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Lectures 7 and 8.

THZ - CALCULATION OF THE ENENGY MATRIX.

§ 1. The Interaction of Two Particles.

Since the interaction matrix for n particles is calculated
according to (132) in terms of that for n - 1 particles, we must
start by calculating the interaction energy for two particles.

Let us first assume for simplicity that there is an ordinary spin-

independent interaction (“Tigner interaction), given by

. .
J(rl2) =J ( J}; + rg - 2rlr2 cos() 12 ) between the two particles.

We can expand this in Legendre polynomials of cos() 12°
Irp) =2 5y (rp5rp) P(cos) ) (193)

50 that, by the addition theorem (156), they can be expressed in terms

of scalar products of tensors:

= (k) (k)

J(rlg) = i Jk(rl’r2) (¢ S ) (15Lh)
where
' () _[ Lo )

Ciq  TmFT Tig O:F5) (195)
is the qth component of C(g).

i
The matrix giving the interaction of two particles is in

general

(n1€1n2 {]2 u | J(r12)( nl/elnz,fzm) =
=2 Ay Ayl (0. 69| £ L raye* (196)
o ohde Ll N L L, @) ).
. W((gl(z{lgg; 1) F*.
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where B specifies the different representations of h, b denotes their rows
and columns, and ﬂ; is a running index distinguishing equivalent irreducible
representations. The Kronscker product UA X U, of twoe irreducible repre-

1 A

sentations A, and A, of g can bs completely reduced:
~

1

7, X UAzng_cA v, (146)

e

by a simi{larity transformation with a matrix

(A 1Bybys Ay AoBobo | AjA, X A B B b) {1a7)
where the parameter o( is a running index which enumerate the A's whenever a
°y is greater than 1 in (146), We shall now astate without pz‘oof‘t a corollary
to Schur’s lemma which will emable us to express this matrix in a simpler way.
The matrix elements of the transformation (147) are the products of the
matrix elements of the transformation which reduces the Kromecker product

Up (t) x Uy (t) in h and coefficients which are independent of the b's;
1 2
(4,4 1B1b1s Ay B,B,0, ] AjA,4ApB b) =
- (B]blBszf ByB,B b)(A) 31813 Ay 3,8, | A\A,d AAB). (148)

If we take the representation of (ﬁn in the scheme (143) and apply this lerma
to each subgroup of the chain which was comstructed in the preceding section,

we can bring the matrix which reduces the direot product (144) into the form

* For the proof see referemce 23, sectionm 3,
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§5. The Algebra of Tensor QOperators.

Tre alpebra of vectcr operators and of their representation by
ritrices was developed by Gﬁttinger and Pauli” and is presented in
standard form in Chanter IIT of Cerdon and Shortley (reference 15).
The pessibility of extending it tc tenscrs was indicated by Eckart and

o ) -
Wigner . e shall cutline it here following roference 21, g 3, where

the rroblem 13 treated by the standard methods of Condon and Shortley.
. . . (k)

e define an irreducible tensor 7'’ of degree k to be a set of

(k)

¢k + 1 quantities Tq

s =k £ q &k, which under rotations in three-
limensional coace trancform like the 2k + 1 spherical harmenics of

derree k. I the o_eratcrs Jx’ J,, J_ cnerate on these quantities,
Y z

we have
AY " ’ .
KY (k) . . (k. .
1T q = T a (kq\uzqu4 =qT q (151a)
_ L T NPy k)
(JX b in) T(z)z T(§)+ 1 (kg z l{JX - ;Jv‘kq) :VQk +q+ 1)k ¥q) Té ‘4 1
‘ (1510)
k)
1f the T(K’ are themselves onera*ors, the left side of (151) must be
q P >
replaced by commutators
k), (), o w (k)
(9, Tt (kq‘leLq) =1 (152a)

L O S¢S S S S B O
[Jx - LJy, T N ]=1 gz (ka - liux - 1in kq) —;kk -q+ 1)k +q)T a sy

(152v)

¥ 7eits. fur-Physik, 67, 7h3, (1931).

3

éee references 17 and 18,






satisfy the selection rule m — m = q and (152b) reduces to (12L) if

(k)

H i ! iy
we replace (D\jmgT q }dj'mf) by (i'm quj kjm). Since (12L) was
!
sufficient tn determine (jlm kq%j’kjm) apart from a normalization

Tactor, we obtain

i i 7 /
(it jmJT(g)fcxj n') = 403" xal 3 km), (157)

with A indenendent of m and q.

