 
various possible symmetry classes, or Young tables), 
then separate out the " traces" formed with 11••. 
Remembering that It'' is skew, so that taking the 
trace on a pair of symmetrized indices gives zero, we 
easily find the resul ts of Table V. [The method of the 
last section is even ea>ier, and for higher representa­
tions, it is the only practical one.] As in the case of 
SU,, the low dimensionality (4 in this case) allows a 
simplifica tion. Thus the completely skew tensor Y,.,, ,, 
is equivalent to y,• = •"""if~•. • ·" where ,•lxd is the Levi­
Civita symbol. 

Let L,.. • be the infinitesimal generators of the 
fu ndamental representation D W(1,0) of c,. The form 
in variance of h"' means that 

h"'-> h•'- i•" (L.cth''+ L,..'IF) = h"' . 

Writing h" L,..'=LA••, we get 

L,.·•=LA'"· 

Hence the infinitesimal generators, with the lower 
index raised, are symmetric. Hence the number of 
linearly independent L,.•• is 10 which is the order of c,. 
In order to obtain a complete set of 16 independent 
matrices we introduce 5 linearly-independent skew 
matrices rr,••, i = 1, 2, 3, 4, 5 and choose them so that 

u;.obhab= O. 

We are now able to understand the reduction of Y,., 
and the higher tensors in greater detail. We have 
already noted that if/ • .• contains the invariant h"'if/ •. 6• 

The five-dimensional representation, which is the 
traceless part of the skew part, can now conveniently 
be wri tten 

tp;=. a ;.4 h,Jtob, i = 1, · · · , 5. (V.17) 

The proof of this statement follows. The six skew 
components of if/ •.• form a basis for a representation, 

" If 1fJ6 is as in reference 62, then 

h..- [1 - 1 1 - 1] · 

S TR ONG INTERACTION S YMME T R IES 

T ABLE v . Repre!entations or C,[B,] . The bases satisfy the ''subsidiary conditions'' 
h"'¥-.• =k" t...J;. t,.c-= 0, vi•b'Pw- a•. •'A;,•- g'iiPii. = g'i ~~>t;' - g'i'Pi;, .t - g'i'l'i;, • • 0. 

Complete Abbr. Highest Fig. Isotopic 
designation design. weight no. content Basis 

D' (O,O) 1 (0,0) 0 
"' 1 

1J' (1,0) 4 - (1,0) 4(a) O,O,i[UJ 
2VJ 

y,. 

1 
D'(0,1) 5 -(1,1 ) 4 (b ) O,t,t[0,0,1] 1/J •• &, rp; 

2vl 

D"(2,0) 10 _:_ (2 0) 4 (c){O,O,O,U,1 
2VJ ' [0,1,1,1] y,., ,<P;,Jo'XA 

1 
{O,i,i,1,1,1 D'' (0,2) 14 -(2,2) 'Pi j, 

2VJ [0,0,0,1,1,2] 

1 
{OCO,t ,t ,U,1 ,1 D''(1,1 ) 16 -(2,1 ) ({Ja;,"'·'· 2VJ t.t .• t .UJ 

1 to,o,o,u.t. D"(3,0) 20 - (3,0) 1,1,J~i .U. r/lobe. 
2VJ Ul 
1 f' i 't-1 ,1,1,1.1, .1)10(0,3) 30 - (3,3) 1.1 0,0,0,0, fl'iit. 

2VJ 1,1,1,2,2,3] 

1 r,O,O,O,O,i.t,i.t, 
D"(4,0) 35 -(4,4) 1,1,1,1,1,2[0,1, y, . .... 

2VJ I, I ,2,2,2,2,2] 

1 ro,o,u .u. 
D"(2,1) 35' - (3,1) t ,t ,1,1,1 ,1,U 

'{Jij, t 
2VJ 0,0,1,1 ,1,1,1, 

1,2,2,2] 

1 r ·O.U,U,1.1. 
D"(1,2) 40 - (3,2) 1,1,1 ,1,1,1.1 

'Pi;,• 
2VJ ~u.t.u.~. .uut 

that is, they transform among themselves. Therefore 
the six linearly-independent combinations <p;, i = 1, 
2, · · · , 5 and /i•'y,., transform among themselves. But 
h"'y,., is invariant and orthogonal to 'Pi· Therefore, the 
'P.! transform among themselves; that is, the <p; form 
the- basis for a five-dimensional representation. We do 
not prove here that this representation is irreducible, 
but it can easily be seen to be the representation 
D <' l(O,l ) discussed in preceding sections. The way 
that the 'Pi transform among themselves is given by 

<p; = rr ,•'if;.,-> rr,••(a.'+i•" L.c.') (~.•+ i•8 Ls,•)y,od 
= (a/ +i•·'L.c.') rr;"'if;... (V.18) 

As is the usual treatment of the Pauii rr matrices, we 
interpret u,A• as a constant tensor. This nomenclature 
is justified by noting that the · above definition of 
L,.;i gives 

u,•• -+ (~t- i•·' LA t)(~i- i•8L&J') 

X (8J+ i t.ef~ ,.')u/d= u/'"· 
That is, rr t • is form invariant . 
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® D' (I,O) ® D' (O,I ) ® D10(2,0) ® D" (0,2 

4 5 10 14 

10+5+ 1 16+4 20+ 16+4 40 + 16 

16+4 14+10+1 35'+10+ 5 35'+ 30+: 

20+16+4 35'+10+5 35+35'+ 14+ 10+5+ I 

40+16 35+30+5 

35+14+ 10+5 40+ 20 +16+4 

This representation D <•> (0,1) may appropriately be 
called the vectOf' representa:ion. The form 

gii = ut"uibo (V.19) 

is clearly symmetric, nonsingular and constant (form 
invariant). It may be used to raise and lower vector 
indices. For example, we have from (18) : 

L,. / = rr /' 6 (L,..·~. d-f-6.' LAb ")ui od· 

Clearly L,. ' i are the 10 skew 5 X 5 matrices, and their 
skewness is equivalent to the form invariance of gi;. 
Hence, this representation of C1 is B,, the orthogonal 
group in five dimensions. (The isomorphism between 
C, and B, was pointed out by Carlan.) 

To complete this discussion of the reduction of y, .. , 
we note that the ten-dimensional representa tion D (2,0), 
which is the symmet ric part of "'"'' is just the regular 
representation : 

X,. = L.c•'if;.,. 

The rr,•• play the same role here as in ordinary 
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STRONG INTERACTION SYMMETRIES 

TABLE V. Repr~entations of C2[B2]. The bases satisfy the 11subsidiary conditions" 
lt'~a..t~=-/tJ"tjJo'b.e=O, tr1o11 1f'~:~t=-u'•"1Pi;, 11 -r!1 '1'if, =g'11{)(;1f.. -t/1'PH.•-g'1¥'ii,•-O. 

Complete Abbr. Highest Fig. Isotopic 
designation design. weight no. content Basis 

D'(O,O) (O,o) 0 

"' I 
D'(I,O) 4 -(1,0) 

2¥.3" 
4(a) o,o,m.n "'· 

I 
D'(O,I) -(1,1) 4(b) O,U[O,O,I] 

2vj 
1/lo,b, f/Ji 

I 
4(c ){Ot,O,U,I 1>"'(2,0) 10 -(2,0) 1/Jo&,,f/'i,hXA 

2¥.3" 0,1,1,1] 

I 
{O,t,i,l,l,l D''(0,2) 14 -(2,2) V'ii, 

2¥.3" [0,0,0,1,1,2] 

I 
{ott.H'i,l,l D''(l,l) 16 -(2,1) 'Poirl/lo&.• 

2¥.3" i.i •• ,l,tJ 

I rO,O,O,i,U, 
D"(3,0) 20 - (3,0) I,I,!~U,!. !/lobe, 

2¥.3" M.J 
I r.U.I,I.I.M. 

D"(0,3) 30 -(3,3) !.![0,0,0,0, lf'ij l, 
2¥.3" 1,1,1,2,2,3] 

I r·o,o,o,o,u.u. 
D"(4,0) 35 - (4,4) I,I ,I ,J,I,2[0,1, !/lobed, 

2¥.3" 1,1 ,2,2,2,2,2] 

I ro,o,u,u. 
D"(2,1) 35' - (3,1 ) ~,!, 1,1,1,1,!,! 

'l'jj,.t 0,0,1,1,1,1,1, 2¥.3" 1,2,2,2] 

I rO.i.U.i.l.l . 
1>"'(1,2) 40 -(3,2) 1,1,1,1,!.!.! 'Pii.. 

)U.t.U.~. 2¥.3" .t.t.U.t 

that is, they transform among themselves. Therefore 
the six linearly-independent combinations tp;, i= 1, 
2, · · · , 5 and h•h,f;., transform among themselves. But 
h•h,f;., is invariant and orthogonal to tp;. Therefore, the 
'P.; transform among themselves; that is, the <p; form 
the- basis for a five-dimensional representation. We do 
not prove here that this representation is irreducible, 
but it can easily be seen to l'>e the representation 
D<•>(0,1) discussed in preceding sections. The way 
that the <p; transform among themselves is given by 

tp;= uf"if;.,-+ u;•'(6.'+i•AL.4.') (6•"+i•8 Ls•")>/tcd. 
= (6/+i•·'L.,,•)u;""'f;.,. (V.18) 

As is the usual treatment of the Pauii u matrices, we 
interpret u,•• as a constant tensor. This nomenclature 
is justified by noting that the · above definition of 
LA/ gives 

u;••-+ (6,•-i•' LA,•)(6•'-i•8 Ln•') 

X (6/+i•'l.,,')u;'"=u,••. 
That is, uf' is form invariant. 

®D' (1,0) ®D'(O,I) ®D10 (2,0) ®D"(0,2) 

4 10 14 

10+5+1 16+4 20+16+4 40 + 16 

16+4 14+10+1 35'+10+5 35'+ 30+5 

20+16+4 35'+10+5 35+35'+14+10+5+ 1 

40+16 35+30+5 

35+14+10+5 40+20+16+4 

This representation v<•>(0,1) may appropriately be 
called the vecW.. representtUion. The form 

(V.19) 

is clearly symmetric, nonsingular and constant (form 
invariant) . It may be used to raise and lower vector 
indices. For example, we have from (18): 

LA/= II ,•• (LAa"6•"-l-6.' LAb<l)ul cd· 

Clearly L~o.'l are the 10 skew SXS matrices, and their 
skewness is equivalent to the form invariance of g.;. 
Hence, this representation of C, is B,, the orthogonal 
group in five dimensions. (The isomorphism between 
C, and B, was pointed out by Cartan.) 

To complete this discussion of the reduction of 1/1 .. , 
we note that the ten-dimensional representation D(2,0), 
which is the symmetric part of "'·•· is just the regular 
representation: 

XA=L .• ·"'f; ••. 

The u,•• play the same role here as in ordinary 
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spinor analysis, providing the link between the 
"spinor" indices a, b, · · ·, and the "vector indices," 
i, j, · · ·. For tensors of higher rank, it may be con­
venient to employ a mixed notation. Thus, the basis 
y,.,, is equivalent to I(J;.; and the basis for D(l,t ) is 
either 

"'"'·' with h"y,.,_,= 0, 
or 

'Pi,/ with u 1ab¥'i,/"=0. 

D. Group G, 

Because G2 is a subgroup" of 0 7 it is helpful first to 
discuss the latter group. T he spinor-representation of 
0 7 is eight-dimensional. Let g"' be a symmetric non­
singular matrix and g,, its inverse: 

t''g,, = a,a. 

We use this tensor to raise or lower indices in spinor 
space (i.e., latin indices a, b, c). Let 'Y••' be a set of 
seven 8X8 matrices that satisfy 

f:c'Y icb=-y ,Clb= --y 1ba 1 

("f ,"f;+"Yn .).'=- 2g./'•'· 
(V.20) 

The numbers g.; are defined by these equations, once 
a fixed ('' and a fixed set of 'Y matrices have been 
chosen. The latter should be taken to be linearly 
independent; then g.; is a nonsingular quadratic form 
with an inverse defined by 

g'ig;~:= O~:' . 

These matrices are used to raise and lower latin 
indices i, j, k, henceforth called vector indices. Hence 
('' and g'i are the metric tensors in spinor space and 
in v~ctor space, respectively. 

The ·y matrices may be used to construct a complete 
set of matrices (64 independent ones) in spinor space. 
The 21 independent matrices 

G,.;.' =t["f ;,"f;]..' 

are of particular interest. First we note that G.;'' arc 
skew and independent of "Yt': 

Gt/""= -G;/~', G!j'16')' .tab=O. 

Therefore, the 21 G,.;'' and the 7 "f,'' form a complete 
set of 28 linearly independent skew matrices. Next, 
defming the 35 matrices 

G;;,.'=i["YcY/Y>].', 

where [ "l'i'Y/Y>] is the antisymmetrizcd product of 
"( 1, "(;, ,,, we note that G;;•"' are symmetric and 
independent of ('' : 

G,i,/" " = G;;~:,_, G,i.tabgae.= O. 

~t The fi rst physical application of this fact appears to have 
been made by G. Rocoh, Phys. Rev. 76, 1352 (1949). 

Hence, the G;;•'' and go• form a complete set of 36 
independent symmetric matrices. 

As a simple consequence of the "anticommutativity" 
of the 'Y matrices, we find 

G,.;,Gt1= g;{l.;- g,.Gii+ g,,G,..- g,,G,.., 

which are the correct commutation relations for the 
group of rotations in seven dimensions." Therefore 
the (G;;).' are the infinitesimal generators of that group. 

The group G2 may now be obtained as a subgroup of 
O, in the following way." Let rf' be a constant spinor. 
Of course 0 7 does not admit such an object , and rf' is 
not constant under 0 7• However, there exists a sub­
group of 0 7 that does leave rf' invariant, and it turns 
out that this subgroup is G,. Hence rf' is constant with 
respect toG, only. The subspace of spinor space which 
is normal to rf' is seven dimensional, and there exists 
a very convenient way of labeling the seven components 
of Y,. which span this subspace. For, let.,,. be defined by 

'7 ,4= -')';6"7}6, '1 io='YiGb'76 =TJ ;6g~~o . 

Then clearly .,, • .,. = 0. Hence the seven components 
., ,ay,. of Y,. are the basis for a representation of that 
subgroup of 0 7 that leaves.,. invariant. 

In order to find the matrices of this group, let us 
define 

r .jl:= "'(.obf'//TJ/t;6. 

It is not at first obvious how this can be solved for 
1'•·•• since the .,,. are singular. It is clear, however, 
that "f ••• is of the form 

'Y·••= A r i;>'l/'1•'+ B(.,.,..,,-.,,.,.,.). 
From the commutation relations we find, with the 
normalization 

rf''l·= 1, that .,,•.,;.= g,.;, 

and this immediately gives A =B= 1, or 

'Yia= r ijl7fi'7&.t+'7ia'76-'7•'hf)· 

Vsing this formula in the anticommutation relations, 
we find that the necessary and sufficient conditions for 
the r.;. to yield "( ... with the defining properties (a) 
that the L ;• be totally skew, and (b) that 

r,••r;.•+ r;••r ,.•= o,1o/+o/o/-2g;;g". (V.21) 

Some simple consequences are 

I\i = o, r j..,r;•l = 66/. 

Although not obvious, it is nevertheless true that the 
above properties suffice to reduce the product of any 
three r matrices to a sum of terms that are linear in 

"The differential operators (1/i )(Xiiti -XiiJi) are a realization 
of these commutation relations. 

" The following development was suggested by the calculations 
or reference 19. 
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r's. The formula is 

r .... ·r.i•r,;•= -&"'•r .. ;•-a.,/r .. 1'-5,/r ,.•i-g••r ,.~/ 
+&,.•r ,..i•+a .. jr m•'+6n.tr "'ii+gilr -~I:· 

The generators of G, are those linear combinations 

S'iG,;.b, 
that satisfy 

S'iG,;.•.,,= 0. 

This is easily reduced to 

S ''f•;•=O. 

The general solution (taking S'i = - Si') is a linear 
combination of the following matrices 

P(14) <~• > <;=!(elm 'o. 1- am;a. ')-t r .... r ";, 

of which 14 are linearly independent. Hence G, has 14 
parameters, and the generators are 

L(•u,)o6=P(14)(,..~)iiGi;a6• 

In vector space this becomes 

L(•~).J: 1=L (,.n)o~61t']k4• 

Hence, the generators of G, is the set of skew matrices 
orthogonal to r •;•: 

L (mn )iir iik =O. 

The reduction problem for G, can now be solved. 
Let D <1l(1,0) stand for the representation y,,. The 
second-rank tensor is first split into the symmetrit: and 
the skew part. The symmetric part >/J;;, contains the 
invariant g'iY,0 and the remaining 27 components form 
an irreducible representation that we label D <27 > (2,0). 
The 21 skew components>/~;.; break up into the D(1,0) 
r•;•Y,,;= .,• and a remainder with 14 components. The 
latter make up the regular representation Lcm•>'i>J!;;, 
which we call D <14>(0,1) . (These labels agree with those 
of the previous sections.) 

The reduction of the third-rank tensor >/!;;• is non­
trivial. First write down all the operators that exist 
for reducing the number of indices, that is, all the 
form-i nvariant matrices with 3 to 5 indices: 

A = r •t•, Bm = g'iom >, 
Am=!(r•;•r,m•+r;••r,m'+rwr,m•), 

Am •. = t(r m'io,•+ r .•;om•)-1/ 7gm.r•;•, 

Am.•= !(r .. •;a.•- r .•;om•)-tr m.•r,"ro'i. 

Here Am has been made completely skew in i, j, k, 
since any symmetric part would reduce to B,. by use 
of (21) . We have subtracted the trace A from Am•. and 
the part Am-fm"1A,1 from A,., •. In this way we are 
assured that Am • .'i'>J!m and A .... •;ty,,,.. are irreducible. 
These operators are then applied to each of the syrn­
mct ry classes of Fig. 20. We start with the skew part 
y, ,._ ,.,, which has 35 components. Applying Bm gives 
zero trivially; Am.• also yields zero after some calcula-

Sl 

tion. Thus we are left with 

>/!;,;.•= Am •. 'ity,;,;,t®Am';ty,,;t®A •;ty,,,.,, 
:. D <m(2,0)®D<7>(1,0)®D (l>(O,O). 

(V.22) 

To each of the two parts >/!;;.• and >/!••.; with mixed 
symmetry (having 112 components each), Bm, A,.., 
and Am.• gives vcn, D <27>, and D <14>, respectively. 
The remaining components, of which there are 
112-7-27-17=64, are irreducible. Since this is the 
highest representation" in D(1,0)®D(0,1) it must be 
D(1,1). Thus 

1/lt;,J:= B,..'ik,Jt,; . .tffiA,.~. ik ftjlii .J: 

®A,..,n1k4f•; . .t®"remainder", 

. . D C1 >(1,0)(£)D <m(2,0)(£)D<" >(0,1) 

(£)DC0•>(1,1). 

(V.23) 

The "remainder" is the tensor Y,,.;.•, that satisfies the 
"subsidiary conditions" 

B"''lk,Jti;,.t=A"'"·'"iY,;;,~c=A"'·"ilc,ij;•i . .t=O. 

The resul t for >/!;•.; is, of course, exactly similar. The 
completely symmetric part >/!•;•.. can be contracted 
with Bm only. Therefore, the remaining 77 components 
are irreducible. Since this is the highest representation 
in [D(1,0)]', it must be D (77> (3,0). Thus 

1/tii.t. = B"' 'ii;f1-;.t , ®"remainder" 
:. D <1l(1,0)®D<m(3,0) . 

The complete results for >/!•;• are listed in T able VI. 
It may be helpful , to support our claim that our 

method supplies explicit matrices of the transformations 
for each representation, to write them down for some 
of the representations that are listed in Table VI. 

We found the transformat ion matrices Lc .. •><; for 
the representation D<7>(1,0). These are given explicitly 
in terms of the r •;•. For t)te present purpose the tensor 
character of the label -\mn) on Lcm•)/ is irrelevant, 
and it is perhaps less confusing to replace it by a 
single index A running from 1 to 14. Then the trans­
formations of the tensors before symmetrizatioa are 

>/!;; _, Y,,.;+•·'(LA/cl,'+ LA/ ci /)Y, .. , 

>/!•;• _, >/!•;•+ ,A(LA,•ar•• ·+ LA/"a,•a.·+ L,a•o/ a;"')>/1, .... 

The representation D <21l (2,0) is obtained from Y,,; by 
the projection operator that symmetrizes and makes 
traceless, namely, 

P(27),/'= Ho.'o/+o/a/)- (1 / 7)g,;g". (V.24) 

Hence the matrices for v <m (2,0) are simply, 

LA-> P (27);;01 (LA,mo,•+LA1•o,m) . 

We already found the projection operator P(14);/1 

similarly : 
P(1),/1= (1/ 7)g;;g01, 

P(7),./'=ir,,.r"•. 
(V.25) 
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TABLE VI. Representations of Gt. The bases satisfy r 'ik,J,.,, ; = giiY,i;, = g'i..Yii, t = f iUY,.,;j,l: = g''"'ijt, = giiY,ij, k, l = I' i""'Y,·;,;, .tt =- 0 . 

Complete Abbr. Highest Fig. 
designation design. weight no. Isotopic content Basis 

D'(l,O) 7 3(a ) t,t ,l 

"'' D"(0,1) 14 3(b) 0,0,0, 1,! .fi ,j,XA 

D"(2,0) 27 o,; ,;,1,1,1,J.!,2 1/lii. 

!>"(1 ,1) 64 iUUU.H 
2,2,2,2,1:,! Y,ij, 1 

D"(3,0) 77 {O,O,O,i,!,1,1,1,1, j, 
U.!.U2,2,2,U f;;~ 

D"(0,2) 77 ' l 0,0,0,0,0,0,1,1,1,! ,!. 
J.!,U,2,l:.f,3,3,3 Y, i j,k, l 

It is easily verified that these operators are indeed 
projection operators, and that they add up to o.'o/ 
The reader is now able to write down the matrices for 
any one of the representations in T able VI. 

VI. APPLICATIONS 

A. Introductory Remarks 

We have presented the tools that are needed to 
construct a physical theory of the strongly interacting 
particles. The important question now at hand is to 
select the group which is appropriate, make the proper 
identification between the basis of the representations 
and the physical states (particles, resonances, etc.) 
and determine the experimen tal predictions that ensue. 

The myriad of schemes that may be constructed is 
limited only by the imagination of the inventor. 
Consequently, we have been unable to find a course 
between the Scylla of being too abstract and the 
Charybdis of leaving out many logical possibilities. 
It would seem then, that our purpose is best served 
by giving illustrative examplos, from which the general 
pattern of procedure may be gleaned. It cannot be 
emphasized too strongly, however, that all of the 
remainder of this section is offered f or illustration only. 
w~ identify the components of the basis of an 

irreducible representation of a group with a set of 
physical states (particles, resonances, scattering states, 
etc.). Since we have only considered groups of "charge"­
space transformations, which commute with every 
space-time transformation, each of the physical states 
within one irreducible multiplet must have the same 
space-time properties, i.e. , spin, rela tive parity, baryon 
number, etc. In particular, the square of the total four 
momentum, or the mass, of each of these states must 
be the same. But a cursory examination of the mass 
spectrum of the known baryons and mesons tends to 
preclude the possibility that these particles could form, 
in any meaningful way, the components of the basis of 
an irreducible representation of any group larger than 
the four-parameter semi-simple group of isotopic spin 
and hypercharge conservation. Namely, the only 
apparent approximate multiplet structure seems to be 

3ll 

® D7 (1,0) ® D" (0,1 ) ®D"(2,0) 

27+ 14+7+1 64+ 27+7 77+64 +27+ 14+7 
64+27+7 77+77'+27+ 14+1 

77+64+27+14+7 

that associated with isotopic spin. This is the basis for 
one possible point of view. 

Another point of view can be based on an analogy, 
which, if fruitful, would allow us to consider meaning­
fully the baryons as members of a "supermultiplet. " 
That the analogy may be misleading, in whole or in 
part, is understood ; we cite it only as one possible 
tligh t of fancy. 

Let us consider again the concept of isotopic spin. 
As commonly conceived, the particle interactions break 
into an isotopic invariant part and a much weaker 
symmetry-breaking part, most likely due to the 
electromagnetic field. In the absence of the latter, the 
neutron and proton are identified as the degenerate 
members of an isotopic spin doublet , a spin 1/ 2 basis 
for an irreducible representation of the isotopic spin 
rotation group. Being members of such a multiplet, 
all their space-time properties are the same, including 
their masses. The main effect of the symmetry-breaking 
interaction, in this case, is to remove the degeneracy 
in the masses and interactions of the proton and 
neutron. This is so, because elect romagnetic inter­
actions conserves parity and baryon number, and is 
Lorentz invariant, and hence does not change the 
other space-time properties of the states, such as spin, 
relative parity, and baryon number. That these 
statements are independent of the symmetry-breaking 
coupling strength is obvious. It is conceivable that the 
interaction could change the number of states by 
giving rise to some new resonant states. In the isotopic 
spin case, it would seem that these new states either 
do not exist or are far removed in mass from the 
perturbed doublet. Thus, it has been found , since the 
proton and neutron are related states even in the 
presence of the symmetry-breaking interaction, that 
to some extent it is still meaningful to consider them 
as members of a doublet. 

One may now carry the analogy over to the case of 
some higher symmetry. T hat is, one might speculate 
that the particle interactions split into a symmetry­
preserving and a symmetry-destroying part, the latter 
involving some "fields" not contained in the former. 
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One such possibility is the global symmetry scheme" 
where the bosons involved in the symmetry-preserving 
part are only pions, while in the violating part, they 
are only K mesons.•• Al ternatively, the symmetric 
interaction could involve both K and ,. mesons, while 
the symmetry-breaking interaction could be due to 
some other, as yet unknown, field . I t is th is latter 
interaction, then, which would be responsible for the 
observed mass splittings and other mischief. If the 
analogy is not misleading, we may, even in the presence 
of this interaction, still speak in a meaningful way of 
the "supermultiplets," the components of the basis of 
an irreducible representation. Namely, we are able to 
say that all the components must have the same spin, 
relative parity, and baryon number. In addition, as 
before, we assume that if any new sta tes arise as a 
result of the symmetry-breaking interaction, they are 
separated by a large mass from the presently known 
resonances. 69 This guarantees that the number of 
states will be preserved in the presence of the inter­
action. Thus, by completely describing one component 
of a multiplet, we have completely specified all the 
other components, except as to their masses and 
widths. If, in addition, we adopt the viewpoint of Lee 
and Yang17 with regard to relating the widths of the 
various components, we are left with the masses as 
the main quantum number perturbed by the symmetry­
breaking interaction. 

According to the methods developed in the preceding 
sections, the components of the basis of an irreducible 
representation are identified by the weights m to 
which they belong. 

For representations of simple group of rank two, it 
turns out that at most two linear combinations of H 1 

and H 2 can be interpreted as !,. This is because the 
spectrum of I 1 must be symmetric about I 1= 0. For 
both SU, and G, only one of the two possibilities, 
namely J, cc H 1, are considered ; but for C2 (B2) ei ther 
choice gives rise to reasonable physical models (see 
below) . In Tables I V-VI the isotopic content of many 
representations are recorded. This is the number of 
isotopic spin singlets, doublets, triplets, etc. , contained 
in a representation. I t may most easiiy be read off the 
weight diagram. The number of times that the total 
isospin I ' is contained is equal to the number of states 
with I a= I ' minus the number of states with I, = I'+ l. 

B. Analysis of Invariant Amplitudes 

In most cases, an attempt at a physical theory will 
begin with associating a particular representation Do 
of some group G with a set of particles called the 
"fundamental baryons." Which baryons are funda­
mental depends on the model; it is not even necessary 

'
7 See, M . Gell-Mann, reference 2. 

11 Or vice versa, see J. Schwinger, reference 2. 
• This assumption, or a similar one, is a sine q11a non of any 

theory of higher symmetries. 
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that tP.e "fundamental baryons" be stable baryons. 
To fix the ideas, however, we assume that this is the 
case, and refer unambigously to " the baryons." Let 
Y,. be the wave function for these baryons, that is, th~ 
basis for Do, and let 1/1' be the wave function for the 
"antibaryons." Clearly 1/1' is contragredient to Y,. and 
is the basis for DJJO= (Do)• . The first experiment that 
may be discussed, even before introducing the bosons, 
is baryon-baryon or baryon-antibaryon scattering. 
The relevant four point function is of the form 
(suppressing the space- time variables) 

a= A.,'4 (T(y,lay,~1 'if•) ), (VI .1) 

where the coefficients A.,•• must be chosen so as to 
make a invariant. 

Consider first the four-point function for a specified 
set of baryons, one of the terms in the sum a : 

(T(Y,tay,~t'if•) ). 

A knowledge of the effect of the E. on a basis, Y,. , of 
an irreducible representation can be used to find 
relations among the four-point functions for different 
processes. First of all, we insert the operator form of 
the commutation relations [2 • .£~J= r'(a)D, into the 
four-point function above to obtain 

(T(y,tay,,[ E.,E~}I/<;f4) )= r'(a) (T (y,tay,,fj,,pt<;f4 ) ). 

The 2. and the 0, are linear operators acting on the 
product basis as in (III.14) . By remembering that 
when they act on the vacuum they give zero and that 
E.t = E-a, we find 

(T{[ (E-aY, )tay,, - y,t. (E.>/1).] 
X[- (E.Y,)I<;f4HI'(E-al/t)•]}) 
- (T{ [(E.Y,)tay,,-y,t•(E-.>/1)•] 
X[ - (R...Y,)I<;f4HI'(E.Y,)4] } ) 

=r'(a)[ -m1(c)+m 1(d)](T (y,tay,,y,t'if4 )), (VI .2) 

where m;(c) andm,(d) are the weights of ¥- ' and Y,4 , 

respectively. Thus, by knowning the effect of the E. on 
the basis of the baryon representation, we can determine 
an equality between the four-poin t functions of two 
different processes. 

As an obvious example of the relationship just 
found, consider the scattering p+ii -+ p+n and let 
the E_. be the isotopic spin lowering operator. T he 
above relation then becomes 

(T(Y,N • .r.t.r.) ) 
= t(T[ (Y,.'¥-,-Y,.tY,.) (Y,.tY,. - t . to/.) ]), (VI.3) 

which states that the I = 1, I ,=.l four-point function is 
equal to the I = 1, I 3 = 0 function, i.e., that the four­
point function depends only upon I and not upon I,, a 
well-known result. The remaining equalities can 
obviously be obtained by repeating the procedure of 
inserting these commutation relations into the newly 
formed four-point functions ; this procedure clearly 
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terminates when we reach the I = 1, !,= 1 state in this 
example. In the general case, when the E. are not just 
restricted to the isotopic spin operators, we proceed in 
the same manner. Namely, with repeated use of the 
general relation we can generate a string of equal 
four-point functions. From the example aLovc, it is 
clear that this string will terminate after a finite 
number of steps since there can only be a finite number 
of independent relations. This procedure determines 
all the four-point functions which are equal to the 
one we started with. Similar statements, of course, can 
be made for the n-point function . 

If · we choose our original four-point fu nction such 
that Y,1'>/t• is a component of the basis of an irreducible 
representation (as in the above example), then all the 
related four-point functions may be completcl:; • ha r­
acterized by this irreducible representation, wh ich in 
turn is characterized by its highest weight. They will 
be independent of the otl)er weights (in much the 
same way as in the above example, they were char­
acterized by I and independent of I 3). If y,t'>f• and 
F"f•• belong to two different irreducible representa­
tions, then the four-point functions in which they 
appear are, of course, unrelated (just as the I= 0 
amplitude is unrelated to the three I= 1 amplitudes). 
We now show that it is possible to gain a much deeper 
insight into the structure and interrelations of four­
point functions after we have found the most general 
matrix A.;• that makes (1) invariant. 

To find all possible solutions of this problem is the 
same as determining the one-dimensional representa­
tions contained in DB'®DB'®D8 ®D8 . It is both 
convenient and traditional to do this in two steps. For 
example, for baryon-antibaryon scattering, one first 
decomposes DB'® DB: 

DB'®DB= l:Eil v,D., (VI.4) 

where the sum is over inequivalent irreducible repre­
sentations, and the v, are integers. The invariants in 
(1) are then the invariants in 

l:Eil v.'(D,®D,*), (VI.5) 

where each D,®D, • contains exactly one invariant. 
Techniques for finding the v, in (2) were amply 
discussed in Sees. IV and V, and many examples were 
listed in Tables IV- VI. Although the v, contain some 
information that is quite important in applications to 
follow, we need a more explicit form of the reduction 
for the present purpose. 

Suppose that a particular N 1-dimensional, irreducible 
representation D~, whose basis we label by the letters 
p, v, p, · • ·, is contained in the product DB'® DB or 
Vt'>it•· This means that there exists linear combinations 

(fl/ll),"{t'>f4, p= 1, 2, · · ·, N~, (VI.6) 

which transform among themselves according to D,. 
The numbers (fl/1>)," may be regarded as the com-
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ponents of a constant (= form invariant) tensor, and 
will be called, after proper normalization, an isometry. 
Although the name may be new, the concept is well 
known, and several examples have already appeared 
in previous· sections: (1) The Pauli rrv.• matrices 
connect the product of two spinors to a vector (Y,1rr;Y,), 
(2) The matrices 1, -y., i¥'2(-y,-y, --y,-y,), -y,-y., 'Y• used 
for writing down Lorentz invariant couplings connect 
the product of two four-spinors to tensors, (3) The 
matrices of any repr~ntation D of a Lie algebra 
connects the product D®D* to the regular representa­
t i<'n (as was emphasized in Sec. V), and (4) Matrices 

and r,1• were introduced in Sec. V. 
The normalization that qualifies these operators for 

! he title isometry is 

en, <'>)."(n<o·)•'= a,·, 

(!l, U>),"(!JU >•)/ = P(1) ,.d!. 
(VI.7) 

Here (!J<1>•)."=g••(!J,<ll),d when g'' exists; in general 
it is the isometry of the representation D 1* contra­
gredient to D,. [It may be proved that D1®D1* 
contains D1* if it contains D1.] The matrix P(l) .. •', in 
which c, d labels the rows and e, f labels the columns, 
is the projection operator associated with D 1• Several 
examples of (7) are well known: 

(1). !v2..,,,!v'2·•·•=a.•, 

!v'2..,.,!v'2 .. "= t(a.•a.--a.·a.") = p,;· 
where P • ."• is the antisymmetrization operator; 

(2). !v'2(rr;).•!v'2(rr')••=a/ , 

!v'2(rr,).•tv'2 (rr'),•= a.•a,•-ta.•a,•= P.•,• 
where the rr; are the Pauli matrices and P.•; is pro­
jection operator that separates out the trace ; 

(3) . In Sec. V, Eq. (V.19) we found that 

(!)lr ,1.(i)lr•;•= a,•, 

(t) lr ;;t (i)lr"m= P(7);•'m 

where P(7)J•'m is the projection operator (V.25) that 
projects out the 7-dimensional representation of G2 

from D<1l®D<1l. 
As in ( 4), let rr label the inequivalent irreducible 

representations, and write n <• .•>, •= 1, .. ·, •• for the 
v, isometrics associated with each of the v, equivalent 
representations D,. Then the equivalence between 
(n,<•.I>)," and (n,<•.•>)," means that there exists a 
nonsingular matrix (P<•.l.!>)."/ such that 

(P<• .U >) ."l(n.<•.•>)l= (fl/•·1)),". 

Using (7) we get 

(P<• ·' ·'>)."/ = (fl, <•.I>),"(n<•.•>•)/. (VI.8) 

From this we see that P<•·1•2> is an isometry. In 
particular, if the indices are the same as in P<•·1•1> we get 
back the projection operators. Thus we label the 
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projection operators associated with one of the D, by 
p <•.l.l >. Then the properties of the isometrics, and in 
particular the projection operators, may be summarized 
by 

en, <•.•>)."(n <•' .•. ,.).'= a ... a ... a,·, (VI.9) 

(fl/•·•>),•(n<•.•'>•)/= (P<•. •·•'> )."l , (VI.IO) 

(P<• .... '> ),dl (P <•' ·•" ·•'">),/• 
= a ... a ... .. (P <•. •.•" '>)."/. (VI.!!) 

A direct result of Schur's lernrna70 is that the most 
general form of A.;• that makes (I) invariant is given 
by 

Aac:bd= L: Ffi·"·"'(P<tr.•·•'>).bed, 
"·"·'' 

a= I: F ····•'(Y,.,Y,)(P<•.•·•'> )N({t'>Jt.) . 
(VI.12) 

11,r,r' 

where F• ·•·•' are arbitrary and include all references to 
space-time coordinates or transformation properties. 
TJsing (10): 

a= I: F•·•·•' ({tn,<•.•>y,)(Y,n <•.•'>.Y,). (VI.13) 
ll,r',"•Jl 

This is the explicit realization of (5). The number of 
terms with the same rr is v.'. 

The number of terms in (13) is L:v; and=depends, 
of course, on the choice of the group G and the 
representation Ds. The procedure that we have 
outlined is a direct generalization of the well known 
treatment of isotopic spin. In that case, the index • is 
superfluous, since the v, in ( 4) are always zero or one. 
Thus, the surnrnation over rr, <, •' reduces to a sum 
over I, the total isotopic spin. If all theY,. have isotopic 
spin 1/ 2, (13) reQuces to 

a = F'(ftv'2rr,Y,) (Y,!v'Irr :Y,) 

+F"[Y,tv'2W-!rr;rr1)Y,] 
X[Y,tv'2W-irr;rr')y,]. (V1.14) 

The process of applying the generator 2. and 0 , to a 
basis Vt'>/t• of an irreducible representation in (12) or 
(13) clearly can lead to any other basis of the same 
irreducible representation, but cannot lead out of that 
representation. Thus the method that was outlined 
following (1) relates four-point functions within each 
term of the rr, •', <sum in (13). In fact, that method is 
simply a way of calculating the isometrics. For example, 
the relation (3) expresses the fact that the right-hand 
side and the left-hand side occur with equal weight 
F' in (14). 

C. Resonances and Mesons 

Scattering in one or more states of rr, <, •' may 
exhibit resonances. The resonant states are then 

~r, Sitzber. preuss. Akad. Wiss., Physik.·math. Kl. 
1905, p. 406. 
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multiplets transforming according to D •. In on..lcr to 
determine the possible resonance multiplets and their 
transformation properties, it is sufficient to know the 
Clebsch-Gordan Series ( 4). For simple groups of rank 
two, and low-dimensional representations, this informa­
tion is contained in Tables IV- VI. 

Nothing in our development thus far distinguishes 
between stable and unstable resonant states. Therefore, 
it is impossible to make any definite predictions about 
the number of mesons in a given model. However, in 
the limit in which the invariance is exact, the various 
resonance states within one multiplet will have the 
same mass, width, etc. This might lead one to expect 
that if one member of a multiplet is stable, so are all 
the other members of that multiplet. If this is true, 
the number of mesons will be related to the 
dimensionalities of the representations occurring in 
the decomposition (2) ." 

If one likes to write an unrenormalized Lagrangian 
involving Yukawa couplings, it is necessary to find the 
trilinear invariants involving Y,., if;•, and the meson 
field . If stable mesons are indeed possible intermediary 
states in B-B scattering, then these same trilinear 
forms are needed to write the vertex function . This 
remains true even if the mesons are regarded as bound 
states of the B-B system. From a mathematical 
point of view, these trilinear couplings are already 
known. All that is needed is to reinterpret the quantities 
(Y,.Y,,) appearing in (12) as the components of the 
meson field. For practical purposes, however, it is 
convenient to label the mesons by a single index, as 
for example <P', such that each component corresponds 
to one physical meson. Let DM be the representation 
for which rp" is the basis. In order for a trilinear invari­
ant to exist, DM must be equivalent to one of the 
terms in (4). That is, an isometry (fi,W>).• must exist 
such that "'' transforms contragrediently to ({;n/mY,). 
Then the trilinear invariants are of the desired form, 
namely 

({t!J.<M >.f)<P'· (VI.lS) 

In the manner of Eq. (1 ), consider the three-point 
function for a specific set of two baryons and a meson, 
one component of the general invariant three-point 
function (15), 

(T(Y,''>f•<P") ). 

Again, insert the operator commutation relation to 
obtain 

(T(Y,toy,,[2.,2-.]<P') )= r' (a) (T (Y, toy,, f[;;r:•) ). 

Proceeding as previously, we find 

(T([(E_.y,)toy,,-.;,t• (E.Y,,)][- (E-. 1"•)]) 
- (T([ (E.Y,)t'l/<,- Y, t• (£~>1- •) J[- (E.q>•) ] ) 

= - r'(a )m;(!' ) (T(.J-1'1/<•1"' 1). 

A trivial example is afforded by the pion-nucleon 
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vertex. Con&ider 
{T(y,,ty,• <P• ')) 

and P,. as the isotopic spin raising operator. The 
well-known result follows 

1 
(T(Y,,lf,<Pr') )= -(T[ (4·, tY,,-Y,. ty, .) '{!.•]). 

V'l 

Since we have demonstrated the method both in the 
case of the three-point and four-point functions, it 
should be obvious that this method can be generalized 
ton-point func tions involving both mesons and baryons. 

Let us now proceed to the specific cases of SU,, B2, 

C2, and G,. In the examples contrived for SU 3 and G2, 

we follow a line of reasoning according to which th~ 
eight known baryons are more fundamen tal physical 
states than are the baryon resonances, (or baryon 
excited states) . Specifically, no resonance state or 
unobserved baryon is to appear in the same mul tiplet 
with any of the eight observed baryons. Such a 
distinction is quite unfounded, even though it seems 
to be the most fashionable procedure at present. We 
remove this restriction in our examples oi theories 
built on B, and C,. 

D. Model Built on SU, 

If we assume that the eight baryons can form the 
bases for one or more representations, then the dimen­
sionality of these represen.tations must add up to eight. 
An inspection of Table IV for SU, shows that there is 
only one possibility with the correct isotopic content; 
the eight-dimensional representation D <8>(1,1). This 
implies that all the baryons must have the same 
space-time properties. If we assume that there are 
only the seven known mesons, it is impossible to 
assign the correct isotopic content under SU 3• In 
addition, if we require that the meson-baryon vertex 
function does not vanish, which incidentally corresponds 
to the existence of pole terms in dispersion relations, 
the dimensionality of the meson representations must 
be either 1, 8, 10, or 27. This follows from the fact 
that the Kronecker product of two eight-dimensional 
representations of baryons contains representations of 
only those dimensions (Table IV). One possible way 
out of the dilemma is to postulate the existence of an 
eighth meson which has not been experimentally detected 
as yet. 71 This is the approach of Gell-Mann,18 which 

:y~-*I•. 
_, s- s 

0 I Is .• -, f 

FIG. 21. Weight diagram forD' (1,1) of 
SUa with bases associated with baryons. 
For meson bases, the substitution, 

(p ,n ,z.o,:;;- ,l;+,~o,~-,A)-+ 

(K+,Ko, -Ko,K.+,r+,,A,r-,'f~XJ) , 

should be made. 

71 See, for exam[>le , M. Gettncr and W. Selove, Phys. Rev. 
120, 593 (1960); J. Poirer and M. Pripstein, Phys. Rev. 122, 
1917 (1961). 
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we follow here. It then follows that the meson repre­
sentation is also eight-dimensional, and that all 8 
mesons have the same space-time properties. [For· 
example, 2: and A have the same parities, and the 
parity of (Ja) is the same as that of (,..N).] 

Because D<•> occurs twice in the product v <•>®D<8>, 
there are two of the isometrics in (15). To find them 
is to make a very slight extension of the tensor analysis 
developed for SU, in Sec. V. The baryon wave function 
is written y,. , in keeping with our convention to use 
capital Latin indices for the regular representation. 
The antibaryons are labeled 1/l'. Clearly the structure 
constants C BDA supply one of the two isometrics. The 
normalization is fixed by the usual definition 

gvE=CnvACAE8 . (VI.16) 

From the commutation relations (II.3) we find 

C no• = trace[LnLvLA- LvLnLA]. (VI.17) 

We can define the second isometry by 

C'nv•=trace[LnLvLA+LvLnLA]. (VI.18) 

Although these relations are true regardless of which 
representation LA occurs on the right, the most con­
venient choice is D <•>(1,0), given in (III.20). Both 
goE and C80A were calculated in Sec. III F. 

The most general three-point function is 

(F1 (1/l'Cnv•fA)<P0+F'(l{l'C'nvAfA)~), (VI.19) 

where '{!8 =g08~ is the meson field. 
In Fig. 21 we have furnished the weight diagram for 

D<8>(1,1) with the appropriate baryon symbols. We 
associate I, with v3mt, andY with 2m,, and summarize 
the relations between the four different labels that we 
have used: 

lA ) : 11 ), 12). 13), 14), IS), 16), 
17), 18); 

Ia): l -1 ), l-2), l -3), -1+1 ), 

li ) : - 1+2 ), 1+3), - 11), - 12); 

Baryons: - 12:+), IP), In), 12:-), I:O:-), IZ"), 

12:"), I A) ; 

Mesons: - I,..+ ), IK+), IK0) , 1,..-), IK-), 

- IK"), l,..o), l,..oo). 

(VI.20) 

The action of the operators 11, and 2. was given 
both in (III.26, 27) and in (III.30, 31). Using the 
dictionary (20), this is easily translated. The result 
for baryons is given in Table VII. 

We are now in a position to make the predictions of 
the theory. Consider the scattering of a meson M and a 
baryon B, M+B->M'+B'. The pertinent four-point 
function (suppressing the space-time variables) is 

(T(fn•1fM•lfnfM) ). 

The combination fBfM is the Kronecker product of 
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T ABLE VII. Action of E. on baryons for D(l>(l,l) in SU,. Table for OO.Ons is obtained by substitution 
(p ,n,'EJJ;::-):+ ~,r.-,A) - (K+,J(O, -K.o,K+,.,+,1fo,.,-,.,r»). 

""' J;. '-... p n '::!' - :~;+ 2. .. :~; - A 

ul£, p '::!' -..n.x+ Vlx> 
61£_, n :::- -Vlx> Vlr:-

X" 
2¥3£, -..n.x+ +YlA p """ Vlp 

X" 
2V3E_, +YlA Vlr- -Vl::!' z- Vlz-

X' 
2V3E, -V!A ..n.x- +Vlp -H Vln 

-X" 
2¥3£_, +Vlx+ +YlA '::!' ..n.z- -¥3::!' 

V!JI , tp -in !'::!' -tz- x+ -x-
2H, p " -ZO -:::-

two eight-dimensional representations, one for the 
meson and one for the baryon. This reduces, according 
to Table IV, as follows: 

8®8= 1®8G'J8EE> 10® 10*®27. 

There are eight (=1'+2'+1'+1'+1') · different four­
point invariants, or equivalently 8 independent 
amplitudes." 

So far we have considered the representations for 
the known baryons and particles, It is conceivable 
that the other representations of this group might also 
be realized, not for stable particles, but perhaps for 
what we might call unstable particles, i.e., the reso­
nances, excited isobaric states, or whatever. In 
particular, we concentrate on the well-known (3,3) 
resonance in pion-nucleon scattering and its possible 
analogs in other baryon-meson scattering processes. 
We have emphasized before the limitations of such a 
procedure (see the general discussion of this Section). 
We note again that the product representation of one 
baryon and one meson decomposes into irreducible 
representations of dimensions 1, 8, 8, 10, 10*, and 27. 
T he weight (m1,m2) of the compound state 1r+p which 
is a member of the· (3,3) resonance, is !(v3,1 ). This is 
the highest weight of the 10-dimensional representation 
and one of the weights in the 27-dimensional repre­
sentation. We assume that the (3,3) isobar states are 
members of the 10-dimensional multiplet. 

The weight diagram 'for the 10-dimensional repre­
sentation is shown in Fig. 22. Besides the T= 3/ 2, 
Y = 1, multiplet , which we identify as the (3,3) isobar 
states (N*), we have a T = 1, Y =0 triplet, a T= 1/ 2, 
Y = - 1 doublet, and aT= 0, Y =- 2 singlet. The triplet 

7~ It is. possible to distinguish between the two equivalent 
S..d1me~s1onal representations by adding a discrete element 
(refl«:Chon) to the group. Invariance under this operation would 
prohibit transitions between the two octets and reduce the 
;'d:~~e ~fS. invariant amplitudes to six. See M. Gell-Mann, 
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T = 1, Y = 0 has the same charge quantum r.umbers 
as the excited states Y* of the Ar system." It is very 
a ttractive to consider the Y* as an analog of the N*. 
In order for them to belong to the same supermultiplet, 
these two multiplets must have the same space-time 
quantum numbers. We therefore assume Y* to have 
spin 3/ 2 and negative orbital parity. 

In order to compare these two states · and make 
certain predictions which can be verified by experi­
ments, we must assume certain features of the 
symmetry-breaking forces. We may assume, after Lee 
and Yang,17 that the symmetry-breaking forces are 
short-range in character and that long-range phenomena 
are relatively insensitive to them, even though they 
must be strong enough to account for the mass 
splittings. Then th~ same cause that spli ts the baryon 
masses is responsible for the difference of the en~rgy 
levels of N* and Y*, while the resonance widths 
should be predictable from the symmetry. T his is 
because the width of a resonance is proportional to 
the overlap of the resonance-state wave function and 
the initial- (or final-) state wave function at the 
"channel entrance," as we know from nuclear 
physics,11

·" so that the relative widths are essentially 
independent of short range effects. 

