


































































































E. Jbnikun

"

Z (xk dXp, 1 Xnek dxk)'

k=1

N(Ca) 126 e €pqt p+9.

~ . ran
D, — rpynna OPTOrOHAIbHEX F1pecdpa3oBanii L
-

S (D) (e el @F

4. Mbl Haz0BeM BEKTOp M3 R™ MO JNOIKHUTETbHBM, ecJIM ero mnepsast
KOOpJHMHATa, OTJIMYHAsA OT HyJsd, nosiureibHa. MHOKecTBO P BCEX M0N0
JCUTENIbHBIX BEKTOPOB Y/IOBJIETBODPSCT CJELYIOIIMM YCIOBHSAM: .

4(1). Mycre a= 0. Torna 6o a € P, nubo —a€ F, HO HEBO3MOKHO,
qrobel a€EP v —a€EP.

4(2). Ecnn a€P, BEP, >0, p=0, To hat+pb€P. R

Mpt yCJ10BMMCS TTMCaTh a>0, ecnu a€P, n a<0,ecmu —a€P. .

Memma |. Ecau gexmopsl a,, dy, .- -2 dp noaoxcumensuvl u (@i, dx) <

i i 1] 163G6UCIIMbL.
G, k=1, ...,p; k), moamu 6:3Kmopu AUHELIHO F

P~ ’
. ’ . LA P (4 E
Myctb, B camom jete, dp= Z: Nigi =3 Mai+ X" hiai TAE K
=

"
OTHECEHDBI CJaraeMbie € TOJOKHTEIbHBIMH KoadpuuneHTaMH M’: a K ?r——a
craraeMple C OTpHUATEbHBIMU Ai. [Tonoxum b= Nrha, c=2 )\it(z,-. 1;))5-_
(b, ¢)» 0, a,=0b--¢, mpuueM ¢ <0, tax uto b+ 0. M,b; MMe(%MA ip(')
=(b, b)+ (¢, b) >0, BO, C npyroit cToponsl, (4, b)= Sk (ap, @) <0 -
5. TlonoKMTe bHHH KOpeHb ¢ Ha3wlBaeTCA HpOfTbIM, efnu ero HeJl g
PA3NOMHUTD Ha CYMMy JABYX ONOKUTE NBHEIX KopHell. Beskufl MONOKHTEND
Iblii KOPEHb MOXHO TPEACTABMTH B BHAC CYMMEI npoc:rbxx KopHel. e
Fcau b— nojioKuTenbHplil KopeHb M @— [POCTOH KOpeHb, TO 4 gﬁ
fyneT TMONOKUTENLHBIM KOPHEM. [ToaToMy pas3HOCTL ABYX 2[:‘[1)0(:;>IX KOPH
a, n a, He GyjeT KOpHEM, H dopmyna 2 (2) naeT ans nux (a,j ) =——q§3.
CnenosarenbHo, (a;,d,)<0 M, B CHIY JIEMMBl I, npocThie KOPHH nHHeﬁHa(i
HesapHCHMbl. TIPOH3BOBHLIH MONOKHTENbHBI KOPEHb OAHO3HAYHO pa3nia
Ha TPOCTHIE.
raeTI%nomuEenbnuﬁ KOpeHb, SIBISOLHACS cyMMoit !c MpOCTHIX KOpHeﬁ’;
HazoBeM KopHeM MopsiaKa k. IokaxeM, 4T0 BCAKRH KOpeHb ¢ nopﬂknka]
AmeeT BHA a-+b, TAe o— MPOCTOH KOpEHb, b—KopeHb mOpAAKA K.
B caMom pene, €CNH dy, dy .-, dp— CHCTEMA BCEX NpOCTHIX KODHEH, ;:(3)
CHCTEMA ¢, Oy, dy, - - -1 Qp — JIHHEHHO 33aBHCHMA W, B cuay Jemmel 1, onu(;m
npouaBejientii (¢, @;) TOJOXKHTENBHO. 9710 o03Hauaer, 4To B (Qopmyne i<
p+# 0 H ¢— a; — KOpeHb. 5
6. Teopema 1. Ioaynpocmca 2pynna @ onpedeasemes cucmemou
I (@) ceéoux npocmulx KopHeil. —_—
Jlisi [0Ka3aTesbCTBa JAOCTATOUHO MOCTPOMTDL MO MPOCTHIM KODHAM Tpyn-
nu @ Bce ee kopud. B cuny 2 (1), MOKHO OT PaHHYMTHCA [IOCT POEHHEM
[ONOKHTEIbHHX KOPHell. Bce KOpHM MEpBOro NOpsiika HaM AaHH, H60
310 —npocThie KOpHH. [TycTb MBl y)KE MOCTPCHIIM BCe KODHH TOPSAAKA,
menbmero k. Kopuu nopsigka k MMEOT BHIL b--a, Tae b— KopeHb NopsAaKa
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Kaaccmras npoctix rpynn Jln

2(b.u
(u. a)
JsieT  PeludTb BOMpOC 0 ToM, Oyjer .1t cyMMa MpocToro K

propsiaka k — 1 KopHeM. JIEHCTBUTEIBHO, BCE KO PHII CEpill b,
HOJIOKHTEIBHB M MOpPAKa, MeHpuwero K, TAK YTO P H3pe
J1ooKeHHI MHAyKLd. Takpem o0pasom Mbl MOJKeM TOCTpt
nopsgka k.

7. He npeacrtasisieT Tpyda orpelesMTh CHCTEMbl MPOC’
rpymn u3 n” 3.

I (A,): {ep— €l I1(B,): {ep—¢ v &
H(Cn): {ep—epu' 26“}3 . H(Dn): ‘l"p_epu' €n.

k—1, a—npocToit Kopeib (n” 3). dopwyia ¢=p

8. HazoBem KOHeyHYH cHMcTeMy [' BEKTOPOB [MPOCTPaHCI
TCMOM, eClIH OHa YJOBJIETBOPSIET CJIEAYIOUIMM YCIIOBHAM:

8(1). Ecnu a€l u b€, a==b, TO Z(Z”'a?—nxenoe He
YHCIo. Y

8 (2). T — nunpiino HesaBUTHMAN CUCTEMa.

8(3). I' ne pacmajaercsi Ha JBe B3aHMHO OPTOrOHAJBHI

B cuny 2(2), 2(4) n n° 5, uMeer MecTo

Teopema Il. Cucmema 11(®) npocmetx xopueii npocn
& ecms (ID-cucmena.

Teopemamn I n Il 3apava o KaaccupuKaumu mpocTuHix
AGHa K 3ajlade O TMOCTPOEHHH BCEBO3IMOXKHHX (IT)-cucTeM.

9. Mycts @ n b—ppa pasnnyneie Bexropa (II)-cHcTeMBI

s\
(a,b) meskpy a n b pasen qmbo 90°, aubo 120°, nubo 135°,
. 2(a, b) 2(a. b)
JleliCTBUTENBHO, MOCKOJIBKY @ a) H . b) qg:rui
N 2(a, b) 2(a. b)

2 S b I AP bl .
4cos*(a,b) = (@ a) " (b.py TAOKE Ue0e yKcIo; CTANO OuiTh,
Taxum o0pa3oMm, eJMHCTBEHHO BO3MOXKHBe 3HAUeHUs AJIst

S q

0, 7 o s .

10. OtHecem waxciomy onementy (I)-cucrempt 1' Toux
CoeiHiM  1BE TOUKRM OIHUM, JBYMA MJH TPEMs OTpe3Ka!
ToMy, 00pasyioT JIM COOTBETCTBY!OIIME BEKTOPH Yroj, PaBH
et 150 . Tlapy Touex, COOTBETCTBYIOWMX OpPTOrOHaJILHHIM
DoieN coeMHATe BoBce. [loCcTpoeHHy TakuM o6pa3om CXi
ITi3pIBaTh CXeMOH yraoB cucremsl I'. Ecin mod xaxpoh
V/.10B BHIIHCATh KBaApaT [AJMHH (4, a) COOTBETCTBYIOMIEr O
HOJIVUHM CXeMY, MOJIHOCTLIO offpe AeJIstiollyio cucTemy L' — cxe

B xauectse npumepa noctpoum cxembl cucrem II(A,),
(D,).

M| O——O—8 1 - O——w e — *~—t

"”z AR AR AR ’””jr 7 2 2 1
2

”m T oo r——>—a ). [ |

i zZ 2 2z ”m”)z 2z 2 2



E. B. Ounkuy

1. Temma 1. Cxema yenos (X)-cucmemvt He Momcem umems 6ud
I,—1,, I, =11, T - 111,

], &=»—» I, €< 00— D E‘,O—‘:)—.'—'.

|

/, I, &—»—e

I,

Honyctum, uro Hexoropas (II)-cucrema I' Wmeer Cxemo# yriioB ogHy
u3 atux cxem. [lycte a,, ..., a,—BexTopsl cucTeMbl I'. [Tonoxkum b; =X a;,
rae =0 (@=1,2,...,p). Torpa

HNT’

b,,bk)—(z bs, zb}>o

Mbl  TpugeM K [npoTuBopeydio, mnofobpaB  mmMHbl  b;  Tak, 4TOOM

)
Z (bi, by) < 0. Kak aro chenatb, BuaHo M3 cxem I;—I;, II;—1I,
i 1h

III;—lll;, rae, xkpome BesMduH (b;, b;), MOANMCAHHBIX MOJ COOTBETCTBYIO-
UMK TOYKAaMM, BbIGHCIIEHBl M HAJMMACaHBHl Haj COOTBETCTBYIOUIUMH OTpe3-
KaM{ BeqMyuHH (b;, by).

Jlemma 11 fgonyCKaeT, OYeBMAHO, Cliedyioliee YCHIIeHHe: CXEMa Vijlon
(I1)-cuCTeMEl He COAEPHT moacxemst Bufa I, —117;.
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K aceudukanma upocTeix rpyin i

12. Jenma 1. MTpoussoavrea (X)-cucmesa usecm cxeswd vodns od:
w3 exen 1, 1M =112, Y 111%

= JC—»—e- - 0—0 [lo—e....0—a ﬂ‘.—o——o—~é¢—o
Jo—ac—n—a ﬂ'>—a ----- *—e M’o—o—f——o———A

B camom fene, cxema, cofiepyKawiast TPOHHOH OTPE3OK M OT.IHUHAS
cxembl 1, HeoBXOAMMO COMe PIKHUT MOJCXEMOH ‘on}ly U3 cxem I, — I, nemmnt
4YTO HEBO3MOXKHO. AHANOTMYHO, €C/AM CXeMa COJEPKUT MBOHHON oTpeac
to B cuny 1I,—1I1, ona copmafiaer ¢ ofAHoR us cxem [I'—II*. Haxone
I, — 111, WckawHaKwT [AJs CXeMLI, He CoJepKallled HV TPOHHbBIX,
IBOHHBIX OTPE3KOB, BCe BO3MOXHOCTH, Kpome II1'--I11°.

