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INTRODUCTORY NOTE 

' \ 

For many years now these lectures have been out 

of print. They ·have been repeatedly requested in the C~RN 

Library but they were unobtainable. By a fortunate chance 

a copy reached us recently as part of the Pauli Memorial 

Collection at CERN. -

Realising that these lectures would be greatly 

appreciated by physicists, we requested Professor Racah 1 s 

permission to re-issue them in a photo-offset edition in 

our Report Series. He very kindly agreed and supplied us 

wi th a list of corrections. We wish to thank hia in the 

naae of all those who will welcome this reprint. 

I 
L. van Hove. 
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Group Theory and Spectroscopy 

by 

Gi\.t.lio R9.cah 

These lectures will troat th9 applications of g,roup theory to pr ob -

lema of spectroscopy and nuclear structure , While developing the mathe-

matical tools for thitl' purpose, 1va shall occasionally forego tne elabora-

tion of a rigorous proof, In such cases, references will be quoted, 

Lec t ure 1 , 

GENERAL NOTIONS ON CONTINUOUS GROUPS 

§1 , Continuous Groups and Infinitesimal Group~. 

We start with a set of n variables x1 (i a l ,.,n) , which may be r e­
o 

garded as coordinates of a point in a certain space, Consider now the s e t 

of equations 

1 · r 
a. , ••• ,a ) (i•l.,.n ) , ( l ) 

in which t he aP appear as a set of r independent parameters. Omitting 

indices, we sha l l wr ite this and similar r elat i ons i n the form 

These equat ions defi ne a set S of 
po i"' c 

meter s a, which map the ~~ X 
0 

all the Tequired der i vative s , and 

or X 3 S X 
(> 0 

trans f or mations , depe:>d i ng on the 

onto x. \\e shall -assume t hat t he 

that the fi 'depend essent ially on 

(1 ' ) 

para-

f 1 have 

the pa-

rame t Ars, i . e. that no two transformations with different parameters are the 

sama for all values of ·x
0

, so that r is the smallest number ·or parc.r.1eters 

needed to specify the transformations completely and uniquely. 
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The set of transformations f is 3aid to form a group if it obeys 

the following two conditional 

i) ' The result of performing successively any two transformations 

of the set ia another transfor~~ation belonging to this set .. Formally, if 

x • t(T. ;a) and x'• f(x;b) then there exists a set of pars~eters cP sweh •h&t 
0 

of' • CfP(a; ;) {2) 

s-..ck t_h.,.,, / 

x•• f(x;b) • f(t(x
0
,a);b) • f{x

0
;c) m f{x

0
; <f{a;b)), {3) 

ii) Corresponding to every transformation there exists a unique 

inverse, which also belo11.gs to the set, Given equation (1) there exists 
t~ t o.f ' 

aLpanasterr a such that x
0

• f(x,a), 

The uniqueness of i is guaranteed it the Jacobian of the transfer-

mation does nat vanish: 

1..2!._ I " 0 Oxo 
(4 ) 

Transformirg x
0 

onto x and then inversely x back to x
0

, we obtain 

according to i) a transformation whi ch belongs to the group and is charac· 

terized by the set of parameters a
0

• Si~r.e the transformaticn depends on 

the parameters i n an essential way,the a
0 

so constructed ca~~ot depend on 

the particular valuo of the par~tera from which we star t ed, The trans-

formation f(x,a
0

) is called tbe identity. 

Since it impoaea 110 re•triction, we shs.ll t ake 1 

aP • 0 
0 

(p J. • • , r ) . 

' 

r is called the order of the @ 

that f ound in the thaor y of fi 

We also remind the rea 

A mappi ng of onG group onto &n 

~rphi@~ if it proser vec the c 

such a :capping an isomorphic~ 

elements of t ho two groups is 

t r an.sforrnationo (1) i s given ·i 

transformati ons correspondiug 

or even isomorphic, 

A group of linear transformati 

is called a repreaent~ticn of 

The fu.~damental idea c 

is to conside~ not the whole o 

t~e idAntity, consi s ting of th 

Thus, instead of the finit3 di 

we consider ths applicatio~ of 

think of a generalizsd ·velocit 

its original position x
0 

t o it 

We have now two equiva 

a) x ~ f(x
0
;a) 

Corresponding to these we can 

mation, as a result of which tt 

f rom the old ones - by differe 

J. 
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Given equation (1) there exists 
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(4) 

inversely x back to x
0

, we obtain 

elongs to the group and is charac· 

~r.e the transformation depends on 

0 
so constructed ca~~ot depend on 

rom which ~e started. The trans-

we sha.ll take, 

<e = J. .. , r). 
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r is called the order of the groupo (Note tr~t this usage is different from 

that found in the thaory of finite groups.) 

We also remind the reader of th3 following definitions: 

A mapping of o~& group onto another is 3aid to be homo~orphic or a homo­

~_2lhi~_:: if it pr<Jservec the operation of group multiplicatiou. We call 

such a mapping an ~cmorph~ if., in addition, the correspondence between 

elements of the two groups is one-to-one . Since the combination lnw of the 

tran.sforrnat i ono (l) is give~ · in -terms of the parametE>ro a , there can be 

transformations correspondiug tc different valuee of n which are homomorphic 

or even i somorphic. 

A gr oup of line&r transformations which is homomorphic with a given group 

is cal led a r~preoent&ticn cf this group. 

The fQ~damental idea of Sophus Lie ' s theory of continuous groups 

is to c ons ide~ not the whole of n group, but that part of it ~nich lies near 

t he identity, co~sisting of the so-called i nfinitesimal trannfcrmations. 

Thus, instead of the finita displaceme~t of a point lmder a transformation, 

we consider ths applicatio~ of succe.ssive infinitesi!!lAl displacements - we 

think of a generali zsd ·velocity field describing the motion of a. point from 

its or i ginal position x
0 

to its final position x. 

We have now two equivalant expressions for :0.:1 

a) or b) x • f(x;O) . (5) 

Corresponding to these we can represent in either of two ways a transfor­

ma.tion,as a result of which the new components of x differ infinitecimally 

from the old ones - by differentiation of (Sa) or by introducing a parameter 

, I I 

'· 

' ' 

lr, 
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of infinitesimal size in (5b): 

x + dx • f (x
0
;a + da) or x 1- dx " f(x, Oe. ) 

or ( employing the summation convention ) 

clx • ~ (xo,a) dacr 
baa-

or dx ~ (,9t' <x: 2_\ Oacr. (6) 
oe. /a~o 

The last may be written 

(
, Or i (x,e. )) 

}lx) • o-
cr ba e.=O 

i i 
dx • u;!x) &o-, 

•Which defin11s the "velocity field" u
1

(x) mentioned above. . ~ 

of (2) we may write 

a + da • <f ( e.;Oa ) , 

Since it follows from (2) and (5) that q> ( a;O) a a, we have 

a + da • a + ( .Q_'f(e.;b )) OaT: 
~bt. 

b~o 

Thus, de. is a linear co!llliine.ticn of Oa: 

)l~(e. ) = ( O'fe(a,b) \ 
Ob 1: ) 

b~O 

de.P • f{(a ) Oa 't'' 

Solving for Oa, we get 

where 

Oa o- ~ )-.<1("-) dall 
f' 

Al1"1, i . e , 
I 

.A. o- 11~ ~ 6o­
pn: _t' 

(7 ) 

In the notat io::>. 

(6) 

( 6. ) 

( 9) 

-5· 

Fr om (6), ( 7) and (8 1 ) ws get the f : 

bxi -;:--p • ui( l 
us. T. 

il' u is t o represent the velocity r~ 

(A) r.tUet be completely i n.t egrabla, l 

solut icna wi th n arbitrary cona~MtE 

02x i 02xi 
--- a --- becomes 
Oe. a- oaP ~o.Poa ~ 

uj " - uj -+ ).If. ).11 ( ~i ~i ) 

\. :r: ~ " bxJ p fT 

and , us i ng (9) , this gives 

-.v!lere 

) _9u~ J' 0 i 
X \3 ·· u ~ 

ox " axJ 

cx) a) a OAe l ( t 
Oao-

0 
o. 

Sine,, u is ir<~ependon':; of a , diffore1 

Oe; 't(a) l 
X\) u 

- () .. ~-
But the a • fi hc.Ye been asetur.ed ccsent~ 

indepe~dent, hence the c ' s &.re indepe 

' 0, 1 ' ~i 
u·l ~ ·• t1J - + 

X 0xJ II ~J 



From (6 ), (7) and (8 1 ) we get the first f ucdamental f or mula: 

~ • dx " f(x, Oa) O:x1 
1 t -- • u (x) ).. (a), 

O&.P "t f (A) 

dx ·(9r(x: l_\ Oars', (6) 
Oa J a•O 

II' u is to represent the velocity f i eld o.f a transformat ion (1)
1 

equati on 

(A) r.rue "t he completel:r i n.t egrable, i . e. i t mus t be capable of admit ting 

soluticno with n arbitrary c onstant s x
0

• The integrabi l i ty condit i on 

becomes 

ment ioned above. In the not a t io, . 

and, us i ng ( 9 ), this gives 

'· 
•( a ; O) • a, we ha'Te (10) 

-....:Wre 

(11 ) 

(8) 
Sine,, u is il'l~e p endon.f; ot' a , d i ff f) rentis.tion cf (10) by .. e givee 

(s· ) But the a' r. hc.ye bee!l a s eun:ed ccsent~ 111, ao th.'!l.t by ( 7 ) t he u• s are linearly 

indeper:dent , hence the c ' s &:-e independent of a. ~quation (10 ) is 



and f rom ( ll) 
'( 

(),.~.r 
---

bacr 

0 >.7: 
<T 

v 

-6-

ac T:K .>': 
XV E' o-

(B2) 

( a
1

) is a necessary condition on the velocity field if the latter is to 

generate a group, and ( E
2

) i s a corresponding restriction on the manner in 

which t he ~ •s combi ne, 

An infinitesimal transf ormation on the x induces oa any function 

F (x ) a variation 

where 

dF(x) " .9!-.- dxi 
Ox1 

Ccr'ibf' 
oa u,... ~ 

Ox 

. 0 
X " u

1 
(x) -i 

a- cr Ox 

;; OacrXc:rF (12) 

( 13 ) 

(12) shows that every infinitesimal transformation of F(x) is generated by 

a linear combination of the operators X which are called t~e infinitesimal 

oper&tors of the grou;:> S, From (B
1

) i t follows that the)' satisfy th~ 

relation 

x xo-- xo-x p p 

Evidently 

;; (X X ) " c 1.' X , e (} per ---c 

t: 
c per 

t: 
c<r'f 

Substl.tuting ( 14) into the Jacobi identity 

[[xla-Jx-r J • [[xa-x--c JxeJ. u\-xeJx,...J Do 

we get 

( >1) 

(Cl ) 

- 7-

c flcv+c flc \J+ 
f cr .fl" crt: flP 

We have shown that equations 

That the converse to this statene nt h 

damental thl>oreme of L!o .- which we Ah 
i .; 

I o rr ther~ exist f .. X- sat 

IIo If there exist u1 s satisf 

determinsd within isomorp 

equation (A) is integrabl 

III. For every set of o 1s sati 

(Bl ), 

We shall writ~ a~ infinites irr 

the formS • l + Carr X , where Oacr 
a a-

to bs of the first order. If we cornt 

s sb = (1 + oapl )(t + 
a P 

where the fir s._ non·· Yani sh!.ng inf ini t 

to the oper a t i on of ·multiplicati on ir 

nitesimal gr oup of S, !f the first c 

aider quant i t ies of highe~ order. Bt 

that in thi s connection we need never 

tesimals - i,e. we have only to worr) 

- 1 - 1 
of the form sasbsa sb r and to ask 1 

operator of the second order, oaPobo-

!llll.nl.fold of infinitesimal operators. 
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(12) 

(13 ) 

transformation of F(x) is generated by 

s X which are called t~e infinites imal 
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o Po "+o Po v +o flc v=O. per p-c a-t: )lp 't' p )lCT 

We have shown that equations (r.) are il!lplied if the f i form a group. 

That the co!lverse to this statene nt holds is theo co!lte:llj of the three fun.:. 

de.mental thnorema of Lio _, which we AhaE not prove. They state that 

r. I!' ther" exist fi= xi satisfying (A) then they forl4 a group. 

II. If there exist u 1 s satisfying (B
1

), then there exist J\•s, 

determinsd within isomorphism., "which satisfy ( B
2 

), so that 

equation (A) is intsgrable. 

III. For every set of o 1 a satisfying (C), there exist u•s sat isfyi~g 

We shall writ~ an infinitesimal transformat i on of the group S i:1 

the f orm s a l + Carr X • where Oao- is an infinitesimal quantity d9fined 
a cr 

to bs of the first order. If we combine two such transformation,, we get 

where the first non··vanisM.ng ini'initesi.lr.e.l term~ have b9en r etained. ThuB• 

to the operation of ·multiplioation in~ corresponds addit:on in the infi-

nitesimal group of S. If the fi~st order quantities vanish, we have to con-

aider quantities of highe~ order . But the second t~eorem of Lie implies 

that in this connection we need never go beyond the second order of infini-

tesimals - i.e. we have only to worry about ~tato~s, which are expressions 

-1 -1 of the form sasbsa Sb : and to ask that the oorre spcndin5 infinitesimal 

oper ator of the second order, 68.1'6bcr [X X ] be contained in ths lir..sar err 
manifold of infinitesimal operators. 
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§2. ~arame ter Groups and Adjoi nt Group-. 

On oomparing ( 8 ) with (7), we s oe that a oloae formal analogy exists 

between t he functions p and u, In fact .• the tf ( &J b) of ( 2} which -connect 

the parameters accordi ng to the compoeit ion law of the group may themeelves 

be considered as defining a gro~p i n the same way ae does (1')• 

a'P • <j~ P (a;b) 

Thi s r e l ati on can be r egarded as a mapping of the a onto the a' a ccording 

t o a t ransformat i on whose p9I ameter is b. We shall prove that these trans­

f ormations form a gr oup P1, which is isomorphic with S and is called the 

fi rst paramet6r group. Indeed, if a : • ~(a;b) and a" • ~( a';c) then 

a" = Cf ( (_f( a;b ) ; c ) = 'f{ 'l;'f(b;c)) 

wher e the last equali t y fell ows from the associative property· cf the trans­

for ma tiona f i . 1/e thus see that the law of composition is the same for t he 

fi r st parameter group and t he original group of transformations f i • 

The analogous group of transformations on the argument b of tp (a;b ) 

is called the secnnd parameter group P2• P2 is anti-isomorphic wit h s, 

t hat is, it is isomorphic when the fac~rs are taken in the r everse order. 

But s i nca (xy)-l• y-lx-l and since a &roup contains x-l if it contains•x, 

t he two are i n fact isomorphic, Let a ( or c) be a transformation belonging 

t o the first (or s econd) parameter group ,. Let the operati on of P
1 

t rar.s ­

f orm b into b 1 • Cf( b , a ) and le t the operation of P2 t ransform b 1 i nto 

b'' • 'J'(c ,b ' ) . Then it is clear that 

b" ~ <:p(c;b' ) • Cj> (c, <j> (b,a)) • ~( ':f(c,b),a), 

hence every el ement of P1 commutes 

The p's are the velocity f i 

define the infinitesimal operator 

Correspondi ngly, in P
2 

A • uE> ( a ) · 
't I t 

B • ~(b) · 
't' 17: 

Another operation which it 

Given an element Sa of S, to every 

-1 
an e l ement sb,- SaSbSa • The opera· 

the group onto itself which depends 

of S by Sa' Consider now the set oJ 

run through all the el ements of s. 

a group of transfo~mations, 

general isomorphic with S. It is e1 

the group of conjugations holds if 1 

ment of S which commutes with all el 

If we regard the relation x' 

is well known that the effect of op• 

given in ter~s of x 1 by the operatic 

on the same function of Xt 

S x' • S S x = 
b' a b 

The con;jugation gives the change in 
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we sBe that a oloee formal an&logy exists 

fact, the 'f ( &J b) ol ( 2} which -eonnect 

tposi t ion l&w of the group may themeelves 

n the same way as does (l')a 

( a; b ) 

mapping of the a onto the a' according 

is b. We shall prove that these trans-

s isomorphic with S and is called th~ 

a : a 'f(a;1:l) and a" • If( a' ;c) then 

= 'f(9.;'f(b;o)) 

!ll the associative properti cf the trans-

• law of composition is the same for t he 

~1 group of transformations f i . 

Jformations on the argument b of tp(a;b ) 

P2 is anti-isomorphic with s , 

: ac~rs are taken in the reverse order, 

' ~roup contains x-l if it contains x, 

: a ( or c) be a transformation belonging 

;roup" Let the operation of p
1 

trans­

operation of P2 t ransform b' into 

.t 

(b,a)) a ~( 'f(c,b),a), 

... 
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hence every element of P1 commutes with eve~y element of P
2

• 

The f's are the velocity field of P1 (see equation (8)), and they 

define the infinitesimal operator 

(15) 

Correspondingly, in P
2 

B • 'it(b} _£.._ 
't' I 7: /)b~ 

(16) 

Another operation which it is useful to consider is conjugation 1 

Given an element Sa of S, to every element Sb of the group there corresponds 

-1 
an element Sb 1 a SaSbSa • The operation b ~ b' is a faithful mapping of 

the group onto itself which depends on Sn and which is called conju~ation 

of S by Sao Consider now the set of conjugations obtained by letting Sa 

run through all the elements of s. These conjugations themselves constitute 

a group of transfo~mations, hoaa.orphie to S, , but not in 

general isomorphic with S. It is easily seen that isomorphl.sm betwe'!n S and 

the group of conjugations holds if and only if.' the identity is the ' only ele­

ment of S which commutes with all elements of So 

If we regard the relation x•a Sax as a coordinate transformation, it 

is well known that the effect of operating with sb on a function of x' ie 

given in terms of x• by the operation of tha conjug&to of sb by sa acting 

on the same function of x 1 

The con;_iugation gives the change in the parameters of an operation if thitt 
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operetio'.1 is conside:-ed in the new system of coordinates x•, The advantage 

of the group of conjugations over the parameter group is that the conjugate 

element s s s-1 is in!initasime.l if s ~ a infinitesimal, irrespective of the a e a e 

magnitude of sa. 

