C131.2

R-14
ОБЂЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Дубна

而mintinimine
\%

Group theory and spectroscopy

by

Giulio Racah
The Hebrew University, Jerusalem

Reprint of lectures delivered at the
Institute for Advanced Study, Princeton, in Spring 1951

CERN 61-8
6. Maroh 1961

ORGANISATION EUROPEENNE POUR LA RECHERCHE NUCLEAIRE CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

 2^{2}2
3
0
0

Group theory and spectroscopy

by

Giulio Racah
The Hebrew University, Jerusalem

Intifuto for Advanced Study, Prinoeton, in Spring 1951

GENEVE

INTRODUCTORY NOTE

For many years now these lectures have been out of print. They have been repeatediy requested in the CHRN Library but they were unobtainable. By a fortunate chance a copy reached us recently as part of the Pauli Memorial Collection at CERN.

Realising that these lectures would be greatly appreciated by physicists, we requested Professor Racah's permission to re-issue them in a photo-offset edition in our Report Series. He very kindly agreed and supplied us with a list of corrections. We wish to thank him in the name of all those who will welcome this reprint.
L. van Hove.

TABLE OF CONTENTS

Lecture 1. GENERAL NOMIONS ON CONAINUOUS GAOUPS Page
il. Continuour croupa and inifiniteaimel. erounp. 1
(2. Parameter srouns and adjoint groun. C
\}3. Subgroups, simple and eem1-8imile grouns. 11
Lecture 2. CLASSIFICATION OF THE SEMI-SIMPLE GROUPS
§l. The standard form of the infinitesimal group. 16
\{2. Properties of the roots. 21
\}?. The vector diagram. 25
Lectures 3 and 4. THE REPRESENTATIONS OF THE SEMI- SIMPLE GROUPS
§1. Sepresentations and veights 32
§2. The classification of the irreducible representations 37
§?. The problem of full reducibility. 42
§4. Casimir' operator and its generalizetion. 44
§5. Miscellaneouf jroblemi. 50
\$6. The full linear groun and the unitary eroun. 55
Lectures 5 and 6. THE EIGENFUNOMIONS OF THE NUCLEAS SHELLS
§1. Introcuction 57
(2. The coefficients of fractional harentage 58
\}3. The classification of the states l^{n} 62
§4. The factorization of the coefficienta of fractional parentage 66.
§5. The alzebra of tenaor operators 69
Lectures 5 and 5 (continuec).
38.E
§6. Tenaor ojerators and Ile grou's. 75
§7. Calculation of the coefficients of fractional parentage 78
Lectures 7 and 0. THE CALCULATION OF THE ENERGY MATRIX
§1. The interaction of two particles. 89
§2. The group-theoretical clasalfication of the interactiona. 90
§3. Caloulation of the energy matricea. 97
§4. Spin-dependent interactiong. 101
These noteg are bsaer on a aerief of seminar lectures ?iven during the 1951 Soring term at the Institute for Advanced Study. Orfing to limitations of time only partioular tonice were considered, and there in no claim to completenegs. Since it 1a intended to nublish later a more complete treatment of the gubject, commenta about these notes as well as auggeationa concerning the feairability of accing related topica will be aroreciated and ahould be addreased to the author at the Yebrer Univeraity, Jeruaalem, Iarsel.
As the Iimited supply of there nowen mricen. it impoaaible to aend more than one co.jy to eny inatitution, It 1 is requeated that all coniea be made available to desartmental 11 braries.

The Institute for Advanced Study

GROUP THEOEX AND SPECT:OSCOPY

by

Giulio Racah

The Kebrew Univeraity, Jorusalem

Spring, 1951

Notea by Eugen Merzbacher and David Pank

Group Thoory and Spectroscopy

by
Gịulio Racah

These lectures will truat the applications of group theory to problems of spectroscopy and nuclear structure. While developing the mathem ratical tools for this purpose, we shall ocesionally forego the elaboration of a rigorous proof. In such ceses, references will be quoted.

Leoture 1:
GENERAL NOTIONS ON CONTINUOUS GROUPS

81. Continuous Groups and Infinitesimal Groups.

We start with a set of n variables x_{0}^{i} (i © l...on). whloh may be regarded as coordinates of a point in a oertain space. Consider now the set of equations

$$
\begin{equation*}
x^{1}=f^{i}\left(x_{0}^{1}, \ldots, x_{0}^{n} ; a^{1}, \ldots, a^{r}\right) \quad(1=1 \ldots n), \tag{1}
\end{equation*}
$$

in which the af appear as a set of r independent parameters. Omitting indicas, we shall write this and similar relations in the form

$$
\begin{equation*}
x=f\left(x_{0} ; a\right) \quad \text { or } \quad x=s_{a} x_{0} \tag{1'}
\end{equation*}
$$

These equations derine a set S of transformations, depeading on the parapoine
 all the required derivatives, and that the f^{i} depend essentially on the parametars, i.e. that no two transformations with different parameters are the same for all values of ' x_{0}, so that r is the smallest number of paraneters nesded to specify the transformations completely and uniquely.

The sat of transformations is said to form a group if it oboys the following two conditions:

1) The result of performing successively any two transformations of the set is another transformation belonging to this set. Formally, if $x=f\left(x_{0}, k\right)$ and $x^{\prime}=f(x ; b)$ then there exists a sot of parameters of awoh-that

$$
\begin{equation*}
a^{P}=\operatorname{cop}^{P}(a ; b) \tag{2}
\end{equation*}
$$

such thas

$$
\begin{equation*}
x:=f(x ; b)=f\left(f\left(x_{0}, b\right) ; b\right)=f\left(x_{0} ; c\right)-f\left(x_{0} ; \varphi(a ; b)\right) \tag{3}
\end{equation*}
$$

1i) Correaponding to every transformation there exists a unique inverse, whioh also beloega to the sots Given equation (1) there exists Set of a paramotos $\overline{\mathrm{a}}$ avoh that $\mathrm{x}_{0}-I\left(\bar{x}_{\delta} \overline{\mathrm{a}}\right)$ 。

The uมigueness of $\overline{\text { E }}$ is guarazteed if the Jacobian of the tranaformation does not venieh:

$$
\begin{equation*}
\left|\frac{\partial x_{0}}{\partial x_{0}}\right|>0 \tag{4}
\end{equation*}
$$

Tranaforming x_{0} onto x and then inversely x back to x_{0}, we obtain according to 1) a tranaformation which belongs to the group and is characterized by the eot of parameters 0_{0}. Since the transformaticn dapends on the paramoters in an esmential way, the n_{0} so constructed cannot depend on the particular valuo of the pacameters from which we atarted. The transfommetion $I\left(x, a_{0}\right)$ is called the identity.

Since it ipposen no restriction, we shall take:

$$
a_{0}^{P}=0 \quad(\rho=3 \ldots . r)
$$

r is calied the order of the groupo (Note that this usage is different from that found in the theory of finite groups.)

We also remind the reader of the following definitions:
A mapping of one group onto another is said to be homomorphio or a homomorphien if it proservec the operation of group multipliantion. Fo onll such a mapping an iscmorphicm if, in addition, the oorrespondenes between elements of tho two groups is one-tomones Since the combination law of the tranaformations (1) is given in werm of the parameters a, there oan be transformations correspondiisg te different values of n whioh are homomorphio or even isomorphio.

A group of linear transformations which is honomorphic with a given group is called a representation of this group.

The fundamental idea of Sophus Lio's theory of continuous groups is to consider not the whole of a group, but that part of it whioh lies near the identity, consiating of the so-called infinitesimal tranifcrmatione. Thus, instead of the finits displacement of a point under a transformation, we oonsider the application of successive infinitesimal displacements - we think of a generalizsd-velocity field describing the motion of a point from its original position x_{0} to its final position x_{0}

We have now two equivala it expressions for z :
a) $x=f\left(x_{0} ; s\right) \quad$ or $\left.b\right) \quad x=f(x ; 0)$ e

Corresponding to these we can repreasent in either of two mays a transformation, as a result of which the new components of x differ infinitecimally from the old ones - by differentiation of (5a) or by introducing a paraneter
of infinitesimal size in (Sb) s

$$
x+d x=f\left(x_{0} ; a+d a\right) \quad \text { or } \quad x+d x=f\left(x_{g} \delta a\right)
$$

or (employing the summation convention)

$$
\begin{equation*}
d x=\frac{\partial f\left(x_{0,} a\right)}{\partial a^{\sigma}} d a^{\sigma} \quad \text { or } \quad d x=\left(\frac{\partial f(x, a)}{\partial a^{\sigma}}\right)_{a=0} \delta a^{\sigma} \tag{6}
\end{equation*}
$$

The last may be written

$$
\begin{equation*}
d x^{1}=u_{\sigma}^{1}(x) \delta d_{a}^{\sigma}, \quad u_{\sigma}^{1}(x)=\left(\frac{\partial r^{1}(x, a)}{\partial a^{\sigma}}\right)_{a=0} \tag{7}
\end{equation*}
$$

which define the "velocity field" $u_{\sigma}^{1}(x)$ mentioned above. In the notation of (2) we may write

$$
a+d a=\varphi(a ; \delta a)
$$

Since it follows from (2) and (5) that $\varphi(a ; 0)=a$, we have

$$
a+d a=a+\left(\frac{\partial \varphi(\alpha, b)}{\partial b^{\tau}}\right)_{b=0} \delta a^{\tau} .
$$

Thus, da is a linear combination of Ga:

$$
\begin{equation*}
d a^{P}=\mu_{\tau}^{\rho}(a) \delta_{s}^{\tau}, \quad \mu_{\tau}^{\rho}(a)=\left(\frac{\partial \rho^{\rho}(a, b)}{\partial b^{\tau}}\right)_{b=0} \tag{8}
\end{equation*}
$$

Solving for 6_{e}, we get

$$
\delta a^{\sigma}=\lambda \rho_{\rho}^{\sigma}(a) d a^{p}
$$

where

$$
\begin{equation*}
\lambda \mu=1, \quad \text { i.0s } \quad \lambda_{p}^{\sigma} \mu \mu_{\tau}^{\rho}=\sigma_{\tau}^{\sigma} \tag{9}
\end{equation*}
$$

From (6), (7) and (8') wo get the first fundamental formula:

$$
\begin{equation*}
\frac{\partial x^{1}}{\partial a p}=u_{\tau}^{1}(x) \lambda_{\rho}^{\tau}(a) \tag{A}
\end{equation*}
$$

If u is to represent the velocity field of a transformation (1), equation (A) must be completely integrable, ice. it must bo aapable of admitting solutions with n arbitrary constarts x_{0}. The integrability condition $\frac{\partial^{2} x^{i}}{\partial a^{\sigma} \partial_{a} P}=\frac{\partial^{2} x^{1}}{\partial_{a} P d_{a}{ }^{\sigma}}$ beoomes

$$
\left(u_{x}^{3} \frac{\partial u_{v}^{1}}{\partial x^{j}}-u_{v}^{j} \frac{\partial u_{x}^{1}}{\partial x^{j}}\right) \lambda_{0}^{k} \lambda_{\sigma}^{\nu}+u_{v}^{1}\left(\frac{\partial \lambda_{\sigma}^{\nu}}{\partial p^{p}}-\frac{\partial \lambda_{p}^{\nu}}{\partial e^{\sigma}}\right)=0
$$

and, using (9), this gives

$$
\begin{equation*}
u_{x}^{j} \frac{\partial u_{v}^{\frac{1}{3}}}{\partial x^{j}}=u_{v}^{j} \frac{\partial u_{x}^{1}}{\partial x^{j}}=c_{x v}^{\tau}(a) u_{\tau}^{1} \tag{10}
\end{equation*}
$$

Where

$$
\begin{equation*}
c_{x \nu}^{\tau}(a)=\left(\frac{\partial \lambda_{\rho}^{\tau}}{\partial a^{\sigma}}=\frac{\partial \lambda_{L}^{\tau}}{\partial_{a}^{P}}\right) \lambda_{x}^{P} \mu_{\nu}^{\sigma} \tag{1i}
\end{equation*}
$$

$$
\frac{\partial_{c}{ }_{x \nu}^{\tau}(a)}{\partial_{a} p} u_{v}^{1} \cdot c
$$

But the a"s have beon assimed ecsential, so thet by (7) the u's are linaarly indeperdent, henoe the $c^{\prime} s$ sue independent of a. Equation (10) is

$$
\begin{equation*}
u_{x}^{j} \frac{\partial u_{v}^{i}}{\partial x^{j}}=u_{v}^{j} \frac{\partial u_{x}^{j}}{\partial x^{j}}=c_{x v}^{z} u_{z}^{1} \tag{1}
\end{equation*}
$$

and from (11)

$$
\begin{equation*}
\frac{\partial \lambda_{e}^{\tau}}{\partial A^{\sigma}}-\frac{\partial \lambda_{\sigma}^{\tau}}{\partial{ }_{p} \rho}=o_{x \nu}^{\tau} \lambda_{e}^{x} \lambda_{\sigma}^{\nu} \tag{2}
\end{equation*}
$$

$\left(B_{2}\right)$ is a necestary condition on the velocity field if the latter is to geaerate a group, and $\left(\mathrm{E}_{2}\right)$ is a corresponding restriction on the manner in which the e's combine.

An infinitesimal transformation on the x induces on any function $F(x)$ a variation

$$
\begin{equation*}
d F(x)=\frac{d F}{\partial x^{I}} d x^{i}=\delta_{0}^{\sigma} u_{\sigma}^{1} \frac{\partial}{\partial x^{1}} \equiv \delta Q^{\sigma} x_{\sigma}^{F} \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
x_{\sigma}=u_{\sigma}^{i}(x) \frac{\partial}{\partial x^{1}} \tag{13}
\end{equation*}
$$

(12) shows that overy infinitesimal transformation of $F(x)$ is generated by a linear combination of the operator X which are called tie infinitesimal operstors of the group S. From (B_{1}) it follows that they satiafy tha relation

$$
\begin{equation*}
x_{\rho} x_{\sigma}-x_{\sigma} x_{\rho}=\left[x_{\rho} x_{\sigma}\right]=c_{\rho \sigma}^{\tau} x_{\tau} \tag{24}
\end{equation*}
$$

Evidently

$$
\begin{equation*}
c_{\rho \sigma}^{\tau}=-c_{\sigma \rho}^{\tau} . \tag{1}
\end{equation*}
$$

Substituting (14) into the Jacobi identity

$$
\left[\left[x_{\rho} x_{\sigma}\right] x_{\tau}\right]+\left[\left[x_{\sigma} x_{\tau}\right] x_{\rho}\right]+\left[\left[x_{\tau} x_{\rho}\right] x_{\sigma}\right]=0
$$

we get

$$
\begin{equation*}
c_{\rho \sigma}^{\mu} c_{\mu \tau}^{\nu}+c_{\sigma \tau^{\mu}}^{\mu} c_{\mu \rho}^{\nu}+o_{\tau} \rho_{\rho}^{\mu} o_{\mu \sigma}^{\nu}=0 \tag{2}
\end{equation*}
$$

We have shown that equations (0) are implied if the f^{i} form a group. That the converse to this atatement holde is the conteat of the threo fundamental thoorems of Lio, whioh we shall not prove. They atate that

Io $I f$ thers exist $P^{1}=x^{1}$ satisfying (A) then they form a group.
IIo If there exist $u^{i s}$ satiaflying $\left(B_{1}\right)_{s}$ then there exist λ 's, determinsd within isomorphism, "which satisfy (E_{2}), so that equation (A) is integrable.
III. For every set of o's satisfying (C), there exist u's satisfyirg (B_{1}).
We shall write ar infinitesimal transformation of the group S in the form $S_{a}=i+\delta_{a}{ }^{\sigma} X_{a}$, where δ_{a}^{σ} is an infinitesimal quantity dofined to bs of the first order. If we combine two suoh transformations, we get

$$
s_{a} s_{b}=\left(1+\delta s_{\rho}^{\rho}\right)\left(1+\delta b^{\sigma} x_{\sigma}\right)=1+\delta s^{\sigma} x_{\rho}+\delta b^{\sigma} x_{\sigma}
$$

where the first non-ranishing infinitesimel terms have boen retained. Thus, to the operation of multiplication in S corrosponds addition in the infinitesimal group of S. If the first order quantities vanish, we have to consider quantities of higher order. But the second theorem of Lie implies that in this conneotion we need never go beyond the seoond order of infinitesimals - 1.0r we have only to worry about commutato: which are expressions of the form $S_{a} S_{b} S_{a}^{-1} S_{b}^{-1}$. and to ask that the correspending infinitesimal operator of the second order, $\delta^{\rho}{ }^{\rho} \delta b^{\sigma}\left[X_{\rho} X_{\sigma}\right]$ be contained in the lirsar manifold of infinitesimal operators.