13. Ilycte a u b——Be}(Topu (I1)-cucremer I', genaoliize yroa B 121
2(a, b) L 2(a, b) 2(a.b) __ 2(a, by _
Taa B =4 cos® (a b) =1.B cuny 8 (1) =B =

CneuoaaTeano (a, a)=(b, b). Tquo TAK K€ MBI MOJYYHM, YTO 0
(a b)— 135° (a,a)=2(b, b) n npu (a b) 150° (a,a)=3(b, b) (upear
naras, 4o (a, a)< (b, b)). U3 conocrapieHnst 3T0ro 3aMeYaHUst U J1CMMBE |
HeMeJJTeHHO MOJIyJaeTC s

Teopema Ill. [Tpoussoasras (I)-cucmema aubo nodo6ra oonnd
cucmen IL(A)), TL(B,), II(C,), TI(D,) (nn" 7 u 12), aubo umeem cxeu
0JHY U3 cxXeMm

'
{ Vl = (7| o—=—D—2 3l H—é*—'

Toraa

b 1A a u Y B | 4 H

L] A
/4/0—0—‘—4‘——. {5 *>—o Z‘ -
4 4 4 i q 4 A 7 i 4 4 L} 4

{MHOMHCUMEND NPOTOPYUGHAALHOC I ¥ — NPOUIBOALHOL NOAONCUMNEAHOC HUCA

14. U3 reopem I, II, 11l Beitexaer, uTo eciwm npocras rpynna &
BXOJAWT HH B OAHY U3 cepuit 4,, B,, C,, D,, To cucrema II{@) ce uy
CTHIX KOpHelt umeeT cxemoit ofuy u3 cxeM (I)—(5) n” 13. (Muowuresnb
0AHO3HaYHO ompefesed B cuay 2(3)). CocnaBwmch Ha CYLECCTBGBA
MATH Pa3HYHBIX MPOCTHX TPYyMN, He BXogsiuwmx B cepun A,, B,, Cp, !
MBI MOXKeM ()OPMYJIMPOBATb OKOHYATENBHYI) TEOPEMY:

Teopema IV. Bce npocmuie epynnet Jlu ucde pngaromca demisl po
Geckoneynvimuy cepuamy A,, B,, C,, D, u namow useauposaqnsmy 2p,
namuy &,, F,, E,, E, E,. Cucmembi npocmsiX r£opHeil U30AUPOscHHOIX 1,
2pynn ocwmcea, coomeememeenno, cxemamu (1)—(5) n" 13.
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reference is to the review paper of BEHRENDS, LEE, FRONSDAL and

DREITLEIN (4], I have checked with Lee that apparently while these autho:
knew of Dynkin's work they did not have it accessible when they were writi
their review, Thus their treatment of the fundamentals resembles Cartan and
Racah more closely rather than Dynkin, Another excellent paper for physi-
cists is SPEISER and TARSKI [5]. For a fuller exposition of Dynkin, refer
ence may also be made to two Imperial College theses - those of NE'EMAT
[6] and IONIDES [7].

3. DEFINITIONS

The general theory of Lie groups follows closely the pattern of the one
group we are all thoroughly familiar with, the theory of the three-dimen-
sional rotation group O, It is indeed a matter of deep regret that the ele-
mentary expositions of this familiar case do not employ the same termi-
nology as that of the general theory. Half the conceptual difficulties of the
subject would simply disappear if this had consistently been done in our
undergraduate courses, To illustrate and to anticipate notation we sum-
marize known facts about the rotation group Oj. (All statements made here
will be formalized later.) We know that this group is completely determined
by three infinitesimal generators:

Jt= 1203 £i ), J,
and their commutation relations:
WLl =0, 0, 5] =-07, 07,07 =35

The commutation relations tell us that

(i) The number of operators (out of these three) which can be diago-
nalized is one (J,), Call this number the "rank" of the group, Thus the rank
of O3 =1,

(ii) Call the eigenvalues of Jj (i.e. the magnetic quantum numbers) by
the name "weights”, The highest eigenvalues j of J; uniquely labels a rep-
resentation. We shall call this "the highest weight".

(iii) The commutation relations tell us (from il ‘I3] = :tJa) that, irre-
spective of what the weights are, the difference of two consecutive weights
is £ 1, These numbers *1 which are characteristic of the commutation re-
lations of the group and not of any particular representation are called
"roots". In the subsequent general study of Lie groups these three concepts,
"rank' of the group, "roots" of the group and "weights" (and particularly
the highest weight) will be generalized and will play crucial roles,

(iv) Another way of labelling the representations of Oz is to use the oper-
ator J% This operator commutes with all other operators and thus for a
given representation equals a constant multiple of unity. If j is the highest
weight J%= j(j + 1) I. This operator is called the "Casimir operator", We
shall find that the concept of a general "Casimir operator" is not as highly
developed, andfor this reason we shall treat this concept at an early stage
section 5) and then not mention it at all later,
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THE FORMALISM OF LIE GROUPS
MATHEMATICAL PRELIMINARIES

.1. Agroup Gis a set of elements a, b,.,, witha compositior
lication) such that the following conditions are fulfilled:

(i) if a and b are elements of the set, then also the product
ngs to the set,

(ii} the composition is associative: a (b ¢} # (a b} c,

(iii) the set contains a unit element e such that ae = ea = a,

. (iv) to any element a of the set, there exists one and only or
" of the set such that ala = a a! = e,

The definition of a group does not imply that the two elemer
2 are equal; i.e,, the composition is not necessarily commuta
\ which all elements commute is called abelian,

A sub-group H of a group G is a sub-set of elements of G, °
1fils the group postulates, G and the group consisting of the ur

are called trivial sub-groups of G. A sub-group N is called a

ib-group of G if for any element n of N (neN), sns’! is again ar
"N where s is any element of G(seG).

Agroupis called simple if it contains no non-trivial invariant s
tcept possibly discrete ones,

A group is called semi-simple if it contains no non-trivial
relian sub-groups, except possibly discrete ones,

2. A representation of a group G is a mapping of the group in
1ear transformations D of a vector space R such that

if abs=c

then D(a) D(b) = D(c),
D(a?) = D' (a),
Die) = I,

where I is the unit operator.
A representation is reducible if it leaves a sub-space of R i
1en every transformation matrix can be brought into form:

[A s'l
0 D
A representation is fully reducible if every transformation n

written as
A 0
[ D

3. A Lie group is a group whose elements form an analytic m
ch a way that the composition ab = ¢ is an analytic mapping of
X G into G and the inverse a -a? is an analytic mapping of G i
e group can thus be viewed from an algebraic, topological or a
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point of view, The topological concepts of importance are connectedness,
compactness and invariant integral on the group (see SPEISER and TARKSI
[s]).

A group G is compact if every infinite sequence in G has a limit point
in 3, For a compact group one can define a finite total volume which is in-
variant under the group.

For example, the group of rotation in three dimensions O without re-
flections is a connected and compact group. The proper Lorentz group is
connected but not compact and the improper Lorentz group is neither con-
nected nor compact,

The study of simple groups is important because every semi-simple
connected group is essentially a direct product of simple groups, and any
connected compact Lie group iz essentially a product of a semi-simple and
a one-parameter (abelian) com;..ct group.

Ex, Oy ® O3 X Og; Oy simple; O, semi-simple.

The symbol ® means locally isomorphic. From now on we consider only
simple compact Lie groups.

5., SIMPLE COMPACT LIE GROUPS

So far as a physicist is concerned, a Lie group is a group of transfor-

mation of variables which depend analytically on a finite set of N parameters.

The fundamental idea of Lie was to consider not the whole group but that
part of it which lies close to the identity consisting of the so-called infini-
tesir:al transformations, To formalize this, we have Theorem I.

Theorem 1

Every representation of a compact Lie group is equivalent to a unitary
representation and is fully reducible (RACAH, WEYL {2]). Thus, since the
trices D(g) can be taken as unitary, they can be put into the form:

D = exp(ie®X,),

where X, are constant hermitian matrices (X; = X,), which are called infin-
itesimal generators of the group. €%(a@ = 1,2,..,N) are N real parameters
on which the set of transformations D depend.

The group is called unimodular if for any D(S), det[D(s)] = 1.

Then tr X = 0,

Theorem 2
Fundamental Theorem of Lie
The local structure of a Lie group is completely specified by the com-
mutation relations between the operators X :
= 7 . =
(X, XJ=Cp X, s B,y = 1L2....N, (5.1)

where the coefficients Clg which are independent ot the representations of
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2 group are numbers (called the structure constants of the group). These
mbers satisfy two requirements:

antisymmetry in the two lower indices

Y - A
Caﬂ- Csu‘

8 € § € é €
Cas C67 + Cyu Cog + Coy Cso = 0.

Note that conditions (a) and (b) are equivalent to the antisymmetry of
Commutator bracket [Xa, X,] and the Jacobi identity:

(X Xol, X0+ 11X, Xal, Xp] + [(%5. %), %] = 0.
vrite (b) in the form:
(Colh (cs)i - (Cyy (Cal) = Cog(Cs,,
s, we have shown the following:

orem 3

The N matrices Cy with matrix elements (Cc,,)é7 form the so-calledregular
.djoint represeutation of the Lie algebra¥, T
The problem of classification of Lie groups is the probiem of finding
wumbers c's which satisfy (a) and (b) and then of finding N constant ma-
2s which satisfy the fundamental commutation relation of Theorerms 1.

i problem was completely solved by Cartan in 1913. Refore however

tate Cartan's results, we first wish to recast the fundamental commu-

n relation (5.1) in a "canonical" form and also get over a number of
liary results connected with Casimir operators.,

"ASIMIR CPERATORS

From the structure constants we can define a metric tensor:

5
g =
Be Cua Cb
rem 4
The necessary and sufficient condition for a Lie group tc be s=m -gim
s that ’ o

The set of N matrices Xy span g lineas vector space over the fieid of conipiex numbers and define a
sbra; the sum of two matrices is an element of the algedra and so is their commurator, Lie aigebras
BIOups possess 3 one-one correspondence, and it is pussible to g freely from iLie groups to Lie 3igebra.
dy of Lie algebras (first iniroduced by Weyl) in effect the study of the infimtesimal Aspecidof Lig
teory. Even though it is galling to bring in a nes copcent {of 2 Lte algebra) ar this stage, tois ap-

improves the mathematical rigour of the statements mede in hese lectwes'
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det [guv] § 0 (Cartan).

Thus for a semi-simple group we can define an inverse metric gt such that

uy ]
g8, 8.

and we can use the metric tensors for raising and lowering indices.

Now define an operator F = go,a, X X% This is called the Casimir
operator and has the property that it commutes with all the generators of
the group:

(F. xJ=0,

The proof of the result is trivial. The significance of the Casimir operator
lies in recalling that by Schur's Lemma any operator which commutes with

all the generators of the group must be a multiple of the identity,
For Oy this operator is the total angular momentum .12. One can define
generalized Casimir operators:

n. 8 8 a a
FU= Co/s, Cap, .- Conay X 'X i

It is easy to see that all these commute with X%
For Og all inequivalent irreducible representations can be character-

ized by giving different values of A where Al 2 J%. The question arises if this
is true in general. Racah gives the following partial answer: Write the set
()Lk} defined by M1 = F*, For simple groups if the representation D and (D™YT
are equivalent representations, then the set {¥} gives an unequivocal charac-

terization of all the inequivalent representations.