If in the first. Ryetem of coordin~tes Se is expressed by S9 ~ 1 + C erXf, 

then, after ~he transformation with Sa the same transformation S
9 

Will be 

expressed by 1 + t 4
1P X' , and hence 

~ 

e'Px' ., ePx 
~ '( 

(17) 

The group of transformations eE'- e'P is called the adjoint group. We wish 

to determine its infinitesimal operators, produced by transformations sa in 

the neighbo:-hood of the identity, With S • 1 + 68.crx and· S • 1 +tX V<e 
a a- p f 

have 

s• a l +eX' ass s-1- (S s s- 1s-1 )s D (l + [0!1..,-X_J eX ])•(l +f. X) e f a p a a p a p e ~ f e 

or 

x• - x ;; dX • 6'a'lx.Jx ] f p p ~ p 
c t: oaOX 
~ 'C 

by (14). Fro~ (17), we have 

or 

de't'X • -eP dX 
t: p 

eP c t' Oarr-X per '"!:' 

de r . eP c 't' & o-. 
per ( 18) 

If Err are the infinitesimal operators of the adjoint group, we find by 

comparison of ( 18) with ( 7) and ( 13) that 

~ 0 
E • eP c L_ 

cr f"'" Cle't' 
(19) 
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§3, Su.b@.roups, simple and sem.l.-sim] 

a) A group is Abelian if a · 

the correspondence between commutate 
I 

lian group all square brackets, and 

vanish: 

c t'. 0 
per 

b) A subgroup of a group S 

tisfies the group postulates. Thus 

mal operators of a subgroup, the st1 

tisfy the relations 

1: c per 0 (p,er 

c) An invariant subgroup, l 

contains all the conjugates (images : 

-1 
contains sxsnsx for any Sx in s, 

-1 -1 
sxsnsx sn ' Thus, the square brackE 

of H with any infinitesimal element 

are the infinitesimal operators of E 

ture constants of S must satisfy 

'l: 
C a 0 
pa-

d) A group is simp!! if it 

unit element. 

e) A group is semi-simple 

besides the unit element . 



m of coord i nates x 1 , The advantage 

ramet er group is t hat t he conjugate 

s infini tes imal, irrespecti ve of the 

n~tes S i s expres sed by se~ 1 + c ePx , 
e p 

3e same transformation S wi ll be 
e 

(17) 

3 called the ad j oint group, We wish 

produced by transformations sa i n 

;;az 1 + 0a" X and· S a 1 +C. X w-e 
o- p f 

a (1 + (6a0X.J E. X ])•(1 +f. X ) 
) <T (' t? 

r 
(18) 

the adjoint group, we find by 

(19) 
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§3 , SL,bg,roups, s imple and sem5.-simple grcups, 

a) A gr oup is ~~ i f all its elements commute, It follows f r om 

the correspondence between commutator£ L~d square brackets that f or an Abe­
l 

lian group a ll s quare brackets, and consequently all structure constants, 

vanish: 

c 'l:'_ 0 

e" 
(20) 

b) A subgroup of a group S is a subset of elements of S which sa-

tisfies t he group postul ates. ... , X are the infiniteei­
p 

mal operat or s of a subgroup, the structure constants of the group must sa-

t i sf y the r elat i ons 

0 
< <e,cr-p, t' > p ). (21) 

c) An invariant subgroup, H, of a group S is a sub&roup of S which 

contains a ll the conjugat es (images) of i t s elements , Thus , with Sn' 1~ 

conteins sxsns~1 
f or any Sx in s. If so, i t also contains the commutator 

S S S-ls-
1

• Thus, the square br acket connectimg an infinitesimal element x n x n 

of H with any i nf i nites i mal element of S mus t bel ong to H. If x1, x
2

, •• ,,~ 

are the inf initesimal operators of an invariant subgroup of s, the struc-

ture constant s of S mus t sati sfy 

1: 
c = 0 per 

< <e - p, 't: > p > (22) 

d ) A group i s s imp~ if it has no invar i ant aub6roups besides the 

unit element, 

e) A group is semi-simple if it has no Abelian invariant· subgroups 

besides the unit element, 
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The distinction between groups which have Abelian invariant subgroups 

and those which do not have such a~bgrou!Js !.s important, because Abelian suh-

groups, though appare~tly e~siest to deal with, can actually be most trouble-

some from the point of view of representations , as the foll owing example will 

show: 

ITa consider tbe gro~p of rectilinear motions in one dimension, in 

which the transforme.tion x• m ::: + e. fol.lowed by x" ~ x•+ b is equivalen·(; to 

x"• x + a + b. This group can be represented by squ~e matrices of the 

second rank, in terms of wrdch the composition law just given would read 

(: b\ (l 
I • 

1) 0 
a:b) a)e 

1 ( 0 

However, none of the matrices of this particular representation can be br~ught 

to diagonal form by a similarity transformation. This peculiar behavior is 

closely related to the Abelian property, Indeed, as we •hnll show later, 

semi-simple groups never exhibit it. .Moreover, the physical applicationr. 

in which we shall be interested will require the use o:tl.y of semi-simple 

groups. We shall tr.erefore from this point on restrict ourselves to the 

st~dy of semi-simple groups, To this end, we must havo a criterion for their 

identification. 

Such a criterion ce.n be for-.r.·~ lated very simply in terms of a sym­

metrical tensor of the second rank which we construct from the c r , 
eo-

g •c)Jc >.. e" fA CT Y • 

If the &roup ia semi-simple, then necessarily, 

(23) 
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det I g_p-tl ! 

For suppose it possesses an Abelian 

whos e element~ are denoted by ·i), "6'-, 

g - ~ C )l C- !;.. 
~o- (JA a-p 

•c.Pc_ ;; 
JA a-y. 

u >; 
• C L C--

P"' a-? 

~ 0 

That the condition (24) is sufficien 

by Cartan, 

•<e can use the tensor ~ 'li to 

tween contravariant vectors or to fo 

As an example, 

C a C 'i: 
fa-A. po-

and this new tensor is totally antis 

c = _po-A 
c tc v c Y 

po- t: jJ- >-" 

• -c 't c \) c ? - c t 
o-p 'tp ).,\) Ye 

•c -y;c Vc }'-~c '(. 
a-f ~'[; >.)! ?~ 

The la at line has the desired proper 

permut:\tion of the indic9s ant!. is, b 
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)UIJ S ~ a important, because Abelian sub-

3a l with, can actually be most trouble-

:tto.tions , as the foll owing exar.1ple will 

l inear motions in one dimension, in 

!. lowed by x" ~ xt + b is equi valen·i:; to 

3sented by square matrices of the 

?Os i tion law just given would read 

?ar-ticular representaticm can bs br<>ught 

:ornation. This peculiar behavior is 

r. Indeed, as we ~hnll eh<:>w later, 

~reover, ths physical appl icationr. 

!qui r e the use onJ.y of semi-s i mple 

Joi nt on r estrict ourselves to the 

; nd , we must have a criterion for their 

l ted very simply in terms of a sym­

>h we construct from the c T per 

(23) 

; so..rily, 
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det I & 1:1 I o 
5' 

(24 ) 

For suppose it possesses an Abelian ir.va.riant sub br oup, the indices of 

whos e element~ are denoted by ·e, -cr-, Then, 

g - ~ c )l c- A 
eer ~.A rry. 

ac.Pc_ )i 
y.A rr J1 

by (22) 

by (22) 

~ 0 by (20) 

That the condition (24) is sufficient as well as necessary has been sho~n 

by Cartan, 

' le can use the tensor ~\I to define a relation of orthogonality be­

tween contravariant vectors or to form new tensors by lowering of indices. 

As an example, 

and this new tensor is totally antisyr!Utl6tric, for by (23), 

c t o v c I' 
per T:? A \l 

-c 1: c \) c ? 
cry. tp .A\l 

(25) 

The la at line has the desired property, since it is invariant under cyclic 

permutation of the indic!ls ant!. is, by construction, skew in f 9.nd o- • 

' 

J\ 
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If the groupS is eemi-simple, thG~ Cartan•s c.-ite1·ion (24) implies 

tha.t we can form fro:n ':fer the reciprocal tensor gPo- wt.ich can be used to 

ra.iee indices_ and define or~hogonali~y b0tween covariant vectors, 

As 11..11 e::.aruple of the foregoing we consider the g!' oup of ;·igic motions 

in three dimensio~s, con•istir.g of rotat ions ar.d trersla~ionso The infini­

tesimal rotations are generated by operator s Lj (j ~ 1, 2, 3) satisfying 

(L1L2 ) • i L
3 

&teo (26) 

and the infinitesimal displ eoems~te by oper&tors P
1

• L
4

, P2• L5 , P3~ L6 

which commute among themselves but which satisfy 

(L
1

L5 ) = i L
6 

et~, 

eo that the only non-vaniehi ns structure constants are 

3 1 6 
cl2 - 0 23 • cl5 • 

4 
~26 • 

5 2 5 6 4 • 
0 34 • 0 3J. = 0 61 a 

0 42 • 0 53 = • 

plus a cor!'esponding list given by (C1 ). For the g we find pv 

g11· g22· g33• 4 • g44• gss· g66. 0• gpo-- 0 (f ! a- ) . 

The determinant det g vanishes, as reouired by Cartan•a criterion, since jltr" • 

the translations form an Abelie~ invariant sub~roup, 

If we consider only the group of three-dimensional rotations, de-

fined by (26), we find that it is simple and that the metric tensor is 

g - 26 -ya- ycr- (27) 

I 
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le, the~ Cartan•s cdtedon (24) implies 

cocal tensor gPrr wl".ich can be used to 

l"ty b')tween covariant vectors, 

lng we consider the g!'oup of ;·igiC. motions 

'otations a~d trar.s1a~ions. The infini-

)peratorc Lj (j ~ 1,2,3) satisfying 

( 26) 

by operators P
1

• L
4

, P
2

• L
5

, P3~ L
6 

rhich satisfy 

'6 

:ture constants are 

For the g we find :pu 

g • 0 per <y ! <T ) • 

required by Cartan•s criterion, since 

·ariant subr,roup, 

·? of three-dimensional rotations, de-

mp1e and that the metric tensor is 

(27) 

/ 
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Lecture 2, 

CLASSIFICATION OF THE SEMI-SIMPLE GROUPS, 

§1. The Standard Form of the Infinitesimal Group. 

In order to obtain a standard coordinate system for the set of in-

finitesimal operators of a semi-simple group we consider an eigenvalue 

problem of the form 

[A X) • ~ X (28 ) 

~re A is a fixed arbitrary infinitesimal operator A • ~Xf while X • xv Xv 

la an eigenvector corresponding to the eigenvalue f • Using (14) we can 

~ite (28) explicitly as 
~ 

11 \) t" 1: 
etx cvX •fx X f '[; t: 

Since the infinitesimal operators are linear-ly independent it follows that 

11 't' 6'l;'\) (arc - p )x ~ 0 • p V 1 V 
(29) 

From (29) we get the secular equation 

t" "(; 
det(af c}l))- J' _6v ) • 0 (30) 

If there exist r linearly independent eigenvectors, they can be 

used as a basis for a coordinate system in the r-dimensional space. How-

ever, generally, r linearly independent eigenvectors may not exist if the 

secular equation has degenerate roots, Usually, in physical problems, 

conditions like hermiticity or symmetry of the matrix insure the existence 

of r linearly independept ei~enve~tors. 'But for semi-simple infinitesimal 

\ 

groups Cartan has shown that if A is chosen so that the secular equation (30) 

'I 

H 
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has the maximum number of different roc 

and that if J- be the multiplicity of 1 

to this root ~ linearly independent e ~ 

with each other. .l is called the rru 

A commutes with itself , the ra~ of a 1 

We shall use Latin indices 1, 

space cf dimension _l, spanned by the 

will be employed for the r- 1. dimenai• 

eigenvectors Eo<.. • •••• E.y corresponding 

c:J.,. ••• \) • For the latter indices tho 

pended, The three indices J'• rr ,1: 

r-dimensional space, 

The basic vectors IIi and Ed- ar 

[A Hi) ~ 0 

(A E,._l • cA. Ed-

Further, since A is an eigenvector of 

written in the form: 

A a )o..i 

We shall now discuss the commutators c 

information abou i; the c t' 
J'" 

(Hi Hk] = 0 

First, f 

or 

Second, we consider [HiE d-.] , 

(A[ HiE,._l] + (Hi[E"'A]) + 
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SEMI-SIMPLE GROUPS, 

tesirnal Group , 

d coor dinat e system f or the set of in-

le group we cons i der an eigenvalue 

(28) 

esirnal operator A • ~X while X • xv X 
f v 

he e igenvalue f • Using (14) we can 

' l inearly independent i t follows that 

(29) 

• 0 (30) 

iependent ei genvectors, t hey can be 

cem i n the r-d imensional space, How-

•nt e i genvectors may not exist if t he 

1 , Usua lly, i n phys ical problems , 

:r y of the mat rix insure the existence 

·s, ' But f or semi-simple inf initesimal 

chosen so t hat t he secular equation ( 30) 
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has the maximum number of different ronts, then only f • 0 is degenerate1 

and that if J. be the multiplicity of this root, there are cox:reaponding 

to this root ,t linearly independent eigenvectors H1, •••• H~ which commute 

with Baoh other , J. is called the ~ of the semi-simple group. (Since 

A commut es with itself , the ra~ of a semi-simple group ia at least one,) 

We shal l use Lat in indices 1, ••• l for the coordinates in the sub­

space cf dimens i on ,t, spanned by the Hi, while Greek indices cA. •• •• )) 

will be empl oyed for the r- 1. dimensional subspace which is spanned by the 

eigsnvectors Eo<.. •• , , .Ev corresponding to t he non-vanishing distinct roots 

~ ••• v • For the latter indices the summation convention will be sus-

pended, The t hree indices J'• a- 1 L; will be used to refer to the whole 

r-di mensional space, 

The bss i c vectors IIi and Eo.. are defined by the relations 

(i • 1 ...... i.) (31) 

( 32 ) 

Further, s i nce A is an e igenvector of (28 ) wi th eigenvalue zero, i t can be 

written in the form: 

A a ._ i H 
~ i • (33) 

We sha ll now di s cuss thA commutat ors of H' s and E's, i n order t o obtain 

information abou t t he t' First, f r om Cartan's t heorem, we have c _p er 

(Hi Hk] = 0 or 
't;' 

0 • (34) cik c 

Second, we conai<ier (Hi Eo\. ]. To do t his we wri te 
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~ (31) and (32) this is 

[A[ HiEd.]] • d.. [HiE<1-.]. (35) 

Thus [HiE~] is an eigenvector of (28) belonging top • dl, and since these 

eigenvectors are not degenerate, we must have 

[Hi Eo<.] • ~i Ect-, or 7;' 67;' 
Ci~ a o(i <:),. • (36) 

From (32), (33) and (36) follows that 

o<. - )\ i o<.i (37) 

From here on the letter dl or the term "root" will be used to denote either 

the form (37) or the vector with covariant components dli in the ~-dimen-

aional apace, 

Finally, to find [Ed.. E ~ ], we form 

(A[Eol. E~ ]] + (Eel.. {E~ A]] + (E~ [A E<1-.]J - 0 • 

~ (32), this ia 

(A(E.,._ E(3]] • (<:~..+ ~) (Eo<.. E~], (38) 

Hence [Eo(. E fo] belongs as eigenvector to the root 01. + ~ if <:~.. +~ is a root, 

and Vlllliahes i.t ~ + [?. is not a root. If <A + r; is a non-vanishing root, we 

shall write 

. (E~Ef']•R~~Ed.+f-> or c cJ..+~ • N • 
. c;t.. ('> d.(!> 

It (l• - o<.. then evidently we have 

i 
(E.._ E_.._J • cOl-<1-. Hi 

(39) 

(40) 
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and for the rest, 

c '1: 0..(!> • o. 

We shall now show that if o... ie 

This is done by forming the tensor g.._ t 

(41), wh6n applied to (23), give 

... i .._- "'' 
gd-.t: • colic-c-o.. + ~-o..c"" l~ 

But by (36) and (41), each term on the 

so that 

gd-.1: • 0 

Thus, if - o<.. is not a root, Cartan's 01 

groups is violated. ay a suitable nor1 

gal-"'. : 

and we can order our basis so that the 

Since det g ;ptr 
from ( 24) that 

Further, 

'per • 

gik . ........... 
0 

: Ol 
10 

0 
1· 

0 

is the product of the 

det gik · 

gik • L. c .... 
'"- ic;. 



,. 
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(35) 

28) belo~~&ing to f' • c/... 1 and since these 

' lllllst have 

(36) 

Ult 

( 37) 

;erm "root" will be used to denote either 

1variant component• o<.i in the ,i -dimen-

we form 

A)] + (Ef.l (A Eo&.. )] • 0 o 

(38) 

.or t o the root 0\. + (3 if 01.. +f-> i s a root, 

t. If <>1. + {!> il a non-vanilhill& root , we 

r (39) 

(40) 
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and for the res t , 

(41) 

We shall now show that if 01.. is a root , then -01.. is alao a root. 

This is done by fermi~~& the tensor g ... : to The restrictions (36), (40) and 

(41), when appl i ed to (23), give 

... i L o....,.., (I i -d. 

go'.t: • ccLic't'"'- + /;f-o..c"'f!> ct: <!..+~ + cc~.-o.. c't'i ( 42) 

But by ( 36) and ( 41), each term on the right of ( 42) exists only when t' • - d., 

so that 

(43) 

Thus , if -d... is not a root, Cartan's cr.iterion (24) for ths semi-simple 

groups is violated, By a suitable normali~ation of E~ we may set 

g.,.,-"'- D 1 J (44) 

and we can order our baais so that the tensor gj",... is written in the form 

0 

0 ................ 
01 
10 0 

01 0 

10 
0 0 

(45) 

Si nce det ~or i s the product of the elementary determinants, i t fo l lows 

from ( 24 ) t hat 

det gik ,i 0 o (46 ) 

Further, 

c ~ c ci.. 
i c~- k <A. 

(47) 
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It may be noted that the gik defined by (47) has a non-vanishing determinant 

only if the vectors ~ span the entire ~-dimehsional space. gik Will be 

used as the metric tensor for this space, " Using the inverse tensor we can now establish the following us~ful 

identity, 

0 i -.,.._.,_ ik c 
g o(.-cl.k 

gik ok ol-d.. by ~tisymmetry in subscripts, 

ik cf... 

g ckc1.. by (44) 

• gik al.k;;; o(.,i by (36), ( 46) 

so that (40) can be written as 

i 
(E ... E_ ...._) • al. Hi I ( 49) 

where the d...i are the contru.variant components of the vector 01.. • Collecting 

(34), (36), (39) and (49) we have for the standard forms of the commutation 

relations 

(Hi Hk) • 0 

(HiE_._] a 

(Eo( E~) 

(E"" E_.J • 

';)(.iE.._ 
( 50) 

N.,.. !\ Eo<+(!> when ol.. + (l is a non-vanishing root 

i 
cA. Hi • 

As an example of the foregoing, we can take the operators of rotation 

in three dimensions, generated by 1
1

, 1
2

, L
3 
su~h that 

(L1 L2)•iL
3

, etc. (5la) 
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If we t ake A equal to 1
3

, the two relatio 

(L3, ~ ± i 12] a ! (Ll t 

show that L1 t i 12 are eigenvectors corr 

normalization condit i on (44) yields 

Hl ~ L3 ' E a 
- 1 

§2, Properties of the Roots • 

Theorem: 

We shall . now prove the following 

If d.. and (3 are roots, then 

• i s also a r oot, 

2 

This theorem is to hold for arbit 

by r estricting ~ to be some root, (?, su 

cording to (50) we can generate a set of 

( E_U.. E ~ ) = N-ci.~ Ej' -<i.. 

(E_ o<. E~ - c~.J = E~_2 o/.. 