今2. Paramatar Groups and Adjoint Grouph.
On vomparing (8) with (7), we soe that a olose formal analogy exists between the funotions μ and u. In fact, the $\varphi(a, b)$ of (2) whioh conneot the parameter aocording to the composition lan of the group may themeelven be considered as defining a group in the ame way an does (1'):

$$
a^{\prime} P=\varphi^{P}(a ; b)
$$

This relation can be regarded as ampping of the a onto the al acoording to a tranaformation whose parameter is b. We shall prove that these transformations form a group P_{1}, which is isomorphio with S and is oalled the ifirst paramoter group. Indeod, if $a^{:}=\varphi(a ; b)$ and $a^{\prime \prime}=\varphi\left(a^{\prime} ; c\right)$ then

$$
a^{n}=\varphi(\varphi(a ; b) ; c)=\varphi(a ; \varphi(b ; 0))
$$

Where the last equality follows from the associative property of the transformations f^{i}. We thus see that the law of composition is the same for the first paramoter group and the original group of transformations f^{1}.

The analogous group of transformations on the argument b of $\varphi(a ; b)$
 that is, it is iscmorphio when the factors are taken in the reverse order, But sino $(x y)^{-1} y^{-1} x^{-1}$ and since a group contains x^{-1} if it containsox, the two are in fact isomerphic. Let a (or c) be a transformation belonging to the first (or second) paraseter group. Let the operation of P_{1} trarsform b into $b i=c \rho(b, a)$ and let the operation of P_{2} transform b' into $b^{\prime \prime}=\varphi\left(0, b^{p}\right)$. Then it is clear that

$$
b^{n}=\varphi\left(c, b^{1}\right)=\varphi(c, \varphi(b, a))=\varphi(\varphi(c, b), a),
$$

hence every element of P_{1} oommutes with every olement of P_{2}.
The μ^{\prime} s are the velocity field of P_{1} (see oquation (8)), and they
define the infiniteaimal cperator

$$
\begin{equation*}
A_{\tau}=\mu_{c}^{\rho}(a) \frac{\partial}{\partial a} \tag{15}
\end{equation*}
$$

Correspondingly, in P_{2}

$$
\begin{equation*}
B_{\tau}={\overline{F_{\tau}}}^{P}(b) \frac{\partial}{\partial b^{q}} \tag{16}
\end{equation*}
$$

Another operation which it is useful to consider is conjugation: Given an element S_{a} of s, to every element S_{b} of the group there corresponda an element $S_{b}=S_{a} S_{b} S_{a}^{-1}$. The operation $b \rightarrow b$ is a faithful mapping of the group onto itself which depends on S_{a} and which is called oonjugation of S by S_{a}. Consider now the set of conjugations obtained by letting S_{a} run through all the elements of S. These conjugations themselves constitute a group of trensformations, howemorphic to 8 , but not in general isomorphic with S. It is easily seen that isomorphinm betwesn S and the group of conjugatious holds if and only if the identity is the only element of S which commutes with all elements of S,

If we regard the relation $x:=S_{a} x$ as a coordinate transformation, it is well known that the effect of operating with S_{b} on a function of x^{\prime} is given in terms of x^{\prime} by the operation of tris conjugate of S_{b} by S_{a} acting on the same function of x :

$$
S_{b} x^{\prime}=S_{a} S_{b} x=\left(S_{b} x\right)^{\prime}
$$

The conjugation gives the change in the parameters of an operation if this
operetior is considered in the new system of coordinates x^{2}. The advantage of the group of conjugations over the parameter grous is that the conjugate eloment $S_{A} S_{0} S_{s}^{-1}$ is infinitosimel if $S_{\text {e }}$ is infinitesimal, irrospeotive of the magnitude of S_{s}.

If in the first nystem of coordinates S_{0} is expressed by $S_{e}=1+\varepsilon \rho_{X_{P}}$, then, after the transformation with S_{a} the same transformation S_{e} will be expressed by $1+\varepsilon a^{\prime} f X_{p}^{\prime}$, and hence

$$
\begin{equation*}
e^{1} P_{x_{P}^{\prime}}^{\prime}=o P_{X^{p}} \tag{17}
\end{equation*}
$$

The group of transformations $e^{f} \rightarrow e^{\prime} P$ is called the adjoint group. We wish to determine its infinitesimal operators, produced by transformations S_{a} in the neighborhood of the identity. With $s_{a}=1+\delta_{a}^{\sigma} \pi_{\sigma}$ and $s_{\rho}=1+\varepsilon X_{\rho}$ we have

$$
s_{p}^{\prime}=1+\varepsilon x_{\rho}^{\prime}=s_{n} s_{\rho} s_{a}^{-1}=\left(s_{p} s_{\rho} s_{s}^{-1} s_{\rho}^{-1}\right) s_{\rho}=\left(1+\left[\delta_{a}^{\sigma_{0}} x_{\rho} \varepsilon x_{\rho}\right]\right) \cdot\left(1+\varepsilon x_{\rho}\right)
$$

or

$$
x_{\rho}^{\prime}-x_{\rho}=d x_{\rho}=\delta_{a}^{\sigma_{0}}\left[x_{\alpha} x_{\rho}\right]=c_{\alpha \rho}^{\tau} \delta_{e} \sigma_{\tau},
$$

by (14). From (17), we have

$$
d \theta^{\tau} x_{\tau}=-\theta_{\rho}^{\rho} d x_{\rho}=\theta_{\rho}^{\rho}{ }_{\rho}^{\sigma} \delta_{a}^{\tau} x_{\tau}
$$

or

$$
\begin{equation*}
d v^{\tau}=\theta^{\rho} e_{\rho \sigma^{\tau}}{ }^{\tau} a^{\sigma} . \tag{18}
\end{equation*}
$$

If E are the infinitesimal operators of the adjoint group, we find by comparison of (28) with (7) and (13) that

$$
\begin{equation*}
E_{\sigma}=e_{p \sigma} \frac{\tau}{\partial e^{z}} \tag{29}
\end{equation*}
$$

83. Subgrouns, simple and semi-simple groups.
a) A group is Abolian if all its elements oommute. It follows from the correspondenoe between computators and aquare braokets that for an Abelian group all square braokets, and oonsequently all struoture oonstanta, vanish:

$$
\begin{equation*}
0_{p \sigma}^{\tau}=0 \tag{20}
\end{equation*}
$$

b) A subgroup of a group S is a subset of elements of S which satisfies the group postulates. Thus, if $X_{1}, \bar{X}_{2}, \ldots, X_{p}$ are the infiniteaimal operators of a subgroup, the structure constants of the group must astisfy the relations

$$
\begin{equation*}
c_{\rho \sigma}^{\pi}=0 . \quad(\rho, \sigma \leq p, \tau>p) \tag{21}
\end{equation*}
$$

c) An invariant subgroup, H, of a group S is a subgroup of S whoh containe all the conjugates (images) of its elements. Thus, with s_{n}, it conteing $S_{x} S_{n} S_{x}^{-1}$ for any S_{x} in S. If so, it also oontaine the comautater $S_{x} S_{n} S_{x}^{-1} S_{n}^{-1}$. Thus, the square bracket connecting an infinitesimal olement of H with any infinitesimal element of S must belong to H. If $X_{1}, X_{2}, \ldots, X_{p}$ are the infinitesimal operators of an invariant subgroup of S, the etrueture constants of S must satisfy

$$
\begin{equation*}
{ }_{p \rho^{\sigma}}^{\tau}=0 \quad(p \leq p, \tau>p) \tag{22}
\end{equation*}
$$

d) A group is simple if it has no invariant subgroups besides the unit element.
e) A group is ssmi-siaple if it has no Abelian invariant suberoups besides the unit element.

The diatinction between groups which have Abelian inveriant subgroupe and those which do not heve such ubgroups is important, because Abelian aubgrcups, though apparontly easiest to doal with, can aotually be most troublesome from the point of view of representations, as the following example will show:

Tio consider the group of rectilinear motions in one dimension, in which the transformetion $x^{\prime}=x+a$ followed by $x^{\prime \prime} x^{l}+b$ is equivalent to $x^{1 \prime} a x+a+b$. This group can be represented by square matrioes of the second rank, in terms of which the composition law just given would read

$$
\left(\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & a+b \\
0 & 1
\end{array}\right)
$$

However, none of the matrices of this particular representation oen be brought to diagonal form by aimilarity transformation. This peculiar behavior is closely related to the Abelian property. Indeed, as we shall show later, somi-simple groups never exhibit it. Moreover, the physical applicationn in which ws shell be interested will require the use oni.y of semi-aimple groups. We shall therefore from this point on restrict ourselves to the study of semi-simple groups. To this end, wo must have a criterion for their identification.

Such a criterion can be formulated very simply in terms of a symmotricel tensor of the second ranic which we oonstruct from the $0_{0 \sigma^{2}}^{\tau}$

$$
\begin{equation*}
s_{p \sigma}=c_{\rho \lambda^{\mu}} \sigma_{\sigma \mu}^{\lambda} \tag{23}
\end{equation*}
$$

If the group is somi-simpla, then necessarily,

$$
\begin{equation*}
\operatorname{det}\left|s_{\rho \tau}\right| \ngtr 0 \tag{24}
\end{equation*}
$$

For suppose it possesses an Abelian invariant subgroup, the indioes of whose elements are denoted by $\bar{\rho}, \bar{\sigma}$, Then,

$$
\begin{array}{rlrl}
g_{\rho \bar{\sigma}} & =\rho_{\rho \lambda}{ }^{\mu}{ }^{\circ} \bar{\mu} \mu \\
& =\rho_{\rho} \bar{\lambda}^{\mu}{ }^{c} \bar{\sigma} \bar{\mu} & & \\
& =c_{\rho} \bar{\lambda}^{\bar{\mu}} c_{\bar{\sigma} \bar{\mu}}^{\bar{\lambda}} & & \text { by (22) } \\
& =0 & & \text { by (22) }
\end{array}
$$

That the condition (24) is sufficient as well as necessary has been shown by Cartan.
ije can use the tensor $g_{\mu \nu}$ to define a relation of orthogonality between contravariant vectors or to form new tensors by lewering of indioes. As an example,

$$
\begin{equation*}
0_{\rho \sigma_{\lambda}}=e_{\rho \sigma^{\tau}}^{\tau} g_{\tau \lambda} \tag{25}
\end{equation*}
$$

and this now tensor is totally antisymetric, for by (23).

$$
\begin{aligned}
& c_{\rho \sigma \lambda}=c_{\rho \sigma^{*}}{ }^{\tau} \tau \mu{ }^{\nu}{ }^{c}{ }_{\lambda \nu \nu}^{\mu} \\
& =-c_{\sigma \mu}^{\tau}{ }^{c_{\tau \rho}}{ }_{\rho}^{\nu}{ }_{c} \nu_{\nu}^{\mu}-c_{\mu \rho}{ }^{\tau} c_{\tau \sigma}{ }^{\nu} c_{\lambda \nu}{ }^{\mu} \quad \text { by }\left(c_{2}\right) \\
& =c_{\sigma \mu}{ }^{\tau} c_{c_{\rho} \tau^{\nu}}{ }^{\nu}{ }_{\lambda \nu}{ }^{\mu}+c_{\mu \rho}{ }^{\tau}{ }^{\sigma_{\tau}}{ }^{\nu}{ }^{c_{\nu \lambda}}{ }^{\mu} \quad \text { by }\left(c_{2}\right)
\end{aligned}
$$

The last line has the desired property, since it is invariant under cyolio permutation of the indicas and is, by construction, skew in ρ and σ -

If the group S is eemi-simole, then Cartan's ciriterion (24) implies that we can form from $g_{\rho \sigma}$ the reoiprocal tens or $g^{\rho \sigma}$ whioh oan be used to raise indices and defire osthogonality brtween oovariant veotors.

As an example of the foregoing we consider the group of zigid motions in three dimensions, consiating of rotations and translations. The infinitesimal rotations are generated by operators $L_{j}(j=1,2,3)$ satisfying

$$
\begin{equation*}
\left[L_{1} L_{2}\right]=1 L_{3} \quad \theta \pm c \tag{26}
\end{equation*}
$$

and the infinitesimal displecomsate by operators $P_{1}=I_{4}: P_{2}=j_{6}: P_{3}=I_{6}$ which oomute among themselves but which satiafy

$$
\left[L_{1} L_{5}\right]=1 L_{6} \text { otic. }
$$

ec that the only non-vanishing structure constants are

$$
c_{12}^{3}=o_{23}^{1}=o_{15}^{6}=o_{26}^{4}=o_{34}^{5}-o_{31}^{2}=o_{81}^{5}=o_{42}^{6}-o_{53}^{4}=1
$$

plus a corresponding list given by $\left(C_{1}\right)$. For the $g_{\rho \sigma}$ we find

$$
g_{11}=g_{22}=g_{33}=4, g_{44}=g_{65}=g_{66}=0, \quad g_{\rho \sigma}=0 \quad(\rho \neq \sigma)
$$

The determinant det $g_{\rho \sigma}$ vanishes, as required by Carten's oriterion, aince the tranclations form an Abolien invariant subgroups

If we consider only the group of three-dimensional rotations, defined by (26), we find that it is simple and that the metrio tensor is

$$
\begin{equation*}
g_{\rho \sigma}=2 \delta_{\rho \sigma} \tag{27}
\end{equation*}
$$

B2bliography.

1) S, Lie and Ge Schafifers, Vorlesungen uber continuferliche Gruppen, Leipzig 1893
2) E. Cartan, Sur la structure dos groupas de transformations finia et oontinus, These, Paris 1894 - II odition 1983.
3) L. Bianohi, Lezioni sulle teoria dei gruppi continui finfti di trasformarioni. Fica 1903-11 odje1023 2918.
4) L.P.Eisenhart, Continuous groups of tranaformations, Frinoeton 1933.
5) H, Wey 1, The struoture and representation of continuous groups, I and II, Princeton 1934 and 1934-35 (Mimeographed noten)o

Lecture 2.

CLASSIFICATION OF THE SENI-S INPLE GROUPS.