7. CANONICAL FORMS OF THE COMMUTATION RELATIONS AND RANK

OF A GROUP
Theorem 6 (P.lIonides)
By a suitable choice of linear combination of the X's, the Cg7 can be

made antisymmetric in all three indices and pure imaginary; i.e. one can
write the commutation relations in the form:

[(Xe Xal = itupyX,.
with {,g, purely antisymmetric and real.
In the usual theory of angular momentum, the first step is to rewrite

(the Ionides type of) commutation relations,

J . e, B,y =123, (7.1)

[Ja’ JB] = ieaﬁy b4

in the so-called "canonical form", Defining the non-hermitian operators,

Jo=J, £idy)/ 2,
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ewrite (7.1) as

[3,, L=+,

7.2)
5,,31=4,. (

e are two virtues of this canonical form:

(1) If J, is diagonalized (J,| m) = m|m), we infer from (7.2) that the

ators J, act as ""creation" and "annihilation" operators.

(2) (7.2) shows that the consecutive eigenvalues m of Jj differ by + 1.

first task is to cast the commutation relations (5. 1) in the "canonical
A1

Assume that among the N generators, there are § which mutually com-~
and can thus be simultaneously diagonalized. This number £ is called
ank, and we shall designate these g (hermitian) operators as H;, H,...

. {For O3, £=1). These operators have a direct physical meaning since
eigenvalues for any representation provide us the quantum numbers.
Let us consider H;, H,....H, as the components of an /-dimensional
ator-valued vector H. The components of H clearly satisfy the com-
tion relations:

(H;, Hj] =0 fori,j=1,2, ... S5,

» dimension of the algebra is N (i. e. the number of parameters of the
2sponding group is N), we still need (N - ¢) elements to complete a basis
e algebra. A suitable choice of these is provided by the following:

rem 7
There exists a basis of the Lie algebra consisting of the elements H),
,Hy; Ey, By ... E,n-g/e such that the following commutation relations

[H, EJ = r {e) E, (7.3)
(Eq. B4 = r {a)H, (7.4)
[Eq Egl = NygE,foraé -3, (7.5)

¥, B=+1,%2,...+(N-£)/2. E's are non-hermitian matrices and r (a)
‘eal vectors in an /-dimensicnal space. The r's are cailed roots of the
ra; they have the property that

ra)=-r(-a) {1.6)
*ly the total number of the roots is (N -;),
The scalar product appearing in (7.4} is the usual Euclidean scalar prod-

rovided the H's are chosen in such a way that the following normali-
1 conditions hold:

Ere)rla) =R ; ij=1,2...., (7.7)

w
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with an arbitrary scale constant. Finally, N, are real numbers which are
different from zero if and only if r (a) + r () is also a root.

The roots, being essentially our old friends the structure constants, spec~

ify completely the greup (at least in the local sense). They possess a twin
role :n the theory. First, as may be inferred from (7.3), the roots

are the differences of the eigenvalues of H, Second and more important

for our present purposes, the roots allow us to classify Lie groups. Interms

of the roots we can state Cartan's solution of the problem of finding all simple

Lie groups. The crucial theorem here is Theorem 8 which lists further
properties of the roots and in terms of these gives a complete classification
of L.ie groups.

8. CLASSIFICATION OF LIE GROUPS
A root is said to be positive if its first non-vanishing component {in an

arbitrary basis) is positive. A rvo! is called simple if it is a positive root
and in addition it cannot be decompvosed into the sum of two positive roots,

Theorem 8
(i) For a simple grour »* rank jthere exist ; simple roots and they are

all linearly independent, (We shall call the set of simple roots the T-gystem.)

(ii) Every positive non-simple root can be expressed as a linear com-
bination d))l R, r (@) where Ry are non-negative integers.
Hojen =

(iii) If r (a) and r (51 are two simple roots, the angle 6,4 between these
can take only the following values:

90° 120° 135° and 150°,

sothat 2r e} . r(s)/r(e) . r(a) and 2r(e)- r(B)/r(B)- r(B) areboth inte-
gers,

(iv) For evory simple group, all the simple roots either have the same
length or their lengil ratios assume simple values. More explicitly one has

1 if 8= 120°

r(a}]?

it 8 o
I—;—W = 2 if o8 = 135

3 if Bg= 150°
1f 8,4 = S0° the ratio of lengths is undetermined.

Dynkin diagrams

As we shall see in 2 moment, the geometrical properties of the simple
roots in the 7-system characterize in a unique manner the corresponding
Lie groups. Therefore it is most convenient to incorporate them in a sche-
matic diagram. These diagrams (the so-called Schouten-Dynkin diagrams)
are drawn in Fig. 1.

From Thenrcm 5. the lengths of the simple roots of a given simple Lie
group can assume at most two different values, This fact together with the
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CLASSICAL GROUPS N=NUMBER OF
PARAMETERS
A, e
22 41

¢ OB @ | 24
Q.

D=2y O~ O—O oo O 21—y
(03

J

EXCEPTIONAL GROUPS

= 2
AN o= W ) 2

Es O—O?—O—O 78
O

ﬁ. O—-()-—’; ;—( - O 133
Ep O—O—g—(}‘O—O—O " 28

Fig. 1

Carnan solution of al) possible single Lie groups.

roperties about the angles enumerated above can be symbolically described
y associating with each simple root a small circle. For the roots of great-
st length the circle is marked in black. If the angle between two consecu-
ive simple roots is equal to 120°, 135° or 150°, the corresponding circles
re joined by simple, double or triplelinesrespectively. If the angle is 90°,
he circles are not joined. For a group of rank { there are / simple roots
nd therefore f circles (black or white),

In terms of these diagrams we give now the Cartan sclution of all pos-
iblg simple Lie groups. Broadly these fall into two categories: the so-
alled "classical groups' and the five "exceptional groups'.

To anticipate we shall find that the classical Lie groups are some of
he well known objects:

A, is the group of unitary unimodular matrices in complex space of
¢+ 1) dimensions (SUp,).

B, and D, are groups of orthogonal transformations {rotations) in real
paces of 2/ +1 and 2/ dimensions respectively (O“.l and U,y

C, is the group of unitary matrices U in complex space of 2, dimensions
thich fulfil the condition U J U = J where J is & non- singular antisymmet-
ic matrix (the symplectic group)*.

* Note from the Dynkin diagrams:

2
) D, = :> isomtJ)'rphic GO - Ay
Also Le O & SUg.
(ii) Cy qa» S &« T
e Dg ™ Cy.
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To take simple examples of root structures:
For ;=1 (i.e. group Oy) there is just one simple root + 1. The space

spanned by simple roots (the 7-space) is {1} . For ; = 2, the space is a plane
the relevant groups being

Ayt o—0 Two simple roots of equal length, and the
angle between them is 120°.

B, «_0D Two simple roots. Their length ratio is 2.

Cye The avp'e between them is 135° .

Gy =0 Two ¢'mple roots with length ratio equal to
2, and angle 150°.

Dy: Z 15 semi-simple, D, ™ A X Ay

Summarizing this section then, from the Dynkin diagrams we reac off im-
mediately the Tank fof the group, the lengths of the simple roots and their
mutual angles (and of course the dimensionality of the Euclidean space (r)
spanned by these £ independent vectors)¥,*¥*, The simple roots r(l),
r(2).....,r (¢), are given by the following formulae:

* It is perhaps worthwhile to make the reminder at this .1age that not all roots are simple. In fact the
total number of roots is (N-£), the distinct ones being (N-2)/2in virwe of (fa) = -r{-a), a=1, 2,..., (N-D2
The remaining (N-31)/2 distinct non-simple roots can easily be constructed, andin Footnote *% we give 2
compiete ansatz for drawing a complete root diagram (for £= 2 for example in a plane; for =3 m{a}
space and so on). Personnally, I consider these diagrams pointless. However, 10 satisfy current prejudice the
root diagrams for A,, B, and G, are reproduced in Fig. 2.

Root diagrams for A,,B, and G,

ates all the irefH about angles and lengths of simples roots

Q

%% The following scheme in
specified by the diagrams.
For A, define the following vectors:

Ao 2y Ry,
by the conditions
At At dgy = O
-5:=l‘tz= ..... =L"“ =8,
L‘P' ')3I:|= A, PAA= 1200 £41L
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)= A=Ay,

Lz =, -2,

=X A,

[

1-1

O
1

imple root structure is as follows:

r{g)s A,, (This is the smallest root)
r{g=1) = Ap-1724¢,
=i -,

nple roots are given by:

itisfy (8, 3),

Bala P
A =0 pfa
€« D000
t 1
r(#) =22, (This
DU Ay Ay
r1)sAz- 2.
a»—e —¢
t 1l 1

nple roots are given by:

g(i) = &(-1’*}_(,

E(i:'l) 22"

T(1) = Ay -2,

?

-1

-0
1

LY

8.3). So much for simple roots
by the following expressions:

is the greatest root.)

) (8.

(8.

. All roots are given for
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reorem 11
In order that a vector A be the highest wei

sgentation, it isnecessary and sufficient that j,,
_a non-negative integer or half-integer.
Thus to get the irreducible representations of any Lie group, we should
ark each circle in the Dynkin diagram with a non-negative integer or half-
These numbers characterize uniquely the irreducible representa-
the "components" A -r @)/r (@) T (a) of
sionality of this representation is given

ght ot some irreducible rep-
definedas jo = A-r (alfr la)- rla),

iteger ju
on with A as its highest weight,

being just (3;, Jg-ee--- ). The dimen
y the following theorem of Weyl:

feyl's Theorem: Theorem 12
Let L, be the system of all positive roots of a semi-simple Lie algebra,

nd let an irreducible representation be uniquely characterized by the highest
reight A . Then its dimensionality d is given by the formula:

4= T ‘71 +é-£(ai/_g‘f_(a),

(el

where

g =3 (For, £).

in terms of the auxiliary quantities A's

If one writes the vectors A and g
footnote of section 8,

previously introduced in the third
=L f
= Lg;

gives the explicit expressions listed in Table 1.

f the interesting physical cases, namely,
the number of commuting matrices in
iate them, for example, with the third
he hypercharge. The only simple com-
Any irreducible represen-
f two non-negative integers
Table 1 can be written

(=

ili’
A,
A

loa

The Weyl formula above

As examples consider some O
the case of rank £ = 2. In this case
the algebra is two, and we can assoc
component of the isotopic spin and t
pact Lie groups of rank 2 are Ay, By, Cgand G.
tatjon of these groups can be labelled by means 0
iy Ja The formulae for the dimensionality given in
explicitly 1n a simple way and is shown in Table L.