(E_o~-. E '8-j oi. J E' g-( j +l) 

where the primes indicate that, for t he m 

norma.lhation of the E ~ • Since there is 

process must eventually stop after, say, 

• We use the notation (al.. (\) for the scale 



l by (47) has a non-vanishing determinant 

;ire .l -dime si onal space. gik Will be 

apace. 

can now establish the following us~ful 

·cl.k 

al- al.. by =tiaytlllletry in subscripts, 

by (44) 

:>(.,.i by ( 36 ), ( 46) 

(49) 

components of the vector~ • Collecting 

>r the standard forms of the commutation 

(50) 
when o\.+ :~ is a non-vanishing root 

ing, we can take the operators of rotation 

etc. (5la) 
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If we take A equal to 13, the two relations 

(5 l b) 

show that L1 ~ i L2 are eigOnvcctors corresponding to ~ x ! 1 • Use of the 

normalization condition (44) yields 

§2, Properties of the Roots. 

We shall now prove the following 

If cl.. and (3 are roots, then 

• is also a root , 

· (5lc) 

is an integer and 

This theorem is to hold for arbitrary d.. and 13 , but we shall start 
I 

by r estricting {-> to be some root, >J, such that <:f...+ ~ is not a root, Ac­

cording to (50) we can generate a set of operators 

[E E~] N E .. E' - lA -d.>J x-al.. ~ - o<. 

[E -o<. E' ] 
~ -<J.. E'~ -2cl. 

. . . . . . . . 
[ E cl. E' . ] E' 

(52) - ~-J<I, g -(j+l)o(. 

\ 
where the primes indicate that, for the moment , we are not interested in the 

normalization of the E ~ • Since there is only a finite number of E f.>, this 

process must eventually stop after, say, g steps, Thus 

i • We use the notation (ol ~) for the scalar product ol.i 1~ • 
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[E E' ] "E' • 0 
-ck &'-g"'- (1-(g+l)ol 

(53) 

According to (39), E j mny be obtained a~;ain by an equation of the form 
s- "' 

[EC1\ E'~ -(j+l)oJ a }"j+l E~ -jo<. (54) 

In order to evaluate the coefe_icients fj+l we eliminate Ei-(j+l)d.. from (52) 

and (54), thus finding 

}"j+lE~-j<>.. = -(E;-jo<.(Ec>. E_,._]]- (E_""-[E~-j"'-E<i-.]J 

by Jacobi's identity, 

a -[E~-jo<. I o_~k] + Jlj(E_<f.. Et-(j-1)0. J I 

by (50) and (54). 

The use of (50) and (52) gives at once a recurrence re:!ation for the Jlj' 

Jlj+l ~ ?/ < "'Y > - j("'o() • (55) 

This relation holds only for j ?: 1, as fo is not defined by (54); however, 

the preceding argument shows that (55) can be extended to hold also for 

j • 0 if we define 

?o • 0 • (56) 

From (55) and (56) we obtain immediately 

ff j("'-X >- j(j-l) (o(c~-). (57) 

It follows from (53) and (54) that fg+l• 0, whence we have 

(o(. 'g)"! g("""'-), 
I (58) 
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where g is, by definition, a non-negative 

(57) we get 

Jlj"' ( cl. a<.) . 

If (ci- "') were zero for some root d-, t his 

be orthogonal to every root. But, as the 

sional Epace, this would contradict (46 ), 

g-~ 
(o(o(.) 

and we have proved that if 0.. and '(5 

then there exists a !!;ing of roots, 

are 1 

i' 8-ci, ... , ~ ~ 2(cl.~) cA. = 
(<i 0..) 

which is invariant under reflection with 

the origin perpendicular to the vector ~ 

is to be proved, we note that for any r oo· 

j =: 01 such that {!> + j at is a root but (-

~+j"'-"6' in the above discussion, s o 

and as 

2( "-f3) 
(CX<JI.) 

(!>+ jcl., ~+ ( j-l ) o, , ... , ( 

2(<>.~) • 2(cl...~) - 2j(ol.c1- ) - (g 

is an integer, and f- 2(.;. ~) d 

( o(."') 
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E' • 0 
~ -(j!,+l)cl. 

(53) 

obtained a&ain by an equation of the form 

) = u E1 
, I j+l ~ ·j d. 

(54) 

ients fj+l we elimi nate Ei·{j+l)~ from (52) 

by Jacobi's identity, 

:1-...~k) + Jlj[ E_cf.. E~-(j-1)~) ' 

by (50) and (54), 

t once a recurrence relation for the fj 1 

(""a') - j(d.o(). (55) 

1, asy
0 

is not defined by (54); however, 

t (55) can be extended to hold also for 

·o = 0 • 

.ediately 

n- j{j-1) 
2 (d.. d.). 

at fg+l• 0, whence we have 

=! g(o<.oc.), 
I 

(56) 

(57) 

{58) 
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where g is , by definition, a non-negative integero Introducing {58) into 

(57) we get 

j(g-j H) 
2 

(59) 

If (o<.. o<..) were zero for some root d.., thin !"oot would, according to (58 ) , 

be orthogoz:al to every root, But, as the r oots spll.ll the entire 1 -dimen-

sional space, this would contradict (46) , Hence we can write 

(60 ) 

and we have proved that if d.. and ~ are roots and d..+ 2/ is not a root, 

then there exists a string of roots, 

(61) 

which is invariant under reflection with respect to the hyperplane t hrough 

the origin perpendicular to the vector~. To return to the Theorem which 

is to be proved, we note that for any root~ , there exists some integer 

j :;: 0 1 such that {!> + j at is a root but p+ { j+l )d.. is noto We can now set 

~ + j o<. ~ 'l[ in the above discussion, s o that the string (61) can be written 

and as 

f' +j O.. , [ll+ ( j-l ) d. , "'•f>• .... f-; - ka. ( 62) 

(j + k = g ) , 

2(.;..(>) • 2{d..y) • 2j{d.c:l. ) a {g • 2j) ( ..l.c<.) 
1 

is an integer, and f- 2 (~/!l) d-. is contained in the string (62). 
( o(. o_) 
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In (39) we introduced a set of coefficients ~~ · but we have yet 

to see whether so~e of them may not vanish, This we can do with the aid 

of the Theorem, just proved, Assuming t.hat with cA and ('o • cA + (l.J is a root 

we evaluate 

[E_.,._E.,._+ (b] • [E_"'E~( j- l )ol ] • N-ol.cx+f.>Et-j~' 

With t his we form 

N-<ArA+ ~(E<I-.E3' -jel.) • N<>. ~N-<>. ~+~E,¥-(j-l)o<.. 

• Jlj E g -( j-1 )oC..' by (54). 

Equations (59) and (62) now tell us that 

N"'f' N- "'- cJ. .;. ~ a fj = 
j(k+l) 
~ (63) (cA co..), 

an: from this it is evident that Nol.~l 0 if o( +f.> is a root and therefore 

j - 1. 

It follows fr om this that if d- i s a root , 2 "' cannot be one , since 

Eol commutes vnth itself, From this, k"' cannot be a root for any positive 

integer k , since if it were, it would determine a string which .would con­

ta!n ~o( as an element. Hence, any string containing zero has only three 

elements ol. 1 01 - o<.. • 

Ue take now ~ linearly independent roots (1) (R.) 
0... , ••• , ~ as 

the basis of a new coordinate system in the ~-dimensional spaoe 0 and ex­

press all other root vector s as linear combinations: 

L 
12.. 2: 
I J k•l bk ~(k) • (64) 

-25 

lolultiplying (64) by cJi) and dividi 

be different from zero, we get 

( (':> d-(i) 1. 
(d-.<1> li> · Z: "" ) k•l 

Using the fundiUIIental relati 

covariant components bk muat be real 

scale, integral numbers. 

This shows that for a sui tat 

and this implies that gik is a posi1 

1 
X 

1 k ~ 
gik X X • L (d. 

"" 
HAnce the A-dimensional spaoe has 1 

§3. The Vector Diagrams. 

The graphical representatior 

diagram. Schouten derived restrictl 

simple Lie groups can be foundo ThE 

algebraically by Cartan) was obtainE 

who showed also that to every vecto! 

simal Lie group. Since the roots bE 

under a group of reflections, CoxetE 

generated by reflection leads to a 1 

groups. We shall here sketch the mE 
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1 a set of coefficients N , but we have yet 
d-f.l 

~y not vani sh. This we can do with the aid 

Assuming that with cA and (':> • "-+ ~ is a root 

' E ] 
'-o... y-{j-l)ol 

) "N N E 
-jol. ""f' -oe. «.+f.' i-(j-1)""-

.. Jlj Ed'-{j-l)o(., by (54). 

2) now tell us that 

j{k+l) 
(ol. "'- ), (63) 

hat N<J..// 0 if o( + f-' is a root and therefore 

that if d- i s a root , 2 ~ cannot be one, since 

m this , k ~ cannot be a root for any positive 

, it would determine a string which .would con­

e, any string containing zero has only three 

ly independent roots {1) ( .i) 
~ 1 ••• , ~ as 

system in the ) -dimenoional space, and ex-

as linear combinat ions: 
}_ 

2: bk d-{k) 
k~l (64) 
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Multiplying {64) by cJi) and dividing by ( O...(i) ji)), which was shown to 

be different from z ero, we get 

Using the fundamental relation (60) we deduce readily that the· new 

covariant components bk must be real, rational, and even, by a change of 

scale, i~tegral numbers. 

This shows that for a suitable choice of the H1 the ~i are real, 

and this implies that gik is a positive definite matrix, since for any(real) 

i 
X 

(65) 

Hence the ~-dimensional space has an ordinary Euclidean metric. 

§3. The Vector Diagrams. 

The graphical representation of the root vector~ is called a vector 

diagram. Schouten derived restrictions on these diagrams from which all 

simple Lie groups can be found. The complete clascification {already found 

algebraically by Cartan) was obtained us i ng this method by van der Waerden, 

who showed also that to every vecto~ diagram corr~ponds only one infinite­

simal Lie group. Since the roots belong to a lattice which is invariant 

under a group of reflections, Coxeter's construction of all finite groups 

generated by reflection leads to a third method of clessifying the simple 

groups. We shall here sketch the method of ' Schouten and vander Waerden. 

' · 
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Suppose we have two roots, ~ and 13 , and let ~ be the angle be­

tween them. We saw in the preceding sect ion that 

( d.. f ) a ! !:!(O..oi-) • i n((l. j->), (66) 

where m and n are integers. From t hi s we ge~ 

--- ( J. ·:l 2 mn 
cos Cf :s 

(Q.~ )(f>/1>) 
= --r-

• I 

(67) 

and from this we see that e.g can have onl y t he values 0°, 30°, 45° , 60° , 

and 90°. From (66) we deduoe that the rat i os of the lengths of t he t wo vec-

_ r;t 0 - r;; 0 0 . 0 tors are v~ for 30 , y Z for 45 , l for 60 , and undeter~ned f or 90 • 

0 
For 0 we know already that <A. a (3 • 

We want to construct every possible vector diagram which satisfi es 

these conditions and those obtained i n §2 . As Cartan ~ shown t hat every 

semi-simple &roup is a direct product of s i mple groups, we shall be interes ted 

only in the diagrams of simple groups . We shal l t heref ore not cons ider dia-

grams which can be split into mutually orthogonal p~ts , s i nc e evidently 

every such part corresponds to an invariant subgroup. 

It i s easy to see that the only poss i ble t wo-dimensional diagrams 

are t he ones drawn below. They are labelled by the le tters whi ch are t r a-

ditional from Cartan 1 s t hesis; the numerical subs cr i pt denot es the r ank of 

t he group. 

/ 

\ ·, 

~ 
. 

I 

' 

. 

/ 

\ ... 

\ 
....... I 

\ 

Az Bz Gz 
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" and (~ , and let :f be the angle be­

section that 

(66) 

1is we ge-t; 

1{1,) 
=-T-

-he ratios of the lengths of the two vec-

1 for 60° , and undetermined for 90° , 

ossible vector diagram which sat isfies 

in §2, As Cartan ~ shown that every 

t of simple groups, we shall be int er ested 

s . We shall therefore not consider d i a-

l y orthogonal parts, s i nce evidently 

var i ant subgroup, 

nly possible two-dimensional diagrams 

la.bell ed by the letters which are tra.-

ume r i cal subs cript denotes the rank of 

/i 
~ 
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.ie shall now generalize these diag~·ams to ,(_ dimensions. In what 

follows, we shall denote by ei a set of •nutually orthog<>nal unit vectors. 

A;_· Tl·,e diagr= Az• above, :na~· conveniently be regardecl as con­

sisting -of all vec t ors of the forme!- ek(i,k•l,2,3) o GeneraHz:'.r.g to £. 

dimens;_.,:;s ,, A i s formed fr.>m .l+l unit vRctors '':!,by fcrmit:g the 1(.(+1) 
;e.. 1J] 

differences e , •· ek, These will lie in the plane L xi= o. There are 
~ i•l 

~ ( ,( +1) vectors , and adding to this th~ rank, ~nich is the :nultiplici~J of 

the root zero, we see that the group is of order (£+1)
2
-1. 

B.£. • We can generalize B
2 

in ,l dimensions by constructing B L_ out 

oll all tne vectors ;l: ei and ;t ei;t ek (i,k•l,,.,l), There are 2£
2 

vector! , 

'lnd the order of the group is £(21'+1) , 

C_t. Ano·cher possible generalization of B2, !:lowever, is to construct 

all ;eetoro of the for m::: 2ei e.nd t 1\ t ek(i,k•l ••• f), For f.z, c2 differs 

from B
2 

only by rotation through 45° ., For _,!_ > 2, these diagrams are different 

from the B 1. 0 C .t has the se.me order as B _,(_, 

D~ o For ~ > 2, the diagram consisting of vectors± ei! ek 

( i .,k• 1.,., R.) repres ents a simple grolip 1 which we shall call D ,(_ • There are 

21'(1-1) vectors, and the group is of order f(2K-l)o For f =2, this con-

struction gives only two orthogonal pairs of vectors and is therefore not 

~imple, It may be noted that by a rotation o7 the axes given by 

e' 1 • ~ el+ e2- e -
3 e4) 

e' • ~e- e2+ e - e4) 2 - 1 3 (68) 
e' ., 

3 !(el- e2- e3+ e4) 

e' 4 • !{el+ e2+ e3+ e4) 

the vector diagram A
3 

may be brought into coincidence with n3• 
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van d&r Waerden has shown that apart from these four c lasses of 

simple diagrams th&re ara only five poasible simple diagrams, One of them 

is G2J the others are the followingt 

F 4• Thi, diagram consists of the vectors of B
4 

p1.us 16 more vectors 

~t e
1
t e2:t e

3
! e4 ). The:-e arE> 4A vectoz:s and the . group is of or der 52, 

vectors 

E6 consists of the vectors of A5 , the vectors !: yt e
7

, and all the 

"7 
-!( s-el .te2 s-e3 te 4 :te5 ±e6 ) :t --/2 

where in the first fraction we tak& three signa positive and three negative, 

There are 72 vectors and the group is of order 78. 

E7 consists of the vectors of A7 and all the vectors 

~tel ±ez !;e3 :te4 !es :te6 :te7 :tea), 

where we take tour signa positive and four negative, There are 126 vectors , 

and the group is or order 133. 

E8 consists ot the vectors of n8 and all the vectors 

i<:!"e1 te2 :te 3 te 4 !;e 6 !;e0 te 7 :te8 ), 

with each sitn occurring an evon "numbor of time1. There are 240 vectors , 

and the group is of order 248, 

The simplest realizations of the groups characterized by the vector 

diagrama A_(_ , B~ , C.f , D_[ , are the classical ~roups, i.&. the speci al 

linear (unimodular), the orthogonal and the symplectic (complex) groups. 

For the full linear group in -f +1 dimensions we may choose thf' in-

finitesime.l operators 
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(i,kal ••• ..l.+l) (69) 

vri th the conunutation rela tiona 

But the f ull ll.near group is not a semi-simple gr oup; t!le operator ~ Xj j 

commutes with eve~y operator of t!le group, and t he Abelian subgroup generated 

by this operator (i .e. the aubgr oup of the dilata t i ons) is an invariant sub-

group. 

In order to have a semi-si~ple group we have to restrict ourselves 

to the unimodular subgroup (or 1speoial 1 linear group) in J +l dimens i ons. 

Then the Xii are no longer infinitesimal operators of the subgroup but ' should 

be replaced by 

a change w,hich does not affect the commutation relations (70). These operato:·s 

cor~espond to the diagram A~ if we make the identification 

(71) 

Although we have .i +1 opera tor e Hi • only -f_ of them are linearly independent, 

owing to the relation 

( 72) 

For the orthogonal group in 2.i+l dimensions, which leaves the quad:atie 

form 

\ 
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invariant, we may choose the infinitesimal operators 

i 0 .k 0 
X - -:x_ - X ~ - X ---... • ik ~lei Ox-.. Ox: .. ~ (i,k• o, :!;1, ... ,:!; .e.>. {73) 

with the oommutation relations 

[XikXmn) a 6k+mXin- 0k+nXim- 6i+m~+ 6i+n~' {74) 

where 0 is one if q•O, and zero otherwise. These operators correspond to 
q . 

the diagram B,t it we identify 

Xi-i• Hi' X±i+k• E{:e +e ,'' XO+k• E(+e ) 
- i- k - - k 

(i,k > o). {75) 

For the symplectic group in 2.l dimensions, which leaves invariant 

the anti-symmetric bilinear form 
_£_ 

~ ( k -k -k k) L_ xy -x y , 
kal 

·we may ohooae the infinitesimal operators 

i i 0 k k 0 
X .:x_- c. X___,.,+{.., X --r' 

ik ~lei ax-"' Ox-~ 

with the commutation relations 

(i,k• H, ••• ,:t:£), (76) 

[XikXmn] • Em t\+mxin+ En Ok+nxim+ E.m Oi+m~+ en6i+l1~' ( 77 ) 

where t q is +l it q is positive and -1 if q is negative. These operators 

correspond to the diagram c:e_ if we make ·che identification 

Xi;_i ;;; Hi ' - E ) x:!;i:!;k- (teit8 k 
(i,k > 0). {78) 
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~ For the orthogonal group in 2 ~dimensions, which leaves the quadratic 

> k -k 
form k;i x x_ invariant, we may choose the same infinitesimal operators as 

in B~ , with t he same commutation relations, except ·that now i,k ~ 0. 

These operators correspond to the diagram D£ if wo make the ssme identifi­

cation as i n B,t. 
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Lectures 3 and 4 

THE REPRESENTATIONS OF THE SEMI-SIMPLE GROUJ!>S, 

§1. Representations and Weig~ts, 

A &roup of linear transformati:mt o!' a •re..:tor Sj:'aCC! R which is 

homomorphic to o. given gi"Ot<p is called a r9presentat:~on of this group. 

The dimensi~n, N, of R is cal led the de~~ of the representa~ion. If 

s and t are two elements of the group, and U(s ) and U(t) the corresponding 

matrices of the representation, then U( s )t: ( t) a U( at) o Two representati on·: 

U(s) and VCs) are called equiva~ent if there is a constant matrix A such 

that 

A U(s) A-l a V(s) 

for every element s. 