81. The Stendard Form of the Infinitesimal Group.

In order to obtain a standard coordinate aystem for the set of infinitesimal operatori of a somi-simple group we consider an eigenvalue problem of the form

$$
\begin{equation*}
[A X]=e^{X} \tag{28}
\end{equation*}
$$

where A is fixed urbitrary infinitesimal operator $A=a^{\mu} X_{\mu}$ while $X=x^{\nu} X_{\nu}$ Is an oigenvector corresponding to the oigenvaluo ρ. Using (14) we can wite (28) explioitly as

$$
\mu_{x}^{\mu}{ }_{\nu}^{\nu} o_{\mu v}^{\tau} x_{\tau}=\rho x^{\tau} x_{\tau}
$$

Sinoe the infinitesimel operators are linearly independent it follow that

$$
\begin{equation*}
\left(a^{\mu}{ }_{\mu \nu}^{\tau}-\rho \delta_{\nu}^{\tau}\right) x^{\nu}=0 \tag{29}
\end{equation*}
$$

From (29) we get the secular equation

$$
\begin{equation*}
\operatorname{det}\left(\nu^{\mu} c_{\mu \nu}^{\tau}-\rho \delta_{\nu}^{\tau}\right)=0 \tag{30}
\end{equation*}
$$

If there exist f linearly indopendent eigenvectors, they can be used as basis for coordinate systom in the r-dimensional spooe. However, generally, r linearly independent eigenvectors may not exist if the secular equation has degenerate roots. Usually, in physical probleme, condition like hermitioity or mymetry of the matrix insure the exiatence of r inearly independent eigenvectors. "But for semi-simple infinitesimel groups Cartan has shown that if A is chosen so that the seoular equation (30)
has the maximum number of different roots, then only $\rho=0$ is degenerates and that if ℓ be the multiplioity of this root, there are corresponding to this root ℓ linearly independent eigenveotors H_{1}, \ldots E $_{\ell}$ which comante with each other. ℓ is called the rank of the semi-simple group. (Simee A computes with itself, the ran's of a semi-simple group is at least one.)

We shail use Latin indices $1, \ldots$, ℓ for the coordinates in the subspace of dimension ℓ, spanned by the B_{i}, while Greek indices $\alpha \ldots, \nu$ Will be employed for the r- ℓ dimensional subspeo which is spamed by the eigenvectors $\mathrm{E}_{\alpha} \ldots . . \mathrm{B}_{\nu}$, corresponding to the non-vanishing distinct roots α... V. For the latter indices the sumation convention will be suspended. The three indices ρ, σ, τ will be used to refer to the whole r-dimensional space.

The basic vectors I_{i} and E_{α} are defined by the zelations

$$
\begin{align*}
& {\left[A B_{1}\right]=0 \quad(1 \backsim 1 \ldots, \ldots)} \tag{31}\\
& {\left[A E_{\alpha}\right]=\alpha E_{\alpha}} \tag{32}
\end{align*}
$$

Further, since A is an eigenvector of (28) with eigenvalue zero, it can be written in the form:

$$
\begin{equation*}
A=\lambda^{i} H_{i} \tag{33}
\end{equation*}
$$

We shall now discuss the commutators of $H^{\prime} s$ and $E^{\prime} s$, in order to obtain information about the $c_{\rho \sigma^{\circ}}^{\tau}$. First, from Cartan's theorem, we have

$$
\begin{equation*}
\left[\mathrm{H}_{i} \mathrm{H}_{\mathbf{k}}\right]=0 \quad \text { or } \quad c_{i k}^{\tau^{2}}=0 \tag{34}
\end{equation*}
$$

Second, we consiler $\left[\mathrm{H}_{1} \mathrm{E}_{\alpha}\right]$. To do this we write

$$
\left[A\left[H_{i} E_{\alpha}\right]\right]+\left[H_{i}\left[E_{\alpha} A\right]\right]+\left[E_{\alpha}\left[A H_{i}\right]\right]=0
$$

By (31) and (32) this is

$$
\begin{equation*}
\left[A\left[H_{1} E_{\alpha}\right]\right]=\alpha\left[Z_{1} E_{\alpha}\right] . \tag{35}
\end{equation*}
$$

Thus $\left[\mathrm{H}_{1}{ }_{\mathrm{E}}^{\alpha}\right]$ is an eigenvector of (28) belonging to $\rho=\alpha$, and sine these eigenvectors are not degenerate; we must have

$$
\begin{equation*}
\left[H_{1} E_{\alpha}\right]=\alpha_{1} g_{\alpha}, \quad \text { or } \quad c_{1 \alpha}^{\tau}=\alpha_{1} \delta_{\alpha}^{\tau} \tag{36}
\end{equation*}
$$

Prom (32), (35) and (36) follows that

$$
\begin{equation*}
\alpha=\lambda^{1} \alpha_{1} \tag{37}
\end{equation*}
$$

From here on the letter α or the term "root" will be used to denote either the form (37) or the veotor with covariant component e α_{1} in the l-dimensional space.

$$
\begin{aligned}
& \text { Finally, to find }\left[E_{\alpha} E_{\beta}\right] \text {, we form } \\
& \qquad\left[A\left[E_{\alpha} E_{\beta}\right]\right]+\left[E_{\alpha}\left[E_{\beta} A\right]\right]+\left[E_{\beta}\left[A E_{\alpha}\right]\right]=0
\end{aligned}
$$

By (32), this is

$$
\begin{equation*}
\left[A\left[E_{\alpha} E_{\beta}\right]\right]=(\alpha+\beta)\left[E_{\alpha} E_{\beta}\right] \tag{38}
\end{equation*}
$$

Hone $\left[\mathrm{B}_{\alpha} \mathrm{E}_{\beta}\right.$] belong an eigenvector to the root $\alpha+\beta$ if $\alpha+\beta$ is a root, and vanishes if $\alpha+\beta$ is not a root, If $\alpha+\beta$ is non-vanishing root, we shall wite

$$
\begin{equation*}
\cdot\left[E_{\alpha} E_{\beta}\right]=W_{\alpha \beta} E_{\alpha+\beta} \text { or } \theta_{\alpha \beta}^{\alpha+\beta}=H_{\alpha \beta} \tag{30}
\end{equation*}
$$

If $\beta=-\alpha$ then evidently wo have

$$
\begin{equation*}
\left[E_{\alpha} E_{-\alpha}\right]=a_{\alpha-\alpha}{ }^{1} H_{1} \tag{40}
\end{equation*}
$$

and for the rest,

$$
\begin{equation*}
o_{\alpha \beta}^{\tau}=0 . \quad(\tau \neq \alpha+\beta) \tag{41}
\end{equation*}
$$

We shail now show that if α is a root, then $-\alpha$ is also a root. This is done by forming the tensor $g_{\alpha} \tau$. The restrictions (36), (40) and (41), when applied to (23): give

$$
\begin{equation*}
g_{\alpha \tau}=0_{\alpha 1}^{\alpha} \tau \alpha+\sum_{\dot{\beta} \neq-\alpha} 0_{\alpha \beta}^{\alpha+\beta} 0_{\tau \alpha+\beta}{ }^{1}+0_{\alpha-\alpha}{ }^{1} 0_{\tau 1}^{-\alpha} \tag{42}
\end{equation*}
$$

But by (36) and (41), each term on the right of (42) exists only when $\tau=-\alpha$, so that

$$
\begin{equation*}
g_{\alpha \tau}=0 \quad(\tau \neq-\alpha) \tag{43}
\end{equation*}
$$

Thus, if - α is not a root, Cartan's oriterion (24) for the semi-aimple groups is violated. By a suitable normalization of E_{α} we may set

$$
\begin{equation*}
g_{\alpha-\alpha}=1 \tag{44}
\end{equation*}
$$

and we can order our basis so that the tensor $g_{\rho \sigma}$ is written in the form

$$
g_{\rho \sigma}=\left(\begin{array}{cccc}
g_{1 k} & \vdots & & 0 \tag{45}\\
\ldots \ldots & \vdots & \cdots & 0 \\
0 & \vdots & 10 & 0 \\
& \vdots & 10 &
\end{array}\right)
$$

Since det $g_{\rho \sigma}$ is the product of the elementary determinante, it follows from (24) that

$$
\begin{equation*}
\operatorname{det} g_{i k} \neq \tag{46}
\end{equation*}
$$

Further,

$$
\begin{equation*}
g_{i k}=\sum_{\alpha} c_{i \alpha}^{\alpha} o_{k \alpha}^{\alpha^{\prime}}=\sum_{\alpha} \alpha_{1} \alpha_{k} \tag{47}
\end{equation*}
$$

It may be noted that the $g_{i k}$ defined by (4.7) has a non-vanishing determinant only if the vectors α span the entire ℓ-dimotisional space. $g_{1 k}$ will be used as the metric tensor for this space.

Using the inverse tensor we can now establish the following usuful identity:

$$
\begin{align*}
{ }_{\alpha-\alpha}^{1} & =g^{1 k} c_{\alpha-\alpha k} \\
& =g^{i k} 0_{k \alpha-\alpha} \text { by antisymmetry in subscripts, } \\
& =g^{1 k} c_{k \alpha} \text { by (44) } \\
& =g^{i k} \alpha_{k}=\alpha^{1} \text { by }(36) \tag{48}
\end{align*}
$$

so that (40) can be written as

$$
\begin{equation*}
\left[E_{\alpha} E^{2}\right] \cdot \alpha^{1} H_{1} \text {. } \tag{49}
\end{equation*}
$$

where the α^{i} are the contruvariant components of the vector α. Collecting (34), (36), (39) and (49) we have for the standard forms of the cormutation relations

$$
\begin{align*}
& {\left[H_{i} H_{k}\right]=0} \\
& {\left[H_{1} E_{\alpha}\right]=\alpha_{1} E_{\alpha}} \tag{50}\\
& {\left[E_{\alpha} E_{\beta}\right]=N_{\alpha \beta} E_{\alpha+\beta} \text { when } \alpha+\beta \text { is a non-vanishing root }} \\
& {\left[E_{\alpha} E_{\alpha}\right]=\alpha^{i} H_{1} .}
\end{align*}
$$ in three dimensions, generated by L_{1}, L_{2}, L_{3} such that

$$
\begin{equation*}
\left[L_{1} L_{2}\right]=1 L_{3}, \quad \text { etc. } \tag{51a}
\end{equation*}
$$

If we take A equal to L_{3}, the two relations

$$
\begin{equation*}
\left[L_{3}, I_{1} \pm \pm I_{2}\right]= \pm\left(I_{1} \pm 1 I_{2}\right) \tag{51b}
\end{equation*}
$$

show that $L_{1} \pm 1 L_{2}$ are eigenvectors corresponding to $\rho= \pm 1$. Use of the normalisation condition (44) yields

$$
\begin{equation*}
H_{1}=L_{3}, \quad E_{1}=\frac{L_{1}+1 L_{2}}{\sqrt{2}}, \quad E_{-1}=\frac{L_{1}-1 L_{2}}{\sqrt{2}} . \tag{510}
\end{equation*}
$$

82. Properties of the Roots.

We shall now prove the following
Theorem: If α and β are roots, then $\frac{2(\alpha \beta)}{(\alpha \alpha)}$ is an integer and $\beta-\frac{2(\lambda \beta)}{(\alpha \alpha)} \alpha$ is also a root.*

This theorem is to hold for arbitrary α and β, but we shall atart by restricting β to be some root, γ, such that $\alpha+\gamma$ is not a root. Aocording to (50) wo can generate a set of operators

$$
\begin{align*}
& {\left[E_{-\alpha} E_{\gamma}\right]=N_{-\alpha} V_{\gamma-\alpha}=E_{\gamma-\alpha}^{t}} \\
& {\left[E_{-\alpha} E_{\gamma-\alpha}^{\prime}\right]=E_{\gamma-2 \alpha}^{\prime}} \\
& \cdots \cdots \cdot \cdots \tag{62}\\
& {\left[E_{-\alpha} E_{\gamma-j \alpha}^{\prime}\right]=E_{\gamma-(j+1) \alpha}^{i}}
\end{align*}
$$

where the primes indicate that, for the moment, we are not interested in the normalization of the E_{β}. Since there is only a finite number of E_{β}, this process must eventually stop after, say. g steps. Thus

* Ve use the notation $\left(\alpha \beta\right.$) for the scalar product $\alpha_{i} \beta^{1}$.

$$
\begin{equation*}
\left[E_{-\alpha} \frac{B^{\prime}-g \alpha}{\prime}\right]=E_{\gamma-(g+1) \alpha}^{\prime}=0 \tag{53}
\end{equation*}
$$

Acoording to (39), $E_{j-j \neq}$ may be obtained again by an equation of the form

$$
\begin{equation*}
\left[E_{\alpha} E_{\gamma-(j+1) \alpha}^{\prime}\right]=\mu_{j+1} E_{\gamma-j \alpha}^{\prime} \tag{54}
\end{equation*}
$$

In order to evaluate the coefificients μ_{j+1} we eliminate $\mathrm{E}_{\mathrm{j}}^{\mathrm{p}}-(\mathrm{j}+1) \alpha^{\text {from (52) }}$ and (54), thus finding

$$
\begin{aligned}
& \mu_{j+1} E_{y-j \alpha}^{3}=-\left[E_{\gamma-j \alpha}^{\prime}\left[E_{\alpha} E_{-\alpha}\right]\right]-\left[E_{-\alpha}\left[E_{\gamma-j \alpha}^{1} E_{\alpha}\right]\right] \\
& \text { by Jacobi's identity, } \\
& =-\left[E_{\gamma-j \alpha}^{\gamma}, \alpha H_{k}\right]+\mu_{j}\left[E_{-\alpha} E_{\gamma-(j-1) \alpha}^{\prime}\right] \text {. } \\
& \text { by (50) and (54). }
\end{aligned}
$$

The use of (50) and (52) gives at once a recurrence reh tion for the μ_{j} *

$$
\begin{equation*}
\mu_{j+1}=\mu_{j}+(\alpha \gamma)-j(\alpha \alpha) \tag{65}
\end{equation*}
$$

This relation holds only for $j \geqslant 1$, as μ_{0} is not defined by (54); however, the preosding argumont shows that (55) can be extended to hold also for $j=0$ if we define

$$
\begin{equation*}
\mu_{0}=0 \tag{56}
\end{equation*}
$$

From (55) and (56) wo obtain imediately

$$
\begin{equation*}
\mu_{j}=j\left(\alpha \gamma^{2}\right)=\frac{j(j-1)}{2}(\alpha \alpha) \tag{57}
\end{equation*}
$$

It follows $\operatorname{from}(53)$ and (54) that $\mu_{g+1}=0$, whenoe we have

$$
\begin{equation*}
(\alpha \gamma)=\frac{1}{2} \mathrm{~g}(\alpha \alpha) \tag{58}
\end{equation*}
$$

where g is, by definition, a non-negative integer. Introduoing (58) into (57) we get

$$
\begin{equation*}
\mu_{j} \frac{j(g-j+1)}{2}(\alpha \alpha) \tag{59}
\end{equation*}
$$

If $(\alpha \alpha)$ were sero for some root α, this ront would, according to (58), be orthogonal to every root. But, as the roots span the entire ℓ-dimensional space, this would contradict (46). Hence we can write

$$
\begin{equation*}
g=\frac{2(\alpha \gamma)}{(\alpha \alpha)} \tag{60}
\end{equation*}
$$

and we have proved that if α and γ are roots and $\alpha+\gamma$ is not a root, then thers exists a string of roots,

$$
\begin{equation*}
\gamma \cdot \gamma-\alpha, \ldots, \gamma-\frac{2(\alpha \gamma)}{(\alpha \alpha)} \alpha=\gamma-g \alpha, \tag{61}
\end{equation*}
$$

which is invariant under refleotion with respect to the hyperplane through the origin perpendicular to the vector α. To return to the Theorem which is to be proved, we note that for any root β, there exists some integer $j \geq 0$, such that $\beta+j \alpha$ is a root but $\beta+(j+1) \alpha$ is nots We can now set $\beta+j \alpha=\gamma$ in the above discussion, so that the string (61) can be writton

$$
\begin{align*}
\beta+j \alpha, \beta+(j-2) \alpha, \cdots, \beta, \cdots, \beta & =k \alpha \tag{62}\\
& (j+k=g),
\end{align*}
$$

and as

$$
2(\alpha \beta)=2(\alpha \gamma)-2 j(\alpha \alpha)=(g-2 j)(\alpha \alpha) .
$$

$\frac{2(\alpha \beta)}{(\alpha \alpha)}$ is an integer, and $\beta-\frac{2(\alpha \beta)}{(\alpha \alpha)} \alpha$ is contained in the string (62).