F tG. 22. Weight diagram for 
D(IOl (3,0) for SU1• The weight 
labeled as "-1 corr~nds to 
the isobar state (N*) ; " ~ 2 
to (Y*)+. 

'yl ............ t / .. , 0 -~ 4='Z 

_, I \ 

-· ·l - 1 --~ 0 t I l t 3 

u M . Alston, L. Alvarez;, P. Eberhard, ].{. Good, \V. Graziano, 
H. Ticho, and S. Wojcichi, Phys. Rev. Letters 5, 520 (1960). 

"R. G. Sachs, Nuclear Theory (Addison-Wosley Publishing 
Company, Inc., Reading, Massachusetts, 1953), Chap. 10. 



B E II R 1: N IJ S , ll Ia: I T L E I '< , F R 0 "' S D :\ L , A N D L E E 

The state correspondi ng to the highest weight 
(l3,Y)= (t,1) of the 10-dimensiona\ representation is 
that linear combination 

a i Jnr+)+~ i ~+P), 

which is annih ilatd by £, , E,, E,, and F._,, as discussed 
in Sec. 1 II E. Therefore, the normali lcd state I { 10) , I ) 
can be chosen to be 

I { 10), I )= ~ v'L[ I p ... +)- ll;+K+)]. (VI.21 ) 

The state of interest, consist ing of A.-+, l;+,n, · · · , can 
be obtained by operating with £ _,on I (10}, I ), i. e. , 

I {10},2 )=iV3[ V3 IA ... +)+ 12;' .-+)+v'L IPK' ) 
+v'L I2°K+)-I l;+,n)-V3 1l;+,no)]. (VI.2 L) 

The partial width for the transition fro m a : { 10} ,a) 
multiplet to a IBM ) state is given by 

rsM=(t~)IC I ' I ({10}, a iBM )I ', (VI.23) 
Es+EM 

where q=c.m. momentum, Es=baryon energy in c.m., 
EM=meson energy in c.m., and the first bracket on 
the right is the kinematical factor arising from the 
phase-space and the centrifugal barrier for the p-wave; 
and C is a quantity independent of the "magnetic 
quantum number'~..a. The generalized Clebsch-Gordan 
coefficient ({10},a iBM) can be read off directly from 
the foregoing expressions. We list in Table VIII the 
relative partial widths predicted by the SU, symmetry. 
It is interesting to note that, if the mass of ,.00 is near 
that of the .-, the decay process of the Y* can produce 
.-00 copiously, since the branching ratio of Y*-> A+,..+ 
to Y*-> l:++,no is approximately unity. This does not 
seem to agree with experimental findings, however. 

E. Model Built on C, 

For this example we discard the assumption that 
different components of the same basis of an irreducible 
representation must be identified with the baryons 
only or with the resonances only. This allows us a 
good deal more flexibility in making an identification 
of the particles with a basis. For the purpose of 

TABLE VIII. Comparison of relative partial widths of the N• 
and y• resonances. In computing the relative partial widths 
q'Es/(Es+E.- ) in Eq. (VI.23) are taken from reference 17. 

Resonance 
energy Relative 

(experimental ) Disintegration I ({lO},a l BM) I' partial 
Isobar in Mev products, BM a - 1 a=2 width 

(N*)~ 

(Y*)+ 

1237 

1385 

p.-+ 

A.-+ 
x+~o 

J;<.-+ 
x+,... 

1/ 2 

1/ 4 
1/ 12 
1/ 12 
1/ 4 

0.38 
0.03 
0.03 

? 

38 

illustration, we have chosen one of the many schemes 
which migh t be devised. 

Upon inspect ion of the lower dimensional weight 
diagrams for C2 in Fig. 4, we see that the II', A, and 2 
can be identified as the basis of the five-dimensional 
"vector" representation, D<oJ(0,1), where I 3=V3m, 
and Y = 2V3m2• By making the association from Sec. 
III , (1,2,3,4 ,5)-> (p,,.,A,2:0;E.-), (compare Figs. 8 and 
23), we can usc Eqs. (III.37, 38) to construct Table IX. 
Wi th this assignment, the 2; must be components of a 
basis for another irreducible representation and as 
such could have space-time quantum numbers which 
differ from those assigned to the .V- A- 2 set. 
Specifically, this scheme would admit an odd relative 
l;A pari ty and an odd Kl; parity relative to .-N." 
From the weight diagrams (Fig. 4), we see that the 
lowest dimensional representation in which the isotopic 
spin and hypercharge content allows both the ..- and K 
mesons is v oo> (Fig. 24) . This is a representation 
which admit s the existence of an invariant effective 
Yukawa interact ion, because, as may be seen from 
Table V, D<•>® D<»= v n>®D"'>®vn•>. 

In addition to the K and ,.., however, v no> requires 
three isotopic spin zero mesons, D, wi th Y= 2, 0, - 2 
(charge, Q= 1, 0, - 1, respect ively). Of the three, the 
existence of the charged ones, [)±, and the consequences 
thereof, have been discussed by Yamanouchi." The 
prediction of the existence of a neutral particle, IJJ, is 
a novel feature of the C1 scheme. Although it is a 
neutral isotopic scalar meson, it differs from the ,.00 of 
SU, in that it is a member of a hypercharge rotation 
triplet. If the mass of the [JJ were near that of the [)±, 

about 730 Mev as suggested by Yamanouchi," it 
would have sufficient energy to decay into either 2,.. 
or J,.. via the strong interactions. The 2,.. mode, how­
ever, can be shown to be forbidden because of parity 
while the J,.. mode is allowed only insofar as the 
symmetry of C, is broken (for such a low-energy 
process, one would expect the symmetry to be violated 

TABLE I X. Action of E. on baryons for D(O)(O,l ) in C1• 

~ p .. A :::0 :::-
61E, p :;o 
61E_, .. z-
61E, p -A 
61E_, A -::!'" 
61E, p .. 
61£_, :;o z-
61E, " A 
61£_, A :;o 
VJB, lP - t .. t:=:o -j::-

2VJB, p .. -:::0 -z-

" S. Barshay, Phys. Rev. Letten 1, 97 (1958). Recent experi­
mental evidence is compared with this conjecture in Y. Nambu 
and J. ]. Sakurai, Phyo. Rev. Letters 6, 377 (1961). 

" T. Yamanouchi, Phys. Rev. Letters 3, 480 (1959). 
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to a rather large extent). If it were energetically 
possible for the D' to decay into K+R, such a mode 
would again be ruled out by parity conservation. 

So far, we have not assigned the l:'s to an irreducible 
representat ion. T he lowest dimensional representation 
chat can contain them is easily seen to be D<10>. This 
implies the existence of baryon resonances, associated 
in the same irreducible representation with the X's, 
which have the same space-time properties, e.g., J = 1/ 2, 
and the following isotopic spin and hypercharge 
assignments: I= 1/ 2, Y= I ; I= 1/ 2, Y = - 1; and I=O, 
Y = 2, 0, -2. The fi rst isotopic doublet would appear 
as a nucleon-pion resonance, the second as a ;:::,.. 
resonance, in the 1 = 1/ 2 state. The hypercharge 
triplet would appear as a resonance in theN K, the NR 
and 'E.K , and the ZK scattering states. As pointed out 
before, the masses of such sta tes remain theoretically 
unknown. 

For demonstration purposes, let us use a combination 
of the techniques developed in Sees. III and V to 
analyze the product representation Y,/= Y,,1/ti, where y,, 
is the basis of the five-dimensional representation. We 
choose its components as (p,n,A,ZO,'E;- ). According to 
Sec. V, there exists a symmetric metric, g'i, which 
relates Y, ' with Y,1• In order to determine the form of g'i 
we first formally form the invariant 

x = g'iY,,1/t;. 

By remembering that this invariant must have a 
weight (0,0), it must be a linear comhination 

x = aZ-p+b2°n+cAA+dp'E;-+en2'. 

In order to determine the coefficients a, b, · · · , we use 
the fact that E.x=O for any E •. The immediate result 
is 

x= a(:=:- p-2°n+AA+ p'E;-- nZO). 

With a normalization such that f= 1, g'i may now be 
written as 

r 
-1 

(VI.24) ,,-g'-l, -1 

so that 

[
pl [:=:-] n -zo 

(Y,,)= ~ , (Y, ')= A , 
::..0 -tt 

:=:- p 
(VI.25) 

[

fJ l z--
(t') = ~ ' (t,)= -~ 

:::0 -n 
z-- p 

y 

I 

Frc. 23. Weight diagram for 
ncn(O, ~ ) of C1 with bases ass<>;!- 0 
ated w1th baryons (p, n, A, .::. , 
and:=:-). 

- I ~ 
· t 0 t t) 

This matrix g;; is the same as that introduced under 
the pseudonym C in Eq. (III.39). I t is now possible to 
construct the bilinear forms Y, / for the 10- and 14-
dimensional representations : 

Y,(10);i= ti,Jt,-t.1/t;; 
Y, (14);i= t ;.f,+t.1/ti-io/t"y, •. 

(VI.26) 

Specifically, for the 10-dimensional representation, in 
terms of BB, 
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X,= -Y,,2 = -iip-~, 

1 1 
X,= -(•N-~•')=-(pp-nn+Z'E:J- 2,. ), 

V1. V1. 

X,=.f,1=pn+ZO'Z- , X,= •h'=ZOp+z--n, 

1 1 
X,=-(Y,,'+U)= - (fJp+iiii-Z'E:J-z--z-) , 

v'L v'L 

Xe="'•'=fJZO+tlZ-, X7 =Y,,1 =tJA-1t:.~ , 

X8= -Y,3
1 = -iiA -IS!', X1 =Y,1'= Xn+ZOA, 

X"= .Y•'=Ap-z--A. 

Since the 10-dimensional representation is the 
regular representation, these x. , if assigned the space­
time properties of a four-vector (i.e., by inserting a "~• 
into each term, e.g., jin-> ji-y,n) , form the baryon part 
of the current which is conserved due to the group C,. 
If the spin zero mesons, K , .-, etc., were considered 
compound baryon-antibaryon systems, these x. would , 
of course, be the complete conserved currents in the 
interaction representat ion." In order to avoid being 
quoted as not having considered strongly-interacting 

FIG. 24. Weight diagram 
for D 00)(2,0 } of C: with 
bases associat ed with 
mesons. 

' 
' 

o• 

.. I .• 
.: _ ·"" I /. /~.-- ·· 

·I • I""' -·L ·' i_ ~ . -~r - ~ 1 --r-
' 1 r, 

n The currents can easily be written down in intcractio li 
representat ion. The transformation to Hdscuberg representation 
wi ll introduce extra terms in the current , if there are derivatives 
of the fields in the interaction Lagrangian . 
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w., 

-I J«, 

Frc. 25. Root diagram 
forB2. 

intermediate vector mesons, 78 •79 we point out here that 
by the extension to space-time dependent trans­
formations, these ten currents would be coupled to ten 
such mesons; this technique is trivially extended to 
the other groups. 

On the other hand, if the XA are given the space-time 
property of a pseudoscalar, the effective Yukawa cou­
pling between the baryons (N,A,'Z) and the pseudoscalar 
mesons can be written down. Writing the ten mesons 
as a tO-component M A= ( -.,.+,-rr",.,-,~.If',D-,K+, 
-R0,K0,K+), the coupling becomes80 

l=gXAMA, (VI.27) 
where 

MA= ( -.,.-,-rr";rr+,JJ-,If',~,K+, -K•,R•,K+), 
MA=gABMa. 

A simpler method than the above exists for finding 
the XA. Since they form the basis of the regular repre­
sentation, they are given by XA =I/!' LAo "''to where the 
LA. • can be read directly from Table IX. The advantage 
of the method described above is that we can now 
also immediately write down the 14-dimensional basis. 

Model Built on B, 

Another possible scheme based on the symmetry of 
C, ( = B 2) is obtained by rotating the coordinates of 

the root diagram, Fig. 1 (b) of Sec. II by 45°. We 
recapitulate the procedure of constructing the Lie 
algebra, using the root diagram, Fig. 25. In this basis 
of the algebra 

[1?,2,]=6-12,, [1?,2,]=6-12,, .. ·, 

[1?,,2,]=0, [1?,,2,]=6-12,, .. ·, 

and we choose the N ·~ to be 

(VI.28) 

Nr.•= N_,_,= Na.-•= Nu=N -u= N,,_,= 6-1. (VI.29) 

The highest weight of the representation (>. 1,>- 2) is, 
in this case, 

M=>.2/6-1(1,0)+X 1/6-I(!,t). (VI.30) 

The dimensionality is given by 

N= (l+Xr)(HX,)[l+HX,H,)] 
X[l+H>-,+2>.,)]. (VI.3t ) 

The dimensionalities of the representations D (>.,,>.,) 
=D(O,O), D(1 ,0), D(0,1), D(2,0), D(0.2), · · ·, are 
1, 4, 5, 10, 14, · · ·, just as before. 

We can identify the A particle as the basis of the 
one-dimensional representation. Inspection of the 
weight diagram, fig. 26(a), shows that (p,n,'Z0,2;-) and 
(K+,K•, -K0, +K-) can be chosen as the bases of the 
four-dimensional representation. 

The isotopic content of the live dimensional repre­
sentation of Fig. 26(b) requires, in addition to the 
isotopic triplet with Y=O, which we identify with 
2:+, 2:0, 2:- (.,.+,-rr",11'-), two more charged baryons X± 
(D± for bosons) with T3=0, Y=O. 

We now illustrate the tensor analysis of Sec. V on 
the basis of this model. Since we have identified the 
H , differently than in the previous case (Sec. III G; 
Sec. VI E), the matrices derived below are not the same 
as before. The ten operators may be represented by 
4 X 4 traceless matrices: 

(HJ.'-2(6{ -I I _J (BJ.'•2(6{ 
I -I l' 

-1 

(E,).'-2(3{ 
1 

J (E,).'•2(3{ 

-1 

J 0 0 (VI.32) 
0 0 

(EJ.'•6-f 
0 J (E,).'•6-f 

0 -1 J (O.)- [~] 0 0 

(E-.).'= (E.+).'= (E.).•. 
11 J. J. Sakurai, Ann. Phys. 11, 1 (1960). 
"R. Utiyama, Phys. Rev. 101, 1597 (1956); S. L. Glashow and M. Geii-Mann (to be published). The latter authors have independently 

suggested the B, and Ct models discussed in this section. 
BOThe relation between MA and M"=g"JJMs is most easily determining by requiring xAX.,t"""gAllx.tXB to he invariant. 
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These matrices may be derived by the method 
developed in Sec. IV. The metric It'• is defined to be 
the skew matrix that makes ll""//.tf• form invariant. 
One can easily verify that 

2"'p-'E!'n+nZ0-2"'P 

is form invariant since the 2. operating on it annihilate 
it. Therefore, we choose It'• to be 

-1] 1 
= -h.., h.,N•= a.•. h"·= [ -1 

1 

(VI.33) 

Note that lt"'(L,)!= (L,)."II"', i.e., L,••=L, ... The 
contragredient bases are 

[
_:g-l [fi l 

tf"= h""tf,= -; ' ~= ~ . (VI.34) 

[

0 -1 

"···= 1/V'l ~ 
0 

These matrices are chosen such that x,=~ (u,)."-/1• 
=~ll.,(u;)'"-/1• are normalized bases of the five­
dimensional representation that transform as the 

or the 
(M,)= (,.0, -,.+,,.--, -D+,D-); 

x,=t(pp-nn-~+z-.z-), 

1 - 1 
X1= -( -np+2Hii'), X4=-(!-t~+2"p) , 

"1/1. v'1 

1 
x.= - ( -~-p:::•). 

v'1 

The symmetric five-dimensional metric g;; is defined 
as in Eq. (V.19) ; 

0 -1 
= -1 0 

[

1 

(VI.36) 

The contragredient bases M' of the five-dimensional 

y 

·j·""' / ' 
_:6_ 

-f 0 t J, 
(a) 

_ , 0 

(b) 

FIG. 26. (a) Weight diagyam lor D(I,Q) of B,. For meson bases, 
the substitution, (p,n$0,:=:-)--+ (K+,K0, - Jto/{+), should be 
made. (b ) Weight diagram lor D (O,I ) of C,. For meson bases, the 
substitution, (l:+,v.x-,x.-,x -)-+ c ... +,..-o, ... -,IJ+,~ ). should be 
made. 

We take the five skew 4X4 matrices u,•• just intro­
duced in Eq. (V.17), satisfying h.b<T;,. = tracehu;= O, 
to be 

0 -1 

-~] 0 ' 
0 0 

(VI .35) 

0 -1 

representation are obtained by 
r ,..0) 

M'~g''M;• l=EJ (VI.3i) 

The explicit form of the LA in the five-dimensional 
representation is obtained from (LA);i= 2ut•(LA).'ui, •. 
We can go on to construct explicit forms of tensors 
ad i tr.ji11itum. The above examples suffice to illustrate 
the method. 

Let us now turn back to physics. As an example, let 
us consider the invariant Yukawa type coupling of the 
(1f,D ) to the (N,Z ). It is clear that, by construction, 
the u;.f are just the en.<'>).• discussed in the early part 
of this section where r refers to the five-dimensional 
representation and i= p.. The invariant coupling is, 
therefore, 

I= 1/!'ug"'"-//•M', 

41 

g - -
= -{ (frr .p- n-y.tr.- ::;o-y.::;o+::--r.:::-),..o 

2 
+"1/1.[ (n-y,p- Z"--r .:::O),.-

- (ZO-y 6p+!--y,tr.)D-+h.c. ] ). (VI.381 

In this case, the number of independent coupling 
constants required is one, because the product rcpre-
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~·tzt-~:-I, 
_, s if 

0 I I3 -· -, 'I 

FIG. 27. Weight diagram for 
D ' ''( l ,O) with bases associated with 
baryons. For meson bases, substitute 

(K+,Ko, -Ro,fc+,.-+,7~J,7:- ) 
for 

(p,n,zo;z-,x+,:!:•,:!:-). 

sentation D''''®D''' contains the irreducible repre­
sentation D''' only once. 

There are three independent amplitudes for scattering 
of (N,'Z) and (N,'Z ), corresponding to the decomposition 
(Clebsch-Gordan series) D''''®D''' = D'''®D'"® D''0

' . 

Let us consider the process 

a+o---+ a'+o', 

where a, b, a', and b' label members of the (N ,'E'.) 
multiplet. The T matrix for this process can be written 

(a'o'l T la5)=F'6.·''6,• 
+F20'ia•b'cr iba 

+F'(f!A{l0))
0
,6' (f!A(lO)).•, (VI.39) 

where the isometric operators (f!A UOl).• are proportional 
to L A,•: 

10 
(f!A (10) ).•= ± LA,·· 

(trace L8 £B) I 

Finally, Jet us discuss the Y* isobar states in this 
scheme. Since the five-dimensional representation is 
the lowest dimensional one with the right isotopic spin 
and hypercharge content to accommodate the triplet, 
(Y*)+, (Y* )0, and (Y*)-, we propose to identify the Y* 
with components of a basis of D '''(0,1). We have 
already assigned the 2: and X± to a five-dimensional 
representation. Therefore, the Y* and the 2: would have 
to have the same transformation properties in charge 
space, while their differences would be described by 
space-time quantum numbers. An interesting feature 
of this model is that the decay process Y* ---+ 2:+,.- is 
forbidden by symmetry while Y*---+ A+,.. is allowed," 
independent of spin of the Y* or the relative A2: parity. 
The reason is as follows. The ..- and the 2: are members 
of five dimensional representations. Since the product 
representation D'''®D''' does not contain any ir­
reducible D''', it is impossible for a Y* to decay into 
a ..- and a 2:. On the other hand, since the A particle is a 
basis of the one dimensional representation, the 
product representation of the A and the ,.. multiplet 
naturally gives rise to a five dimensional representation. 

G. Model Built on G, 

If we assume that there are eight baryons which can 
form the bases for one or more representations, then 
the dimensionality of these representations must add 
up to eight. An inspection of Table VI for G2 ·shows 
that the only possibility involves two representations, 
D '''(O,O) and D '" {l,o). This implies that seven of the 

baryons must have the same space-time quantum 
numbers ; the eighth baryon may have a different set 
of these quantum numbers. In contrast with SU,, we 
see that there is a seven-dimensional representation 
which allows the possibility of using only the seven 
known mesons, i.e., D''' (1,0).82 In this scheme, of 
course, it would also be possible to accommodate an 
eighth meson, the ,..00 which would then correspond to 
the one-dimensional representation, DUl(O,O). Until 
such time as this meson is experimentally detected, 
we shall consider only the known particles. It is again 
clear that these seven mesons must have the same 
, pace-time quantum numbers. 

In Fig. 27 we have drawn the weight diagram for 
the seven-dimensional representation of G,. From this, 
it is clear that if we associate 2VJfl, with the operator 
for I , and 41J2 with the operator for Y (hypercharge), 
then each of the baryons has a specific weight associated 
with it. There remains only the question of the 2:0 and 
A whicl> both have zero eigenvalues for these two 
operators. Since we want charge independence to hold 
for the strong interactions (this implies the existence 
of the isotopic spin lowering operator as one of the E.), 
the 2:0 must belong to the seven-dimensional repre­
sentation and that the A is the basis for the one­
dimensional representation. Because the 2: and A 
belong to different representations, we see that G, can 
accommodate opposite parities for the 2: and A. I t 
predicts specifically, however, that the 2:K parity must 
be the same as that of N..-

In order to give the usual isotopic spin and hyper­
charge assignment to the N, 2:, and 'E., in accordance 
with the association of H, and H, with I , and Y given 
above, we must make the following connection between 
the states given in Sec. III B and the particles 

lA): 11) 12) 13) 14) IS) 16) 17) 

Baryons : p n :;o ::;-- -2:+ 

Mesons : K+ K' - R• R + -.,.+ 
2:' 

.... 
2:-

.,.-, 
(VI.40) 

With the aid of this dictionary, it is easy to construct 
Table X for the particles from the results of Sec. III H . 

We proceed now to analyze the scattering 
B+M---+ B'+M' in the same manner as described 
in the general part of this section. The pertinent 
four-point function is 

(T[.Ys• l.f.v· l.fn.Y M ] ). 

The combination .Ys-/'M is the Kronecker product of 
two seven-dimensional representations, one for the 
meson and one for the baryon. This reduces, following 
Table VI, according to 7®7=1®7®14®27. In the 
manner described previously, we conclude that there 
are only four different four-point functions or ampli­
tudes for the scattering of the seven baryons by the 
bosons. 

D The model built on G, was first suggested by Behrends and 
1 1 This is in accord with experimental observation 

reference 73). 
(see Sirlin (reference 19) and, independently, by another of the 

authors (C.F.) (unpublished ). 
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For fu rther physical predictions, it is necessary to 
find the metric tensor. This can be done by noting that 
the invariant part of the compound representation 
x=g'i,f;<P; must be a linear combination of the form 

x= apR++bnK0+ c'1:+,..- +tn;-,..++e'1:0..-' 

+ j'Z- K++gEOK0• 

By use of the fact that E.x= 0, we can readily find the 
coefficients a, b, c· ··,and thereby find 

0 

(d= (g;;) = I ! 

where 

0 - 1 
- 1 0 

0 
0 - 1 

- 1 0 

(Y,;): (p,n;zo,::;--, - 2:+,2:0,27") . 

It follows that 

(Y,')= (::;--, -::0, -n,p, -2:-,2:', +X+). 

[This matrix was introduced in Eq. (III.42).] 

(VI.41 ) 

We further need to determine the isometries 6-lr•;•_ 
.. This is most easily done by noting that the basis for 

the seven-dimensional compound representation is 
given by x'= r 'i"f;<P•· We proceed by noting that the 
x' with the fundamental dominant weight M <o is a 
linear combination of the form : 

-X,= X 7 = apK'+bZOK++cx+..-o+,n:o,..+. 

Since E,x, and E,x, would have weights that cannot 
belong to D(7), they must vanish. These conditions are 
sufficient to determine the constants a, b, c, and d. 
The result is 

x'=v"l.(pK'+ZOK+)-2:+..-'+2:'..-+. 

The matri:< r'i•= - r,;• may readily be found from 
this expression. By operating on X6 with E,, we find, 
[remembering that 

E,,Y,= -E,(2:+)= -hl iP= -lv'i¥-•J 
p..-'+VZn,.-+-2:°K+-VJ.x+K'= x, = x•. 

Proceeding successively in this manner, we can 
determine all the x', and thereby all the (r'i•). For 
convenience, we list these matrices 

r•= r•= 0 -1 

0 
0 
vz 
0 

r•=-r,= 

I 
I 
I 
I 
I 
I 

__ I 

-1 
vz 0 

r •=-r,= 

1 
-vz o 

I 
I 
I _ _ _ ______ I _ 

I 

- 1 
vz 

0 1 
vz : 

I 

0 

r •= -r,= lo -vz : _ _ _ _____ I _____ _ 

I 
I 

: 1 
1 0 - 1 0 

r 

+V'Z 0: 
- vz 

r' =-r,~ l o 1 

----- - - -I - -- - - -
: 0 - 1 
I +1 0 

0 

-VZ 

r•=r, = 

-1 

r•=r,= 

43 

-.------_vz: 

0 ..fl. 
- 1 

l 0 

0 I 

0 : 

-1 

~ --~J 
0 -1J 

0 
-..fl. 

0 

(VI.42) 
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TABLE X. Action of E. on baryons for 1)(7l(I,O) in G,. Table for bosons is obtained by substitution 
(p,n;:::';z-.z+ ,XO,r-)-+ (K+,K", -K•,K.+,,.+,,.,r - ). 

~ p " :E." 

2(6)1£ , p 
2(6)1£_, " z-

2-IZE, 
2-IZE_, 2:-

2(6)1£ , -:z:+ 
2(6)1£ _, -n:z:o -2:-

2-IZE, p 
2-IZE_, :E." z-

2(6)1£, -n:z:o 
2 (6)1£ ..., +2:+ -n:z:o 

2-IZE, :z;-
2-IZE_, -2:+ 
2V!H, it> -i .. ia<> 

4Hr p " -'E!J 

It is now a trivial matter to list various amplitudes in 
a compact notation. For example, the invariant 
three-point function is 

r•;•(T(/-.1/t;'P•l ). (VI.43) 

Another simple example is afforded by A production 
mesons on baryons, M + B-> M' +A. The four-point 
function is 

r•;•(T(tAVr<'Pi 'P•) ). (VI.44) 

With regard to G,, it might be interesting to play 
again the game of finding the processes which might 
have resonances corresponding to the (3,3) pion-nucleon 
resonance. At this point, we re-emphasize, the limita­
tions of this game (see the general discussion above). 
First, the product representation of one baryon and 
one meson decomposes into representations with 
dimensionalities of 1, 7, 14, and 27. But the weight of 
the r +p state, say, which is a member of the (3,3) 
resonance, is (1/ 4\'3) (3,\'3) . This is just the highest 
weight for the 14-dimensional represent<J.tion D(0,1) 
and it is one of the weights for the 27-dimensional 
representation. Thus·the (3,3) resonance must belong to 
either the 14 or 27 dimensional representation. 

44 

z- };+ :z;o 2:-

:E." --Ill:+ -n:z:o 
--n:z:t -11-r:-

-2:+ p 
-:e-

--n:z:o -lip _,. 
-'El --nz-

" 
--r:- +p -a .. 

-11::.0 -z-
+" 

:E." 
-tz- };+ --r:-
-:::-

Again, as an example, we have drawn the weight 
diagram for the 14-dimensional representation in 
Fig. 3(b). From this, it is clear that besides the I=!. 
Y = 1 multiplet, which we might identify as the 3,3 
resonance, the isotopic content includes an I=!, 
Y= -1 multiplet, an I = 1, Y = O multiplet, and three 
singlets, I=O, Y = 2, 0, -2. All of these multiplets 
must have J = l The actual product representation 
written in terms of the product M B may be found in 
the manner illustrated above. Namely, the basis for 
the highest weight of the 14-dimensional representation 
must be of the form ap.-++bl:+K+. But E., for a posi­
tive root r(a), acting on this basis must be zero. 
Specifically, application of E_, gives a= -b, so that 
the basis for the highest weight is !Y2(p.-+-2:+K+). 
The bases for the other weights can be obtained by 
repeated use of all the E.. In contrast with SU1, the 
rA resonance cannot be associated with the (3,3) pion 
nucleon resonance, since the rA resonance must be 
7-dimensional which does not contain an l = t multiplet. 

If the (3,3) resonance were identified with the 
27-dimensional representation, we would proceed in 
the same manner. The result would be that the (3,3) 
resonance would be associated with a different set of 
isotopic spin multiplets. 
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1946 MATEMAHI' ECK11U CGOPH111{ T . \ 8 (f>O l, N. 3 

RECUEIL MATHEMATIQUE 

l{naccH$HI(8Q1I.R npocTbiX rpynn Jla 

E. 6. nbtHI(HH (MOCKBa) 

I. DpoCTble rpynnbl Jl11 nepe•mcmtn anepabte KunJJHHr a 1890 r. 

nepaoe llOJlHOe AOKa3aTe!lbCTBO pe3y!lbTaTa KHJIJlHHra npHHaAJte)KHT Kap­

TaHy (1894 r .). B 1933 r. BaH-Aep-BapAeH (I] npeAJtO>KHJI, onupaHcb Ha 

pa6oTy r . Beli!lH [2], HOBblli OOJtee reoMeTpli•IHblli MCTOA KJtaccu<!JHKaUHH 

npocTbiX rpynn Jlu. B HaCTOHllleii 3aMeTKe AOKa3btaaeTCH , 'ITO n o.1ynpocTaH 

rpynna onpeAe!lHCTCil CliCTCMOii CBOiiX npOCTbiX KOpHeH, 11 3aAaqa nepe­

'111CJ1CH1151 BCeX npoCTbiX rpynn Jlu CBOI\11TCH 3TIIM K rtpOCTOH reOMCTp11· 

'ICCKOii 3aAaqe: TIOCTpOHTb B n-MepHOM 3BKJ111AOBOM rtpOCTpaHCTBC BCeB03· 

MO>KHble penepbl TaK11C, 'ITO A!lil JliOObiX ABYX BeKTOpOB a 11 b 2
((a , II)) - l..(eJJOe 
a, a 

HertOJlO>KHTeJJbHoe '111CJ10 ((a, b) - CKa!lHpHOe rtp0113BeAeHI1e a 11 b). 
2. r . BCH!lb OTHOCI1T BCHI<OH llOJtynpOCTOH rpy nne Jl11 @ C KOMTIJlCKC· 

HbiMH napaMeTpaM11 CI1CTeMy .E (@) ee KOpHeBbiX BeK'I'OpOB, 3aAaHHCM 

KOTOpOii rpynna ·@ TIOJlHOCTbiO onpeAeJtHeTCH. E ( @) - KOHe'IHOe MHO)KeCTBO 

BCKTOpoa n-MepHoro aellleCTBeHHOro 3BK!l11AOBa npocTpaHCTBa Rn, o6n a­

AaiOlllee CJleAYIOlll11MI1 CBOHCTBaMI1: 

2 (1) . Ecn11 aE.E, TO -aEE, HO Allil k =2, 3, . . . kaE E. 
2 (2). nycTb a 11 b - pa3Jli1'1Hbte KOpH11 . ECJJI1 AJ151-p _.,;;; i _.,;;; q. b + i a E ~ . 

HO b-(p + l)aE.E 11 b+(q+ l)aEE, TO p - q =
2
((!1 . a)l . a, a 

2 {3). EC!ll1 CI1CTeMbl E(@,) 11 E(@,) TIOAOOHbl, T . e . nepeXOAHT 

OAHa a APyryiO np11 Het<oTopoM pacTH>KeHI111 npocTpaHCTBa R", TO OHH 

paBHbl. 

Ecmt, B '!aCTHOCTI1, @ - npoCTaH rpynna, TO 

2 (4) . .E (@) He pacrtaAaCTCH Ha ABC B3ai1MHO OpTOfOHall bHbte TIOA-

CHCTCMbl E1 11 E,. • 
3. Dp11BeACM rtp11MCpbl rtpOCTbiX rpynn 11 BbtnHIUCM CHCTCMbl 11X I<Op­

HCBbiX BCK1'0pOB. 3-J-H rtp11MCpb1 TIOAPOOHO 113y'leHbl BeiineM (2 ] . 

An- rpynna JtHHei\HbtX npeo6pa3oBaHI1H c ACTepM11HaHTOM I n pocTpaHCTBa 

Ln. , - - (n + I )-MepHoro npocTpaHCTBa HaA non eM KOMnneKCHbi X •n!ce,1. 

~(An): {ep- eq};;l;~ 1 (p =F q; e,, . . . , en ., -opToroHa!lbHbtli HOPM !1-

poaaHHbtli 6a3Hc Rn•'). 
Bn - rpynna opToroHaJJbHbiX npeo6pa30BaHI11i L•n. '. 

~ (Bn): {±ep, ± eP ± eq};,q- I (p =F q). 

Cn- KOMnneKc-rpynna, T. e . r py nna m meliHwx npeo6pa3oaaHI11i L'", 
OC1'aB!lHIOlllHX HHBapHaHTHOH AH<!J<!JepeHI..\HaJibHYIO <!JopMy 
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n 

~ (xk dxn , k- Xn•k dxk). 
h=l 

~ (C n): { ± 2ew ± e,, :!::: eq };, qd (p =I= q). 

Dn- rpy nna opTorouaJJ bHbiX n peo6pa3osamli1 L'n. . 
~ (Dn): { ± e,, :!::: eq}~.q . t (p =I= q). 

4 . M bl Ha3ose.>.~ seKTO P H3 R" n ono)I( I1TeJJbHbiM, ecnH ero nepsaH 

KOOpAHHaTa, OTJJH 4Haf! OT HYJIH , llOJJO""'tTeJJbHa. MHO)I(eCTBO p BCeX nOJJO­

)I(HTeJJbHblX seKTopos YAOBJJeTso pHeT cneAy iOUl11M ycnoBHHM: 
4 (I) . n ycTb a =I= 0. TorAa JJ H60 a E P, JJI160 -a E P, HO HeB03MO)I(HO, 

•rro6bl a E P 11 - a E P. 
4(2). Ecm>~ aEP, bEP, J.> O. p. ;;;. O, To t..a+p.bEP. 
Mbt ycnosHMCH nHcaTb a > 0, ecnH a E P, H a < 0, ecJIH - a E P. 
J1 e MMa I. EcAU eeKmopbl a,, a,, .. . , aP noAo:nwmeAbllbl u (a;, ak)..;;; 0 

(i, k = I , ... , p; i =/= k), mo 3mU eeKmOpbl AUileUilO lle306UCIIMb/.. 
p - 1 

OyCTb, B caM OM ACJJe, ap = ~ /.. ; a;= ~· /..i ai + ~· ki ai, rAe K ~· 
i c: l 

OTHCCCHbl CJJaraeMblC C nOJJO)I(HTeJibHblMH K031fl<jlHU11CHTaMH /.. ;, a K ~·­
cnaraeMbie c oTpHuaTeJJbHbiMH /.. ;. nono)I(HM b = ~· t..ia;. c = ~·t..i ai. TorAa 

( b, c) > 0, aP = b + c, np114eM c < 0, TaK 4TO b =1= 0. Mbl HMeeM (ap, b)= 
=(b,b) + (c,b) >O. Ho, c Apyroii cTopOHbl, (ap,b) = ~'/.. ; (ap,a;) < O. 

5. 00JJO)I(HTeJJbHblH KOpeHb a Ha3biBaeTCH n p 0 C T bl M, eCJIH ero HeJib3H 

pa3JI O)I(HTb ua cyMMY ABYX noJIO)I(HTeJibHbiX Kopueii. BcHKHH nono)I(I1Tenb­

HblH KOpCHb MO)I(HO npeACTaBI1Tb B BI1Ae cyMMbl npOCTblX KOpHeH . 

ECJII1 b- llOJIO)I(I1TCJ!bHblH KOpeHb 11 a- npOCTOH KopeHb, TO a- b He 

6yAeT n oJIO)I(I1TenbHbiM KOpHeM. OoJTOMY pa3HOCTb ABYX npocTbiX KOpHeii 

0
1

11 a. He 6yACT KOpHeM, 11 4JopMyna2(2) AaeT AJIH HHX 
2
((a"a,))=-q<0. a1,a, _____. 

CJICAOBaTeJibHO, (a,, a,) < 0 11, B CI1JIY JICMMbl I. npOCTble KOpHH JIHHeHHO 

He3aB11CI1Mbl. 0 pOH3BOJJbHbiH nOJJO)I(HTCJ!bHbllt KOpeHb OAH03Ha'IHO pa~-
raeTCH Ha npoCTblC. 

00JJ0)1(11TeJibHblH KOpCHb, HBJIHIOIU11ltCll CYMMOlt k npoCTbiX KOpHelt, 

lla30BCM K 0 pH eM n 0 p ll AKa k. 0oKa)l(eM, 4TO BCHK11lt KOpeHb C nopllAKa k 
11MCeT BI1A a+b, f Ae a -npOCTOH KOpCHb, b-KopeHb nopllAKa k-1. 
8 CaM OM ACJ!e, CCJ!I1 a

1
, a,, . . . , On- CHeTeMa BCeX npOCTbiX KOpHelt, TO 

i:HcTeMa c, a,, a,, ... , an- m1HeiiHO 3as11c11Ma 11, B c11ny neMMbl I, OAHO H3 

npOH3BeACHHH (C, a ;) nOJIO)I(I1TeJibHO. 3-ro 03Ha4aCT, 'ITO B lfiOpMyJie 2 (2) 

p=/=0 11 c-ai-KopeHb. -
6. Teo p eM a I. lloAynpocmut zpynna @ onpeiJeARerncR cucmeMoii 

IT(@) ceoux npocmb/.X KOpHeii . 
.D.nH AOKa3aTenbeTBa AOeTaT04HO noeTp011Tb no npocTbiM KOPHHM rpyn­

nbl @ BCe ee KOPHI1. 8 CHJIY 2 (1), MO)I(HO orpaHI14HTbCll nocTpoeHHeM 

n ono)I(I1TCJibHbiX K.OpHelt. Bee KOPHI1 nepsoro nopHAKa HaM JJ.aHbl, u6o 

JTO- npocTble KOPHH. nyeTb Mbl y)Ke n oeTpoHJII1 see KOPHH nopnJU<a, 

MeHblliCfO k . l{opH11 nopllAKa k HMCIOT BHA b+a, f/J.e b-I<OpeHb nopllP.Ka 
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K.tactllt)lllt<atulll "P"'T"X rpynn J111 

k - I. a- npocroii Kopenb (n" 5) . cJ> opMyna q = p -
2<~~~ ·a)) (cM.2 (2)) IIO"Juo­

,1HeT pelliHTb sonpoe o TOM, 6yAeT .'Ill ey.\IMa npoeroro Ko prm a 11 r.:oprm b 
IIOPHJJ.Ka k-1 KOpHeM . .il,ei1eTBliTCJ!bHO, Bee KOpHH eepHH b, b - a. b · La,. 
IIOJlO)I(IITCJ!bHbl H nopHIJ.Ka, ~\CHbWC~ O k, TaK 4TO p H3BCeTHO n o npe,l).n O­

: JO)I(CHHIO HHJJ.Y!(U1111. TaKHM o6pa30M Mbl MO)I(C~\ n oeTpOHTb BCe l(OpHH 

nopHAKa k. 
7. He npeAeTaBnlleT TPYAa onpe;J,emnb cuereMbl npocTblX I<OpHei1 AMI 

rpynn 113 n '' 3. 

TI(An) : {e, - er, ,};' ; TI(Bn) : {e1,-e, ' " en]~ - :; 

TI(Cn): {ep-ep•t' 2e.,}; . II(Dn): [el'-eP' '' en_,+en}~ ;: :. 

8. Ha3oBeM I<OHeqHYIO cHeTeMy l' BeKTopoB npoerpaHCTBa Rn (II)-CHC­

TCMOH, eenH oHa YJJ.OBnersopHeT eneAYIOIUHM ycnoBHHM: 
- . 2(a b) 

8 (I). EenH a E l' H bE I', a =1= b, TO -(-· -> - r~enoe HellOJ10)I(HTeJibHoe a, a 
'IHCJIO. 

8 (2) . l'- J!HHeltHO He3aBHCHMaH eHCTCMa. 

8 (3). r He paenaAaeTCH Ha ABC B3aHMHO oproroHaJibHbte nOj:\CifeTCMbl. 

8 CI1JIY 2 (2), 2 (4) 11 n ° 5, 11MCCT MeeTO 

Teo peMa II. CucmeMa II(@) npocrnbi.X Kopueii npocmoii zpynnbl flu 
@ ecmb (TI)-cucmeMa . 

TeopeMaMI1 I 11 II 3a)l.a4a o KnaccmpHKaUHH npocTbiX rpynn JlH cBe­

AeHa K 3aAa'le 0 nocTpOeHHI1 BCCB03MO)I(HbiX (li)-CHCTeM . 

9 . nycTb a 11 b -ABa pa3JIH'IHble Bet<Topa (TI)-C11CTCMbl l'. Tor Aa yron 
/'-

(a, b) MC)I(/J.Y a H b paBCH JIH6o 90 ' , JIH6o 120°, JIH60 135' , JIHOO 150' . 

.il,eHCTBI1TeJibHO, nOCKOJ!bKY 
2
( (~ b)) 
a, a 

2(a, b) .., 
H (b, b) - ~ 'IHCJia, TO 

4 2 ( Ab) 2 (a , b) 2 (a . b) 
cos a = --- · - - - TaK)I(e uenoe 

' (tr, a) (b , b) 

/" 

'IHCno; .cTaJI<) 6b1Tb, 0, I, 2 11JII1 3. 
/'-

TaKHM o6pa30M, eAHHCTBeHHO B03MO)I(Hble 3Ha•reHHH AJIH cos Ja, b) cy Tb 

1 }12 y3 ....- ~-
0 , 2• - 2 - . --2-. ... 

I 0 . OrHeceM Ka)I()J.OMY JJieMeHTY (II)-cHcTeMbl l' TO'IKY Ha qepTe)l(e. 

Cne;J,UHHM ABC TO'Il(H O;J.HHM, ABYMH HJIH TpCMH 0TpC3KaMH, CMOTpll no 

T"'I Y, o6pa3yiOT J!H COOTBCTCTBYIOmHe BCKTOpbl yron, paBHbllt 120° , 135' 

!'-Il l 150. O apy TO'ICK , COOTBCTCTBYIOmHX OpTOfOHaJ!bHbiM BCKTOpaM, HC 

•> .,·.(e .\1 COC;l.11HHTb BOBCC. 0 0CTpOCHHYIO Tai(HM o6pa30M CXCMY Mbl 6yAeM 

11.1:lbiBaTb C X eM 0 H y r Jl 0 B CHCTCMbl l'. E CJIH 00)1. Ka)I(I{Oit TO'I:<Oit CXCMbl 

\· ,·.loB BbiUHCaTb KBaApaT AJ!IIHbl (a, a) COOTBCTCTByiOmero Be KTopa a, TO 

ll <>:l y 411M CXeMy, nOJIHOCTb!O onpeACJ!i!IOIUYIO CHCTCMY l'- CXCM Y CHCTeMbl r · 
8 Ka'leCTBe npHMepa nOCTpOHM CXCMbl CHCTCM TI(An) , TI(Bn), TI(Cn), 

II (Dn) . 

1/lllnfi i r ··r-z-z ,tf8n) I z z ... .. i Z i 

'"):~ ....... • i Rrvn z z z z t 
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II . J1 e MMa II . Cxota yzAo6 (TI)-cucmeMbl He AtO:HCem u,wemb 6UO 
1, - 1, , 11,-11., 111, - 111,. 

!.~- 0, c:::==£ . ... . . .. • u. -c:=~...-....-. 

f,m • Oz• -. _/ • ··· · ··~ o. v 
m,>-· · ···~ 

··~ 
!11,---~ / ... 
m. • / ... • e I ··0 

,UonyCTHM, 'ITO HeKOTOpaH (II)-CHCTeMa I' HMeeT CXeMOH yrJIOB OJl.HY 

113 3TH X ex eM. n ycTb 0 11 ••• , QP- Be KTOpbl CI1CTeMbl l'. noJIO)!(I1M b; =>-;a;, 

rAe lq =1= 0 (i = I, 2, ... , p). Ton~a 

p p p p 

~ ~ (b;, bk)= ( ~ b;, ~ b;) > o. 
i = i k ""' l i = i i = 1 

M bi rrpHJl.eM K rrpomsope'IHIO, rroJl,o6pas AJIHHbl b; TaK, 'IT06bl 
p . p 

.2; ~ (b;,bk) <:, O. KaK 3TO CJl,eJiaTb, 811/:IHO 113 cxeM r; - I;, u;-II~. 
i ==i h= l 

111; - 111;, rJl,e, KpOMe BeJIH'IHH (b;, b;) , llOAil11CaHHblX llOj:l COOTBeTCTBYIO­

IIUIMI1 TOtiKaMH, BbltiHCJieHbl H HaJl,lli1CaHbl Hail. COOTBeTCTBY!Olll11MH OTpe3-

KaMI1 BeJII1'1HHbl (b;, bk). 

( 

/, 

-J · I 

-J -J 
~ J 

J 

D.' .:2:. -I 
1

.. ... ·I -I 
1 

I t Z 2 

-2 -! ~- l o;. .d ... 
z + + ·" + +.! 

t 

ff.' -/ ·.6 ·J ·I 

'z I I t I 

-fl 
o; t-vl 

z • 
, -z ~I ~I 

m, .. .... + g_ ' -1 -J -6 J -1 _, 

~~ : ; 16 ; : ~ 
I )! I 

+ 'I 

,~1-.1.1 
m, 1 • . , 9 ·) 

+ -1 

JleMMa II Aon y cKaeT, otreBH/:IHO, cJieAY!O!I.lee ycr1JICHHe: cxeMa yrJIO!l 

(TI)-cHcTeMbl He COACP)!(HT rroJl,cxeMbl BHAa I, - II J , . 
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K •aCCII<!HtKatlH ~ npocTt.t x r p y1111 Jl11 
----·--- ----

12. JI e ~~~~a III . n pouJBO!IbHC;,q (11)-cucmeAta uMeem ··xc.1uni r : .wa villi)' 

UJ CXOI I, 11'-11', l\I'-111': 

1 e::::3 u' • . ..... __ ur' - .... . __ m'• • • Lo • 

JLT' >-..... - U/
1

• e • • /, 

!II1o • /. • 

B CaMOM AeJie, CXeMa, COJl,ep)!(a!l.laH TpOHHOH OTpC30K 11 OL111lfHaR OT 

~xeMbi I, Heo6xoAIIMO coAep)!(HT rroAcxeMOH 
1
oAHY 113 cxeM I , - I, IleMMbl II, 

'ITO HeB03MO)!(HO. AHaJIOfHtiHO, eCJIH CXeMa COJl,ep>I<HT Jl,BOWHOH OTpC 30K, 

TO a CHJIY II,- II , oHa coarraJl,aeT c OAHoi1 H3 ex eM II' - II '. H ar<oHel.( , 

111 1 -Ill 5 11CKJI!Otra!OT AJIH cxeMbl, He COJl,ep)!(a!l.leH Hi': Tpoi1Hb1X, HH 

ABOi1Hblx oTpe3KOB, see so3MO)I(Hocm, KpoMe Ill' - III ' . 

13 . n y cTb a 11 b-BeKTOpbl (TI)-CHCTeMbl L' , AeJia!OIUHe yron B 120c. 

2 (a , II) 2 (a , II} , / '-. 2 (a. II) 2 (a, II) 
TorAa --· - -= 4cos (a b) = I.B CHJIY 8 (I) - -··-- · = ---=-!. 

(a, a) (II , II) ' (a, a) (II, II) 

CJ!eAoBaTeJibHO, (a, a) = (b, b) . ToqHo TaK )!(e Mbl rroJiytrHM, trTo np11 
/'-. /'-. 

(a,b)=l35° (a,a)=2(b,b) HrrpH (a,b)=l50° (a, a)=3(b,b) (npeJUIO-

JiaraH, 'ITO (a, a) <:,(b, b)) . fh COilOCTaBJieHHH 3TOrO 3aMetraHHH 11 JICMMbllll 

HeMeJl,JieHHO llOJiytraeTCH 

Teo p eM a Ill. npoU360AbHafl (Il)-cucmeMa AU6o nooo6Ha 00/WU U3 
cucme.11. Il(An), II(Bn), II(Cn) , II(Dn) (nn" 7 11 12), AU6o UMeem cxe.Motl 
oJuy U3 cxeM 

{f/E!;St 
l JJ 

M• • • /~ • A A I J J J 

( .MHO:HCUmeA& nponOplJUOHQAbHOCmU I. - npoU360AbHOe nOAO:HcumeAbHOe 'lUC;IO). 