A representation is reducible if it leaves a subcpace R1 of R 

invariant. If this ia the case, the matrices of the representatl.on can 

be given the form 

( :1 B'\ 
Az ) 

(79) 

vmere A
1 

is a matrix whose dimensions equal that of R1• If the repre­

sentation leaves invariant two subspace& R1 and R2 such that R1+ R2a R, 

then the representation can be written a s 

( 

A.l 0 '\ 

0 A2 ) 

( 80) 

·jve say in this case that the repreeen+.ation is fully reducible, or 

decomposable. -



A Lie group i s determined by the r infinitesimal operators and 

t he i r commutation re l ations. Similarly, a representation of a Lie group 

i s determined it we have r matr ioea1 Df, which satisfy the equation 

D D - D D ;; [D D ) • o t' D,.. 
~ IT CT j f IT j'<T v 

(81) 

In p~ticular, we may ask f or a standard representation with matrices H1 

and Eo<.. which sati sfy the rela t ions (50). Theso same le~era, which de­

noted i nf i nit esimal operator s i n the previous work, will in this l ec t ure 

ccn3ia tent l y be used for the corresponding matrices. 

Let u be a vector i n the space R such that 

(i - l • •• ,t ). ( 82) 

Thus, u is a simultane ous eigenvector of the ~ mat rices Hi o The set of 

eigenvalues m
1

, • • • ,m~ ere t he covariant components of a vector in the 

1. -dimensional space. We ehall call this vector the wei~t of I!J from 

now on the -€ -dimensional apace will be called the ~eight space. Evidently, 

u i s also the eigenvector of the matrix /\i Hi corresponding to the eigen­

value 

(83) 

A weight will be called simple if to it belongs only one eigenvector. 

The exi s tence and var i ous properties of tho weights will now be 

A. Every r epr esent at i on ha s at least one WEight. 

~oofs H~ has &t least ona eigenvalue, say~~ let R1 be the su~­

space of R spanned by the eigenvectors of H1 belonging to m1 , Since 
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H1H2u • H2H1u • m1H2u, it follows that H2R1• R1• H2 has at least one ei6en­

veotor in its invariant subsp~ce R1• Continuing the process, which is 

possible because every matrix has at least one ei~envector in every in-

variant subspace, we arr ive at the subspace R~ which conoists of the 

simultaneous eigenvecto!"s of H1 ••• :a~ corr esponding to tha weight ma(m
1 
.. . mt. ). 

B. A vector u of wei ght m which is a linear combinat i on of vectore 

~of weights m(k), all different from rn, .must vanish. 

Proof 1 

the equation u 

We form the matrix TI .Ai(Hi- mik)) and let it operai;e on 
k 

• ~ ~· Since all H commute, each factor annihilates a 
k 

term in the sum. Since the )\i are arbitrary, the left hand side is also 

zero only if u vanishes , 

C. From B it follows that vectors with different weights arA 

linearly independent, so that there are at most N different weights. 

Do If u is a vector of wei~t m, then Hi u and Eel... u have definite 

weights, m and m+ oC. respecti vely. 

Proof• For Hiu this is an immediate consequence of (50). For 

Eo<.. u we have 

Hi~"'-. u • (HiE<(] u + Ed..Hiu • (o<.i+ m1 ) Eol....u • (84) 

E. If the .representation is irreducible the Hi may simultaneously 

be expressed in di agonal form. 

Pre of 1 Starting with a vector u having a definite weight., we con·· 

sider the space R1. spanned by all possible products 
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E~ E('> E<>. u , (85) . 

aach of which , according to D, has a definite weight. Evidently, EJR1• R1, 

Thus , since the representation is as sumed irreduc ible, R1 coincides with R, 

and the vectors {85) apan R. If we se~ot from them as a basis N linearly 

independent vect~rs, each is an eigenvector of all Hi' which thus have been 

diagonlllizedo 

Fo For any weight tn and 

2{m"'-) 
m -~ ~ is a weight. 

2{m d..) 
root a~. ,~ is an i nteger and 

Proofa The proof is analogous to t he proof of the Theorem of §2, 

lecture 2, except that the weights are, in general, not simple 0 while in 

the previous case Cartan•s theorem enabled us to assume that all non-

vanizhing roots are simple. We shall point out only the differences in 

the proofs. 

Tie start out from a vector u
0 

of waight m such that m+~ is not 

a weight, and form the series of vectors 

The relation 

(86) 

which, because of the possible multiplic!ty of weights, i s not as evident 

as its counterpart {54), may be proved by induction. Assume (86) to be 

true f'or a certain J.-lJ then 

i 
Eo<.. uj+l• Ed.. E_.,._ uf (Ed.. E_ "'- ]uj+ E_o..Ec<.. uj• t1-. Hi ut JljE-0.. uj-l 

• ( ( d..m) -j(ac<>< )Jut Jljuf 
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Hence (86) is true for j if it is true for j-1, end we have 

Jlj+l• (<>'.m) - j(d- d-) + Jlj ' (8 7) 

corresponding to (55). But Po"' 0, by D, since m+d-, is not a root, and 

therefore (86 ) holds with j+l "' 0 e.ndf
0

s Oo The rest of the proof parallels 

that of the -analogous theore~ for the r ooteo 

G, By projecti ng the space R modul i u
0

, ••• , ug in a space of 

N-(g+l) dimensions and by repeating the aame considerations as in F, it 

ma.y be proved that m and m- Z (~:: ) <>'. l.ave t ile se.ree multiplicity. All 

possible weights belong t o a lattice which is invariant under the group S 

gen"lrated by t he r eflect i ons with rtJ speot to the hype::-planes through the 

origin perpendi ~ule.r t o the roots 0 ~le ights which can be obtained from 

one anot her by operations of S are called equivalent and have the same 

mult iplicity, 

In t hs gr oup ~we have , (c<.c>.) •I ei- ekJ 2 "' 2J hence a weight 

m • ml el + m2e2 + • • • ":e+l e,f+l (88) 

must sati sfy the condit ion that 2(m•(ei- ek))/2 3 mi- ~be an integer and .. 

in addition, that -e.l 
L m1 "' 0, 
fnl 

(88 1 ) 

whi ~h follows from (72). Theref ore the m
1 

are fractions with denominator 

£ +1 which differ by integers, According t o F and G, a weight equivalent to 

mh 
m- (me ~)(ei- elt) .. m1e1+ •• • <· ~ei+ ... + m1ek+ ... m.€+le( <lJ 

hence the group S i£ t ho gr oup of permut ations of the con1pon"'nts .of m. 
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In B£ we have, in addition to the condition that m1- ~be an 

integer, the further condition that 2(m • ei) be an integer. Therefore 

the components ot any weight are either all integers or all half-integers. 

The groupS ia the group of FBrmutations ot the components with aqy number 

of changes ot sign. 

• In C .f. the additional oondi tion is that 2(m•2ei )/4 be an integer, and 

t herefore all components are integers. The group S i~ the same as in B~ • 

In D ,(_we tind that both mi- ~ and mi+ ~are integers. Therefore 

the weights are the same as in B£ , but the group S is only the group of 

permutations of the components with an even number of obangee of sign. 

§2. The Classif ication of the Irreducible Representations, 

We sha l l introduce a conventi on according t o which the weights of 

t he representations can be ordered. A weight (m1 ••• m ,(_ ) is said to be po­

sitive if the first non-vanishing component is positive. One weight is 

said to be higher than another if the difference between them is positive , 

A weight is called dominant if i t is higher then its eqUivalents. 

Theorem 1. If a representation ie i rreducib ll', its hi ghes t weight 

is s imple. 

Proof 1 Assume that the vect or u belongs to the highest weight , m( c), 
0 

According to D of §l i t is sufficient to prove that ev&ry vector of the form 

(89) 

which is of we i ght m(o ) can be written aa ku , where k is a constant, Ne 
0 

shall show, in addition, the.t k depends only on the aeries r/.._ 1 1 - ~ , '(!, 0 , ' " 
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and on the weight m{o) • It is clear from ·D that .,,+0 + ~ + (~ +o\ = 0. There-

fore at least one, of the roots must be positive , Let us say that ~ ls the 

first posit ive root (from the right), Replacing E)( E(!> by E11 E~ + (E~ E" ) and 

so on until E?! acts directly on u
0

, and remembering t.hat E~ u
0 

= 0, we obta in 

a sum of ter ms with f ewer mP-~ricea E thRn (89) but still of weight m{o), 

Continuing this process until there are no more operators of positive weight , 

we arrive at a sum of products 

converted into a polynomial of 

of Hi acting on u
0

, anci these are fina lly 

the comoonents of m(o) 
1

multiplying u • The 
- 0 

coefficients in this polynomial depend, evidently, only on the set of roots 

o( , i'3 , '(f ,6, • •, 1 and not on the par t icule.r repres entation, 

Theorem 2, Two irreducible representations are equivalent if their 

highest weights ar e equal. 

Proof: We distinguish the two representations D ~d 0 1 by using 

unprimed quautities forD and primed ones for n•. Let u
0 

and u~ be the vec­

tors of the highest weight m{o), which is assumed to be t he same for both 

D and D', nnd construct all possible vectors uj= • • • Elf E('> Eo( u
0 

and corres­

pondingly uj a • .. E~ E~ E:,._ u~, It was shown in D of §1 that these vectors 

span the whole space and that each has a definite weight, The equivalence 

of the two representationR will be proved if we show that to any linear 

relation which exists between the tmpri~ed vectors there corresponds k 11~ear 

relation with the same coefficients between the cor !·espondil1g primed vectors. 

Assume there is a re l ation 

d'1u1+ d'2u2+ m Q (90) 

then, us i ng the same coefficients ~ we can con·strubt a vector 
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(90 1 ) 

The vectors w• for all possible relations (90 1 ) form a subspace Rl of R', 

and it is eaoily seen that Ri is an invariant subspace under the operations 

of the group, Since D1 is irreducible we must have RJ. ~ 0 unless RJ. consists 

of t!1e wllole epo.ce R' " T~e l<~.st alternative is excluded since u 1 cer­
o 

tainl y is not in RJ.• For if w'• a~, according to C of §1, th~ left-hand 

aide of (90) contains only vectors of weight Jol, Theorem l would then 

lead to a relation 

which however, is incompatible with the corresponding relation 

a 0 f 

derived from (90),the k bein& the same for the two representations, 

The connection between highest weights and irreduc ible r~presenta-

tioas~completed when we ~how that there exists an irreducible repro-

aentation which has any dominant wei&ht as its highest weight, Indeed, 

Cartan has proved that 

(A) For every simple group of rank _1. there are .f fundamental 

dominant weight s L( l)••••• L( J'.) such t hat if a dominant wei€,ht Lis given, 

it is a l~near combination 

1 a (91) 

with non-negative integral coeffic ients; 

(B) There exist ~ f undament al i r reducible representations 

g1, g2, •••• g-Gwhich have t he f undamental weights as their highest weights, 
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Since it is easy to see that the weights of the Kronecker product 

Ax B of two representations are all the sums of one weight of A and one 

weight of B, the Kronecker product r epresentation 

G o gl X gl X '•' x g2 x g2 ){ (92) 

x
1 

ti:nes x
2 

times 

has as highest we i ght exactly the weight L, G will, in general, be reducible, 

but one of ita irreducible constituents will have L as its highest weight. 

Cartan proved (A) and (B ) for every eim~le group separately. * We 

shall here sketch as an e x=ple the proofs for the groups Al and B ,e. • 

A ,l' The components of a domi nant weight satisfy the relation 

L
1

· ~ L
2 
~ ••• ~ L£,+

1
" If we assume as fundamental weights 

L\ l) t L 1 ..;. __,!_ eo •• o - · -
1

-.l+l ,~:+1 .l+l 

.R-1 1 - 1 2 2 
T+I ' .£+1 ' - f.+l ... .. - )!.+1 ( 93) 

L(2): 

L(.Q.): 1 1 1 -/.... 
T+f • .{+1 ' .. .. . ,i+l ' £ +1 

it can be verif ied that ( 91) is s atisfied by setti~g 

K • 
i Li- Li+l ' (94 ) 

The fundamental r epr esent ations cor r espon1ing to the highest weights (93) 

ar e the l i near unimodular group i n i+l di mensions itself and the transfer-

mations induc~d by this group en the antisymmetr io tenoo~s of r ank 2. 3,,, / . 

* Chevalley, Compt . Rend, 227, 1136 (1948) has given n proof of the whole 

theorem which does not make use of the particular ,3tructure of the 

different gr oupe. 
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It mey be shown that a tensor of rank r in the 1+1 dimensional space 

which has the symmetry defined by the partition (rl, r2! •• • , r£ +1 ) with 

1+1 
~ f . a t is a basis of the representat~on whose highest weight has the 
i • l 1 

B .e • The components or a dominant weight satisfy the relation 

L ~ L ~ 
1 2 

~ L ~ O, 
~ 

It we t ake as f undamental weights 

L ( 1 ) I t ], 1 
2 2 

L( 2 )i l 0 0 0 

L( 3 ) I l 1 0 0 0 (9[;) 

L (.£): l l l 1 0 

it is easy t o see that (91 ) is satisfied by setting 

'IC l a 2Lt, 
( 96) 

ICi • 1i-1- Li ( i > 1 ). 

The fundamental represent ations cor responding t o the hi ghe•t weights (95) 

are the double-val uod representation of degree 2~ , the orthogonal group in 

2/ +1 dimens i ons, and the transformations induced by this group on the anti-

symmetr i c tensors of rank 2, 3. • ••, 1 -1. 

It may be shown that a tensor of rank r with vanishing trace in 

t he Z.(+J dimensional space which has a symmetry def i ned by the partition 

(f J ... r £. , o, ... 0) is t he basis of t he representat i on 'Whose hi'ghsiJt weight 

hn~ eomponents 1
1

• r 1, 
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§3, The Problem of Full Reducibility. 

Having classified the irreducible representations of a group,we are 

in a position to classify all its representations i f we know that every 

reducible representation is fully reducible, i.e . decomposable into its 

irreducible constituents, 

It is well known that the representations of finite groups are fully 

reducible, and that the proof of this is be.sed on the posaibility of sum-

ming over all elaments of a group representation. For continuous group 

the analog of this summation is an integration for which, however, the 

question of convergence arises. Weyl has proved that if we impose some 

particular reality condition (this is called the unitary restriction) on 

the coefficients e~ of the general infinitesimal element e~ X of a semi-
e 

simple group, the group is r estricted to n subgroup for which the integra-

tiona converge and full reducibi lity may be proved. It follows from the 

full reducibility of a~ infinitesimal representation D
1 
••• Dr that the 

general element ePDr is fully reducible even if the eP no longer obey the 

unitary res triction. The representations of every s~mi-oimple group are 

therefore fully reducible. 

Under the unitary restriction the linear group becomes the unitary 

group, and the orthogonal group becomes that of real rotations. Weyl's 

proof involves integration over the entire group. A purely infinitesimal 

proof of the full reducibility Y~s given by Casimir for the three-dimen-

• sional orthogonal group o
3

• He considered the operator 

G • J 2+ J 2+ J 2 
X y Z (97) 

• Hereafter, to avoid oonfusion, we shall use Jx,J ,Jz instead of L
1

,L
2

,L
3 (see p.2o). Y 
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which i s known t o commute with Jx' Jy' and Jz• If the representation ie 

i rreducible , then Schur's lemma states that G is of the form 

(98) 

where 

).. • j ( j+l) 1 3 
( j • o, -r· l, -r • • . • ) • (98 1 ) 

If the r epr esentet ion is reducible. and hae for ex&mple two i~reducible 

constituents, the infinitesimal operatore may be brought to the form (79) 1 

so that G can be written 

(

).1-
G • 

0 
(99) 

If )./ )..
1 

, then by application of the transformation 

(100) 

we obt ai n 

(

),1 
TGT-l • O 

The same transformation also decomposes Jx' Jy' and Jz' since they commute 

with G. The decomposition fails if A• A' , but in this case the two irre­_, 
ducible constituents of the representation are equivalent and fUll requcibili-

ty may be proved by quite simple considerations. We shall see in the next 

section how thie proof may be generaliz~d so as to apply to any semi-simple 

group. 
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§4. Casimir's Operator and ita Generali~ation. 

we have seen in §2 that every irreducible representation is character-

ized by ita highest weight L • (Lr•••L-e)• But in the group o3, j is not 

OA~ the hightat value ot m1 i.e. the highest eigenvalue ot Jz tor the given 

representation, but is also ~onnected with the eigenvalues of G, which are 

common to the whole basis of an irreducible representation. The connection 

is one-to-one, aince ·it follows fro~ (98 1 ) that 

. r.-:-r 1 
j•;ty/\T4 -~-

but only the upper sign &ivea a j which is a dominant weignt. 

Jl'j 

The generalization of G for aay semi-simple group was give~ by Casimir, 

who introduced the operator 

ocrx X , G • g{ ~ o-

which conmuteo with every X't. 1 

(G xt; J - /"xp(xa-x•] + g(lcr(xe xr: l xo­

• (c(l A+ oA (')X X • 0 
t: 't: e >.. 

(101) 

by the anti~ymmetry of the structure constants. The eigenvalues of G may 

be calcula+.ed if we us" the standard basis and write 

G • gik Hil1c + ~E~E-<f... • (102) 

Let L be the high~st weight ~r an irreducible r~pr~sentation and u be a vee-

tor of this weight in the space Ro Then E<>l. u a 0 ~or positive roots "'-, and 

G u • lkLilr:u + ;>"[EQC.. E_~u • ((LL) +L(.,<,.L)]u 
~+ ~+ 

(103) 

wh~re ~ denotes summation over positive roots only. By introducing t~~ 
~+ 



-45-

vectors 

(104} 

and 

It ., L + R, ( 105) 

we can wri t e for the eigenvalues of G 

( 106) 

It is easy to see that whi le a highest weight determines an eigenvalue 

of t he Cas i mir operator, the oonverae is not generally true, and the fact is 

not surprising as we cannot expeot that the single number J. is sufficient 

t o det ermine ~ numbers L1• 

Casimir used the operator G in order to extend to any semi-simple 

group hi s proof of fu ll reducibility, but was unable to apply it to the 

oases wher e inequivalent representations belong to the same eigenvalue of G. 

The latter case was treat ed by van der ~aerden by the use of considerations 

entire ly fore i gn to Cas i mir 1 s original appro"ch. 

Anot her way of doing it i s t o gene~nlize Casimir's operator by con-

structing a complete set of operators wh~~h commute ~~th every operator of 

~ the gr oup and whose eige~values charact erize t he i rreducibl e representations. 

A possible gener alizo."tion of G is pro.,ided by the operators 

with 

and it is easy to verify that each of these operators commutes with every Xp· 
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But these still do not suffice, since it is found for example that for 

irreducible representations contragredient to eaoh other and inequivalent, 

they have the same eigenvalues. 

We therefore examine the condi t i ons impos ed on a general function ot 

the iniini tesimal operators, F(XP), by t he r equirement that it commute with 

every operator of t he group! 

[Xcr F] • 0 • (107) 

It is well known that t his expressi on can be wr i tten as 

t bF L A ~ F 't A O F 
[X X ) - • c X - " c X - , 

a- ax't rr >- c)x-c >.. cr o.x• 

where the products 0 tJF/ c)x -r are suitably ordered. Comparison of this ex-

pression with (19) shows that t he functions sat i sfying (107) may be con-

structed from t he invariants of the adjoint group, which are characterized by 

Ecr F(ee ) .. o , ( l OB ) 

by substituting eP for X~ and ordering the terms. 

ay applying an operator F which satisfies (107) to any vector of the 

space R of an irreducible representation we obtain, according to Schur's 

lemma, Fu " A u, where )\ is independent of the particular choice of u. 