In (39) we introduced a set of coefficients ${ }_{\alpha \beta}$, but we have yet to see whether sore of them may not vanish. This we can do with the aid of the Theorem, juot proved, Astuming that with α and $\beta, \alpha+\beta$ is a root we evaluate

$$
\left[E_{-\alpha} E_{\alpha+\beta}\right]=\left[E-\alpha^{E} \gamma-(J-1) x^{1}=N_{-\alpha} \alpha+\beta^{E} \gamma-1 \alpha\right. \text {. }
$$

With this we form

$$
\begin{gathered}
N_{-\alpha \alpha+\beta}\left[E_{\alpha} E_{\gamma-j \alpha}\right]=N_{\alpha} \beta^{N}-\alpha \alpha+\beta^{E} \gamma-(j-1) \alpha \\
\\
=\mu_{j} E_{\gamma-(j-1) \alpha},
\end{gathered}
$$

Equations (59) and (62) now tell us that

$$
\begin{equation*}
N_{\alpha \beta} N_{-\alpha \alpha+\beta}=\mu_{j}=\frac{f(k+1)}{2}(\alpha \alpha) \tag{63}
\end{equation*}
$$

and from this it is ovident that $\mathbb{N}_{\alpha \beta} \alpha_{0}$ if $\alpha+\beta$ is a root and therefore $j \geq 1$ 。

It follow from this that if α is a root, 2α cannot be one, since E commutes with itself. From this, $k \alpha$ cannot be a root for any positive integer k, since if it were, it would determine a string which, would contain 2α as an olement. Hence, any string containing zero has only three elemepts $\alpha, 0,-\alpha$.

Wo take now ℓ linearly independent roots $\alpha^{(1)}, \ldots, \alpha^{(l)}$ the basis of a new coordinate aystem in the ℓ-dimensional space, and expreas all other root vectors as linear combinations:

$$
\begin{equation*}
\beta=\sum_{k=1}^{l} b_{k} \alpha^{(k)} . \tag{64}
\end{equation*}
$$

Multiplying (64) by $\alpha^{(1)}$ and dividing by ($\alpha^{(1)} \alpha^{(1)}$), which was shown to be differeat from zero, we get

$$
\frac{\left(\beta \alpha^{(1)}\right)}{\left(\alpha^{(1)} \alpha^{(1)}\right)}=\sum_{k=1}^{\ell} b_{k} \frac{\left(\alpha^{(k)} \alpha^{(1)}\right)}{\left(\alpha^{(1)} \alpha^{(1)}\right)}
$$

Using the fundamental relation (60) we deduoe readily that the new oovariant oomponente b_{k} muat be resl, rational, and oven, by a ohange of scale, integral numbers.

This shows that for a suitable ohoice of the H_{i} the α_{1} are real, and this implies that $\mathrm{gik}_{\mathrm{ik}}$ is a positive definite matrix, since for any(real) x^{1}

$$
\begin{equation*}
\varepsilon_{1 k} x^{1} x^{k}-\sum_{\alpha}(\alpha x)^{2} \geq 0 \tag{65}
\end{equation*}
$$

Hence the \mathcal{L}-dimensional spao has an ordinary Euolideen metric.
83. The Veotor Diagrams.

The graphical representation of the root vectors is called a veotor diagram. Schouten derived restriotions on these diagrams from which all simple We groups can be found. The complete olascification (already found algebraically by Cartan) was obtained using this method by van der Waerden, Who showed also that to every vector diagram corresponds only one infinitesimal Lie group. Since the roots belong to a lattice whioh is invariant under a group of refleotions, Coxeter's construction of all finite groups generated by reflection leads to a third mothod of classifying the simple groupa. We shall here aketch the method of Schouten and van der Feerden.

Suppose we have two roote, a and 3 , and let φ be the angle between them. We sam in the preceding section that

$$
\begin{equation*}
(\alpha \beta)=\frac{1}{3} m(\alpha \alpha)-\frac{1}{2} n(\beta \beta), \tag{66}
\end{equation*}
$$

where m and n are integers. From this we get

$$
\begin{equation*}
\cos ^{2} \varphi=\frac{(\alpha, 3)^{2}}{(\alpha \alpha)(\beta \beta)}=\frac{m a}{4} \tag{67}
\end{equation*}
$$

and from this we see that φ can have only the values $0^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}$, and 90°. From (66) we deduoe that the ratios of the lengths of the two vectore are $\sqrt{3}$ for 30°, $\sqrt{2}$ for $45^{\circ}, 1$ for 60°, and undetermined for 90°. For 0° we know already that $\alpha=\beta$.

We want to construct every possible vector diagram which satisfies these conditions and those obtained in f2. As Cartan has shown that every semi-simple group is a direct product of simple groups, we shall be interested only in the diagram of sinple groups. We shall therefore not consider diagrams which can be eplit iato mutually orthogonal parts, since evidently every such part correaponds to an invariant subgroup.

It is easy to see that the only possible two-dimensional diagrams are the ones drawn below. They are labelled by the lotters which are traditional from Cartan's thesis; the numorical subscript denotes the rank of the group.

A_{2}

B_{2}

G_{2}
ve shall now generalise these diag*ams to i dimensions. In what follows, we shall denote by i_{1} a set of mutually orthogonal undt veotorse
A^{2}. The diagran h_{2}, above, nay oonveniently be regarded as consiating of all vectora of the form $\theta_{2}(1, k=1,2,3)$ c Generalizing to \mathcal{L} dimensinas. A_{l} is formed frum $\ell+1$ unit vactors $0_{\hat{1}}$ by forming the $\hat{l}(\hat{l}+1)$ differences $\theta_{j} \theta_{k}$. These will lie in the plane $\sum_{i=1}^{x+1} x^{i}=0$, There are $\ell(i+1)$ vectors, and adding to this the rank, winch is the aultiplioity of the root $z e r o$, we $8 e \theta$ that the g-oup is of order $(\ell+1)^{2}-1$.
$B^{B}{ }^{3}$ We can generalize B_{2} in ℓ dinensions by constructing B_{ℓ} out of all the vectore $=\theta_{1}$ and $\pm \theta_{1} \pm \theta_{k}(1, k=1 \ldots \ell)$. There are $2 \ell^{2}$ vectare and the order of the group is $\ell(2 \ell+1)$,
${ }^{\prime} \ell^{\prime}$. Another possibio generalization of B_{2} h however, is to construct all rectors of the form $\pm 2 e_{1}$ and $\pm \theta_{1} \pm \theta_{k}(1, k=1 \ldots \ell)$. For $\ell=2, C_{2}$ differs Irom B_{2} only by rotation through 45°; For $l>2$, these diagrams are different from the $B_{\ell} \cdot{ }^{C_{l}}$ has the seme order as B_{ℓ}.

$$
D_{\ell} \text {. For } i>2_{s} \text { the diagram consisting of vectors } \pm \theta_{1} \pm \theta_{k}
$$

($1, k=1 ; 0 \ell$) represents a simple group, which we shall call D L° There are $2 \ell(l-1)$ vecters, and the group is of order $\ell(2 \mu-1)$ 。 For $\ell=2$, this construction gives only two orthogonal pairs of vectore and is therefore not 1uple. It may be noted that by a rotation of, the axea given by

$$
\begin{align*}
& \theta_{1}^{\prime}=\frac{1}{2}\left(\theta_{1}+\theta_{2}-\theta_{3}-\theta_{4}\right) \\
& \theta_{2}^{1}=\frac{1}{2}\left(\theta_{1}-\theta_{2}+\theta_{3}-\theta_{4}\right) \tag{68}\\
& \theta_{3}-\frac{1}{2}\left(\theta_{1}-\theta_{2}-\theta_{3}+\theta_{4}\right) \\
& \theta_{4}=\frac{1}{2}\left(\theta_{1}+\theta_{2}+\theta_{3}+\theta_{4}\right)
\end{align*}
$$

the vector diagram A_{3} may be brought into coinoidence with D_{3} o
van der Waerden has shown that apart from these four olesses of simple diagrams there ara only five poasible aimple diagrams. One of them is G_{2} ' the othera are the following:
F_{4}. Thiv diegram consists of the veotors of B_{4} plus 16 more vectors $\frac{1}{2}\left(\pm \theta_{1} \pm \theta_{2} \pm \theta_{3} \pm \theta_{4}\right)$. There are 48 vectors and the group is of order 52, E_{6} consists of the vectors of A_{5}, the veotors $\pm \sqrt{2} \theta_{\eta}$, and all the veotore

$$
\left.\stackrel{B e}{2}^{ \pm e_{2}} \pm e_{3} \pm e_{4} \pm e_{5} \pm e_{6}\right) \pm \frac{\rho_{7}}{\sqrt{2}},
$$

where in the firat fraotion we take three sign positive and three negetive. There are 72 vectors and the group is of order 78.
B_{7} consists of the veotors of A_{7} and $s l l$ the vectors

$$
\frac{1}{2}\left(\pm 0_{1} \pm 0_{2} \pm 0_{3} \pm e_{4} \pm 0_{5} \pm 0_{6} \pm e_{7} \pm \theta_{8}\right)
$$

where we take four signs positive and four negative. There are 126 veotors, and the group is of order 133.
E_{8} consiats of the vectors of D_{8} and all the vectors

$$
\frac{\lambda}{*}\left(\pm_{1} \pm \theta_{2} \pm \theta_{3} \pm \theta_{4} \pm \theta_{6} \pm \theta_{6} \pm \theta_{1} \pm \theta_{8}\right),
$$

With each siEn occurring an evon number of timen. There are 240 veotors, and the group is of order 248.

The simplest realizations of the groups charecterized by the veotor diagrame $A_{\ell},{ }^{B},{ }^{C_{\ell}}, D_{t}$, are the classical groups, i.e. the speoial Inear (unimodular), the orthogonal and the symplectic (compl ax) groups.

For the full linear group in $\ell+1$ dimensions we may choose the infinitesimel operators

$$
\begin{equation*}
x_{1 k}=x^{1} \frac{\partial}{\partial x^{k}} \quad(1, k=1 \ldots \ell+1) \tag{69}
\end{equation*}
$$

with the conmutation relations

$$
\begin{equation*}
\left[X_{1 k} X_{m n}\right]=\delta_{k m i n} x_{i n}-\delta_{1 n} X_{m i} \tag{70}
\end{equation*}
$$

But the full linear group is not a semi-simple groups the operator $\sum_{j} X_{j J}$ commutes with overy operator of the growp, and the Abelian subgroup generated by this operator (1.0. the subgroup of the dilatations) is an invariant subgroup。

In order to have a semi-simple group we have to restrict ourselves to the unimodular subgroup (or 'speoial' linear group) in $\ell+1$ dimensions. Then the X_{11} are no longer infinitesimal operators of the subgroup but'should. be replaoed by

$$
\begin{equation*}
x_{i 1}=x_{11}-\frac{1}{2+1} \sum_{j} x_{j 1} \tag{691}
\end{equation*}
$$

a change which does not affect the commutation relations (70). These operators correspond to the diagrem A 2 if we make the identification

$$
\begin{equation*}
X_{11}^{1}=H_{1} \cdot \quad X_{1 k}=E_{\left(\theta_{1}-o_{k}\right)} \tag{71}
\end{equation*}
$$

Although we have $\ell+1$ operators H_{1}, only ℓ of them are linearly independent, owing to the relation

$$
\begin{equation*}
\sum_{i=1}^{l+1} H_{1}=0 \tag{72}
\end{equation*}
$$

For the orthogonal proup in $2 \ell+1$ dimensions, which leares the quadratic form

$$
\sum_{k=-l}^{C} x^{k} x^{-k}=x_{0}^{2}+2 \sum_{k=1}^{\ell} x^{k} x^{-k}
$$

invariant, we may choose the infinitesimal operators

$$
\begin{equation*}
x_{i x}=-x_{k i 1}=x^{i} \frac{\partial}{\partial x^{-k}}-x^{k} \frac{\partial}{\partial x^{-1}}, \quad(1, k=0, \pm 1, \ldots, \pm \ell) . \tag{73}
\end{equation*}
$$

with the oommutation relations

$$
\begin{equation*}
\left[x_{i k} x_{m n}\right]=\delta_{k+m} x_{i n}-\delta_{i+m} x_{i m}-\delta_{i+m} x_{i n}+\delta_{i+2} x_{m} \tag{74}
\end{equation*}
$$

where δ_{q} is one if $q=0$, and zero otherwise. These operators correspond to the diagram B_{ℓ} if we identify

For the symplootic group in 2ℓ dimensions, which leaves invariant the anti-symmetrio bilinear form

$$
\sum_{k=1}^{\ell}\left(x^{k} y^{-k}-x^{-k} y^{k}\right)
$$

we may ohoose the infinitesimal operators

$$
\begin{equation*}
x_{1 k}=x_{k i}=\varepsilon^{1} x^{1} \frac{\partial}{\partial x^{-k}}+\varepsilon^{k} x^{k} \frac{\partial}{\partial x^{-1}}, \quad(1, k= \pm 1, \ldots, \pm \ell), \tag{76}
\end{equation*}
$$

with the oommutation relations

$$
\begin{equation*}
\left[x_{i k} x_{m n}\right]=\varepsilon^{m} \delta_{k+m} x_{i n}+\varepsilon^{n} \delta_{k+n} x_{i m}+\varepsilon^{m} \delta_{i+m} x_{10 n}+\varepsilon^{n} \delta_{i+n} x_{k m}, \tag{77}
\end{equation*}
$$

where ε^{q} is +1 if q is positive and -1 if q is negative. These operators oorreapond to the diegram C_{l} if we make the identification

$$
\begin{equation*}
x_{i-1}=E_{i}, \quad x_{ \pm 1 \pm k}=E_{\left(\pm e_{i} \pm 0_{k}\right)} \quad(i, k>0) \tag{78}
\end{equation*}
$$

form $\sum_{k=1}^{\ell} x^{k} x^{-k}$ invariant, we may choose the same infinitesimal operators as in $B^{\prime} \ell$, with the same commutation relations, except that now $1, k \nmid 0$. These operators correspond to the diagram D_{ℓ} if wo make the same identification as in $\mathrm{B}^{\prime} \ell^{\circ}$

Bibliography

5) Howeyl, Math. Zeitechro 23, 271(1925), 24, 328 and 377(1926)
6) B.Lovan der Haerden, Math. Ze1techr. 37, 446(1933)
7) H.S.M.Coxeter, in Heyl (5) p. 186
8) $\mathrm{H}_{0} \mathrm{~S}_{0} \mathrm{M}$. Coxeter, Regular Polytopes, Nothuen, London 1948

Lootures 3 and 4

PHE REPRESENTATIONS OF THE SEMI-STMPLE GROUPS,

81. Repreeentations and Weights.

A group of innear transformationt of a reutor space R which is homomorphic to a given group in valled a representation of this group. The dimension, N, of R is cailed the degree of the roperesentation. If s and t are two elements of the group, and $\bar{U}(s)$ and $U(t)$ the oorresponding matrioes of the representation, then $U(s) U(t)=U(s t)$, Iwo representation: O(s) and $V(s)$ are oalled equivaient if there ia a constant matrix A such that

$$
A U(s) A^{-1}=V(s)
$$

for every element s.
A representation is reduoible if it leeves a subcpaoe R_{1} of R invariant. If this is the case, the matrioes of the representation can be given the form

$$
\left(\begin{array}{ll}
A_{1} & B \tag{79}\\
0 & A_{2}
\end{array}\right)
$$

where A_{1} is a matrix whose dimensions oqual that of R_{1}. If the representation leaves invariant two subspaces R_{1} and R_{2} such that $R_{1}+R_{2}=R$, then the ropzesentation oen be written as

$$
\left(\begin{array}{ll}
A_{1} & 0 \tag{80}\\
0 & A_{2}
\end{array}\right)
$$

We say in this case that the ropresentation is fully reducible, or decomposable- -

A Lie group is determined by the r infiniteaimal operators and their commutation relationse Similarly, a representation of a Lie group is determined if we heve r matrioes, D_{ρ}, which satisfy the equation

$$
\begin{equation*}
D_{\rho} D_{\sigma}=D_{\sigma \rho} D_{\rho}=\left[D_{\rho \sigma} D_{\sigma}\right]=e_{\rho \sigma^{\sigma}}^{\tau} D_{\tau} . \tag{81}
\end{equation*}
$$

In particular, we may ask for a standard representation with matrioss H_{1} and E_{α} whioh satiefy the relations (50). Theso same letiers, which dem noted infinitesimal operators in the previous work, will in this leoture consistently be used for the oorresponding matrioes.