14 . J.h TeopeM I, II, Ill BbiTeKaeT, trTo ecJIH rrpocTaH rpyrrna @ He 

BXO/:IHT HH B OAHY 113 cepHH An, Bnt en. Dn. TO CHCTeMa II(@) ce npo­

CTblX KOpHeH HMeeT cxe~\OH OAHY 113 CXCM (I)- (5) 0° 13. (MHO)I(liTeJib ), 

OAHOJHa'lHO onpeJl,eJieH B CHJIY 2 (3)). CocnaalliHCh na cy!l.leCTBo Batme 

rrHTH pa3JII1trHbJX npoCTblX rpy nn, He BXOJVllllHX B cep1111 A, , 8 ,., Cn, Dn, 
Mbl MO)!(eM {jlOpMyJIHpOBaTb OKOHtraTeJibHYIO TeopeMy: 

Teo p eM a IV. Bee npocmble zpynnbl Jlu uc'lepnb16awmcf! 'iWi bl p&,\lfl 
fieCKOite'lHbi..MU cepUfiA!U An, Bn, Cn, D,. u nam&IO UJOAupoeaHHWIU zpyn­
naMu ® •. F., E., E, E •. Cucme.~tbl npocmb/.x IWpHeii uJoAup06r.tlllblX n!lmu 
zpynn iJc.IOmcfl, coomBemcmBemw, cXeAiaMU · (I)- (5) n" 13 . 
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E . Dynkin 

nMTepaTypa 

1. B . L . van der W a e r den, Die K1assifikation der einfac h en Lieschen Gruppen, 
Math . Zeitschr., Bd. 37, 1933 (pyccKHH nepesoA -eM. «YcneXH MaTeMaTH'<ecKHX 

HayK•, BhiO· IV, CTP· 258- 274). ~- H . We y I. Theori e der DJrsteltung kontinuierliche n h a1beinfacher Gruppen durch 
lineare Transformatio nen, .'1\lt h . Z !itschr ., Bd. 23, !9!3, B:l . 24, t9n (nep!BO:I 

noMemeH s TOM )l<e BblnycKe <•Ycnexos MaTeMaTH'<eCKHX HayK >> ). 

(n ocTynHflO B peA3KI.\HIO 19{X 1944 r .) 

Classification of the simple Lie groups 

E. Dynkln (Moscow) 

( Resume) 

Following H. Weyl, the structure of a semi-simple Lie group is com­
pletely described by the system ~ (@) of its root vectors. ~ (@} i> a 
finite set of vectors of an rz-dimensional Euclidean space Rn. 

We shall say that a vector from Rn is positive if its first coordinate 
not equal to zero is positive . We shall call a positive rc.ot simvte, if it 

cannot be resolved into posi tive roots . 
The present paper contains the followin g precise version of 

result: a semi-simple Lie group is completely determined by the 
of its simple roots. The problem of classification of simple Lie 
is thus reduced to a simple geometrical problem , namely to find 

Weyl's 
system 
groups 
in the 

space Rn all possible systems of vectors 1' such that. 
I. If a E r, bE r and a =I= b, 2<(a , b!! is a non-positive integer, where 

a, a 
(a, b) denotes the scalar product ·of the vectors a and b. 

2. r is tile bilineary independent system of vectors. 
3. I' ca nnot be decomposed into orthogonal subsystems r, and r,. 
An elementary study shows that all solutions of this problem are 

given by the system of simple roots of the groups An , Bn, Cn, Dn, G,. F., 

E., E,,E,. 
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THE FORMALISM OF LIE GROUPS 

A. SALAM 
Il'vfPERIAL COLLEGE OF SCIENC E AND TECHNOLOGY, LONDON, 

UNITED KINGDON 

1. INTRODUCTION 

Throughout the history of quantum theory, a battle has raged between 
the amateurs and professional group theorists. The amateurs have main­
tained that everything one needs in the theory of groups can be discovered 
by the light of nature provided one knows how to multiply two matrices. In 
support of this claim, they of course , justifiably, point to the successes of 
that prince of amateurs in this fie ld, Dirac , particularly with the spinor 
representations of the Lorentz group. 

As an amateur myself, I strongly believe in the truth of the non-pro­
fess ionalist creed. I think perhaps there is no t mu c h one has to learn in 
the way of methodology from the group theorists except caution . But this 
does not mean one should not be aware of the riches which have been amassed 
over the course of years particularly in that most highly developed of all 
mathematical disciplines - the theory of Lie groups . 

My lectures then are an amateur's attempt to gather some of the fas c i­
nating results for compact s imple Lie groups which are likely to be of physi ­
cal interest. I shall state theorems; and with a physicist's typical unconcern 
rarely, if ever, shall! prove these. Throughout , the emphasi s will be to 
show the close similarity of these general groups with that mos t familiar 
of all groups, the group of rotations in thre e dimensions. 

In 1951 I had the good fortune to listen to Prof. Racah lecture on Lie 
groups at Princeton. After attending these lec tures I thought this is really 
too hard; I cannot learn this; one is hardly ever likely to need all this com­
plicated matter . I was completely wrong. Eleven years later the wheel has 
gone full cycle and it is my turn to lecture on this subject. I am sure many 
of you will feel after these lectures that all this is too damned hard and un­
physical, The only thing I can say is: I do very much hope and wish you do 
not have to learn this beautiful theory e leven years too late. 

2 . SOURCES 

A word about the sources (1] and the scheme I w\sh to follow. The chief 
sources in this theory are the famous thesis of Cartan in which mos t of this 
subject was created Hermann Weyl and his classical text on "Classical 
Groups" and Racah's Princeton lectures [2]. However, I believe conceptu­
ally the most concise existing treatmen·t of the subject is in the works of 
D_YNKIN (3]. Dynkin 1s paper has a magnificent appendix which gives a re­
Vlew of the known results and this appendix is my major source. F rom the 
point of view of a physicist working on symmetry problems perhaps the best 
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reference is to the revi e w pap·er of BEHRENDS, LEE , FRONSDAL and 
DREI T LEIN (4]. I have checked with Lee that apparently while these authors 
kne w of Dynkin ' s work they did not have it a cce s sible when they were writi ng 
thei r review . Thu s their tre atment of the fundamentals r esemble s Car t an a nd 
R acah m ore closely ra th er tha n Dy nkin. Another excellent paper for p hysi ­
cist s i s SPE ISER a nd TARSK I [5]. F or a fuller exposit ion of Dynkin, refe r­
ence may also be mad e to two Imper ia l College the s e s - those of NE'EMAN 
(6) a nd IONlDES [7]. 

3. DE F INIT IONS 

The general theory of Lie groups follows closely the pattern of the one 
group we a r e all thoroughly familiar with , the theory of the three-dim en­
sional r o ta tion group 0 3• It is indeed a m a tter of deep regret tha t the ele­
mentary expositions of this fa m iliar cas e do not employ the same termi ­
nology as that of the genera l theory. Ha lf the conceptua l difficulties of the 
s ubj ect wou ld simply disappear i f thi s had consiste ntly been done in our 
undergra dua te c ourses. To illustr at e and to anticipa te notation we sum­
mariz e known fa cts a bout th e r o tation gr oup 0 3• (All statements made here 
will be formalized la ter . ) We know tha t this g r oup is comple tely determine d 
by three infinites ima l ge nera tors: 

J*. Jf.Jj. (Jl ± i J2)• J3 

and the ir commutation rela tions: 

[J •• .I:J ) • f. [J",J3)• -J", (J ' ,J"] = J 3. 

The commutation relations tell us that 
(i) The number of operators (out of these three) which can be diago­

nalize d is one (J3). Call this number the "rank" of the gr oup, Thus the rank 
of 0 3 = 1. 

(ii) Call t he eigenvalues of J3 (i.e. the magnetic quantum numbe rs) by 
the name "we ights". The h ighest e igenvalues j of J 3 uniquely labels a r ep-
resentation, We shall call th is "the highest weight". ' 

(iii) The commutation relations tell us (from (:f. J3 ] = ± J3) tha t, irre ­
s pec tive of wha t the weights are , the difference of two consecutive weights 
is ± 1. These numbers ± 1 which are characteristic of the commu ta ti on r e­
la tions of the gr oup and no t of any particular representat ion a r e called 
"roots". In the s ubsequent general s tudy of Lie groups thes e three concepts, 
"rank " of the group, "roots" of the group and "weights" (and pa rticularly 
the highe st weight) will be generalized and will play cruc ial roles . 

(iv) Ano ther way of labelling the representations of 0 3 is to use the oper­
a tor .J2• Thi s operator commutes with all other operators and thus for a 
given representation equals a constant multiple of unity . If j is the highest 
we ight,,! 2 " j(j + 1) 1. This operator is called the "Casim i r operator" . We 
sha ll find tha t the concept of a general "Casimir operator is not as highly 
developed, and for this reason we shall treat this concept at an early stage 
~ection 5) a nd then not mention it at all later. 

52 

THE FORMALISM OF LIE GROU PS 

4. MATHEMATIC AL PR E LIMINARI ES 

4 . 1. A group G is a set of elements a, b .. .. with a compos i tion law (multi­
plication) such tha t the following conditions a re fulfilled: 

(i) i f a an d b a r e elements of the se t, then also the pr oduct c = a b be­
longs to the set, 

(ii ) the compos ition is a ssocia t ive : a (b c) " (a b) c , 
(i i i ) the se t conta ins a unit element e suc h that a e = ea = a , 
(iv) to any e lement a of the s e t, there exists one and only one element 

a·1 of the set such that a·1 a = a a·1 = e . 

The definition of a group does not imply that the two elements ab and 
ba are equal; i. e,, the compositi on is not necessarily commutative. A group 
in which all elements commute is called abelian, 

A sub-group H of a group G is a sub-set of elements of G , which again 
fulfils the group postulates , G and the group consisting of the unit element, 
e, are called trivial sub-groups of G. A sub-group N is called a!l i"variant 
sub-group of G if for any element n of N (n~N), sns·1 is again an element 
of N where s is any element of G(s~G) . 

A group i s called simple if it contain s no non-trivial invar iantsub-groups, 
except possibly discrete ones. 

A group is called semi - simple if it contains no non-trivial invariant 
abelian sub- groups, exc ept possibly disc rete ones. 

4. 2. A representation of a group G is a mapping of the group into a set of 
linear transformations D of a vector space R s uch that 

if 

then 

ab • c 

D(a) D(b) • D(c). 

D(a'1 ) • IT1 (a) , 

D(e) • I, 

where I is the unit operator . 
A representation is reducible if it leaves a sub-space of R invariant . 

Then every transformation matrix can be brought i nto form: 

[: :J 
A representation is fully reducible if every trans forma tion matrix can 

be written as 

[: ;] 
4, 3. A Lie group is a group whose eleme nts form an analytic manifold in 
such a way that the composition ab • c is an ana lyti c mapping of the manifold 
G X G into G and the inverse a .. a·l i s a n analy tic mapping of G into G. A 
Lie group can thus be viewed from an algebr a ic, topological or analytical 
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point of view. The topological concepts of importance are connectedness, 
compactness and invariant integral on the group (see SPEISER and TARKSI 
[5]). 

A gr oup G i s compact if every infinite sequence in G has a limit point 
in ::i . For a com pac t group one can define a finite total volume which is in­
variant under the group. 

For e xample, the g r oup of rotation in three dimensions 0 3 without re­
flections i s a connected and compac t group. The proper Lorentz group is 
conne(:ted but not c ompa ct and the im proper Lorentz group is neither con­
nected nor compact. 

The study of simple groups is important because every semi-simple 
c onne cted group is essen tia lly a direct product of simple groups, and any 
connected compact Lie group is essentially a product of a semi-simple and 
a one-parameter (abelian) com pac t group . 

Ex. 04 ~ 0s X 0s ; ~ simple ; 0 4 semi-s imp le . 

The symbol~ means locally isomor phic. From now on we cons ide r only 
simple co m pact Lie groups . 

5 . SIMPLE COMPACT LIE GROUPS 

So far as a phys ici st is concerned , a Lie group is a gr oup of transfor­
mation of va r iables which depend analytically on a fini te s et of N parameters . 
Th e fu nda men tal idea of Lie was to consider not th e whole group but that 
part of i t which li es close to the ide ntity consisting of the so -called infini­
tesi mal trans forma tions . To formal iz e this , we have T heo r e m I. 

Theor e m I 

E very r epr e s enta tion of a compact Lie group is equiva lent to a unitary 
r epres entation and is fully reduc ible (RACAH , WEYL [2]) . Thus , since the 
ma tr ic es D(g) can be ta ken as un i tary, they can be put into the form: 

D = exp(io::aXa), 

where X., are constant hermitian matrices (X: = Xa ), which are called infin­
i tesimal g enerator s of th e group . Ea(a = I , 2 . . . , N) are N real parameters 
on wh ich the set of transformat ions D depend. 

The g r oup is ca lled unimodular if for any D(S) , det [D(s)] = I . 
Then tr X = 0. 

Theor e m 2 

Fundame ntal Theorem of Lie 
The loca l struc ture of a Lie group is complete ly specified by the com­

mu tat ion relat ions between the operators Xa: 

(Xa ' XB] = c;B X,. ; a , {3 , -y = 1, 2 .. .. , N, (5.1) 

where the coeff icie nts CJB which are independent o t the representations of 

54 

THE FORM ALISM OF LIE GROUPS 

the group are nu m bers (ca lled the structure cons ta n ts of the group). Thes e 
numbers s a tisfy two requi rements : 

(a) a n t isymme try in the two lower indic e s 

c r = -cY 
a B Ba ' 

(b) 

6 < 6 < 6 ( 
Cae Coy + Cya CoB + CBY Coa = 0 . 

Note that con di t ions (a ) and (b) a re equ ivalent to th e antisymmetry of 
the Com mutator b r acket [Xa' ~] and the J acobi iden tity: 

[[X., , XJ , ~] + [ (Xy, X.,J. XB] + [ (XB, X,.J. X, ] = 0. 

Re wri te (b) in the form: 

• 6 ' 6 
(Cal6 (Cely - (C8)6 (Caly 

6 • 
Ca B (C6)y • 

Thus, we have s ho wn t he following: 

Theorem 3 

The N matrices Ca wi th m a trix elements (Cal~ form the s o - called regular 
or adj oint represeota t ion of the Lie algebra*. 

T he problem of c lass ification of L ie groups is the pr oblem of finding 
the numbers c's which sa tisfy (a) a nd (b) and then of find ing N c ons ta nt ma­
tr ices which sat is fy the funda men tal commutation rela tion of Theor em I . 
This p r oblem was comple tely solve d by Cartan in !913. Before however 
we sta te Car ta n's resu lts , we first wish to recas t the fundamental commu­
tation rela tion (5 . I ) in a " canonical" form and also get over a number of 
auxilia ry r e s ults connec ted wi th Cas im ir ope rators. 

6 . CASIMIR OPERATORS 

From the struc ture cons tants we ca n de fin e a metr ic ten sor : 

Theorem 4 

B a 
g~v = C~a Cu B· 

The necess ary and suffic ient condit ion for a Lie group to be s em i-sim­
ple is tha t 

* The 'er of N matrices X a. span a line ar vector space o ~o· er the fie ld of complex numbe rs a!!d de-Hue a 
Lie Algebra; the sum of two matrices is an ele ment of the alge !Jra and so is their commuutor. Lie algeb!.ts 
and Lie groups possess a one · one correspondence... and i t is poss ible to go freely from Lie groups to Lie algebra), 
The study of Lie algebras (first introduced !:ly Weyl) lS in effe ct the stud }· of the Ln ftnttenm al aspe ct of Lte 
group theory. Even though it is galling to bnng in a ne....- concept (of a Lie algebra) at th is Hage, this <~p ­
pa rently improves the mathemat ica l rigour of the state ments m<~d e in ihese lt~c ture s! 
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det [gpvl I 0 (Carlan). 

Thus for a semi- simple group we can define an inverse metric gPV such that 

pv {}' 
g gvp = p ' 

and we can use the metric tensors for raising and lowering indices. 
Now define an operator F = g,,,a, x"• Xa'. This is called the Casimir 

operator and has the property that it commutes with all the generators of 
the group: 

[y, Y"a] = 0. 

The proof of the result is trivial. The significance of the Casimir operator 
lies in recalling that by Schur's Lemma any operator which commutes with 
all the generators of the group must be a multiple of the identity. 

For Cl.! this operator is the total angular momentum ~z . One can define 
generalized Casimir operators: 

n Sz a, St at az an 
F = Ca,s, Ca,R, ..... Ca,lln X X ..... X 

It is easy to see that all these commute with x". 
For Os all inequivalent irreducible representations can be character­

ized by giving different values of X where X I :o Jz. The question arises if this 
is true in general. Racah gives the following partial answer : Write the set 
{X~ defined by Xk I = Fk. For simple groups if the representation D and (D-l)T 
are equivalent representations, then the set {Ak} gives an unequivocal charac­
t eri zation of all the inequivalent representations. 

7 . CANONICAL FORMS OF THE COMMUTATION RELATIONS AND RANK 
OF A GROUP 

Theorem 6 (P . Ionides) 
By a suitable choice of linear combination of the X's, the C~7 can be 

made antisymmetric in all three indices and pure imaginary; i.e. one can 
write the commutation relations in the form: 

[Xa, Xel "' i ~srXr · 

with ~By purely antisymmetric and real. 
In the usual theory of angular momentum, the first step is to rewrite 

(the Ionides type of) commutation relations, 

(Ja' JB] = i €a8yJy a, {5, i' = 1,2,3, (7 . 1) 

in the so-called "canonical form". Defining the non-hermitian operators, 

J* '" (JI ± i Jz l/ .J2, 
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[Je Jsl • ± J•, 

[J •• J_l • J3. 
(7 .2) 

There are two virtues of this canonical form: 
(1) If J3 is diagonalized (J3 1 m) = ml m), we infer from (7. 2) that the 

operator s J• act as "creation" and "annihilation" operators . 
(2) (7 . 2) shows that the consecutive eigenvalues m of J3 differ by ± 1. 

Our first task is to cast the commutation relations (5. 1) in the "canonical 
form". 

Assume that among theN generators, there are £which mutually com­
mute and can thus be simultaneously diagonalized. This number£ is called 
the rank, and we shall designate these £(hermitian) operators as H1, Hz ... 
.. . H1• (For 0 3, £"' 1). These operators have a direct physical meaning since 
their eigenvalues for any representation provide us the quantum numbers. 

Let us consider H1, Hz .. .. H1 as the components of an £-dimensional 
operator-valued vector H. The components of H clearly satisfy the com­
mutation relations: 

[Hi, Hi) = 0 fori, j = 1, 2 , ..... ,1,, 

If the dimension of the algebra is N (i.e. the number of parameters of the 
corresponding group is N), we still need (N - £) elements to complete a basis 
of the algebra. A suitable choice of these is provided by the following: · 

Theorem 7 
There exists a bas is of the Lie algebra consisting of the elements H1, 

Hz ... , H1; Eu, E.z ... E•(N-t)/Z such that the following commutation relations 
hold: 

[!,1, EJ ;: (a) Ea, (7. 3) 

[Ea, E..a] !: (a) !:! ' (7. 4) 

lEa, Eel • NaaEy for a I - f3 , (7. 5) 

witha, j3 • ± 1, ±2, ... ±(N- £)/2. E's are non- hermitian matrices and_!: (a) 
are real vectors in an £-dimensional space. The ;: 's are called roots of the 
algebra; they have the property that 

_!:~)• -,!: (-a), (7 . 6) 

Clearly the total number of the roots is (N - £). 
The scalar product appearing in (7. 4) is the usual Euclidean scalar prod­

uct provided the H's are chosen in such a way that the following normali ­
zation conditions hold: 

~ri~)ri(a)sR6h; ij= 1,2 ... <. (7. 7) 
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with an arbit r a r y scale consta nt . F inally , 1'\,a ar e real numbers which are 
different fr om z ero if a nd only if;: (a ) +;: (,B ) is a lso a r oot. 

The r oots, being e s sentially o ur. o l d frie nds the st ru c ture cons t ant s , spec ­
ify completely the group (at leas t in the local s ense) . They posses s a twin 
r ole in th e t heory. Fir st , as m ay be inferr ed from (7 . 3), the root s 
are the diffe r enc es of the eigenvalue s of H. Second and m ore im por tant 
for our present purpose s , the roots allow us to classify Lie groups. In terms 
of the roots we can state Cartan's s o lution of the problem of finding all simple 
Lie groups. T he cruc ial theorem here is Theorem 8 which lists further 
properties of the roo ts a nd in terms of these gives a complete classification 
of Lie gr oups . 

8 . CLASSIFICAT ION OF LIE GROU PS 

A r oo t is said to be pos it i '::: i f its first non-vanishing component (in an 
arbitrary basi s ) i s positive . A rho! is ca lled s imple if it is a positive root 
and in add ition i t cannot be decompos ed into the sum of two positive roots. 

Theorem 8 
(i) F or a s im ple group of r ank £ there exis t £ simple roots and they are 

all linea rly indepe ndent . (We s ha ll call the s et of s imple roots the r-system.) 
(ii) Every pos i tive non- si mple root can be expressed as a linear com­

bination l: Ra r (a) where Ra are non-negative integers. 
!(a)e • -

(i i i) If;: (a) a n ::!;: (/3 ) ar e two simple roots, the angle IJaB between these 
ca n take only the following values: 

go• 120° 135° and 150•, 

so that 2 ;: (a) · ;: (fJ )/;: (a ) · ;: (a) and 2;: (a)·;: ({3)/;: (J3) ·;: (j3) are both inte­
gers. 

(iv) For eve r y simple group, all the simple roots either have the same 
length or thei r length r a tios assume simple values. More explicitly one has 

if e aB• 120• 

r (a) 12 

~" 2 if eaB. 135• 

3 if eaB • 150•. 

If 9aB,. 900, the rat io of lengths is undetermined . 

Dynkin diagram s 
As we sha ll see in a moment , the geometrical properties of the simple 

roo ts in the 7r- system c ha r a cterize in a un ique manner the corresponding 
L ie groups . Therefore it is most convenient to incorporate them in a sche­
mat ic diagram . T he se diagr ams (the so-called Schouten-Dynkin diagrams) 
are drawn in F ig . ! . 

F rom Theorem 8. the lengths of the simple roots of a g iven s imple Lie 
group can a ssume at m ost two different values. This fact together with the 
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CLASSICAL GROUPS 

A, 0-0-·· -- -- -~ 

B, £D-0--0-- ·-··-·----0 

c, ~- -·-····· ----
D,11 > 2 ) ~-- -··-- - -0 

EXCEPTIONAL GROUPS 

G, 0::::::. 
F, ~ 

Eo 

~ 
~ ~ 

0 

E• 

~ 
Fig. 1 

I 
I 

I 

NzNUMBER OF 
PARAMETERS 

t2 +21 

212 + 1 

212 + t 

2t2- I 

14 

52 

78 

133 

248 

Canan solution of all possible 11ngle We groups . 

properties about the angles enumera te d a bove can be s y m bo lically described 
by associating wi th each simple roo t a s ma l l ci rcle . For the roo ts of great­
e-st le ngth the cir cle is marked in black. If the a ngle be tween two consecu­
tive simple roots is equal to 120• , 135• or 150'. the corresponding c ircles 
are joined by simple , double or triple lines respect ively. If the angle is go•, 
the circles are not joined. For a group of ra nk L the r e a re l si mple roots 
and therefore £ circles (black or white). 

In terms of these diagrams we give no w the Ca rtan solut ion of all pos­
sibl~ simple Lie groups. Broadly these fa ll in to two cat egor ies : the s o­
called "classical groups" and the fi ve "excep tiona l groups" . 

To anticipate we shall find that the cl assi ca l Li e groups a r e some of 
the well known objects : 

A1 is the gr oup of unitary unim odu lar m a tr ic es in complex space of 
(£ + 1) dimensions csu,. l>. 

B1 and D1 are groups of or thogona l trans fo rmations (ro tat ions) in rea l 
spaces of 2£ + 1 and 2£ dimension'S r espe c l ive ly (Oz c•J and 02 ~ . 

C1 .is the group of unitary ma tri ces l : •n complex space of 2 •. dimensions 
which fulfil the condition UT J U • J where .Tis a non -- si ngu la r antisy m m et­
ric matrix (the s ymplectic group)* . 

* Note from the Dynltin di•gmns : 

(I) o,=> 
Aloo 

(ii) c, = 0:::::. 

~ 

isom~rph ic 

'"' 
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To take s imple examples of root structures : 
F or i = 1 (i. e . group O:Jl there is just one s imple r oo t + I. The space 

spanne d by s imple roots (the tr - space ) is (1}. For I. = 2, the space is a plane , 

the re le van t gr oups being 

A2: 

B2: 

C2: 

G2: 

0--{) 

-=::D 

a==-

~ 

Two simple roots of equal length, and the 
angle between them is 120•. 

Two si mple roots. Their length ratio is 2. 
The a rw:e between them is 135° . 

T wo !' imple roots with length ratio equal to 
3 , and angle 150° . 

02: 
0 

0 
1s semi-si mple, ~ "" A1 X A1 

Summarizing this sect ion then, from the Dynkin diagrams we reac off im­
mediately the rank £ of the group . the lengths of the simple roots and their 
mutual angles (and of course the dimensionality of the Euclidean space (r) 
spanned by these J. independent vectors)*•**· The simple roots r(l), 
!. (2), .... ,!: {1), are given by the following formulae : -

* It is perhaps wonhwhile to make the reminder at this ~ tage that not all roots are simple. In fa ct the 
total number of roo<s is (N-1), tbe distinct ones being (N-f)/2in virtue of !{a)= -!{-a), a= 1, 2 ... . • (N-l)'l. 
The remaining (N-31)/2 dutinct non-simple roots can easily be constructed, and in Footnote** we give a 
complete ansatz for drawing a complete root diagram (for I= 2 for example in a plane; for I= 3 in{3} 
space and so on). Personnally, I consider these diagrams pointless. However, to satisfy current prejudice the 

root diagrams for A1 , 81 and Gz are reproduced in Fig. 2. 

® ' ' . . 
A, 

N= 8 

~ 
~-- ---- ------: 
' ' 

' ' ' ' ' ' 1------ - - - --
a, 

N =lO 

Fig . 2 

Root diagrams for A2,B 2 and G2 

* 
' -. . . . 

' . 
' -

' 
N =14 

** The following scheme incorporates all the requirements about angles •nd lengths of simples roots 

specified by the dlagums. 
For Ar define tbe following vecton: 

by the conditions 

6,, 6, , ... ~ ... 

.1,1 + .1,, + •••• · + b 1+1 = 0. 

~ = .1,', = ···· · = ~·I+ I = I A' 

~ - ~q =-A, PI q = 1,2, ••• . . 1+1. 
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.!: (.t) "'~ ~ - ~1+1. 

.!: (£~ 1) • ~~ -1 -~1 • 

.!: (1) • ~ - >.2 . 

o--o---o---o .... 0 
I 1-1 1 

the simple r oot s tructu r e is a s follows: 

.!: (.t ) • ~1 • (T his is the smallest root ) 

!. (£- 1) = ~~ -1-~1. 

!. (1) • ~1 - ~ 

,2 • .\2 • .\2 • A ~1 -2 .. . ... _, • 

(8. 1) 

(8 . 2) 

~p ~q • o, P I q. (8. 3l 

-=::.D---0- . ·---o 
I 1-1 1 

For C1 : the sim ple roots a re g iven by: 

!. (£) • 2 ~ ~ , (This is the greates t root.) 

!.~£~ 1)· ~·- 1 - ~f-2. (8 . 4) 

!. (1) • ~2 - ~1 

cr:::::::=----e __. 
I 1-1 

where the~ 1s satisfy (8 , 3). 

For D1 : the simple roo ts a re given by: 

!. (£) • ~l-1 + ~ •. 

!. (£~ 1) . ~ .-1- ~, 

!. ( 1) .. ~1' - ~2 
I 

~ 4 
1-1 

(8. 5) 

The >.•s satisfy (8. 3). So much for simple r oots. All roots are given for the 
classical groups by the following expre ssions: 

A, (~P-~q); p, q " 1, 2 , .. ... , £+ 1 
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±~p , ±~p±~ Q ; p , q" 1, 2, .. . . . ,£1 
± 2 ~p ' ± ~p ± ~q ; p ' q " 1 ' 2' ... . . ' £ 

±~p±Aq ; p, q., 1, 2, . . . .. , £ . 

The ±signs a re to be taken in 
arbitrary combinations. 

Similar expressions can be given for the exceptional groups . Also one 
can give a full correspondence between the "canonical" expressions for the 
commutation relations and the more familiar manner in which one writes the 
commutation relations for the orthogonal , symplectic groups, etc. 

Thus, for the orthogonal group in (2£ + 1) dimensions which leaves in-

variant the quadra tic form 

~ xP x-p 
p=- 1 

one m ay write the infini tesima l ope r a tors: 

6 6 
~q = - Xqp = XP 6 X -q - ~ 6 X ·p ' 

with the commutat ion relations: 

[Xik' Xmn) = <\•m Xin- <\•n- Xim - 6t+m ~- 61+n Xxm 

where 6q • 1 if q = 0 and zero otherwise. These operators correspond to the 
E's and the H's of B

1 
if we mak~ the foll:>wing identifications: 

~-p: ~· X±p±q:;. EHp±~q· Xotp" E,~P; p,q> 0 . 

Similar correspondence can be stated for A1, C1, D1 etc . (Racah's notes). 

9. REPRESENTATIONS OF LIE GROUPS: WEIGHTS 

9. 1. Now we come to physically the most important problem of all - the 
problem of finding representations of the group, i.e. the matr ices corre -

sponding to .!:! and Ea. 
Consider a repr e sentation of dimension (or degree) d. Since H1, ~ ••. 

.. , H
1 

are hermitian matrices, and since they commute with each other, we 
can simultaneously diagonalize these. Let I m) be a simultaneous e igenket: 

.!:! lm) = ~ lm). (9.1) 

Since H 1 s are d X d matrices, the total number of such eigenkets I m ) is d. 
The m 1 s in Eq. (9. 1) are real numbers and are called "weights". They 

form £-dimensional vectors in a Euclidean space for whose basis one may 
take the 1r- space of the group (the space spanned by the £ simple roots). 
Summarizing, for the case of a group of rank £ and for a given representa-

tion of dimensionality d, there are 
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s imple root vectors 

di s tinct non- simple root vectors 

wei ght vectors (provided we count each weight 
vector as many times as its multiplicity indi­
cates, the multiplicity being defined as the 
number of independent eigenkets I m ) corre­
sponding to a given weight J!l). 

Note that r oot ve ctors are characteristic of the group. They are really the 
structur e constants. The we ight vectors on the other hand are characteristic 
of the r epresentation. The r e are only £linearly independent roots (simple 
r oot s ). Ther e are al s o only £line arly independent weight vectors. The sim­
plest (obli que axi s) b as i s for the weight vectors i s that provided by the sim­

ple root vect or s. 
All thi s inte rtwining of weights and roots is exciting enough, but still 

further and the mor e exciting result comes when we look for the analogue 
of the result i n (\ that all weights are e ither integers or half-integers. The 
analogous result is Theorem 9, which gives the "component" of any weight­
vect or along a simple root-vector. 

Theorem 9 
F or every weight m , the number m · r (a)/r (a)· r (a), where r (a)e1T, is 

an integer or a half- integer, ~ 0 . - - - - -
Theorem 9 provides the justification for Dynk in's insistence on simple 

roots as the primary entities on which all conceptual emphasi s should be 
placed . Dynkin cares neither for the non-simple roots nor for the weight 
vectors. Given the simple roots, Theorem 9 tells us wha t the weights look 
like through the simplest possible generalization of the fa miliar results for 
the (3 ) rotation group* . In this insistence on simple roo ts possibly lies the 
s uperiority of Dynkin's presentation of Lie group theory . 

10, IRREDUCIBLE REPRESENTATIONS AND THEIR DIMENSIONALITY 

DeHnition: A weight m is said to be higher tha n m' if m-m' has a posi­
tive number for its first rum-vanishing componen t in a-;:i a rbitrary basis. The 
weight!:_ which is higher than all the others is called the highest (or greatest) 
we ight. 

Theorem 10 
A representation is uniquely character iz ed by i ts highest we ight ,\ , and 

the highest we ight always has multiplici ty one . ·-

* Earlier it was mentioned that roots are differences of weights. · The formal resuh iJ : If I rrl';- is an 
eigenket oft!. cor~• pending to a weight !!!_. E0 I',')> is also an eigenke t with weight !!!_+.!.(a). The result fol­

lows from 
[Ea . !;!l = .!(a) Ea. 

Note the role of E a as a creation operator. 

63 



A. SALAM 

Theorem 11 
In order that a vector f\ be the highest weight ot some irreducible rep-

resentation, it is ne cessary a nd suffi c ient that ja, defined as ja = Jl ·.!: (a)/::_ (a) · r(a), 

is a non-negative integer or half-integer. 
Thus to get the irreducible representat ions of any Lie gl'oup , we should 

mark each circle in the Dynkin diagram with a non-negative integer or half­
integer ja. These numbers characterize uniquely the ir r educible representa­
tion with~ as its highest weight, the "components" ~ · .!: (a)/.!: (a)•.!: (a) of 
~ being just (j

1
, h ...... ). The dimensionality of this representation is given 

b y the following theorem of Weyl: 

Weyl ' s Theorem: Theorem 12 
Let l:+be the system of all posi ti ve roots of a semi-simple L ie algebra, 

and let an irreducible r epresentation be uniquely c ha r a cter ized by the highest 
weight~. Then its dimensionality d is given by the formula: 

d = [ r1 T (\ · r (a1/ .8. · r {a). 
!,(a) E L , _ - - j -

where 
g = ~ !.(~eE, .!: ( j3 ) • 

If one writes the vectors~ and g in terms of the auxiliary quantities ;I.'s 

previou sly introduced in the third footnote of section B, 

~ =!: fi ~ i' 

g = r::gi ~i · 

The Weyl formula above gives the explicit expressions listed in Table I. 
As examples consider some of the interesting physical cases , namely , 

thE? case of rank l = 2. In this case the number of commuting matrices in 
the algebra is two, and we can associate them . for example , wi th the third 
c.omponent of the isotopic spin and the hypercharge . The only simple com­
pact L ie groups of rank 2 are~ . ~ . C2 and~ . Any irreducible represen­
tation of these groups can be labelled by means of two non-negative integers 
h j

2
. The formulae for the dimensionality given in Table I can be written 

explicitly m a simple way and is s hown in Table II . 
For instance , for the simplest choices of the arrays h · j 2 one gets the 

following dimensions: 
A

2 
: d(O , 0) • 1 B.!('""~ ""Clo) : d(O, 0) = 1 G2 d(O, 0) = 

d(!,O) = 7 

d(O, ~ ) = 14 

d(1, 0) = 27 

d(l, 0) • 3 

d(O,~) • 3 

d(l. 0) • 6 

d(t.tl• B 

d!L t l•15 
d(1, 1) = 27 
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d(tO) = 4 

d(O, !) = 5 

d(1, 0) = 10 

d (O, 1) = 14 

d(t~) = 16 
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TABU U 

Group 
Number of 

Dimension of the irr. rep . 
paramete rs N 

A, 8 -+, CJ,) (!,) (l, + J,J 

s, } 
c, 10 -+, (!,) (!,) [!, +!,) (21, +!,) 

G, 14 1t (J, ; \J t) (II +1,) (211 +1z) X 

. . 
[31, + 1,) [31, + 21,1 .i 

{Note: Here 11 = (2i 1 + 1) and 11 = (2j 1 + 1)} 

These numbers d(j 1' h)* represent the number of particles which can be 
accomodated in any given multiplet in physical applications, 

The adjoirt (or regular) representation R plays a very important role 
in vector meson theories. For the case of £ s 2, these representations are 
the following: 

~ : dR•d(l,tJ• 8, 

B2 (C2): dR'" d(l, 0)" 10, 

Gz : dR • d(O,j) a 14. 

These groups , therefore, can accommodate 8, 10 and 14 vector gauge mesons 
respectively if these mesons correspond to the adjoint representation. 

11. COMPUTATION OF ALL WEIGHTS OF A GtVEN IRREDUCIBLE 
REPRESENTATION 

Notwithstanding the fact thl}.t the greatest weight uniquely characterizes 
an irreducible representation, it is important for physical applications to 
be able to compute all the weights of an irreducible representation. Later 
we shall construct weight diagrams for some irreducible representation of 
low dimensionality for the case of rank 2 groups (~. B2, C2 • Gzl. In con­
trast to the root diagrams, the weight diagrams are directly of physical 
interest. , 

An explicit method to calculate all the weights in terms of the highest 
weight and the simple roots is given by the next theorem. We have learnt 
earlier that the roots equal differences of weights. 

* I have introduced a small change of notation in the labell ing of representations. Dynkin and Behrends 
!L!!· label irreducible representations with numbers a1 , a2 , .•. ,a 1 where a1 are (non~negative) integen. 1 
hove used for labelling the numben j 1 , j 1 , . .• • i 1 where the j's ue (non-negative) integen or half- integers. 

The new notation possibly brings out still more the fact that a general Lie group of rank 1 is a simple "gener· 
alizatlon " of 0 1 and has I distinct "angular momenta" it • j 1 , .... i

1 
tather than jwt one Cit>· 

66 

THE FORMALISM OF LIE GROUPS 

Let A and W be the highest weight and the set of all weights respec­
tively of a given irreducible r epresentation. 

An element m sW is said to belong to the l ayer A(k) if it can be ob­
tained by subtracting K simple r oots from !:_. Clearly D,(O) consists only 
of !:_, and 

W = A(O) U t..<1> U A(2) .. ... 

Note that all the layers are disjointed. 

Theorem 13 
Every element ~(k) et..(k) can be expressed as 

mCk> = ~(k-1) _ £ (a), 

where mCk-1) e D,(k-1) 

and 
£(a) e1r. 

However, if m<k-1) belongs to D,(l<tfJand r(a) is an arbitrary simple root, the 
difference ~(1.-1) -£(a) ei:!P<> if and only-if the following condition is satisfied: 

2 ~(k-J) · £(al l £ (a) · £(a) + Q > 0, 

where the number Q is defined by the requirements : 

Example: 

m(k-1> + q £(a) sW for q ~ Q, 

m(k-1) + q£(a) eW for q = Q+ l. 

Perhaps the best way to show that the theorem is actually quite harmless 
and simple in practice is to construct the weights for a specific case. Con ­
sider the group A2 ~ SU3 for which .P. = 2. The Dynkin diagram is o--o. 
The "-space is two-dimensional; and if we call the roots a and {3, the dia­
gram tells us that their lengths are equal (I a 12 = lf31 2 l and the angle be­
tween them is 120• so that 

£ . ~I£ . £ = - ~. 

Consider now the regular representation a, ~ ). The dimensionality in 
this case is d = 8, so that the representation could accommodate8particles. 
The "components" of the highest weight ·!:_ (ie)k, , j8 are given by 

j" = !:. . !!. I£. £ = ~, ( 11.1) 

ja = !:. · P I P · P = ~. (11.2) 
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Noticing that a and f3 do not form an orthogonal basis, we find fr om ( 11.1 ) 

and (11.2)that -

~ = £ + ~· 

Now usmg Theorem 13, if we a r e given an arbitrary weight M and we 
wtsh to know whethe r M-£ is a pos sible weight or not, we proceed as fol -

lows: 
Wri t e the series M, M +a, M + 2 a, ••. M + (Q+ 1)a where~ i s an 

integer . The s er ies tffm~at es for a Q defined by the requi r em ent that whil e 
M · ~ +£,····~+Q£ areweights , ~!-'"{Q +1)g isnotaweight . Now com ­

pute th e number, 

Q+ Ma wher e !'via = 2M · !!. / £ · £· 

If Ma + Q > 0, then M -a is a weight; otherwise it is not. In s tarting this 
pr ocedure t he crucial point to remember is that A + a whe r e a is a s impl e 
root is never a possible weight. - - -

Consider now the c ase when ~ = ~. Since~ +!!_ i s not a weight , Q = 0. 

Since 

A a = ~ • £ /£ · !!. = ja > 0 ' ( 11.3) 

we see fr om (11.3) that~-£ i s indeed a weight . Likewis e, since j 8 > 0, 

A - f3 is also a weight . 
- -we c an now start with (A- a) and test if (A- a) -a and (A -a)-~ are pos -
sible weights or not. It i s easy to see that~ -2£ is ~at a weight , but ~-£:-f3 
is . Proceeding in thi s fashion, we find that all poss ible weights are given by 

the diagram shown in Fig. 3. 

~ 

A-"- ~-!!. 

~- !! - 21! ~-2~ - ~ 

~ -2~ -21! 

Fig. 3 
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Notice that the weight[!-~-~ is of multiplicity two. The diagram does not 
further fan out, and we obtain a total ity of e ight weights. Writing A= a+ f3, 
we have the following system of weights : - -

£ + {3, !!.· [!. 0, 0, - f!_, -!!_, - (f!.+ ~). (11.4) 

The multiplicitie s ar e s pindle- shaped: they increase, come to a maximum 
and dec r ease aga in . (The weight z ero has multiplicity two.) This is a gen­
eral result which will not be discussed further. 

u 

-I 

nip) p l~ +e ) 

I -1-~1 I' t· (~) 

z·H!! • .fl ll S" l·f.l l 

-I I 
-2 

Fig. 4 

I 
2 

Euclidean diagrams 

ll 

Fig.4 gives the Euclidean diagram of these weights . The two rings in 
the centre indicate the two zero weights . A tentative identification of the 
s table baryons with the appropriate weights has also been made in the figure, 
provided we identify 

ml = 13, 

m 2 = (2 /./3)U, 

where ~ = ( ~~ ) in a Euclidean basis·. 
For illuslrative purposes, here are some mor e weight diagrams cor­

responding to the representations [4) shown in F ig . 5. 
Before concluding this section we state one important theorem and make 

one final remark. 

Theor~m 14 
For the adjoint representation, the root vectors and the non-zero weight 

vectors coincide. The weight zero occurs with a multiplicity equal to the 
r ank of the group. 

An illustration of this theorem is given by the weight diagram of the 
(i, il representation of SU3 computed earlier in this section. Because of 
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u 

I y ( 1,01 OF SU3 

A 

__.l 

1 0 
1 !] 

-2 2 

u 

J 'A 

A t0,1l OF SU3 

-11- p n 

1 0 
1 !] 

-2 2 

u 
I 

n • p * "·""'• . : t I I' 

s- s • 

-1 1 0 1 1 13 -2 2 

u 

I 

X (0,11 OF c 2 

-~t s · :;• 

-1 1 0 1 1 13 -2 2 

Fig . 5 

this rather remarkable property clearly the adjoint representation has a 
greater claim to attention than any other. 
Remark . 

In 0
3

, the eigenvalues of J3 (the weights) are non-degenerate for any 
given representation and hence suffice to label the representation. For gen­
eral Lie groups, · except for the highest weight, all others may possess 
multiplicities of > 1 (compare the weight (0, 0) for su3 which has multiplicity 
2). If the multiplicity is > 1 we need additional operators all commuting 
with each other and with the l!' s, whose eigenvalues will enable us tore-
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move the degeneracy and label uniquely the eigenvectors of the J!'s, belonging 
to the same given wei ght. (A Casimir operator which has the same eigen­
value for all vectors of a given representation is clearly useless for this 
purpose. ) The number of extra operators needed can be shown to equal (N-l)/ 2-l 
= (N -31.)/2 . For O:J, N = 3, l = 1 so that no extra operator is needed to chol­
racterize all the eigenkets of J 3 in a representation spec ified (uniquely ) bv 
the highest weight j . For SU3, however, N = 8, .f = 2 so that we need one 
more operator besides 13 and .u to label uniq.uely the eigenkets of !3 and U. 
It is not hard to show that in this case such an operator ia given by .!,2, For 
c2 , (N-31)/2 = 2, Thus, even additional tolland U and 13 ), one more quan­
tum number is needed to form a complete set of commuting observable&. 
For G2 , (N-31)/2 "'4. 

12. REDUCIBLE REPRESENTATIONS 

Let us take stock of the situation. For a phys iciat working in symmetry 
problems, the information necessary for progress is the following : 

(i) Classification of irreducible representation for a group of rank 1. 
We possess a complete solution of this problem. 

(ii) The eigenvalues of the commuting operatora H1, .... , H,. This ia 
the same problem as the problem of determination of we1ghts. Again 
we possess a complete solution cif thi's • 

(iii ) Determination of the extra(N-31·) 2 operators to enable a unique 
labelling of the eigenkets o H1, .• ; .. , H 1• For groups ike A2, 8 2, 

C2 , D2 we know how to construct such operators but a generalayatem­
atic procedure apparently is not known. 

(iv) The reduction of a reducible representation into the· di-rect sum of 
irreducible representations. There are. two parts of this problem: 
firat, finding out which irreducible representations make their ap­
pearance in this direct ium; se~ond, to find the Clebsch-Gord011 
coefficient•. Theorem 15 -.:ill give the procedure for solving the 
first probiem. The .second problem will be dealt with by Rue11 and 
Goldberg in their lectures for some special (fortunately for the 
physicist, extremely important) cases. No general solution how­
ever exists. 
F irst, some obvious definitions : 

Kronecker products 
If R1, ~, R3 are three linear spaces of dimensions m, n and mn re­

spectively, we shall say ft:! is the Kronecker product of R1 and R2 (~ 

= R1 X R2 ) provided to every vector If 1 ) eR 1, I~ 2 ) e R2 , there corresponds 
a vector I ~ 3 ) eR3 (notation I ~ 3 ) = ~ 1 ) X 1 ~ 2>) such that : 

(i) The operation If 1) X If 2 ) is linear in each argument ; 
(ii) R3 is spanned by vectors of the form If 1 ) X I ~. 2 ) . 
If ~ 1 and ~ are linear r epresentations of a Lie algebra operating in R 1 

and R2, the representation ~3 defined in R1 XR2 by the formula, 

~3 flfl )X lf 2))=( ~llfl )}X ~ ~2) + ~ ~ ~)X (¢2jf 2 ) }, 
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is called the Kronecker product of ; 1 and ¢2 and will be denoted as 

¢3 = ¢1 X ¢2 · 

Theorem 15 
(i ) Addition of weights 

If .0.
01 

is the weight space of ; 1 and Ll.~ is the weight space of the 
. . representation ~, then Ll.0

1 
= .0.~1 + Ll.q>

1
• 

(ll) If ~1 and ~2 are the greatest we1ghts of ¢1 and ¢2 , the greatest 
weight of~ i s ~ 1 + ~· 

Thi s theorem is an obvious generalization of the addition theorem for 
angular momenta in 0 3 which we consider in detail. If j 1 and j 2 are the 
highest weights of two irreducible representations ; (j 1) and ; {j 2), the (re­
ducible) product representation has the highest weight j1 + j 2 • Also the 
totality of its weights is given by ... 

Weight ... jf+-j2, j1+j2-1, i1+j2-2, .•• , -ic~ 

multi­
plicity -+ 

1 • 2 3 

The m\lltiplicities are easily deduced. For example, j 1 + h-1 arises in two 
ways : either as the sum j 1+ (j2 •1) or equally as the sum of the weights 
(h -1) + j 2 • The usual procedure to find the irreCiucY>le representations 
contained in ; (j1 ) X¢ (j2) can be stated thus: Take away from the totality 
of weights those which be!ong to. the representation ; (h • h). Among the 
remaining weights occurs the weight h + j 2 -l with unit multiplicity. Clearly 
this must be the highest weight of the representation ; (j1 + j2 -1) which 
therefore must also be contained in ; (j1 ) X ; (~ ). Taking away all the 
weights belonging to ; (h + h -1 ), we next identify the occurrence of 
; (h.+ j 2 -2) in the direct sum from the fact that the highest wei,ht left is 
(j1 + ,i2 -2). This procedure is continued till we reach ; (I j 1 - i2 1 ). At this 
stage all weights are eY.hausted, lead~gtothe inference that 

;(j1)X ¢(j2) .. ;(J1 + j2) + ¢(j1+ j2- 1)+ .••• + ¢(~1-j2j). 

The procedure i s obviously completely general. Its only drawback is that 
in order to apply it we need to know all the weights. A simpler version has 
been developed by Racah, Speiser and Ruegg where, if h ) b one adds 
all weights belonging to the representation ; (h) (i. e. j:z, k 1, ••. , - j 2 ) to the 
hiibest weight j 1 of ; (h). For 0 31 the resulting weights are clearly the high­
eat weights of the irreducible representations contained in ; (j1) X ; (j ~· For 
the more general cases this sum may lead to a certain number of negative 
weights which certainly cannot qualify as highest weigh~s. Thes·e then have 
to be excluded, and the procedure for this i s explained in Ruegg's lecture. 

Cartan composition 
If ;1 and .2 are two irreducible representations, the Kronecker product 

~ X ~ i s in general a reducible representation. Consider its greatest com-
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onent, ~. This is an irreducible representation with the highest 
~eight ~1 + ~2" The operation of Kronecker multiplication of two irreducible 
representations followed by the operation of isolating the greatest component 
lead to the formation of a new i rreducible repre s entation (¢; X ¢

2
) and is 

called the cartan composition of i rreducible repr esentations. 
Those irreducible representations of an algebra which cannot be obtained 

from other irreducible representations are called basic representations by 
cartan. These representations are characterized by the fact that their high­
est weights cannot be sp~it into the sums of two elements that are themselves 
highest weights. Clearly a representation ¢ is basic if, and only if, all the 
labelling numbers j1, j2, ••• , j 1 are zero except one which equals z. Thus 
every simple algebra of rank £ has £ basic r epresentations. 