If the vector of highest weight is chosen, we find from §2, Theorem l, that 

)\ " Cf (Ll Lz ••• L ,e_ ) ;;; 'f(L). (109) 

In order to characterize the representation we need -f operators of this kind 

such that the system of equations 

..l..i " <f i (L) (i=l ••• _{) (109 1 ) 

/' 
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has not more than one solution L which is a dominant weight. To prave the 

existence of such a set of operators it suffices to- prove that 

A) It we express the A 1 as functions of K in3tead of L, the functions • 

(110) 

are invarian-t under the transforl:llltionsof the group (S) defined 

on page 36. 

B) For any simple (or semi-simple) grcup there exists a set of~ 

(polynomial) invariants of the adjoint group s~~h that the product 

of the degrees of these polynomials equals the order of (s). 

According to A), the system (110) has, together with a colution K, ~ 

solution SK (which meane the vector obtained from K by an operation S of the 

group (S)), and according to B), the number of 'solutions exactly equals the 
( •) /:'lance 

~er of vectors SK J ~~e system (110) has only one aolution which is a 

dominant vector. Also (109') has only one solution L which is a dominant 

~ector, because if a solution K of (110) is not dominant and is lower, say, 

than SK, then also K - R is not dominant, since 

K - R < SK • R < SK • SR • S(K - R)o 

Wa s'.aall prove A) b.y ms.king use of the properties of the whole group, 

since it has not been possible so far to construct a proof which uses only 

the infinitesimal group. In ·~ representation, (5) reads 

U( 0 a) U( a) • u( a + da). 

As the Dp of (81) are the infinitesimal elements of the representation we may 

( •) F·rom the definition of R it follOW!! easily that no SK coincides with K, 
and therefore no two SK coincide. 
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write this as 

L ( q ll + Oa tl D I t )( t j U( a cr ) \ s) = ( q I U( a cr + f, (!' lia ~ ) I s ) by ( 8) 
t (' fl 

• (qlu(acr) I A)+ u cr &.~ _Q_ (ql U(ao-) Is). 
'(l Oacr 

Comp~ison with (15) ehow~ that 

A ( ql U( e. a- ) I s ):::. D q I D It)( tl U( e. cr ) I s), 
(> t p 

where A is the infinitesimal operator of the first parameter group. Con-
(> 

aequently for e.ny function f(Xp) lie have 

f(Ae)lqjU(e..,..) Is): f<qlf(De)it)(tiU(a.,..) Is). (111) 

In particular, if f(X{') is F(X{') satisfying (107), then F(D~) is diagonal 

according to Schur's lemma., e.nd we bet 

F(A{')(qjU(acr)ls) a A(qiU(a")ls), (112) 

so that each matrix element of the representation is an eigenfunction of F(A ). 
e 

It follows that the trace of the matrix (qiU(aa- )Is), which is called the 

character, 1\.> of the representation, is also an eigenfunction corresponding 

to the same eigenvalue. Since the trace of a matrix is invariant under simi-

larity transformations, it follows that the cr~re.cter is not a function of 

the individual elements of t :-.e f;'"OUlJ• but. rather of the classes of conjugate 

elementa. The classes of a semi-simple group of rank ~ depeud on ,e pe.ra-

1 .e • meters; by choosing them e.a a suitable set <:f ••• 'f , Weyl has given a 

general formula, 

• Reference (6), p.389 
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/((L; <f ). 1(K) 
~(R) 

( 113) 

unitary restricted 
for the character s of aVsemi-si~ple group, where K is defi ned by (105 ) and 

i(SK ) j 'f j 
'! (K) • L 65 e 

s 

6S is plu~ or minus one depending on the par ity of the element s. 

( 114) 

If we now apply to K an operation S, the cho.racte::- is lbft invariant 

except for a possible changa of sign ; her.ce the eigenvalue ( 110) to which · 

the character belongs as eigenfunct io~ is invo.r innt under the operations of 

(S)o Q.E,D . 

As an oxamplo consider the group of rotations in three dimensions, R3 • 

Any element of this grou' oan be obtained by a simi larity transformation from 

th" diagor.al matrix wi"i;h element s eim ~ ( -). :5 m :5.!. ) where 'f is an ang l e 

of rotation around a pr oper:y chosen axis. Thus, 'f is a function of the 

class and the character 
f._ 

~ 
m=- -..l. 

ei(b~) :f e-i(.t ·:-~)'f 
9 im<f ~ --------,----

i~ _, ':f-
e 2 - s "".., 

(115) 

which is the value given by ( 114) 11hero k = ,i+fi • 

In or der to construct invarinnts o~ the adjoint group we construct 

the determir.<:mt 

D • det( qje~' D -<.Via) D det 
(:' 

( 116) 

wh<~rA c.0 is an arbi tra:-y number and (ql D I s) an arbitrary representation. 
(l 

The determinant is an invaria.'lt of the adjoint group, for 
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E 6· e~'c 'C 06 
r:r ocr - • 

' Oe 't' 

ePc C \, OL\ Oa ~a- L_ -- qe 
qs Oa <)e 'C-

qs 

" t"" <)6. I • e' c L - ( ql D'l: s ) = 
fiT qs <)a 

qs 

- e~ L oL\ ((q iDolt)(tiDcrls)- ( qiD<Tit )(t iD Is)] by (81) 
qst Oa > P 

·L 
qst 

• T_ 
-,~st 

o.6 
Oa qs 

o.6 
Oa qs 

qs 

[ (a t+<0 0 t )( tID I s ) - ( ql D It) ( "t + <Al O.t ) J q q o- o- s 8 

(aqt(tiDo- 1 e ) - (qiD
0
..1t) at

8
] 

~ 2::D.o t<tlo Is) - L 6 o t<r;IDcrlt ) ~ o. 
~ s cr ~ q 

6 is a polynomial in C.U , and evidently the coefficient of each po·.ver of 

V<:l is separfl,tely an in'Tariant, That this meth"d yields a set cf invariant3 

which satisfy the conditions stated in B) is shewn separately for each simple 

group in r~fereMe ( 14 ) , 

Jn conclusion, \03 can n ow st :1':-e that for every semi-eimple group there 

exists a set of):. functions F. (X ) which commut e with ev,ry operator of the ' ~ 5' 
grm1p =d whos.J eigenvalues characterize the ir;· .,C:ucil:le representations. 

They constitu·i; e the extension to EJVery s e<ni-simple gr'Jup of the operate!" 

(97) . for the throe-dimension&l rotation gr c up. 

§5o Miscell:uleous. Prob2flms, 

Finally, wo know e. number of general pro!>"rticA of the l.rroducible re-

presentation of o3, and we WL~t to see t" what extent they may be gen~ralized 

to all se'!li-aimple group! , 
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1. The dimension of an irreducible representation is 2j+l for o3• 

By calculating the value of (113) for the identity element, Weyl has found 

that the dimension of any irreduciblo representation is given by 

(117) 

2. In o3 the eiganvalues of Jz are non-degenerate and hence suffice 

to label the basis of the representations. T~e natural extension of the 

eigenvalues of J z are the vreights,but in general they are not simple. If 

~ m is the multiplicity of the weight m, Weyl has shown that the ~haracter 

of the repr esentation has the form 

(118) 

so that the coefficients of the Fourier expansion of expression (113) give 

the multiplicities. 

If the multiplicity is different from unity we need some additional 

operators k(Xy)' all commuting with each other e.nd with Hi·' whpse eigenvalues 

wil~ enable us to distinguish the different eigenvectors of a ~iven weight; 

we must f i rst find out how maQy such operators will be needed 0 

If the basis is chosen so that not only H. but also k(X ) are diagonal, 
1 f 

then by setting f(X ) = k(X ) in (111) we obtain p ~ 

k(A )(q\ U(ao- )is) = k (q\U(a<T )is) (119) p q 

where k is the eigenvalue of k(X ) corresponding to the row q; then 
q p 

(qiU(a<T)Is) is an eigenfunction of k(A ) corresponding to this eigenvalue. 
f' 

Similarly by considering the second parameter group it may be shown that 

(qiU(a<T )is) is also an eigenfunction of k(Bf') corresponding to the eigenvalue 

ks• 
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In order to identify the functions (qiU(acr)ls) of the r parameters 

completely, we need a 1et of at least r commutins operator• actin& on these 

paramete!'lo 

We are already in poa1e11ion of 
r-.t •) 

• ri(Bp)• Hence we still need -z-
the~ commuting operator• Fi(Ap) • 

r-.{ 
operator• k(X ), in order to have ~ e 

operators k(Af) and the same number ot k(Bp)• Howenr, L euch op-erators 

k(XE') are already lmawll to UIJ they are the H
1 

theuelne. 

ot c011111uting operaton to be 00111plete we nve4 at lea1t to 

operators k(X(I), 

Hence for the 

r-~L conetruct --,:--

r-s.l 
In the particular caae ot the p-oup OS' --,:-- • o, and it 11 well 

known that the operators J and J
2 

form the complete set, The problea ot z 

eet 

findin• the complete 1et ot operator• k(X ) hal 10 far been solved only tor . ~ . r 
1am11 types of aimple groupa, 

3, Explicit conetruction of the irreducible representation~, The 

repreaentationa of the infiniteeiaal operators of 0~ are the diagonal matrix 

Jz and the matrices Jx ± iJY whose only non-vanilhing matrix elements are 

given by 

(j m:!: 11 J :!: 1 J I j m) •"" / (j:!: m + l)(j f m), 
X y y (120) 

In the general case, the corresponding formula should be 

(L li + 0.. k(h)IE I L ll k(h)) u f(L Jolo(k(h) k(h)) 
q d.. • q 8 ' 

( 121) 

but as long as the k(h) are not known it is impossible to give an explicit 

form to the function f, Later on we shall preAent some special methods for 

•·) The structure of semi-aimph f',roupa assures that this number is all.aya 
an integt'lr, 
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solving thi s problem in parti cular cases in which we are interes ted. 

4. Decomposition of the Kronecker product , 

In o3 this is done by the Clebsoh-Gor dan series: 

( 122) 

In general we have seen that 

(123) 

but we were not in a position to say anythin' about the other terms of the 

• aeriea. rhe coefficients in this series have been given by Brauer and Weyl 

by uainc t he cha~actera of the representations. 

But this is only the first part of th" problem, since \Te not only nPed 

to know which irreducible representations are contained in a Kronecker product, 

but we also want to calculate the matrix which actually decomposes the 

Kronecker product. 

For o3 ~his problem has been solved in several different ways . 

The classi cal Cl,ebsch-Gordan method exploi te the homomorphism between 

03 and the unimodyl~&roup in two dimensions (which is the basis of apinor 

calculus), but this · ~tn~ is applicablfl only to this particular oase and is 

not capable of generaliurtion. Wigner solved the same problam by per forming 

integration• over the whole group, but actually it iJ sufficient to consider 

the infinitesimal represpnta~i~n. as will be i ndicatod h~re. 

fined by the relation 

• Rererence (13) , p. 229. 
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:L_ 
ml" mz" (J"M"\ ml"mz") ~(ml" I j lx::!: ijll,lml' ) +( mz"l j2xtijzyl m2 I )J (mllm2 I I JM) 

= (J"M"IJ + iJ !JM) 6 • x- y JJ" 

Matrix multiplication of this equat i on f :-om the left by (I!'J.m21 J"llt~') gives 

m~m[~mlJjlx~ i jlylmll)+(~l j zx! i j zyl mzl lJ (~'mz'IJM) 
1 2 

L. (m1m21J M'')( J M" IJ ± i J IJ1~) 
M" X y 

which, using (120), becomes the recurs ion formula: 

(m11 j 1x.t ij1Yim1+l)(m1h JD21JM)+(m2!j2x:t ij 2Yi~+ l)(m1 , 2+ 1\..:-M) 

m (JM :t liJx:t i JYI JM)( m1m2!JM ' i 1). (124 ) 

If "e take the upper s i gn and set M a ,T, we see that the right hand aid<~ 

vani shes and we f i nd a set of equationc which determines the different 

{m
1
m2[ JJ ) apart from a c ommn~ fnctor whose absolute valuo is fixed by nor­

mali za t ion and whose phase is fixed by t he conve:1tion that {j1 J-j1l JJ) be 

real and p.,s itive , Takl.ng now the lower sign we obtai .u (m1m21J M·l) from 

(m
1
m21JM); hence by a ' ladder' procedure starti ng from M=J we get all the 

trausformation coefficie~ts. 

This method would probably ba the one best suited for extension til the 

e t her groups provided the r i ght hand sitia cf (121) were known explicglyo 

r 
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§6, The Full Linear Group and the Unitary Group. 

We saw on P.29 that the f ull linear group in k dimens i ons (as well as 

its unitary subgroup) is not semi-simple. But, since it is ·the direct product 

of a semi-simple group wi th an Abelian group, the full linear group shares 

many properties with the semi-simple groups , including the possibility of 

bringing the commutation relations to the stand.rd form (50) and all the 

results of §§ 1 r.nd 2 . It is ~lao clear from p.29 that, as the unimodul ar 

condition is omitted, Hi has now to be identified with Xii and not with x1
1 

defined by (69' )J the components of the weights are now always integers, and 

the relations ( 72) and ( 88 1 ) which were obtained for the un;.modnlar group do 

not hold for the full linear group. 

It can be shown that a· tensor of rank f in the k-dimensional space which 

has the symmetry ciefined by the partition z.;; (fl' f2 ' ••• , fk), with 

i s a basis of the repres~ntation whose highest weight ha s the components fi . 

We may conveniently illustrate a partition I: by a .Young diagr am s uch 

as the one at t he left, consisting of f boxes in 

k rows, the ith row containing fi boxes , 

• 
A partition L is said to be dual t o :Z. if 

its diagram is obt ained by interchanging t he rows 

and columns of L:: • 

In particular, the partition 

t-~ 
f 

+~ 
k-f 

which is possible if k ;:- f, ohe.raoterizea & representation Jl..f of degree ( ~) 

,, 
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whose basis is formed by the totally antiaymmetrical tensora of rank f. 

The irreducible re~esentationa of the full linear group do not de­

compose if we restrict the group to ita unimodular subgroup, but the re• 

presentation• which belong to the partitions (f1, •• ,.fk) and 

(f 1+ e, f 2+ e, •••• fk+ e) become equivalent. 

All the propertiea which we have stated for the full linear group hold 

also for its unitary subgroup. 
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Lectures 7 and 6. 

THE CALCULATION OF THE ENETIGY JIATRIX. 
l 

S 1. The Interacti'on of Two Particles. 

Since the i~teraction matrix for n particles. is calculated 
according to (132) in terms of that for n - 1 particles, we must 

start by calculating the interaction energy for two particles. 

Let us first assume for simplicity that there is an ordinary spin­
inde;::!enden:t interaction (""iigner interaction), c:iven by 

J(r12) = J ( J;'f.+ r~ - 2~1r2-;;-~sW 12 ) between the two particles. 

We can expand this in Legendre polynomials of cos~ 12: 

so that, by the addition theorem (156), they can be expressed in terms 
of scalar products of tensors: 

where 

is the qth component of~(~). 

The matrix c:iving the interaction of two particles is in 
general 

(193) 

(194) 

(195) 
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Lectures 5 and 6 

THE EIGENFUNCTIONS OF THE NUCLEAR SHELLS 

§1. Introduction, 

It we wi sh to calculate the energy le•ela of a ayatem of m&QY particles, 

the fact that we cannot solve directly the Schrodinger equation for tha ma~-

body problem f orces us to proceed by aucoessive approximations. 

In atomic spectroscopy we assume that in the "zeroth approximation" 

every electron moves independently of the others in a central field which 

il the superposition of the fields of the nucleus and of the mean field 

produced by the other electrons. In this approximation we may assign to 

every el!'Ctron four quantum numbers n L ms m..l 1 as the zeroth order energy 

depends only on n and ..£ , the electrons appear to be diatributed in different 

shells, each characterized by a pair of •alues nl. Such a distribution is 

called a configuration. 

The next step is to take as a perturbation the interaction between 

electrons in shella which are not closed, neglecting in first approximation 

the matrix elements which connect d11'ferent configurations. 

It is well known that applied to ~toaio apeotroscopy thia .. thod gi•es 

good resulta. It ia also well known that the theoretical argument• for using 

this nethod in nuclear spectroacopy are •ery weak, but that there i1 on the 
• 

other hand spme empirical evidenc~ that the nucleons also are ordered in 

ahells. We shall not , however, disouaa here the validity of the nuclear 

shell model. 

It is the purpose or the remaining lectures to show some applications 

of gr oup theory to the classification of the levels of a nuclear shell and 

' 
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to the calculation in first approximation of the perturbation energy. 

As is customary in dealing with problems of spectroscopy we shall us e 

the standard notation of reference 15. 

§2o The Coefficients of Fractional Parentage. 

If a shell contains one particle, the quantum numbers m't ms m_t. describe 

the state completely. If a shell contains two particles, one can use the 

quantum numbers m(l)m(l)m(l)m( 2 )m( 2 )m(Z) or alternatively T S L M M ~ 
t= s 1 -c s . 1.. ' ' -'I' · 13 . L 

of which the second scheme is the more useful, since it diagonalizes the 

energy; the transformation leading from the one of these schemes to the 

other is given by the Clebsch-Gordan coefficients. A further advantage of 

the second scheme is that in it the states are either symmetrical or anti-

symmetrical, depending on the parity of T + S + L; the exclusion principle 

simply removes the states for which T + S + L is even, without changing the 

scheme. 

If we add to the allowed states of ,(2 a third f -particle, we obtain 

a set of wave functions 

<y(.12(T(l2)8(12)1 (12)) J!. , T s L lf.x MS "\) (125) 

which are in general antisymmetrioal only with respect to the first two 

particles, but not with respect to the third. If to (125) we apply the 

transformation 

-............ 

.... 
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1('( .12( T (12)S(l2~L:l2))-{, T S L lf.r "'s ~) • 

~ 1(U ' __f ,f(T(23)s(23)L(23)), T S L ~liS "'r,)• 
T(23)

8
(23 )

1
(G3) 

•(t, -b t (T( 23
)), Tit t (T(l2))t,T)( ~, ~ ~ S( 23 )) , sli ~S(l2 ))i, S)• 

( 126) 

we see that in the expansion appear some terms which will be symmetrical 

rather than antisymmetrical in the last two particles. 

The eigenfunctions of the confip;uration 1._3, which have to be anti• 

symme~rical in ~21 three particles, span a subspace cf the spaoe spanned by 

the functio::s (125 ) and will thus be linear oombiDo.tiona of them1 

\ie have omitted ~ "'s ~ from the notation because they play no role in the 

transformation; cA. distinguishes independent states of .f.. 3 which have the 

same values of T S L. The notation(l1)ia a reminder that this transformation 

matrix is not square, since on the left side we have all states which are 

antisymmetr i oal in (1,2), while on the ri 6ht we have only those states which 

are antisymmetrical i n (1, 2,3 ) . The coeff i cients of this linear combination 

are called coefficients of fractional parentage or, for short, c.f.p. 