Let u be veotor in the speoe R auch that

$$
\begin{equation*}
H_{1} u=m_{1} u \quad(1=1 \ldots \ell) \tag{82}
\end{equation*}
$$

Thus, u is a simultaneous eigenvector of the ℓ matrioes H_{1} 。 The set of oigenvalues m_{1}, \ldots, m_{l} are the covariant components of a veotor in the ℓ-dimensional spaces We chall call this vector the weight of us from now on the l-dimensional space will be called the weight spooe. Evidently. u is also the eigenvector of the matrix $\lambda^{i} H_{1}$ corresponding to the eigenvalue

$$
\begin{equation*}
\left(\lambda_{m}\right)=\lambda^{i_{1}} \tag{83}
\end{equation*}
$$

A weight will be called aimple if to it belongs only one eigenveotor.
The existenoe and various properties of tho weights will now be proved.
A. Every representation has at least one weight.

Proof: H_{l} has at least ons eigenvelue, sey m_{1}; let R_{1} be the suivspace of R spanned by the eigenvectors of H_{1} belonging to $m_{1}{ }^{3}$ since
$\mathrm{H}_{1} \mathrm{H}_{2} \mathrm{u}=\mathrm{H}_{2} \mathrm{H}_{1} u=\mathrm{m}_{1} \mathrm{H}_{2} \mathrm{~L}_{\text {, }}$ it follows that $\mathrm{H}_{2} \mathrm{R}_{1}=\mathrm{R}_{1}$. H_{2} has at leat one elgenveotor in its invariant subspace R_{l}. Continuing the process, which is posibibe because every matrix has at least one eigenveotor in every invariant subspace, we arrive at the subapaoe R_{ℓ} which conoists of the

B. A veotor u of weight m which is a linear combination of vectore u_{k} of weights $m^{(k)}$, all different from m_{1}, must vanish.

Proof: We form the matrix $\prod_{k} \lambda^{2}\left(H_{i}-m_{i}^{(k)}\right)$ and let it operave on the equation $u=\sum_{k} u_{k}$. Since all $\frac{k}{H}$ commute, each factor annihilates a term in the sum. Since the λ^{i} are arbitrary, the left hand side is also zero only if u vanishos.
C. From B it follows that veotore with different weights are linoarly independent, so that there are at most N different weightse
D. If u is a vector of woight m, then $H_{i} u$ and $E_{\alpha} u$ have definite weights, m and $m+\alpha$ respectively.

Proof: For H_{i} u this is an irmediate consequence of (50). For ${ }^{E} \alpha$ u we have

$$
\begin{equation*}
H_{1} E_{\alpha} u=\left[H_{i} E_{\alpha}\right] u+E_{\alpha} H_{i} u=\left(\alpha_{i}+m_{i}\right) E_{\alpha} u . \tag{84}
\end{equation*}
$$

E. If the representation is Irreducible the H_{i} may simultaneously be expressed in diagonal form.

Prcof: Starting with a vector u having a dofinite woight, we con-sider the space R_{1} spanned by all possible products

$$
\begin{equation*}
\cdots E_{\gamma} E_{\beta} E_{\alpha} u, \tag{85}
\end{equation*}
$$

each of which, according to D, has a dofinite woight, Evidently, $E_{\rho} R_{1}=R_{1}$, Thus, sinoe the representation is assumed irreducible, R_{1} coinoides with $R_{\text {, }}$ and the vectors (85) apen R. If we sele ot from them as a basis N linearly independent veotore, each is an eigenveotor of all H_{1}, which thus have been diagonalized.
F. For any weight mand root $\alpha, \frac{2(m \alpha)}{(\alpha \alpha)}$ is an integer and II $-\frac{2(m x)}{(\alpha \alpha)} \alpha$ is a weight.

Proof: The proof is analogous to the proof of the Theorem of 82, lecture 2, except that the woights are, in general, not simple, while in the previous case Cartan's theorem enabled us to assume that all non veniching roots are simple. We shall point out only the differsoses in the proofs.

We atart out from a veotor u_{0} of weight m suoh that $m+\alpha$ is not a weight, and form the series of vectors

$$
u_{1}=E_{-\alpha} u_{0}, \quad u_{2} E_{-\alpha} u_{1}, \ldots
$$

The relation

$$
\begin{equation*}
E_{\alpha} u_{j+1}=\mu_{j+1} u_{j} \tag{86}
\end{equation*}
$$

Which, because of the posaible multiplicity of weights, is not as evident as its oounterpart (54), may be proved by induotion. Assume (B6) to be true for a certain $f-1$; then

$$
\begin{aligned}
E_{\alpha} u_{j+1} & =E_{\alpha} E_{-\alpha} u_{j}=\left[E_{\alpha} E_{-\alpha}\right] u_{j}+E_{-\alpha} E_{\alpha} u_{j}-\alpha{ }^{i} B_{1} u_{j}+\mu_{j} E_{-\alpha} u_{j-1} \\
& =[(\alpha m)-j(\alpha \alpha)] u_{j}+\mu_{j} u_{j} .
\end{aligned}
$$

Hence (86) is true for j if it is true for $j-1$, and we have

$$
\begin{equation*}
\mu_{j+1}=(\alpha m)-j(\alpha \alpha)+\mu_{j}, \tag{87}
\end{equation*}
$$

oorresponding to (55). But $\mu_{0}=0$, by $D, s i n c e m+\alpha$ is not a root, and therefore (86) holds with $j+1=0$ and $\mu_{0}=O_{0}$. The rest of the proof parallels that of the analogous theorem for the roots.
G. By projecting the space R moduli u_{0}, \ldots, u_{g} in a space of $\mathrm{IF}=(\mathrm{g}+1)$ dimensions and by repeating the same considerations as in F, it may be proved that m and $m=\frac{2(\alpha m)}{(\alpha \alpha)} \alpha$ Lave the seme multiplicity。 All. possible weights belong to a lattioe which is invariant under the group S generated by the reflections with respeot to the hyperplanes through the origin perpendicular to the roote。 Neights which can be obtained from one another by operations of S are oalled equivalent and have the same multiplicity.

In the group A_{l} we hare $(\alpha \alpha)=\left|\theta_{1}-\theta_{k}\right|^{2}=2$ h hence a weight

$$
\begin{equation*}
m=m_{1} \theta_{1}+m_{2} \theta_{2}+\cdots m_{\ell+1} \theta_{\ell+1} \tag{88}
\end{equation*}
$$

must atisfy the condition that $2\left(m^{\prime} \cdot\left(\theta_{i}-\theta_{k}\right)\right) / 2=m_{1}-m_{k}$ be an integer and In addition, that

$$
\sum_{i=1}^{l+1^{0}} m_{1}=0
$$

which follows from (72). Therefore the m_{1} are fractions with denominator. $\ell+1$ which differ by integers. Aocording to F and G, a weight equivelent to III is

$$
m-\left(m_{1}-m_{k}\right)\left(\theta_{1}-\theta_{k}\right)=m_{1} \theta_{1}+\ldots+m_{k} \theta_{i}+\ldots+m_{i} e_{k}+\ldots m_{\ell+1} e_{\ell+1}
$$

henoe the group S is the group of permutations of the components of m_{0}

In B_{2} we have, in addition to the condition that $m_{1}-g_{k}$ be an integer, the further condition that $2\left(m, e_{1}\right)$ be an integer. Therafore the components of any weight are oither all integer or all half-integers. The group S is the group of permatations of the oomponezts with any number of ohanges of sign。

In C_{C} the addi*ional oondition is that $2\left(m e 2 \theta_{i}\right) / 4$ be an integer, and therafore all componenta are integers. The group S ie the same as in B°.

In D_{l} we find that both $m_{1}=m_{1}$ and $m_{1}+m_{1}$ are integers. Therefore the weights are the same as in B_{ℓ}. but the group S is only the group of permutation of the components with an even number of obange of aign.
§2. The Classifioation of the Irreducible Representations.
We shall introduce a convention aooording to which the weights of the representations can be ordered. A welght ($m_{1} \ldots$... \mathcal{Z}) is said to be positive if the first non-vanishing component is positive. One weight is said to be higher than another if the differenoe between them is positivo. A weight is called dominant if it is higher than its equivalents.

Theorem 1. If a representetion is irreduoible, its highe日t weight is simple.

Proof: Assume that the vector u_{0} belongs to the highest weight, if (c). According to D of $\delta 1$ it is sufficient to prove that overy vector of the form

$$
\begin{equation*}
\cdots E_{\gamma} E_{\gamma} E_{\beta} E_{\alpha} u_{0} \tag{89}
\end{equation*}
$$

which is of weight $m{ }^{(0)}$ can be witten as ku, where k is a constant. We shell show, in addition, thet k depends only on the series $\alpha, \beta^{3}, \gamma, \delta \ldots$,
and on the weight $m^{(0)}$. It is clear from D that $\ldots+\delta+\gamma+\beta+\alpha=0$. Therefore at least one of the roots must be positive. Let us say that γ is the first positive root (from the right) o Replmoing $E_{\gamma} E_{\beta}$ by $E_{\beta} E_{\gamma}+\left[E_{\gamma} E_{\beta}\right]$ and so on until E_{γ} acts directly on u_{0}, and remembering that $E_{\gamma} u_{0}=0$, we obtain a sum of terms with fewer matrices E than (89) but still of woight $\mathrm{m}^{(0)}$ 。 Continuing this process until there are no more operators of positive weight, we arrive at a sum of products of H_{1} aoting on u_{0}, anci these are finally converted into a polynomial of the components of $m(0)$ multiplying u_{0}. The coeffioients in this polynomial deperd, evidently, only on the set of roots $\alpha, \beta, \gamma, \delta, \ldots$, and not on the particuler representation.

Theorem 2. Two irreducibie representations are equivalent if their highest weights are equal.

Proof: We distinguish the two representations D and D ' by using unprimed quantities for D and primed ones for D^{\prime}. Let u_{0} and u_{0}^{\prime} be the rectors of the highest weight $m^{(0)}$, which is assumed to be the same for both D and $D:$, and construct all possible veotor's $u_{j}=\ldots E_{\gamma} E_{\beta} E_{\alpha} u_{0}$ and oorrespondingly $u_{j}^{\prime} m \ldots E_{\gamma}^{1} E_{\beta}^{\prime} E_{\alpha}^{\prime} u_{0}^{\prime}$. It was shown in D of $\$ 1$ that these vectors span the whole space and that each has a definite weight. The equivalence of the two representetions will be proved if we show that to any linear relation which exists between the unprimed vectors there corresponds a linear relatich with the same coefficients between the coriesponding primed veotors. Assume there is a relation

$$
\begin{equation*}
\gamma_{1} u_{1}+\gamma_{2} u_{2}+\ldots: 0 \tag{90}
\end{equation*}
$$

then, using the same coefifcients y we can construot a vector

$$
\begin{equation*}
\gamma_{1} u_{1}^{\prime}+\gamma_{2} u_{2}^{\prime}+\ldots=w^{\prime} \tag{i}
\end{equation*}
$$

The vectors w^{\prime} for all possible relations (90') form a subspace R_{1} of R^{\prime}, and it is easily seen that R_{1}^{\prime} is an invariant subspace under the operations of the group, Since D^{\prime} is irreducible we must have $R_{i}^{\prime}=0$ unless R_{i}^{\prime} consists of the whole space R^{\prime}. The last alternative is excluded since u : oertainly is not in R_{1}. For if $w i=u_{0}^{\prime}$, according to C of δl, the left-hend side of (90) contains only veotors of weight $\mathrm{m}_{\mathrm{m}}^{(0)}$. Theorem 1 would then lead to a relation

$$
\gamma_{1} k_{1}+\gamma_{2} k_{2}+\cdots \ngtr 0
$$

which however, is incompatible with the corresponding relation

$$
\gamma_{1} k_{1}+\gamma_{2} k_{2}+\ldots=0
$$

derived from (90), the k being the same for the two representations.
The connection between highest welghts and irreducible representations is completed when we how that there exists an irreducible representation whioh has any dominant weight as its highest weight. Indeed, Cartan has proved that
(A) For every simple group of rank ℓ there are ℓ fundamental dominant weights $L^{(1)} \ldots . L^{(\ell)}$ such that if a dominant weight L is given, it is a linear combination

$$
\begin{equation*}
L=\sum_{i=1} x_{i} L^{(i)} \tag{91}
\end{equation*}
$$

With non-negative integral coefficients:
(B) There exist ℓ fundeunental irreducible representations $g_{1}, g_{2}, \ldots, g_{\ell}$ which have the fundamental weights as their higheat woights.

Since it is easy to see that the weights of the Kronecker produot $A \times B$ of two representations are all the sums of one weight of A and one weight of B, the Kronecker product representation

$$
\begin{gather*}
G=g_{1} \times g_{1} \times \cdots \times g_{2} \times g_{2} \cdots \times \cdots \tag{92}\\
x_{1} \text { times } \quad x_{2} \text { times }
\end{gather*}
$$

has as highest weight exactly the weight L_{0} G will, in general, be reducible, but one of its irreducible constituents will have L as its highest weight. Cartan proved (A) and (B) for every aimple group separately. We shall here aketch as an example the proofs for the groups A_{l} and B_{l}.
A_{ℓ}. The components of a dominant weight satisfy the relation $L_{1} \geq L_{2} \geq \ldots \geq L_{l+1}$. If we assume as fundamental woights

$$
\begin{align*}
& L^{(1)}: \frac{l}{l+1},-\frac{1}{l+1} \cdots \cdots-\frac{1}{l+1} \\
& L^{(2)}: \frac{l-1}{l+1}, \frac{l-1}{l+1},-\frac{2}{l+1} \cdots \cdots-\frac{2}{l+1} \tag{93}\\
& \cdots \cdots \cdots \cdot \cdots, \cdots, \cdots \\
& L^{(l)}: \frac{1}{l+1}, \frac{1}{l+1}, \cdots \frac{-l}{l+1}
\end{align*}
$$

it can be verified that (91) is satisfied by setting

$$
\begin{equation*}
x_{1}=L_{1}-L_{1+1} \tag{94}
\end{equation*}
$$

The fundamental representations corresponding to the higheat weights (93) are the linear unimodular group in $\ell+1$ dimensions itself and the transformations induced by this group on the antisymmetric tensors of rank 2,3... ℓ.

[^0]It may be shown that a tonsor of rank P in the $\ell+1$ dimensional space which has the symmotry dofined by the partition ($f_{1}, f_{2}, \ldots, f_{\ell+1}$) with $\sum^{\ell+1}$ $1=$ componente $L_{i}=f_{i}=\frac{f}{\ell+1}$.
3_{ℓ}. The components of a dominant weight satiafy the relation $I_{1} \geq I_{2} \geq \ldots \geq I_{l} \geq 0$. If we take as fundamental weights

$$
\begin{align*}
& L^{(1)} \text { : } \frac{1}{2} \frac{1}{3} \text {. . . } \frac{1}{3} \\
& L^{(2)} 1000 \text {. . } 0 \\
& L^{(3)} 11100000 \tag{9£}\\
& L^{(\ell)}: 111 \text {. } 10
\end{align*}
$$

it is easy to see that (91) is satisfied by setting

$$
\begin{align*}
& x_{1}=2 L_{\mathbb{L}} \tag{96}\\
& x_{1}=L_{i-1}-L_{i} \quad(i>1)
\end{align*}
$$

The fundamental representations corresponding to the highest weights (95) are the double-valuad representation of degree 2^{l}, the orthogonel group in $2 \ell+1$ dimensions, and the transformations induced by this group on the antisymmetrio tensors of ranic 2,3...... $\ell-1$.