One can go further and show that all basic repr es entations themselves 
can be constituted from a few so-called elementary representations by 
Kronecker multiplications followed by an antisymmetrization procedure 
which is somewhat familiar in ordinary tensor theor y and will not be de­
scribed here in detail. For A 1 and B 1 there are just two elementary r epre ­
sentations . C1 has one elementary r epresentation and Dr has three. One of 
the elementary representations¢ of A1 is r eali zed as th e group SL( J! + 1) of 
all matrices of order .A!+ 1 with determinant + 1, the oth er being given by 

rJ> ' = - [ rJ>l]T . 

For B1, one of the elementary representations is obtained by considering 
the group O(U + 1) of all unimodular orthogonal t ransformations of the 
(2J! + 1) dimensional space, while the s ec ond elementary representation is 
the so-called spinor representation. Th e realization of the group C

1 
in the 

form of the group Sp(2n) of the symplectic matrices of order 2£ gives its 
elementary representation, while for 0 1 (£ ;,: 5) one elementary represen­
tation is given by the group of unimodular orthogonal matrices of order 2£ 
and in addition there are two distinct spinor representations. For the ele ­
mentary representations of the exceptional groups reference may be made to 
Dynkin. 

This brief description of the results in representation theory does not 
even touch the practical problem of reduction of representation in the man­
ner the physicist wants it solved. For this we must fall back on our amateur 
methods, multiplying matrices, symmetrizing and antisymmetrizing tensor 
indices, though perhaps somewhat emboldened by the knowl edge that thi s 
is also the entir e, and when I say entire - I mean entire, stock-in- traoe of 
the professional group theorist. 
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Rochester, N.Y .• U .S .A 

( Rrcei ve<l Dt-cemher 6. 1961) 

A~·nrming invariBnce o( th~ry under thr~·dimen~ional unitary ~{roup. \'ar ious conse-· 
quenceo have been inveotillated Both Sakata'• ancl Geii·Mann'• scheme can be treate<l in 
the same fash ion and in a simpler way. Ma ... formula for pa rtie!"" belon~~:inl{ t<o the .,,m., 
ir re<luciblr representation has bc:-en clerin~d ancl cnmJ.Utrt'cl with exper i ment~ . 

§ I. bmoduedoa 

The purpose of this note is to investigate consequences of the three-dimen­
sional unitary group (denoted as U, hereafter), which is a certain generalization 
of the Ullual isotopic space group. Though many authors" ·" ·' ' have examined 
this problem, our procedure is simpler and some new results have been obtained. 
Also, we can treat differt:nt schemes of U1 such as Sakata's" ·' ' or Geii-Mann's11 

on the same footing by our method. 
First of all, we shall give some motivations for i ntroducin~ U,. All known 

interactions obey certain symmetries, i.e. they are subject to the correspondin~ 
transformation groups. \Ve can classify all known groups appearing in the 
studies of elementary particles into the followin,.: thrt:e categories. 
(l) Space-group 

(i) Lorentz group (ii) Charge conjugation 
(II) Isotopic-groups 

(i) Isotopic spin rotation R.'" 
(ii) Baryon gauge transformation R,' 11

' 

(iii) Charge gauge transformation R,'0 ' 

~ iv ) Strangeness gau~e transformation R,'" 
(v) Leptonic gauge transformation R,'r.1 

(!! I ) Gtwgc-transformation of the :2nd kintl 
(i) Electro-magnetic field 

(ii) Yang-Mills field 

01 A part of thia paper hoo been pr.,.entecl at the Ln·Jolla Conference held at l..!'. ·J olla, 
California. ] une 12, 11161 . 
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In this li st, we haw included the charlo(e eonju~ation into the space-group, 
beca use of the TCP theorem. These three groups of transformations are cor­
r.- la t.-d with eac-h other in some delo(rcc, but here we du not go into detai ls. 
Fu rthermore, we restricl ourselves only in the study of the iso-space groups 
rii), in thi s paper . Moreo,·er, we do not take account of leptons also, though 
I hl'y mi l(ht he treated on the same footinlo( .' ' Then, the groups ( II ) consist of 
·I groups. However, by vi rtue of the Nakano-Nishi jima-Geli-Mann formula, we 
!Ja ,·e one fo llowing re lation : 

Q = J, -1 ' :! · (N + S). (1) 

Thus, only 3 out of the 4 group~ are independent. So, the ·known strong 
interadions have to be invariant under the following j.( roup r; : 

(; ~ R,'11 X R,' 8
' X R," 11' . 

Now, for the moment, let us suppose that the nature obeys some higher sym­
metry than this. Then, the invariant group U of this higher symmetry must 
include G as a sub-~roup. One of them including G is U,, which is relat ively 
uncomplicated. This is one motivation for adopting U,. Besides, we may note 
that the 3-dimension is the minimum dimension for non-trivial representation of 
the group G. This may be taken as another motivation for U,.'' 

In the next section, w e shall give the classification of particles belonging to 
a given irreducible representation by means of restricting U, into U, (two­
dimensional unitary group). In § 3 we shall g ive applications of U,. Further­
more, the following mass formula will be proved : 

M = a + h ·S -r c· [l(l + 1) -- 1/ 4 -S']. (2) 

T his relation holds for particles belonging to a given irreducible representation 
of U,, and S and l stand for the strangeness and isospin of particles contained 
in the represtntation, respectively. This formula has been proved in the lowest 
order ~rturbation violating U,-symmetry of the type AA, but in any orders for 
the strong U,-invaril!!lt interactions. The proof of Eq. (2) will be given in the 
Appendix. As an application of Eq. (2), we note that if N, A, ~and E belong 
to an irreducible representation as in the Geii-Mann BCheme, we have 

1/ 2· [ MN+ M . ]= 3/ 4 ·M,+ 1/ 4·Mz, 

which is sat ; :lied in good accuracy. Another application of our formula Eq. (2) 
is that the mass of a neut ral-isoscalar 111et10n tro' would be given by 

M(tro') = 4/ 3 -M(K) - 1/ 3 ·M(:r):::600 Mev, 

where tro' is the meson belonging to the same representation u 1r, K and K 
mesons. Similarly, we should have 

M(K *) = 3/ 4 ·M (cu) + 1/4· M(p) 
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where (', ,,, and K * are bosons representing resonant states of (:r-lf), (11'-11'·Jr) 
and (:r-K) system, respectively. We note that this relation is satisfied within 

an error of 12%. . 

§ 2. Claaei&eatloo of pardeletl Ia U, 

The three-dimensional unitary ~roup l!, is defined by the follnwin~ transfor­

mation on a vector t/>, (tt = 1, 2, 3): 

t/>,-> r; a: tf>, (ft = 1, 2, 3) 
l. • l . :. a · 

(3) 

where a: satisfies 
L: <a: )*a; = ii,· (11,.1 = 1,2,3) . (4) 

l' c: I,:.! , :S 

In the Sakata model,'' we identify tf>., ¢>. and ¢, with the proton, the neutron ' 
and the A, respectively. However, this is not the only way. We shall assume 
that tfo,, and cp. form an isotopic doublet and cp. an isotopic s.illglet . As for other 
quantum numbers, we can assign according to the following cases : 

(a) 9., cp. and cp. have the baryon number N = 1. ¢1 and cp. have the 
strangeness quantum number S = 0, cp. has the strang~ness S = ~ 1. 

(b) We do nQt a~iJh any baryon numbers to tf>., ?. and cp., but assign 
Y-= 0 for ¢>. and cp., and Y = -1 for cp. where Y stands for the hyper-

charge Y=N+S. 
(c) We do not assign any baryo'l numbers to ;,. tjJ, and tp,, but assign a 

new quantum number Z = N + 3 · S as Z = 1 for tf, and cp., and Z = -2 

for cp.. 
The first assignment (a) corresponds to the usual Sakata model, and the 
second one (b) is practically the same as the Gell-Mann scheme,'

1 
and so we 

refer to it as "Gell-Mann scheme" for simplicity,•' though not exactly. The 
third scheme is actually convenient if we consider the unitary-unimodular group 
of 3 dimensions instead of U., and so refer to it as " the unitary-unimodular 
IK'heme ". We may give possible schemes other than (a), (b) and (c), but it 

will hot be so fruitful. 
First, let us consider the caae (a) (referred to 83 " Sakata scheme " here-

after). In this scheme, consider a special transformation 

tf>, -+e1 tf>,, tj;,--+e1 f.,, f's--+E-t{l. 

IE,I=1 (/.1=1, 2,3). (5) 

Thie ie a special transformation of Eqs . . (3) and ( 4). Then, a component of 
every teMor r;:::-,:. would transform u 
- -------------

., Note added io proof: Esactly the same .JCMJI!C hal been propoeed bJ Y. Yamapchi 
In ltiiO, 10 that - tbould call It u Yamaguchi-Geii-Maon ICbeme hereefter. Y. Y--.uchi: 

pri..,.. --ic:Mion. 
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T-E,• E,11 E,' T . 

In our ca~l' , the baryon number N anrl the Mrnnjo!ene~s S i~ obviously l(iven by 

N= a +!l+ r 

s--r. (6) 

Now, all irreducible tensor representation of U, are characterized by three 
integers j; , fi and fi satisfyinl( a· condition j; ?:.f, ?.Ji. W e shall denote it as 
U, ( j;, j ;, fi ), hereafter. · The dimension of the representation is given" by 

D = 1/ '2· (f, - f,+ 1) (f, - f , + 2) (fi - Ji+ 1) . (7) 

AIM>, comparing the ~harac t er of t',(j;,j,,f,) wi th Eq . (6), we find that the 
haryon number N of this representation is 

N - j ; + f, + j;. (8 ) 

Now, to specify sub-quantum numbers Sand the isospin I in U,(j,,j;, j!) , we 

fix the direction of the 3rd component ?,. So, we restrict ourselves within the 
two-dimensional unitary group U,, whose irreducible representations are specified 
by two integers j;', andfi' satisfyinl(j;' ?.Ji' and will be referred to as U, ( f, ', fi'). 
Then, the branching rule'1 for this decomposition tell s us that U, can be decom­
posed according as 

U ,(f,.f,,fi) ..... "f:._U, ([. ' . / ;'). 
(f, . ,, ,., 

(9) 

where we sum over all possible integer pairs (j;', j;') satisfyi n..: the following 
conditions : 

j; _:. f ,'?:.f, ?::, j ;' ? f,. (1 0) 

The dec.omposi tion Eq. (9) is an analogue of the well -kuliwn d~wmposition of 
R, into R, ( R. being the n-dimensional rotat ion group). 

(/ •/') 

R, (l, /') ...... ~ R, (L) . 
L:rT-1' 1 

Now, two-dimensional unitary group is a product of two-dimensional unitary­
unimodular group (which we can identify as the usual isotopic rotation group) 
and a gauge group, which defines the nucleon charge. Then, the isospin I is 
immediatciy given by 

I = 1/ 2 • (f,' - f, ') 

and also, comparing the character of U,(Ji',Ji') with Eq. (6), we get 

S= (Ji' + Ji')- (Ji + Ji + Ji) . 

(11) 

(12) 

In this way, we could apecify aub<juantum numbers S and I. Furthermore, we 
note .. that two repreaentationa U,(fi,fi,fi) and U ,(- ji, -f,, -j;) are contra­
gradient to each other, i.e. they are charge-conjugate of each other in our cue. 
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T his remark does not apply to the cases (b) and (c), since the nucleon number 
i~ not defined in these cases. 

In order to explain our procedure, con~ider various cases : 
(i) (ft. f,, f,) = (I' 0, 0) 

This is a 3-climensional representation by Eq. (7) and the decomposition 
F.qs. (9) and (10) tells us two choi,·es ( f,', j;') = (1 , 0) or (0, 0) . By EJ:i•. (8), 

(11) and (I 2), N o 1 and the former belongs to (/ = 1/ 2, S = 0), and the latter 
to (/ = 0, S = -1 ) . So the natural identification would be the triplet (p, n, A) . 
(ii} ( f,.f,.j;) = (1 , 0. - 1) 

By Eqs. (7) and (8), this is a boson representation with 8 components. 
Also, by the r~mark given after Eq. (12), it must be self-conjugate, i.e. it must 
contain a particle and its anti-particle together. Now, the decompo~~ition Eqs. (9) 
and (10) gives us the choice (j;',j;') .,., (1, 0) , (0, -1), (1, -I) and (0, 0), and 
by Eqs. (11) and (12) they have (/ = 1/ 2,S = 1), (/=l/ 2,S = -1), {l= l,S = O) , 
and (/ = 0, S = O), respectively. By the remark given in the beginning, the first 
two must be charge conjugate of each other and the last two must be self. 
conjugate under charge conjugation operation. Natural identification would be 
(K., K,), (K., /(.), (;.., :r0 , ;:-_)and :ro', where the last one is a new pso:udO>Kalar 
boson .- We may identify the newly found states K•, "K•, ('and tu mesons under 
the same category. 
(iii) (f,,f,,Ji) = (2, 0, -1) 

This is a fermion state with 15 components by Eqs. (7) and (8), and they 
contain the following particles by Eqs. (10), (11) and (12) . 

(I = 11'2, S = - 2), (/= 1, S= -1), (/=0, S= - 1), 

(I= 1/ 2, S = O), (I= 1, s..==.._ +I) , (I =3/ 2, S=O) . 

We might identify the first four as :=, I, ,f and N, respt"Ctively, but then we 
have two other unwanted particles. This interpretation is originally due to 
Yamaguchi ,'1 but as wt;. '!Viii see in a later &ection this identification seems to 
give small masses for (I = 1, S = 1) and (I = 3/ 2, S = 0) particles 10 as to make 
them stable and so it would be more natural to adopt the case (i) as repre.­
~~enting A ~d N. Furthermore, if we take the viewpoint (ii) for bosons, then 
(I" 1/2, S = - 2) has to be identified still as Z particles. This is because the 
transition :=-+A +/(· must be possible and therefore := (and also I since I ->A + :r) 
has to be in a product representation U,(l , 0, 0) X Ua(l, 0, - 1). However,111 

we have 

U,(I, 0, 0) X u.(1, 0, -1) = U,(2, 0, -1) + u.(l. 1, -1) 

+U,(l, 0, 0) 

but U1(1, 1, -1) and U1 (1, 0, 0) do not contain a particle with (/=1/ 2, S = - 2) . 
As for I, the same argument shows that it must belong either to U, (2, 0, -1) 
or to U1 (1, 1, -1) . Ikeda et al.' 1 identify (1=3/ Z, S=O) in U1 (2, 0, - 1) 8$ 
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N* (the first ~·.'V sc atterin~o: resonance), then th~ spin of E has t.o be 3/ 3, since 
s• has the spacc·spin 3,'3. Similarl y. (J - 1,S = - 1) ,md (J ,. o;s ,~ - 1) states 
in U, (::!, 0, - 1) may f>e in terpreted as Y, * (~·. 1 scatter in!( resonance) and ) 'o • 

( :r-:!' scatterinJ.: rcsonimce), re~pcctivt'ly. T hen, they must have spin 3/ ::! also. 

In this case, we have . to assi~n {1, (1 , 1, -1 ) for:!' . 

(iv) (j;,j;,j;) = (1 , 1. - 1) 
This is a fermion statP. with six components. We have (I = 1/ 3. S = 0) , 

(I = 0, S "' + 1) and (I = 1, S = -1) , and the last one may be interpreted <IS :S. 
However , we ha,·e a new state with (1 -- 0, S c 1). so, we ~hou\J ob~erve a 
resonan~e for the reaction K . J 11 scattt-. inlo(. whil'l1 has not so far been found 

experimentally. Up to now, we have invest igatecl the case (a) , i.e. the Sakata-scheme. Now, 
let us consider the case (b). In this case, we cannot assil(n any baryon numbers 
to 9,. so that Eq. (8) has no meanin~o: · as to indicate the baryon number. 
Eq. (11) is unchanl(eti as before, but in Eq. (1~), S has to be replaced by Y, 

so that in our scheme (b), we have 
1= 1/ 3· ([.'-f,') 

)' o· (j;' + f;' ) - (j, ·tis -'- j;) · (13) 

In this case, the representation (1. 0, -1) l(ivcs four states; (I = 1/ 3, l ' == 1), 
(h 1/ ::!, Y = - 1) , (1 = 1, Y = O) ahd (1 = 0, Y = O) . As for bosons, our assign· 
ment is unchan~ed, since S and }' are the same for bosons. So, we can a~sign 
\:t, K,K , :r

0

') and (p,K*.K~.w) to U,(l,0,-1) . A new phenomenonisthat 
we can also assi~o:n (N, E, !, . I) to U,(l, 0, -1) since the nucleon number is 
no \on~er defined and the correspondinl( quantum numbers Y ;~nd I can be given 
correctly . This is exactly the same as in Gell-Mann's scheme, though the starting 
points are quite different . As we shall see in the next section, our scheme is 
essentially the same as Ge\1-Mann's as for all practical purposes, and so we can 
call our scheme (b) as (;ell-Mann's. We may note the following decomposi· 

tion :10
) 

U,(l. 0, -1) X ( ',(1, 0, -1) =2U.(l. 0, -1) + U.(O, 0, 0) + U,(2, 0, -2) 

-'- U,(2, -1, -1) + U.(l. 1, -2) 

~o that ~·,•. }'
0
* and N* in the Ge\I:Mann scheme have to be included in one 

of the right-hand side, since they decaY into one-boson and one-fermion state. 

This will be treated in a forthcoming paper. 
Fina\ly, we may study the consequence of our scheme (c). This wu given, 

since it is more natural when we think of the unitary-unimodular group of 3-
dimension (we :-efer to it as SL(3)) rather than u.. In SL(3), there ia no 
distinction between covariant and contravariant tensors. This is becauae a con­
stant tota\ly anti-symmetric tensor E '•' is invariant under SL (3), so that ;• 
behaves like E•••7',, where T,. is a tensor. More generally, we have that the 
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representation (j;.j;,j ;). which we have written" ' as U,(j;,j;.j;) up to now, 
is the same representation as ( j ; ~ r . j ; + r. j; ·' e) where e is an arbitrary integer. 
Then , obviously Eqs. ( 1~ ) or (13) is not invariant under SL(3), ~ince it is not 
invariant under } ~ ·J~ ., dt• = 1, ~. 3) and j~ ' - •J/ · e(t• , - 1. 3) . Invariant quan· 
tum numbers under SL (3 ) under our decomposition Eq. (9) are given by 

7. ~- 3(];' - j;' ) -'J.(j; .:.. j; + j;). 
(14) 

I - 1 / 3 ( j;' - j;') 

where 7. =·N + 3·S. We omit the details for these derivations. In this case, we 
can repeat the same procedures as before, but it gives almost the same results 
as 10 the case (a), so we w1ll not go too far . Here we may note also that if 
we give up additivity of quantum numbers, we may assign Z = 3 · Y ~ S(.V -1) 
for Eq. ( 14). In this ca~e . we can assign (1, 0, -1) both for hosons and 
fermion , and we have the san1e result as (;ell-Mann's ajl:ain. \Ye shall not con· 
sider our ca&e (c) any lonj.!er in this paper, and restrict ourselves only in 

dis~u-sion> of the cases (a) and (b). 

§ 3. Te0>10r rep~ntation aad ~ 

F•r~t, let us consider the Sakata ~cheme ~a), and we take the rep~talioos 
(.', ( 1, 0, 0) and U,(l, 0, - 1) for (.I, n,p) and (:r, ::;, K , K) systems. respet:· 

tively. Then, p, n an<l .1 can he represented by a vector \
4
.-

\'', = />. \1•, =n, ~1·, = .I 
(15) 

and (If, :ro' . K. K) can be represented by a traceless tensor J:•, so that t.• =O. 
The identification is 

Ji
• j'' 1 (/' ' Ji') ' 3 ,.. ::' = ,,:r_ = ,,::-o=y

2 
1 - 1 ,tre = -v'6 .~a, (16) 

K . ==.r.•. K.= N. k . == f,', K. = j;' 
and ' alw (!', '"• K*, K*) can be represented by a traceless tensor F." exactly 
in the same fashion as Eq. (16) by replacing ;:->,n , rr,' .... "'• K-+K•, J: .... k•. 
Actual ly, F." has a vector suffix due to space-spin, but we omit it for simplicity. 

T he invariant interactions among baryon-boson and among boson-boson 

would be given by 
H, = iff 'f. T• ~~.[; , 

H, = irl F."· u:·aJ/ - at:-J:) 

(17) 

(18) 

where the repeated indices mean summations over ·1, 2 and 3. In Eq. (17), we 
note that f. behaves 8ll a contra-variant vector ¢". Using the representations 

Eqa. (15) and (16), these Hamiltonians can be written as 
1 - - - -

H, = ;g v'iNra(-r · w) N + igNr.AK + ;g.tfr.NK 
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+ ;gJ
6 

(Nr.N-:-2X;,A):ro'. (17)' 

H, = J
2

p(KT()K-aKTK) + V2 ·ft· p(• x a•) 

+ J./(*T[ Ki)•- (tJK)•]I :~i!tK*[ Ka:r;-aK:ro' l 

+ ::?.["(aK) -()wK] ·TK* + :
6

;y[·ll';a.K-a:ro'KJK* 

+ 3- i""FkaK- aKK -V6" ~ . 
(18) ' 

We note that Eq. (18)' a~recs with that given by Gell-Mann.'1 

Now, let us consider the Gell-Mann scheme _(b). Her~. as for bosons, 
Eq. (16) is unchanged. For baryons, we introdut·e two traceless tensors N: 
and lvt.~ (so that M,• = N/ = 0) as represent in!( 

,. - N' v -N' v _ 1 (~rt ~") I - 3 "' - ·- ,, -- - !t-o - y~ ""t- J"' ~ ~ - -V6 .. ,,, 

P= 1V,', n = N,', E_ = l\",', E. = ,V,', 

t=" - •t' \; - '1' ,~ - 1 ( •t I lf ') -, _ 3 'I' -- .. ,,,- .. - .az,-u - t./::!"''1- ... t ·" - -V6Jt:s, 

E _= Af,', E 0 =Jlf,', p = Af,', ii=AI,'. 

Then, we have two invariant forms for baryon-boson interactions. 

H, = iy At:;,.\'; f.'. 

H, = ifl M: ;.j~' .v:. 
Explicit calculation gives 

iy - . !I - fl .--H, = ;·;-Nra(T · fi)N -r ./ (Z;.xZ)•+:/· [ tZflia/l+c.c.] 
v2 v2 v6 

+ -~ [Ar.Er,K + c.c.] - Y 6 rt[iNr.KA+c.c.] 
v 6 3 

g -- """ - - - -[KT:-,.::r.Z+c.c.] 
V2 

- [J
6

tro'[2 (Er.E> + Ar.A- ir.Z- ilr.NJ. 

,, . - ,, -
H,= vil'Ar.Z•+c.c.]- V2(Z;,xZ)• 
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(19b) 

(:~Oa) 

(20h) 

(21a) 
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iy -- V2 .: (T· fl )j,E 

" .-+ V &[ z.V;J(A + c.c.] 

"y -
- ~lA;,E•,K+c.c.] 

,, .-
+ .",.- [ zN;aTKZ + c.c.] 

v2 

+ i!l '[ • • "' - -. I 2N- N ] V&:r, ""i•• +.:: i•= - ,q>' - T• 

where we have put 

.v,-( ~). Z=({:J'· := ; (-~~). K= (~;). •=(::). -· . ~ 

(2lb) 

and Eqs. (2la) and (21h) are connected with Lo and L, of Gell-Mann11 by 

1 11, = ./ [ L,+ L,], 
2v 2 

H, = -~·- ' L,-L,'.J zVz'- ' 
when we take the S81lle coupling constants. 

As applications of our formalism, we may think of the boson-baryon ecat­
tering in the case of the Sakata scheme. In this case, we can form the following 
invariants of which the S-matrix element is a linear combination : 

T: f,·f:, T: f..·.r:. T.• f-· f.-
where we have put T: ="f.(!., and f .. and f represent for incoming and outgointl 
bosons. From this, we ~an prove the following identities among total c~ 
section~> 

rr(tr .+P) =- tT(K , + p) , rr(K-+ n) = rr{~r. + A). 

rr(tr_+ p) = <T (K- •-p) =u(K. + A) , etc. 

<r (:r1 ' + p) = 1/3 ·.,. (:r1 + p) + 2/3 ·u(K, + p). 

Thl"'.t' have been derived also by Hara and Singh."' They are nlso m·;e~Stigatiug 
imi lAt identi tin in the case of Gell-Mann scheme. We can get similc- ' l.-mtitiea 

'J.mq;g magnetic moments of baryons. In the case of Sakata·scheme. l,e( ua u­
' u.me that the electromagnetic current j. has a tranaformation property u. T,' 
.:•c.rnpoocnt of a tensor T:. This can be taken, since the usual current .e{lr,p 
ha.; such form. Then, the method mentioned in the above immediately liVe$ 
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p(A) =t• (n) and also we can prove that K. and Ko have no electromagnetic 
structures. This is because we can prove (K.Ij, IK. / = d(. lj, IKo) similarly, hut 
j, changes its sign under charge conjugation, and therefore (K.Ij, !Ko) has to 

be ident ically zero. 
In the case of Gell-Mann scheme (h), we can give some relations among 

magnetic moments of baryons. By the same reason as in the above, let us as· 
sume that the electromagnetic current j, behaves as T,' of a tensor T:, with 
respect to U,. \Ve have to take the expectation \'alue of j , , i.e. T ,'. From 

mvariance, we have 
( T.' ) = al\1 ,• .V.' + h." .. '.V,' t c·ti! · (l\J6 " N.~) 

where l\1 and N represent baryons as in Eq. (19) and we have omitted spinor 
indices. By putting f' = 11 = 1. and comparing with Eq. (19), we have p.(p) =a+ c, 
fl( n ) = c, etc. Then, we have the follow in~o: relations : 

!' ( p ) = !' ( ~ .) ' 

/ 1 ( :=.) = t•(n ), 

t• ( :=_) = t•(~_), 

t• (. l ) = 1/ 6 -[p.(p) + t•(:!' _) + 4tl(11) ~' 

t• (!'o) = 1 /2 · [/•(~ .) -i t•(~_) j . 

(22) 

Furthermore, if we demand that T: is traceless, i.e . T; =0, then we should 
have a + b + 3c = 0 and then this condition gives one more relation : 

fl{-1) = (1 / 2) fl(11) . (23) 

Relations Eqs. (22) and (23) have been given also by Coleman and Glaschow111 

by somewhat more direct method. \Ve note that they used T~· =M:N~' 
!11,/N.".., so that ob\'iously T." =O is satisfied. From our derivation, however, 

it is clear that the explicit form for T 1
1 is unnecessary. 

We can give other applications of our method for the weak leptonic decays 
of bosons and fermions. In case of the strangeness-violating leptonic decays, 

the interac tion Hamiltonian would be given by 

11, =- G ~.~ v-r. (1 + ;-,)e + iir. (1 + r.)t•.l + c.c. (24) 

where J. is the strangeness-violating current. Let us consider the case of GPli­
Mann scheme. and assume that ~. has the transformation property as T ,' 
component of a tensor T.' , so that it has the same character as K. . Then, we 
may construct two tensorl> M,'N,' and M,'N.' out of AI and N, and it would 

be natural to take 
'J. =aM.'N,'+ bM,' N.' (25) 

=a[:
6 

<Z _ . , 1) + (E, · I , + : 2.: _ -~.)- ~6tX·p) J 
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"'{:
6 

ex. P> + (.!'_ . , + :
2
i· •. p)- ~6<2 _ .. n J 

where we omitted ;--matrices. Of course, this behaves as a component of an 

isotopic spinor'" in the usual isospin assignment. 

§ 4. Applications of mus formula 

If there are no interactions violating U, symmetry, all particles belonging 
to the same irreducible representation have to have the same mass, the same 
spin and parity. So we should have the same mass for pion and ·kaon, which 
is not true. We must therefore have some interactions \'iolating U,. According 
w Ywllaj.(ucht.'' we may suppose that such interactions may be moderatd} strong, 
as compared wtth the very strong U,-conserving interactions. Our purpose in 
thts note is to investigate the result of mass-splitting among particles in a given 
irreducible representation due to this moderately strong (),.violating interac­
tion. In the Appendix, we shall prove that the mass splitting is given by the 

following formula.* ' 

M = a + h·S + c · [1/ 4·S'-I(l + 1) J (26) 

Eq. l~6) has been proved in the lowest order perturbation for such U,-violating 
interaction with the transformation property T,' of a tensor T.' but in any orders 
for U,-l·onserving very strong interactions. In Eq. (::!6), a, b and c are constants 
which do not depend upon such sub--quantum numbers as the strangeness S and 
isospin / , but may depend upon the nature of the interaction and upon the ir· 
reducible representation to be considered. Eq. (26) may be rewritten as 

(::!7 ) l\1 =a' + h')' + c'[1/ 4 · ) ' ' - 1(/ + 1) J 

1f we use the hypercharge l' ~ N + S instead of S. Formula Eqs. (26) or (27) 

holds for both the Sakata and the Geli-Mann sch.:mt;. For the details, the reader 

may consult the Appendix. 
Now, in this section, we shall investigak the result of Eqs. (26) or (27) . 

First, let us consider boson system (~r, ~:. K and K). An application of (26) 

or (27) immediately gives that we have a relation · 

M<K) = l / 2· [ M(K) + M(K) J = 3/ 4·M(:r,') + 1 /4• M(~r) . (28) 

From this, we can cAlculate the mass of :ro' with 1\t/ (:r,' ) ::: 600 Me,·. It is in­
teresting to note that a similar value has been predicted by other methods.'" 
The same formula as Eqs. (28) holds for the (w, (' , K*, k•) system. 

M(K*) = 1/ 2· [ M(K*) + M(K*) J = 3/ 4 · M (,.,) + l / 4 ·M(f•) . (29) 

• • A similar formula hualready been •uggesled by R. P. Feynman at Gatlint~burl( Conference 

·'ir; I ll 1958. 
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The calculated value for .U (K* ) hy using .\/ (m) and ;\ /(,o) is 780 Mev, compared 
to the experimental value R85 Me\" . This rel:lt ion Eq . (:.!9) holds as long as ({', 
m , K •, K *) oclon~o:s to the same irreclucihle representation. Previously we have 
assigned ( 1. 0, - 1) for these, but another po~~ibilit y is that these may belong to 
:.;?.dimensional repre~entation (:.!, 0. - :.!)instead of the 8-dimensiunal U,(l, 0, - 1) 
representa tion . Then, the method of ~ :! tdl s us that we have 5 more states 
(/ ~ 1, S _:. ~), (/ o 3; :.!, S ~- , 1) and (/ ' :!, S . 0) in acldition to (,o, w , K*, K*). 
Then, we can use our formula Eq. (:!6) and we l·an cnkulate the mass of these 
states in te rms of ,\/ (,") and .\/ (,.,) , to get 

.\1( / = 1, S = ::.: ~) :::~ 7'/0Me\" , 

i\1(1 = 3/~. S =.::- n : 7:.!0 ~1 ..: ,· . .\l(l= :!,S 0) .700Mev. 

llowever, we do not obser\"e I " 3; :! rt'sonance fur the J: -7r system, and so this 
,-alue for ,\/(I = 3/ 2, S ~ :r 1) contraclil"ls the experiment. Accorcli ngly, it seems 
tha t .Jur ass i!{mnent of ( 1, 0. - 1) for (,11, "'· K *, K *) is more reasonable than 
that of ( ::! , 0, - :!) . The abo\"e argument equally applies both to the Sakata and 

the (;ell - ~1<~nn schemes. 
As for baryons, let us first consider the (;ell-:\1ann scheme; then (. I, ~· • .V, E) 

he longs to U,(l, 0, -1 ) representation. T hen , by using Eq . (~7). we have a 

relation 

1 /~ _ .\f (.V) + i\/ ( E ) ~ = 3/ 4 · .\1( .1) -l 1 /4· .\f (~'J (30) 

which is satisfied with good accuracy. 
In the case of Sakata scheme, we do nut have such relation unless we in­

ducie (.V, E, .1, ~·) in U,(~, 0, - 1) representation as we mentionecl in § 2. 
Then, we hn,·e Eq. (30) still . llowever, U,(2 , 0, - 1) representation contains 
two other states wi th (/ = 3/ 2, S = 0) and (/ = 0, S ~ + 1). \Ve can calculate 
the masses of these part icles by Eq. (26) and by using the experimental masses 

of .\', I, :md ~· - Then, we get 

M(l = 3/ 2. S = O) .::: 10!10 Mev (<. M(N ) ~ - M (-:r)), 

M(l ,, O, S = + 1) _ 770Mev << MCN )) 

wh1ch seem~ to have too small mas~es not to be detected experimentall y. Thus, 
this assil(nment o riginally due to Yamaguchi would not be so good. T ht refore, 
we take the view that CJ,(3, 0, - 1) represents E , N* , ) '•*· }',*, etc., as has been 
mentionerl in § 2. In this case, we have the following relations : 

M(Y,*) = 1/ 2- [ M (E) + M (N*) j , 

M(l = 1/ 2, S = O) = 1/ 2· :· .\fO'.*) + M([ = 1, S = + 1) ] , (31) 

M(l = 1, S = ·i 1) = M< Y,*) + 2 _MO'.*) - M (E)]. 

T he first relation gi ,·es us MO',* ) :_~ 1280 Mev hy u~ing the experimental values 
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for M(E) and M(N•) und it should hi! compared to the experimental value 
of M(Y,*) :::1385 Mev. Similarly, the last two equations give us 

. . •, . 
.. """ : .! .. ~ . ... 

.... ~ ..... • ... ~- • . ,l 

M(l= 1, S = + 1) :::1560 Mev, 

M(l ,._ 1/ 2, S =O) :::1180 Mev 

where we ' have used the experimental muses for Yo* and y,•. Consequently, 
we may identify- the (1= 1/ 3, S= O) state aa the 2nd pion.nucleon resonance, if 
it cotreaponds to the. j>i11 reaoMnce instead of the usual d111 reeonance. Aa fof 
(1 = 1, S = + 1) , resonance for K . + " or K . + p scattering has not been dil~e:ov· 
ered yet, and thia gives a trouble to thia scheme . 
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Appelldls 

lkrivalion oj' Mas1 Formulo 

Here, we shall prove the mass formula Eq. (26). 
Let us conaider infinitesimal U, transformation. T~n. the infiniteabnal 

generator A/ of U, aatiafiea the Lie equation : 

[ A/, A:] .... I11•·A,• - 4: ·A11• . (A•l) 

This relation hoi~ actually for IJen&~ral linear transformation of arbitrary dimen­
sion, The unitary reatrict i<?n givea 

(A,-) 1 =A." (A ·3) 

where Q' mean• the hennltian conjuaat&: of Q. For compari110n'11 &ake, our A.' 
ia related to Ikeda et al. '1'1 X,, by 

A:= - 1/2·[(1+ i)X •• + (1 - i)X •• ], 

X,,= - 1/!H (l + i)A." + 0-i)A.'J. <A·S) 

However, their nc»ation X,, makea the mixed teneor character of A/ ~rt'. 
For an arbitrary mixed tensor T/, tho commutation relation its givf!r: by 

[ A,•, T!]= b1•·T,•-I: ·T1• . (A·4) 

Cornparinll thia with Eq. (A •1), we let! that A,• ha. the property of a mixed 
Ienior. 
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C ;t·nt>•·alizt>d Casimir opt>raturs uf our Lit> algebra can be given by 

.u, = .1.· _, ( .-1.> , 

.\I, ,._ •l.' .. 1/ \ •1· .·I .· , 

.u, = .-1: . .-1; . .-1,' ·, .1 · .-1· .-1) 

(A·5) 

where tht> repeated indices mean summation over 1, 2 and 3, and we used the 
notations , U/ and definecl product tensor U ·R of two tensor Q: and R/ by 

.:..Q/ -" Q.·. 

(Q· R)/ = Q,• · R.'. (A·6) 

It is t>asy to set' that t\1., .\/, and ,\/, commute with all A: and therefore they 
commute with each other. Thus, they are constants in a given irreducible 
repr,·sentation. Ag:•i •1 , w•• will gi,·e a relation between our Me and N, M, M' 
of Ikeda et al.' ' 

• Y= -.\/., 

.l/ = 1; 2 . .\1, 

.\1' = -1/2·M, + 3/ 4·M,-1/4· (M,) 1
, 

and so the rt>lation between eigenvalues of M, and jj, Ji, j; of U1 (fa,ft,ji) is 
given'> by 

.\/, = - (ji-f. - Ji) . 

.li,= (ji'-ft'-"-ft') + 2(jj-ft) , 

. \I, = - {ji' -· Ji' + f,') !- ~ -3/ 2·Ji'+ 3/2 ·ft' + 9/ 2 ·ft'] 

-1 / 2· {fi -t- f, + ft)' t (2fa + 2ft-4ft) . 

(A·7) 

Note that !If,= <A · ..t ·A· .4/ , etc., are unnecessary. They are given u functions 
of M ., M, and M, as will be seen shortly. 

Now, we will prove the following theorem. 
CTheorem I: 

In any irreducible representations of U,, any mixed tensors T: can be re­
fo{arded 11s a linear combination : 

T:=a ·il! +b·A: + c(A·A):. (A·8) 

F.q . (A· 8) means that it holds good when we take n111trix elements of both 
sides in a given irreducible representation. Constants a, b and c are independent 
of tens<~r Huffices fl and 11 and of sub-quantum· numbers S and I of the repre­
sentation, but may depend upon fa, j, and j; and upon the nature of the tensor 
T:. F.q . (A · I!) is IUl analogue of the ll()oCalled vector algebra in ft. i.e. 

:J , m/l', /J, m'> = ( J I JVI/J)(.l, m!J, /J, m') 
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where \', (." = 1, 2, :~ ) i~ a n~c tur in R.,, and ./, me~ns the anl{ular mumt'ntum 
operator in R,. 

Before proving our theorem, we will show that this equation will givt: the 
desirt'd mass formula Eq. (26) . 

First, let us consider the case of Sakata scheme. 
number N, the strangeness quantum number S, and 
I ar" defined" by 

In that case, the nucleon 
the isotopic spin operator 

N = - <A>. 
S = A,', 

I. = (/, + if,) = - :1.', /_ ~ (1,-i/,) = - .rl,', 

1, = I ;~(A,'-A,'). 

(A·9) 

Now, let us suppose that the mass-splitting interaction is given by T,' whid1 
has the same property as X. .1 in the case of Sakata model. Then, the mass 
!plitting is given by diagonal matrix element of T,' . 

JM = ( i /T,' /i). 

Then, noting (A9) and 

(A · A),' -=- 1/ 2 ·<A· A); 1/ :.!·S' + 1/ 2(3 ·5- <.1))- (1)'-1 / 4 · (S- \ A) )' • 

WI! find that our theorem I (F.q. (A ·8)) gives the desired mass formul11 .Eq. (26) . 
In the case of Geii-Mann scheme, we have only to replace S by Y, hence 

we get Eq. (27). In this case, N is simply a parameter to distinguish repre­
tentations. 

Now, let us prove our theorem Eq. (A · 8). First, we will show the fol­
lowing lemma . 
[Lemma I ] 

In the three-dimensional space, suppose that a tensor s:~ is anti-symmetric 
with respect to exchanges of a and ~ and of fl and 11 and furthermore S;~ = 0, 
i.e. traceless ; then s:~ is identically zero. Schematically, this means that 

s:~ = -s::= - s~: and s:~ = o ... s:~'""' o . 
[ Proof] 

Let us considt!r a tensor 
r;:z = s:~ . 3,."~- S:? .a.,.~ -s;~ .o .. a 

-+ s~: .o,:-s~:. r)/1 -s:~ .o,.-,. 
Then, r:~ is totally anti-symmetric fur any two exchanges of a, ~ and r and 
satisfies traceless condition T:~ = 0. However, such tensor must be identically 
zero in the three-dimensional space, since only non-zero independent cvmponent 
must be T .'?~ and by traceless-condition, this has to be identically zero, (for 
example, consider the case fl = 1) . Thus we ha\·e T:~ ,.o. Then, by putting 

r = 11 and summing over "• we find 
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T:~.:=s:~-s~:=zs:~ 'o" O . (Q.E.D.) 

Our lemma I is not surprising at all, since such tensor s:~ must be an 
irreducible representation in U. but such type of irreducible representation is 
not possible in U,. (However, it is possible in U. (n 2': 4) and has signature 
(1, 1, -1, -1) in u,.) 
[Lemma II] 

In U,, for any two arbitrary tensors M." and N;, we have the following 

identities : 

[ Proof] 

(M."·.'II11"+M1/·N/)- (At:·N1/+MII•·N:) 

=11."[(M) N 11"+M11"( N ) - (M·N) 11"-M/·N.•J 

-tJ:[( M ) XII" + M,t( N ) - (M·N),•-M/·N,•] 

-tl11•[(M ) ·N."+M."· ( N ) - (M·N)."-M.' ·N:J 

+ tl11"[( M ) ·N."+ M."· (N)- (M·N),•-M.'·N,•] 

- (tJ; .J11"-o."·o11•) ·[( M )·(N )-(M·N/ ]. 

Define a tensor Q:~ by 

Q"~ = (M." ·N,Il-M/·N:)- (M: ,N/'-M/ ·N;) · 

Then, Q:~ is anti-symmetric for exchanges of a and ~ and of p and "· Fur­
theremore, construct a new tensor s:~ by 

s:~ = 0:~- <a: ·Q~~ + o/ .r;r.~ + tJ: -~~ + 4/·Q:~) 

+ 1/ 2· (o;-o/-o:-4/)Q'j. 
We can see that s:~ satisfies the conditions of lemma I, and must be identically 
zero. This gives the desired identity. (Q.E.D.) 
[ Theorem II] 

In U,, for any tensor T/ and for infmitesimal operator A:, which satisfy 
the commutation relations Eqs. (A ·1) and (A· 4), we have the following identity. 

2· [ (A·T·A)/ + (T· ,4 ·A)." + (A·A·T)/]- (2(A)+9) ·[(A·T)."+ (T·A)/] 

-2 ·(T ) (A·A)." + [6(A)+ 12+ ((A))']T/ 

-1/2· [(A· A )T." + T." ·( A· A)]+ [6(T) + 2(A)(T) -2(A·T) ]A: 

+ J;. ( -(T)· [ ((A) )'-(A·A)+ 4(A)+4]+ (2(A) +6)(A·T) 

-2( A·A·T))-o. 

Note that [(A), T."]=O, [(T), A."]=O but [(A·A) , T."]~O. 

[ Theorem III] 
' 

6(A·A·A)."-[6( A) + 18] · (A·A)."+ [ 3· ((A))'-3·(A·A)+ 

90 

Nntf' on Unitary SymmtUry in Strong lntcrMtion.f 

+ 12· ( A)+ 12] ·.1: 

- [ ((A))'+ 4((A))' + 4( A) -3( A) · ( A ·.1) + 2( A ·A·.1) 

-6( .1 ·A)}J;e.o. 

Theorem Ill can be obtained from theorem II by putting T = A. From this, 
we see that (A · A · A · A): can be cxpres~ed as a linear combination of o,•, A:, 
(A-A): and (A · A-A)/, and so (A·A·A·A~ is a fun ction of ( A) , ( A·A) and 
( A· A · A). So are ( A") (n 2': 4) , as has already been mentioned. 

To prove theorem II, we put Jl.f: = .V; - ,1: in lemma II, and multiply T.· 
from the left, and using commutation relations Eqs. (A · 1) and (A· 4), we find 
our theorem II, when we change the indices suitably. We may give another 
direct proof of theorem II as follows. Any ten~r Q:~;: which is anti-symmetric 
with respect to any exchanges of two variables among a, ~. r and 8 must be 
identically zero in U,. Therefore, we have 

~( - 1)"T."·A." · A.' ·O.' = 0 

where P means permutations among a , il, r and 8. Then putting 'IC=~. r=A, 
II=" and taking traces, we find our theorem II again after somewhat long calcu­
lations. 

Now, we shall prove our theorem I, Eq. (A-8). Using the conunutatioo 
relations 

[ M,, T/] =3(A·A ·T)."-3(T·A · A).--3[M,, T.-J, 

[ M,, S.·~= 2(A·S): -2(S · A)/, 

we can rewrite theorem II as follows. 

3(T· A·A);- (T ·A)."· (2( A)+ 9) +T."· [ 1/ 2 · ((A)) ' 

' -1/2·(A·A)+3(A)+ 6] 

= - l / 2·[M,, (TA)."- ((A) + 3)T/]-I/3[ M, T.-] 

+ (A·A) ." ·( T)-A."· [ ((A)+3) · ( T)-(T ·A)] 

- 4:([ ( A)+ 3](T· A) - <T· A· A) - 1/ 2 ·<T ) ·[(( A) )'- ( A· A) + 4( A) + 4]). 
(A· 9) 

Now, in a given irreducible representation, M, IUld M, are constants, so thstt 
matrix elements ( a i[M, QJ !/9)= 0 and ( cr /[M,, QJ/~)= 0, hence we can OlTh l 

the firat and seC'ond terms in the right-hand side of Eq. (A · 9) in our cue. 
Thua, we have 

3(T· A·A)."- (T·A)/(2(A)+9) +T."·[l/2· ((A)) '-1/2 ·(A·A)+ S(A)+6J 

= (A·A)." ·(T )- A."· [((A)+ 3) (T)-(T·A)] 

- 4,-([( A) + 3]( T· A)- (T· A· A)-
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- 1 · '2 -<T >· r «11>)' - <.1· 11 > + 4<A > + 4J ) . (A · 10) 

Eq. (A · 10) iti true when we take any matrix elements in a given irreducible 
representat ion. Now, T! is arbitrary, as Ion~ as it satisfies the commutation 
relation Eq. (A · 4), and so we can replace T by 1' ·A and T · A · A in Eq. (A · 10) . 
For quantities like T·A.·A · A or T· (A · A · A · A ) . we use our theorem III and 
we can reduce them to a linear combination of T, T · A and T ·A· A . Then, 
Eq. (A · 10) gives three equations of the form 

a,. (T · 11 · .'\): + a,. (T · i l ) : !· a,. ('r): 

== b" (A·A).' l· b21 (L1)! + b., · . . (i = 1, 2, 3) (A·10) 

We can give an explicit form for a11 and b,1, but as it is a little complicated, 
here we simply remark that a,

1 
are functions of only ( A) , ( A · A ) and ( A · A · A ) , 

i.e. a
11 

rlepend only upon j;, j; and j; hy Eq. (A· 7), b,1 depend upon f,, j; 
and j;, and also upon <_T ) , (T·A> and ( 7' · A· A) , which are constants in their­
reducible representation which we are considering. We can solve Eq. (A ·10), 
since the determinant det (a,1) is, in general, not identically zero ; thus we get 

1'! =a ·•l! .,. b · A! + c(A· A) : 

and two other equations for (T ·.1) ! and ('F · A · A )!. This is the desired formula 

theorem I. 
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A classification of the baryon isobars has been investigated on basis of the unitary 
symmetry model which has been developed in a previous paper under the same title. 

T he purpose of this note is to investigate problems of baryon isobars from 
the v:ewpoint of the unitary symmetry model.'> In this model, the mass differ­
ences among mesons and among baryons are neglected. As the result, op.e may 
wonder if such a model can be applicable to the st1,1dy of the baryon isobars 
which appear in the meso~-baryon scattering, where these mass differences are 
certainly not negligible. It, is almost probable that our model will present a 
very poor approximation for this problem if compared quantitatively. However, 
it might be possible that many of qualitative features could be roughly explained 
by our model. It is due to this hope that this work has been undertaken. So 
all results given in this paper should not be taken in its face value, but only 
in a qualitative sense. In this paper, we shall · concern ourselves with the case 
of studies of Y amagilchi-Gell-Mann scheme,'' since the case of the Sakata scheme 
has been treated .already'>,S> and would not produce any new results. \Ve may 
note that our results here could be applied also for study of meson-meson reso­
nances or for baryon-baryon scattering resonances, with small changes . 

As has been noted in the previous paper,'>·'> the baryon octet (N, 2 , .!',A) 
and the meson oCtet (K, K, rr, 7t0' ) belong to irreducible representations 
u. (1, 0, -1) of the 3-dimensional unitary group Us, and they are represented 
by two traceless tensors N/ and f/, respectively, as follows: 

,rJ +I 1 ( ,rl .r') ' 3 ,rs 
:r+=Jt, ir_=:Jt, :ro= .. / - Jl -Jt , rro =- .. / - Js, 

v 2 · v6 

K+=f,', Ko=f.", K +=f,', Ko=fs' , (1) 

S' - N' S' - N I S' - 1 (N I - u ') A- - 3 N . -+- 1, - · -- ,, -o- .. / - 1 J V1 , - .. / - s . 
· v 2 v6 
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p = /\'1\ n == N/", .= _ = 1V3\ .=u ~ .V32· 

We may note that the same representation Eq. (1 ) has hccn g i,·en by many 
others' ' in matrix notations. Now, as has been remarked in ( I) , the baryon 
isobars N *, !\'**, Y .. * and L * have to belong to ,-onw of the following irre­
ducible represt.ntations in the right-hand side of the next equation. 