If {127) ia to bA antisymmetrical in all three particles, this requires 

that when (126) is substituted into (127), all those coefficients which belong 

to forbidden wave functions shall vanish, and it ia easy to see that the 

necessary and sufficient condition for this is · 
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(12) ~) ( 12 )<!. t t (T(
23 >), T It~ (T(lZ))-i, T)• 

T S L 

·<!. i i (s< 23>), s I~~ (s(lZ))! , s){L , L.i(L( 23 >), L \J.i (L( 12>).t, L) • 

c.e 2(T(lZ)s ( l Z)L( l Z) ) £ . T s L I} t 3 .... T s L) ~ 0 (128 ) 

when r< 23 )+ s< 23 )+ L( 23 ) is even. 

This system of equations contains a l l the information we need for the 

coufi~ation ~3 , since the number of independent sol~tions for given T S L, 

which are distinguished by the parameter ot.., 1e the number of allowed states 

of this k1Dd, and since we can also use the o.f.p. to calculate the inter-

aetiou energy for these three-particle stateaa 

{.l 3ot..T S Lf El .t3 o~-•T S L) ~ 3 .2: (L 3d..T S L{ll(':(lZ)S(lZ\(lZ})i T gL) 
T(l2)8(12)1(12) ' 

·E(T(l2)8(12)1(12)).(,.t2(T(l2)8(12)1(12))_.l, ~ S L I} .t cJ.. T s L ); (lz9 ) 

E(T(lZ)S(lZ)L(lZ ) ) is the interaction energy for the two-particle ayst~m, and 

the factor 3 enters because there are three pairs of particles in the con-

figuration. 

The extension of these methods to a shell which contains n particles 

ia in principle immediate. We s t art from a shell with n-1 particles, for which 

we suppose the c.f.p. to be calculated. Then 

ycLno{T s L) • L y<-t n-l (o<.1r 1s 1L1 )..(, T s L) · 
"'- 1 Tl SloLl 

. (1n-l(o{ 1T
1
S

1
L

1
)i, T S Li l.eo{T S L) ( 130) 
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where,analotously to (128) 1 the c.f.p. satisfy the system of equations 

<J.. T~ L (T2, i i (T' ), T I r2~r1 )t, T)(s2, j ~ (s• ), 8 I s2 i (s1)-f, s) 
l l l 1 

I on-2 11 n-1 
• (L2,.fl(L1 ), L Lzl(~)J, L)(.t. (c<.2T2s2L2 )_l , T1S1L1 1J i. o<,1_TtS1L1 ) 

·(.Ln-l(c<.
1
T

1
S

1
L

1
) ..(, T S L ~~ .f.ncJ... T S L) u 0 ( 131) 

for every value of r2, s2, L2 and T' + S1 + L' even. 

The interaction energy is given by 

• (.t.-n-lo(.l Tl SlLliE i _ln-1 o<...l' TlSl Ll )(.in- 1("'1 'Tl Sl Ll ).f, T S L I} £ d..'T S L) . 

(132) 

although this procedure has been used successfully to calculate all atomic 

configurations d0 and the configuration f 3, it becomes extremely laborious 

for the higher configurations, and it is at this point that group theory comes 

to our aid in t he foll 01vi.ng three ways 1 

a) The hitherto unspecified variable o<... will be replaced by a se t of quantum 

numbers which is almost complete. The choice of these quantum numbers, suggested 

by group t heory, will greatly simpl i f y the cal culations, 

b ) The CufoP• will be calculated without the u~e of the ctmberaome equations 

( 131 ). 

c) The summations in (132) will be simplified. 
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§3. The Classification of the States of -en. 

The st·ates of a single particle in a given shell are chart.cterhed by 

the set of quantum numbers m't ms m.l • There are 4(2.-£+1) independent states 

to which correspond the 4(2 £ +l) ei~enfunctions ,0'(m-t: ms m.l. ). If we have n 

part icles in the same shell, the 4(2 ,(+1) . 
configuration has ( n )independent ant1-

symmetr i cal states to which corresp6nd the eigenfunctions y< J.nr), where r 
4(2.1 +1) . is a set of quantum numbers which may assume ( ) d1fferent values . 

n 

Ii' we consider the .{!f(mt; m
8 

m-e_) as the basis vectors of the 4(2 1 +1)-

dimensional space of the states of a single particle in a given shell, the 

y<.t n r) will f orm a comple te set of antiaymmetrical tens ore of rank n in 

this space. This means t hat a unitary transformation 

,0'•(m' m1 m' ) # 

t: 8 .e. L .{!f(me ms m-e. ) C (m~smL 1 mT,- m~ m.1_) 
m~m8m.l. 

on the ,0 'a will induce i n the )V's the transformation 

--y/Un f"' 1
) = L "f'(_Ln r ) c ( r I r' ). 

r 

(133) 

(134) 

"'ii onr .a. 4(21+1) The . .., (.-t.. ) are ther efor e the basis of a representation u c:-n of degr ee ( n ) 

of the unitary group u4( 2 .l.+l)' characterized by the partition 

n • 1 + 1 + 1 + ·• •• + 1 + 0 + 0 + ••• + 0. 

In order to obtain a set of f unctions 1.Jf(l n r ) which will make the 

mat rix of the perturbation energy as nearly diagonal as possible, •re h ave to 

restrict t he group u4( ZJ? +l) to its largest subgroup under which t he pertur­

bation energy is invariant. If we assume that the interaction between par-

ticles is central and charge-independent, this group is the group of three 

independent rotations in the coordinate apace, spin apace, and isotopic spin 
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space , If we proceeded i n t his way, which is traditional in the appl ication 

of group theory to quantum mechanics, we· shou~d obtain the group theoretical 

def ini t i ons of only the six quantum numbers T S L ~ ~ ~· 

But since we want to obtain a more nearly complete set of quantum numbers, 

even t hough they may not be good quantum numbers , we shall rather carry out 

t he t rans i ti on from u4{Z.l +l)to R3x R3>< R3 by successive st epeo rfe shall 

therefore impose successive restrictions on the group u4(Z..l +l ) to obtain sub­

spaces of the (4(ZL+l))-dimensional space of the representation ~ which will 
n . n 

be invariant with respect to different subgroups. These subspaces are charao-

terized by the highest weights of the representations to which they belong, 

and these hi ghest weights will be our new quantum numbers , 

lie shall start by cons ~. dering the subgroup of u4(2l+l) which consists 

of those t r ansformationc (133) which are of t he form 

o(mm m8 1m' 111· !11~) a. v(m.,.m 1m' m')c (m 8 m~ ), (135) 
t' S A:. 'CB..t.- d "8 't:S . ....c,. ...t.. 

with ~ and c unit ary, ~hi r. sub&roup ie the direct product u4x u2.l+l• It we 

denote by ;;t~ t he ~::- ... ~<) ~· ~ :·.b l.B representat~ons of U2J +l and by ~'£. ' those of 

U4, the irreducible r epresentations of U4 X u2.(+l will be tho Kronecker produota 

~L,X "j!L . ( 136) 

tion 

Every i rreducible repre.sentat i on cf. ;;4(Zf +l)ia a reducible repreaenta­

o£ U 4 X UZ.t'+ 1 and breaks up into repreaentst ions ( 136) 1 the general la·.r 

of decomposition is somewhat complicated, but for the particular case of the 

representation oen it is very simpler only those representations (136) appear 

in the decomposition of cAn for which L 1 
1a 2:.•, the partition dual to :>-:., 
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and every representation of this kind occurs only once. Since the Young 

diagram which illustrateos the partition 2::. has not more than 21+1 rows, the 

length of a row in the ~iagra!n of "£* cannot exoee!l 2.£+1. Similarly, the 

leng<;h of a row of :t, car.'?.ot eY'lee>l\ !'?U.'" , 

If' t he ele;nPn"ts of the be.R! s of f ?'.."are character i. zed by a set of 

quantcm n=.llers 9 and t l\ose of Jt.J:.c:; e. • -7•·, 6 , ":he el 9r.> E!~ts cf the basis of 

{/r;* 'X ']j{E. will be chllc-acterizad 'cy tl)e set e £:::,.. , and t he s t n.t es o!' .1_ n by 

the set Z: A 6. • 

As a seoond step we restrict u2 ..f. +l t o the orthot ona1 subgroup R2 z ... 1 

which leaves invariant the b11in~~~ "ymm~tr ic form 

.-;;:;-- m£ 
L_ (- ) ,01 (m..e ) ,02 ( - m,() ; 
:n.L 

(137) 

R2.l +l has R3 as a subr;roup beoaus9 ( l37) is pro:r Jrtio!!'l.l to t he eigenfunction 

2 . 
ot the S-state of ;[ , r.hich is left inva~iant by R

3
• Let the irreducible 

representation o~ Rz £ +l whose hi@)lest weight is W be ·~'w•'lhen:ln RZ.l +l' 

'lf:r:. · L bw '\ • 
w 

(136 ) 

The possib•.lity that we JIJ&Y ha..-e hw > 1 gives rise to a runnj.ng index (' to 

number the equivalent representations, but in practice (' takes on only small 

values. n < (For the states d 1 hw- 2.) 

The next step of the reduction is to restrict the orthogonal matrices 

c(mL ml ) to the particular matrices belongi ng to the repres entation ~~ of R
3

• 

When this is done , every ~W bec omes a repreaentat i on of R3 and will in general 

decompose a s 

'ft. • L CL ~L, 
W L 

(139) 
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where L i s the highest weight of 9J L' I1' ex? 1, another runninc index '( 

diltinguishes the Tarioua ~ L belonr;in& to a giTen L. i'le haTe thus arriTed 

at the followi ng scheme, 

( 140) 

For the nuclear configuration dn, cL ia neTer larger than three, but for higher 

values of -f it is expected to be much larger. In the particular caae of the 

configuration f n we may aToid auch large valuea for '( it n &Tail ouraelTel 

of the fortunate coincidence that when .J.. ll there exiatl another voup, con-

tained in R7 and containing the repreaentation ~ll of Rll which 11 a reali~ation 

of G2 and may be uaed to introduce a new subclassification.• 

In order to complete the scheme (140), we JIIU8t now perfor. an analogous 

reduct i on for u4• If we restrict it to ita unimodular aubgroup, w. obtain the 

semi-simple group belongi ng to the Teeter di at;ram ~· which we han aeen to be 

the same ae n3• Therefore the UDi tary unimodular group in tour dilllenaiona 11 
.... 

is.,morphic with R6• Applying to 6;; (/\ 1, '\ 2, .\li, I'\J the tranefoi"JIIO:ition {68), 

we obtain aa highest weight of the representation of R6 

p s !(, \.A_/\ _ t\) 
1 2 3 4 , 

This tranaformation,introduced by Wigner, corresponds to oonaiderinc inatead 

of the un1mouular unitary group in four dimension• the homomorphic group R6 

which is the group of rotations in the six-dimensional apaee ot the epin and 

isotopic spin, 

From R6 we go on to the subgroup R
3
_x R

3 
by reatricting the tranaforma­

tions ¥ of ( 135) to those whir.h are of the form 

• See rPference ~, section 4, subsection 3 • 

/ 
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~(11\'t'II\SJ m-t;m~) • 3'l(m't; 11\C) d'z(mS; m!) • 

In this subgroup the representations ~~P may be decomposed, 

1~-- .4 /PP'P" • ~ aTS .2)Tx$S • rl r s 

(142) 

In can .aTS> 1 we have to introduce a new running index <A ; this ~;ivea us 

finally a scheme for the wave functions of the entire shell 

yc..CZ. d.. T s 11.: '»-s t>lf ~ L lly_l· (143) 

Except for the presence of :f;he running indioea d.. /" t , we have found a complete 

eet of quantum numbers, and we have achieved the first of the three purposes 

set fc.rth in §1. 

§4. · The Factorization of the Coefficients of Fractional ?ventage. 

The wave functions on the right of (130) transform according to 

Jl 
1
x .A

1
1 that on the left transforms according to ui t Thus it is evident n- n 

that the o.f.p. are a reotaDf:,ular part of the matrices which perform the de-

composition 

cJl >< Jl .Jt + ••• . • 
n-1 1 n 

( 144) 

The calculation of these matrioea ia simplified by the following con-

aiderationss 

We have aeen that it a group g has a subgroup h. an irreducible repre-

sentation UA(s) of g will in general be reducible in the subgroup h, consisting 

of elements t. Let us a1aume that the matricea UA(t) have been reduoeds 

(f'Bb/UA(t)lf'B'b'). (biVB(t)lb•) OBB'~f· (145) 
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where S spec i fies t he different representat ions of h, b denot es their r ows 

and columna, and ~ is a running index distingui shing equivalent irreduci ble 

representations. The Kronecker product UA X UA of two irreducible repre-
1 2 

sent at i ons A1 and A2 of g can be completely r educeda 

(146 ) 

by a similarity transformation with a matrix 

(147 ) 

wher e the parameter o\ is a running index which enumerate the A's whenever a 

cA is greater than 1 in (146) . We shall now st ate without proof* a corollary 

to Schur's lemma which will enable us to express this matrix i n a simpler way. 

The matrix elements of the transf ormation (147) are the products of the 

mat rix elements of the transformation which reduces the Kronecker product 

US ( t ) X US ( t) in h and coefficients which are independent of the b' s 1 
l 2 

(Al ~ 1Slbl; A2~2S2b2/ AlA2d.A~S b) • 

( 148} 

If we take the representation of ~ in the scheme (143} and apply thi s l emma 
n 

to eaoh subgroup of the chain which was constructed in the preceding section. 

we can bring the matrix which reduces the direct product (144) into the form 

• For the proof see reference 23, section 3. 
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( _.t n•l(L 1<>'1 T1S 1M.r1~1hWl~l~~ )Jt,tim't;m8mLj£.nLo<.T S M.rMs('W,yL ~) • 

a (T1M.r
1
i m'tl r 1! T M.rHs1~/ m8 js1~ S M8 )•(E;o~.1r1s 1 ;[l) t !i:L*o<. T S)• 

'(L1~ im)L1 J L ~)•(W1 .3' hi (l)lj Wt L)• 
1 ·~ 

• (2;If~ 1W1 ; [l)(l)IL (lW)•(.ln-lL
1
;j[l)lln 2:), (149) 

where the symbol (1) means W • (1 0 ... 0) and [1) means L • [1 0 ... 0 ), 

This expression as it stands is not exactly the c,f,p,, since the wa·.ra func-

tions on the right hand side of (130) contain already the M-dependent factors 

of (149)J hence we have 

(j~n-l (L 1 "'- 1 T 1s 1 0 1vr1 f 1L1 )-t', T S Li}£nL"'-T S(lWXL) • 

• (L; o( 1T1S1 ; [1) ~ ~12:*"'-r s)(w
1

3"
1

L
1

; (l)l/W~L) • 

•( 2: 1 t\W1; ( l](l)/ L (3 W)(£ n-l ~ 1 f (l) j..{n£), (150) 

Thus t he problem of calculating the c,f ,p. is reduced to the s eparate 

calculation of the different faotors whi ch appear in this equation1 but before 

we solve this last problem we have to develop a new mathematical tool, 
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~5 . The Alcebra of Tensor Operators , 

The algebra of vector o)erators and of their representation by 

matrices was developed by G~ttinger anti Pauli* and is presented in 

standard form in Chapter III of Condon and Shortley (r eference 15) . 

The possibility of extending it t o tens crs was indicated by Eckart and 
-!:-;f­

\Vigner ~'l e shall outline it here following r eference 21, ~ 3, where 

t!1e ~roblem is treated by t.he standard r:tethods of Condon and Shortley. 

Y'e define an irreducible tensor ,!(k) of degree k to be a set of 

2k + 1 C[Uantit.i es T~k), -k S. q ~k, which under rotations in three­

dinensional space transform like the 2k + 1 spherical harmonics of 

dPgree k. If the operators Jx' Jy' Jz operate on these quantities, 

we have 

If the T(k) are themselves operators , the left side of (151) must be q 

replaced by commutators 

-:~ Zeits . fur -Physik, 67 , 743 , (1931) . 
~Hl- -

See references 17 and 18 . 
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As in vector alGebra, it is possible to define ~any kin~s of 

tensorial !Jroducts . Guided by the example of the vector aC:dition law in 

qu.?.ntum mechanics we shall define the tensor product of order K by the 

equation 

(K.) 
X Q 2: 

ql q2 
T(kl) 

ql 
u <~ l I 

q2 (kl ql k2 ql kl k2 K Q), ( l SJ) 

and it is easy to verify thnt this satisfies (152). The unitarity of the 

Clebsch-Gordan coefficients permits us to solve this equation 

T(kl) 
'11 

U (k2) = 1; X(K)(kl k2 K Q\ kl ql k2 q2) . 
q2 K Q Q 

Ac cordin~ t o the definition (15J) it would be logical to define 

a scalar product as X(o) . However, it is traditional to define as 
0 

scalar product the quant ity 

(,!(k) . U (k)) = l: (- )q T(k) 
- q q 

u (k) 
- q 

( -) k .../2k + 1 X (o) 
0 

An example of this f ormula i s the addition the orem for S!Jherical 

harmoni cs 

pk (cos (j'l2) 4rr q ( t? 
~ ~ (-) ykq ( Ql ll ) yk - q ( Q {f 2) , 

whe re 

cos [.,.__;2 = cos G1 cos Q
2 

+ sin Ql sin G
2 

cos <'f
1 

-C(
2

) . 

If we represent the components of a tensor T(~)in the scheme 

<>( j m and wr ite down (152 ) in the form of relations between mntrices , 

(1_'>2a) tells us that the non-vanishing elements of (o( jm\ T(~Jk'/m') 

(154) 

(155) 

(156) 

(156 1 ) 
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satisfy the selection rule m- m
1 = q and (152b) reduces to ( 124) if 

I (k) I I I I I I I ' 
we reJ)lace (IX jm, T ocj m ) by (j rn kq j kjm). Since (124) was 

q 
1 I \ I 

sufficient to determine (j m kq j kjm) apart from a normalization 

factor, we obtain 

(c<jm/T(k)/cx/rn
1

) = A(/m'i:ql/kjrn), 
q 

with \ indenendent of m and .q . 

In order to brinG out the symnetries of the Clebsch-Gordan 

coefficient~ , it will be convenient to introduce the notation 

v1here 

and 

• (c -a -(1 + z) L , 

J_ 

[:;, (abc)= [(a+ b- c) L(a + c - b)L(b + c- a) L]~ 
(a + b + c + 1)1 

The V(abc ; o( .G 0 / thus defined have the oym-:tetrie.s 

V(abc;«fSXl = (- )a+b-c V(bac;(s'<X ~) = (- )a+b+c V(acb;D(/){3) 

= (- )a-b+c ( b \ f'l ) V c a; 0,JJX. 

and 

2b . 
(- ) V(cab; ~«('!.) 2c /) ,/ 

( -) V(bca; /.,.) 60<) 

,.., . 1 )a + b + c ;3 V 
V(abc;cy,': -~) = (- V(abc; -D(- - ('! ), 

and they vanish if a, b , c do not satisfy ' the triangle inequality, or 

( 157) 

(158) 

z)1 • 

(159) 

(160) 

(16la) 

(161b) 
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if one of the numbers a - \:., \ 1 b -1;3 \ 1 c - \ ~-\ is negative. 