It may be shown that a tensor of rank f with vaniahing trave in the $2 .\{+\}$ dimensional space which has a symetry defined by the partition ($f_{1} \cdots f_{\ell}, 0, \ldots 0$) is the basis of the representation whose highest woight han components $L_{i}=f_{i}$.
83. The Problem of Full Reducibility.

Having claseified the irreducible representations of a group,we are in a position to olassify all its represontations if we know that every reducible representation is fully reducible, i.e. decomposable into its irreducible oonstituents. .

It is well kaown that the representations of finite groups are fully reducible, and that the proof of this is besed on the possibility of summing over all elements of a group representation. for continuous groupe the analog of this sumation is an integration for whioh, however, the question of convergence arises. Weyl has proved that if we impose some particular reality condition (this is called the unitary restriction) on the coefficients of of the general infinitesimal element e ${ }^{p} X_{p}$ of a somisimple group, the group is restricted to a subgroup for which the integrations oonverge and full reducibility may be proved. It follows from the full reduoibility of any infinitesimal representation $D_{1} \ldots D_{r}$ that the general element of D_{P} is fully raducible oven if the θ^{ρ} no longer obey the ualtary restriction. The representations of every semi-simple group are therefore fully reduoible.

Onder the unitary restriotion the linear group becomes the unitary group, and the orthogonal group becomes that of real rotations. Woyl's proof involves integration over the entire group. A pureiy infinitesimal proof of the full reducibility was given by casimir for the three-dimensional orthogonal group O_{3}. He oonsidered the oporator*

$$
\begin{equation*}
\theta=J_{x}^{2}+J_{y}^{2}+J_{z}^{2} \tag{97}
\end{equation*}
$$

[^1]which is known to commate with J_{x}, J_{y}, and J_{2}. If the representation is irreducible, then Sohur's lemm states that G is of the form
\[

$$
\begin{equation*}
\theta=\lambda 1, \tag{98}
\end{equation*}
$$

\]

where

$$
\begin{equation*}
\lambda=j(j+1) \quad\left(j=0, \frac{1}{2}, 2, \frac{3}{2}, \ldots\right) \tag{981}
\end{equation*}
$$

If the representetion is reducible, and has for excmple two izreduoible constituents, the infinitesimal operatora may be brought to the form (79), so that G can be written

$$
G=\left(\begin{array}{cc}
\lambda t & \mathbb{L} \tag{99}\\
0 & \lambda^{\prime} 1
\end{array}\right)
$$

If $\lambda \nLeftarrow \lambda^{\prime}$, then by application of the transformation

$$
I=\left(\begin{array}{cc}
1 & \frac{X}{\lambda-\lambda^{\prime}} \tag{100}\\
0 & 1
\end{array}\right)
$$

we obtain

$$
\operatorname{TaT}^{-1}=\left(\begin{array}{rr}
\lambda 1 & 0 \\
0 & \lambda^{\prime} 1
\end{array}\right)
$$

The same tranaformetion also decomposes J_{x}, J_{y}, and J_{z}, vince they oommute With G. The decomposition faile if $\lambda=\lambda^{\prime}$, but in this case the two irreducible conatituente of the representation are equivalent and full reduoibility may be proved by quite simple considerations. Fe shall see in the next section how this proof my be goneralized so as to apply to any semi-sinple group.

§4. Casimiris Operator and it Gonoralization.

The have seon in 82 that overy irraduoible roprosentation is charactorised by its higheat weight $L \mathrm{~F}\left(L_{1} \cdots L_{\ell}\right)$. But in the group $\mathrm{O}_{\mathrm{g}}, \mathrm{f}$ is not only the highest value of m, 1.0. the highest oigonvalue of J_{g} for the given represeatation, but is also conneoted with the eigeavalues of G, whioh are common to the whole basis of an irreducible roprosentation. The oonnection is one-to-one, sinoe it follows from (981) that

$$
j= \pm \sqrt{\lambda+\frac{1}{4}}-\frac{1}{2} .
$$

but only the upper sign gives a J which is a dominant woight.
The generalization of for any semi-simple group was given by Casimir, who introduced the operator

$$
\begin{equation*}
G=g^{p^{\sigma}} x_{\rho} x_{\sigma} \tag{102}
\end{equation*}
$$

which comnutes with every X_{c} :

$$
\begin{aligned}
{\left[G x_{\tau}\right] } & -s^{p \sigma} x_{\rho}\left[x_{\sigma} x_{\tau}\right]+g^{p \sigma}\left[x_{\rho} x_{\tau}\right] x_{\sigma} \\
& -\left(0^{p} \tau \lambda^{\lambda^{\prime}} \alpha_{\tau}^{\rho}\right) x_{\rho} x_{\lambda}=0
\end{aligned}
$$

by the antizymatry of the ntructure constants. The oigenvaluas of G may be calculated if we use the standard basis and write

$$
\begin{equation*}
G=g^{i k} H_{2} H_{k}+\sum_{\alpha} E_{\alpha} E_{-\alpha} \text {. } \tag{102}
\end{equation*}
$$

Lot L be the highset weight of an irroducible reprasentation and u be a vector of this weight in the pace R_{0}. Then $E_{\alpha} u=0$ Por positive roots α, and

$$
\begin{equation*}
G u=g^{i k} L_{i} L_{L^{2}}+\sum_{\alpha^{+}}\left[E_{\alpha} E_{-\alpha^{\prime}}\right] u=\left[(L)+\sum_{\alpha^{+}}(\alpha L)\right] u \tag{103}
\end{equation*}
$$

where $\sum_{\alpha^{+}}$denotes summation over positive roots only. By introducing the
vectors

$$
\begin{equation*}
R=\frac{1}{2} \sum_{\alpha+} \alpha \tag{104}
\end{equation*}
$$

and

$$
\begin{equation*}
E=L+R_{s} \tag{105}
\end{equation*}
$$

we can write for the oigenvelues of G

$$
\begin{equation*}
\lambda=L^{2}+2(R L)=x^{2}-p^{2} \tag{106}
\end{equation*}
$$

It is asy to see that while a higheat weight determines an eigenvalue of the Casisir operator, the oonverse is not generally true, and the fact is not surprising as we cannot oxpect that the single number λ is sufficient to determine ℓ numbers L_{i}.

Casimir used the operater G in order to extend to any emi-aimple group his proof of full reduoibility, but was uaable to apply it to the oases where inequivalent representation belong to the sane eiganvalue of G. The latter case was treated by van der Faerden by the use of considerations ontirely foreign to Casimiria original approsch.

Another way of doing it is to generalize Casimir's operator by constructing a complete set of operator: which commute with every operator of the group and whose eigenvaluea charscterize the irreducible representations.

A possible generalization of G is prozided by the operators

$$
\gamma_{\alpha_{1}} \alpha_{2 \ldots \alpha_{n}} x^{\alpha_{1}} x^{\alpha_{3}} \ldots x^{\alpha_{n}}
$$

with
and it 1s easy to verify that each of these operators commutes with overy X_{p}.

But these still do not suffice, since it is found for example that for irreducible representations contragredient to each other and inequivalent, they have the same eigenvalue日,

We therefore examine the conditions imposed on a general function of the insinitesimal operators, $F\left(X^{P}\right)$, by the requirement that it commate with every operater of the group:

$$
\begin{equation*}
\left[X_{\sigma} F\right]=0 \tag{107}
\end{equation*}
$$

It is well known that this expression can be writton as

$$
\left[x_{\sigma} x^{\tau}\right] \frac{\partial F}{\partial x^{\tau}}=c_{\sigma}^{\tau \lambda} x_{\lambda} \frac{\partial F}{\partial x^{\tau}}=c_{\lambda \sigma}^{\tau} x^{\lambda} \frac{\partial F}{\partial x^{\tau}}
$$

where the products \boldsymbol{X}^{λ} bs $/ d x^{\tau}$ are suitably ordered. Comparison of this expresai on with (19) shows that the functions atisfying (107) may be constructed from the invariants of the adjoint group, which are characterieed by

$$
\begin{equation*}
E \sigma F\left(\theta^{e}\right)=0, \tag{108}
\end{equation*}
$$

by substituting e^{f} for X^{ρ} and ordering the terms.
By applying an operator F which aatiafiss (107) to any vector of the spaoe R of an irreducible representation we obtaln, acoording to Sohur ${ }^{2}$ leman, $\mathrm{Pu}=\lambda \mathrm{u}$, where λ is independent of the particular ohoice of $u_{\text {. }}$ If the vector of higheat weight is chosen, we find from 82 , Theorem 2 , that

$$
\begin{equation*}
\lambda=\varphi\left(L_{l} L_{L_{2}} \ldots L_{l}\right)=\varphi\left(L_{l}\right) \tag{109}
\end{equation*}
$$

In order to charaoterize the representation wo need ℓ oparators of this rind such that the syatem of equations

$$
\begin{equation*}
\lambda_{i}=\varphi_{1}(L) \quad(i=1 \ldots l) \tag{109:}
\end{equation*}
$$

hes not more than one solution L which is a dominant weight, To prove the existence of such a set of operstors it suffices to prove that
4) If we express the λ_{1} as funotions of K instead of \dot{L}, the functions

$$
\begin{equation*}
\lambda_{i}=f_{1}(k) \tag{110}
\end{equation*}
$$

are invariant under the transformations of the group (8) defined on page 36.
B) For any simple (or semísimple) group there exists a set of ℓ (polynomial) invariants of the adjoint group swh that the product of the degrees of these polynonials equals the order of (S).

Accordiag to A), the system (110) has, together with a solution K , any solution SK (which means the vector obtained from K by an operation S of the group (S)), and aocording to B), the number of 'solutions exactly equals the number of vectors $\mathrm{SE}^{(*) / \text { thence }}$ syatem (110) has only one solution which is a dominent vactor. Also (109') has only one solution L which is a dominant vector, bearuse if a solution K of (110) is not dominant and is lower, say, than $S E$, then also $K-R$ is not dominant, since

$$
\mathbb{K}=\mathrm{R}<\mathrm{SX}-\mathrm{R}<\mathrm{SK}-\mathrm{SR}=\mathrm{S}(\mathbb{K}-\mathrm{R})
$$

We shall prove A) by making use of the properties of the whole group, since it has not been possible so far to construct a proof which uses only the infinitesimal group. In any representation, (5) reads

$$
\pi(\delta a) \nabla(a)=\nabla(a+d a)
$$

As the D_{p} of (81) are the infinitesimal elements of the representation woy may
(*) From the definition of R it follows easily that no $S K$ coincides with K, and therefore no two SI ooincide.
write this as

$$
\begin{aligned}
&\left.\sum_{t}\left(q| |+\delta_{a} P_{D} D_{\rho} \mid t\right)\left(t\left|U\left(a^{\sigma}\right)\right| s\right)=\left(q\left|U\left(a^{\sigma}+\mu_{\rho}^{\sigma} \delta_{a} P\right)\right| s\right) \text { by (} s\right) \\
&=\left(q\left|\sigma\left(a^{\sigma}\right)\right| s\right)+\mu_{\rho}^{\sigma} \delta_{a} P \frac{\partial}{d a^{\sigma}}\left(q\left|U\left(a^{\sigma}\right)\right| s\right) .
\end{aligned}
$$

Comparis on with (15) shows that.

$$
A_{\rho}\left(q\left|\sigma\left(a^{\sigma}\right)\right| s\right)=\sum_{t}\left(q\left|D_{\rho}\right| t\right)\left(t\left|\sigma\left(a^{\sigma}\right)\right| s\right) .
$$

where A_{ρ} is the infinitesimal operator of the Iirst parameter group. Consequently for any function $f\left(X_{\rho}\right)$ ve have

$$
\begin{equation*}
r\left(A_{\rho}\right)\left(q\left|\sigma\left(e^{\sigma}\right)\right| s\right)=\sum_{t}\left(q\left|f\left(D_{\rho}\right)\right| t\right)\left(t\left|U\left(a^{\sigma}\right)\right| s\right) \tag{111}
\end{equation*}
$$

In particuler, if $f\left(X_{\rho}\right)$ is $F\left(X_{\rho}\right)$ satisfying (107), then $F\left(D_{\rho}\right)$ is diagonal socording to Schus's lemma, and we got

$$
\begin{equation*}
F\left(A_{\rho}\right)\left(q\left|u\left(a^{\sigma}\right)\right| s\right)=\lambda\left(q\left|\cup\left(a^{\sigma}\right)\right| s\right) \tag{112}
\end{equation*}
$$

so thet each matrix element of the representation is an oigenfunction of $F\left(A_{\rho}\right)$. It follown that the trace of the matrix $\left(q\left|U\left(a^{\sigma}\right)\right| s\right)$, which is called the character, X, of the representation, is also an eigenfunction corresponding to the same eigenvalue. Since the trace of a matrix is invariant under imilarity transformations, it follows that the character is not a function of the individual elements of the grouy, but rather of the classes of conjugate olemonts. The olases of a cemi-simple group of rank ℓ depend on ℓ parametere; by choosing them as a suitable set $\varphi^{2} \ldots \rho^{l}$, Weyl has given a general formula,

[^2]\[

$$
\begin{equation*}
\chi(L ; \varphi)=\frac{\xi(\mathbb{K})}{\xi(R)} \tag{113}
\end{equation*}
$$

\]

unitary restricted
for the characters of aVsemi-simple group, where K is dofined by (105) and

$$
\begin{equation*}
\xi(K)=\sum_{S} \delta_{S} e^{i(S K)} y^{j} \tag{114}
\end{equation*}
$$

δ_{S} is plus or minus one depending on the parity of the element S_{0}
If wo now apply to K an operation S, the charactem is loft invariant except for a possible ohange of sign : herce the oigenvalue (110) to which the character belongs as eigenfunction is invariant under the operations of (S). Q.E.D.