U,(l , O, - 1) x U,(1,0, - 1) = ~U, (l,O, - l ) + lJ3 (0, 0, 0) + lJ, (:2 , 0, - :2) 

+ U, (~. - 1, -- 1) + U, (l , 1, - ~). ( :2 ) 

The same is also true for meson-meson sca ttering isobars or for baryon-baryon 
scattering resonances, since both the mesons and the baryons belong to the same 
irreducible representations U, (1, 0, - 1), and therefore their scattering states to 
the product representation U3 (1,0, - 1) x U3 (1,0, - 1) . Thus all results given 
in thi s paper can be immediately translatec..l from our baryon isobar case into 
the meson-meson and baryon-baryon scattering cases, but here we study only 
in the case of meson-baryon scattering problem. Below, we list a classification 
of particles contained in each of these irreducible representations. This can 
be easily done b y applying the technique developed previously.' ' 

(a) U, (1 , 0, - 1) 

(1 = 1/ 2, Y= 1), (1 = 1/ 2, Y= -1), (1=1, Y=O), (1 = 0, Y=O). 

(b) u. co, 0, 0) 

(/= 0, Y=O). 

(c) U, ('2,0, - ~) 

(! =2, Y=O) , (1=3/ 2, Y= +1), (1=3/2, Y= -1), 

(1 = 1, Y=~). (1=1, Y = -2), (1=1, Y=O), 

(1=1/~. Y= 1), (1=1/ 2, Y= -1), (1=0, Y= O) . 

(d) U,(2, -1, - 1) 

(1 = 3/ 2, Y= 1), (1=1, Y=O), (1=1/~. Y= - 1) (! = 0, Y = - :2 ) . 

(e) U, (l, 1, - ~) 

(1 = 3/ 2, Y=-1), (1=1, Y=O), (1=1 /~. Y= + 1) (1 = 0, Y=+ 2), 

where Y stands for hypercharge, so that Y = S + 1 in terms of the strangeness 
S in the present case. First of all, we note that a particle wi th 1 = 1 and Y = 0 
is contained in all representations except in U1 (0, 0, 0) . Thus, we cannot iden­
tify the representation to which Y1 * belongs. We shall investigate all of these 
in turn. 

Case (a) : U 3 (1, 0, -1) 

If Y1 * belongs to this representation, we have to identify other three particles 
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in this representation. Obviously, we can identify the partide with (l = 0, Y = 0) 
as Yo* , and the one with (I = 1/ 2, Y = 1) as the second pion-nucleon resonance 
N* *, while the one with (I = 1/ 2, Y = - 1) can be considered as an exc ited 
state of £ . Now, the second resonance N* * of the pion-nucleon system is to 
be considered likely to have the charac ter of a d,, resonance.•' Accordingly, 
we have to assign the same d,11 resonances for all Y, *, Yo* and S* in thi s case. 
This is not so bad, because the spin' ' of Y, * appears to be 3/ 2. H owever, we 
should remark that it is unnecessary to identify the (1 = 1/ :2, Y = 1) stat e as 
N**. As has been stated in the beginning , our approximation is quite poor, 
and as the result the state with (1 = 1/ 2, Y = 1) might disappear when we take 
account of the mass differences among meson octet and among the baryon oc tet. 
The above statement is meant to indicate the foll owing : " \\'hen we neg lect 
these mass differences, the state with (1 = 1/ 2, Y = 1) then certainl y exists because 
of U3 symmetry. Now, we have to change the masses of the pion and the kaon 
and of the nucleon and the 5'-parti c le from the common values. \Ve may sup­
pose that we can take such a procedure continuously with respect to these masses. 
Then, in course of these oper!l-ti ons, the state with (1 = 1/ 2, Y = 1) may cease 
to represent a resonance state." If such thing could ever happen, then we 
cannot say anything about the spin of Y,* and Y0*. But we do not adopt such 
a view here. 

The irreducible representation Us (1 , 0, - 1) can be characterized by a 
traceless tensor T/ whose identifications with the real isobar states can be ex­
pressed exactly in the same way as Eq . (1). Let us consider the decay of these 
isobars into one baryon and one meson states. We can form the following two 
invariant expressions for these processes : 

S, = M.~ f." T~', 

S, = M/ f/ T ;, (3) 

where we have put M.~ = (N;) t for creation operators of baryons. T his oc­
currence of two independent forms corresponds to the double appearance of 
U. (1, 0, - 1) representation in the product U3 (1 , 0, - 1) >~ U, (1, 0, - 1) as we 
can see from Eq. (2) , and thus the same situation does not happen to other 
representations in the right-hand side of Eq. (2). At any rate, we cannot 
determine the branching ratio of Y,* --. ~ ' -t· :r against Y1*--> . I + ,T in our case, 
unless we make some additional assumptions. One tempting hypothesi s is to 
assume the invariance of our theory under the transpose operation ; i.t: . we as­
sume the invariance under interchanges of lower and upper suffixes. By this 
operation, a tensor F/ is changed into F; , so that S, .-.S, in Eq. (3) and we 
have the following from Eq. (1). 

:r++-+::- _, 4 o+-+::o, K+~K+ , K o+-+Ko, '::'o1 +-+ i:o', 

.!'++--f- .!'_, l'o+-+~'o , p+-+~_, n~:=o, A........, . l. (4) 
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We may note that similar transformations have already been proposed by many 
authors.'> Then, we ~an compute the kinemati cal weights for the various pro­
cesses, since the only invariant expression is now S, + S, instead of an arbitrary 
linear combiniltion of S, and S, of Eq. (3). We list our results obtained in this 
fashion in the following tables. In Table I the relative weights have their origin 
in numerical coefficients due to generalized Clebsch-Gordon coefficients. If we 
could neglect the mass differences among baryons, then the widths for these 
processes are proportional to the relative weights. However, we should take 
account of the baryon mass differences at leas t for the calculation of the phase­
volume. Thus, for evaluations of relative widths, we should multiply to these 
weights the d-wave phase volume which is given by 

_!_.p 
M' 

(5) 

where M is the mass of the mother isobar, and k is the magnitude of the spatial 
momentum of the meson in the rest system of the isobar. 

Table I. Relat ive weights and widths for decays in case (a). 

type of process re lati ve weight relative width 

(N **) -> ~ n+~r+ 1 
+ p+ "• 

( Y1 *) +->A+ ~r+ I 4/9 

I 
0.014 

( Y, *) +->.E+,o+ "o,+ I 0 0 

( Yo*Jo->.E±,o+ "-f,o I 4/3 0.008 ' 
( E ) _ *- >Eo,- +rr-,o 

One interesting aspect is that Y, * does not decay into a pion and a X, in 
agreement with experiment. However, this is not characteristic only of the 
present scheme, since the representation U,(2, 0, -2) also forbids Y1* -> l '+ :r. 
Actually, it is a natural consequence of the invariance of theory under the trans­
pose operation Eq. (4), as has been shown by Sakurai 71 As we shall see shortly, 
the representation U, (2, 0, - 2) is also . invariant under this operation. 

Now, we will investigate the case (c), since the case (b) is quite triviaL 

Case (c): U3 (2, 0, - 2) 

This is a 27-dimensional representation, which is characterized . by a tensor 
T;;. having the foll owing properties: 

T;;. = T~'P = T~~. T;~ = 0. (6) 

We can form a base of the unitary representation U,(2, 0, -2) from this T;;., 
which is g iven by 

(i) (/=2, Y= O) 

T " T " T " 1 
(T 11 + T " 4T 12

) T 11 T " T 11 
11 ' 12 - 11 ) v 6 11 22 - 12 ' 12 - 22 ' 22 
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(ii ) (1=3/ 2, Y = l) 

v'2 T11"', Ji- (2Tu"' - T11"), - j}C2Tu'' - T,"'), -v'2T,.". 

(ii i) (/ = 3/ 2, Y = - 1) 

v'2 T "", - J1(2T"" - T ,,"), - j i- (2 T ,." - T 13"), v'2 T ,.11 . 

(iv) (/ = 1, Y =2) 

Tu33
, v'2 T 12

33
, T,". 

(v) (/ = 1, Y = - 2) 

T ,.", - v2 T .,", T ,." . 

(vi) (/ = 1, Y=O) 

V5 T,,", j~- (T,," - Tu"), - v'5 T,.13 • 

(v ii) (/= 1/ 2, Y=1) 

j~0T"33, jrpT,". 

(vii i) (/ = 1/ 2, Y = - 1) 

/130 T,.", - j~OT,.". 

(ix) (/= 0, Y=O) 

j~r .. ". 
In the table listed in the above, all terms in a given sub-classification as (I Y) 
have the same transformatioQ_ propertCes as sphe rical harmonics Y M '11 (M =I, j - l , 
· · ·, - / ) in the decreasing order from the left to the right. The relative nu­
merical coefficients belonging to different sub-classifications with different (/, Y) 
have been determined from a requirement that 

27 

~ (T:;.) *T:;. =~(X_.)* X_. 
1' .... « ,1/ .t-1 

(7) 

where X_.(A = l, ... , 27) represents each term listed in the above. The condi­
tion Eq. (7) shows that these 27 X,/s form the desired unitary base of our 
repres~ntation U, (2, .0, - 2). Thus, we can identify each X_. with each isobar 
states appearing in U, (2, 0, - 2) as in Eq. (1). 

In this case, we have an undesired isobar with (/ = 1, Y = 2), which could 
be detected in kaon-nucleon scattering but so far not found. However, we may 
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suppose again that such state would not appear if we take the mass differences 
among mesons and among baryons. We may identify (/ = 1, Y= O), (1 = 0, Y= O) 
and (1=3/ 2, Y = 1) with Y,*, Yo* and N*, respecti vely, where N* represents 
for the first pion-nucleon resonance. Then, all these have to be resonances in 
the p,11 states, since the last one is known to be so. Then, the state with 
(I = 1/ 2, Y = 1) in our representation must he a resonance in p,1, state also and 
thus this state is difficult•> to be identified with N**, though we cannot com­
pletely rule out a possibility of the p311 resonance for N** at the moment. The 
possible existence of other states in U, (2, 0, - 2) does not lead to any disagree­
ment with the experimental data. 

Now, let us consider the decay matrix element of isobars into mesons and 
baryons. In this case, there is on ly one invariant form under U,. 

S = llfa" f p' T~~. (7' ) 

We may note that Eq. (7') is invariant under the transpose operation as has 
been mentioned already. We can reduce this in terms of XA and of meson and 
baryon components by using the table listed in the above and by Eq. (1). 

Table II. Relative weigh ts anrl widths for decays in the case (c) . 

type of th e decay re lative weight relat ive width 
--·-·-- -- -
(N *) ++->P +rr+ 1 1 

( Y1*) . ->A+rr+ ! 3/5 0.36 

( Y,*) +->I+,o+r.o,+ 0 0 

( Yo*)->I ±,o+r.'fo 1/20 

I 
0.01 

(N **) - > j p+r.o 1/10 0.45 
+ n+i:'"+ 

(Y2"") ++---7 I . + rr+ 2 

(Z )++->p + K 2 

Then, we can compute the kinematical weight factors for the decay as before. 
For the calculation of the relative widths in the above table, we have multiplied 
the p-wave phase volume fac tor : 

k'/ M'. (8) 

Again, Y, * does not decay into ~- + ~. because of the transpose invariance of 
U, (2, 0, - 2) as has been mentioned already. In the table, Y, * means the state 
with (I= 2, Y = 0), and Z represents the state with (I= 1, Y = 2). 

\Ve should note that appearance of Y,*, Y,* and Yo* could be easily under­
stood"' in terms of the static p-wave pion-hyperon interactions, if we assume that 
fu ':> fu- Indeed, this is the case if we take the D-type interac tion' ' ·'' in Cell­
Mann 's notation, which is also invariant under the transpose transformation. 

Case (d ) : U,(2, - 1, - 1) 

This is a 10-dimensional representation, and can be specified by a tensor 
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F:~ having the following properties : 

F:"p=Ftp~ = - F;j,, F; j, = O. (9) 

The unitary base X.c(A=1, -- -, 10) of U3 (2, - 1, - 1) can be formed from F:i. 
in the same way as in the previous case, giving that 

(i) (1=3/2, Y=1) 

F"'"• v3 Fa'" (==-v3 F""), -v3·Fu"(==v3 F,'"), -F,". 
(ii ) (!=1, Y = O). 

(iii) 

(iv) 

v3 F,?"<==v3 F""), v6 F,"<==-v6 F,,"== v6 F,,'") , 
- v3 F,'"<== v3 F, "). 

(!=1/2, Y= - 1) 

v3 F,.''<==v3 F .. "), - v3 F .. "C==v3 F,,") . 
(1=0, Y= -2) 

F " ... 
It is interesting to note that we have a particle with the strangeness -3. The 
decay matrix element is again unique and has the same form as Eq. (7') when 
we replace T:'P by F:"p. Then, once again we can compute the weights and 
the relative widths. Now, we have the decay Y,*-.~ + l' in this case. 

Table Ill. Relative weights and widths for decays in the case (d). 

type of decay 

(N*) -->p+"+ 

( Y1*) +->A+rr+ 

( Y1*)+->..I.'o,++rr.,o 

Case (e): U 1 (1, 1, -2) 

relative weight 

1 

1/2 

1/3 

-~ relative width 

1 

0 .~ 

0.043 

This is the contragradient representation of U,(2, -1, - 1) ; i.e. the one 
which can be obtained from U,(2, - 1, - 1) by the transpose operation. Thus, 
it is specified by a tensor ~'P satisfying the following conditions. 

G:i. =G;";,= - Gtp~. G;"p= O. (10) 

Similarly, we can construct the unitary base by 

(i) (/= 3/ 2, Y= -1) 

G.s''. -v3 G,."(== v3 G,;"). -v3 G23"(==v3 G,.") , G,." . 
(ii) (/= 1, Y = O) 

-v3 G,.13 (==v3 G,"), -v6 G,"(==v6 G,,"==-v6 G,."') , 

v3 G,." ( == v3 Ga"). 
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(iii) (J = l / 2, Y= 1) 

v:r c,,''C== -v-:r c,,"), v3 c""C== v3G,. .. ). 
(iv) ([ = 1/ 2, Y= + 2) 

G" ... 

We may identify ([ = 1, Y=O) and ([=1 / 2, Y=1) with Y,* and 
tively, and we can compute the widths in a similar fashion. 

Table IV. R elative weights and ,,.:,' ths for decays in the case (e). 

type of decay 

(N ' 'J . ->N +rr 
( Y, ' ) . -->.r •. o+r.o,+ 

(Y1*) . --> A +rr+ 

relative we ight 

1 

2/3 

relative width 

L9x 1o-• 

3.2x 1o-• 

Finally, we shall give an application of the mass formula, which has been 
deri ved in ( I). For particles belongi ng to the. same irreducible representation, 
we have a relation among masses of these particles. It is given by 

M = a + h· Y+c·[l / 4 Y'-/([+ 1)] (ll) 

where a, b and c are some constants. This relation has been proved in the 
lowest order perturbation of a certain type of interactions causing the mass­
differences, but in all orders of the U,-conserving interactions. As has been 
stated in the beginning, this would not be a good approximation for the meson­
baryon scattering problem, where the mass differences between the pion and the 
kaon is qu ite important. Thus, we should not expect that our results to be 
given in the below have some quantitative meanings. At any rate, Eq. (ll) 
has three unknown constants, a, b and c. Thus, we have six relations among 
masses of particles contained in U3 (2, 0, - 2). If we use the experimental 
masses of Y, *, Yo* and N*, then the masses of six other particles in U, (2, 0, - 2) 
can be computed in terms of these three masses. In this way, we have 

M(J =2, Y=0) :::::: 1345 Mev, 

M(I=3/ 2, Y= - 1)::::::1505Mev, 

M(J = 1, Y=2) :::::: l125 Mev, 

M(I= 1, Y=-2) :::::: 1665Mev, 

M(I= l / 2, Y=1)::::::1265Mev, 

M(I = 1/ 2, Y = - 1) :::::::: 1535 Mev. (12) 

A serious trouble is that the mass of the particle with (I= 1, Y = 2) is so low 
that it Is stable against the decay into a nucleon and a kaon. However, this 
difficulty may not be so serious, since such state may disappear as remarked 
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already. \\'c may note that we have a s imilar trouble in the case of the Sakata 
scheme." It is also interesting to compare Eqs. (11) and (12) to those obtained 
in the case of the g lobal symmetry model,"• and to those of the Sakata scheme.'>·'"> 

\\'e ha\·e made a group-theoreti cal classification of isobar states. As has 
been mentioned in the beginning, almost all of the results given in this paper 
are also immediately appli cable to the study of the meson-meson resonances or 
of the baryon-ba ryon scatterings, wi th small modifications. However, we would 
not go into details for these cases. From our ana lysis on baryon isobars, it 
seems to be difficult to identify the best irreducib le representation for these at 
the moment. One interesting problem is to determine the parity of the reso­
nances so as to enable us to distinguish whether the resonances are of the p31, 

or d,, charactPr. 
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The purpose of this Letter is twofold. We want and (J = o-, T = 1). The pion field nO is related 
first to point out that the group SU(4) introduced the axial vector field cp f.J. a through cpA a= (1/f.J.)aA 
by Wigner' to classify nuclear states can be ex- f.J. being the mass common to all mesons. 
tendPd to the relativistic domain and it is, there - The conditions (2) are compatible with the 
fore, relevant for particle physics. We will next tions of motion only if L includes, besides· 
show that when s trangeness is taken into account [Eq. (2)], additional terms such that the 
the group SU(4) becomes enlarged to2 SU(6) which {p, w, 11) are coupled to conserved currents. 
contains , as a subgroup, SU(3)~[SU(2)]q. [SU(2))q w and p are coupled to the conserved baryon 
is the unitary subgrou, (little group ) of the Lo- isotopic-spin currents , respectively, while the 
rentz group that leaves invariant the momentum pion is coupled to a conserved axial-vector 
four -vector q. rent. 

The group we consider here embodies SU(3) and It can now be shown• that L is invariant 
the ordinary spin in the ·same way as Wigner's a group• g4 which induces for each momentum 
~U(4) embodies isotopic spin and ordinary spin. of the mesons a unitary unimodular traMfnrma 
Preliminary results on the classification of par- tion among the 15 degenerate states w, 
ticles based on SU(6) seem encouraging enough to In counting the multiplicity we include, 
motivate a study of this gr oup. • momentum , the spin states just as for 

We begin by discussing the first point. Let us supermultiplets. Under this transformation 
assume that the p, w , and " mesons are coupled nucleon (S = t T =~)transforms like the four-
to the nuclear field through a symmetrical La- dimens ional representation of the group. 
grangian of the form In the nonrelativistic limit , LNM gives rise 
L a potential which describes spin- and isospin-11 

NM dependent exchange forces (Majorana forces) 

{ - - a a . a a} =g 1Jiy 1/Jw +lJiy T 1/Jp +tlJ!y
5

y T 1/Jcp , (1) 
f.J. f.J. f.J. f.J. f.J. f.J. 

where a denotes the isotopic spin index. Let us 
further impose the subsidiary conditions 

a w =0, a p a =0, 
f.J. f.J. f.J. f.J. 

acpa-acpa = O, 
A f.J. f.J. A 

(2) 

which insure that wf.J.,pf.J.a ,cp f.J.a describe, respec­
tively, particles with (J = 1-, T = 0), (J = 1- , T = 1 ), 
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tween nucleons. This potential is, therefore, 
variant under Wigner 's group SU(4). If now a 
purely spin-dependent perturbation is introduce 
w and p remain degenerate whereas the 
from them within the supermultiplet. We 
w, p, and " are associated with the adjoint 
sentation of SU( 4). When this representation Is 
reduced under the subgroup SU(2)~[SU(2)lq it 
splits into states with (J=1-,T=O), (J=r,T= 
and (J=O-,T=1). 

These considerations are readily extended to 
include strange particlE's. In this case the 

VOJ.U .. E 13, NUMBER 5 PHYSICAL REVIEW LETTERS 3 A UGUST 1964 ---lc-spin group Is replaced by SU(3) so that 
~s over Into a group g. whose little group 
!•[~(6)~ which admits SU(3)~[SU(2)]q as a sub-

group. ) 
The representation of SU(6 can be charact~r-
ed by five integers (A 1A2AsA 4A0 ) where the Ai s 

:e {unctions of the five Casimir operators. Ta­
ble I shOws some of the representations of SU(6) 
together with their SU(3) and spm structure. The 

mbols (m, n) in the third column refer to the 
:i,(3 ) and spin multiplicity, respectively. 

The lowest nontrivial representation (10000) 
baS slx dimensions. It represents a fundamental 
SU(3 ) tripl~t .with (ordinary ) spin ~- Its SU(3) 
®SU(2) content is (3, 2). The conjugate represen­
tatlo~(00001) describes the antiparticle and Its 
content is (3 •, 2). 

A Lagrangian similar to (1) can be written which 
couples invariantly the fundamental tr iplet to me­
sons corresponding to the 35-dimensional adjoint 
representation. When a spin-dependent perturba~ 
tlon is introduced the 35 states split into a pseudo­
scalar octet and a ·degenerate vector nonet• with 
negative parity. These can be "identified with the 
observed (1r,K,71) and (/) ,w ,K*,cp) multiplets. 
SU(6) provides, therefore, a natural -explanation 
of the degeneracy of the vector octet and the vec­
tor singlet in the nonet. - All other meson-meson 
resonances must belong to s·elf-conjugate repre­
sentations of SU(6). Possible candidates are 
(00000) with even or odd parity, (10001) with 
even parity, (11011) with even or odd parity, etc. 

The baryon octet and the J = t decuplet can be 
grouped as a 56-dimensional representation ob­

tained from the symmetrical combination of three 
fundamental triplets. The reduction of the direct 
ProdUct of£~£®£ gives rise to three representa-

Table I. Some representations of SU(6) and their 
Unitary spin and spin content. 

Labeling Dimensions 
Unitary spin and spin 

<>-t).~~>-,) 
multiplicities 

D().l;\.2;\.3~~) (n , m) 

(00000) 1 (1,1j 
(10000) 
(00001) 

6 (3, 2) 

(01000) 
6* (3*,2) 

(00100) 
15 (3*, 3), (6,1) 

(20000) 
20 (8 , 2),(1 ,4) 

(10001) 
21 (6,3),(3*,1) 

(30000) 
35 (8,3),(8,1),(1,3) 

(llOOQ) 
56 (10, 4), (8, 2) 

,____= - 70 (10, 2), (8. 4), (8, 2), (1. 2) 

tions with. 20, 70, and 56 dimensions. The fact 
that the ground state of the. three -body configura­
tion is symmetrical (56-dimensional representa­
tion) in the spin and unitary -spin variables im­
plies that the two -body forces between them are 
repulsive. This seems to exclude a s<,:heme based 
on only three fundamental quarks7 whereas it is 
consistent with model II discussed in Appendix IV 
of reference 6. The connection of higher- r epre­
sentations with possible baryon· resonances is 
discussed by Pais. • . . 

The splitting between the J = 0- octet and the J 
= 1- nonet suggests that .the mass operator: con­
tains a ·spin-dependent term which can only be a 
function of J(J + 1). A simple mass formula for 
an SU(6) supermultiplet is the mass squared" for­
mula 

f.J. 2 = f.J. 0
2 + aJ(J + 1) +y[_T.(T + 1)- i¥'] 

for mesons and 

M·=M0 +aJ(J + 1) +oY + c [T(T + 1)- iY"] 

for baryons. 
The~·e are by no means· the ·mos t general mass 

formulas· that c~ be written on the basls of a 
broken SU(6) symmetry. The mass forlllula prob­
lem is further· discussed by Pais. • 

The interaction Lagrangian with. conserved ·cur­
rents is generated from the free Lagrangian 
through a gauge· transformalion• associated with 
the groljp g~. 8 'As hi the caae of the electromag­
netic L'lteraction this inipiies parity ·conservation 
for the strong interactions invariant under "So· 
Hence all the states of an SU(6) super multiplet 
must have the same parity. Our scheme is, , 
therefore , different from others that have been 
discussed recently2•"•10 ; in particular it does not 
predict o+ and 1 + me~ons degenerate with the 
existing o- and 1- mesons . Th·e degen·erate states 
assoc iated with the meson states for given· mo ­
mentum q and given SU(6) quantum numbers are 
simply the states corresponding to the oppos ite 
momentum and the same SU(6) quantum numbers. 
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2-rhe group SU(6) has been suggested In a somewhat 
different context by M. Gell-Mann, to be published. 
Gell-Mann's point of view Is, however , different from 
the one discussed here, being based on the algebra of 
the conserved and quaslconserved currents. 

3For a more detailed analysis of the applications, see 
A. Pais. following Letter [Phys. Rev. Letters_ll, 
(1964)). 

4F. Giirsey and L. A. Radlcati, to be published. 
5The group 9 4 Is noncompact and may be regarded as 

an extension of the Lorentz group by means of the iso­
topic spin group. The generators of 94 are the covari­
ant spin operators, the Isotopic spin operators and their 

products. The little group of 94 for fix ed momentum q 

is
1
[SU(4.!lq• 
F. Gursey, T. D. Lee . and M. Nauenberg , Phys. 

Rev. 135, B467 (1964). 
1M.Gell-Mann, Phys. Letters§ , 214 (1964) . 
8It Is clear that the fundamental triplets will be cou­

pled to the mesons through F-type coupling only . Since 
the baryons do not belong to the lowest representation 
of SU(6), the gauge operators generate a larger algebra 
which produces F-type couplings with the vector mesons 
and F- and D-type couplings with the pseudoscalar me­
sons. 

9P. G. 0. Freund andY. Nambu, Phys. Rev . Letters 
12 , 714 (1964) . 
loA. Salam andJ. c. Ward, unpublished. 

IMPLICATIONS OF SPIN- UNITARY SPIN INDEPENDENCE* 

A. Paist 
Brookhaven National Laboratory, Upton, New York 

(Received 15 July 1964) 

It is the purpose of this note to discuss further 
the possibility' that a broken (SU(6))q: is a useful 
symmetry in strong interactions. 

To introduce some questions which arise, con­
sider Wigner's nuclear SU(4)-multiplet theory.• 
Representations of this group label multinucleon 
states in a given nuclear l shell. This is useful 
largely because spin- orbit coupling can be ne­
glected to a good approximation for low-lying 
states. Spin-orbit forces will lead to some re­
coupling and accordingly the classification under 
SU(4) gets less good for higher excitations, as 
emphasized by Wigner. 

Likewise for SU(6). Call (M) q and ~- the 
respective meson and baryon representa~ons. 
For M-B scattering one must reduce out {{B) 
®(M)}a where a represents the orbital variables. 
After taking out the center of mass, one can 
choose a= (k, l, lz), l =orbital angular momentum. 
For each partial wave there may be recoupling 
between land the {B,M) spins. Where this is 
unimportant, we can just reduce out {B)®(M). 

This leads to a maximum possible spin for the 
baryon resonances, namely I with the proposed 
choice of representations .1 Higher spins are a 
sure sign of (l, s) coupling. In the region where 
this starts to happen (it appears• to be - 2 BeV), 
the assignment of resonances to "new" SU(6) 
multiplets becomes considerably more compli­
cated. 

In view of this compJexity, it may be asked 
whether it is necessary to put (8, 2) and (10, 4) in 
56, as proposed,! because the breakdown SU(6) 
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-factorized (SU(3)®SU(2)) (first stage)- broktm 
SU(3) (second stage) has a first stage of which 
the scale is not known beforehand. However, the 
choice 56 becomes more suggestive through mass 
considerations. The success of the Gell-Mann­
Okubo formula as an effective first-order pertur­
bation leads one to try the assumption that SU(6) 
-broken SU(3) is additive in the first- and second­
stage breakdowns with coefficients that depend on 
the (five) Casimir operators C; of SU(6) .2.!!!1. 
This is achieved by M =M0 +a0(C;lF8 +b0(C;) 
xdajJlF}Fk, or• 

M =M
0 

+a(Ci)Y +b(Ci)[J(I + 1)-!Y"-tF") (1) 

(,F• =F;F;). M 0 is the central mass of an SU(3) 
multiplet, 

M 0 =M00<c;)+rn(c;,F",diikF/ {k'JI,J+1)) . (2) 

M 00 is the central mass of the SU(6) multiplet. 
We shall see shortly that the dependence of the 
SU(6)-breaking term rn on both spin and unitary­
spin invariants is essential, and the same is 
true for the C; dependence of the quantities a, b, 
etc. 

Application of Eq. (1) to the meson 35 yields 
(using the quadratic mass relation) pr::fr• =K*1-K", 
known• to be true within the p-mass accuracy. 
Equation (1) as a linear mass formula gives for 
the 56 a calculated (10, 4) equidistance"' 130 MeV, 
derived from the (8, 2), close enough to the ex­
perimental value •145 MeV to make the choice 
56 quite attractive.• The first-stage split be-
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tween (10, 4) and (8, 2) is "235 MeV, comparable 
in magnitude to a, the F- type octet split. 

There is an important new aspect to the (effec­
tive) BBM coupling in this theory. It follows 
from 

56 @ 56~ 1 + 35 + 405 + 2695 (3) 

that this coupling is, in fact, unique, because of 
the single occurrence of 35. Hence, the F /D 
ratio is determined by SU(6). The fact that both 
F and D must occur in this coupling was noted by 
Giirsey and Radicati.7 Hence, there is noR in­
variance (unless one "doubles" the theory which 
is unattractive). 

Let us next consider a few consequences based 
on the additional assumption that the (spin, F­
spin) multiplets need not be strongly recoupled 
to I. As (10, 4) decays into baryon and meson 
(where energetically possible) one should at 
least know whether 56 is in 35@56 . It is, as 

~@56}a=1134+700+70+56. (4) 

For the decay of the (10, 4) the label a now spe­
cifically refers to I= 1. (For the one-particle 
states on the right-hand side of Eq:-{4) we may 
imagine to be in their rest frame.) Equation (3) 
also indicates which other SU(6) representations 
are possible candidates for resonances which 
can decay into (octet+ meson) or (decuplet +me­
son). 

It is natural to consider next the other "small" 
representation, 70, of Eq. (3) with content 

70 = (1, 2) + (8, 4) + (10, 2) + (8, 2). 

It is tempting to fill (1, 2) with Y0*(1405). For 
this to _work, one needs spin(Y 0 *) =!. It is fur­
thermore desirable for Y 0* to have odd parity, 
in order that it can be the resonant state sought 
for in the interpretation of (K-, p) data. 8 This 
would fix the parity of the other terms in Eq . (3) 
to be negative. Thus, the incomplete y octet• 
becomes a possible candidate for (8, 4r in 70- . 
There would then be harmony between the spin­
parity of this last multiplet and the desirable 
properties of Y 0*(1405). 

Concerning the status of the y octet, for both 
Y0*(1520) and N**(1512) the evidence for r is 
good.10 The assignment r to Y1**(1660} seems 
dubious.11 However, according to Willis12 this 
possibility cannot be excluded. In connection 
with the SU(3) mass formula this assignment for 
y ,•• would imply a :::•(1600) with r. If this at 
all exists ,13 its production seems to be at most 

-1-2% of ::=:•(1530). [This would mean a first­
stage split (8, 4)-(1, 2) of "185 MeV, comparable 
to the one for (10, 4)-(8, 2).] It seems that a r 
octe t could well be there, even though not all the 
correct ingredients may be at hand as yet. 

If these assignments within the representation 
70- are correct, there is a prediction of the 
existence of an i- octet and decuplet. In the 
spirit of Eq. (1) , one may anticipate that there 
should be octet-decuplet relations also within 
the 70. If this is so and if we assume, to give an 
example, that the y octet is fixed by the masses 
1512, 1520, 1660, and (1600?) then the equidis­
tance in (10, 2r should be --60 MeV, i.e., it is 
a 10 with its "11'' as lowest state. This, in turn, 
would imply a sum rule for (8, 2r, namely, ~· 
- ::=:• +60 MeV. These assignments to 70 can 
only possibly work if the first-stage split m of 
Eq. (2) depends on unitary spin as well as on 
spin. The simplest possibility of a dependence 
of m on F is a (C;)F' with a (C;) > 0 which would 
give equidistant central masses for the sequence 
(1, 2), (8, 2), and (10, 2) with (1, 2) lowest. Note 
that a and b in Eq. (1) are generally different for 
the 56 and the 2_2, due to their C; dependence .14 

The content of 1134 and 700 is, of course, very 
complex. In particular on-;;-(1, 2) and one (1, 4) 
are herein contained. The assignment of Y 0* to 
70 is therefore not unambiguous; one must hope 
that some simplicity prevails. 

Finally, note that the small baryon representa­
tion' 20 is a baryon - two- meson state (for exam­
ple, in 70@35). One can also discuss two-meson 
states, 'ill;ing 35@35 =.! + 35 + ~ + 189 + 280 + 280~ 
+405. 
Ttis a pleasure to thank F. Giirsey and L.A. 

Radicati for very stimulating discussions. 
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1F. Gurs ey and L. Radlcatl, pr ec eding Letter [Phys. 
Rev. Letter s .!!!. 173 (1964)], Notations used here are 
the s ame as in this Letter. 

:~.' ::il~;~·;~.".' :::.·. ~~v~0~~:te~~~o . 27 (1963). 
4The formula of R. J. Oakes and C. N. Yang, Pnys. 

Rev. Lette r s ll· 174 (1963), gives (in our notation) an 
a which does depend on the SU(3) r epresentatwr .. 

5S . Colem an and s. L. Glashow , Phys . Rev. 134, 
B67! (1964). 

6This clos eness has been noted by many people. The 
fac t that the (10, 2) is stable !n the central SU(3)-mass 
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limit Is amusing in that it closely r esembles the old 
strong-coupll!,g tr eatment for the (3 , 3) resonance which 
has , in fact, SU(4) characteristics in i ts algebra 

3 A UGUST 1964 

(W . Pauli and S. Dancoff, Phys . Rev. 62, 85 (1942)). 
'Reference 1, footnote 8. -
8
R . H. Dalitz, Ann . Rev. Nucl. Sci. 13, 338 (1963) . 

•s. Glashow and A. Rvsenfeld, Phys. R ev . Letters 
10, 192 (1963j , 

loFor Y0• , seeR . D. Tripp, M . B. Watson. and 
M. Ferro-Luzzi, Phys. Rev. Letters_!! , 66 0962) . For 
N .. , see P. Auvil and C. Lovelace, Imperial College 
Report No. ICT P / 64/ 37 (unpublished); M. Olsson and 
G. B. Yodh, University of Maryland Technical Report 
No. 358 (unpublished). 

11
M. Taher-Zadeh_£! .!!J., Phys. Rev . Letters .!! , 470 (1 963). 
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p, L. Connolly _£!.!!J. , Proceedings of the Sienn a 

International Conference on Elernen Lary Particl es 
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0 ne should also consider the (1 , s) coupling as a 
"third stage" which may lead to recurrences of SU(6) 
multiplets With higher J values. This coupling is not 
the same as the spin-orbit coupling of T. Kycta and 

K. Riley, Phys. Rev . LetterslQ, 266 (1963) (K-R) . 
An effective (l ,s) coupling In the present meantng may 
be r esponsible for the l!.l = 2 recurrences noted by K- R. 
If this picture makes sense , then the K-R mass plot 

. ·iicates that the third s tage is (once agaJn) linearly 
Independent of th e first one and that both 1.§ and J..Q recur 
wi th J raised by 2. 

V o LU ME 13, NUMBER 8 PHYSICAL RE V I EW LETTERS 24 AUGUST 1964 

SPIN AND UNITARY SPIN INDEPENDENCE OF STR6NG INTERACTIONS• 

F. Glirsey, t A. Pais , ~ and L.A. Radicati§ 
Brookhaven National Laboratory, Upton, New York 

(Received 5 August 1964) 

In this note we pursue further the consequences 
of the assumption that strong interactions are 
spin and unitary spin (F-spin) independent.1

•
2 In 

particular we discuss the meson-baryon vertex 
and s ome subgroups of SU(6). 

Within a representation of SU(6), states of 
given four-momentum may be partially labeled 
by the eigenvalues of five commuting elements 
in the Lie algebra,' for which we may take (Si 
=spin, F >.. ·= F spin) S3 , F 3 , F 8 , S3F 3 , S3F 8 • 

In this approach, a Fourier component p 8A(q) 
of the pseudoscalar octet (A, 8 = 1, 2, 3 are the 
SU(3)-tensor Indices, q is the momentum) is 
united with a Fourier component v8 A(k ,q) of the 
vector nonet ((S.) =k = - 1, 0, 1 Is a polarization in­
dex) in the representation 35 of SU(6) , described 
by a 6 x 6 matrix M(q) give;:;:-by 

M(q)=u M (q) , (1) 
IJ. IJ. 

. 8 8 C A 
M

11
= (tq/lqi)(FA - ~OA FC )P

8 
(q) 

8 A 
+6kn

11
(k, q)FA v

8 
(k , q), (2) 

with IJ. = 1, • • ·, 4. a IJ. are the Pauli spin matrices 
(IJ. =1,2,3) and the unit matrix (1J.=4). q

11
/ lql 

and n 
11

(k, q) for m an orthogonal tetrad (lq 12 = q0
2 

- ij') . In partjcular, we have (see below) 

V3
3(k , q) = <P(k, q), V1

1(k, q) + V.'(k, q) = 2112w(k, q) 
(3) 

where 'I' and w stand for the corresponding vec ­
tor mesons. 

A matrix element of M(q) is written as M a !3(q), 
a, !3= t , .. . , 6, andwehave•M/(q)=O. Wtth 
this notation , the 56 representation of SU(6) 
which unites1

•
2 thebaryon octet (b) and decuplet 

~) is written as Bet{3y(q); the anti-particle·s are 
BatJy(q ). In both cases there is total symmetry 
In a, 13, and y. 

We turn to the (jj , 8, M) vertex in the pure SU( '3) 
limit , where all B's have mass M00 and all M ' s 
have IJ.00 • This vertex will , for example, con­
tain the min imal coupling of protons to p0 ~vhich 
We normalize to gpy PP/· The general (b, b, \!) 
'~ertex also contains'" a 

1111
q

11 
coup!J.ng, which we 

leave aside for the moment. At low energies 
this ~n.l!:-la l part of the vertex will then con-
lain only the s-wave (b.b V) and the p-wave (bbP) 

coupling. The minimal vertex is unique• and ha: 
the form (for given Fourier components of the 
fields) 

Jy '\ -q)M /(q) = 6gB a{3y(p)Bet!30(p')M /(q), 

q =p-p'. (. 

JY 6 is the baryon part of the strong current. T 
full current, which also contains M terms, can 
decomposed Into an axial current octet (a )AB 

and a vector current nonet ('U IJ.)A B by the ~eth• 
of Eq. (2). We have 

8 8 8 
a ('U )A = 0; a (a )A -a (a )A = 0. 

IJ. IJ. IJ. v v IJ. 

By simultaneous reduction In spin and F-spi1 
we can decompose (4) Into b, d and P, V. West 
some results for this minimal vertex. 

(I) (bb V). Its strength is normalized as note 
above. Hence, from the fact that pIs coupled 
the conserved lsospln current, g is determine 
by the rate for p- 217. Thus1 

• .8..:.. .., 1 
417 l· 

The coupling Is pure F , as '\J Is consened [se 
Eq. (5)1. 

(2) (iib P) . As noted before' this Is a mlx tur• 
D and F. We call the ir ratio (D/F)A and find 

(D/F)A =f. 

This r:..tio will rea:opear in tl.e weak decays i: 
we assume that the same 2x ial '/ector curre,, · 
involved !:1 weak interactions . 

In order to define th'.! total strength of th!s 
coupling we again go to low energies and con 
s ider the p - wave term KAP tc;p . v rr0

/ J.lu>• We . 

gA = 5g/3. 

As r. Is not renormalized, the s ame is true f 
gA . This comes about because '\J and a curr 
can transform into each other In the SU(6) It 
In order to go from gA to the pseudoscalr.J.· c 
slant g PS' we use the central mass values o 
SU(6) . In this way we get 

g 
2 

25 (2M ) ' g
0 

PS 00 
~=-g - 1-lw 4,; • 
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In this note we pursue further the consequences 
of the assumption that strong interactions are 
spin and unitary spin (F-spin) independent. 1

•
2 In 

particular we discuss the meson-baryon vertex 
and some subgroups of SU(6) . 

Within a representation of SU(6), states of 
given four-momentum may be partially labeled 
by the eigenvalues of five commuting elements 
in the Lie algebra,' for which we may take (Si 
=spin, F >. = F spin) s., F 0 , F 8 , S0F 0 , S0F 8 • 

In this approach, a Fourier component P 8 A(q) 
of the pseudoscalar octet (A, 8 = 1, 2, 3 are the 
SU(3)-tensor Indices, q Is the momentum) Is 
united with a Fourier component V 8 A (k, q) of the 
vec tor nonet ((S.) : k = -1, 0,1 Is a polarization in­
dex) in the representation 35 of SU(6), described 
by a 6 x 6 matrix M(q) give;;-by 

M(q)=u M (q), 
IL IL 

M 1.! = (iq /lqi)(FA B- !OA B FC C)P/(q) 

(1) 

8 A 
+L,kn IL(k,q)FA V

8 
(k,q), (2) 

with 1.! = 1, • • • , 4. u 1.! are the Pauli spin matrices 
(1.! = 1,2,3) and the unit matrix (1.! =4) . qi.L/Iql 
and n Jl(/l, q) for m an orthogonal tetrad ( lq 12 = q0

2 

-(f). In partjcular, we have (see below) 

v."(k, q) = cp(k, q), V1
1(k, q) + v,'(k, q) = 2112w(k, q) 

(3) 

where cp and w stand for the corresponding vec­
tor mesons . 

A matrix element of M(q) is written as M af3(q) , 
a, {3 = 1, · · ·, 6, and we have• M l(q) = 0. Wtlh 
this notation , the 56 representation of SU(6) 
which unites1•

2 thebaryon octet (b) and decuplet 
(d) Is written as Ba{3y(q); the anti-particles are 
Ba[Jy(q) . In both cases there is total symmetry 
In a, {J, andy. 

We turn to the (B,B,M) vertex in the pure SU(6) 
limit, where all R's have mass M 00 and all M' s 
have 1-'oo· This vertex will , for example, con­
tain the minimal coupling of protons to p0 which 
we normalize to gfiyi.Lpp /· The general (b, b, V) 
vertex also contains u 1-'Vqv coupU.ng, which we 
leave aside for the moment. At low energies 
this minimal part of t~e vertex will then co~-
tain only the s-wave (bbV) and the p-wave (bbP) 

coupling. The minimal vertex is unique• and has 
the form (for given Fourier components of the 
fields) 

JY o(-q)M oy(q) = 6gB a{3y(p)Baf30(p')M oy(q), 

q =p-p•. (4) 

JY 0 is the baryon part of the strong current. The 
full current, which also contains M terms, can be 
decomposed Into an axial current octet (fi ) A B 
and a vector current nonet (\J I.L)AB by the ~ethod 
of Eq. (2). We have 

B 8 8 a (\J )A =O; a (a )A -a (a )A =0. (5) 
1.! 1.! 1.! v v 1L 

By simultaneous reduction In spin and F-spln 
we can decompose (4) Into b, d and P, V. We state 
some results for this minimal vertex. 

(1) (bbV). Its strength Is normalized as noted 
above. Hence, from the fact that p Is coupled to 
the conserved lsospln current, g Is determined 
by the rate for p- 217. Thus1 

.C.,. I 
411 l· 

(6) 

The coupling is pure F , as \J Is conserved [see 
Eq. (5)1 . 

(2) (hbP). As noted before' this Is a mixture of 
D and F. We call their 1·at1o (D/F)A and find 

(D/F)A =~. (7) 

Tnis r:.tl.o will reappear in tl.fl weak decays If 
we assume that the same 2x ial '/ector curre.1t is 
i,pvo!ved l:l v:ea.k interactions . 

In ordu to deline the total strength of this 
coupling we again go to low energies and .::on­
sider the p - wave term gAP t ap· v rr0

/ 1-'<>o• We find 

gA = 5g/ 3. (8) 

As r, is not renormallzed, the same is true for 
gA. This comes about because 'U and fi currents 
can transform into each other in the SU(6) Utnlt . 
In ordl'r to go from gA to the pseudoscalr.J: con­
stant f<,os• we use the central mass values o! 
SU(6). In this way we get 

K~s· = :s (~~· ::. (9) 
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Using Eq. (6) and mean masses M00 "' 1100 MeV, 
lloo "' 700 MeV, we get gps' / 4rr "' 12.5. We do not 
attach significance to the precise value, but be­
lieve that the estimate is fair and the result en­
couraging. 

(3) (dbP). This d-decay vertex is a lso contained 
in Eq. (4 ). Its strength is related to the width r,. 
of N00* by the following formula: 

12 lfps' k' [mNm 33] 
r,. ; 25 ~ m,,' -:JT. (10) 

The true masses mN and m 00 fo r nuc leon and N 00 • 

ente r through the usual device of using the true 
phase space . gPS is defined by Eq. (9) . With the 
fa c tor in square brackets "'1, we get r,, - 60 Me V. 
This is of the right order, but these d widths can­
not be too prec ise in the symmetry limit , as we 
know fr om• th e properties of Y1 •- ~ + n. 

(4) (driP) and (dr!V) . The p-wave trans ition 
N >++(s, ; ~ ) - N >++( ~ ) + rr0 and the corresponding 
S- wave transition with a p0 each have str ength 
3J? . Thus there is s trong direct d- P and d- V in­
terac tion. It would be inte r esting to know whether 
this could explain to some extent the different 
value for (D/ F)A found here as compared to other 
estimates .' 

Remarks .-(!) The above considerations can be 
readily extended to include induced terms. Since 
in the low-ene rgy limit the vertex is SU(6)-invar­
iant for each partial wave, the static limit is ob­
tained by taking the s -wave contribution of the 
minimal vector meson coupling together with the 
contribution of the induced pseudoscalar meson 
coupling. For the p wave the induced vector 
meson Pauli term completes the minimal pseudo­
scalar term. 

(ii) For each partial wave the four-point func­
tion for B -M scattering contains only three inde­
pendent amplitudes. Likewise, B-B scattering 
can be expressed in terms of four independent 
amplitudes. This implies a large number of 
selection rules. 

We now turn to the discussion of an important 
subgroup of SU(6), which we denote by W(Y) 
® SU(4)(T) ® SU(2)(X). To define this subgroup 
we follow the usual procedure to study the alge­
bra associated with the fundamental (6-dimen-
s ional) representation. Let 

A± ; j(l ±E), ~ ; (4 / .f3)F1 + !· (11) 

Thus e ; 1, A±2 ; A±' A+A- ; A_A+ = O. W(Y) has 
the elements A+' A_. SU(4)(T) is generated by 
A+Si , F;, and A+SiFk (i, k = 1, 2, 3), and SU(2)(X) 

by xi =>.. _si. 
In Table I we list for some of the representa­

tions of SU(6) those representations of SU(4)(T) 
® SU(2)(X) which correspond to a definite eigen­
value of >.. +F6 • We recall that w, rr , and p form 
the adjoint 15-dimensional representation of 
SU(4)(T) while cp is a scalar under SU(4)(T). Con­
versely, the requirement that the physical cp and 
w belong to definite representations of SU(4)(T) 
defines the mixing of the "unphysical" SU(3) sin­
glet w<ol and the octet member tp<01 , for these phys­
ical mesons. Equation (3) is in accordance with 
this choice. 

N appears in a 20 representation, together with 
N*. This differs from Wigner's assignment• for 
the nucleon which was also provisionally used 
earlier.' It is most probable that Wigner ' s theory 
appears as a valid approximation to the SU(6) 
model in the nonrelativistic limit. 

Table I. SU(4) multiplets in SU(6) . 

Repre sentationsa and 
dimensions of SU(6) 

(I."\'"•"'< At) . Ds 

(10000). 

(10001) . 35 

(30000), 56 

:Defined as in reference !. 
Defined as in reference 11. 

Represe ntationsb and 
dim ensions of SU(4)(T) 

(PP'P") , D, 

<1W· 
(000) , 

(110) , 15 

(000), 

<H1L 20 
(000) , 

Repre sentation of 
SU(2)(X) 

X 

0 

1 
0 
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G'-par-ity 
G'=G( 

-1 
+I 
+1 

Particles 

"'·" p 

"' N,N* 
0 
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In the fourth column of Table I, we list for the 
mesons w, rr, p, and <p the eigenvalues of the 
operator G' = G~, where G is the usual G parity. 
Just as G is convenient for dealing with (rr, p, w) , 
so G' will be convenient for dealing simultaneous­
ly with (rr, p, w) and <p . For these particles G' 
coincides with Bronzan and Low's number A.' 
The (N, N) system is closed under G', and so 
are each of the systems (K,K), (K•,l?•), (N•,N•), 
and (0,0). The other particles involved (for ex­
ample the 71) are all definite mixtures of states 
even and odd under G'. The behavior of all parti­
cles under G' is therefore fully sp.acified and 
hence G' provides selection rules in the SU(4) 
limit. For example, the reactions rr+N-N+n1T 
+<p, N+N-N+N+nrr+<p, andN +N-nrr+ <p should 
be suppressed compared to the corresponding w 
reactions. On the other hand, <p- K + K and K­
+P- A +nrr +<pare "allowed"; that is, not SU{4)­
inhibited relative to w. All these results appear 
to be in qualitative agreement with experiment. 
It may be stressed that these consequences of the 
theory carry no restrictions on particles present 
ln intermediate states. 