Further, they satisfy the orthogonality relations 

'. ;<l t _ l ~ ~. 1 
E V(abc; cyJX) V (abc , U..j'5 \.\ ) - 2'C'"+T co' 61 0( ,3 or 0 , 

E ( 2c + l) v (abcP-(3(')) v (abc ; OI.. 1 1~ 1 X)= ~o( ~ ~<t.> 1 

cj ~J 
or o, 

the zeros occuring if any of the above conditions are viola ted by the 

parameters on which there is !1:J Suntlation . 

In icnns of the 1! 1 s t i1U'3 defined, we >vr ite (157) as 

(0\. jmh(l; ) ~ 1 j 1m1) 
q 

(-)j + m (cxjl\r(k)l lcx 1j 1)1f(jj 1k ; - IW1 1q) 

This equation divides th<> physical pro:)crties <' f th~e ten~nr , wh :ch are 

des c ribed by (0( j 1\ T(k) I lex. 1 j 1) from its gE")r.letric'll pr operties as 

de scribed by the V1 s. 

(162) 

(l6J) 

(11'>1") 

As an example of the ut i lity of this sepa ra tion v,e calculate the 

matrices of t he s cRlar oroduct (15;:') and find out by (162) that 

(0( jm (T(k) • l'(k) \ Jcx. I j lml ) 
"""" . ~~ 

l 
2J+"I sjj ' ~mm' 

(1(>5 ) 

E (-)j - / tx. ·JI T(k)jj 
11

'
1

) (<X'.'·il U(k)/ l.x ~ · 1) 
<X:j• J ""-. J j j ' 

which is, a3 re Puired fo r a scalar, di.a .•onal in and m and independen t 

of m. 

In the practical a•);.>lic ti 0n3, t'lC most impo r:-.1n t 3calar r rouucts 

are those in vl'lich the two tensors operate on different o.:~rts of a system , 



-73-

(Examples are~1 .12 , describing a coupline of the orbital angular 

momentum of two particles , Pk (cosiJ 12 ) expr essed by (156), or 

~·~· in which space and spin functions belonging to the same system 

are coupled). If T(k) operates on part l of the system and U(k) 
""" ,...... 

operates on part 2, then eX?ressed in the scheme 0\
1 
~ 2 jl j

2 
jro, 

such a pr oduct is 

(Cv • I u<k) L I . I I) (. I I j I I I . I j I ' In!) 
' .:.._ 2J2m2 - q r'2 J2 r.t2 J1 111_ 2 m2 J1 2 J • 

·."lith (155) and (164), this involvPs sums over the products of f our 

VIs ; it is f ound h general that 

(166) 

1: , (-. / +(fv(ab~- r;) v (acf; -c<YCP\ v (bdf; 
O<c3()& Gt' 

' 
1 ct (-) e + .' + f + d - b 

-f3b -CCJ V (c dg;j~ -'~() = 

W(abcd; ef) ~ eg sc:~ (167) 2 e + l 

where 

W(1bcd; ef) =Ll(abe ) f:..(cde)l::. (acf)/j (bdf), 

• 1:(-)z,_~----~~~~~~~~~~~--~~--~~--~ 
z 

• ~ ~ (e +f-a - rt + z) l (e + f - b - c + zj l (168) 

Using (167) wo obtajn for (166) the e~ression 
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( ' .· . ' \ ( (k) I (k)) I ' ' . ' . ' ') 
\ 1 • · 2 : 1 J 2 Jrn 2'~ · 2~ o:l( li.X 2 j 1 .12 J m 

(- )jl + j2 - j(.x. ; Jl T(lc) ll·v I j ' )(rv j II u(k) I\<X;j2 ) , 
1"1 ~1 1 ~2 2 

• w (jlj2,J{j2
1
; jk) b jj 1 6 11111 1 • (169) 

The '(eometrical int .~rp::- r; tat!. on of this fonnula ls the> foll ')wi"'f • 

Jf T(k) is 'l. 2k-~ole moment whoDe average (expect'ltion value) in th& 

~ '. rPcti on of jl is (e>< 1 j
1

1/ T(k)// <X.
1

j
1
)/ -12h+ 1 and similarly for 

.JL.('c) with j 2 , then the diac;onal elements of their scalar product are 

r:iven in the limit of larGe jl and j
2 

and small k by the "Croduct of these 
/\ /\. 

average V'llues vi.th Pk(j1 j 2 ) where j 1 j 2 is the angle between jl and j
2

; 

indeed, the asyrnptoti3\ value of (-)jl + j2 - j W(j
1

j
2

j
1

j
2

; j k ) in (1~9) 
i s just equal to Pk(j1 j 2 ) /_/(2j

1 
+ 1)(2j

2 
+ 1). 

Also, the '1 ' s have many sym·.etries, 

W(abcd; ef) = Vf(badc; ef) = ':l(cdab; ef) = v;(acbd;fc) (170) 

= (- )e + f- a - d ''l(ebcf;ad) = (-)e + f- b - c:'!(aefd; be) . 

The ''fl s are useful a 'Lso for expressi '1g in the 3cherne 0\ jl j
2

j rn 

th ·2 conponents of a tens or which oper ates on 1)art 1 or par t 2, Tt;e 

matri x elements of T(k) are 
q 

I (k) I ' I I I '\ 
(0(_ jlj2jm T q :><. jlj2j rr, ' r. c i j . I ~m~m2 1 2Jm jlj2rnlm2) . 

( I ~( k )J '·I ') '. ! , I I . I' I ') 
• I)( j lrnl • q OI.. Jl nl .,J1Jnm2 J1J2j m ; 
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using (164), (167) and the orthoe;onality relations of the V•s, we get 

Analogously for _tk ) 

The geometrical interpretation of (171) and (172) is the sarne as that of 

(169). 

A further use of the VI• s is to express the transfonnation 

connecting different schemes of parentage:* 

(j1j2(j12>jJ, J I j1,j2jJ (j2J>J> = 

J(2j1;-+l)(2j2; +l:")W(j1j2 J jJ; jl2j2J), 

In general, every quantity which is invariant under rotations 

in three dimensions and therefore does not depend on the choice of 

axes or on m can be expressed in t erms of the double-barred matrices 

and the w• s. 

~ 6, Tensor Operators and Lie Groups. 

In lecture 4 we were not able t o construct t he matrices which 

decompose the Kronecker product of two representations because we did 

*Rei', 22 , C:qu.(4) 

(173) 
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not even possess a complete scheme, except, of course, in the ca~e o.f the 

group o
3

• Now that we have a nearly complete scheme, the way is open to 

a further attempt . But the scheme we have achieved is not th.'tt of the 

weie}lts , in which the Hi are diagonal, but it is a new scheme charac­

terizing the physical problem, and one in which. T S L 11.r H
5 

11
1 

are 

diagonal, Together with the diagonality of the Hi we h.ave al~o lost 

the selection rules for the operators EO\ it is, therefore, 

convenient also to change to a basis of the infinitesimal operators 

of the !:roup which fits the new scheme better, vre shall see that such 

a basis can be given in terms of an a?pro·.)ria te set of tensor 0!1era tors, 

Let us consider the unit tensor 0!1erators defined by 

(n{ llu(kl/1 n' i') =b , ~,r, (174) 
nr. A.-1-

which connect only states within the same shell, The matrices of 

these operators are, by (164) 

dm I u(k) lim') = (-/+ m V(~.{'k; - nun 1q); 
q 

for every value of k there are 2k + 1 matrices of this kind VIith 2,(_+ 1 

rows and colllll'l!ls; since V vanishes for k ) 2L , this gives a total of 

(2 f + 1) 2 matrices for e;1ch -f. 
It is ea3y to verify t ha t the tensor :> reduct of tv1o u' s, a5 

defined by (153), is ~;iven by a t ensor X which satisfies 

(l II x<Klll f)= (-)k1+k2-K .mr+I w (k
1
lk

2
t 1 K) 

and hence 

x<:n= <-lk1+k2-K ~ 
Q 

W(kl ik
2 

,( ~K) u~K) 
1 

(175) 

(176 ) 
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while the c~tator of two u•s is given by 

where the prime on the summation indicates that, owing to the symmetries 

of the Clebsch-Gordan coefficient3, the sum is to be taken only over 

values of K for which k1 + k2 - K is odd, (177) is of the form (14) 

and hence defines the structure of a Lie group, 

In virtue of the orthogonality relations (162), the {2 ~+ 1)
2 

matrices (175) are linearly independent, Since they are of degree 

2 t + 1, they form a linearly complete set of matrices of this degree; 

it follows that the structure defined by (177) is that of the.full 

linear group in 2l + 1 dimensions and of its unitary subgroup u2£ + 1• 

For a system of n ~articles we can define a set of ~(f) 
(i = 1,2 •••• n), each O?erating on one oarticle , and we can construct 

the symmetrical tensors 

n (k) I: ~ 
i=l 

operating on the whole system. It is evident that the ~(~)also satisfy 

the commutation relations (177). The mtrices of the U(~)in the scheme 

(143) will therefore be the ·representations tf.I: of th; infinitesimal 

operators of u2 .t + 1' 

From (177) it is also seen that commutators of ten3ors of odd 

(178) 

degree are linear combinations of arain only such tensors; hence, the 

tensors U(k) of odd der,ree are the infinitesimal operators of a suogroup 
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of the group u2A: + 1 . It is FJasy Lo see t ha t this subgroup is 

the orthogonal subgroup R2,t + 1 which leaves invariant the bilinear 

form (137), the eigenfunction of the S-state ofi2; indeed the • 

matrix elements ct 2LM I u(~) I t 2so) vanish a ccording to the triangular 

condition .unless k = L, and vani s h for odd L because the two states have 
of 

different parity, The matricesf u(~)with odd k in the scheme (143) 

tvill therefore be tr.e reoresentations 'TI of the infinitesimal operators - Pw 
of R2 i + 1. 

According to (164) the problem of the construction of the 

repres entations of R2 .[ + 1 and u2 G + 
1 

is reduced to the construction 

of the double-barred matrices of the u(k) , and the nroblem of 
""" ' 

constructing the factors (vr1 ~ 1L1 ;(1) X/wtL) and (E
1

f3
1

1·1
1

; [l)(lJ! E(jW) 

of (150) is reduced to the const~~ction of the similarity transformation 

whic~' ci~composes these rna trices fo r odd and even k respectively. 

~ 7. Calculation of the _Coeffi~~ents of fractional Parentage . 

In order to calculate th0 factors (1\j
1

L
1
;(l)f./wtL) we have 

to construct for every odd k < 2 ~the r1atrices 

I {] !\ (k)ll / I f 1 (Wl~lLl{L U ,71 t 1 L1 L) , (179) 

where u(k) = u(k) + u(k) • 
"'\11,. """l A,,.\ This can be done by using equations (171) 

and (172) ifwealreadyknow (w1 61 L
1

J/ uik)/lw1 \~L1 1 ) . The tnns­

forrnation matrix which decomposes (179) is (W
1
b 1L~; (l){ / 1'! ~L) . 

only in these trrtnsfo~aation coefficients, it is sufficient to choose 

If we are not interested in the matrices of U(k) per se but 
""" 
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one particular odd value of k ) 1 , e , g,, k = ), k = 1 does not serve our 

purpose because U(l) is proportional to L and is the refore already 
""' 

diagonal in our scheme , 

As an example we shall calculate the coefficient s 

c c 2o)11; (lld I vTLJ 

for the ccnficun t i on d11
, \'Te fi r st construct 

(iL II uP) + u~) II d2 1
1

) 

f or which, us i ng (174), (171) , (172 ) and Table I, we obtain the 

matrix 

s p D ::' G 

s 0 0 0 0 0 

0 1 0 ~r 0 

r 0 8 0 3~10 

7 

-J~ 
- 7-

F ,. c 0 0 15' JJ:o Jhi G c 0 -7 0 -7 

which decomnoscs by rc<~ rranu·,"cnt of r ows and columns into matric es of 

u,., fom. \"·'LIt u( 3) i\ wL'): 

I ·' 

( ( c,c \ s I! u \.) } ! \ ( 01)) s) 

where the hlentifi c ,1 t i an of t he values of 'i/ to which these constituents 

(180) 

(181) 

(182) 

( Jc. I 



~ 

belong has been made by the use of the branching laws as explained 

in detail in reference 26. 

Now it is possible to obtain by the same method 

{(20)11 dL/1 u<fl + u0 lil (20)L~ d1
1

) 

but we shall see that in order to calculate (180) it is sufficient 

t o ~ow the last row of (184) which is 

((20)Gdr/l u<fl + u(J) J {20)1~ d1
1

) 

By t~e '.lSe of (18)) and Table II we obtain (185) as the sum of 

A= ((20)Gdi llui3 ) II (20)1~dL ') 

and 

B = ((20) Gdi ilu(J) II (20)G dL 
1

): 

L' I ------~ ' ------__Q_---- -~ 
1' 's P D F G ' D F G H I 

JJ9 Ii3 0 J l) )Jl) J l) 2g 
A /0 0 0 """'1 7 ?.("){)J1'ffi I> 5>' 

-liT j91 -Ji3 J26' 
B ~ o o o 0 0 ° JO ITO E 55 

I h9 hJ 0 178 /130 0 3 J26 
A + B 1 0 0 0 - 7 -~ .; --:pf ~ I 7 

It is possible to deduce fro~ the branching laws that 

~!( 20) x£(10) d'.'!comooses into](lO) + ~(21) + J3(JO), and that to 

(184) 

(185 ) 

(185•) 

these three representati ons belonc the states n, P D F G H, and S F G I 

rcs~cctively. Hence, the tranafo~ation matrix which decompJses (184) 

by bringing it into the form 

(v11 II uO) 1j ·.:rr~ ' ) (186) 



-81-

will have the structure 

s p D F G D F G H 

'\ D * * (p 1 

;n * * 
I 

·, F * * I I 

(10) 

(21) 
; G * * 
\H 1 (187) 

(s 1 

(30 ) IF * * 

\~ ( 
l; * I 

1 J 
I 

where t he stars denote the non-vanishing matrix elements which have 

t o he cal culated. It follmvs fr~ the form of (187) that the row (JO)I 

of (136 ) is obtained sinply by multiplying the r ow (185), which has the 

elements (185 • ) , wi t h the columns of the transpose of (187). The 

selection rule which follows from ~~e r equirement that (186) is to be 

deco•nposed, in conjunction with all the available orthogonality and 

r ecipr oc ity r elations, per~its us to determine, apart from arbitrary 

phases , all elements of the matrix (187). They are contained in 

Table III. 

By recinrocity we mean the relation 

(Wx1 \Yl 'o\11;{) J21;--;-;-1 (-)1 - 11 +X (1'11 Vl11\ wY1;1) (188) 
, , 21 + 1 gwl (J () 

v1here g,_
7 

and f>t.
1 

are the dc~rces of the representations and x i-s a phase 
· 1 

vthich may be chosen arbitrarily for every pair 11, w1 but which is 

independent of the 1 1 s. This relation is pr oved in r eference 23, 
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equati9n (46 ); since its proof is based on the fact that the 

identity representation ap;.>ears in the deco>llposition of B W x ~W' 

such a relation does not hold for t:oe uni tar:r group . 

The calculation of 

(Ej3 rr\ r 1;'11w1
; [l](l)) 

can be carried out in .m analogous fashion. using u( 2) rather than 
. -uO) 

. ..,. . The result for the confit;LJ.r<l tion d3 is Given in Table IV • 

For the coefficients of the spin functions, corresponding to the 

passage from R6 to RJ x R3, the infinitesimal operators of the two 

groups R3 are IS , l ~,I) and ~' 6y' ~; the infinit~sir.lal 
operators of R6 are, in addition to these, ~r = 1:5 ~~ which form 

a tensor, or better a double vector with one foot in the isotopic-

spin space and one in the spin space, The construction of the 

matrices 

(E~ Tsllx!\E*~ 1T1s1 ) 

and the deco•nposition of the corresponding Kronecker products can 

be done in th& same way as before. (:<'or n = 3, see Table V). 

?or the constructior of the coefficients 

(tn 1:/i>- ~1 ; t[l)) 

the calculation is based not on the properties of Lie rroups, but 

rsther on those of the permutation groups, rrn . The result, which 

we give here witheut proofs is very simple: 

(~PI; I rn-lrl;l[l))= '!.J~E] 
gE 

(189) 

(190) 

(191). 

(192) 
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where gE is the degree of thJ r epr esentation of TTn which is 

characterized by the partition 1:. The sign depends on the 

choice of sign made for the oth~r coefficients, 

thay are Given in Table VI. 

For n = J 



\1. TABLE I . W(212L 1; 23 ). 
! 

S P D F G 
__ L_ - ·- --·· · ·-- - ·--··- ··-- ·- · - · - ·~ -·---···--

S 0 0 O. - 0 

i ill 

p I a a I2 ....!.. -1 

/ 5!7 ~70 J21o 

D I 0 J2 4 J 3 -1 

5IT )) 3512 7 ;2 
i 

F i ....!_ 1 D -lJ -Jil-
l ill /70 3512 14./5 14 I5 
I 

i - r-
G I o ...::!... .....:!... -Jn -lll 

, J 210 1 rr 14 rs· 42 
! 
I 

TABLE II. 

L' --7 ; F G H I 

W(4621' ;23) /! ~ - J 7 0 0 
J21o 9 J 10 

W(464L•;23) ! ___:!_ -D __;:}_ -14J2 

' 3J231o 33 Iw 33115 33J65 
I 

W(262L• ; 43) : - 1 - f7 -2_ - f2 
i J 210 3 1 no fl65 J7i5 
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TAIJL:O: III. (WL!w
1

L
1

; (1)d). 

w ·--:- ·-·-rcxi)-1 --1f01-' (11) (20) 
1 : . 

i 
I 

I D ---p- F D G : 

i w 

I (00) I 3 0 1 (I 0 
·-I 

! (10) i ~ &rr; K : D 1 0 1Ii : 
I ~ ~ ~ · p 1 I - -!; i (ll) I 0 1- I 0 
I F 1 ,-p Jf I : > 

D 1 

(20) : 0 0 0 

G 1 I 

i 

' IJ: p i 7 
:-:- ~ ~ : 1 0 

i 
I 

J~ -n; n; ~: D 
i iii - iii I 

I If f1 -1~ J5 ' I 

; - ~ (21) i F 0 - > - ., ! 
I J#! I 

'Hf G j 0 - 1 -n n t I 

I 
H I 0 1 0 1 

I 
I s l 0 I 

F J[' j2'1 1 - .., : 
' (JO) : G 0 N ({f ' n "2! , 

I 0 1 ' 

----- ·--
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TABLE I V, \HI I:
1
l·:

1
;(1 )( l )) r.cr ~ . 

l' ·,_ --~-1------~[111-l (20) 

I I ' I 

I ' rJ I I 
; ~ ! 1 (11 ) I (QQ) (20) I I . I 

VI -+--
[lll] . (11) ' i 

1 
! 

0 I 
(10) I 1 : ~ -Jr. I ' 13' 

15 I 
(21) 1 0 1 ! 

i 

lsr }11 
[3ooJ I I 0 IE 

I 

~ (30) I 
' 

0 

r:.TJL::: V, (2: ."rsJ ~;r1s1 ; [1Ji:-i) for n = ] . 