For instance, for the simplest choices of the arrays j;,

following dimensions:

j one gets the

Ay d(0,0)= 1 By (% Cy=0;) d(0,0) = 1 Gy: d(0,00= 1
d(1,0)= 3 d(3,0) = 4 d(3,0= 17
d(o,H)= 3 d(o,3)= 5 d(o, %) = 14
d(1,0)= 6 d(1,0) = 10 d(1,0) = 27
ad,H= 8 d(o,1) = 14
d(1,3) = 15 d(},3) =16
d(1,1) = 27
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TABLE I

Group p::::Zf;:fN Dimension of the irr. rep,

A, 8 4 U Up Uy +13)

” } 10 H U O Uy +13] (2, +1)

G, 14 4 Gy dg) Up +1) (21, +1) x
31, +1,] [31, +21))

{ Note: Here J; = (2j; +1) and J, =(2j, + 1)}

These numbers d(j, j,)* represent the number of particles which can be
accomodated in any given multiplet in physical applications,

The adjoirt (or regular) representation R plays a very important role
in vector meson theories. For the case of ¢ = 2, these representations are
the following:

A, ¢ dp=dG. )= 8,
B,(C,): dp=d(1,0) = 10,
G, @ dg=d(0,1)=14.

These groups, therefore, can accommeodate 8, 10 and 14 vector gauge mesons
respectively if these mesons correspond to the adjoint representation.

11. COMPUTATION OF ALL WEIGHTS OF A GIVEN IRREDUCIBLE
REPRESENTATION

Notwithstanding the fact that the greatest weight uniquely characterizes
an irreducible representation, it is important for physical applications to
be able to compute all the weights of an irreducible representation. Later
we shall construct weight diagrams for some irreducible representation of
low dimensionality for the case of rank 2 groups (A;, By, C,, G;). In con-
trast to the root diagrams, the weight diagrams are directly of physical
interest,

An explicit method to calculate all the weights in terms of the highest
weight and the simple roots is given by the next theorem, We have learnt
earlier that the roots equal differences of weights.

* I have introduced asmall change of notation in the labelling of representations. Dynkin and Behrends
et al. label irreducible representations with numbers a,, a,,...,a, where a; are (non-negative) integers. I
have used for labelling the numbers j,, i,,...,j, where the j's are (non-negative) integers or half-integers.
The new notation possibly brings out still more the fact that a general Lie group of rank ¢ is a simple "gener-
alization™ of Oy and has ¢ distinct "angular momenta® j,, j,,... 'jl rather than just one (j;).
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Let A and W be the highest weight and the set
ly of a given irreducible representation,
An element m €W is said to belong to the laye:
ed by subtracting K simple roots from A. Clea
¢, and

wW=a® ua®ya®, .
: that all the layers are disjointed,

>rem 13
Every element m® eA®) can be expressed as

E.l.(k) = Ln_(k'l) - £ (Q )’
m*D g Ak-D

ra) er.

ever, if m®D) belongs to A0tand r(a) is an art
rence m&-1) - r (a)eAM if and only if the follow

2p®D - r(a)/r(e) 1 (a)+ Q>

e the numbe. . is defined by the requirements:

mkD 4 gr{e) eW for q<Q
m®Y 4 qr(a) ew for q=Q

ixample:

>erhaps the best way to show that the theorem i

imple in practice is to construct the weights fo:
the group Ay = SUj for which £= 2, The Dynkii

*-space is two-dimensional;and if we call the r«
tells us that their lengths are equal (|« |?= |8
them is 120° so that

a-Blara=-na
‘onsider now the regular representation (3, 3).

ase is d = 8, so that the representation could a
components'' of the highest weight A (ie,, j, a

53
"
wI

1>

cajaa

"B/B-B=:.

Ja =

._.
w

n
>
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Noticing that a and 8 do not form an orthogonal basis, we find from (11.1)
and (11.2) that -

A=a+ B

Now using Theorem 13, if we are given an arbitrary weight M and we
wish 1o knuw whether M-ais a possible weight or not, we proceed as fol-
lows:

Write the series M, M + @, M + 2a,...M+(Q+ l)a where 3 is an
rirger, The series terminates for a @ defined by the requirement that while
M, M+ta,....M+Qa are weights, M+ iQ+ l)e is not a weight. Now com-

i;utc'_tl;e number,
Q+ M, where M, =2 M- afa- a.

If M, + Q >0, then M-a is a weight; otherwise it is not. In starting this
procedure the crucial point to remember is that A + a where a is a simple

root is never a possible weight.
Consider now the case when M = A, Since A+aisnota weight, Q = 0.

Since
Ag=A-afa a =ia>0, (11.3)

we see from (11.3) that A- o is indeed a weight. Likewise, since jg> 0,

A -Bis also a weight.

T “We can now start with (A - o) and test if (A-a)-2 and (A-a)- 8 are pos-
sible weights or not. It is easy to see that A -2a is not a weight, butA-a-§
is, Proceeding in this fashion, we find that all possible weights are given by

the diagram shown in Fig. 3.

1>
i
»

A-22-20

Fig. 3
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Noticethat the weight A -a-f is of multiplicity two. The diagram does not
further fan out, and we obtain a totality of eight weights. Writing A=a+8
we have the following system of weights: -
a+B, 2 B,0,0, -8, -a -(a+B) (11.4)
The multiplicities are spindle-shaped: they increase, come to a maximum

and decrease again, {The weight zero has multiplicity two.) This is a gen-
eral result which will not be discussed further.

L n(f pla+f

\%/

e I 1)
g -
-l b—

ETta e i) =g

Fig. 4

Euclidean diagrams

Fig.4 givgs the Euclidean diagram of these weights. The two rings in
the centre indicate the two zero weights. A tentative identification of the
stabl.e baryons with the appropriate weights has also been made in the figure
provided we identify '

m, =Ia,

(2/3)L,

m,
ry
where m = ({11) in a Euclidean basis,
For' illusfrative purposes, here are some more weight diagrams cor-
responding to the representations{4] shown in Fig. 5.
Before concluding this section we state one important theorem and make
one final remark.

Theorem 14

ve tFor the adjoint representation, the root vectors and the non-zero weight
ctors coincide. The weight zero occurs with a multiplicity equal

rank of the group. pricity equal to the

4 An illustration of this theorem is given by the weight diagram of the

%, 3) representation of SU; computed earlier in this section. Because of
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[
1bos
(1,00 OF SUy
a+ A
N l
1 ) Iy
-5 07
u
I3
oF
10,9} OF SU3
-1 / =
3 R
L | 1
1 1 1
-3 0 5 3

n [
1}
(0,1) OF G2
o
A
-t F = 3
1 L i 1 i
. =L 1 Iy
i 7 0 3 1
Fig. 5

this rather remarkable property clearly the adjoint representation has a
greater claim to attention than any other.
Remark .

In O,, the eigenvalues of J; (the weights) are non-degenerate for any
given representation and hence suffice to label the representation. For gen-
eral Lie groups,- except for the highest weight, all others may possess
multiplicities of > 1 (compare the weight (0, 0) for SU; which has multiplieity
2). If the multiplicity is > 1 we need additional operators all commuting
with each other and with the H's, whose eigenvalues will enable us to re-
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\ove the degeneracy and label uniquely the eigenveci

) the same given weight., (A Casimir operator which

ilue for all vectors of a given representation is cle¢

irpose.) The number of extra operators needed canbe

(N-32)/2.For O3, N =3, £ =1 5o that no extra oper

icterize all the eigenkets of J, in a representation =
the highest weight j. For SU;, however, N =8, £= 2
more operator besides Iy and U to label uniquely the
It is not hard to show that in this case such an operat:
Cy, (N-32)/2 = 2, Thus, even additional to 1_2 {and U a
tum number is needed to form a complete set of comm
For G,, (N-312)/2 = 4,

12. REDUCIBLE REPRESENTATIONS

Let us take stock of the situation. For a physicis
problems, the information necessary for progress is-
(i) Classification of irreducible representation fo
We possess a complete solution of this proble:

(ii) The eigenvalues of the commuting operators
the same problem as the problem ol determini
we possess a complete solution of this,

(iii) Determination of the extra(N-3£)/2 operators
labelling of the eigenkets of H,,...., H,. For g
Cg, Dy we know how to construct such operators
atic procedure apparently is not known,

(iv) The reduction of a reducible representation ini
irreducible representations. There are two pa
first, finding out which irreducible representati
pearance in this direct sum; second, to find th
coefficients, Theorem 15 will give the procedu
first problem, The second problem will be de
Goldberg in their lectures for some special (fo
physicist, extremely important) cases. No gen:
ever exists,

First, some obvious definitions:

Kronecker products
If R;, Ry, Ry are three linear spaces of dimensia
spectively, we shall say R, is the Kronecker product .
= R; XR,) provided to every vector |§, ) R, gE 9V €l
a vector | &3 @Ra(notation €3> = 81> X |Ey)) such
(i) The operation ]E O XIE, > is linear in each ar,
(ii) Ry is spanned by vectors of the form |E1> X ]l
If ¢, and ¢, are linear representations of a Lie alg
and R,, the representation ¢; defined in R; XR; by the

o, (10X |80 =0, 8, 01x 8,0+ &, >

1
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is called the Kronecker product of ¢, and ¢, and will be denoted as
4,9, X4,.

Theorem 15
(i) Addition of weights
If Ag, is the weight space of ¢, and &g, is the weight space of the
repregentation ¢,, then 49 = Bg, + by, .
(ii) If A, and A, are the greatest weights of ¢, and ¢,, the greatest
weight of ¢; is A, + A,,

This theorem is an obvious generalization of the addition theorem for
angular momenta in O3 which we consider in detail. If j; and j, are the
highest weights of two irreducible represgentations ¢ (j,) and ¢ (j,) the (re-
ducible) product representation has the highest weight j; + j,. Also the
totality of its weights is given by

-—d

Weight —  ji+Jo Jjt g=1, 1+ Jp=2, eees =41k

muiti- 2

1 , 3 L 1
plicity ’

The multiplicities are easily deduced, For example, j, + j,-1 arises in two
ways: either as the sum j,+ (j;~1) or equally as the sum of the weights

(j; -1} + jp. The usual procedure to find the irreauc‘g:le representations
contained in ¢ (j;) X¢ (j) can be stated thus: Take away from the totality
of weights those which belong to the representation ¢ (j, j,). Among the
remaining weights occurs the weight j; + j,-1 with unit multiplicity. Clearly
this must be the highest weight of the representation ¢ (j, + j,-1) which
therefore must also be contained in ¢ (j;) X ¢ (j;). Taking away all the
weights belonging to ¢ (j,+ j;-1), we next identify the occurrence 9!
¢ (jy + jp-2) in the direct sum from the fact that the highegt wglfht left is
(j1 + ja -2). This procedure is continued till we reach ¢ (|3, - jo {). At this
stage all weights are exhausted, leading tothe inference that

$ ()X 6 G,) =8l + 5,) + ¢ G + =D+t ¢ (i -5,

The procedure is8 obviously completely general, Its only drawback is that

in order to apply it we need to know all the weights. A simpler version has
been developed by Racah, Speiser and Ruegg where, if j; > j,, one adds

all weights belonging to the representation ¢ (j) (i. e. jo jo-1,..., -jz ) to the
highest weight j, of ¢(j;). For Oy, the resulting weights are clearly the high-
est weights of the irreducible representations contained in ¢(j1) X ¢(j,). For
the more general cases this sum may lead to a certain number of negative
weights which certainly cannot qualify as highest weights, These then have
to be excluded, and the procedure for this is explained in Ruegg's Iecture.