The reduction of the two-meson product (110) 
x{llO) in SU{4)(T) is worth noting. It yields {in 
terms of dimensions) 1 + 15 + 15 + 20 + 45 + 45• + 84 . 
The !Q_, which is characterized by therepresenta­
tion {2, 0, 0), has (T,S) content (1,1) +(1, 5) +(5,1) 
+ (3, 3) and thus contains an isoscalar of spin 2 
which could be identified with the/0{1250 MeV) 
with positive parity. If this is correct, then the 
20+ would also contain an isotriplet of axial vec­
tor mesons. However, as was the case for higher 
baryon resonances, • one must be prepared for a 
possible nonuniqueness. Thus in the present10 

case, the 84 also contains a (1, 5). 
Finally, We note that SU(6) invariance may also 

prove useful in the analysis of nuclear forces. 
In the static limit the mesons {p, w, rr) will still 
generate SU(4)(T)-invariant Majorana forces be­
tween nucleons. <p will not contribute in the limit 
of perfect symmetry, while a contribution to 
Wigner forces will arise from 71 exchange. While 
SU(4)(T) allows for an arbitrary mixture of Wig­
ner versll8 Majorana forces , SU(6) invariance 

makes this mixture unique. It would be interesting 
to investigate the relationship with the Serber mix­
ture12 of nuclear forces. 

One of us (F.G.) would like to thank Dr. R. Ser­
ber for many stimulating discussions. Details of 
this work will be published elsewhere." 
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MASS FORMULAS IN THE SU\6) SYMMETRY SCHEME* 

T. K. Kuo and Tsu Yao 
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(Received 31 Ju ly 1964) 

Recently it was proposed by GUrsey and Radi­
catl1 and Pais2 that the SU(6) symmetry scheme 
incorporating spin and unitary spin may have 
important consequences in particle physics. 
They discussed, among other things, a possible 
mass formula and applied it to some low-dimen­
sional representations. In this note• we propose 
that the SU(6) symmetry is broken analogously 
as in SU(3), 4

•
5 namely, the primary symmetry­

breaking term in the Hamiltonian transforms 
like the 1=0, Y=O,J=O member of the 35 repre­
sentation. The major result of this assumption 
is that in a given SU(6) representation, states 
with the same I, Y, and J belonging to ct1ferent 
SU(3) multiplets are mixed in a definite way. 

The 36 traceless operators B IJ.v of SU(6) are 
defined such that their representation in the six­
dimensional vector space C

0 
are given by 

(B IJ.) .. =O .0 -~0 0 .. , 
V lJ IJ.J Vl IJ.V lJ (1) 

(iJ., v, i,j = 1, 2, • • ·, 6). These operators satisfy 
the commutation relations 

[B IJ. B a)=O IJ.B a_O aB IJ.. (2) 
v ' ~ B v v ~ 

The symmetry-breaking term is proposed to 
be T3 

3 + T.", where 

[B IJ. T a)=O IJ.T a_O aT iJ.. (3) 
v'~ ~ v v~ 

Note that the hypercharge operator Y is -(B
3

3 

+B."). It can be shown that• 

T IJ.=a 15 IJ.+a B IJ.+a (B·B) IJ.+a (B·B·B) IJ. 
v Ov 1v 2 v 3 v 

+a (B·B·B·B) IJ.+a (B·B·B·B·B) IJ. (4) 
4 v 5 v ' 
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where the a/ s are constants depending only on 
the five Casimir operators of the group. 

For the few low-dimension representations 
discussed below, only the first three terms in 
Eq. (4) are needed. Therefore, for those SU(6) 
supermultiplets we can write down the follow­
ing mass formula: 

M =MO +aY + b{(B· B)SU(4) -2Q(Q + 1) -jY2}. (5) 

For mesons mass squared is to be used in Eq. (5). 
The symbol (B • B)su( 4) denotes the quadratic 
Casimir operator of the SU(4) subgroup which 
is considered by Giirsey, Pais, and Radicati.' 
Q is an angular momentum vector with com­
ponents 

Q3 = !(B3
3-B,"), 

Q+ =B,•, 

Q_=B.". (6) 

In the quark language, 6 Q = j for the S = ± 1 quarks 
and Q = 0 for the S = 0 quarks. In Table I we shall 
give all the eigenvalues of (B· Blsu(4) and Q of 
all the particles in the 20, 35, 56, and 70 repre­
sentations. 

Now let us discuss the 35 representation [35 
= (~, .!) + (~, ~ + (!, ~) J which has as members the 
pseudoscalar-meson octet and the vector-meson 
nonet. Since 

35 ® 35 = _! EB 35 ® 35 E!l 189 E!l 280 E!l 280* ® 405, (7) 

the matrix element 

(35/T IJ./35) 
- v -

= a0 +a 1 (35 /B / /35) +a
2

(35i (B· B)/ /35) . (8) 
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T able I. SU(4) multiplets in ~U(6). 

Particles No. of states 

35 
p, w. n 

K\K 
K\K 

cp 

n 

15 
8 

56 

20 
20 
12 

4 

20 
12 
20 
12 

4 

2 

12 

This simplification from Eq. (4) is the result that 
in Eq. (7) 35 occurs only twice in 35® 35. The 
immediate--;;-onsequence of Eq. (5) is aifollows: 

(1) For vector mesons we get the familiar 
result 

m 2=m 2 
w p' 

m 2 +m 2 = 2m 2 

<P p K* 
(9) 

(2) For pseudoscalar mesons we get the usual 
mass sum rule,4

'
5 

m 2 = 1(3m 2 +m 2
). 

K ~ 1J 11 
(10) 

(3) We also obtain the relation 

m 2_m 2 = m 2-m z 
K* p K 11' 

(11) 

which was noticed before! 
( 4) In connection with Eq. (9), we also obtain 

from Eq. (8) the mixing of q;0 and w0 unambigu­
ously, such that the physical <P and w are given 
by 

<P = -( ~)ll•q;• + ( lJll•w•, 

w = ( il112 <P0 + ( ~)112W0 
• (12) 

(5) We further notice that the primary sym­
metry-breaking term (T,' + T.") still leaves p 
and 11 degenerate (also K* and K). This degen-

70 

20 

Hepre~e ntation 

of SU(1) (B·B)SU(4) ~ 

_12 0 

! ! 
4* 4 ! 
l 0 

l 

~ 16 0 

!Q 9 1 
4 4 1 

l 1 

~ 10 0 

§_ t !Q 
4 4 

4 4 0 

l ! 

§_ 
!* 4 0 

! 4 0 

eracy can be lifted by a spin-dependent mass 
term which can only be a function of J(J + 1). 
We emphasize that the inclusion of this spin ­
dependent term will not affect the results in 
Eqs. (9)-(12). (See below for more details.) 

We next come to a discussion of the 56 repre­
sentation [56 = (10 , 4) + (8, 2)] which has as mem­
bers the baryonoctet and -decuplet. Since 

56 occurs only once, the matrix element 

(561 T / 156) =a
0 

+a
1 
(561B /' 156). 

Thus the mass formula for 56 reduces to the 
simple form 

(1) Now both the decuplet and the octet are 
equally spaced: 

(13) 

(14) 

(15) 

M,., -M.,.. =M.,..-My . =My .-M •' (16) 
"-- 1 1 N 

M
2

-M'[;=M'[;-MN, (17a) 

MA=M'[; . 

(2) Furthermore ,' 

M.,..-My . =M.,.-M'[;. 
- 1 -
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(17b) 

(18) 
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(3) We still have the degeneracy between 2• 
and 2, etc. , which can be removed by a spin­
dependent mass term as before. 

(4) Now II. and ~ are stiJ.! degenerate. This 
degeneracy can be remo• ed by ;;.~"in •~ a term of 
the form \. [1(/+1)-~Y") to Eq. (5). Equations (17a) 
and (17b) a r e now combined to give the usual oc ­
tet mass formula, 

2(M'E:+MN ) ;3M II. +M'£. (17c) 

W(• not>: that Eqs. (10)-(12) , il6), und (18) an, 
not changed. [Equation (9) becomE'b • m c/ + i(m P 2 

+mw') ;2mK;.] The general mass formula can 
now be written as 

M ;Af O +aY +b[(B· B)SU(
4

) -2(,l(Q t 1) ·· iY2 j 

+ f.J.J(J + 1) +>..[I(! + O-{Y2 ]. (19) 

So far we have only reproduced some familiar 
results. Now we proceed to a d iscussion of the 
70 representation [70 = (S, 4) + (10, 2) + (R, 2) + (1, 
2) ). Again we obtain an ~q~ation similar t o -
Eq. (8), since 

35®70;~~®56®70®70®~®560®~. (20) 

For the spin-~ baryon r esonances we have the 
familiar oc c.Jt mass formula! In the case of 
the spin-~ resonances we again encounter the 
mixing problP:n jus t as in Eq. (12) where cp0 and 
w

0 
get mixed by the symmetry-breaking term. 

Here the/= 0, Y; 0 members of (8, 2) and (1, 2) 
are mixed. Furthermore, the f;1 ,-Y = -1 mem­
bl?rs of (8, 2) and (10, 2) are mixed. So are the 
f ; 1, Y=O ~ember;Qrt8, 2) and (10, 2). The 
mixing angle is found to-be £1=45°~ all three 
cases. From Eq. (1 9) there are six mass sum 
rules among the nine (in general) nondegenerate 

112 

particles: 

N312 ' + 32±'; fl' + 3'£± ', (21a) 

fl'+N312 '<:::'~''+'£±'• (2lb) 

2W112 ' + 2± '); 311.±' + '£'~''• (2lc) 

where N312 , 112 have/;~. i, respectively. The 
subscript+ denotes the heavier, and - the light­
er of the two particles With the same I and Y. 
We note that Eq. (21a) takes a form hitherto not 
discussed. So far very few spin- ! resonances 
have been positively identified in the exper i ­
ments. It Is hoped that Eqs. (21) may be helpful 
in finding spin-! resonances in the future. 

It is a pleasure to thank Professor F. GUrsey 
and Professor A. Pais for stimulating discus­
sions. 

Note added in proof.- The transformation prop­
erties of the terms J(J + 1) and [I(l + 1)-~Y2], 
which are not considered in this Letter, have 
since been discussed by Bl!g and Singh.10 In fact, 
their Eq. (22) reduces to our Eq. (19) for b;f=O. 

"Work performed unde r the auspices of the U. S. 
Atomic Energy Commission. 
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1. Recent work of GUrsey , Pais , and Radi­
cati1-• appears to indicate that the ideas pro­
pounded by Wigner• 27 years ago may, with ap­
propriate generalization to accommodate strange­
ness, find spectacular fulfillment in the domain 
of particle physics. In the Sakata model one im­
mediately gets SU(6) in place of Wigner's SU(4); 
in the eightfold way a similar picture is easily 
constructed with the help of quarks. • In a rela­
tivistic theory the full invariance group, of 
course , is not SU(6); however , the classification 
of particle states with respect to SU(6) still 
seems permissible. • 

The qualitative success of SU(6) classifications , 
in spite of the marked lack of degeneracy in the 
supermultiplets, prompts one to ask: What is 
the nature of the phenomenological interaction 
responsible for the breakdown? Unless one can 
pin down the transformation properties of this 
interaction the symmetry will be of little practi­
cal use. In this connechon it should be noted that 
mass formulas were written down in references 
1 and 2 on the basis of physical intuition. It is 
not clear, ~priori, whether these formulas can 
he derived by starting with any number of SU(6) 
tensor operators. 

The purpose of this note is to report some re­
sults that have emerged in a systematic study of 
the problems mentioned above. We consider all 
the mass formulas that can be derived by con­
sidering tensor operators transforming accord­
ing to real representations of dimensionality 
less than 1000, which can contribute to the me­
son, baryon, and low-lying resonance spectra. 
These representatio)lS and their SU(S)®SU(2) 
content are 1 

35 = (!.~)® (!!.~) ~ (!!.!l. 

189 = (!,!)~(!!,!) ® (27 , !)$2(~, ~)Gl(10,~) 

®(10*. ~)~(!. ~)® (!! . ~). 

405 = (!, !)Gl(~, !)Gl(27, !)®2(!!, ~)Gl(10, ~) 

Gl (10*,~)Gl(27,~)~(!.~) 

Gl(~.~)~(27,~). 

(1) 

(2) 

(3) 

The tensors we consider will, of course , be 
singlets under SU(2); under SU(3) we shall take 
the ones that either are singlet or transform like 
the I = Y = b member of an octet. 

Incidentally, the 35 representation has already 
been considered byKuo and Yao. 8 The choice 
turns out to be rather inadequate since the spin 
degeneracy is not lifted at all and for baryons 
the isospin degeneracy is not lifted either. 

Before we write down the mass formulas it is 
necessary to establish the requisite notation. 

2. The first problem is to set up a scheme for 
labeling SU(6) states. Mathematically , such a 
scheme is afforded by the reduction chain 

SU(6) ::> U(1) ®SU(5) ::> U(1)®U(l)®SU(4)• · · . (4) 

We are unable, however, to find any physical 
meaning for the quantum numbers that emerge in 
this chain. We begin therefore by considering 
the physical chain (P chain) 

SU(6) ::> SU(2)®SU(3) ::> SU(2)®U(l) ®SU(2), (5) 

which fails to furnish us with enough labels. We 
therefore supplement this chain with an unphys­
ical chain (U chain) 

SU(6)::>U(1) ®SU(2)®SU(4) 

::>U(1) ®SU(2) ®SU(2)®SU(2). (&) 

The s~bgroups in one chain do not generally com­
mute with those in another and appropriate "re­
coupling" transformations are needed. 

3. We denote by AtP, a ,ll= 1, 2, · · ·, 6, the 35 
infinitesimal generators of SU(6) satisfying the 
canonical commutatiol) rules. From an inspec­
tion of the adjoint representation one can pick 
out the generators of the commuting SU(3 ) and 
SU(2) , respectively. These are 

Su(3) ·. Aj A i+ 3 . ,. 12 3· i + i +3 • t, = • •• (7) 
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3 . 
J,={L:(A.'-A . i+3). 

i=1 t t+3 
(8) 

The subscript J implies ordinary spin. The !so­
spin and hypercharge operators in SU{3) are, of 
course, 

SU{2)1: I+ =A 1
2 +A:, 

I_ =A 2
1 +A:, 

I 3 = t (A 1
1-A2

2 +A:-A,'); 

U{l) : Y = -(A.' +A."). 

(9) 

(10) 

Equations (7)-{10) complete the identification 
of operators in the P chain. For the U chain one 
has 

( ) j 1 i, A 3 6) . . ( ) SU 4 : Ai + 40i ""' 3 +A
6 

, t , J = 1, 2, 4, 5; 11 

U(1) : Y; 

SU(2)5 : S+ =A.", 

S_=A.', 

S3 = ~(A.'-A."). 

(12) 

(13) 

We use the subecrtpt S to make explicit the fact 
that in the defining representation S is the spin of 
the strangeness-bearing quark. The commuting 
subgroups of SU{4) are SU{2)1 and 

SU(2)N: N+ =A 1
4 +A,", 

N_ =A.'+A.', 

N3 = !(A1
1-A .. +A,'-A.'). (14) 

N Is the spin of quarks with no strangeness. Note 
the relationship between the two chains and the 
identity 

j=N +S. (15) 

We shall need only the quadratic Casimir oper­
ators of the various groups. For SU{6) our defini­
tion is 

6 6 
C (6)=~"(A·A) >.=~" {A>. A 1.1.} (H!) 

2 •£..J >. 2 £..J 1.1. ' >. • 
>. = 1 >., 1.1. = 1 

Similarly , c,u'. c,«>, and c,<"(L)=L(L+1) (L 
=I,J,S,N). 

4. We proceed to the construction of tensor 
operators. For r<••> a general construction is 
immediately available from Ginibre's theorem• 
and an analogous construction can be worked out 
for r<uo> and r<«~". We shall not quote these 
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general constructions since we are interested 
only in representations a such that a * ®a con­
tains 189 and 405 no more than once. 

For ? 891 [r<«~"], we first extract the anti­
symmetric (symmetric) part of 6 ®6 = 15®21 to 
obtain the basis tensors of the 1S- (21-::) dimen­
sional representation and at the same time iden­
tify the quantum numbers associated with each 
component. With this information in hand we 
can write down the five I =J = Y = 0 states that oc­
cur in the reducible representation 15*®15 
= .!_Gl35~189 (21*®21 = .!_ EtJ 35 Etl 405). The extrac­
t ion of orthogonal linear combinations with pre­
scribed transformation properties is then a 
straightforward task. A knowledge of the basis 
tensor leads immediately to the corresponding 
tensor operator. 

All of these tensor operators can be expressed 
in terms of the Casimir operators of subgroups 
in either the P or the U chains. The mass opera­
tors10 can then be read off from these expres­
sions. 

5. We indicate by M(n)(m) the mass operator 
containing a symmetry-breaking term transform­
ing like an SU(6) tensor of multiplicity n with an 
SU{3) component of multiplicity m and I = Y = 0 , 
and singlet under SU{2)J. 

The five "irreducible" mass formulas are 

M<3, ,<u =a1 +b1Y + c,(2S(S + 1)-C
2
(4)+ ~Y'], (17) 

M<,..,<l> =a,+b, [2J(J+1)-c,<•>J, {18) 

M 11891 <
8

> = a3 + b3 f[2J(J + 1)-C
2 

<31 ] + 3[21(/ + 1) 

-!Y'-2N(N+ 1) + 2S(S+ 1)] 

-~[2S(S + 1)-C2 «> +1 Y1 ]}, 

M <<01> <ll = a4 + b4 [2J(J + 1) + C/31 ), 

(19) 

(20) 

M<«~o > <8 > =a, + b, { [2J(J + 1) + C2 <s> J + (21/8)[2S(S + 1) 

-C2 «> + {Y'l + 3[ 21(! + 1) 

-~Y2 + 2N(N+ 1)-2S(S + 1)) } , {21) 

where the coefficients depend only on the Casimir 
operators of SU(!!) . 

If the symmetry-breaking term In the actual 
mass operator contains contributions from all 
the five tensors listed above, the mass ' operator10 
is 

M =a+ bC2 <a> +cJ(J + 1) +dY 

+e[2S(S+ 1)-C2 «> + {Y2 ) 

+J [N(N + 1)-S(S + 1)) 

+g[I(l + 1H~l. (22) 
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We proceed to examine the consequences of 
Eq. (22) for the 56 - and 35-dimensional repre ­
sentations. 

6. In the 56-dimensional representation there 
exist the following identities: 

2J(J + 1)-C2 <s> = -t, (23) 

2S(S + 1)-C2 «I+ { Y2 =-BY -15/2, (24) 

l(I + 1)-{Y1 -N(N+ 1) + S(S+ 1) = -Y + ~- (25) 

Equation (22) therefore collapses into 

M =M 0 +M 1J(J + 1) +M2 Y + M 3 [1(1 + 1)- {Y"]. (26) 

a result conjectured by Giirsey and Radicati. 1 

Mass relationships based ·on this formula are 
satisfied to great accuracy. One now has an ex­
planation for the empirically known fact that the 
mass formula for the baryon octet can be used 
with the same coefficients for the resonance de­
cuplet in broken SU(3 ). 

7. For the 35-dimensional representation, 
Eq. (22) must be used with care since there is 
no analog of the identity (23) and hence the mass 
operator is not~ priori diagonal in either the P 
or the U chains. Only the w and q> states, how ­
ever , are affected. 

Let wu, 'flU be eigenstates of operators in the 
U chain, and wp , 'flp of those of the P chain. They 
are related through the equations 

wu = (i)""wp + q)"''Pp• 

'flu= -(~)"'wp + (~)"''l'p· 

(27) 

(28) 

Since the bulk of the mass operator is diagonal 
in the U chain, it is convenient to start with wu 
and 'flu as the basis and subsequently carry out 
the diagonalization of the mass matrix. The new 
eigenvectors are the physical w and q>. 

By a straightiorward evaluation of the quantum 
numbers that occur in Eq. (22) (see Table I), we 
can write down the squares of meson masses" 
in terms of a, b, c, d . e ,/ and obtain sum rules by 
elimination. For pseudoscalar mesons one re­
covers the usual sum rule [meson label= (meson 
mass)2

) 

4K-1f =31). (29) 

No other sum rules are possible since our origi­
nal formula was much too general. 

If we drop the contribution of Mu891 <
81

, we get 
the constraint/ =g. One extra sum rule is now 
obtained, to wit, 

W'{J = ~(11 +K*-K)(3K*-p +K -11) 

-~(4K*-p)(5K*-p + 11-K -2w-2cp ). (30) 

Table I. Quantu~ numbers of mesons and baryons. 
Center dots mean not an eigenstate." 

Particle N s J c,<sl c,"' 

I 0 6 8 
p 1 0 6 
wu 0 0 
wp 0 6 
I) 0 0 0 0 6 0 
K 1/2 1/2 1/2 0 6 15/ 4 
K* 1/Z 1/2 1/2 6 15/ 4 
K 1/2 1/2 1/2 0 6 15/4 
K• 1/2 1/2 1/2 6 15/4 

'~'u 0 0 0 

'i'p 0 1 0 
N 1/2 1/2 1/'~ 63/4 
N* 3/2 3/2 0 3/2 12 63/4 
L 1 1/2 1/ 2 9 
A 0 1/2 1/2 6 9 
y,• 1 1/ 2 3/2 12 9 
a 1/2 1/2 1/2 6 15/4 
:::• 1/ 2 1/ 2 1 3/2 12 15/4 
n 0 0 3/2 3/2 12 0 

With the present mass values Eq. (30 ) appears 
to be obeyed quite well. We are thus led to con­
jecture that the 189-octet contribution is indeed 
absent. It is important to state, however , that 
no fur ther contributions can be dropped without 
r unning into serious contradiction with physical 
reality . 

8. The mass operator,10 we are led to propose , 
is therefore 

M = a+ bC2 <3l +CJ(J + 1)+dY 

+e(2S(S+ 1)-C/41 + {Y1
] 

+/[1(1 + 1 )-{Y" + N(N + 1)-S(ST 1)). (31) 

Applications of this formu la to the 70-dimen­
sional representation will be the subject of a 
forthcoming communication. 

If one uses Eq. (31 ) to define the meson centra.! 
mass and Eq. (26) to define the baryon central 
mass, one obtains -610 MeV and -970 MeV, re­
spectively. Equation (9) of refe•ence 3 now gives 
g ps 2/ 41f - 13, a gratifying result. 

We are deeply ir.:lebted to Profellsor A. Pais 
for his interest and enthusiastic encouragement. 
Many conversations with Profecsor F. J. Dyson 
are gratefully acknowledged. One of us (V.S.) 
wishes to thank Professor J. R. Oppenheimer 
for hospitality at the Institute for Advanced Study. 
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1. In a previous note,' hereafter called I, we 
proposed an expression for the mass operator 
responsible for lifting the degeneracies of spin­
unitary spin supermultiplets [Eq . (31)-I]. The 
purpose of the present note is to apply this ex­
pression to the 70-dimensional r epresentation of 

SU(6). 
The importance o! the 70-dimensional rep r esen-

tation has already been underlined by Pais.' 

Since 

35 ~~ ~ .s~ ;'!_Q .t 700 :!J ll 34, 
(1) 

1t foliows that ?0 lS the natural candidate fo r ac­
..:ommodattng the higher meson-baryon r eso-
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nances. Furthermo r e, s ince the SU(3) ®SU (2) 
content is 

70 = (.!_, ~) + (~. ~) • (10, ~) + (~. _!) , (2) 

we may assume that partial occupancy of the 70 
representation has already been established 
through the so-called y octet2 (~)-. Recent ex­
periments appear to indicate that some (~)­
states may also be at hand. ' With six m;ss es a t 
one ' s disposal, our formulas can predi ct the 
mas s es of all the other occupants of 70 a nd also 
provide a consistency check on the input. Our 
discussion of the 70 r epres entation thus appears 
to be of immediate physical interest. 
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The question of nu me r ical predictions cannot 
be prope r ly treated without a critical analysis of 
the available expe rimental input. Such an analy­
sis, howeve r , is outs ide the proper province of 
this note.' 

2. The first problem at hand is the cons truc­
tion of basis tensors of the 70- di mensiona l r ep­
resentat it•n and identification of the I , Y , J values 
a ssoc ia ted with each component . The s imples t 
procedure is to start with the r educible r ep r esen­
tation ~~~ = 20 (!) 70 and r emove the completely 
antisymmetric pa rt. Alte rna tive ly one can start 
with _?_! ~~ = 56 4 70 and r emove the comple te ly 
symmetr ic part. 

3. The J ~ ~ tensors are pure unde r SU(3) . For 
the J = ~ tensor s the SU (3) r eduction is ac com ­
plished by separating out the par t complete ly 
symmetric in SU (3) indices (decuplet ), the par t 
complet ely ant isymmetri c (singlet ), and the pa r t 
with "m ixed symmetry" (oc tet ). By taking ap­
propriate linear combina tions one can then wr ite 
down all the eigens ta tes of the P chain. If SU(3) 
r epr esentations a r e labe led by the us ua l ( />, q) , 
then 

C/3) " ~ ( P 2 + q 2 +/Jq + 3/> + 3q ). (3) 

4. Next one takes li near combinat ions of s tates 
in the P chain in or der to obta in eigenstates of 
N and 5. Slates wh ich s hare the same values of 
Y and S can be co mbined into one o r mor e sets , 
each s e t providing a basis for an ir r educ ible 
r eprese nta tion of SU(4). These r ep r esentations 
ca n be r educed with r espect to SU (2)1X> SU(2),v ; 
this r eduction , in fa ct , provides a powerfu l 
che<' k on the SU(4 ) assignments and the Wigner 
nu mbers• characte rizing SU(4) r epresenta tions. 
If the Wigne r numbe r s a r e de noted by (Q, Q' , Q" ), 
then 

c, '" = Q' + 4(1 + (,! ' 2 + 21/' + I,J " 2
• (4) 

5. Our nota tion fo r parti cle s ta tes which are 
eigens ta tes of oper ator s in the P chain is as 
fo l lows•: 

l_! , 3): i\p '• (5) 

<~. 3 l : N, i: P , ;; P ' ~P; (6) 

(10, 3J: R • , r P· ' ~P· , i'l ; (7) 

(!!, 4) : N , 2: , i\ , E , 
- - y y y y 

(B) 
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For the eigens tates in the U chain, we have' 

(l , O; LLtJ: N ,NJi •; 
y 

(0 , j-; 1, 1, 1): Ey or £ U, i\ u ' ; 

(0, !-; 1, 0, 0): i\Y or Au, Y u •; 

(-l,O; LL~l: 2u; 

, l l ) · -:: • or ::: ; (- 1, 1; t• ~ · ~ · -u y 

(- 2,!; o,o,o>: n. 
Here the numbers in parentheses are (Y , 5; Q, 
Q' , Q" ) and "A or B" implies that A and B a r e 
states distinguished by J spin but totally identical 
with r espect to U(l)~SU(2 ls~SU(4) . 

Recoupling for mulas, r e lating states in the 
two chains, are all of the fo r m 

= , u~ (u,) (l/l2-l/12)(P') 
U 2 1/12 1/12 P2 

where U 1 = Au'~ i u~ and ~U c:_orrespond , r espec­
tively , to U,= Au, Yu*• and Eu* · Similarly, we 
obtain the correspondences between P 1 and P2 

fro m the foregoing by changing the subscripts . 
6. We have tabulated, in Table I, the quantum 

numbers associated with the states listed above . 
In order to use this table it is conve nient , as In 
I, to start with the U chain as the basis and dlag· 
onalize the mass operator. One obta ins in this 
way the masses of the real particles as well as 
the corresponding eigenve ctor s . 

7. We obta in the following s even "sum " r ules,' 
four additive and three multiplica tive, connectin& 
the 13 masses which occur in the 70-dimensional 
representation of SU(6) (notation: partic le labe l 
=particle mass): 

31\ + E = 2(N + 2 ), 
r Y . r r 

4(Y * +f. l-2 (N• +R +'=' *+'=' l R R - R - R 

= 6(,V• -N)-3(Y • + t -ii. -A ' ) 
R R R R ' 

2(\1 - ,\ • ) ' 3 (~R • +:~:R-Y R •- t.R ), 

2(11-N• ) = 3(1: + A )-6N , 
y y y 

(16) 

Vn i.I •M I: 1.\ . Nt : MHEM l (l PH YS I C AL REV I EW L E T TE R S 

SU(6) AND ELE CTROMAGNETIC INTERACTIONS 

M. A. B. Beg 
The Rocke felle r In s titute . N<·w Yo rk , ~"" Yo rk 

a nd 

B. W. Lee • 
Ins ti tute for Advanced Study, Princeton, Ne w J~rsey 

and 

A. Pais 
The Rockefelle r Institute, New Yo rk , New Yor k 

(Received 23 Se ptembcr 1964) 

1. The purpose of this note is to dis cuss s om e 
pr oper ties of the e lectromagnetic vertex of bary­
ons under the as s umption that the e ffective e lec ­
tromagnetic current assoc iated with the s trongly 
interacting partic les transforms according to the 
adjoint representation of the gr oup1- 3 SU(6). In 
pa rticular we show that, in the limit whe r e SU(6) 
is broken by e lectromagnetis m only, all of the 
following quantities can be expr essed uniquely in 
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1. The purpose of this note is to discuss some 
properties of the electromagnetic vertex of bary­
ons under the assumption that the effective elec­
tromagnetic current associated with the strongly 
Interacting particles transforms according to the 
adjoint representation of the group•-> SU(6). In 
particular we show that , in the limit where SU(6) 
Is broken by electromagnetism only, all of the 
following quantities can be expressed uniquely in 

1113 

terms of the proton magnetic moment IJ.(P): 
(a) the magnetic moments of a il baryon octet 
members, (b) those of the spin- ~ decuplet , (c) all 
allowed transition moments between octet and 
decuplet. We recall1• 2 that the octet and the de­
cuplet are united in the 56-dimensional represen­
tation of SU(6) and that ~·® 56 contains 35 only 
once. All our results about baryons stem from 
this single occurrence of 35. 
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In a pure SU(3) treatment it is customary to 
define the charge operator Q as follows: 

Q = (F ,+F .J/3). 

The magnet1c moment operator is 

M =IJ.oQ'j . 

j is the appropnate spin matrix (j = o/ 2 for 

(1) 

(2) 

spin l-l, IJ.o is a scale facto r . Q' is an operator 
with the same SU(3) transformation prope rties 
as Q. The quantity commonly called the magnet­
ic moment is the matrix element of M, between 
states of highest J,. The (diagonal) magnetic 
moments within any given SU(3) multiplet are 
given by• 

IJ. =bQ +c[U(U ~ 0-tQ'- ~c,m], (3) 

U being the usual U spin.' The embedding of 
SU(3)~SU(2) in SU(6) removes the D / F arbitrari­
ness reflected in Eq. (3) and gives the unique re­
lations mentioned earlier . We next state our re­
sults: 

(a) Baryon octet.- We find 

IJ. 1 =i[(tQd) ' -U(U +1l)!J.(p). (4) 

Beyond the SU(3) relations, first tabulated by 
Coleman and Glashow,• Eq. (4) gives the addition- • 
al SU(6) relation 

13 = liC,d/ii(Pl = -L (5) 

in remarkable agreement with the experimental 
ratio "-0.684. 

(b) The spin-! decuplet.- As U = 1-Q/ 2, SU(3) 
predicts that IJ. 10 = const x Q. More specifically 
we find from SU\6) that 

lito=Q!J.(P). (6) 

Thus, for example, IJ.(n) = -~J.(P). 
(c) Decuplet-octet transitions.- We denote the 

amplitude of the M1 transitions by(n'J'M'IIJ.InJM ), 
where n' and n are particle labels. In this nota­
tion (PHI!iiPH )=ii(P). For the decuplet- octet 
transitions J = ~, J' = l, and it is sufficient to 
quote the results for M = ~ and M' = ~. Amplitudes 
for other M and M' can be obtained by elementa­
r y SU(2) rotations. In the following it is there­
for e understood that ,!= i, M = L J ' =M' = t. and 
the rxplicit dependence need not be exhibited. 

Note that SU(3) alone gives the fo llowing rela­
tionships for transitions allowed by conservation 
of charge a nd hypercharge7 : 

(PI!J.IN + *) = -(:!:+IIJ.I Y + *) = C,ti~J.IN 0 * ) = 2(1: 0 11J.I Y 0 *) 

= ~ ..f3(A I!iiY 0* )=(:=: 0 11J.I:=: 0 * ), (7) 
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(:!: _ IIJ.I L *)=(:O:_IIJ.I:=:_•)= O. (8) 

SU(6) now gives the additional r e lation 

( PI~J. IN+ • ) =i.J21i(P) . (9) 

This is in qualitative agreement with the esti­
mates of Gourdin and Salin8 who obtain (P IIJ.I N + • ) 
:;,. 1.6 x (2./2/ 3)1J. (p) from a study of y + p- rr +N 
near the 33 r esonance. 

2. Derivations . - For given momentum q, the 
states of the 56-dimensional representation of 
SU(6lq are described by the completely symmet­
ric tensor Ba{3y (q) , a , {3 , y = 1, 2, . · ·, 6. This ten­
sor is reducible under the group SU(3)®SU(2lg. 
the explicit reduction• in the rest frame (q = 0) 
being 

8 a f3 y (O) = 8 a {3y = X (ijk)d(ABC ) 

1 [(2 ij k ik i) ABDb C 
+3Tz € X +C X € D 

+(fij/ + 2£jk/)£BCDb A), 
fj 

(10) 

i,j,k=1,2; A,B,C,D = 1, 2,3. Here Eij and eABC 

are the Levi-Civita symbols in two and three 
dimensions, respectG,ve~y. xi is a (normalized) 
Pauli spinor . The x t) k are the spin-~ wave 
functions .' 0 b 8 A is the usual baryon oc tet ten­
sor," d(ABC) is the SU(3)-decuplet tensor." 

Our assumption is that the charge operator 
transforms like an (!!, _!) member of a 35 repre­
sentation, and the magnetic moment operator 
transforms like an (8, 3) member of a 35 repre­
sentation'' (we do not assume that the same 35 
representation appears in both cases). Unde7 
these assumptions, the effective, low-frequency 
limit of the electromagnetic vertex of the baryons 
may be written as 13 

3 + a {3o [ k ( ) · ~ _ -) k] C 
Ba{3y 8 ecp6

1 
+IJ. P · z,a·qX£ 1 QD ; 

r = (k, C), 8 = (I,D), (11) 

o,vh.ere cp is an electrostatic potential and € a 
:polarization vector .lq. Expanding the coefficient 
of cp in terms of partic le states we get the re­
spective charges d the particles, while the mag­
netic term yields the results quoted in Eqs. (4)­
(9).'• 

3. Remarks.- (a) A more general definition of 
Q has been propos ed" which would lead to the 
addition on the right-hand side of Eq. (3) of a 
constant (independent of Q, U, and C2 '"). The 
inclusion of such a term would diminish the pre-
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dictive power of SU(6) and would in particular 
render {3 arbitrary [see Eq. (5)]. 

(b) It has been noted' that the subgroup SU(4)(T) 
of SU(6) gives an arbitrary mixture of Wigner 
versus Majorana forces between nucleons, while 
this mixture is unique for SU(6). This statement 
has an e lectromagnetic analog, namely, the iso­
scalar vs isovector ratio is fixed in SU(6) but 
a rbitrary in SU(4)(T), so that SU(li)(T) does not 
make any predictions for {3. However, if one as­
sumes that the effective electromagnetic current 
transforms according to the adjoint representa­
tio n of SU(4)(T), one obtains•• {3 =-I. 

(c) It has been noted in reference 3 and inde­
pendently by Sakita17 that SU(6) r e lates the struc­
ture of Pauli-type vector-meson terms to that 
of the p-wave pseudoscalar term. Sakita has 
studied an assignment where the baryon octet is 
contained in the 20-dimensional representation 
of SU(6). {3 is unique also for this choice and we 
find {3 = -2 in this case. This may serve as a 
fu rther indication that the ~ representation is 
pr<:!ferable . 

(d) All our results can also be obtained by the 
method of vector addition of magnetic moments,18 

by regarding the baryons as composite struc­
tures built up out of spin-! quarks19 with compos­
ite wave functions dictated by SU(6). This meth­
od can of course be applied to other SU(6) repre­
sentations as well. In this way one easily shows 
that SU(6) yields a new relation for the 35 meson 
representation, namely 1J. (p+) = 3(rr +• 0, OIIJ.i p., 
1, 0). We hasten to add that this remark is not 
meant to shed light on the existence of quarks. 

4. Finally, we discuss some-implications of 
our results from the point of view of a local 
Lagrangian field theory. It should be stressed 
that the conclusions obtained so far have come 
fro m an analysis of an effective vertex14 under 
the assumption that this vertex has prescribed 
SU(6) properties. Likewise the results found in 
refe rence 3 referred exclusively to an SU(6)­
invariant effective strong-interaction vertex. 
However, in the present electromagnetic case 
we are in the unique position to be able to com­
pare a specilic numerical prediction of the SU(6) 
theo ry with an equally specific answer of local 
field theory. Loosely speaking, the situation is 
the following: According to Eq. (5), {3 = -i. This 
comfortable value for {3 is a pure number, inde­
pendent of any coupling constants. In field theory 
we have been a ccustomed for many years to say, 
"In the limit where the strong interactions are 
'turned off,' we should have !J.{n) =0, !J.(P) = 1, 

12 1 
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dictive power of SU(6) and would in particular 
render /3 arbitrary (see Eq. (5)). 

(b) It has been noted3 that the subgroup SU(4)(T) 
of SU(6) gives an arbitrary mixture of Wigner 
versus Majorana forces between nucleons, while 
this mixture is unique for SU(6). This statement 
has an electromagnetic analog, namely, the !so­
scalar vs isovector ratio is fixed in SU(6) but 
arbitrary in SU(4)(T), so that SU(li)(T) does not 
make any predictions for /3 . However, if one as­
sumes that the effective electromagnetic current 
transforms according to the adjoint representa­
tion of SU(4)(T), one obtains16 /3 = -1. 

(c) It has been noted in reference 3 and inde­
pendently by Sakita17 that SU(6) relates the struc­
ture of Pauli-type vector-meson terms to that 
of the p-wave pseudoscalar term. Sakita has 
studied an assignment where the baryon octet is 
contained in the 20-dimensional representation 
of SU(6). /3 is unique also for this choice and we 
find /3 = -2 in this case. This may serve as a 
further indication that the ~ representation is 
pr':'ferable . 

(d) All our results can also be obtained by the 
method of vector addition of magnetic moments,'• 
by regarding the baryons as composite struc­
tures built up out of spin-t quarks10 with compos­
ite wave functions dictated by SU(6). This meth­
od can of course be applied to other SU(6) repre­
sentations as well. In this way one easily shows 
that SU(6) yields a new relation for the 35 meson 
representation, namely li(P+) = 3(" +• 0, Olii lp+, 
1, 0). We hasten to add that this remark is not 
meant to shed light on the existence of quarks. 

4. Finally, we discuss some-implications of 
our results from the point of view of a local 
Lagrangian field theory. It should be stressed 
that the conclusions obtained so far have come 
from an analysis of an effective vertex14 under 
the assumption that this vertex has prescribed 
SU(6) properties. Likewise the results found in 
reference 3 referred exclusively to an SU(6)­
invariant effective strong-interaction vertex. 
However, in the present electromagnetic case 
we are in the unique position to be able to com­
pare a specific numerical prediction of the SU(6) 
theory with an equally specific answer of local 
field theory. Loosely speaking, the situation is 
the following: According to Eq. (5), /3 = -i· This 
comfortable value for /3 is a pure number, inde­
pendent of any coupling constants. In field theory 
we have been accustomed for many years to say, 
"In the limit where the strong interactions are 
·turmid off,' we should have ii(ll) = O, li(P)=l, 
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hence /3 = 0; or, conversely, the 'anomalous' mag­
netic moments of nucleons come about by 'turn­
ing on• the strong interactions." Thus we arrive 
at a paradox which comforts while it mocks: We 
cannot assume both that the SU(6) group is valid 
and that local field theory with minimal electro­
magnetic interactions applies to nucleons. 

We shall next attempt to state this imcompati­
bility in more precise terms. Let us consider 
the following set of assumptions: (I) Strong and 
electromagnetic effects are derivable from a 
Lagrangian .C = .C0 + .C(g) + .C(e) . Here .C0 is the 
free Lagrangian, .C(g) symbolizes all strong­
interaction terms, and .C(e) stands for the elec­
tromagnetic terms . .C0 , .C(g), and .C(e) contain 
explicitly the local nucleon fields. (II) .C(e) is 
minimal, that is, it contains no derivatives of the 
electromagnetic potentials, while also the SU(3) 
trace of the charge operator shall vanish (Q =F, 
+F .J/3). (III) .C0 + .C(g) is invariant under a 
group which contains SU(6) as a subgrour. As 
SU(6) is a linear group, this means in particular 
that .C0 and .C(g) are separately SU(6)-invariant. 
Furthermore, .C(e) shall have the definite SU(6) 
properties assumed above for the effective elec­
tromagnetic vertex. (IV) It is possible to calcu­
late in such a theory the magnetic moment of the 
neutron, which we denote by ii11 (e, g), and like­
wise for other particles. Moreover, ii 11 (e, 0) 
exists and is identical with the neutron magnetic 
moment calculated from .C = .C0 + .C(e ); likewise 
for the proton. We conclude that the assumptions 
(I) to (IV) are Incompatible. 

We are now faced with two connected questions. 
First, one should prove this statement in a di­
rect fashion rather than having recourse to the 
numerical result for /3. Second, If one believes 
(as we do) that the results obtained with the 
SU(6) assumptions are not a series of numerical 
coincidences, one will have to revise some of 
the assumptions (I) to (IV) and the question Is 
which ones. These questions will be studied 
further. 

One of the authors (B .W. L.) wishes to thank 
Professor J. R. Oppenheimer for his hospitality 
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If we assume that the strong Interactions of bary­
ons and mesons are correctly described In terms of 
the broken "eightfold way" 1-3), we are tempted to 
look for some fWldamental explanation of the situa­
tion. A higilly promised approach is the purely dy­
namical "bootstrap" model for ·all the strongly In­
teracting particles within which one may try to de­
rive isotopic spin and strangeness conservation and 
broken eightfold symmetry from self-consistency 
alone 4). Of course, with only strong Interactions, 
the orientation of the asymmetry In the Wlitary 
space cannot be specified; one hopes that In some 
way the selection of specific components of the F­
spln by electromagnetism and the weak Interactions 
determines the choice of isotopic spin and hyper­
charge directions. 

Even if we consider the scattering amplitudes of 
strongly Interacting particles on the mass shell only 
and treat the matrix elements of the weak, electro­
magnetic, and gravitational interactions by means 
of dispersion theory, there are still meaningful and 
important questions regarciinf the algebraic proper­
ties of these Interactions that have so far been dis­
cussed only by abstracting the properties from a 
formal field theory model based on fundamental 
entities 3) from which the baryons and mesons are 
built up. 

If these entities were octets, we might expect the 
Wlderlying symmetry group to be SU(8) instead of 
SU(3); it is therefore tempting to try to use unitary 
triplets as fundamental objects. A unitary triplet t 
consists of an isotopic singlet s of electric charge z 
(In units of e) and an isotopic doublet (u, d) with 
charges z+1 and z respectively. The anti-triplett 
has, of course, the opposite signs of the charges. 
Complete symmetry among the members of the 
triplet gives the exact eightfold way, while a mass 
difference, for example, between the isotopic dou­
blet and singlet gives the first-order violation. 

For any value of z and of triplet spin, we cah 
construct baryon octets from a basic neutral baryon 
singlet b by taking combinations (btl), (bttH), 
etc. **. From (btl), we get the representations 1 
and 8, while from (bttH) we get 1, 8, 10, iO, and 
27. In a similar way, meson singlets and octets can 
be made out of (tt) , (ttH), etc. The quantum num-

ber nt - n£ would be zer• 
mesons. The most Inter 
model is one In which til 
z = -1, so that the four 
exhibit a parallel with t1 

A simpler and more 
constructed if we allow 
charges. We can d!spen 
baryon b if we assign tc 
properties: spin ~, z = 
We then refer to the me 
the triplet as "quarks" 
anti-triplet as anti- qll3.l 
constructed from quark 
(q q q) , (q q q q q), etc. • 
of (q q) , (q q q q), etc. l 
baryon configuration (q 
tations 1, 8, and 10 tlul 
the lowest meson conflj 
just 1 and 8. 

A formal mathematl 
theory can be built up l 
p, n, A In the old Sakat 
with all strong Interact 
vector meson field lntE 
the three particles. W: 
electromagnetic curre1 

i{tuya u-! 
or ~a a + §8a / J3 In tl: 
weak c=ent, we can 
model the form suggef 
namely i Pya {1 + Y5)(n 
In the quark scheme tl 

i u Ya(1 + Y5 

• Work suppcrted In J>8 
Commission. 

•• This Is similar to th• 
ref. 5) . 

••• ll"he parallel with i ii. 

123 

Is obvious. L!k...,ise 
and b0 discussed abc 
rent to be i (b0 cos 9 
+ l(u° COS 8 - J;O Sin 

A(r-t- nl) = 0 is just I 
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If we assume that the strong interactions of bary­
ons and mesons are correctly described in terms of 
the broken "eightfold way" 1-3), we are tempted to 
look for some fundamental explanation of the situa­
tion. A h!gllly promised approach is the purely dy­
namical "bootstrap" model for ·all the strongly in­
teracting particles within which one may try to de­
rive isotopic spin and strangeness conservation and 
broken eightfold symmetry from self-consistency 
alone 4). Of course, with only strong interactions, 
the orientation of the asymmetry in the unitary 
space cannot be specified; one hopes that in some 
way the selection of specific components of the F­
spin by electromagnetism and the weak interactions 
determines the choice of isotopic spin and hyper­
charge directions. 

Even if we consider the scattering amplitudes of 
strongly interacting particles on the mass shell only 
and treat the matrix elements of the weak, electro­
magnetic, and gravitational interactions by means 
of dispersion theory, there are still meaningful and 
important questions regar~ the algebraic proper­
ties of these interactions that have so far been dis­
cussed only by abstracting the properties from a 
formal field theory model based on fundamental 
entities 3) from which the baryons and mesons are 
built up. 

If these entities were octets, we might expect the 
underlying symmetry group to be SU(S) instead of 
SU(3); it is therefore tempting to try to use unitary 
triplets as fundamental objects. A unitary triplet t 
consists of an isotopic singlet s of electric charge z 
(in units of e) and an isotopic doublet (u, d) with 
charges z+l and z respectively. The anti-triplett 
has, of course, the opposite signs 'Of the charges. 
Complete symmetry among the members of the 
triplet gives the exact eightfold way, while a mass 
difference, for example, between the isotopic dou­
blet and singlet gives the first-order violation. 

For any value of z and of triplet spin, we cah 
construct baryon octets from a basic neutral baryon 
singlet b by taking combinations (btl) , (bttH), 
etc. **. From (btl), we get the representations 1 
and 8, while from (bttH) we get 1, 8, 10, iO, and 
27. In a similar way, meson singlets and octets can 
be made out of (tt), (ttH), etc. The quantum num-

ber nt - n£ would be zero for all known baryons and 
mesons. The most interesting example of such a 
model is one in which the triplet has spin ! and 
z = -1, so that the four particles d-, s- , u0 and b0 

exhibit a parallel with the leptons. 
A simpler and more elegant scheme can be 

constructed if we allow non- integral values for the 
charges. We can dispense entirely with the basic 
baryon b if we assign to the triplet t the following 
properties: spin ! , z = -t, and 'iarYqt number J 
We then refer to the members u •, d-3, and s-3 of 
the triplet as "quarks" 6) q and the members of the 
anti-triplet as anti-quarks q. Baryons can now be 
constructed from quarks by using the combinations 
(qqq), (qqqqQ), etc., while mesons are made out 
of (q q), (q q q q) , etc. It is assuming that the lowest 
baryon configuration (q q q) gives just the represen­
tations 1, 8, and 10 that have been observed, while 
the lowest meson configuration (qii) similarly gives 
just 1 and 8. 

A formal mathematical model based on field 
theory can be built up for the quarks exactly as for 
p, n, A in the old Sakata model, for example 3) 
with all strong interactions ascribed to a neutral 
vector meson field interacting symmetrically with 
the three particles. Within such a framework, the 
electromagnetic current (in units of e) is just 

i{i u Ya u- t a Ya d- 't B Ya s} 

or Faa + .Faa I J3 in the notation of ref. 3). For the 
weak CU1lrent , we can take over from the Sakata 
model the form suggested by Gell-Mann and Lj!vy7), 
namely i p y a(l + Ys)(n cos 9 + A sin 9)* which gives 
in the quark scheme the expression ** 

iii Ya(l + Y5)(d cos 9 + s sin 9) 

• Work suppcrted in part by the U. S. Atomic Energy 
Commiss ion. 

•• This is similar to the treatment in ref. 1) . See also 
ref. 5). 