. "'-- ~;" I [20) I (11) 
, " 1 I , l '',, (P1PlP; ) (111) I (100) 

:r*(PP•P0! ',"-._ (2T
1 

-t ;L, ! ~---
l l '-.,251 + 1) I (11) (33) ; (lJ) (31) I 

' : ''<, II 

1 '(2T + 1, 2S +,1). 
. I ~ 

I ! (22 ) : ~ ___:_ 

I
I [2 J 2 

IDoo] o 
'c3 3 J' I 

In ~, cut:) I a 1 

(? 2 ) l7h 1 I -!_ -=:b- i 
1.2 F2 I }2 J2 ' 

;rna] C24l I o 1 1 1 o 
;(3 ~ ~ \ 
i ~ 2 2 ' (42) I o 1 i o 1 

r-------
[111) I I - 1 1 

i cl~-!J (22 ) I o I-=- -
:2?2 1 IJz )2 ! 

' '-------



(lll] 

[210] 

I 
I 

I (300] 

I 

(ll] 

l 

-1 

J2 

0 

-%7-

(20 ] 

0 

l 
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where the coefficients Fk arr. aiven by 

Fk =II Jk(r1,r2) R
2 U (r1 ) R2 & (r~) dr dr , 
n1 -L 1 n2 -<- 2 ~ 1 2 

(197) 

which is called the :cneralized Slater integral, 

It is interesting to note that the classical Slater inte3rals , 
'") 

which were defined for J(r12 ) = ~ are decreasing functions of k, 
rl2 

But , if iastead of a Coulomb interaction we have a short range 

interaction, Fk may no l one:er decrease with k , On the contrary, 

it is easy to see that for J(rl2) =£ cr{- r~) which 'is the 

limiting case of short range interaction, one has 

Fk = (2k + l)F0
, 

For the ;.>a rti c~tlar case in wh! ch we are in~erested, of two 

particles in the smne shell , (19(,) reduces to 

cf2w\J(r
12

) \ bw) 1: c-h~licCidll {)~()_,({ (Lk)Fk . 
k 

If, instead of a r;. ~,ner interaction we have some ::ind of 

exchanee interaction, the si3n of th::.s e~ression has to be changed 

for so~e values of T, S, and L, 

f 2. The Group- Theoretical Classification of the Interactions, 

The ceneral formula for calculating the energy matrix for a 

system of n equivalent particles vras given by (1.32) , but since the 

~ •s stand for a set of many ~uantum numbers which may assume many 

(198) 

(1?9) 
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different values, the summation of (132) is very lon~ and has to be 

split up into a set of independent smaller summations, This is ~de 

possible by the factorization of the c.f.p, and by a similar 

factorization of the energy matrix which we shall discuss now, 

We have seen in~ 5 of Lectures 5 and 6 that there is a 

relation between the Clebsch-Gordan coefficients and the ~trix 

elements of the components of the irreducible tensor operators, 

But the relation (157), which is a ?roperty of the group BJ• may 

be generalized to any other group if we adopt the general standpoint 

of Eckart and \'Tigner, 

If G is a group whose irreducible representations X have rows 

and columns characterized by):', and T(JlW) is an operator >Thich has 

th~ s~e trnnsformation pro,erties with rcs,ect to the group as the 

element W of the basis of the representation.llof G, then, in analogy 

to (157), the matrix element (X' X.' I T(llW) I xx> will be ;Jroportional 

to the matrix element (~JlX'~' I X'f._fu) of the transfonnation which 

decomposes the Kronecker product X x .fl. In the particular case that 

G is the group u4(2 .{ + l) and X is.An ( cf. p. 62), we have 

(200) 

and, if we assume forJt and.f'.l. the scheme (143), this matrix eleucnt 
n 

may be factorized according to (146). 

Since a central and charge-independent interaction is a scalar 
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with respect to the three-dimensional rotations in coordinate space, 

spin space, and isotropic-spin space, it follows that the energy 

matrix is diagonal with respect to T S L and i s indepel!d.ent of 

11.r Kg ~· as is well known. 

Unfortunately-, the interaction is not an irreduci ble tensor 

ol)erator with respect to tJle group u4(2 £ + l) and to its subg;oups 

which were used to classify the states of ln. \'Te shall, therefore, 

as a first step decompose the interaction o~erator into a sum of 

interactio~ which are co~nents of irreducible tensor operators, 

and tJ-.en calculate the energy- ~~~&trices of these particular interactions, 

using (150) and tJle factorization which follows fran (200) and (143) 

to sillpt1fy the s~~~~R&tions (132). 

In general, the interaction operator will be a tensor of sane kind 

'Rbich is reducible with respect to u4(2 .e + l)' Md, if for the time 

eeing we lillit ourselves to a spin-independent interaction ('Jigner or 

~ajorana), it will be a scalar with resoect to u4 and a tensor with 

respect to u2 f_ + l . 

In order to identify the irreducible parts of this t ensor, 

we start by- considering an operator which oo:>erates on the space 

coordinates of a single !'ilrticle i n a eiven shell. Since it has to be 

a linear transformation in the 2 .t + 1-dimensional space, it >rlll be a 

tensor of the second rank with one covariant and one contravariant 

index. It was stated on P• 55 t.'lat the caaponenta of a (contravari ant) 
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vv 
vector are the basis of the representation J-1.,(10 •.••• •• o]; 

analogously, the components 

of the represent.ltion J{ (OO 

of a covariant vector are the basis 

•..•••• o - 1]; hence the components 

of a mixed tensor of rank t1YO are the basis of the reducible 

representation 

~r1o ....•• OJ x if roo •..••.• o- ll' (2ol) 

;mich decomposes into ·if(o ....... o] +if_ (10 ... . .. ,o _ 1 ]' (This 

decomposition corresponds to separating the trace from the 

traceless part of the mixed tensor). 

The interaction between two particles is expressed according 
I 

to (196) as a sum of products of operators operating on the two 

particles, and ~~11, therefore, belong to the basis of the reducible 

representation 

( k(O , .. 0] + .k (10 .. ,0 - 1]) X (1{ (0 ... OJ + ~{(10 .. ,0 -; 1]) ( 202) 

If we decompose the representation (202) into its irreducible 

components and adopt a scheme in which U and L are diagonal, as we 

rlid in ~ 3 of Lectures 5 and 6 for the classification of the sta tes, 

then, since the interaction is a scalar in the three-dimensional space, 

it will appear as a linear combination of the different basis 

elenents which are classified as 3-states in this 'Scheme, 
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Sinceft[lO ... o] and J{[O •• • o _ l] are in 11 the representation 

. ~t {• (201) is the representation btxDt 11hich decCMposes ,into _ 

l: b , and it foll01'1S th.:~t in the basis of {202) there are 2 t + 1 
L=O L 
independent invariants vnth respect to RJ which have various tensorial 

characters in u2 t + 1 and R2 t + 1 • It may be shOYm by the branching 

laws that two of them are invariants, also, with respect to u2 e + 1 

R2{ + 1' and n2 .£. + 1 • One is still an bvariant Ylith respect to 

but with respect to u2 i + 1 it 

highest weight [20 ••• 0- 2]• 

belongs to the representation with 

The other scalars are, in the 

scheme (143), of the following ldnds: [20 •• • 0- 2] (22) s, 

(20 ••• 0- 2] (40) s, [llO ... 0- 1- 1] (22) s, [110 ... 0- 1 -1] (llll) s. 

The decomposition of the interaction (196) into its irreducible 

parts may be made in a general way based on the fractional parentages of 
I 

the different representations, as was done for ~ in reference 23, 

g 6, 1, but we shall consider here only the configurations dn and 

follow a more empirical method. 

Any kind of spin-independent interaction E(A·) will be rep­

resented in the d2 conficuration by a diagonal matrix 

(d2LM I E( (\) I d2rn) = r< (I> (L) 

and ·. :e have to calculate r<A >cL) for the different irreducible 

parts into which the interaction (199) decomposes. The result is 

tabulated here: 

... 

(20;J) 
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Interaction l States of d2 

Name Tensorial 
Character Z: (ll) (ll) (20) (20) 

W: (11) (11) {00) (20) 
z w L 1: p F s D 

~t>t) (00000) {00) s 1 1 1 1 

E({3) (00000) {00) s -1 -1 1 1 

E(t) (20Q0-2) (00) s 0 0 -14 1 

~E) (2000-2) {22) s 0 0 0 -9 

lfJ (110-1-1) {22) s -7 3 0 0 

This table was obtained as follOifs: according to Schur's lemna f~) and 

fV3) have to be constant for states belonging to the same value of E; 

any linear ccmbination of them has this property and the choice is 

determined only by cmsiderations of simplicity, t(~) IIIUst be constant 

(20 
{20) 
G 

1 

1 

1 

s 
0 

for states belonging to the same value of W; moreover, according to (200) 

and in virtue of the orthogonality of the transformation matrices, f(~) 
has to be orthogonal to both f(~) and fY~ (if we consider every value of 

L with its {21 + 1)-fold degeneracy). f (0 and f<'S' must be orthogonal 

t o f~)' f<a> and f<t>; and, i!l addition f(t) has to vanish for z = (ll) 

since Jf 111 doe~ not a!Jpear in the decomposition of t.'le Kronecker 

product j( (ll) X f{( 2000 _ 2 ) and f(~ has to vanish forE= (20) because 

i{ (20 ] doe~ .not appear in the decomposition of the Kronecker product 

i{ (20) x.fl(11o _ 1 _ l]' {These selection rules are the analogs 

for u2 .f + 1 of the trian ::ular conditions for RJ). 
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The perturbation enerGY E(L) of the configuration d2 for an 

ordinary (Wigner) interaction may be obtained fran (199). In order 

to avoid the appearance of f ractional coefficients we introduce the 

standard normalization* 

F
0 

= F
0

1 F2 = F
2
/ 49, 4 F4 = F /Wu , 

and write f or the energy** 

/ 

E(S) = p0 + 14 F2 + 126 Fu 

&~P) = ' • + 112 ~ 84r4 

E(D) = F
0

- 3 F2 + 36 Fu 

l ( f ) • ' · - 8J2 - 914 

E(G) = F
0 

+ 4 F2 + F4 

(204) 

(205) 

These results may be expressed i n t erms of the irreduci ble interactions by 

\ I = E~)F0 + (- rt E~- ) + # E({1 )_% E(~))(F2+9F4 ) +I (E(f.) - 3E( )>) • 

• (F2 - 5F4). 

The corresponding expressi on f or the Kaj orana interaction i s obtained 

by interchanging E¢<) and E{f3) and changing the sign of E<)): 

( 206) 

VM = EY'3)F
0 

+ <# E(c() - l~ EV3) - ~ r; <p)(F
2 

+ 9Fu) + t (E(t ) + 3E \5)). 

·<F2 - 5~·h> . (207 ) 

*--------------------
Ref erence 15, p. 177. 

'~-* Reference 15, p. 202 . 

i 

' 
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~ J. The Ca:).culation of the Energy llatrices. 

When we go fran i to rfl, the summation over tl1e different 

pairs of pErticles can be carried out very simply for the interactions 

E(!X.) and E(/!1 : 

where }:! is the eigenvalue in the unperturbed state of the !lajorana 

operator and c~tt be· expressed as a function of the -partition 

2:* = <A 1'1\, 1\,1\ 4) :* 

(208a) 

(208b) 

\'le can also obtain 2: ~ik( ~) in closed form by using the Casiair 
i<. k 

operator for the group lis: it follows frcm (106) that for lis the 

eit~envalues of this operator are 

(210) 

so that in particular, 

g(OO) = O, g(lO) = 4, g(ll) = 6, g(20) = 10. (210 1 ) 

We can ther~fore wri t e 

(211) 

* L. Rosenfeld, Nuclear Forces, Amsterdam, 1948, p. 2111 Eq. (14). 
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and then find for dn * 

2: Eir =±[g(lf) - ng(lO)] -f 2: Ei(j) +! l: E~) 
i( k i( k i< k 

'· 
_l ') 1 ' 

= 2 e(IT) - 2: 1.1 + it n (n - 25). 

In a 'similar way it is easy to see that 

E(E) + E()> = L(L + 1) -tg(if), 

so that also for n d-particles, 

1: (E(() + l))) = L(L + 1) .). g(W). 
i(k ik . ik l. 

The calculation of the enerer matrices for the interactions E(E) · 

and E() ) separately has to be made by the use of (132); actually, 

owing to (214) it is sufficient to calculate 

x =t 2: cE<o - Ecr> >, 
i(k 1k 1k 

which will be of the form 

(212) 

(213) 

{214) 

(215) 

ci1:{3wtLixld~(3'W' tL) = J~ 1 (2:/3W l ~I 2:(3' ~-~~ )(w/~c ~K'L)jwt). (216) 

Although from (148) one might expect the factorization on the right hand 

side to be a complete o~e, this is not so because (148) did not 

represent the most general casr.. It contains the implicit assumption 

that in the decomposition of u
131 

X UB
2 

the representation liB appears 

only once, and this vras actually the case when uB
2 

was a representation 

which had as its basis the states of one 9article in a given shell. 

However, now that u_ is the representation to which the interaction 
~2 

a ~ operator belongs, viz. JJ (22 ), ~e need (148) in its most general form, 

* . The proof is the same as that of the well known fonnula 

~k <!ilk) =IcL(L + 1)- nt(1 + 1)]. 

- !'"<eference 23, ~ 3. ' 

---~ 
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and this still involves a summation. The numb~r of terms in this 

summation, r, equals the number of times that ~W appears in the 

reduction of J3w1 x }l (22 ); and it follows from the branching 

laws that it can never exceed three. 

Introducing {216) and (150) in (132), we obtain 

{dn2:/~ W XL j X I d"2:/3r.wr tL) = 

n 2: (d"l: I dn- ~1;d[1))(2:(31T\2:1~1W1; [1){1)XW vtlw1 v 111; (1)d) 
n::-2"(3 1 I I 0 (') 

2:1 lf31WlW10 10 111 ~1 

<r.1/h\'f1l A_)11E1(3~W~)(w111J< ~ 1 t~ L1 ) I w~) {217) 

• (\"1~ t~L1 ; (1)dln
1 {t)(r-1(3~ W~; [1){1)1 1:(31w1 )(dn-~1;d[1Jid"2:). 

We perfonn at first t:1e surn·l8.tion 

'"hich, owing to the tensoria1 properties of the 'fjwill be a linear 

combination of the (W \'If ~t) 'L) I WI) with coefficients that are 

independent of~tl and L: 

2: I {W 6 t\ \\ V1~i (l)d){vrlf-g( ~ l ~~~} lw~ ){vr~y ~~; (l)d!W'o' 1) 
D1~ 111 o 1 

· (2181) 

= s (W J xs(\'flW~.h) I 1'1' )(wl q-! (~ Q'L)j\'fl). 

'i'lh,lln the (wl\fj (~ ~IL)IWIJ are l:nown, in order to obtain the coefficients 

of the linear combination, it suf:i~es,to perform the summation .(218) 

'/ . for only a few valu:::s C'f O t: and L. 
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Then we calculate 

(z;3w\ Yf <~1)\z~ •w•) = z, , Cz(3w I EJ!!r 1; fl] (1)) • 
.J (31/JlVliwlgl 

'(Ej3.!_vr11 A_)ll z1(3~w~)(W lxfW111~ Jl)}wr )(Ej3~W~; (1](1)1 1:(3\7) (219) 

and obtain finally 

(z{.)wiA_sl E
1
1'i'fl) = n ~ 2 E (dnEjdn-l1:1 ;(1](1))

2
{E,8Vrl y~ (2:1 )1 Ef3 1W')• (220) 

1:1 -.) 

In t he pnrticular cas e of aS -interaction, which is the limit of 

forces with very short range: it follows from (198) and (204) that F2 - 5F4 

v~nishes and, therefore, the energies of the Wigner interaction may in this 

particular case be expressed in closed form: 
r 

V = J- F 
0 

(n{n + J) + 4M - c(W)] 

by introducing (208a), (208b) and {212) into (206), Further, Vfigner 

and Ua.iorana interactions b ecome equal for a ~-intcmction. 

J;ven if the inte-ract ion i s not a ~-funct:'..on, but is still of short 

ranr.e (compared with t : .e dimension:~ of the nuclei), as is the case for 

( 221) 

nuclear 5.nteractio'ls, th~ most i mportant contributions to the energy come 

from E(P'-), 'S({3) and :::<61, anc'. the lowest levels are those with the 

srnalleGt values of t::(W). These levels belon(; to 'ii = (00) for even 

nuclei anc toW= (10) for edd nuclei, Since J3 (OO) x~( 22 ) = ~(22 ) and 

~(10) X~(22) =~{ 2l) +1?( 22 ) +£>(32) it follows that for 'ii "'\'fl = (00) 

or 1'1 = 7i ' = (lo), r vanishes in (216), i.e,, f or the levels belonging to 

these values of VI the diaeonal element of X vanishes. It must be 
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remembered here that the W are not good quantum numbers; hOlmver, 

are fairly good quantum numbers for short nnge forces, so thut it is 

possible to calculate the lowest level of a confirruration dn without . 

calculating the matrix of X, 

~ 4. Spin-Dependent Interactions. 

As in our previous discussion, we shall limit ourselves to 

the dn shell in discussing spin-dependent interactions of the 

Bartlett and Heisenberg types, although the method is ap])licable to 

any nuclear shell. In addition to the five spin-independent irreducible 

interactions tabulated on paee 95.- we have now five which depend on the 

spin and which may be obtained in the same manner: 

Interaction States· of d2 

Name Tonsorial Character 133p lip 33F 1~ 3ls 13s 3~ 13D Jl.G 13G I 
L I ~· ~ w 

-1' ~\1].) [ll-1-1) [00000) (00) "S! 0 0 0 0 1' -1 1 -1 1 
E(B) 

! 
ol (200-2 J [000~0) (00) 11 SI 1 -9 1 -9 0 0 0 0 0 

E(~l) "s! I 
[ll-1-1) [200o-<!) (00) 0 0 0 0 -14 14 1 -1 1 -1 ( 

,.. (€/) 
[11-1-1) [ 2000-2 )( 22) "S! 0 0 0 0 0 0 -9 9 s 

~()'> I 
(200 -2) [ll0-1-1](22) ns ; -7 63 3 -27 0 0 0 0 0 

I 

I 

In this t:sble z • characterizes the. representation jr.• of u4 and~ 

characteri~es the representationJf~ of u5 to which the 

I,' ' 

I 
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The Bartlett and /leisenb3rg i nteracti ons must novt be expressed in 

tcms of these interact i o:1s, and it is easy t o see that 

VB+ VH =2 E("'l_) [F
0 

+}(F2 + 9F
4

)J -1E•({')(F
2 

+ 9F
4

) + E(tl) (F
2

- 5F
4

) (222) 

VB- VH = ~(E(O) + 2E(X) - 2E ~I3))(Fo - r(F2 + 9F4)]- ~ (!!:()') + 4E\«)}) 

• (F2 - 5F4). 

It is also easy to show that 

and 

2 ~ E~ = S(S + 1) - T(T + 1) 
i\ k 

(223) 

(224) 

3_ 2: (E~)+ 2El~) - 2E~) ) = S(S + 1) + T(T + 1) + ~ n (n - 4) . (225) 
5 i( k 

The calculation of the ener~ matrices for the interactions E<ot>, E(£'), 

<\nd r;<)') has to be r.tade by t.he met hods used in the ;,>receeding section 

for the interaction X. 
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