Cartan composition

If ¢, and ¢, are two irreducible representations, the Kronecker product
¢, X ¢g is in general a reducible representation, Consider its greatest com-
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1‘7_52, This is an irreducible representation with the highest

+ A, The operation of Kronecker multiplication of two irreducible

ations followed by the operation of isolating the greatest component

e formation of a new irreducible representation ia; X ¢2) and is
cartan composition of irreducible representations.

e’irreducible representations of an algebra which cannot be obtained

r irreducible representations are called basic representations by

‘hese representations are characterized by the fact that their high-

;8 cannot be spiit into the sums of two elements that are themselves

:ights. Clearly a representation ¢ is basic if, and only if, all the

wmbers j, Jg, ..., jy are zero except one which equals ;. Thus

ple algebra of rank £ has £ basic representations.

an go further and show that all basic represeniations themselves

mstituted from a few so-called elementary representations by

- multiplications followed by an antisymmetrization procedure

-omewhat familiar in ordinary tensor theory and will not be de-

reindetail. For A, and B, there are just two elementary repre-

. C, has one elementary representation and D; has three. One of

itaryrepresentations¢ of A, is realized as the group SL{£+ 1) of

es of order £+1 with determinant + 1, the other being given by

o = - 1g,0.

1e of the elementary representations is obtained by considering
O(24£ + 1) of all unimodular orthogonal transformations of the
nensional space, while the second elementary representation is
led spinor representation, The realization of the group C, in the

e group Sp(2n} of the symplectic matrices of order 2£ gives its

y representation , while for D, {£ > 5) one elementary represen-
iven by the group of unimodular orthogonal matrices of order 24
ition there are two distinct spinor representations. For the ale-
epresentations of the exceptional groups reference may be made to

rief description of the results in representation theory does not
the practical problem of reduction of representation in the man-
ysicist wants it solved. For this we must fall back on our amateur
nultiplying matrices, symmeirizing and antisymmetrizing tensor
1ough perhaps somewhat emboldened by the knowledge that this
entire, and when I say entire - [ mean entire, stock-in-traae of
sional group theorist.
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Assuming invarience of theory under three-dimensional unitary group, various conse-
ces have been investigsted. Both Sakata's and Gell-Mann’s scheme can be treated in
same fashion and in a simpler way. Mass formula for particles belonging to the same
lucible representation has been derived and compared with experiments.

§ 1. Introduection

he purpose of this note is to investigate consequences of the three-dimen-
unitary group (denoted as U, hereafter), which is a certain generalization
usual isotopic space group. Though many authors'** have examined
oblem, our procedure is simpler and some new results have been obtained.
ve can treat different schemes of U, such as Sakata’s”" or Gell-Mann’s®
same footing by our method.

rst of all, we shall give some motivations for introducing U,. All known
tions obhey certain symmetries, i.e. they are subject to the corresponding
rmation groups. ‘We can classify all known groups appearing in the
of elementary particles into the following three categories.

pace-group

i) Lorentz group (ii) Charge conjugation

sotopic-groups

1) Isotopic spin rotation R,

i) Baryon gauge transformation R, ®

i) Charge gauge transformation R,

') Strangeness gauge transformation R,'®

) Leptonic gauge transformation R, ™

Gauge-transformation of the 2nd kind

) Electro-magnetic field

) Yang-Mills field

\ part of this paper has been presented at the La-Jolla Conference held &: i=-Jolle,
5. June 12, 1961,
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T——EREPE T,

In our case, the baryon number N and the strangeness S i~ ohviously given

A’V:ﬁ‘;ﬁ-{')’

S——j. (6)
Now, all irreducible tensor representation of U, are characterized by th
integers f,, f; and £, satisfying a-condition f;=> £, f;. We shall denote it
Us( fi, J1. 1), hereafter. - The dimension of the representation is given” by

D=172-(A—fi+ D (fi- i+2) (i—fs+1). @

Also, comparing the character of ((f;, /. fi) with Eq. (6), we find that 1
barvon number N of this representation is

N-fi+)i+ s 8
Now, to specify sub-quantum numbers S and the isospin [ in U5{ /;, f3. f3),
fix the direction of the 3rd component ¢, So, we restrict ourselves within t
two-dimensional unitary group U, whose irreducible representations are specifi
by two integers £1’, and £;’ satisfying f," = f;” and will be referred to as U,( 1’, /3

Then, the branching rule® for this decomposition tells us that Uy can be deco
posed according as

Us(fi 1 3) T?,}.:H’ S 1. )

where we sum over all possible integer pairs ( /", /) satisfying the follown
conditions :

KNI ZAZSH 2 fs 10
The decomposition Eq. (9) is an analogue of the well-kuown decompuosition
R, into R, (R, being the n-dimensional rotation group).

ethy
R, ) _’L-;_I{]z'(l‘) .

Now, two-dimensional unitary group is a product of two-dimensional unitar
unimodular group (which we can identify as the usual isotopic rotation grouy
and a gauge group, which defines the nucleon charge. Then, the isospin I
immediat:iy given by

I=1/2-(f'=f) an
and also, comparing the character of U,( £, /y') with Eq. (6), we get
S=/"+/)Y—(A+/H+h). (12)

In this way, we could specify sub-quantum numbers S and /. Furthermore, w
note” that two representations Us( £, f3, f3) and Us(— £, —fi, —f;) are contr:
gradient to each other, i.e. they are charge-conjugate of each other in our cas
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s remark df)es not apply to the cases (b) and (c), since the nucleon number
not defined in these cases.

In order to explain our procedure, consider various cases :
(e ) =(1,0,0)

This is a 3-dimensional representation by Eq. (7) and the decomposition
s. (9) and (10) tells us two choices (A4 = (1,0 or (0,0). By Egs. (8)
1) and (12), N- 1 and the former belongs to (I=1/2, S=20), and the latter'
t/=0,85=—1). So the natural identification would be the triplet (p,n, A).
Yo ) = (L0 -1

By Egs. (7) and (8), this is a boson representation with 8 components.
w, by the remark given after Eq. (12), it must be self-conjugate, i.e. it must
itain a particle and its anti-particle together. Now, the decomposition Egs. (9)
I (10) gives us the choice 1) =(1,0), (0, ~1), (1, —1) and (0, 0), and
Eqs. (11) and (12) they have (I=1/2,8=1), I=1/2,8=-1), I=1,8=0),
| ({=0, S=0). respectively. By the remark given in the beginning, the first
» must be charge conjugate of each other and the last two must be self-
jugate under charge conjugation operation. Natural identification would be
- Ko), (K., Ky}, (7., m, 7.) and n,’, where the last one is a new pscudoscalar
on: We may identify the newly found states X*, K *, p and @ mesons under
same category.

A fuf) =20, -1

This is a fermion state with 15 components by Eqs. (7) and (8), and they

:ain the following particles by Egs. (10), (11) and (12).

(I=1/2,8=~2), (I=1,8=~1), (I=0,S=—1),
(I=1/2,8=0), UI=1,8=+1), (I=3/2,85=0).

might identify the first four as =, 5, .f and N, respectively, but then we
: two other unwanted particles. This interpretation is originally due to
iaguchi,” but as we will see in a later section this identification scems to
small masses for (I=1,85=1) and (/=3/2, $=0) particles sc as to make
1 stable, and so it would be more natural to adopt the case (i) as repre-
ng A and N. Furthermore, if we take the viewpoint (ii) for bosons, then
1/2, 8= —2) has to be identified still as = particles. This is because the
ition £—4+ X must be possible and therefore £ (and also 3 since Tof+x)
to be in a product representation U;(1,0,0) x{/,(1,0, —1). However
\ave

Ui(1,0,0) xUs(1,0, —1) =Us(2,0, —1) + 1,(1, 1, —1)
+U,(1,0,0)

Ui(1, 1, —1) and U113, 0, 0) do not contain a particle with (I=1/2, §= —23,
o ¥, the same argument shows that it must belong either to U,(2, 9, —1)
v Uh(1, 1, —1). lkeda et al” identify (I=3/2,S=0) in U,(2, 0, —1) as
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V* (the first 1-N scattering resonance), then the spin of Z has to be 3/2, since
\* has the space-spin 32, Similarly. (J-1.5--D and (- 0, §=—1) states
n U,(2,0, —1) may ®e interpreted as Y, * (a1 scattering resonance) and Yo"

. » . - . e L 22
(z- scattenng resonance), respectively. Then, they must have spin 3/2 alsa.

In this case, we have to assign Us(l, 1, = 1) for o
{iv) (fifu DT (1,1, -1

This is a fermion state with six components. \We have a=1/2 S$=0),
(1=0,8=+1) and (J=1,8=—1), and the last one may be interpreted as .
ate with (1=0,8 - 1), so, we should observe a

However, we have a new st
has not so far been found

resonance for the reaction K.+ 7 seatre iNg, which
experimentally.

Up to now, we have investigated the case (a), it the Sakata-scheme. Now,
Jet us consider the case (b). In this case, we cannot assign any baryon numbers
1o ¢,, so that La. (8) has no meaning’ as ta indicate the baryon number.
Eq. (11) is unchanged as before, but in Eq. (12). 8 has to be replaced by Y,
so that in our scheme (b), we have

1=172-(f =S
Y= (f )= U +fis I3 a3

In this case, the representation (1.0, —1) gives {our states; U=1/2, Y=1),
(-1/2,Y=—1), I=1Y=0) ahd (I=0, Y=0). As for bosons, our assign-
ment is unchanged, since S and Y are the same for bosons. So, we can assign
o, K, K, m) and (2 K*, K*, @ to Us(1,0, ~1). A new phenomenon is that
we can also assign (N,Z5,3,.0) 10 U,(1,0, —1) since the nucleon number is
no longer defined and the corresponding quantum numbers Y and I can be given
correctly. This is exactly the same as in Gell-Mann's scheme, though the starting
points are quite different. As we shall see in the next section, our scheme is
essentially the same as Gell-Mann's as for all practical purposes, and so we can
call our scheme (b) as Gell-Mann’s. We may note the following decomposi-
tion :'¥
Ui, 0, — 1) x 151, 0, =D =2Us(1, 0, ~1) +Us(0, 0,0) + Us(2,0, —2)

J.U’("_)’ -1, —1) +Ul(11 17 '—2)

o0 that 7% Yo* and N* in the Gell:Mann scheme have to be included in one
of the right-hand side, since they decay into one-boson and one-fermion state.
This will be treated in a forthcoming paper.