••• lfhe par allel with i ;;11 yll(1 + Ys) c and l iil" Yll(1 + Ys)l' 
Is obvious . Lik...,ise , in the model with d-, s-, u0 , 

and b0 discussed above~ we would take the weak cur­
rent to be i(b0 cos 9 + uo sin 9) Yo.(l + Ys) s-
+ l(u0 cos 9 - o0 sin 9) Yll( l + YS) d- . The part with 
6(nt - nt) = 0 Is just i iiO Yll(l + YS) (d- cos 9 + s- Sin 9) . 
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or, in the notation of ref. 3), 

5 5 
(~a + ~a + I (.1'2a + .1'2;/J COB 9 

+[~a+ ·~!+ i (~a + JS!>J sin 9 . 

We thus obtain all the features of Cabibbo' s picture 8) 
of the weak current, namely the rules I <~.I I = 1, 
LI.Y=Oand IMI =t, t..Y/LI.Q=+1, the conserved 
<1. Y = 0 curr ent with coefficient cos 9, the vector 
current in general as a component of the current of 
the F-spin, and the axial vector current transform­
Ing under SU(3) as the same component of another 
octet. Furthermore, we have 3) the equal-time 
commutation rules for the fourth components of the 
currents: 

5 5 
[ .Fj4(x) ± .Fj4(x), ~4(x') t ~4(x')) = 

5 
- 2/jkl [ ~4(x) ± Ji'l4(x)] o(x-x') ' 

[.Fj4(x) ± J'~(x) , .F_w(x') 'F .F_,!"'')) = 0, 

i = 1, ... 8, yielding the group SU(3) X SU(3) . We 
can also look at the behaviour of the energy density 
844(x) (in the gravitational interaction) under equal­
time commutation with the operators .Fj4(x') ±.Fj45(x•) . 
That part which is non-invariant under the group 
will transform like particular representations of 
SU(3) x SU(3), for example like (3, 3) and (3, 3} if it 
comes just from the masses of the quarks. 

All these relations can now be abstracted from 
the field theory model and used in a dispersion the­
ory treatment. The scattering amplitudes for strong­
ly interacting particles on the mass shell are as­
sumed known ; there is then a system of linear dis­
persion relations for the matrix elements of the 
weak currents (and also the electromagnetic and 
gravitational interactions) to lowest order in these 
interactions. These dispersion relations, unsub­
tracted and supplemented by the non-linear com­
mutation rules abstracted from the field theory, 
may be powerful enough to determine all the matrix 
elements of the weak currents, Including the effec­
tive strengths of the axial vector current matrix 
elements compared with those of the vector current. 

n Is fun to speculate about the way quarks would 
behave If they were physical particles of finite mass 

(instead of purely mathematical entities as they 
would be in the limit of infinite mass). Since charge 
and baryon number are e~ctly cpnserved, one of 
the quarks (presumably m or d- 3) would be abso­
lutely stable *, while the other member of the dou­
blet would go into the first member very slowly by 
13-decay or K-capture. The isotopic singlet quark 
would presumably decay into the doublet by weak 
interactions, much as A goes Into N. Ordinary 
matter near the earth's surface would be conta­
minated by stable quarks as a result of high energy 
cosmic ray events throughout the earth's history, 
but the contamination is estimated to be so small 
that it would never have been detec ted. A search 
for stable quarks of charge - t or +t and/or stable 
rH-quarks of charge -f or +t or +t at the highest 
~nergy a ccelerators would help to reassure us of 
the non-exis tence of r eal quarks. 

These ideas were developed during a visit to 
Columbia University in March 1963; the author 
would like to thank Professor Robert Serber for 
stimulating them . 
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• There Is the alternative poss ibil ity that the quarks are 
unstable under decay Into baryon plus anti-di-quark or 
anti-baryon plus quadrl-quark. 1n any case , some par ­
ticle of fr actional charge would have to be absolutely 
stable. 
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Abstract 

We review, modify slightly, generalize, and attempt to apply a tho 
a higher broken symmetry than the eightfold way . The integrals of the 
vector and axial vector current octets are assumed to generate, under 
lion, the algebra of SU(3) x SU(3). The energy density of the s trong 
sumed to consist of a piece invariant under the algebra, a piece that ' 
of the axial vector clli'Tents only and belongs to the repres entation (3, 
a piece that violates the eightfold way and probably belongs to (1, 8) 
the algebraic structure is exactly correct, there is still the ques tion c 
11ign particles approx.imtJtely to super-supermultiplets. The pseudosc• 
gether with a pseudoscalar singlet, a scalar octet, and a scalar s intll• 
(3, 3*) and (3*, 3). The vector meson octet , together with an ax ial ve 
to (1, 8) and (8, 1). The baryon octet with J = 112+, together with a 
IMY belong to (3, 3*) snd (3*, 3), as s!J4gested before. Several crude 
mass rules emerge, to zeroth or first order in the symmetry violations. 
a~reement with experiment, but certain pre,dictions, like that of the e.x 
octet, have not been verified. Whether or not they sre useful ss an a~ 
the equal t ime commutation rules liz the scale of the weak interactioo 
F11ther rules of this kind are found to hold in certain Lagrangian l ie lc 
mtJy be true in reality. In particular, we encounter an algebraic syste ; 
that re lates qusntities with different kinds of behavior under Lorentz 1 

I. Introduct ion 

THE " e ightfold way" theory of a broken higher symmetry for strong inte raction 
time when the value of a badly violated symmetry was unclear for two reas ons : 

(1) It was not obvious what real significance could be essigned to the alg• 
symmetry . 

(2) It was not known whether the particle spectrum would show unmis taka 
aymmetry, 

A solution was offered to the first problem when we pointed out [3] that th 
I ALl z 1/2, !!..Y /!!..Q = + 1, and 14£1 = 1, !!..Y = 0 generate an algebraic syste• 
mutation relations of their time-ccmponents and that this algebra is preserved 
of the stranaeness-changing currents is violated. We assumed that the alaebra 
no matter bow badly the eightfold way is broken, the vector current octet Is the 
(This result was a simple generalization of the conserved vector current hypo 

*Work aupportecl Ill part by the U. S. Atomic EnelliY Commlsalon. 
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Abstract 

We review, modify slightly, generalize, and attempt to apply a theory proposed earlier of 
a higher broken symmetry than the eightfold way. The integrals of the time components of the 
vector and axial vector current octets are assumed to generate, under equal time commuta­
tion, the algebra of SU(3) x SU(3). The energy density of the strong interactions is as­
sumed to consist of a piece invariant under the algebra, a piece that violates conservation 
of the axial vec tor currents only and belongs to the rer:resentation (3, 3*) and (3*, 3), and 
a piece that violates the eightfold way and r:robably belongs to (1, 8) and (8 , 1). Assuming 
the algebraic structure is exactly CatTect, there is still the ques tion of whether one can as­
llign particles apr:roximately to super-supermultiplets. The pseudoscalar meson octet, to­
gether with a pseudosca[ar singlet, a scalar octet, and a scalar s inglet , may belong to 
(3, 3*) and (3*, 3). The vector meson octet, together with an axial vector octet, IMY belong 
to (1, 8) and (8, 1). The baryon octet with 1 = 1/ 2+, together with a singlet with 1 = 1/ T , 
IMY belong to (3, 3*) and (3*, 3), as suggested before. Several crude coupling patterns and 
mass rules emerge, to zeroth or first order in the symmetry violations . Some are roughly in 
agreement with experiment, but certain r:re.dictions , like that of the existence of a sca lar 
octet, have not been verified. Whether or not they are useful as an apr:roximate symmetry, 
the equal time commutation rules liz the scale of the weak interaction matrix elements . 
Further rules of this kind are found to hold in certain Lagrangian fie ld theory models and 
may be true in reality. In particulsr, we encounter an algebraic system based on SU(6) 
that relstes q118nlities with different kinds of behavior under Lorentz transformations. 

I. Introduct ion 

THE " eightfold way" theory of a broken higher symmetry for strong interactions was proposed (1 , 2] at a 
time when the value of a badly violated symmetry was unclear for two reasons : 

(1) It was not obvious what real significance could be assigned to the algebraic properties of the higher 
symmetry. 

(2) It was not known whether the particle spectrum would show unmistakable evidence of the higher 
symmetry. 

A solution was offered to the first problem when we pointed out (3] that the weak vector currents with 
1~1 • 1/2, !:J.Y!!:J.Q = +1, and IALI = 1, !:J.Y ~ 0 generate an algebraic system through the equal-time com­
mutation relations of their time-components and that this algebra is preserved even though the conservation 
of the strangeness-changing currents ia violated. We assumed that the algebra in question is that of SU(3); 
no matter how badly the eightfold way ia broken, the vector current octet is then the current of the F-spin. 
(This result was a simple generalization of the conserved vector current hypothesis, that the !:J.Y = 0 vector 
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current is the current of the !-spin.) We went on to consider the equal-time commutation relations of the 
vector currents with the energy density, wh ich interacts with gravitation. The assumption of the broken 
eightfold way is that the energy density is the sum of two pieces, one of which is invariant under the F -spin, 
and the other of which transforms li ke one component (by definition, the eighth) of an octet: 

.Jt> = .Jt> lnv - C ¢1• (1) 

The second problem arose when we attempted to arrange the isotopic multiplets of strongly interacUng 
particles in supermultiplets that correspond, in order c 0

, to irreducible representations of SU(3). We then 
derived , to ze roth and fi rs t orde r in c , coupling patterns and mass rules that were to be compared with ex­
periment. We had no gua rantee , however, even if our algebraic system was the right one, that these rules 
would be sufficiently well obeyed to show traces of the higher symmetry and the manner in which it is vio­
lated. Fortunately, ample evidence is now available to support the eightfold way symmetry, together with 
the pattern of violation in equation ( 1) . In fact, the mass rules derived to first order inc are surprisingly 
accurate. 

The success of the broken ei ghtfoJ~ way, despite the large violations of symmetry involved, suggests 
that it may be worthwh ile to s tudy ;,, deta il the still higher symmetry associated with the axial vector cur­
rents . We proposed [3] that the axial vector currents with I til l = 1/2, tiY I tiO = + 1, and I til. I = 1, tiY = 0 
belong to an octet with res pect to F -spin and that the time-components of the vector and axial vector octets 
together generate , under equal t ime commutation , the algebra SU(3) x SU(3). Moreover, we suggested that 
the term .Jt> tnv in the energy de ns ity in equation (1) consists of two parts 

.Jt>lnv = .Jt> - A U 0 • (2) 

where .Jt> is inva riant under the full algebra and leaves both vector and axial vector currents conserved, 
while the te rr. · - A u0 , t ransforming like a particular pair of representations of SU(3) x SU(3), violates con· 
servation of the axial vector currents , while still commuting with the F-spin. These algebraic statements do 
not, of course, depend for their proposed validity on the smallness of the parameter A. 

We did not take altogether seriously, in ref. 3, the idea that these algebraic relations might be applied, 
like those of the eightfold way, by trying to assign particles to irreducible representations and find ing rules 
to zeroth and first order in A, to be compared with experiment. The success of the broken eightfold way, 
however, now makes it less ridiculous to see whet~er we can find traces of this even more badly broken sym­
metry. We would try tc group the s trongly interacting particle superrnultipl~ts into super-superrnultiplets , 
usually including particles of both parities, and to check by experiment very crude relations derived to low 
order in A, In Section IV we describe the most plausible scheme of this kind, and note that an octet of 
&calar mesons is required for its success. Since no such octet has been clearly established at this time , we 
must reserve judgment on whether the approximation of small A is of any use in describing the strong inter­
actions. 

It was mentioned in ref. 3 that an algebra is generated by the time-components of the vector and ax ial 
vector currents together with the s ymmetry-breaking term uo in the energy density. In Section VII we follow 
up this idea and discuss the possibility that the " extended algebra" may be rather small; we show th_at in a 
special model it is the algebra of SU(6) and suggest that such may be the case in reality. It is interesting 
that the extended algebra ties together quantities with different Lorentz tranaforrnation properties, such as 
t he scalar u0 and the four-vector currents. 

The algebra [presumably SU(3) x SU(3)] of the vector and axial vector currents and the extended algebra 
[possibly SU(6)] can be used , in the form of equal time commutation relations, to supplement dispersion rel• 
tiona in the calculation of weak current matrix elements. It may also be true that more and more informatioft 
about the strongly interacting particles can be expressed in algebraic language by repeated use of the notion 
of equal-time commutation relations . 

II . Review of the Theory 

We treat the strong interac tions exactly, and the electromagnetic, weak, and gravitati011al interactioaa ill 
lowest order. Even though we discuss the s cattering amplitudes for strongly iftteractiftg particles on the 
mass shell only (by the method of di spersion relations or " S.matrix theory") we muat atilt ack~towledge that 
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in lowest order the matrix elements of the weak and electromagnetic interactions can be 
trary mementum transfer by measurement and by analytic continuation of the measurable ' 
sumably the same is true in principle of gravitation. Thus we may deal with electromagr 
rent operators and a stress-energy-momentum tensor operator 8a.f3, all functions of a spe 
with the matrix elements for any momentum transfer k given by Fourier transform and wit 
given by commutation )!lith the space Integral of the energy density .Jt> = -844 • 

Incidentally, we notice in this way that the "S.matrix theory" of strong interaction£ 
magnetism, weak interactions, and gravitation treated as small purturbations , is just a b 
field theory, since the current operators and 8a.f3 are a ll field operators. 

The weak current may be broken up, according to quantum numbers conserved by tht 
first into a vector and an axial vector part, and !lien into pieces characterized by differe 
and tiY / liQ. We restrict our attention here to the familiar terms with I AL l = 1, tiY = 0 
tiY / L'iQ = + 1. If there are others , they may lead to bigger algebras than we have here , 
date our conclusions. 

The integrals of the time components of all these currents generate some minimal a 
equal time commutation. For those currents that are conserved, the corresponding inte@ 
charge) are constant operators ; the others vary with time. But the structure constants c 
unchanged under all conditions and correspond to a law of natu re that specifies the min 
vector and axial vector c urrents that we are study ing. 

In ref. 3, we made three assumptions ihat determine the algebra: (a) The vector we. 

electromagnetic current, is a component of the F-spin current .F1a.(x), where i = 1 . .. 
index. We have, then, 

F1(t) = -if .F14 d
3 x, 

[F1(t), F1(t)] * ii 11 .F,J.t). 

Of course , F1 , F, , and F3 are conserved by the strong interactions and are jus t the con 
topic spin; thus the .. conserved vector current hypothesis is included here . The compor 
F1 actually vary with time. (b) The axial vector weak current is the same component <> 

.F 1cl(x) that transforms like an octet with respect to F-spin. We have 

F,S(t) = -if.F,.'d3 x, 

[F1(t), F/{t)] = if 11 •F•' (t) . 

(c) The commutation rules of the operators F1
5 (1) close the algebraic system by giving 

[F,'{t), F/(t)] ~ i f,, .F.(t). 

We now define 

2 F/(t) " F1(t) ± F1
5 (t) 

and notice that F1 + and F,- are two commuting F -spins, so that we are really dealing 
SU(3) x SU(3). The two aets of operators, which we may think of as "left-handed" e 
F-spins respectively, are coMected by parity: 

PF/P- 1 ~ F/. 

The total F-apin itself is, according to equation (8), just the sum of the left- and rir 

F1 = F1+ + F,- . 
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in lowest order the matrix elements of the weak and electromagnetic interactions can be determined for arbi­
trary mementum transfer by measurement and by analytic continuation of the measurable amplitudes. Pre­
sumably the same is true in principle of gravitation. Thus we may deal with electromagnetic and weak cur­
rent operators and a stress-energy-momentum tensor operator Oa.f3, all functions of a space-time variable :r, 
with the matrix elements for any momentum transfer k given by Fourier transform and with time derivatives 
given by commutation with the space Integral of the energy density .Jf' = - ()44 • 

Incidentally, we notice in this way that the " S-matrix theory" of s trong interactions , with electro­
magnetis m, weak interactions, and gravitation treated as small purturbat ions , is just a branch of abstract 
field theory, since the current operators and Oa. f3 are all field operators . 

The weak current may be broken up, according to quantum numbers conserved by the strong interactions , 
first into a vector and an axial vector part, and tlien into pieces characterized by different values of IMI 
and !:J.Y! !:J.Q. We restrict our attention here to the familiar terms with IM I = 1, !:J.Y = 0, and I~ I = 1/2 , 
!:J.Y / !:J.Q = + 1. If there are others, they may lead to bigger algebras than we have here , but need not invali­
date our conclusions. 

The integrals of the time components of all these currents generate some minimal algebra ic system under 
equal time commutation. For those currents that are conserved , the corresponding integrals (like the e lec tri c 
charge) are cons tant operators ; the others vary with time. But the structure constants of the algebra remain 
unchanged under all conditions and correspond to a law of nature t hat spec ifies the minimal algebra of the 
vector and axial vector c urrents that we are studying. 

In re f. 3, we made three assumptions that determ ine the algebra : (a) The vector 'Geak ct:rrent, l!ke the 
elec tromagnetic c urrent, is a component of the F-s pin current ~1 ,(x ) , where i = 1 . . . 8 and a is a Loren!:<: 
index . We have, then, 

F1(t) 

Of course , F1 , F2 , and F3 are conserved by the strong interactions and are jus t the componen:s of the i~(» 
topic spin; thus. the conserved vector current hypothes is is included here . The components F4 , 1"5 , F6, and 
F7 actually vary with time. (b) The axial vector weak current is the same compone nt of another curre nt 
~ 1 ~(:r) that transforms like an octet with respect to F-spin. We have 

(c) The commutation rules of the operators F1
5(t) close the algebraic sys tem by giving 

We now define 

2F/(t) = F1( t) ± F,S (t) 

and notice that F,+ and F,- are two commuting F-spins , so that we are really dealing with the alge bra of 
SU(3) x SU(3). The two sets of operators, which we may think of as " left-handed" and "right-handed" 
F-•plns respectively , are connected by parity: 

pp,±p - • = F/' . 

The total F-spln itself is, according to equation (8), just the sum of the left- and right-handed pa: •· 

F1 = F,+ + F,- . 
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We will be concerned with ineducible repreaentatiooa of the syatem conaistin& of F/, F,-, and P. We 
indicate [3) the behavior with reapect to (F/, F1-) by a pair of repreaentatiooa, such as (.1 . 1*), {.8,, .l), 
etc. Since parity interchanges F1+ and F,-, an irreducible repreaentation with ' respect to parity and the two 
F-spins will have such forms as UL J.) or (1.1*) and (J*, .J.) or U , .l) and {.8., ~). 

If a representation of F/, F,-, and P is to contain a component invariant under F1, it must have the form 
U,l) ot 0 .1*) and (.J.*,1) or (J., J.), etc., so tl!at the product of the two indicated representations will 
contain~ . 

The simplest choice, then, for the term A uo in e quation (2), which violates the conservation ofF/ and 
F1- separately while conserving F1, is to have it belong to (.3., .J.*) aad (.J.*,1), as pooposed in ref. 3. The 
operator u0 thus belongs to ::; set of nine scalar and nine pseudoscalar quantities, in each case forming an 
octet and a singlet with respect to total F-spin. The scalar octet is labeled u 1 • •• u1 and the singlet u0 , 

while the pseudoecalar octet and ain&let are labeled v1 • •• v1 and v 0 respectively. 
To specify the transformation propertiea of the a's and v's, ~e introduce [3} a geoeralization of the 

aymbols 111 k and d11 • to U.e cue i = 0, 1, . .• 8 instead ol i = 1 .•. I!. To the 3 x 3 matrices A1 

(i = 1 ... 8) we adjoin the matrix A0 = {2/3)~ 1 and obtain the rules 

[A1, A1} = 2 i 1,1•A•, 

IA1, A11 = 2d11 • ·• •• 

(11) 

(12) 

TrA1A1 = 28 11 , (13) 

where i, j, and k run from 0 to 8. Here, 111 • vanishes when any index is ~ero, snd d11 • equals (2/3)~811 
when k is zero, etc. 

We then obtain, for the transformation properties of the u1 and v 1o the resulta [3] 

[F~o u1] = i 111 • u., 

[F1, v1} = if,,. v., 

[F1
5

, u1} = -id11•v•, 
[Fl, v1]- id11 •u•· 

We note that equations ( 4), (6), aad (7) indicate tbe representation to which the currents F 1 <) and 
T"{(z) belong, namely (1, .l) and (J., ~). with i • 1 ... 8. At equal times, we have 

[F1, -'j .. ] = i 111 • F .... 

[F~o F1 ~] = i 111 • F.~, 

(14) 

(15) 
[F1

5
, F 1 .. ] = i 111 • F.~, 

[Fl, Fk,iJ = if11• F .... 

The easential physica of the theory is CO!ltained in the equatiooa written 110 far and is taken over 
directly from ref. 3. Two more pointe need to be added, however, which ara modifications of the correspond­
in& points in the earlier article. Oae of these concerns the component ol F, .. + utilized for the weak cur­
rent, and is discussed in the ne11t aection. The other point is connected with the transformation properties 
under SV(3) x SU(3) of the term in the energy density that violates the eightfold way, namely </>a in equa­
tion (1). The simplest posaibilitiea for II unitary octet are, of COUrlle, ((.,l, _.3.*) and (.J.*, .~)} and [U, .8.) and 
(.8., ~)]. It now appears that the latter may he more nearly satisfactory than the former, o ·e .ill see in 
the next section. We had previoualy assumed not only that </>1 tranaformed • ((.J., ..3.*) and .(.,l• . .J.)], i.e., 
like u1 , but also U.at </> 1 was equal to u1 • 
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Ill. Univaraolity of the Weok lnteroctionl 

We know that the electroma&netic current of the strongly interactin& particles (or "liM 

okun's expression) is given by the formula 

ia. = e (~, .. + vi§",..} 
(A constant term may have to be added if there exiat hadrons correspondin& to certain kin 

sentations of SU(3), as discuuecl in Section VI.) 
What about the hadron weak current coupled to leptona? It must be a linear combine· 

i T , .. + with t.Y = 0 and T .: + iT 5: with t.Y I llQ = + 1, if we stick to the asaump· 
Section 11. The choice of the linear combination is motivated in part by the requirement , 
the weak ;nteractions : the algebraic propertiea of the total weak current should be the S$ 

for hadron• [4, sl. We write the effective weak interaction in the local approximation (or at least the p& 

product of charged currents) as 

G_ 1i 1<>. 
v2 

where 1 .. E 1 .. (leptons) + 1 .. (hadron&). The situation is then the followin&, as describ 
For the now obsolete cue of one neutrino for electron and muon, 1 .. (leptons) hsa tt 

ily .. (1 + y
5
)e + ily .. (1 + y5)f.' = 2Vl i/y .. Q...!..Dl (e ~f.'). 2 v2 

The "weak charge" - i J cf x 1 
4
(1eptona) evidently may be written in the form 2-/2 (K 

1 

K
2

, and - i[K 
1

, K
2

] have the commutation rule• of an angUlar momentum or an iaotopic ' 

charge and ita hermitian conjugate, for lepton&, generate the algebra of SU(2), with .!__: 

1 + Ys v appearing as the lower and upper components of a spinor. 

With distinct neutrinos for electron and muon, as in the real situation, 1 .. (leptons) 2 

il.y .. (1 + Ys)e + vl'y .. (l + Ys)l' = 2v.y .. ~e + 2vi'Ya..!_:_. 2 2 

This time the leptonic weak charge has the form 2(K1 + i K 2 ), where again K1 and K2 

ponents of an angular momentum and the algebra of SU(2) is generated. Now 

1 

+ Ys e 2 

1 + Ys 1 + Ys 
a spinor and ao do ---I' and ---vi'. 2 2 

Let ua now demand universality for the weak interactions. In the one-neutrino cae 
that the weak charge for hadron& have the form 2 v2 (K I + i K z) and in the two-neutrill 
the form 2(K

1 
+ i K

2
), where K

1 
and K2 are the first two component& of an angular mo 

weak charF for h&drons in the general form 

!l(Ft + iF/) cos()+ A(F/ + iF,+) sin(), 

we may verify that we have A (K 1 + i K2), where 
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Ill. Universality of the Weok Interactions 

We know that the electroma&netic current of the strongly interactin& particles (or "hadrons" to use 
Okun'a expression) is given by the formula 

(16) 

(A constant term may have to be added if there exiat hadrons correspondin& to certain kinds of spinor repre­
sentations of SU(3), as diacuued in Section VI.) 

What about the hadron weak current coupled to leptona? It must be a linear combination of §'1a.+ + 
i:F1a.+ with t1Y = 0 and :F4;i + i:F5~+ with t1Y/!1Q = +1, if we stick to the asaumptions (a) and (b) of 
Section 11. The choice of the linear combination is motivated in part by the raquirement of universality of 
the weak ;nteractions: the algebraic propertiea of the total weak current should be the same for leptons and 
for hadrona [4, 5]. 

We write the effective weak interaction in the local approximation (or at leaat the part coming from a 
product of charged currents) as 

G + v2 la. Ja.. 

where } a. c J a.(leptons) + I a.(hadrona). The situation is then the followin&, as described in ref. 4. 
For the now obsolete case of one neutrino for electron and muon, } a.(leptons) has the form 

(17) 

The "weak charge" - i J cr .t J .(leptona) evidently may be written in the form 2 Vl(K I + i K,), where K,, 

K2 , and -i [K1 , K2 ) have the commutation rule• of an angular momentum or an iaotopic spin. The weak 
1 + y5 e + ,.. 

charge and ita hermitian conjugate, for leptona, generate the algebra of SU(2), with --
2

- Vl and 

~ v appearing as the lower and upper components of a spinor. 
2 

With distinct neutrinos for electron and muon, as in the real situation, I a.(leptons) becomes 

- (1 ) 2 - 1 + Ys - ~ "•Ya.(1 + y 5)e + Y!'Ya. + Ys,.. = "•Ya.--
2
-e + 2v!'Ya. 

2 
,... (18) 

This time the leptonic weak charge has the form 2(K 1 + i K1 ), where a&ain K 1 and K2 are the first two com­

ponents of an angular momentum and the algebra of SU(2) ia generated. Now ¥e and 
1 ~ >'s "• form 

a spinor and ao do 1 + Ys " d 
1 

+ Ys 2 .- an --2- "~<· 

Let ua now demand universality for the weak interactions. In the one-neutrino ca~, we would require 
that the weak charge for badrons have the form 2vf(K 1 + iK 2) and in the tw~neutrino ca"e that it have 
the form 2(K 1 + iK1 ), where K 1 and K 2 are the first two componenta of an angular momenhun. Writing the 
weak charge for hadrona in the general form 

.4(Ft +iF/) cos 6 + A(F/ +iF,+) sin 6, 

we may verify that we have A (K 1 + i K1), where 
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K 1 = Ft cos8 + F/sin8, 

K, = F/ cos 8 + F,+ sin 8, 

K3 = F,+ cos ' 8 + (v[ F8+ + ~F,+) sin' 8- F/ sin 8 cos 8. 

Now from the approximate equality of vector coupling constants in the decay of the muon and the decay of 
the nucleus 0 14

, we know that A cos 8 is around 2. _ 
Clearly, then, universality in the one-neutrino case gives us A = 2 V2, 8 = 45° or 

] a.= 2(Y1a.+ + iY " + F.a.+ + i Fsa.+) 

as in ref. 3. However, for the actual case of two ne utrinos, we must take A = 2 with 8 small and have 

] a. = 2 cos q( F ,/ + i F ,a.+) + 2 sin BUT.:+ i F 5:). (19) 

In a recent paper, Cabibbo [6 ] has combined our assumptions (a) and (b) quoted in Section II with the 
choice (18) of current components suitable for universality in the two-neutrino case and has shown that such 
a theory is in reasonable agreement with present information on leptonic decays of hadrons, with 8 = 0.26. 
We may therefore adopt equation (18) with some confidence, provided experimental leptonic and hadronic weak 
interactions exhibit no further complicat ions . 
. ~ The weak charge in general thus has the form 2(K 1 + iK 2). Moreover, the electric charge in units of e 
has the genera l form K3 + K0 , where K0 commutes with K1 , K,, and K3 • The weak and electric charge 
operators, for both leptons and hadrons, thus generate the algebra of U(1) x SU(2). It is only when we take 
these charges for hadrons and break them up according to the quantum numbers conserved by the stronp inter­
actions that we get the group SU(3) x SU(3). 

IV. Crude. Results for Small .\ 

We now attempt to make use of the broken symmetry model for rough predictions about the strongly inter­
acting particles. For the most part we shall put c = 0 and forget about violations of the eightfold way, con­
centrating on axial vector current conservation and its violation. In the limit .\---..(), where all the axial 
vector currents are conserved, if the axial vector {3 -decay coupling constant is not to vanish, we mL • nave 
either vanishing baryon masses or vanishing pseudoscalar meson manes. We choose vanishing baryon 
mnsses, and thus the point of view expressed here differs from that of many authors [7). Under these condi­
tions, the "renormalization constant" for the axial vector current becomes unity in the limit .\---..(). The 
{3 -decay interaction in the zero-momentum transfer case is thus completely fixed, in the. limit \ ---..(), by the 
symmetry pattern . 

Since we are going to try assigning dominant representations to the particles, let us begin with the eight 
baryons having J = 1/ 2+. For convenience we describe them, in the limit .\---..(}, by "fields" 1/J 1 ••• ifi 1 , If 
they belonged to Cl. ..8.) and (..8., .1), then 1/11 and Ys 1/J 1 would transform under F1 and F1

5 in the same way that 
F 1a. and F 1r[ respectively transform in equation (15). In the zero momentum transfer cue, then, in the 
limit .\---..(}, we would have the following pattern for the week current T, .. +: 

-it,,.if/,yo.(l + Ys)f/1 •. 

Both the vector and axial vector currenta would be coupled through F rather than D. This seems to he far 
from the truth [6]. 

Instead, we try the other baryon representation suggested in ref. 3, namely (.3_, 1*) and (1*, 1). We then 
have to ad<! a ninth particle, described by f/1 0 • Under F1 and F,S, 1/1 1 and y 5 1/11 transform li' • u1 and i v1 in 
equation (14). The coupling pattern as A-0, for any momentum transfer, is then 

-if11 • if/1 Yo. "'• + d,,. if/, Yo. Ys "'• (20) 
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with i, j, lc = 0, 1, . .. 8. For the baryon octet, then, the vector current is coup! 
vector current through D, with equal coefficients. This situa tion resembles the 1 

mixture ofF in the axial vector pattern being of the orde r of 30%. There is a s i r 
expression (20) in the limit >.--+0, and the anomalous magne tic and induced ps< 
ish . Since the vector coupling .is through F , the neutron has no elec t rical intera• 

The interpretation of the ninth baryon depends on whether the mas s associa· 
negative. A negative mass would lead us to treat y 5 .Po as the appropriate oper: 
ticle with positive mass would have J = l/2-. Now in fi rs t order in .\ we can , 
and singlet masses, using the transformation prope rty (.J., 1*) and u•. J.) of the 
is that the mass associated with the singlet is minus twice that of the octet. Tl 
to first order in .\, a baryon with J = 1/ 2- and twice the ave rage ma ss of the b• 
If the extra baryon is identified with II (1405), the sp in anci parity assignments r 
MeV is a far cry from twice the average mass of the ba ryon octet. We should pel 
agreement, however, with an approximation that treats baryon mas s es in firs t or< 

The pseudoscalar octet should be assigned to the same representation as tl 
vector current, so that the Goldberger-Treiman relation can have some validity e 

As explained in ref. 3, we have 

= F,' = i [f;t'd'x , F,~ = A+,', ju, fd'x a a. Fta.' 

= .\dlok Jv. d
3

x = ~ >- f v 1d
3

x 

neglecting c . So the divergence of the current, in lowest order, belongs to (1. , 
the same assignment for the pseudoscalar octet, along with a pseudosc a lar s inl! 
scalar singlet. For convenience , we describe these by "fields" rr 1 and a,. i = 

and u 1 respectively. 
To order .\ 0 , these eighteen mesons all have a common mass . In order .\ , I 

following pattern: the scalar singlet has a squared ~ass equal to p.
2 

- 2 b. , the 

-;1 - 6., the scalar octet has -;1 + 6. , and the pseudoscalar singlet has -;1 + 2 
scalar singlet may be identified with a low-lying J = 0 +, I ~ 0 me sonic state • 
such states have been reported at various masses and at leas t one of the m may 
scalar octet lying higher than the pseudoscalar one and a pseudoscalar s inglet 

The matrix elements of the weak current between one of these mesons and 
tern, in the limit A-0, as for the baryons in equation (20), s ince thes e meso t 

long to the same representation: 

-il,,.c,,a .. ,. + a,a .. a.) + a, ,.(a,a .. ,. - ,,aa.a .. : 

In the limit, there is a common form factor for the whole of (22). 
If the scalar singlet meson represented by a0 (let us ca ll it a) really has " 

the K.
4 

decay K +- rr + + rr- + e + .,. v should be dominated by the chain . 
a--+ ,+ + ,-. Treating a aa stable and using the zeroth order pattern (22), 

the rates of K+ -a+ e+ + v and K+ - rr
0 

+ e + + v: 

where 

K+--+ a+ e + + v 
K + ---+ rr0 + e + + v 

8 f (mo/mx) 

3 f(m,/mx ) ' 

1({3) 1 - 8{3 2 + 24f34 lnf3 - 1 + 8{3
6

- {3' . 
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with i, j, k = 0, 1, ... 8. For the baryon octet, then, the vector current is coupled through F and the axial 
vector current through D, with equal coefficients . This situation resembles the experimental one [6), the &d­
mixture of F in the axial vector pattern being of the order of 30%. The,... is a single form factor for the whole 
expression (20) in the limit A--+0, and the anomalous magnetic and induced pseudoscalar form factors van­
ish. Since the vector coupling .is through F , the neutron has no electrical interaction in the limit. 

The interpretation of the ninth baryon depends on whether the mass associated with .Po is positive or 
negative . A negative mass would lead us to treat y5 .Po as the appropriate operator, so th&t the new par­
ticle with positive mass would have 1 = l / 2-. Now in first order in A we can compute the ratio of octet 
and singlet masses, using the transformation property (_3_,.3_*) and u• . .ll of the mass term uo . The result 
is that the mass associated with the singlet is minus twice that of the octet. Thus y 5 .Po should describe , 
to first order in A, a baryon with 1 = 1/2- and twice the average mass of the baryon octet with 1 = 1/2 +. 
If the extra baryon is identified with II (1405), the spin 3nd parity assignments may well be right but 1405 
MeV is a far cry from twice the average mass of the baryon octet. We should perhaps not expect better 
agreement, however, with an approximation that trea ts baryon masses in first order. 

The pseudoscalar octet should be assigned to the same representation as the divergence of the axial 
vector current, so that the Goldberger-Treiman relation can have some validity even to lowest order in A. 
As explained in ref. 3, we have 

(21) 

neglecting c. So the divergence of the current, in lowest order, belongs to (.3_,.3_*) and {.3_*, _,l) and we make 
the same assignment for the pseudoscalar octet, along with a p~udoscalar singlet, a scalar octet, and a 
scalar singlet. For convenience, we describe these by "fields" rr 1 and a,. i = 0, ... 8, transforming like v 1 

and u 1 respectively. 
To order A 0 , these eighteen mesons all have a common mass. In order A, they split according to the 

following pattern: the scalar singlet has a squared ;.,ass equal to p.2 
- 2 u, the pseudoscalar octet has 

;1 - tl., the scalar octet has 1 + tl., and the pseudoscalar singlet has 1 + 2 tl.. It is possible that the 
scalar singlet may be identified with a low-lying 1 = 0 +, I = 0 me sonic state decaying quickly into 2 rr; 
such states have been reported at various masses and at least one of them may exist. We then expect a 
scalar octet lying higher than the pseudoscalar one and a pseudoscalar singlet lying still higher. 

The matrix elements of the weak current between one of these mesons and another follow the same pat­
tern, in the limit r.-o, as for the baryons in equation (20), since these mesons and the nine baryons be­
long to the same representation : 

(22) 

In the limit, there is a common form factor for the whole of (22). 
If the scalar singlet meson represented by a0 (let us call it a) really has a lower mass than K +, then 

the K •• decay K + _.,. rr + + rr- + e + ... v should be dominated by the chain K + _.,. a + e + + v, 
a --+ rr + + rr-. Treating a as stable and using the zeroth orde r pattern (22), we may compute tbe ratio of 
the rates of K+ --+a+ e+ + v and K+ _.,. rr0 + e+ + v: 

where 

K+ _.,. o + e+ + v 

K + ---+ 11° + e + + v 
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(23) 
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Roughly, then, the relative rate of K + ____. ,. + + ,.- + e + + v should be pven by 2/ 3 of the expression 
(23) and the mass of the ,. + ,.-system should be clustered around mu. The experimental data [8) still do 
not permit any firm conclusions, except that the ratio calculated in (23) must be a few times 10 -• if the de­
cay through a takes place. By contrast, if the a mass is as low as 310 MeV, our rough formula lives about 
0.21, in co.nplete disagreement with observation. With a mass near 400 MeV, agreement is possible. 

The symmetry, in the limit A -+ 0, permits trilinear couplings of the scalar and pseudoscalar mesons 
to ont! another and to the nine baryons. In each case the allowed coupling pattern is formed with the sym­
bol d;1., which equals d11 • except when one index is zero and the other two equal but not zero; the value of 

d' is then - Vl/6 . The effective couplings are : 

2Ad;1.1/J,(aJ + itrJYs)l/1•, (25) 

(h/ 6)d;1• (a1 + i rr 1)(a1 + i 111)(a• + i "•) + hermitian conjugate. (26) 

The coupling of the pseudoscalar octet to the baryon octet through D is, of course , in reasonable agree­
ment with experiment, as we migt.t have expected from the Goldberger-Treiman relation and the axial vector 
current coupling through D. 

Other predictions, however, are not in good agreement with the present experimental situation. No 
scalar octet has been found. The nuclear forces arising from the scalar particles should be pgantic, ac­
cording to (25), and evidence for such forces is not convincing at the present time. Also the scalar coupling 
of the ninth baryon y5 1/10 to the paeudoscalar octet and the baryon octet should also be very strong, ac­
cording to (25), and lead to a wtdth of several BeV (!)for the ninth baryon if we take the prediction literally. 
An estimate in the next section of h in equation (26) indicates large widths also for the scalar mesons if 
they are significantly above the thresholds for decay into two pseudoecalar mesona. 

We may thus adopt several different attitudes: 

(1) The SU(3) x SU(3) algebraic system, assuming it is correct, does not provide a useful app1. ·imate 
symmetry. 

(2) Higher order effects in A, for example as indicated by the Goldberger-Treiman relation (see next 
section), may reduce some of the coupling constants. 

(3) The scalar mesons will turn up with large couplings, and the ninth baryon will tum up as a very 
vague bump with a huge width. 

( 4) Something is wrong with our choices of representations. 

At present, it is not easy to choose among these possibilities, They are discussed ·further in Secuon V. 
Meanwhile, we return to the assignment of representations. 

The vector meson situation is complicated by the </>-(U mixing .and will not be fully treated here, but we 
should expect a vector meson octet that dominates the vector form factom to transform like the currents, i.e., 
according to (~ • .8.) and (.8. , ~). Thus there should be an axial vector octet nearby. In fact, the splitting 
between the two octets is of second order in A, since we caMot make (.~ • . 3*) and {]*, .3J out of [(1, .8.) and 
(.8., ~)) t imes itself. 

In conclusion, we mention the violation of the eightfold way by the term in ¢> 1 . If ¢> 1 were to belong to 
(.J.,1*) and (1* , .J.), then the splitting of the baryon octet with j = 112+ would go mainly with D, since to 
order A 0 c 1 the only allowed coupling is analogous to (25). In fact, the splitting is mostly F. We may thete­
fore consider the possibility that ¢> 1 belongs to (.L .8.) and (j , ~). The baryon octet is the~ split oaly in 
order A 1 c 1 and both F and D come in. 

The •calar and pseudoacalar octets are split open in order A 0 c 1 by • term ¢> 1 transforming like(~ • .8.) 
and (.8., ~). Moreover, in that order, the spacing is the same for both octets. 

V. The Goldberger-freiman Relation 

The Goldberger-Treiman relation states in essence that certain matrix elements of l.. d iverr~nce 

a .. .:T1a.5 of the axial vector current components obey unsubtracted diaper8ion relations in the invariant mo­
mentum squared carried by the current and that these dispersion relatloaa are dominated by the intermediate 
state with one pseudoecalar meson [3, 9). 
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The pion decay amplitude is described by the quantity I.,., which is defined 

2 

<OiaaT,a.5 l " > = ~<t>,. 
2 f., 

(i = 1, 2, 3) 

where <1>
1 

is the wave function of the pion. The width for the decay rr+ --+ I"+ 

2 2 2 2 2 2 111
2 

2 
( )

-1 

1.,. = G cos () m., ml' (I - m il / m.,.) 4; (64rr 

which differs by the factor cos 2 () from the corresponding expression in ref. 3. 

2 

<O\a .. T,a.5 IK> = ~'1'1 , 
2fK 

(i = 4, 5, 6, 7 

where '1'
1 

is the wave function of the kaon . The width for the decay K+ -+IJ. · 

f 2 ' 

( )

- 1 

IK = G2 sin 2 
() mK m/(1- m1}/mK 2

)
2 

:
71 

(64"' 

where in ref. 3 we would not have had the factor sin 2 
(), Cabibbo [6] has point• 

get {.,. = IK. (The attempt [3) to make 1.,./ IK = m.,./ mK is thus unnecessary .) 
The Goldberger-Treiman relation for neutron f3 decay now states that 

( 
-GA J -1 2mN --- = gNNTr f.,. • 

G cos() 

where (- GA / G cos 0) is the axial vector " renormalization factor" for the nucl• 
tween neutron and proton of the divergence of the axial vector current has been 
the product of the pion-nucleon coupling constant gNN"" and the pion decay con 
equation (31) is satisfied with an error of around 10%. 

If we now generalize to the baryon octet and the pseudoscalar meson octet 
eightfold way (which includes f .,. = IK = f ), we have in general a part of A thai 
and a part with the F coupling; the same is true of (- GA / G cos 0). Not only s: 
then, but also the F / D ratios should be the same for the meson-baryon couplinl! 
rent. Cabibbo's value of 0.30/ 0.95 for the F / D ratio for the current agrees wel 

for the meson coupling. 
If scalar mesons exist, the Goldberger-Treiman relation should apply to tht 

tween scala r and pseudoscalar meson states, in relation to the strong coupling 
pseudoscalar-pseudoscalar (a rr 11) vertices . 

Now let us examine what happens to the Goldberger-Treiman relation fo; tt 
we have approximate conservation of both vector and axial vector current•. i.e. 
ing our assignments of both baryons and mesons to (1. _J•) and (1• ,].) are cor1 
the matrix elements <0 iu1i a1 > and <0 lv 11 rr1 > are all non-zero and equal . Th 
to <0 lao. F 1a.5 i"1 >, is evidently of order A. Likewise, the mass of the nucleo1 
ization (- GA /G cos 0) approaches unity. with the octet pattern becoming pure 
gNN.,. remains finite and the octet coupling pattern here too becomes pure D. E 
Treiman relation (TT) can nold approximately in the limit ,\ - 0 with both sid 
in the double approximation of A -+ 0 and exact validity of the Goldberger-T r• 

2 mN ~ gf-1, 

where g multiplies the whole baryon-baryon-me• Jn coupling pattern, as in (25) . 

the 07T7T vertices is 133 
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The pion decay amplitude is described by the quantity!,., which is defined, as in ref. 3, bv 'he formula 

(i = 1, 2, 3) 

where <ll 1 is the wave function of the pion. The width for the decay , + --+IJ. + + vi' is then 

r,. = G2 cos 2 
() m,. ml'2 (1 - m/ ; m,.2

)
2 

( ::) -

1 

(64 ,.•) - 1
• 

which differs by the factor cos 2 ()from the corresponding expression in ref. 3. Likewise, we have 

(i = 4, 5, 6, 7) 

where '1' 1 is the wave function of the kaon. The width for the decay K+ --+iJ. + + vi' is 

rK ~ G2 sin 2 ()mK m/(1- m//mK 2 ) 2 (~K:)-
1 

(64, 2
)-

1
, 

where in ref. 3 we would not have had the factor sin 2 8. Cabibbo [6) has pointed out that with () 
get f ,. = fK. (The attempt [3) to make f ,.jfK = m,./ mK is thus unnecessary .) 

The Goldberger-Treiman relation for neutron f3 decay now states that 

( 
-GA J -1 2mN ---- = IJNN" 1,. ' 

G cos() 

(27) 

(28) 

(29) 

(30) 

0.26 we 

(31) 

where (- GA / G cos ()) is the axial vector "renormalization factor" for the nucleon. The matrix e lement be­
tween neutron and plOton of the divergence of the axial vector current has been approximately expressed as 
the product of the pion-nucleon coupling constant i1NN" and the pion decay constant 1,.- 1

• Experimentally, 
equation (31) is satisfied with an error of around 10%. 

If we now generalize to the baryon octet and the pseudoscalar meson octet, in the app roximation of the 
eightfold way (which includes 1,. = IK = f), we have in general a part of g that goes with the D coupling 
and a part with the F coupling; the same is true of (-GA / G cos 8). Not only shouid the relation (31) hold, 
then , but also the F / D ratios should be the same for the meson-baryon coupling and for the axial vector cur­
rent. Cabibbo's value of 0 .30/ 0.95 for the F / D ratio for the current agrees well with all estimates ofF !D 
for the meson coupling. 

If s calar mesons exist, the Goldberger-Treiman relation should apply to the f3 -decay matrix elements be­
tween scala r and pseudoscalar meson states, in relation to the strong coupling constants for the scalar­
pseudoscalar-pseudoscalar (a " 11) vertices . 

Now let us examine what happens to the Goldberger-Treiman relation fo; the NN, and ="cases when 
we have approximate conservation of both vector and axial vector current!, i.e., c = 0 and A --+ 0, assum­
ing our assignments of both baryons and mesons to (.3_, _3_*) and (_1•, _l) are correct. In the limi t A--+ 0, 
the matrix elements < 0 \u1\ a1 > and < 0 \v 1\ "' > are all non-zero and equal. The quantity 1- 1

, proportional 
to < 0 \aa F 1a5 l ,, >,is evidently of order A. Likewise, the mass of the nucleon is of order A. The renormal­
ization (- GA /G cos ()) approaches unity, with the octet pattern becoming pure D. The coupling constant 
gNN" remains finite and the octet coupling pattern here too becomes pure D. Evidently , then, the GoldberJI:er­
Treiman relation (27) can nold approximately in the limit ,\ - 0 with both sides of order A. We heve , then , 
in the double approximation of A -0 and exact validity of the Goldberger-Treiman relation, 

(32) 

where g multiplies the whole baryon-baryon-me• ~n coupling pattern, as in (25). The analogous equa!Jon for 
the mm vertices is 
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2t1 - ht-1
, (33) 

where 2 t1 is the difference in mass squared between the scalar and pseudoscalar octets in order >. and h 
multiplies the whole trilinear meson coupling pattern, as in (26). This double approximation is equiva lent 
to saying that the violation of SU(3) x SU(3) mass degeneracy is accomplished forma lly by the dis placement 

uo--+uo- ~ f-1 (34) 

in effective couplings such as (25) and (26). 
Now if we consider large violations of symmetry, so that higher order effects in >. are important (and 

even effects involving c , which violate the eightfold way), we may suppose that the Goldberger-Treiman ap­
proximation is still good. For example, as we mentioned above, the actual value of (- GA / G cos(!) is 
around 1.25, with about 0.95 going with the D pattern and about 0.30 with the F pattern, in contrast with the 
value 1 and the pure D coupling that we would have in tbe limit >.---+ 0. Likewise, the baryon-baryon-meson 
coupling departs from the pure D coupling that is acquired in tbe limit >. ---+ 0, but these two depa rtures 
seem to follow the Goldberger-Treiman relation in that the F / D ratio is similar in the two cases. 

We may look, for example, at the decay of the ninth baryon into I + rr. In order >., the mass difference 
between the two baryons is the same as mN and in order 1 the coupling constant is the same as gNNTT, with 
the appropriate ratio of d;1• coefficients. If, now, in higher order in >. and c the mass difference becomes 
quite different, we might expect the coupling constant to change in proportion, keeping the Goldberger­
Treiman equation approximately valid. Instead of having the effective coupling constant g for the decay 
equal to 2mNf", as in (32), we would have approximately 2(m- m,..)ITTr, where m Is the real maaa of the 
ninth baryon and r is the renormalization factor for the axial vector .;'urrent matrix element between I and the 
ninth baryon. If m is 1405 MeV, for instance, then the coupling constant gin question is reduced by the 
factor r (m - m:z:) mN - 1 ~ 0.23 r and the width of the ninth baryon ia then 

[2 f"(m - m:z:)rl 2 m;z; + E r . 4 1c • 
4rr 2m 

where lc is the decay momentum. The width comes out about 200 MeV (r2
) instead of about 3 BeV (r 2

) ; the 
actual width of A (1405) is around 60 MeV. 