As an examplo consider the group of rotations in three dimensions, R_{g}. Any slement of this group oan be obtained by a similarity transformation from the diagonal matrix with olements $\theta^{\operatorname{im} \varphi}(-\ell \leq m \leq \ell)$ where φ is an angle of rotation around a properiy chosen axis. Thus, φ is a function of the class and the charaoter of R_{3} is

$$
\begin{equation*}
\sum_{m=-2}^{l} e^{i m \varphi}=\frac{e^{i\left(l+\frac{1}{2}\right) \varphi} e^{-1\left(\ell+\frac{1}{2}\right) \varphi}}{e^{1 \frac{\varphi}{2}}-\frac{s^{-i} 4}{L}} \tag{115}
\end{equation*}
$$

which is the value given by (114) where $k=\ell+\frac{1}{2}$.
In order to construct invariants of the adjoint group we construct the determinant

$$
\begin{equation*}
\Delta=\operatorname{det}\left(q\left|\theta^{\rho} D_{\rho_{1}}-\omega\right| s\right)=\operatorname{det} a_{\varrho_{3}} \tag{116}
\end{equation*}
$$

where $C O$ is an arbitrary number and ($q\left|D_{\rho}\right| a$) an arbitrary representation. The determinant is an invariant of the adjoint group, for
-50

$$
\begin{aligned}
& E_{\sigma} \Delta=e^{P_{0}}{ }_{\rho}{ }^{\tau}{ }^{\tau} \frac{\partial \Delta}{\partial \theta^{\tau}}={ }_{\theta} P_{\rho_{\rho}}{ }^{\tau} \sum_{q^{\delta}} \frac{\partial \Delta}{\partial a_{q B}} \frac{\partial A_{q 日}}{\partial e^{\tau}} \\
& =\theta_{\rho \sigma} P_{0^{\tau}} \sum_{q} \frac{\partial \Delta}{\partial a_{q *}}\left(q\left|D_{\tau}\right| \theta\right)= \\
& =o p \sum_{q s t} \frac{\partial \Delta}{\partial a_{q s}}\left[\left(q\left|D_{\rho}\right| t\right)\left(t\left|D_{\sigma}\right| s\right)-\left(q\left|D_{\sigma}\right| t\right)\left(t\left|D_{\rho}\right| \sigma\right)\right] \quad \text { by }(81) \\
& -\sum_{q s t} \frac{\partial}{\partial a_{q s}}\left[\left(a_{q t}+\omega \delta_{q t}\right)\left(t\left|D_{\sigma}\right| s\right)-\left(q\left|D_{\sigma}\right| t\right)\left(n_{t s}+\omega \delta_{t s}\right)\right] \\
& -\sum_{q \in t} \frac{\partial \Delta}{\partial a_{q B}}\left[a_{q t}\left(t\left|D_{\sigma}\right| s\right)-\left(q\left|D_{\sigma}\right| t\right) a_{t s}\right] \\
& =\sum_{s t} \Delta \delta_{o t}\left(t\left|D_{\sigma}\right| s\right)-\sum_{q t} \Delta \delta_{q t}\left(q\left|D_{\sigma}\right| t\right)=0 .
\end{aligned}
$$

\triangle is a polynomial in ω, and evidently the coefficient of each power of ω is soparately an invariant. That this method yielde a set of invariants Which aatisfy the conditions stated in B) is shewn eeparatoly for each sinple group in referense (1.4).

In conclusion, wh can acw state that for every semi-simple group there exists a set of l funotione $F_{i}\left(X_{\rho}\right)$ which cosmute with every operator of the greup and whoso eigenvalues characterize the irmaducitle representatione. They constituie the extension to every eani-simple group of the operator (97). for the throe-dimenaionsl rotation greup.
§5. Kisceilaneous. Probiane.
Finaliy, wo know n. number of generel propurties of the irroducible representation of 0_{3}, and we wast to sse to what extent they may be generalized to all somi-simple groups.

1. The dimension of an irreducible representation is $2 \mathrm{j}+1$ for O_{3}. By calculating the value of (113) for the identity element, Feyl has found that the dinersion of any irreducibla representation is given by

$$
\begin{equation*}
\prod_{\alpha^{+}} \frac{(\alpha R)}{(\alpha R)} \tag{117}
\end{equation*}
$$

2. In O_{3} the eiganvalues of J_{2} are ncm-degenerate and hence auffice to label the basis of the representatione. The natural extension of the eigenvalues of J_{z} are the weights, but in general they are not simple. If γ_{m} is the multiplicity of the weight m. Weyl has shown that the sharacter of the representation has the form

$$
\begin{equation*}
\chi=\sum_{m} \gamma_{m} e^{i m, \varphi^{j}} \tag{118}
\end{equation*}
$$

so that the coefficients of the Fourier expansion of expression (113) give the multiplicities.

If the multiplicity is different from unity we need some additional operators $k\left(X_{\rho}\right)$, all commuting with each other and with H_{i}, whose eigenvalues will enable us to distinguish the different eigenvectore of a given weight; we must first find out how maxy such operstors will be needed.

If the basis is chosen so that not only H_{1} but also $k\left(X_{\rho}\right)$ are diagonal, then by setting $f\left(X_{\rho}\right)=k\left(x_{\rho}\right)$ in (111) we obtain

$$
\begin{equation*}
k\left(A_{p}\right)\left(q\left|U\left(a^{\sigma}\right)\right| s\right)=k_{q}\left(q\left|U\left(a^{\sigma}\right)\right| s\right) \tag{119}
\end{equation*}
$$

where k_{q} is the eigenvalue of $k\left(X_{\rho}\right)$ corresponding to the row q; then ($\left.q\left|0\left(a^{\sigma}\right)\right| s\right)$ is an eigenfunction of $k\left(A_{\rho}\right)$ corresponding to this eigenvalue. Similarly by considering the second parameter group it may be shown that ($q \| U\left(a^{\sigma}\right) \mid s$) is also an eigenfunction of $k\left(B_{\rho}\right)$ corresponding to the oigenvalue k_{B} 。

In order to identify the functions $\left(q\left|\sigma\left(e^{\sigma}\right)\right| s\right)$ of the r parameters oompletely, wo need a sot of at least r commuting operators acting on these paramotose.

We are already in poseeasion of the l comeuting operators $f_{i}\left(A_{p}\right)=$ $=F_{i}\left(B_{\rho}\right)$. Hence wo still roed $\frac{r-\ell^{*}}{2}$ operatore $k\left(X_{\rho}\right)$, in order to have $\frac{r-\ell}{2}$ operator $k\left(A_{\rho}\right)$ and the nam number of $k\left(B_{\rho}\right)$. However, ℓ auch operatore $K_{\left(X_{\rho}\right)}$ are already lnown to us; they are the H_{1} thomselvee. Hence for the net of commuting operators to be ocuplote we need at least to conntruct $\frac{r-3 \ell}{2}$ operatore $k\left(X_{e}\right)$.

In the particular ease of the group $0_{3}, \frac{r-3 \ell}{2}=0$, and it is well known that the operator: J_{g} and J^{2} form the conplete set. The problen of finding the complete set of operatore $k\left(X_{\rho}\right)$ has wo far been iolved only for some types of sinple groups.
3. Bxplieit conatruction of the irreducible roproaentations. The repreestations of the infinitosimal operatora of O_{3} are the dingonal matrix J_{s} and the matrices $J_{x} \pm 1 J_{y}$ whose only non-vanishing matrix elemonts are given by

$$
\begin{equation*}
\left(1 m \pm 1\left|J_{x} \pm 1 J_{y}\right| g m\right)=\sqrt{(1 \pm m+1)(1 m m)} \tag{120}
\end{equation*}
$$

In the geveral oase, the correaponding formule should be
but as long as the $k^{(h)}$ are not known it is impossible to give an explicit form to the function f. Later on we shall present some special methode for
*) Tine structure of asi-simple groups assures that this number is a ways
an integer.
solving this problem in particular cases in which we are interested.
4. Decomposition of the Rronecker producte

In O_{3} this is done by the Clebsoh-Gordan series:

$$
\begin{equation*}
\mathscr{D}\left(\mathrm{J}_{1}\right) \times \mathscr{D}\left(\mathrm{J}_{2}\right)=\sum_{J=\mathrm{iJ}_{1}-J_{2} \mid}^{J_{1}+J_{2}} \mathscr{D}(\mathrm{~J}) \tag{122}
\end{equation*}
$$

In genoral we have seen that

$$
\begin{equation*}
\mathscr{D}\left(L^{(1)}\right) \times \mathscr{D}\left(L^{(2)}\right) \cdot \mathscr{D}\left(L^{(1)}+L^{(2)}\right)+\ldots \tag{123}
\end{equation*}
$$

but we were not in a position to say anything about the other terms of the eries. The coofficient in this series have boen given by Brauer and Weyl* by using the characters of the representetions.

But this is only the first part of the problem, since we not only neod to know which irroduoible representations are contained in a Kronecker product, but we also want to calculate the matrix which actually decomposes the Kraneaker product.

For O_{3} this problem has been solved in soveral different wayse
The claseical clebsoh-Gordan method exploite the homomorphism betweon O_{3} and the unimodulan group in two dimensions (which is the basis of spinor calculus), but this mothen is applicable only to this particular case and is not capable of generalization. Wigner solved the same problen by performing integrations over the whole group, but actualy it is sufficient to consider the infinitesimal represeatation, as will be indicatod here.
 fined by the relation

[^3]\[

$$
\begin{aligned}
& =\left(J^{\prime \prime} \mathbb{M}^{n}\left|J_{x} \pm i J_{y}\right| J M\right) \delta_{J J " I} \text {. }
\end{aligned}
$$
\]

Matrix multiplication of this equation f om the left by ($\mathrm{H}_{1} \mathrm{~m}_{2} \| \mathrm{J}^{\mathrm{Hn}} \mathrm{m}^{n}$) gives

$$
\begin{aligned}
& \sum_{m_{1}: m_{2}}\left\{\left(m_{1}\left|j_{1 x^{\prime}} \pm 1 j_{1 y}\right| m_{1}^{\prime}\right)+\left(m_{2} \mid j_{2 x^{\prime}} \pm 1 j_{2 y} j_{2}^{\prime}\right)\right\}\left(m_{1}^{i} m_{2}^{\prime} \mid \mathrm{JM}\right) \\
& =\sum_{M^{4 n}}\left(m_{1} m_{2} \mid J M^{n}\right)\left(J M^{i s}\left|J_{x}+i J_{y}\right| J M\right)
\end{aligned}
$$

which, using (120), becomes the recursion formulas

$$
\begin{gather*}
\left(m_{1}\left|J_{1 x} \pm i j_{l y}\right| m_{1} \mp 1\right)\left(m_{1}^{\mp 1} m_{2} \mid J M\right) \div\left(m_{2}\left|j_{2 x} \pm i j_{2 y}\right| m_{2}^{\mp} 1\right)\left(m_{1} m_{2} \mp I \mid \Sigma M\right) \\
 \tag{124}\\
=\left(J M \pm 1\left|J_{x} \pm \pm J_{y}\right| J M\right)\left(m_{1} m_{2} \mid J M+1\right)
\end{gather*}
$$

If we take the upper sign and set $M=J$, we see that the right hand side vanishes and we find a set of equations which determines the different ($m_{1} m_{2} \mid J J$) apart from a commn factor whose absolute value is fixed by normalization and whose phase is fixed by the convention that ($\left.j_{1} J=j_{1} \mid J J\right)$ be real and positive, Taking now the lower sign we obtain ($m_{1} m_{2} \mid J N-1$) from ($m_{1} m_{2} \mid J M$); hence by a ${ }^{2}$ ladder' procedure starting from $M=J$ we get all the trausformation coefficients.

This method would probably be the one best euited for extension to the ether groups provided the right hand sids of (121) werc known explicitly.
§6. The Full Linear Group and the Unitary Group.
We saw on Po 29 that the full linear group in k dimensions (as well as its unitary subgroup) is not semi-simple. But, sinoe it is the direot produot of a semi-aimple group with an Abelian group, the full linear group shares many properties with the somi-simple groups, including the possibility of bringing the oommutation relations to the standard form (50) and all the results of $\$ \mathbb{S} 1 \mathrm{and} 2$. It 1s also clear from p. 29 that, as the unimodular coodition is omitted, H_{i} has now to be identified with $X_{i i}$ and not with $X_{i f}$ defined by (69^{r}); the oomponents of the weights are now always integers, and the relations (72) and (881) which were obtained for the uningodular group de not hold for the full linear group.

It can be shown that a tensor of rank f in the k-dimensional space which has the symmetry defined by the partition $\sum \equiv\left(f_{1}, f_{2}, \ldots, f_{k}\right)$, with

$$
f=f_{1}+f_{2}+\ldots+f_{k}
$$

is a basis of the representation whose highest weight has the oomponents f_{i}.
Wo may conveniently illustrato partition I by a Young diagram suoh

as the one at the left, consisting of f boxes in
k rows, the $1^{\text {th }}$ row containing f_{i} boxes.
A partition \sum^{*} is said to be dual to Σ if
Its diagram is obtained by interohanging the rows
and columns of Σ.
In partioular, the partition

Whose basia is formed by the totally antiaymotrioal tensors of rank f. The irreducible representetions of the full linear group do not dem compose if we restriot the group to ita unimodular subgroup, but the rew presentation which belong to the partition ($f_{1}, \ldots . f_{k}$) and $\left(f_{1}+0, f_{2}+\theta, \ldots, f_{k}+\theta\right)$ beoome equivalent.

All the propertien which we have stated for the full linear group hold also for its unitary subgroup.

Bibliorraphy.
10) E, Cartan, Bull.Sov.Math, de France, 41, 53(1913)
11) H. Casimir, Proc. Kon.Aced.Amet, 34, 844 (1931)
12) H. Casimir and B.I.van der Faerden, Math. Arne 11], 1(1935)
13) H_{n} Weyl, C1epsiral Froupa, Princoton, 1939
14) G. Racah, Rerd. Lincsi 8, 108 (1950)

Lectures 7 and 8.

THE CALCULATION OF THE ENERGY MATRIX.
§ 1. The Interaction of Two Particles.
Since the interaction matrix for n particles is calculated according to (132) in terms of that for $n-1$ particles, we must start by calculating the interaction energy for two particles. Let us first assume for simplicity that there is an ordinary spinindependent interaction (wigner interaction), given by $J\left(r_{12}\right)=J\left(\sqrt{r_{1}^{2}+r_{2}^{2}-2 r_{1} r_{2} \cos \omega_{12}}\right)$ between the two particles. We can expand this in Legendre polynomials of $\cos \omega_{12}$:

$$
\begin{equation*}
J\left(r_{12}\right)=\sum_{k} J_{k}\left(r_{1}, r_{2}\right) P_{k k}\left(\cos \omega_{12}\right) \tag{193}
\end{equation*}
$$

so that, by the addition theorem (156), they can be expressed in terms of scalar products of tensors:

$$
\begin{equation*}
J\left(r_{12}\right)=\sum_{k} J_{k}\left(r_{1}, r_{2}\right)\left(c_{N 1}^{(k)} \cdot{\underset{\sim}{m}}_{(k)}^{(k)}\right. \tag{194}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{i q}^{(k)}=\sqrt{\frac{4 \pi}{2 k+1}} \quad Y_{k q}\left(\theta_{i} \varphi_{i}\right) \tag{195}
\end{equation*}
$$

is the $q^{\text {th }}$ component of $\underset{m i}{(k)}$.
The matrix giving the interaction of two particles is in general

$$
\begin{align*}
& \left(n_{1} \ell_{1} n_{2} \ell_{2} L M\left|J\left(r_{12}\right)\right| n_{1} \ell_{1} n_{2} \ell_{2} L M\right)= \\
= & \sum_{k}\left(\ell_{1} \ell_{2} I M\left|\left(c_{m 1}^{(k)} \cdot c_{m 2}^{(k)}\right)\right| \ell_{1} \ell_{2} I M\right) F^{k} \tag{196}\\
= & \sum_{k}(-) \ell_{1}+\ell_{2-L}\left(\ell_{1}\left\|c^{(k)}\right\| \ell_{1}\right)\left(\ell_{2}\left\|c^{(c)}\right\| \hat{l}_{2}\right) \\
& \cdot w\left(\ell_{1} l_{2} \ell_{1} \ell_{2} ; L k\right) F^{k} .
\end{align*}
$$

Lectures 5 and 6

THE EIGENFUHCTIONS OF THE HOCLEAR BHELLS

81. Introduction.

If we wish to oalculate the energy levols of a syotem of many partiolen, the feot that we oemot eolve directly the Sohrodinger equation for the manbody problem forees us to proceed by aoceasive approximations.

In atomio apeotroscopy we essume that in the "evroth approximation" every eleotron moves independently of the others in a central field whioh In the auperposition of the fields of the nuoleus and of the man field produced by the other electrons. In this approximation we may asign to every electron four quantum numbers $n \ell m_{l}$, as the seroth order energ dopends only on n and l, the eleotron appear to be distributed in different shells, each oharacterised by a pair of values $n \boldsymbol{l}$. Such e distribution is oalled a configuration.

The next step is to take as a perturbation the intersotion between eleotron in cholle whioh are not olosed, negleoting in firat epproximation the matrix elementa which comeot different oonfiguratione.

It 1s moll known thet applied to atomlo apectroacopy this wethod givee good results. It is also woll how that the theoretion arguanta far using this method in muclear apeotrocopy are very woak, but that there is on the -
other hand some empiriosl ovidencn thet the nucleons also are ordered in sholle. We shall not, hovever, disouss hore the validity of the maclear ahell model.