Finally, we may study the consequence of our scheme (c). This was given,
since it is more natural when we think of the unitary-unimodular group of 3
dimension (we refer to it as SL(3)) rather than U, In SL(3), there is no
distinction between covariant and contravariant tensors. This is because a con-
stant totally anti-symmetric tensor e is invariant under SL(3), so that ¢
behaves like €T, where T,. is a tensor. More generally, we have that the
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entation ( fi. f2 J3). which we have written as Us( /i, f3. f3) up to now,
same representation as { /7 e, Jr+e fiie) where ¢ is an arbitrary integer.
obviously Egs. (12} or (13} is not invariant under SL(3), since it is not
ant under f, f.e{p=1,2,3) and £, —f. -e(t- 1.2). Invariant quan-
umbers under SL(3) under our decomposition Eq. (9) are given by
7300 - f) =2 S S
1-12(47 -/
7=N+3-5. We omit the details for these derivations. In this case, we
'peat the same procedures as before, but it gives almost the same results
the case (a), so we will not go too far. Here we may note also that if
ve up additivity of guantum numbers, we may assign Z=3Y-N(N-1)
3. (14). In this case, we can assign (1,0, —1) both for bosons and
. and we have the same result as Gell-Mann's again. We shall not con-
oot case ic) any longer in this paper, and restrict ourselves only in
e of the cases ‘a) and () )

a4

3. Teasor representation and appiicutions
st ket us consider the Sakatz scheme {a), and we 1ake the represantaiions
0,0) and Us(1,0, —1) for (I, n,p) and (7,7, K, K) systems. respec-
Then, p, n and .1 can be represented by a vector &
¢ =p, fy =g, ¢y - A 15)

T, T, K, K) can be represented by a craceless tensor .7, so that f.r=0.
Jentification is
w :fl'- ﬂ'_‘:f,‘, T = 1 (fx““ ), T’ = — 3 fa‘.
7] v'é (16)
K.=f Ke=/7 K.=f, K= /3
iso (¢, w, K*, K*) can be represented by a traceless temsor F.” _exactly
. same fashion as Eq. (16) by replacing =/ r —w, K—K*, K—-K*
{ly, F.” has a vector suffix due to space-spin, but we omit it for simplicity.
he invariant interactions among baryon-boson and among boson-boson
be given by _
Hy=ig ¢, reh f) a7
H,=ig F.”: (fr-dfr—8A0 1) (18)
the repeated indices mean summations over 1, 2 and 3. In Eg. (07), we
hat ¢, behaves as 8 contra-variant vector ¢ Using the representations
15) and (16), these Hamiltonians can be written as

H,= x‘q;}—é Nra(r-®)N+igNrAK + igAnNK
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n(0 =p(n) and also we can prove that K, and K, have no electromagnet:
structures. This is because we can prove <Ko j, Ko ’m’k"‘j,!Ko\) similarly, bu
4. changes its sign under charge conjugation, and therefore K, j, Ky» has t
be identically zero.

In the case of Gell-Mann scheme (b), we can give some relations  amy
magnetic moments of baryons. By the same reason as in the abuve, let us as
sume that the electromagnetic current j, behaves as Ti' of a tensor T, witl
respect to {75, We have to take the expectation value of j,, i.e. T Fron
invariance, we have

Ty =aM AN +b. Nt 6,7 (Mg"N.)
where Af and N represent baryons as in Eq. (19) and we have omitted spino!
indices. By putting ft=v= 1, and comparing with Eq. (19), we have #(p) =a+¢
/t(n) =c, etc. Then, we have the following relations :

rpy =p(S),
1(Z,) = pe(m),
n(E) =pE, (22
1 () =1/6-[p(p) + (X)) v dnln) .
(3D =1/2-[p(E) - p(E) -
Furthermore, if we demand that T,* is traceless, i.e. T, =0, then we shoulc
have @+ b+3c=0 and then this condition gives one more relation :
2 = (1/2) p(n). (23)

Relations Egs. (22) and (23) have been given also by Coleman and Glaschow"
by somewhat more direct method. We note that they used T,*=M,"N;
— M,*N,%, so that obviously T,*=0is satisfied. From our derivation, however.
it is clear that the explicit form for T, is unnecessary.

We can give other applications of our method for the weak leptonic decays
of bosons and fermions. In case of the strangeness-violating leptonic decays,
the interaction HHamiltonian would be given by

H=G I, 7.+ e+, (1+p)p e (24
where 3, is the strangeness-violating current. Let us consider the vase of G-
Mann scheme, and assume that Q. has the transformation property as T
component of a tensor T.%, 80 that it has the same character as K,. Then, we
may construct two tensors M,'N;* and M;*N,* out of M and N, and it would
be natural to take

A, =aM )N +bM N (25)

a1 (F_. .9, 13 vy _V6 j
o LG Er E2) VB »]

84

Note on Unitary Symmetry in Strong Interactions

1 NS . 1 o ]/b aa ]
'-1[ L)+ (X n+ e p)— = ...
4 v’s( Pyt (Xo-n o p) 3 ( N

o we omitted j-matrices.  Of course, this behaves as a component of an
ipre spinor™ in the usual isospin assignment.

§ 4. Applications of mass formula

i there are no interactions violating Uy symmetry, all particies belonging
e same irreducible representation have to have the same mass, the same
and parity. So we should have the same mass for pion and-kaon, which
~ true. We must therefore have some interactions violating U,. According
-uaguchr” we may suppose that such interactions may be moderately strong,
owpared with the very strong {J,-conserving interactions. Qur purpose in
qote is to investigate the result of mass-splitting among particles in a given
jucible representation due to this moderately strong Usviolating interac-

In the Appendix, we shail prove that the mass splitting is given by the
wing formula®

A\l:d.*1"5‘%("141,’4‘5’*1(1"‘1'1)]. (26)

(26) has buen proved in the lowest order perturbation for such Usviolating
raction with the transformation property Ty of a tensor T,” but in any orders
/,conserving very strong interactions. In Eq. (26), a, & and ¢ are constants
+h do not depend upon such sub-quantum numbers as the strangeness S and
pin I, but may depend upon the nature of the interaction and upon the ir-
icible representation to be considered. Eq. (26) may be rewritten as

Mod' =B Y+[1/4 Y = 1T+ 1] @n
¢ use the hypercharge Y=N+S instead of S Fc_>rmu|a Egs. (26) or (27)
is for both the Sakata and the Gell.Mann scheme. For the details, the reader

consult the Appendix.
Now, in this section, we shall investigate the result of Egs. (26) or (27).

1. let us consider boson system (x, 2, K and K ). An application of (26)
427} immediately gives that we have a relation
M(K)=l/2-[M(K)+M(k—)]=3/4‘M(.-r.')+1/4;M(1r)A (28)
m this, we can calculate the mass of =’ with M (m0’) == 600 Mev. h' is in-
sting to note that a similar value has been predicted by other methods*®
same formula as Egs. (28) holds for the (w, o K*, K*) system.

MK =1/2 MK+ MK =3/4-M(@ +1/4-M@). 29

+ A similar formula has already been suggested by R. P. Feynman at Gatlingburg Conference

1w 1958,
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The calculated value for M(K*) by using M (w) and M{») is 780 Mev, compai
to the experimental value 885 Mev. This relation Eq. (29) holds as long as
o, K*, K*) belongs to the same irreducible representation.  Previously we h:
assigned (1.0, —1) for these, but another possibility is that these may belong
“.7.dimensional representation (2, 0. —2) instead of the 8-dimensional Us(1, 0,—
representation.  Then, the method of §2 tells us that we have 5 more sta
d 1.5 -2, 328 :Dand (/2,8 0 in addition to (¢, @, K*, K
Then, we can use our formula Eq. (26) and we can calculate the mass of th
states in terms of M(») and M{(w). to get

MT =1, 8= =2)2:770 Mev,

MUI=32 8= 1) T20My, MU=2,80) 700 Mev.
flowever, we do not observe [ =32 resonance for the K7 sysiem, and so t
value for M7 =32, 85— = 1) contradicts the experiment. Accordingly, it see
that wur assigninent of (1,0, =1 for (o, @, K* K*) is more reasonable tl
that of (2.0, —2). The above argument equally applies botb to the Sakata :

the Gell-Mann schemes.
As for baryons, let us first consider the Gell-Mann scheme ; then (L, &, N,

helongs to Us(1, 0, — 1) representation. Then, by using BEq. (27), we hav
relation

1,2 M(N) + M(Z)_=3/4- M1+ 1/4-M(Y) (30
which s satisfied with good accuracy.

h the case of Sakata scheme, we do not have such relation unless we
cleee (NS, LY in Us(2,0, —1) representation as we mentioned in
Then, we have Eq. (30) still.  However, U;(2,0, —1) representation cont;
cwo other states with (/=372,8=0) and (I=0,85=+1). We can calcu
the masses of these particles by Eq. (26) and by using the experimental ma:
of N, I, and Y. Then, we get

AM([=3/2, 5=0) 21050 Mev (<ZM(N) <M (),

M0, 8= +1) _770 Mev (<AM(N))

~nich seems to have too small masses not to be detected experimentally. T
<his assignment originally due to Yamaguchi would not be so good. Theref
«we 1ake the view that [/5(2, 0, —1) represents 2, N%5 Y5 Y ¥ ete, ashas 't
mentioned in § 2. In this case, we have the following relations :

MY, =172 TME)+MNT T,

MU =1/2,8=0)=1/2-"M©OY*) i MT=1, 8= +-1)], (3
MU=1,8=:1)=MY\*)+ MY -M(E)]

Ihe first relation gives us M (Y,*) 1280 Mev by using the experimental va
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(£) and M(N*) und it should be compared to the experi
(&) ar d | perimental value
'Y,*)==1385 Mev. Similarly, the last two equations give us

_ M(I=1, S= +1) 1560 Mev,

. MT=1/2, $§=0)=1480 Mev
we have used the experimental masses for Y,* and Y,*. Con

: : . sequently,

1y ldeptlfy' the (7=1/2, §=0) state as the 2nd pion.nucleon resonance, if
responds to the p;, resonence instead of the usual dy, resonance. As for

S=+1), resonance for K.+n or K, +p scattering has not been discov-
et, and this gives a trouble to this scheme.
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Appendix
Derivation of Mass Formula

ere, we shall prove the mass formula Eq. (26).
st us consider infinitesimal U, transformation. Then, the infinitesimal
tor A,” of U, satisfies the Lie equation:

[Aﬂ'! Av‘]-“l.'Au.-‘dr.'Al" (A'l)
elation holds actually for general linear transformation of arbitrary dimen-
The unitary restriction gives

(4"'=AS (A:3)
(' means the hermitian conjugate of (). For comparison's zake, our A,
ted to lkeda et al"'s X,, by

Ar=~1/2{(1+DX,,+ 1=-DX,.],

X, =—1/2[Q+dA 1~-DAS ] (A-8)
rer, their nowtion X,, makes the mixed tenzor character of 4.7 chuegre
or an arbitrary mixed tensor T,%, the commusation relation iz given hy

[.Al.v Tv‘] '—'3“'7."-46,‘ ’Tl.‘ (5.4
wing this with Eq. (A-1), we see that A,” has the property of & mined
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Tef=Se8 -85 =28:0--0. (Q.E.D)
. a8
Our lemma I is not surprising at all, since such tensor S7 must be ar

irreducible representation in U, but such type of irreducible represent‘atloxtl 1:
not possible in U,. (However, it is possible in U.(n=>4) and has signatur

(1,1, -1, —1) in Uy)

Lemma II] )
[ In U,, for any two arbitrary tensors M.,” and N.,”, we have the following

tdentities :
(M,* N+ Mg Ny — (M) Ng*+ Mg*- N.%)
’ =3 [(MONs+ Ms*N>— (M-N) 5*— Ms*-Ny*]
— 3 [(MIN,*+ M NY— (M-N) "~ Ms* N.*]
=3 (MY N+ M*(N>—(M-N)*—M*-N\*]
+8S[(M> N+ M (N>— (M-N),»— M} Ny*]
— (3,7-8,5—8,%-357) - [KM>-(NY>—=(M-N7].
[Proof}
Define a tensor Q% by
Q= (M, -NS=M}-N°)— (M N ~MS?-N*)-

Then, Q% is anti-symmetric for exchanges of a and 3 and of ¢ and v. Fur

P

theremore, construct a new tensor S%# by
S =8 — (3,5 QX +3,7-Q + 8,5 +3.°-QN)
+1/2-(3,5-8.,—4,- 3" Q.
We can see that $%7 satisfies the conditions of lemma I, and must be identicall:

zero. This gives the desired identity. (Q.E.D.)