Similar corrections should be applied to the various coupling c onstants h for tbe varioua (u rr "' .,erti­
cn; instead of the completely symmetrical formula (33) we can uae similar expreuions in which .: .e actual 
differences of mass squared are inserted ira place of the first order pattern baaed on the s ingle qu 1tity t1. 
For a scalar K particle of mass p., the decay into K + rr would be regulated by a value of h approximately 
equal to f"(p. 2 

- m1/) r, where r Ia the renormalization factor for the axial vector cuaent matrix e lement 
between the scalar K particle and K itself. The decay width for this case is then 

r = 3 [fTT{p. 2 - mi)rJ2 1c 
2 4" -;;· 

where lc Ia the decay momentum. F or p. • 725 MeV, for example, r comes out around 80 MeV(r2
), 

None of this is of much use , of courae , if the scalar octet does not exist. If it Ia not found , we wlll 
have to abandon the idea of ualng the poup SU(3) x SU(3) of the vector and axial vector currents aa an ap­
proximate symmetry of the atrona interactiona. 

We ahould mention one intarmediata poeaibility, which involves a different ••i&Junent of representation 
to the paeudoacalar octet, namely (.1, J.) and (.8., ~). No scalar or paeudoacalar unitary s inglet would be 
predicted. The Goldberger-Treiman relation could not in this cue be approximate ly valid for small >., since 
the two sides would be of different order in>., with the pseudoscalar octet not transforming like v 1 under 
SU(3) x SU(3). Conceivably, however, for a particular value of >., not particularly email, ;•e couB have the 
relation . The coupling of baryons to the pseudoscalar and scalar mesons would be forbidden as >. ---+ 0 and 
the paeudoscalar octet would acquire ita coupling through tbe violation of the aymmetry. Tbe acalar octet 
would have the opposite properties under charge conjugation to the acalar octet hitherto diacuaaed. T hua in 
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the limit c --+ 0 ot the eightfold way, this scalar octet could have no Yukawa coupling t 
and no coupling to two mesons of the pseudoscalar octet. When the violation of the eight 
on, the non-strange members of the scalar octet would still lack these couplings , but the 
could have them by violating the eightfold way. Such an "abnormal" scalar octet would I 
experimental properties from a normal one, particularly for the Y = 0 members , and woulc 
fiable as such. 

VI. Triplets, Real and Mathematical 

So far, we have concerned ourselves with the assumption that the group of the vector 
octets of currents is SU(3) x SU(3) , with the transformation properties under the groupo£ 
c ¢a in the energy density, and with the possibility that in a crude approximation>. as wei 
treated as small. We may, however, go further and ask whether there are additional algebt 
among the quantities we have introduced. In order to obtain such relations that we may cc 
true , we use the method of abstraction from a Lagrangian field theory model. In other won 
mathematical theory of the strongly interacting particles, which may or may not have anyn 
reality, find suitable algebraic relations that hold in the model, postulate their validity , at 
the model. We may compare this process to a method sometimes employed in Fre.nch cuis i 
pheasant meat is cooked between two slices of veal, which are then discarded [ 10]. 

In ref. 3, the Sakata model was employe-d in this way. Howe ver , certain adjustments I 
get to the eightfold way. Instead , we may £mploy the quark model [11]. which gives the ei 
directly ; there are also other models [ 11), based on a fundamental triplet and a fundaments 
perfectly compatible with the eightfold way . 

Any such field-theoretic model must contain some basic set of entities , with non-zero 
out of which the strongly interacting particles can be made . If this set is a unitary octet , 
clumsy; it is hard to arrange any coupling that will reduce the symmetry from SU(8) to SU(3 
ducing [1, 2] in addition a Yang-Mills octet of fundamental vector mesons. Thus the only 1 

tive models are based on unitary triplets and perhaps singlets. 
If we adopt such a viewpoint , we should say that the correct dynamical description of 

acting particles requires either the bootstrap theocy or else a theory based on a fundament• 
neithe r case do the familiar neutron and proton play any basic role . 

It is, of course, a striking fact that no unitary triplets have so far been identified amo1 
interacting particles ; however, they may tum up. The ir appearance may, of course , be con! 
the bootstrap theory or a theory with a fundamental triplet. Their non-appearance could ce1 
sis tent with the bootstrap idea, and also· possibly with a theory containing a fundamental tt 
hidden, i.e., has effectively infinite mass. 

Thus , without prejudice to the independent questions of whether the bootstrap idea is 
real triplets will be discovered, we may use a mathematical field theory model containing a 
to abstract algebraic relations. 

If we want to use jus t a tr:plet and no singlet, we must have quarks, with baryon numb< 
cha rges -1/3, - 1/3, and + 2/ 3. Such particles presumably are not rea l but we may use tht 
theory model anyway. Since the quark model is mathematically the simplest, we shall in fa 
the next section, as in re!. 11,. for our process of abstraction . 

If we consider a model with a basic triplet t and a singlet b, then we are free to t ake fc 
integral electric charges and baryon number equal to one ; say we do so. The singlet must I 
we can then form the known supermultiplets from (b), (b t t), (b .b b It r t), etc. The trit 
electric charges q, q, q + 1 or -q, - q, -q - 1,. where q is any integer. In the former cas 
charge Q in units of e is given by the relation 

Q = (q + 1/ 3)(n 1 - nr) + F3 + F~, 
·./3 

where n 1 - nr is the number of triplets minus the number of antitriplets . In the latter case 
relation 
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the limit c- 0 or the eightfold way , this scalar octet could have no Yukawa coupling to the baryon octet 
and no coupling to two mesons of the pseudoscalar octet. When the violation of the eightfold way is turned 
on, the non-strange members of the scalar octet would still lack these couplings, but the strange members 
could have them by violating the eightfold way. Such an "abnormal" scalar octet would have very different 
experimental properties from a normal one, particularly for the Y = 0 members, and would be readily identi­
fiable as such. 

VI. Triplets, Real and Mathematical 

So far, we have concerned ourselves with the assumption that the group of the vector and axial vector 
octets of currents is SU(3) x SU(3), with the transformation properties under the group of the terms >..u0 and 
c ¢ 8 in the energy density, and with the possibility that in a crude approximation>.. as well as c might be 
treated as small. We may, however, go further and ask whether there are addit ional algebraic relations 
among the quantities we have introduced. ln order to obtain such relations that we may conjecture to be 
true , we use the method of abstraction from a Lagrangian field theory model. In other words, we construct a 
mathemat ical theory of the strongly interacting particles, which may or may not have anything to do with 
reality, find suitable algebraic relations that hold in the model, postulate their validity , and then throw away 
the model. We may compare this process to a method sometimes employed in Fre.nch cuisine : a piece of 
pheasant meat is cooked between two slices of veal, which are then discarded [ lOl. 

In ref. 3, the Sakata model was employ <> d in this way. Howe ver, certain adjustments had to be made to 
get to the eightfold way . Instead , we may ~mploy the quark model [11], which gives the e ightfo ld way 
directly ; there are also other models [11], based on a fundamental triplet and a fundamental singlet , that are 
perfectly compatible with the eightfold way. 

Any such field-theoretic model must contain some basic set of entities , with non-zero baryon nu rr ber, 
out of which the strongly interacting particles can be made. If this set is a un itary octet , the theory is very 
clumsy; it is hard to arrange any coupling that will reduce the symmetry from SU(8) to SU(3) without intro­
ducing [1, 2] in addition a Yang-Mills octet of fundamental vector mesons . Thus the only reasonably attrac­
tive models are based on unitary triplets and perhaps singlets . 

If we adopt such a viewpoint , we should say that the correct dynamical descr ipt ion of the s t rongly inter­
acting particles requires either the bootstrap theory or else a theory based on a fundamenta l triplet . In 
neither case do the familiar neutron and proton play any basic role . 

It is, of course, a striking fact that no unitary triplets have so far been identified among the s trongly 
interacting particles ; however, they may turn up. Their appearance may, of course , be consistent with eithe r 
the bootstrap theory or a theory with a fundamental triplet. Their non-appearance could certainly be con­
sistent with the bootstrap idea, and also· possibly with a theory containing a fundamental triplet which is 
hidden, i.e. , has effectively infinite mass. 

Thus, without prejudice to the independent questions of whether the bootstrap idea is right and whether 
real triplets will be discovered, we may use a mathematical field theory model containing a triplet in order 
to abstract algebraic relations . 

If we want to use just a tr:plet and no singlet, we must have quarks, with baryon numbe r 1/ 3 and e lectnc 
charges -1/3, - 1/ 3, and + 2/ 3. Such particles presumably are not rea l but we may use then 1n our he ld 
theory model anyway. Since the quark model is mathematically the simplest, we shall 1n fact employ it in 
the next section, as in re ~. 11,. for our process of abstraction , 

If we consider a model with a basic triplet t and a singlet b, then we are free to t ake for the se particles 
integral electric charges and baryon number equal to one; say we do so. The singlet must be neutral, and 
we can then form th~ known supermultiplets from (b), (b t l), (b b bIt tl), etc . The triplet can have 
electric charaes q, q, q + 1 or - q, - q, - q - 1,. where q is any integer. In the former case, the ~lectric 
charge Q in units of e is given by the relation 

Fe 
Q = (q + 1!3)(n I - n,) + FJ + v3' 

where n1 - nr is the number of triplets minus the number of antit:iplets. In the latter case we have the 

relation 
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Q = - (q + 1/ 3)(n1 - np + F3 + F~. 
·h 

With integral charges and baryon number one, there is no reason to require any member of a real triplet 
to be absolutely stable ; we may permit them all to decay into ordinary baryons. However, the question arises 
whether s uch decays take place by weak inte ractions or by moderately stron& interactions that violate SU(3) 
but not isotop ic spin conservation. If the lat ter, we want thl' violation of SU(3) to transform like 1 and .J.*, 
so that in s econd order it gives the familiar octet behavior of the violation. But I = 0, Q = 0 occurs in .l 
and .l* only when q = 0. Thus if the decay of tr iplets into baryons is to be attributed to moderately stron& 
interactions that give rise , in second order, to the octet violation of SU(3), we must have q = 0. This is 

the model used by Maki [ 12! and by Tarjanne and Teplitz [ 13). 
With other values of q , we pres11mably have the triplet decaying into ordinary baryons by the weak inter· 

action. As pointed out previously [11, 14), the most interesting case of this kind is the one with q = -1, 
where the four members of the basic triplet and singlet present a perfect anaiO(IY with the known leptons. 

Absolute stability of one member of a triplet is of course, a possibility for any value of q. 
These kinds of triplets with ' ntegral charges are , of course , more likely to correspond to real particles 

than the quarks , and we may ~ !so use them in fie ld theory mode ls to abstract al&ebraic relations, obtainin& 

essentially the same ones as for the quarks in the next s ect ion. 

VII . Further Algebra ic Re.at ians 

We start with the simple Lagrangian model of quarks discussed in ref. 11. There is a triplett of fermion 
fields corresponding to three spin 1/ 2 quarks : the isotopic doublet u and d, with charges 2/ 3 and -1/3 re­
spectively, and the isotopic singlets, with charge - 1/ 3. A neutral vector meson field Ba is introduced, 

too. The Lagrangian is simply 

-t Ya aa t - !l'8 - iF Ba t Ya t 

as A- 0 and c - 0 , where !l'8 is the free L agrangian fo r the fie ld B and 

t Ya t = u ya u + d Ya d + sya s . 

Now we may add to the L agrangian a quark mass term 

A u0 = m0 (u u + d d + s s) = m0 t 1. 

The energy density acquires a term that is just the negative of this . In the model w& may put 

and A 

- A, 
u, = t 2 '' V j = 

- A, t ' t y-. _ , • 2 i = 0, 1, . . . 8, 

v6 m0 • L ikewise, we have, in the model, 

' '" = i t~ y .. t, 2 
F ,a5 = i t~ya Ys t. 

2 

For the moment, we forget the term c </>a that breaks the eightfold way. 
The non-singularity of the model enables us to generalize [3, 111 the commutation relations (14) and 

(15) and equation (20) to the local relations 

[ F 14 ( .!_ , t), u1(.!_', t)] -f1J>u•(.!., t)S(A.- .!.'>.etc. 

[F
14 

(.!., t), F
14 

(.!.', t)] = -f11 • F •• (.!.. t)S(.!.- .!.' ),etc., 

ao. F 1a' = ~A v 1 + (}(c) . 
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We have propo~ed that these relations be abstracted fr om the model and postulated ., 
calculation of the matrix elements of the -'•~· u,, and v 1 by means of linear homog< 
tions 'without subtractions, the nonlinear relations (35) and (36) suppl y the scale fee 
things as the axial vector current renorma lizat io n. 

In the quark model , the term c ¢ 8 in the Lagrangian could be put in as a mass c 
let and doublet quarks, but ¢ 8 would then be the same as u 8 and would transform Iii 
If we want ¢ 8 to be long to U .. .8.) and C.a . l ), we could put it into the model as a cc 
to the current ~Ba· Suc h a term is reminiscent of Ne ·eman 's "Fifth Interact ion" [ l 
[16] of ¢ -w mixing as a dynamical mechanism for viol:it ing the eightfold way, 

We mentioned in ref. 3 that in the n.odel there are further co mmutation relations , 
which we might or might not take serious ly, namely the commutation relations of the 
interesting that when these operators are commuted , in the model , they bring back tho 
F 1.', along with a ne w operator, the helicity charge de nsrty, which we may call ~0 
u1, v 1, T 14 , and ~145 then closes; we have 18 ~'sand v' s, 8 /P"14's , and 9 T 1/"! 
35 gen~rators of the algebra SU(6). In the model , the new current ~o~' is just (i/ 2; 

Evidently, we can look upon all 35 operators as generating infinitesimal unitary 
the three left-handed quarks and the three right-handed quarks . This algebraic syste . 
pseudoscalars with four-vectors and four-pseudovectors and thus represents a new s t; 
lion of symmetry. Whereas F-spin connects only systems of the same parity and beh• 
Lorentz transformations, the group SU(3) x SU(3) of the vector and axial vector cur~~ 
which may have different parity but must still have the same behavior under the prope 
SU(6) now connects systems with different parity and / or different space-time behavio 

Of course, it is not clear, even in the model, that SU(6) is of any use as an apprc 
were, it would arrange particles of various spins and parit ies in super-super-supermul 
does appear to be true that a huge number of special algebraic properties can be abst1 
theory model. The situation is reminiscent of the growth of dispersion relations from 
for forward scattering of light to a huge set of relations among all scattering amplitud 
determine the whole S-inatrix. Conceivably, the study of algebraic relations will unde 
transformation. 
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We have propo~ed that these relations be abstracted from the model and postulated .as true. In an exact 
·calculation of the matrix elements of the T 1a , u1, and v 1 by means of linear homogeneous dispersion rela­
tions 'without subtractions , the nonlinear relations (35) and (36) supply the scale factors that determine such 
things as the axial vector current renorma lization. 

In the quark model, the term c ¢ 8 in the Lagrangian could be put in as a mass difference between sing­
let and doublet quarks, but ¢ 8 would then be the same as u8 and would transform like (l,]* ) and (]• • .J.). 
If we want ¢ 8 to belong to (J., j!.) and CB. . J.), we could put it into the model as a coupling of the meson B a 
to the current Ta a· Such a term is reminiscent of Ne ' eman 's "Fifth Interaction" [15) or of Sakurai's use 
[16) of ¢ -OJ mixing as a dynamical mechanism for violating the eightfold way . 

We mentioned in ref. 3 that in the n.odel there are further commutation relations , besides (35) and (36), 
which we might or might not take seriously, namely the comm utation relations of the u's and v's . It is 
interesting that when these operators are commuted , in the model , they bring back the operators .'T, 4 and 
T 1/, along with a new operator, the helicity charge dens tty, which we may call To/ . The algebra of the 
u1, v" T 14 , and T 1/ then closes ; we have 18 ~ · s and v' s, 8 T 14s. and 9 T 1/ 's , corresponding to the 
35 generators of the algebra SU(6). In the model, the new current T oa' is just (i/2) t Ao Ya t. 

Evidently, we can look upon all 35 operators as generating infinitesimal unitary t ransformations among 
the three left-handed quarks and the three right-handed quarks. This algebraic system connects scalars and 
pseudoscalars with four-vectors and four-pseudovectors and thus represents a new stage in the generaliza­
tion of symmetry. Whereas F-spin connects only systems of the same parity and behavior under proper 
Lorentz transfonnations, the group SU(3) x SU(3) of the vector and axial vector currents connects systems 
which may have different parity but must still have the same behavior under the proper Lorentz group, and 
SU(6) now connects systems with different parity and / or different space-time behavior. 

Of course, it is not clear, even in the model, that SU(6) is of any use as an approximate symmetry. If it 
were, it would arrange particles of various spins and parities in super-super-supermultiplets . However, it 
does appear to be true that a huge number of special algebraic properties can be abstracted from a field 
theory model. The situation is reminiscent of the growth of dispersion relations from an obscure equation 
for forward scattering of light to a huge set of relations among all scattering amplitudes, nearly sufficient to 
determine the whole S-inatrix. Conceivably, the study of algebraic relations will undergo a comparable 
transfonnation. 
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GHOU P U(6 ) ~ U{6 ) GENERATE D BY CURRENT COMPONENTS* 

R. P . Feynman, M . Gell- Mann , a nd G. Zweigt 
California Institute of Technology, Pasadena , California 

(Received 2 November 1964) 

It has been s ugges ted•- • that the equal-time 
commutation rules of the time components of 
the vector and axial-vector current octets 
!.:Jia and 1Ft a 1, respectively) are the same as 
if these currents had the simple form Sia and 
Sta •, defined as fo llows: 

gta =ii?i-";Y aq' 

gia' =tiq).iy ay 5q' (1) 

where q is an SU{3) triplet with spin !-for exam­
ple , the qua rks ' or aces . • Here the matrices 
Ai {I = 1, ... , 8) a re the SU(3) analogs of the Pauli 
matrices , as defined in reference 1. The opera­
tors 

F ,(/) = - i jd'x :J i 4 ' 
I 

F /(1) =-ifd'x <Ji 4' , (2) 

then generate at equal times the algebra of 
SU(3)®SU(3) , whic h may be a very approximate 
symmetry of t he s t r ong interactions, 1•' while 
the F i generate a subalgebra corresponding · 
to SU(3), which is a fairly good symmetry of 
the strong interactions . 

We now propose to extend these considera­
tions to the space components of the currents 
as well. First we define•-• a ninth A matrix 
).0 s (J)1121 and a corresponding ninth pair of 
currents ff Oa a nd 'J Oa • (where ff' Oa would be 
..f6 times the baryon current In a true quark 
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or ace theory). We then assume that the equal­
time commutation relations of all the 72 com­
ponents of the ff' ia and ff' ia 5 (I = 0, ... , 8) are the 
s ame as those of the Sta and Sta'• at least as 
fu as terms proportional to the spatial 0 func­
tion a re concerned . (There are also, in gen­
era l, terms• involving gradients of the 0 func­
tion, which vanish on space integration and 
which we ignore here .) The system of Sta 
and Sia ' is closed under equal-time commu­
tation, and the space integrals 1Stad'x and 
f Sia 5d'x generate the algebra of U(6)®U(6) . 
Our assumption thus Implies that J ffiatJ'x and 
f'1 ta'd 'x also generate the algebra of U(6) 
®U(6) . We assume further that this algebra 
is a ve ry approximate symmetry of the strong 
inte ractions . 

We now exhibit some of the structure of the 
a lgebr a by looking at the Si a and Sia". We 
note that the space Integrals of the densities 

q>o.iy
4

q =qhiq (i=O, ... , a) 

and 

iq\yny 5q =qh/'nq (n = 1, 2,3) 

generate the subalgebra corresponding to U(6); 
the same Is then true of the corresponding 
components of the ff''s . We may refer to the 
a lgebr a of the space Integrals of these 'J com­
ponents as the A spin, with generators Ay 
(r = 0, 1, • · · , 35). Now the space Integrals of 
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the densities qt .\ i!(l +y5)q and qT>o.ian!(l +y5)q 
also generate a group U(6), and so do the cor­
responding terms with !0-y,). The corre­
sponding integrals of ff' components thus give 
a left-handed A spin Ay + and a right-handed 
A spin Ar-, respectively, with 

A =A ++A - (r = 0,1, .. ·,35). (3) 
r Y r 

Those 36 components of ff';a and '1; 0 ' (out of 
a total of 72) that are the densities of the Ar 
do not go just into themselves under Lorentz 
transformations, but yield instead the com­
plete system of 72 components of the ff' ia and 
ff ia 5 , which form the densities of Ar + and Ar-

We have assumed above that the A+ and A­
spins are separately very approximate symme­
tr ies of the strong interactions . We may now 
add the further assumption that the total A 
spin is a good symmetry, nearly as good as 
the subset that constitutes the F spin. This 
approximate conservation of A spin is then 
our way of describing the success achieved 
by the SU(6) symmetry of Giirsey and Radi­
cati,6 Sakita,7 and Zweig,6 treated further in 
a series of recent Letters.•-" In reference 
10, our interpretation of the symmetry is 
hinted at, but otherwise it is described in dif­
fer e nt language, which does not make ~lear 
the physical identification of the symmetry 
operators with integrals of components of the 
vector and axial-vector currents occurring 
in the weak and electromagnetic interactions. 
Also, the Lorentz-complete system, obeying 
the commutation rules of U(6) ® U{6), is not 
given . 

In a relativistic situation, where a state like 
p exists part of the time as 2JT, part of the time 
as N +N, part of the time as t. + ti:, etc., with 
a different set of channel spins in each case, 
it Is evidently not sufficiently specific to talk 
of "spin independence" of strong interactions. 
In contr ast , our statement in terms of the ap­
pr oximate conservation of the Gamow-Teller 
operator f:J;

11
'd'x (, = 1, 2, 3) does have a def­

inite meaning . 
One set of consequences of our approach is 

that the Gamow-Teller matrix elements with­
in an SU{6) supermultiplet can be exactly com­
puted in the limit of SU{6) symmetry . We 
adopt the assignments of the JlT = !+ baryon 
octet and JlT = j+ baryon decimet to the SU{6) 
representation 56 , and the assignment of the 
vector-meson octet and singlet and the pseudo­
s calar octet to the representation 35; these 
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the densities qt.\;iO +y 5)q and qt ,\an!(l +y5)q 
also generate a group U(6), and so do the cor­
responding terms with !(1-y,). The corre­
sponding integrals of ff components thus give 
a left-handed A spin Ar + and a right-handed 
A spin Ar-, respectively, with 

A =A++A-(r=01· .. 35). (3) 
y y y ' ' ' 

Those 36 components of ffia and 'J;a' (out of 
a total of 72) that are the densities of the Ay 
do not go just into themselves under Lorentz 
transformations, but yield instead the com­
plete system of 72 components of the 'J iet and 
'J iet ', which form the densities of Ar + and Ar-

We have assumed above that the A+ and A­
spins are separately very approximate symme­
tries of the strong interactions. We may now 
add the further assumption that the total A 
spin is a good symmetry, nearly as good as 
the subset that constitutes the F spin. This 
approximate conservation of A spin is then 
our way of describing the success achieved 
by the SU(6) symmetry of Giirsey and Radi­
cati,0 Sakita,7 and Zweig,8 treated further in 
a series of recent Letters .• -•• In reference 
10, our interpretation of the symmetry is 
hinted at, but otherwise it is described in dif­
ferent language, which does not make .c lear 
the phys leal identification of the symmetry 
operators with integrals of components of the 
vector and axial-vector currents occurring 
in the weak and electromagnetic interactions. 
Also, the Lorentz-complete system, obeying 
the commutation rules of U(6) ® U(6), is not 
given . 

In a relativistic situation, where a state like 
p exists part of the time as 2rr, part of the time 
as N + N, part of the time as A+ ii, etc., with 
a different set of channel spins in each case, 
it is evidently not sufficiently specific to talk 
of "spin independence" of strong interactions. 
In contrast, our statement in terms of the ap­
proximate conservation of the Gamow-Telle r 
operator f 'J in 'd'x (n = 1, 2, 3) does have a def­
lnite meaning. 

One set of consequences of our approach is 
that the Gamow-Teller matrix elements with­
in an SU(6) supermultiplet can be exactly com­
puted in the limit of SU(6) symmetry. We 
adopt the assignments of the J rr = ! + baryon 
octet and J" = i+ baryon decimet to the SU(6) 
representation 56, and the assignment of the 
vector-meson octet and singlet and the pseudo­
scalar octet to the representation 35; these 

139 

assignments have explained at least six well­
known facts.'" The axial-vector strength, with­
in the baryon octet, comes out to be 1(1)} + ~(F); 

for the nucleon, this gives (-GA / Gv) = 5/3, 
as indicated in reference 10, to be compared 
with an observed value more like 1 .2. The 
agreement is fair, as is the agreement of the 
D IF ratio with the results on leptonic hyperon 
decays. The matrix elements of the Gamow­
Teller operator between octet and decimet are 
also exactly specified in the limit of SU(6) sym­
metry and can be checked by neutrino experi­
ments. 

Let us now go on to discuss the badly broken 
symmetry U(6) ® U(6), which bears about the 
same relation to U(6) symmetry as the U(3) 
® U(3) symmetry generated by the time compo­
nents of vector and axial-vector currents1

• 3 

bears to the eightfold way. On the way from 
the full U(6) ® U(6) down to U(3), we could pass 
through U(6) or through U(3) ® U(3) symmetry 
as an intermediate stage; these are alterna­
tives in somewhat the same way as are L -S 
and j-j coupling in atomic physics. It seems 
that the operators of U(6), all of which have 
nonrelativistic limits, form a much better 
symmetry sys tem than those of U(3) ® U(3); 
hence, the useful procedure is to go from U(6) 
® U(6) to U(6), and then to U(3) and U(2). [Actu­
ally U(6) is not much worse than U(3).] 

The baryons are presumed to have zero mass 
in the limit of U(6) ® U(6) symmetry, as in the 
limit of U(3)® U(3) symmetry.'•' The pertur­
bation that reduces the symmetry of U(6) is 
assumed to transform like (6, 6•) and (6•, 6) 
under (A+, A-), and like .!_ u~der A. Thus it 
transforms like a common quark mass term 
qq, which takes a left-handed q going like (~, .!_) 
into a right-handed q going !Ute (1 , 6) , and vice 
versa.16 The J" = !+octet and J"=l+ dec!met 
belonging to 56 can be placed either in (I, 56) 
and (56, 1), o~in (6, 21) and (21 , 6), if were­
strictt;u-;:selves to- representatio-;,s that trans­
form like 3q. The latter is very attractive, 
because it splits into a 56 and a 70, where the 
masses to first order i;;lhe perturbation are 
in the ratio 1: -2; as in reference 3, we must 
interpret negative mass as positive mass with 
negative parity, and so we are led to a 56 with 
unit mass a nd a 70 with opposite parity and 
roughly twice themass. The 70 contains a 
~- octet, a i- singlet, a i- octet, and a i­
decimet. Thus the prediction of reference 3 
that the !+octet is accompanied by a r sing-
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le t of roughly tw ice the mass is contained in 
our pr esent result. The ~- octet has probably 
bPen seen [inc luding .V (15!2) I. but the 4- oc­
tet and dec imet have not so far been identifi ed . 

In the lim it of U( 6):i: U(6) symmetry, · the 
vec tor and pseudoscalar mesons of the 35 can 
be put into either of two pairs of repr esenta­
tions that transform l ike q + q. The mesons 
could go like (35, 1) and (1, 35) , or else like 
(6, 6•) and (6•,6) .-If they-belong to the adjoint 
rep"i-esentatlon pair (1,35) and (35, 1) , as the 
current compon_ents do,then theusual 35 is 
accompanied by another 3 5, cons is ting of a 
normal axial-vector oc tet and s inglet and an 
abnormal scalar octet. [Here, "nor mal " means 
that the Y = 0, I = 0 me mber of an axial vector , 
scalar, or pseudoscalar SU(3) multiplet is 
even under charge conjugation; "abnormal" 
means it is odd. ] If the mesons belong to (6, 6*) 
and ( 6 *, 6) , then the us ua l 3 5 is accompanied ­
by a l (a- normal pseudoscala r s inglet), anoth ­
er 1 (a normal scalar s inglet), and a 35 con­
sisting of an abnor mal ax ial-vector octet and 
singlet and a normal scala r octet. In either 
case , the per tur bation tha t r educes U(6) ® U(6) 
to U(6) does not split the mesons into U(6) mul­
tiplets in first order; in second order , they 
are split. Th e assignment to (~, ~·) and (~• . ~) 
is appealing because the pseudoscalar s inglet 
could be identified with 7)(960), the scalar oc­
tet may include K(72 5), and the abnormal ax ial 
octet may include the meson at about 1220 MeV 
with I = 1 that decays Into rr + w. 
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INTRINSICALLY BROKEN U(6) ® U(6) SYMMETRY FOR STRONG INTERACTIONS 

K. Bardakci, • J. M. Cornwall, • P . G. 0. Freund, •t and B. W. Leet 
The Institute for Advanced Study, Princeton , New Jersey 

(Received 4 November 1964) 

With an ever increasing internal - symmetry 
group for hadrons , the possibility of combin­
ing Internal symmetry and space-time sym­
metry has become all the more appealing. 
Recent attempts1 •

2 In this direction have , how­
ever, been confined to essentially nonre latl v­
lstlc situations where the spin degrees of free ­
dom can be regarded as Internal. The group 
that has emerged from these Invest lgations 
as a likely global group is SU(6) . Following 
up this line of thought , we wish to extend these 
results to relativistic quantum field theory. 
We shall produce a chain of symmetries cul­
minating In w.=U(6)®U(6) that arises natural­
ly In this case. In contradistinction to sym­
metries previously considered In physics, the 
largest members of this chain are intrinsical­
ly broken. In other words , there does not exist 
a total Lagrangian that possesses w. symme­
try, since the kinetic energy and mass terms 
will automatically break it. The symmetry 
will show up only in the interaction term and 
will consequently make sense in terms of a 
strong-coupling limit. 

Let us consider a triplet of s pin-! fermions 
(quarks),• and let qi(x), i = l, 2, 3, be the cor­
responding Dirac fie Ids. • Introducing their 
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left- and right-handed Weyl components R and L , 

(L) .. i.!..:!:.rJ ,,, ( 0) ) 1- y,) 1/1 (1) 
0 - 2 "'' R 2 ' 

we consider the following 72-par ameter group 
of transformations: 

L -(1 +ia. aJ.I.>...)L, 
ll.l. 1 

R-(l + ia . •aJ.I.>...)R, 
1/J. 1 

whereaJ.I.=(l,cr); Ai• i=O,l , .. ·,B, are the 

(2) 

3 x 3 Hermltean matrices defined by Gell-Mann• 
[>..0 = (~)1121], and aiJ.I. ar e complex parameters . 
The generators of the transformations (2) can 
be written as 

\ • a J.!./i' iy5>..i, 

In the s pace of Dirac spinors. The matrices 
In (3) a re reducible; the 1rreduc ible compo­
nents are 

a >.. ., ±ia A .• 
ll l J.l. 1 

The generators with upper (lower) sign act 
on L (R). This makes clear that the transfer-

(3) 

(4) 
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mation group (2) is the complexification of 
U(6) - the full linear group in six dimensions 
GL(6). Finite-dimensional r epresentations 
of GL(6) of phys ical interest ca n be clas s ified 
by a method similar to the ' 'unitary trick " of 
Weyl fo:· the Lorentz group.• We for m out of 
the s et (3) the generators 

~( 1 ±y5)~ii ' ~Jl ~ ( 1 , a23' a31' a l2)' (5) 

which span the group W6 : U(6) ® U(6) . The gen­
erators in (5) induce on R and l. the infinitesi­
mal transformations 

R-(l + i<l ia!l>.. .)R, 
Jl l 

L-(1 --iB ;a11dL, 
Jl l 

wher e a 
11

i and {3 
11

i are r eal. 
A parity-conserving, Lorentz-invariant four­

Fermion interaction which Is Invariant under 
GL(6) is7 

.C/ ~ g{iifa JlV \1/JifaJlV \ 1/J + if\1/Jif\1/J + /jiy 5\1/J/jiy 5\ 1/J} 

~ 2g6 {R +a >.. .LR +a >.. .L 
!J.V Jl t V t 

+ L+a >.. .RL+a >...R}. 
Jl t v t 

(6) 

The equal - time commutation relations satis ­
fied by the field ¢ a r e net In general inva r iant 
under GL(6), and therefore it cannot be an in­
variance of the under lying Hilbert space. We 
consider it rather to be a dynamical symmetry 
possessed by the interaction Lagrangian and 
physical matrix elements in some approxima­
tion . 

Another interaction Lagrangian invariant 
under GL(6) is 

r.;: - Jl - - Jl } 
.c~·~g'li/>Y >.. .1/!w >.. .1/! - 1/>Y y5>.. .1/Jw y5>.. .¢. 

Jl t ' Jl l . l 
(7) 

There is a U(6) subgroup of GL(6) obtained 
by taking the a; 11 real. T his is the group con­
s idered in reference 1. Beth inte r action La­
grangians (6) a nd {7) are invar iant under this 
subgroup , wh;ch leaves the canonical commu­
tation relations invariant. 

T he complete Lagrangian is the sum of kmet­
ic energy, mass , and inte raction terms: 

.c= .cx Ti:M + .CI , 

£X ;: !J .... r· d~, 

£ M •. - •llibd•. 

Since the fo ur-mL• r:H'n~..ur.. J ha~ four r\)mponents, 
while GL(6) for, for th~ ! ma.t.tt' r, ::.ny of its 
SU(6) subgroups j has nc> four-dimens ional r ep­
resentation, it is clear that there is no possi­
bility of making .C'K GL(6)-inva riant (a si mila r 
a r gument a pplies to .c,1) . Thus the only term 
of .c that is GL(6) i n v~; iant is .I:. f. II in sc me 
strong-cm1pling sense £ 1 » .CK +-.C M • then it 
is fair to c laim that 2 exh ibits intrins ically 
broken GL(6) inva riance. Before we analyze 
ir. mor e de tail this intrins ic s ymmetry break­
ing, let us give the r epresentations to which 
the quarks and their bilinea r cova riants belong. 
The quarks form the r epres entat ion• (1, 6) 
®(6, 1) of W0 , and the bilinear covariants 
ijiy (1 + y 5).1. i¢ and i[y!J.{1-y 5).1. ;¢ for m, respec­
tiv~ly , the representat ions (35, 1)®(1, 1) and 

(1, 35) ®(1, 1). Finally, ij;a Jlf'l..;lfffliJiA;I/J®_ijiy5.\i¢ 
together form (6•, 6) tB(6, 6•}. The par tic le 
contents of all LfJese r e presentations are given 
i n Table I. It is tmrortam to r•'member that 
irreducible repr esentations of W,. do not, in 
general, have defin ite Lorentz- ·: . a nsforma-­
tion properties. In orJer to build up objects 
with well -defined transformation properties 
under the Lorentz group, one mu s t eonsider 
r educible represe ntations of W6 • There is 
some latitude in choosing the r epresentations 

Tabl e I. Spin-parity-unitary-spin c ontent of representations of W 8 • 

Representation of W 1 

(35 , 1)@(1, 35)@(1, 1)@(1, l) 

(6•, 6)$(6 , 6•) 
(6 , !)(!)(1, 6) 

156 , J)(j)(1, 56) 

Spin, parity , unitary-spin dimensionality 

IJP, Ns! 

(1 + , S)al(C, 8)®(1', l)'il il- , 1\(f;IO+, 8!®10-, ") >tl lv•, J)(f;\0 - , 1) 
n •. 8 )@(1-, 8)@(1 •, I )l'il l l- , 11®10•, Bl'ill o-·, i< !>flW•, 1/<illo·- , u 

+ ( 1+, 3~ 
I{ , 8)@ (~ • 10) 
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in which one places the baryons. One obvious 
candidate is (56, 1) ~ (1 , 56). 

We now return to the intrinsic svmmetry 
breaking , coming from the kinetic ene rgy 
and mass terms in I! . Their t r ansformation 
propert ies (as membe r s of i.ncomplete W6 

multiplets) are eas iiy found to be (35, 1) 
$ (1 , 35) and (6*, 6):1' (6 ,6•) . We are treating 
the kinetic energy a nd mass terms as pertur­
bations on an ot.he r wis e s ymmetric Lagran ­
gian. Such a pr ocedure is nonconventional 
(i.e . , not descr ibable in te rms of the usual 
F eynman diagrams), bu t if this feature is ig ­
nored , one can proc eed formally with group­
thec,rctical arguno.ents. It is simplest to think 
of the symmet ry -breaking te rms in the lan­
guage of spul'ions, with the spurions possess­
i•~r; t he requisite w. tr ansformation proper­
ties . Spur ions can only contr ibute in pairs 
to s elf-mas s ter ms, with the pairs necessar ­
ily possessing the quantum numbers of the 
vacuum. Thes e spurion pairs a r e of particu ·· 
Jar interest when classified accor ding to the 
U(6) subgr oup oi w. mentioned above (a ; 11 
real) . For t!1e breakdown of this U( 6) sym ­
metry our spt1rion-pair mechanism implies 
that to lowest order the symmetry- breaking 
terms in the mass formulas t r ansform like 
members of the 35- , 189-, and 405-dimen­
s ional representation, as assumed by B~g 
and Singh! 

Because of this subgroup mos t of the non­
r elativ istic res ults10 based on U(6) can be ob­
tained from W6 • However, W5 predic ts a 
super-supermult iplet structure on top of 
U(6) , most characteristically the axial- vec tor 
and scalar mesons listed in Table I. Corre­
spondingly, mor e gene ral mass formulas can 
be deriVed on the basis of lV6 symmetry . 

It is of interes t to find the "would- be -con­
served" curre nt s of our model, and to calcu­
late their (nonvanishing) dive rgences .11 For 
example, corresponding to the para meter 
a;2 there is a current 

. i2 __ ~_£.,r , J (l!.r.A) i 
1 , - oo. -z '~-Y., · ·- 31 + 2 ~ 1/1, 

.- 12, Jl ' 

and its divergence 

a . i2 c5.C - ( (1 + ) . j ll ~~= if y,a, - y,a,) _.1::1. At w 
t2 2 . 

+ mifa.,y•>..i 1/J. 

We ben ascr ibe in the sensl! of a Go1dber ge,· -

\43 

Treiman argument pa rtic les to these nonvan­
ishing divergences of currents. In th is way 
we may intr oduce a none! each of vector, 
axial-vector , and pseudoscala r (the last 
a rising from the noninvariant mass term) 
mesons , that form together an incomplete 
W6 mult iplet. The coupling of these partic les 
to other physica l states may be viewed as a n 
effect of IV6 br eakdown . 

In cone lusion we wish to point out that IV 6 

s ee ms to be the natural group of hadrons .12 

One c r uc ia l test of it s approximate validity 
would be the expe rimental d iscovery of the 
1 + and o+ mesons it predicts . 
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12Ther e is a larger contender for the title of sym­
metry group of hadrons, a 144-parameter group, 
which we do not discuss here . 

About the strong-coupling limit on which our above 
discussions are based, we would still like to make 
the following remark: One possible way of handling 
this problem is to study the behavior of vertex func­
tions in the limit g-""· We have done such a study 
in the context of chain diagrams and found that for 
g-"" the vertex functions exhibit W 1 symmetry. 
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PROBLEM OF COMBINING INTERACTION SYMMETRIES AND RE LATMSTIC INV Al'i.IAACE 

W. D. McGlinn 
Argonne NaUonal Laboratory, Ar gonne , Illinois 

(Received 13 March 1964) 

Recently there has been discussion1•
1 concern­

ing the possibility of combining interaction sym­
metries (for instance SU(S) for strong interac­
tions) and relativistic lnvariance in a nontrivial 
way. One of the motivations is the possibility of 
obtaining exact mass for mulas• for particles be ­
longing to the same representations of the Inter­
action group. In this paper the impossibility of 
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such combinations, under a cer tain restrictive 
condition, is pointed out. 

Consider an interaction symmetry defined by 
a semislmple Lie group I. When combined with 
Lorentz lnvarlance , the usual assumption Is that 
the group T that describes the full symmetry is 
T = I x L, where L Is the inhomogeneous Lorentz 
grolll' . This, of course , leads to the conclusion 

r. 
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that particles belonging to the same irreducible 
representation of I have the same mass since the 
irreducible representations of T are products of 

those of I and L. 
It is c!.,ar that ii particles belonging to the 

same r epres entation of I are to have different 
masses , then the generators of I (denoted by Ij) 
do not in general commute with the translation 
operators , that is , in general 

[I ,P ],.0 . 
t .IJ. 

(1) 

The problem then is to find a Lie group T that 
has as generators those of L and I and for which 
inequality (1) , 1n general , holds . A further re­
striction to be imposed on T is that the gen.,ra­
tors of I commute with the generators of the ho­
mogeneous Lorentz group. This of course im­
plies that if one applies both a homogeneous 
Lorentz transformation and an interaction-sy~­
metr y transformation on a state , the transformed 
state is independent of the order in which the two 
transfor mations are applied . It further implies 
that the quantum numbers associated with the in­
teraction symmetry do not change when one per­
forms a homogeneous Lorentz transformation. 
With this r estriction it is s hown that indeed [Ij , 

piJ.] =O and thus T =i x L . 
The gener ators of the Lorentz group satisfy the 

familiar commutat ion relations 

[M ,M i=il g M +g M 
1J. V ~C" IJ-<1 ). V IJ.A V<J 

+g M +g M ] 
va ,.x xv <JIJ. ' 

[M IJ. v'p,\ ]= ;(p vg IJ.>. -P IJ.g v;>..), 

lP ,p ] =0. 
,;. v 

(2) 

(3) 

(4) 

We will denote the generators of the group I by 
Ji, i = 1, "· , n, where 11 is the dimension of the 
group, and the generators of the Lorentz group 
by Ji , n + l "' i "' n + 10. In particular, 

p . = J . for l "' i "' 4 
t n +z ' 

M12 =Jn+ 5' M13=Jn+6' Ml4 = Jn + 7' 

M23 =J, +8' M24 =Jn+9' M34 = Jn+10' 

The full symmetry gr oup T is determined by 
the commutation re lations 

[Jj' Jk ]= CjkiJi' (5) 

where· the structure constants must satisfy 

i i 
cik = -Cki • 

p s p s p s 
cis cjk +Cks cij +C;s cki =O. 

The restriction imposed immediately after 
Eq. (1) implies 

(6) 

(7) 

Cjki =0 for j"' nand k>n+4. (8) 

Consider Eq. (7) for i "' n, j>n+4, n+1 "' k 
" " + 4 , p "' n. The restriction on T implies 
c 

1
/ = Ciis = 0 and thus Eq. (7) reduces to 

p s 
cis cjk =0. 

r ru m Eq. (3) there is at most one value of s in 
this sum for a given j and k for which C;k s" 0 
and for agivenvalueofs, n+1 "' s "' n+4, apair 
of values i and k exist for which Cjks,.o . Thus 

c . P=Ofori "' n, n+l"'s "' n+4,P"'n. (10) 
IS 

NowconsiderEq. (7)forn+1"'P "' n+4, i "' n, 
j > n + 4, and n + 1 "' k "' n + 4. For this case Ciis 
= 0 and Eq. (7) reduces to 

p s p s 
cis cjk +Cis cki =0. (11) 

In Eq. (11) both s indexes need only range be­
tween n + 1 and n + 4. Consider the particular 
case j = n + 5 and k = n + 1. With the aid of Eq. (3), 

Eq. (1) can be reduced to 

c . Pc _ n+2+C. Pc _n+1 
1, n + 2 Jk 1, n + 1 k , 1 

p n+2 
+C . 

2 
cki =0, 

J,n+ 

where 

p C . 
1 

= 0 unless p = n + 2, 
J,n+ 

p 
cj, n +2 =0 unless p = n+ 1. 

This implies Ci, n + .f = 0 for all i unless p = n + 1 
or p=n+2 . LettingP=n+2, one obtains 

C k=C n+2 
ik i,n+2 

If one considers Eq. (7) for the case j=n+8 and 
k=n+3 one concludes Ci,n+2n+

1
=D. Contlnu-
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ing in a similar way we find 

C.
11
j= C .6 .k' i"' n, n+1 "' j, k "' n+4. (12) 

I I J 

Now consider Eq. (7) with n + 1 "' P, k "' n+4, 
and i , j "' n. From the previous discussion 'for­
this case we can write 

s p 
c ik =6 skcj, cjs = 6 sp cj' 

c p = -15 c c p = 15 c 
ks pk s ' i s p s i' 

s 
cki =- 15skci' 

Inserting these relations in Eq. (7) leads to the 
conclusion that 

C C .. 
5 

= 0 for i, j "' n. 
S IJ 

(13) 

If one introduces a standard coordinate system• 
of the group I, it is easy to see that Eq. (13) 
implies C s "' 0. Thus 

C .. k = O for i "' n , n+1 "'j , k "' n+4. (14) 
IJ . 

Now consider Eq. (7) with i , j <n, n + 1"' k 
"' n+4, p>n + 4. From the original assumption 
and the previous discussion, it follows that c;l 
= cil = 0 for this case. Thus Eq. (7) reduces to 

p s 
cks c ij =0 (15) 

Since this must be true for all i, j"' n, using 
again the standard coordinate system of the group 
I, one sees that 

ck/ " o for p>n +4, n+1 "'k"' n+4, s "' n. (16) 

147 

Combining Eqs . (8), (10) , (13), and (14) leads 
to 

ck/ =0 fork "' n, i " n+ 1, all i: (1 \ 

that is , T =I x L . Thus if one demands that the 1 
teraction symmetry commute with the homoge­
neous Lorentz transformation and requires the 
existence of a Lie group T whose generators an 
those of the interaction-symmetry group and the 
Lorentz group, then it follows that T =IXL, Thl 
applies in particluar to the group SU(3). 

In conclusion, if one wishes to combine such aJ 

interaction symmetry with Lorentz invariance to 
form a larger group that will give mass splitting 
one must accept not only lack of commutation of 
the symmetry-interaction generators with the 
Lorentz translation generators but also their 
lack of commutation with the homogeneous . Loren 
generators. It is felt that this will, in gener al , 
lead to interpretation difficulties. 

It should be noted that Eqs . (13 ) and (15) are 
true even if the interaction-symmetry group is 
not semisimple ; for some such groups one can 
still deduce Eqs. (14) , (16) , and (18). 

The author wishes to thank Dr . M. Hamermesh 
for valuable discussions. 
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The remarkable success of su6 ideas [1] in el ementary part­

icle physics makes it imper~tive to look f or i t s r elativistic basis. 

Consider the free Dirac Lagrangian .l .. f (( -"'-} f for a s i ngl e 

partiole. ~ is .invariant for the Pauli-Lubanski transformation 

'/" = (1+'-E:f"wJN)t (1) 

where 
Wji .::. i t.f".,/"' (Jrp p"' 

Since 'p,~~-tA~_,.,; 0 , there are three i ndependent generators with the [2] 
commutation relation 

[wf",w~'J = E~rt' Pr wK (2) 

The generators give rise to an su2-like (in general non-compact) 

structure which satisfies for the spin 1/2 case the anti-commutat i on 

relation: 

leuy,w~J = -..J; (~s[~;..,,rj' ¥s [~"'¥]) 
(3) 

:;: 2 ( r~ fr- - r ~9)',. > 
Consider now the case when ~ i s a three- component Sakat a- like 

entity (representing quarks). It is poss ibl e t o extend {1 ) to t he genera l 

(su6) transformation : 

t ( ·ri ,· 'f fi-T r~- ) 'r • ·t + , ... · T + t )4 wf" r ( 4) 

T .. (d.• 0, •.• • , 9) 
Here li. -./, . ... ,j 
(2), 

are t he usual u3 generators with .T
0::1 and f r om 
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~ 

[lwl", T~w.,] = { fw~, wrj[T~ Tr;] +j[wr, wv:}[t, T~j 
= ;, ( r)'. rr-- r2 s.)/.11") ct). i r ft + ± £ )1-'lfK. r1 OJK_ (j t.:i T:J ~·l T ~) 

[ T 'w)'- , /d 1 = J.c.v c.··o.Tl )- ".)'. LJ R. 

Th~ adjoint r epresentat i on- densities are given 
- T' and'~ r which satisfy as usual' 

'"'""(!/. 

by t QJ' Cvv I r 

Y'f'W( Tolr = r ~T( r = 0 

One may now generalize the case of su6 above to the more general 

case [3] (su6\ x (su6)R; i.e., start with the fields 11'L,!l.=:J:(1:tJ'r}p 
Clearlymyrr term is not invariant for the full group (though the 

invariance is unaffect ed f or the pure GJ~ transformations). There ~re 

altoge.ther now 70 generators f~rt Q.lt (;.;11 T"'?f!'4/l. 1 ij'4/l. ~ T'y.L,Il • 
The oonservation equations (6) however need modifying; thus: 

r -(Wr (J Tel r f: () 
~{I' !r T' f to 

= r.z~ Cf w,. as-7 "t J 
:: (2~ t fr T'. tf). 

From this point of view the 0-, 1- 35-fold (represented by the field 
- -:-rl. - • . 

operators 'f (.J11J'rf r and r tf'J 7' '¥" ) is a remnant of the broken (su6)1 x 

(su6)R symmetry. 

The author's thanks are due to Drs. P.T. Matthews and J. Charap for 

stimulating discussions and to Drs. R. Delbourgo and J. Strathdee for 

carefully reading through the manuscript. 
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By the usual procedure one constructs the conserved current­

density f!"""'..-r so that a representation forG.J.,. is given 
by 

Jd 3)' r (4 C4)~ 'lf· 
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