In ~rder to bring out the symmetries of the Tlebsch—iordan

ceelficientrs, it will be convenient to introduce the notation
(ymydome) 3y50md = ()0 P METET w3, 5,5 ) (158)
(3ym domal 3y d50m) = ] (313,35 mm, = m :
where

\/(abc:(}(\/@ ’\S) = 60\% *X)Nab(:) N

‘ - . . L 1
s o(aC -k z [(aveiibla —0b(b +550(b =23l v Ni(c =¥ )]t
t e zi{a + b - ¢ - z)i{a A~ z)i(b 3~ 234(c - b +o(+ z}1 .
e{c~a-2+z)i, (159)
and

_ 1
D) - ( 2= ileze S hOre 0T e

The V(abc;d’EK ; thus defired have the symuetries
V(abc;O(/GX) = (-)tbme V(bac;/"{u)\g) = (-)Btote V(acb;D(;)S(S) =

(161a)

) (_)a—b+c

)2c

v(ebas ) gon) = ()% v(eabs Youys) = ()% vloea; )

and
V(abe; o2 1) = () T2 T € ylane; ~x -3 - 5’), (161b)

and they vanish if &, b, ¢ do not satisfy the triangle inequality, or






Txamples areﬂklﬂég’ describing a counling of the orbital angular
momentum of two particles, Pk (casojlz) expressed by (156}, or
~E2§, in which space and spin functions belonging to the same system
are coupled), If/g}k) operates on part 1 of the system and h\k)
operates on part 2, then expressed in the scheme o<1 t(2 jl j2 Jm,
such a nroduct is

, © a1 emlk (K s rs
(5\10(:) "1 52 ij(‘z\\ ) . ;lg ))jo(l'o(z'.]l'JZ'J'm') =

= Z/: ( )/ (JlJoJm i Jlml.]')m') ([Xl 11'11 l T \0( i 'rn Y,
Ty MyMaT 110
i l (k) 1 Ty ot 1 it Tyt t l 3.t tar
o (pdpmy [ Usgm M tistmy (G tmy Tntmyt | 3yt 3050, (166)

Uith (158) and (16L), this involves suns over the products of four

Vts; it is found in gemoral that

£+ , N :
) ﬂz,(—) V(ab/tyﬁ— v) V (acf; «X((%ﬂ V (bdf; ~/38 —C() V (edg;td-n) =

et frdob

= \Z 5T W(abcd; ef) g og 86\11 (167)
where
W(1bed; ef) ::A(abe) ﬁ\(cde)zx (acf)[& (bdf).
Z(-) (a+b+c+d+1-2)1
-t la+b-e~-2)f(ctd-e-zit(a+c-F-2)i(b+ad-T7" =21,

ezl (e+f ~a-d+z2)l(e+f-b=c+2)} (168)

Using (167) we obtain for (160) the exnression






using (16k), (167) and the orthogonality relations of the V's, we get

(c<j1j2j1\T(k)(hx"jij2j’) =

o - , (1n)
= R e sy o Tl spws s 30,
Analogously for}wfk)
(o 333, 105 3,397 =
(172)

/ T A i 1/
= TR ET D o, N w508 g0

The geometrical interpretation of (171) and (172) is the same as that of

(169).

A further use of the W's is to express the transformation
connecting different schemes of parentage:*
(33500120050 9 1313503 (3p)0) =
e e e . . (173)
= 23y, + 12055 + D33, T 335 dp3p)
In general, every quantity which is invariant under rotations
in three dimensions and therefore does not depend on the choice of
axes or on m can be expressed in terms of the double-barred matrices

and the W's,

§ 6. Tensor Operators and Lie Groups,

In lecture L we were not able to construct the matrices which

decompose the Xronecker product of two representations because we did

Y
*
Fel. 22, Zqu.(L)
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while the commutator of two uts is given by

[u((:]fl) uélz‘z)] = 2Kg' (Yt m iy W(kl,ﬁk?/( ;fZK)(klszQ}qulkzqz)uéx)
(177)
where the prime on the summation indicates that, owing to the symmetries
of the Clebsch-Gordan coefficienta, the sum is to be taken only over
values of K for which ky + k, - K is odd, (177) is of the form (1L)

and hence defines the structure of a Lie group.

In virtue of the orthogonality relations (162), the (2 ‘Z+ 1)2
matrices (175) are linearly independent. Since they are of degree
2 K + 1, they form a linearly complete set of matrices of this degree;
it follows that the structure defined by (177) is that of the, full
linear group in 2 L + 1 dimensions and of its unitary subgroup UZZ +1°

)

u
-~

For a system of n particles we can define a set of
(i =1,2 +v.. n), each operating on one varticle, and we can construct

the symmetrical tensors

n
g = g W (178)
~ i=1

operating on the whole system. It is evident that the g}g)also satisfy

the commutation relations (177). The matrices of the U(g)in the scheme
(143) will therefore be the representations {[Z of the infinitesimal

operators of UZK +1°

From (177) it is also seen that commutators of tensors of odd
degree are linear combinations of again only such tensors; hence, the

tensors U(k) of odd degree are the infinitesimal operators of a suogroup
AN
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one particular n~dd value of k ) 1, e.gey k = 34 k = 1 does not serve our

purpose because H}l) is proportional to L and is therefore already

av

diagonal in our scheme,.