[Theorem 11] ' ) ' ~
" In U,, for any tensor T.” and for infinitesimal operator A,”, which satisf

the commutation relations Egs. (A-1) and (A-4), we have the following identity
2.[(AT-A) +(T-A- ).+ (A-A-T) ]~ (KA +9) - [(AT) +(T-A4) ",
—2(T>(A-A),/ +[6A>+12+ KAN'IT,”
~1/2-[CA-ADT .+ T CA- A+ KT >+ 2{AXT>-KA ' THJA/
+8.7 (—<(TO- LA —(A- A+ 4A+ 4]+ (KA +6)<A-T)
—2({A-A-T)) =0,
Note that [(A), T.>]=0, [{T), A*]=0 but [(A-A), T,”]*0.
{"Theorem III] ,
6(A-A-A), —[6<A>+18]: (A"A)-’+E3' (KA)'~3-CA-A>+
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+12-CA>+127. 4,
LAY +4(A) +4A>=3(A> (A A5 4 2A-A- 4>

—6(A-A)73,7=0.

oren I can he obtained from theorem Il by putting T=A. From this,
see that (A-A-A-A),” can be cxpressed as a linear combination of 3 Ar,
4).” and (A-A-A4).,”, and so {(4-A-A- A is a function of (A, <A-A> and
1-A>. So are (A% (n1:24), as has already been mentioned.

To prove theorem II, we put M =N~ A" in lemma I, and multiply T,
the left, and using commutation relations Eqs. (A-1) and (A-4), we find
theorem 1I, when we change the indices suitably. We may give another
t proof of theorem II as follows. Any tensor Q3% which is anti-symmetric
respect to any exchanges of two variables among a, 8, 5 and & must be
ically zero in U, Therefore, we have

;(”l)rT'.'A;"A,"'l’":O
: P means permutations among «, 3, 7 and 6. Then putting == 3, y=4,

and taking traces, we find our theorem Il again after sumewhat long calcu-
s

Vow, we shall prove our theorem I, Eq. (A-8). Using the commutation
ms

(M, 7 1=3(4-A-T)."—3(T- A A)." - I[ M, T.7,
M, $55=2(A-9)-2(5-A).,
n rewrite theorem Il as follows.
“AA)S—(TA), (24> +9) + T2 [1/2- (CAD)
—1/2:(A-A>+ 3A) +6)]
i~1/2:[My, (TA),"—(A>+3)T,*1-1/3(M, T.”]
(A4-4)7<{T>=A’-[(KA>+3) (T>—(T- A)]

87 ([CA+IKT A~ (T-A-A>~1/2¢T ,-[KADP—<A- A + 4<'?/i +9:3)'

in a given wrreducible representation, M, and M, are constants, so tha-

elements <a”Af, Q13> =0 and (ai[M,, Q313> =0, hence we can o
st and second terms in the right-hand side of Eq. (A'9) in our case.
we have

A-A)f— (T A) (KA +9) + T [1/2: ((A)'=1/2-CA- A) + 5(A>+6]
=(A-A). <T>-A"[KA>+3J)<(T)>-(T-A))
-8, ([KA>+3KT-A>-(T-A-A)~
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S1 2T A - A A+ AAY AT (A-10]

Eq. (A-10) is true when we take any matrix elements .in a given irreduci
representation. Now, T.* is arbitrary, as long as it satisfies th? commutat
relation Tiq. (A-4), and so we can replace Tby T-Aand T-A-A in Eq. (A-1
For quantities like T-1-4-A4 or T-(A-A-A-A)., we use our theorem 1II ¢
we can reduce them to a linear combination of T, T-A and T-A-A. Th
Eq. (A-10) gives three equations of the form

ay; (T-A- A) by (T -‘1) P o (T) s
*:I’N(A'A).' L3 ’I&€(11)-’+b!{‘ . - ('.21; 2; 3) (A'l()]

We can give an explicit form for a. and b, but as it is a little complicat
here we simply remark that «,, are functions of only <A, (A-A> and (A-A-.
i.e. a,, depend only upon fi, f; and f3 hy Eq. (A-7), b, depend upon S
and fi, and also upon (T», <7"-A> and ¢7"-A-A>, which are constants in the
reducible representation which we are considering. We can solve Eq. (A-1
since the determinant det(a;,) is, in general, not identically zero; thus we |

Tr=a-dr +b-Ar+c(AA)

and two other equations for (T-.1),” and (T-A-.1)." This is the desired form
theorem 1.
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cation of the baryon isobars has been investigated on basis of the unitary
»del which has been developed in a previous paper under the same title.

ose of this note is to investigate problems of baryon isobars from
of the unitary symmetry model.” In this model, the mass differ-
mesons and among baryons are neglected. As the result, one may
h a model can be applicable to the study of the baryon isobars
in the meson-baryon scattering, where these mass differences are
1egligible. It is almost probable that our model will present a
roximation for this problem if compared quantitatively. However,
ssible that many of qualitative features could be roughly explained
It is due to this hope that this work has been undertaken. So
:n in this paper should not be taken in its face value, but only
2 sense. In this paper, we shall concern ourselves with the case
{amaguchi-Gell-Mann scheme,” since the case of the Sakata scheme
ed -already”® and would not produce any new results. We may
results here could be applied also for study of meson-meson reso-
baryon-baryon scattering resonances, with small changes.
en noted in the previous paper,”? the baryon octet (N, =, 2, A)
n octet (KX, I?, 7, my’) belong to irreducible representations
{ the 3-dimensional unitary group Us, and they are represented
ss tensors NV,” and f.*, respectively, as follows:

S mom il m= = fi), w = = S
=ﬁa’ KO =f;8, Ei» =ﬁ1! k;:ﬁ’, (1)

NP, 2o=Ny, -y'o:f}“-z:(]\’x]“Nz’), A= —V%Nsa~
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3 : = -
p=N" n=N7, Z_=N, 2= N

We may note that the same representation liq. (1) bhas been given by man
others” in matrix notations. Now. as has been remarked in (D), the baryo
isobars N'*, N**, Y, * and }.* have to belong to some of the following irr
ducible representations in the right-hand side of the next equation.

U:(1,0, —1) xUs(1, 0, =1) =20,(1,0, —1) + Us(0, 0, 0) + 17,(2, 0, —2)
+U,(2, =1, -1 +1,3,1, -2). )

The same is also true for meson-meson scattcring isobars or for baryon-baryo
scattering resonances, since both the mesons and the baryons belong to the sam
irreducible representations Us(1, 0, —1), and therefore their scatiering states t
the product representation U;(1,0, —1) x U;(1, 0, —1). Thus all results give:
in this paper can be immediately translated from our baryon isobar case int
the meson-meson and baryon-baryon scattering cases, but here we study onl
in the case of meson-baryon scattering problem. Below, we list a classificatiol
of particles contained in each of these irreducible representations. This cal
be easily done by applying the technique developed previously.”

(a) U,(1,0, -1)

(I=1/2, Y=1), (I=1/2, Y=-1), (I=1,Y=0), (/=0, Y=0).
(&) U,(0,0,0)

(I=0, Y=0).
(c) U,(2,0, =2)

(I=2, Y=0), (I=3/2, Y=+1), (I=3/2, Y=-1),

(I=1, Y=2), (I=1, Y=-2), (I=1, Y=0),

I=1/2, Y=1), (I=1/2, Y=-1), (J=0, Y=0).
() Us(, -1, -1

(I=3/2, Y=1), (I=1, Y=0), (I=1/2, Y=~1) (I=0, Y=-2).
(e) Us(1, 1, —2)

I=3/2, Y=-1), (I=1, Y=0), (I=1/2, Y=+1) (I=0, Y=+2),

where Y stands for hypercharge, so that Y=S+1 in terms of the strangeness
S in the present case. First of all, we note that a particle with /=1 and Y=0
is contained in all representations except in U,(0, 0, 0). Thus, we cannot iden-
tify the representation to which Y,* belongs. We shall investigate all of these
m turn.

Case (@) : U,(1,0, —1)
If Y,* belongs to this representation, we have to identify other three particles
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s representation. Obviously, we can identify the particle with (/=0, Y =0)
* and the one with (J=1/2, Y=1) as the second pion-nucleon resonance
while the one with (/=1/2, Y=~1) can be considered as an excited
of Z. Now, the second resonance N** of the pion-nucleon system is to
nsidered likely to have the character of a o, resonance.” Accordingly,
ve to assign the same d,, resonances for all Y,* Y,* and =* in this case.
is not so bad, because the spin® of Y,* appears to be 3/2. However, we
| remark that it is unnecessary to identify the (I=1/2, Y=1) state as
As has been stated in the beginning, our approximation is quite poor.
s the result the state with (I=1/2, Y=1) might disappear when we take
it of the mass differences among meson octet and among the baryon octet.
bove statement is meant to indicate the following: * When we neglect
mass differences, the state with (I=1/2, Y=1) then certainly exists because
symmetry. Now, we have to change the masses of the pion and the kaon
the nucleon and the Z-particle from the common values. We may sup-
1at we can take such a procedure continuously with respect to these masses.
in course of these operations, the state with (J=1/2, Y=1) may cease
resent a resonance state.” If such thing could ever happen, then we
say anything about the spin of Y,* and Y,*. But we do not adopt such
here.
e irreducible representation U;(1, 0, —1) can be characterized by a
ss tensor T°,* whose identifications with the real isobar states can be ex-
~ exactly in the same way as Eq. (1). Let us consider the decay of these
into one baryon and one meson states. We can form the following two
1t expressions for these processes:

Si=M/f[*T>,

Sasz" fpx Ty, (3)
we have put M,*=(N,")' for creation operators of baryons. This oc-
e of two independent forms corresponds to the double appearance of
~1) representation in the product U,{1,0, —~1) x1/;(1,0, —1) as we

from Eq. (2), and thus the same situation does not happen to other

ttations in the righthand side of Eq. (2). At any rate, we cannot
1e the branching ratio of Y,*-»Y~ = against Y *-».l+x in our case.
ve make some additional assumptions. COne tempting hypothesis is 1o
the invariance of our theory under the transpose operation; i.e. we as-
e invariance under interchanges of lower and upper suffixes. By this
1, a tensor F.* is changed into F,’, so that §,~5, in Eq. (3) and we
: following from Eq. (1).