A3 an examnie we shall calculate the coefficients

‘.

{(20)L,; (L)alvy) (280)
for the confiruration a7 iTe first construct

T IR ERINNC DR AR

(181}
I 2
ror which, using {17h), (171), (172) and Table I, we obtain the
matrix
) 5 P P N G
. I o} o}
¢]
N
e
. ¢
L] {.A,
.10
7
I ocberlmrooe s by st of rows and colurms inte matricen o
VT TR
. . N [P
] IR
tig o s ey
- |
N N N . IA 7 Fdor oy
[P RO
1_*fu\'/ Ivias 7
| b

wiere the Identificetiozn of the values of W to which these constituents
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y the use of the branc-‘-- laws as explained

26.

2le to obtain by the same method

Ao O3 (20)L; a)

n order to calculate (180) it is sufficient
* (184) which is

v 4 ey (20)L£ aly .

Table II we obtain (185) as the sum of

;dIllUij) I (eo)LjaL’

car 1 1 20)6 aL -

—_— [«
P o5 F G H I
- ! = — —
39 3 | 413 3113 13 ,[26
-7 7 7 730 JTT0 T 5
| {13 [o1 13 (26
0 0 ! Jjﬁ o g it j;g
% du |, _JB bo %
e AR & Vi - B s J%

o deduce from the branching laws that

es intoB(lo) + (}%(21) + %(30), and that to

(184)

(185)

(185+)

ions belong the states D, PDTF GH, and S F G I

he transformation matrix which decomprses (18L)

form

(L u el ‘.TL')

(186)
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will have the structure

S P F G b F G H I
(10) D #* \
(% 1
D * %*
(21) { F #* 3*
:G * *
\H 1 (187)
/sl
(30) {F #* *
kG 4 # * |
I\ 1/
/

where the stars denote the non-vanishing matrix elements which have

to he calculated. It follows from the form of (187) that the row (30)I
of (136) is obtained simply by multiplying the row (185), which has the
elements (185'), with the columns of the transpose of (187). The
selection rule which follows from the requirement that (186) is to be
decomposed, in conjunction with all the available orthogonality and
reciprocity relations, permits us to determine, apart from arbitrary
phases, all elements of the matrix (187). They are contained in

Table IIT.

By re01nr001ty we mean _the relation

, 2 - !
(WK, L "161 13 {/,) Ll: 1 _grl (L -Lp *rx (\’11K1L1\ ng;l) (188)

where By and By aTe the desrces of the representations and x is a phase
) Y
which may be chosen arbitrarily for cvery pair ¥, Wl but which is

independent of the L's, This relation is proved in reference 23,






33

where By is the degree of th: representation of n_ which is

charactcrized by the partition Z. The sign devends on the

choice of sign made for the other coefficients, Torn=13

they are given in Table VI,






(20}

(1)

-85~

TABLE TIT. (WL[wlLls (1)d).

Tew T | ?v Cm o olerler &
—r . . j_//w “
[N [N ok Em | 1, <
o8 [lek? |onn |3 |88 ﬁw o o

' 1 ! '
(o] ~ —~ ~t ~
lllll s T — o
-t © =]
[=] By (<% =] © =9 [=] 25 le] = (75} [x. o] —
P RN S e e PR SR I
s g <4 F £







e

o vr. (2 2] 42
@zl s Lo,

[29]

(11]

-

(e
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coefficients Fk are given by

X _ v gl 2
FC= /] 3, (x,1,) RnlLl(rl) ankz (r,) dr1 dra, (197)

called the seneralized Slater integral.

t is interesting to note that the clasgsical Slater integrals,

2]
y

2 defined for J(rlg) = ;;; are decrcasing functions of k.
1stead of a Coulomb inter;ction we have a sport range

omn, Fk may no longer decrease with k. On the contrary,

7 to see that for J(rlf) =S (;? —»;;) which is the

:ase of chort range interaction, one has

P = (oK + 1)F°, (198)

yr the narticular case in which we are interested, of two

in the same shell, (1%0) reduces to

j Doy b e
~12)} sz) =2 (-)L(Mc(“)il ()%(&(L(;Lkwk. (199)

«

'y instead of a ‘isner interaction we have some ltind of
nteractiecn, tiie sion of this expression has to be changed

ralues of T, 3, and L.

Group-Theoretical Classification of the Interactinons,

ceneral formula fer calculating the energy matrix for a
n equivalent particles was given by (132), but since the

. for a set of many quantum numbers which may assume many







