T oeom, meow, KooK, Ky Ky, 7'y,

Yoo, Yy poI nerZ, e, (4)
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suppose again that such state would not appear if we take the mass differences
among mesons and among baryons. We may identify (I=1, Y=0), (I=0, Y=0)
and (/=3/2, Y=1) with ¥,* Y* and N* respectively, where N* represents
for the first pion-nucleon resonance. Then, all these have to be resonances in
the p;. states, since the last one is known to be so. Then, the state with
(I=1/2, Y=1) in our representation must he a resonance in ps, state also and
thus this state is difficult” to be identified with N** though wc cannot com-
pletely rule out a possibility of the ps, resonance for N** at the moment. The
possible existence of other states in U,(2, 0, —2) does not lead to any disagree-
ment with the experimental data.

Now, let us consider the decay matrix element of isobars into mesons and
barvons. In this case, there is only one invariant form under U..

S=M» ff T (7

We may note that Eq. (7’) is invariant under the transpose operation as has
been mentioned already. We can reduce this in terms of X, and of meson anc
baryon components by using the table listed in the above and by Eq. (1)

Table II. Relative weights and widths for decays in the case (¢).

type of the decay relative weight relative width

(N*)aaaptrs 1 1,

(Y M) s A+7, 35 ‘ 0.36
(Y]*)+4)2+,0+7To,+ 0 ' 0
(Y¢*)>Z 40+ 770 1/20 1 0.01
(N {217 1/10 ; 0.45
(Yo®) a2+ 7ms 2 ?
(Z)4sp+ K 2 ( ?

Then, we can compute the kinematical weight factors for the decay as before
For the calculation of the relative widths in the above table, we have multipliec
the p-wave phase volume factor:

/M (8)
Again, Y;* does not decay into )-+=x, because of the transpose invariance o
U, (2, 0, —2) as has been mentioned already. In the table, Y,* means the stat
with (/=2, Y=0), and Z represents the state with (I=1, Y=2).

We should note that appearance of Y,*, Y;* and Y,* could be easily under
stood® in terms of the static p-wave pion-hyperon interactions, if we assume tha
far>fer. Indeed, this is the case if we take the D-type interaction”® in Gell
Mann’s notation, which is also invariant under the transpose transformation.

Case (d): U,(2, —1, =1)
This is a 10-dimensional representation, and can be specified by a tenso

o8
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sing the following properties :

Fiy=Ff.=~Fi, Ft=0. ©
itary base X,(A=1, --,10) of Us(2, —1, —1) can be formed from F2%
same way as in the previous case, giving that
(I=3/2, Y=1)

2, V3 Fu”® (=-Vv3 F,"), ~V3F'(=v3 Fiu®), —Fy".
(I=1,Y=0).

V3 F®(=v3 Fi'), v§ Fu'(=—v'6 Fii®=1v¢6 Fi®),

-Vv3 Fxsls(EI/é Fy').
I=1/2, Y=-1)

1/.'§ Fuu(El/g an), -v3 Faa“(El/é F’za”)-
I=0, Y=-2)

F”“.
tere§ting to note that we have a particle with the strangeness —3. The
1atrix element is again unique and has the same form as Eq. (7/) when

lace T45 by Fzs Then, once again we can compute the weights and
tive widths. Now, we have the decay Y,*—>z+ 5 in this case.

Table III. Relative weights and widths for decays in the case (d).

i
ype of decay | relative weight | relative width
N¥)pyoptms | 1 | 1 B
Y d+r, J 1/2 i 0.3
POV | 13 : 0.043

) : US(I) 17 _2)

is is the contragradient representation of U,(2, —1, ~1); i.e. the one
‘an be obtained from Us(2, —1, —1) by the transpose operation. Thus,
ecified by a tensor G%, satisfying the following conditions.

Ger=Gls=—Ghi, G1=0. (10)
Y, we can construct the unitary base by
(I=3/2, Y=~1)
Ga™ —VT Ga*(=v'T Gs™, —vTF G (=V'TF Gy"), Gu".
(=1, Y=0)
V'3 G (=vIGY, — vV G*(=vT6 Gs*=—1TF Gu),
V'3 G (=v3 G."Y.
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1. In a previous note,' hereafter called I, we
proposed an expression for the mass operator
responsible for lifting the degeneracies of spin-
unitary spin supermultiplets |Eq. (31)-1]. The
purpose of the present note is to apply this ex-
pression to the T0-dimensional representation of
SU{6).

The importance of the 70-dimensional represen-
tation has already been underlined by Puis.?

Since
456 -56 $T0+700 1134, W
i fuliows Ut 70U 1s the natural candidate for av-
commodating the higher meson-baryon reso-
117

nances. Furthermore, since the §
content is

70=(1,2)+(8,2) - 110,2)+(

we may assume that partial occup
representation has already been ¢
through the so-called y octet? #)"
periments appear to indicate that
states may also be at hand.> With
one’s disposal, our formulas can
masses of all the other occupants
provide a consistency check on the
discussion of the 70 representatio
to be of immediate physical intere
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(Received 25 May 1964)

Abstract

We review, modify slightly, generalize, and attempt to apply a theory proposed ecariie
a higher broken symmetry than the eightfold way. The integrals of the time components of
vector and axial vector curtent octets are assumed to generate, under equal time commuta
tion, the algebra of SU(3) x SU(3). The enerdy density of the strong interactions is as-
sumed to consist of a piece invariant under the algebra, a piece that violates conservatio
of the axial vector currents only and belongs to the representation (3, 3*) and (3*, 3), anc
a piece that violates the eightfold way and probably belongds to (1, 8) and (8, 1). Assumn
the algebraic structure is exactly correct, there is still the question of whether one can 3
sign particles approximately to super-supermultiplets. The pseudoscalar meson octet, ito-
gether with a pseudoscalar singlet, a scalar octet, and a scalar sindlet, may belong to
(3, 3% and (3%, 3). The vector meson octet, together with an axial vector octet, may b=lo
to (1, 8) and (8, 1). The baryon octet with ] = 1/27, todether with a singlet with I RER ¥
may belong to (3, 3%) and (3%, 3), as suggested before. Several crude coupling patterns ai
mass rules emerge, to zeroth or first order in the symmetry violations. Some are roughly 1
agreement with experiment, but certain predictions, like that of the existence of a scalar
octet, have not been verified. Whether or not they are useful as an approximate symmetry
the equal time commutation rules fix the scale of the weak interaction matrix elements,
Further rules of this kind are found to hold in certain Lagrangian field theory models and
may be true in reality, In particular, we encounter an algebraic system based on SU(6)
that relates quantities with dilferent kinds of behavior under Loreniz transformations,

1. Introduction

THE ‘‘eightfold way’’ theory of a broken higher symmetry for strong interactions wax proposed {i, :
time when the value of a badly violated symmetry was unclear for two reasons:

(1) It was not obvious what real significance could be assigned to the algzhrsic properties of

symmetry,

(2) It was not known whether the particle spectrum would show unmistakable evidence of the h

symmetry,

A solution was offered to the first problem when we pointed out {3] that the weak vector c:trren
{AI} = 1/2, AY/AQ = +1, and |Al| = 1, AY = 0 generate an algebraic system through the eguai-t
mutation relations of their time-components and that this algebra is preserved even though the cons
of the strangeness-changing cumrents is violated. We assumed that the algebre in question is that ¢
no matter how badly the eightfold way is broken, the vector current octet is then the current of the
(This result was & simple generalization of the conserved vector current hypothesis, that the AY =

*Work supported in part by the U. S, Atomic Energy Commission.
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I, Universality of the Weak interactions

We know that the electromagnetic current of the strongly interacting particles (or ‘‘hadrons’” to use
Okun’s expression) is given by the formula

o= e(ﬂw —,13=5’.a>. a
v

(A constent term may have to be added if there exist hadrons corresponding to certain kinds of spinor tepre-
sentations of SU(3), as discussed in Section VI.)

What about the hadron weak cutrent coupled to leptons? It must be a linear combination of Fib +
i F T with AY = 0 and F & + iF s with AY/AQ = +1, 1f we stick to the assumptions (2) and (b) of
Section 11, The choice of the linear combination is motivated in part by the requitement of universality of
the weak interactions: the algebraic properties of the total weak current should be the same for leptons and
for hadrons {4, 5).

We wtite the effective weak interaction in the local approximation (or at least the part coming from a
product of charged currents) as

G
"':]a.+]a, {1
V2 '

where Jao = Ja(leptons) + Ja(hadrons). The situation is then the following, as described in ref. 4.
For the now obsolete case of one neutrino for electron and muon, Ja(leptona) has the form

Uya(l + ys)e + vya(l + ysdp = 2\/"2—;y°ﬂ__§js_)(j_\_/j__ﬂ'
2

The ‘‘weak charge’’ ~i[d“ x ] 4(leptons) evidently may be written in the form ZVE(Kl + 1K3), where K;,

K,, and -ilK;, K,] have the commutation rules of an anguls: momentum of an isotopic spin. The weak
1+ys €+ p

= and
2 V2

charge and its hermitian conjugate, for leptons, generate the algebra of SU(2), with

t s

v appearing as the lower and upper components of a spinor.

With distinct neutrinos for electron and muon, as in the real situation, J.{leptons) becomes

- s — - 1+ ys ~ 1 5
Vova(l + ys)e « Puyall + ys)u = 2var=‘”“;}"yie + 20 '/a"%z“ e a

This time the leptonic weak charge has the form 2(K; + iK;), where again K, and K, are the first two cor
1+,

1
ponents of an angular momentum and the algebra of SU(2) is generated. Now ~ ; Y5 ¢ gad v, for

1+
a spinor and so do ! ; YS p and 3 Ys V.

Let us now demand univessality for the weak interactions, In the one-neutrino cese, w= would requize
that the weak chatge for hadrons have the form 2v2 (K; + iK;) =ad in the two-neutrine casc that it have
the form 2(K; + iK,), where K, and K, are the first two componests of an angular momentum. Writing the
weak charge for hadrons in the general form

AFy + iF )cos 9+ A(FY + iFg ) sin 6,

we may verify that we have A (K, + iK;), where
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