It is the purpose of the remeining lectures to show some applications of group theory to the clessification of the levels of anclear shell and
to the calculation in first approximation of the perturbation onergy.
As is customary in dealing with problems of speotroscopy we shall use the atandard notation of reference 15.

82. The Coorficiont of Fractional Parentage.

If a shell contains one particle, the quantum numbers $m_{\tau} \mathbb{m}_{s}{ }^{m} i^{\text {desoribe }}$ the state completely. If a shell contains two particles, one can use the
 of which the second scheme is the more useful, since it diagonalizes the energy: the tranaformation leading from the one of these schemes to the other is given by the clebsch-Gordan ooefficients. A further advantage of the second scheme is that in it the states are either symmetrical or antisymetrical, depending on the parity of $T+S+\mathcal{L}$ the exclusion principle aimply removes the atates for which $T+S+L$ is even, without ohanging the sohome.

If we add to the allowed states of l^{2} a third ℓ-partiole, we obtain a set of wave functions

$$
\begin{equation*}
\left.\psi\left(\ell^{2} T^{(12)_{S}}(12)_{L}^{(12)}\right) \ell, \mathrm{T} S M_{S} M_{L}\right), \tag{125}
\end{equation*}
$$

which are in general antiaymetrioal only with respect to the first two partioles, but not with reapeot to the third. If to (125) we apply the transformation

$$
\psi\left(l^{2}\left(T^{(12)_{S}}(12)_{L}^{\prime}{ }^{12)}\right) l, \text { TSL } M_{T} u_{S} H_{L}\right)=
$$

$\left.\sum_{T} \sum_{S}(23)_{S}(23)\right)_{L} \psi\left(\ell, \ell \ell\left(T^{\left.\left.(23)_{S}(23)_{L}^{(23)}\right), T S L M_{S} M_{L}\right) \cdot}\right.\right.$

$$
\begin{equation*}
\left(\ell, \ell \ell\left(\mathrm{L}^{(23)}\right), L \mid \ell \ell\left(L^{(12)}\right) \ell, \Sigma\right) \tag{126}
\end{equation*}
$$

we see that in the expanaion appear some term which will be symetrioal rather than antisymotrical in the last two particles. The eigenfunctions of the configuration ℓ^{3}, which have to be antisyametrical in ell three particles, apan a subspaoe of the spaoe apanned by the functions (125) and will thus be IInear oombination of them:

$$
\begin{align*}
& \left.\cdot\left(\ell^{2}\left(T^{(12)_{S}(12)_{L}(12)}\right) \ell, \mathrm{TSL} \|\right\} \ell^{3} \alpha \mathrm{~T} \mathrm{~S} L\right) . \tag{127}
\end{align*}
$$

We heve omitted $H_{T} M_{S} M_{L}$ from the notation beomese they play no role in the transformation; α distinguishea independent states of ℓ^{3} which have the same values of $T S L$. The notation (H) is a reminder that this transformation matrix is not square, since on the left aide we have all states which are antisymmetrioal in (1,2), while on the right we have only those states whioh are antiaynmetrical in $(1,2,3)$. The coefficiente of this linear combination are called coefficients of iraotional parentage or, for short, cofop. If (127) is to ba antisymotrical in all three particles, this requires that when (126) is aubstituted into (127), all those ooefficientil which belong to forbidion wave function shall vanioh, and it is easy to see that the nesessary and sufficient condition for this is

$$
\begin{align*}
& \left(\ell^{2}\left(T^{(12)} S^{(12)_{L}}{ }^{(12)}\right) \ell, T S L \| \quad \ell^{3} \propto T S L\right)=0 \tag{128}
\end{align*}
$$

when $\mathrm{I}^{(23)}+\mathrm{s}^{(23)}+\mathrm{L}^{(23)}$ is oven.
This system of equations contains all the information we noed for the configuration ℓ^{3}. since the number of independent solutions for given T S L, which are distinguished by the parameter α, is the number of allowed states of this kiod, and since we can also use the o.f.p. to caloulate the interaction energy for these throo-particle atates:

$E\left(T^{(12)_{S}(12)_{L}}{ }^{(12)}\right)$ is the interaction energy for the two-particle system, and the fector 3 enter: because there are three pairs of particles in the configuration.

The extension of these mothods to a shell which contains a particlea 1s in principle immodiate. Fio start from a shell with $n-1$ particles, for which we ouppose the cofop. to be calculated. Then

$$
\begin{align*}
\psi\left(\ell^{n} \alpha T s L\right)= & \sum_{\alpha_{1} I_{1} S_{1} L_{1}} \psi\left(\ell^{n_{-1}}\left(\alpha_{1} T_{1} s_{1} L_{1}\right) \ell,\right. \text { TsL) } \\
& \cdot\left(\ell^{n-1}\left(\alpha_{1} T_{1} S_{1} L_{1}\right) \ell, \text { TSLI\}} \ell^{n} \alpha T s L\right) \tag{130}
\end{align*}
$$

where, analogousiy to (128), the c.f.p. satisfy the systes of equations

$$
\begin{align*}
& \text { - }\left(L_{2}, \ell \ell\left(L^{\prime}\right), L \mid L_{2} \ell\left(L_{1}\right) \ell, L\right)\left(\ell^{n-2}\left(\alpha_{2} T_{2} S_{2} L_{2}\right) \ell, T_{1} S_{1} L_{1} \cap \ell^{n-1} \alpha_{1} T_{1} S_{1} L_{1}\right) \\
& \left.\cdot\left(\ell^{n-1}\left(\alpha_{1} T_{1} S_{1} L_{1}\right) \ell, T s L\right\} \ell^{n} \alpha T s L\right)=0 \tag{181}
\end{align*}
$$

for every value of T_{2}, S_{2}, L_{2} and $T^{i}+S^{i}+L^{\prime}$ even. The interaotion energy is giver by

$$
\begin{align*}
& \left(\ell^{n} \alpha_{T} S L|E| \ell^{n} \alpha^{\prime} T S L\right)=\frac{n}{n-2} \alpha_{1} \alpha_{1} T_{1} S_{1} L_{1}\left(\ell^{n} \alpha_{1} S L\left\{\mid \ell^{n-1}\left(\alpha_{1} T_{1} S_{1} L_{1}\right) \ell \text { T s L }\right)\right. \\
& \left..\left(\ell^{n-1} \alpha_{1} T I_{1} S_{1} L_{1}|E| \ell^{n-1} \alpha_{1}^{\prime} T_{1} S_{1} L_{1}\right)\left(\ell^{n-1}\left(\alpha_{1}^{\prime} T_{1} S_{1} L_{1}\right) \ell T S L \mid\right\} \ell^{n} \alpha^{\prime} T S L\right) . \tag{132}
\end{align*}
$$

Although this procedurs has been used successfully to calculate all atomio configuratione d^{n} and the oonfiguration f^{3}. it becomes extremely laborioum for the higher configurations, and it is at this point that group theory comes to our aid in the following three ways:
a) The hitherto unspecified variable α will be replaoed by a set of quantum numbers which is almost complete. The choice of these quantum numbers, suggested by group theory, will greatly simplify the calculations.
b) The cuf.p. will be calculated without the use of the cumbersome equations (131).
c) The sumations in (132) will be simplified.

83. The Classification of the stater of ℓ^{n}.

The atatea of a single particle in a given shell are characterized by the set of quantum numbers $\mathrm{m} \tau^{\mathrm{m}} \mathrm{m}^{\mathrm{m}} \ell$. There are $4(2 \ell+1)$ independent states to which correapond the $4(2 \ell+1)$ eigonfunctions $\phi\left(m_{\tau} m_{s} m_{\ell}\right)$. If we have a partioles in the same shell, the configuration has $\binom{(2 l+1)}{n}$ independent antiaymotrioal states to which correapond the oigenfunotions $Y\left(\mathcal{L}^{n} \Gamma\right)$, where Γ 1s a set of quantum numbers which may assume $\binom{4(2 \ell+1)}{n}$ different values.

If we consider the $\phi\left(m_{\tau} m_{B} m_{\ell}\right)$ us the basis vectors of the $4(2 \ell+1)$ dimensional apace of the states of a single particle in a given sholl, the $\psi\left(\ell^{n} \Gamma\right)$ will form a complete set of antisymmotrionl tensors of rank n in this apace. This means that a unitary tranaformation
on the ϕ is will induce in the $\psi^{\prime \prime}$ s the transformation

$$
\begin{equation*}
\psi^{\prime}\left(\ell^{n} \Gamma^{\prime}\right)=\sum_{\Gamma} \psi\left(\ell^{n} \Gamma\right) c\left(\Gamma \cdot \Gamma^{\prime}\right) \tag{134}
\end{equation*}
$$

The $\Psi\left(\ell^{n} \Gamma\right)$ are therefore the basis of a representation A_{n} of degree $\binom{4(2 l+1)}{n}$ of the unitary group $U_{4}(2 \ell+1)$ characterized by the partition

$$
n=1+1+1+\ldots+1+0+0+\ldots+0
$$

In order to obtain a set of functions $\psi\left(\ell^{n} \Gamma\right)$ whioh will make the matrix of the perturbation energy as nearly diagonal as posibible, we have to restrict the group $U_{4(2, l+1)}$ to ite largest abgroup under which the perturbation energy is invariant. If we assume that the interaction between particlea is central and charge-independent, this group is the group of three independent rotation in the coordinate spece, spia space, and isotopio epin
space. If we proceeded in this way, which is traditional in the application of group theory to quantum mechanios, we should obtain the group theorstionl defiaitions of only the six quantum numbers $T S L H_{T} \mathbf{M}_{\mathbf{S}} \mathbf{H}_{2}$.

But since we want to obtain a more nearly camplete set of quantum numbers, oven though they may not be good quantum numberia, we shall rather oarry out the transition from $\mathrm{U}_{4}(2 \ell+1)^{\text {to }} R_{3} \times R_{3} \times R_{3}$ by successivo tops. Wo shall therefore impose successive rectrictions on the group $U_{4}(2 L+1)$ to obtein abspaces of the $\binom{4(2 \ell+1)}{n}$-dimensional apece of the representetion \mathcal{R}_{n} whioh WII be invariant with reapect to difforent subgroups. These aubspaces are oharacterized by the higheat woights of the representetions to which thoy bolong, and these highest weights will be our new quantum numbers,

We shall atart by considaring the aubgroup of $U_{4}(2 \ell+1)$ whioh consista of those transformatione (133) which are of the form

With γ and \bar{O} unitary; thir subgroup is the direot product $\mathbb{U}_{4} \times \mathbb{U}_{8 \ell+1}$. If we denote by \mathscr{C}_{Σ} the inrexiveiblo representations of U_{21+1} and by y_{Σ}, those of U_{4} : the irroducible representations of $U_{4} \times U_{2 \ell+1}$ Will be tho Xronecker produots

$$
\begin{equation*}
y_{\Sigma} \times y_{\Sigma} \tag{136}
\end{equation*}
$$

Every irreducible representation $c_{i} \bar{S}_{4(2 \ell+1)^{\text {i }}}$ a reducible reprosentation of $\mathrm{U}_{4} \times \mathrm{J}_{2 \ell+1}$ and broake up into ropresentet ion (136); the general law of decomposition is omewhat complicated, but for the partioular case of the represontation C_{n} it is vory imple: only those representations (136) appoar in the decomposition of \mathcal{A}_{z} for which Σ^{\prime} is Σ^{*}, the partition daal to Σ,
and every representation of this kind occurs only onoe. Since the Young diagram which illustraten the partition \sum has not more than $2 \ell+1$ rows, the length of a row in the diagram of \sum^{*} cennot exoeed $2 \ell+1$. Similarly, the length of a row of Σ carnot eyneen four,

If the olements of the basis of $f_{5}{ }^{\text {ware }}$ characterized by a set of quantum numbers θ and those of $\mathcal{F}_{\Sigma} \mathrm{ky}$ a wit \triangle, the eloments of the besis of $\mathcal{H}_{\Sigma} \times \mathcal{H}_{\Sigma}$ will be characterized by the sot $\theta \Delta$, and the sinten of ℓ^{n} by the set $\Sigma A \triangle$.

As a sosond stop we restrict $\mathrm{U}_{2 \ell+1}$ to the orthogonal subgroup $\mathrm{R}_{2 \ell+1}$ which leaves invariant the bilinear eymatric form

$$
\begin{equation*}
\sum_{m_{l}}(-)^{m_{l}} \phi_{1}\left(m_{l}\right) \phi_{2}\left(-m_{l}\right) ; \tag{137}
\end{equation*}
$$

$R_{2 \ell+1}$ has R_{3} as a subgroup because (137) is prorartional to the oigenfunotion af the S-state of \mathcal{K}^{2}, which is left invariant by R_{3}. Let the irreduoible

$$
\begin{equation*}
x_{\Sigma}=\sum_{\pi} b_{\pi} \beta_{\pi} \tag{138}
\end{equation*}
$$

The possibsility that we may have $b_{n}>1$ gives rise to a running index β to number the equivalent representations, but in practice β takes on only emall values. (For the states $d^{n}, b_{W} \leq 2$.)

The next step of the reduction is to restrict the orthogonal matrices $\bar{c}\left(m, m_{l}^{2}\right)$ to the particular matrices belonging to the representation D_{ℓ} of R_{3}. Than this is done, every $\frac{G_{T}}{T}$ becomes a representation of R_{3} and will in general decompose as

$$
\begin{equation*}
\mathcal{Z}_{W}-\sum_{L} c_{L} D_{L} . \tag{139}
\end{equation*}
$$

where L is the higheat weight of D_{L}. If $O_{L}>1$, another runaing index γ dietinguishea the various D_{L} bolonging to a given L. We have thus arrived at the following meme:

$$
\begin{equation*}
\psi\left(l^{n} \sum \theta \beta \pi \gamma \chi_{L}\right) \tag{140}
\end{equation*}
$$

For the nuclear oonfiguration d^{n}, c_{L} ie never larger then three, but for highor velues of l it is expeoted to be much larger. In the perticular cace of the configuration f^{n} we may avoid suoh large velues for γ if we avall ourselves of the fortunate coincidence that when $l=3$ there exists another group, contained in R_{7} and contalaing the reprenentation D_{3} of R_{3} whioh in a realization of G_{2} and may be uned to introduce a new aubclesaificatione

In order to complete the sohem (140), we nat now perform an anslogoue reduction for 0_{4}. If we restrict it to its unimodular subgroup, we abtain the semi-simple group belonging to the vector diagran \mathbf{A}_{3}, which wo have soen to be the same as D_{3}. Therofore the unitary unimoduler group in four dimensiona is isomorphic with R_{6}. Applytige to $\Sigma \geqslant\left[\wedge_{1}, \Lambda_{2}, \wedge_{3}, \hat{\Lambda}_{4}\right]$ the tranaformation (68), we obtain es highost weight of the representation of a_{6}

This traneformation,introduced by Figner, corresponds to oonsidoring instead of the unimociular unitary group in four dimensione the homomorphic group \mathbb{R}_{6} which is the group of rotations in the six dimensional spaes of the apin and isotopio spin.

From R_{6} we go on to the subgroup $R_{3} \times R_{3}$ by reatrioting the tranaformations γ of (135) to those whirh are of the form

[^4]\[

$$
\begin{equation*}
\gamma\left(m^{\prime} m_{i} m_{\tau}^{\prime} m_{1}^{\prime}\right)-\gamma_{1}\left(m_{\tau}: m_{\tau}^{\prime}\right) \gamma_{2}\left(m_{0} ; m_{0}^{\prime}\right) \tag{142}
\end{equation*}
$$

\]

In this aubgroup the representations \sum^{*} may bo decomposed:

$$
y_{\Sigma}=y_{P P^{1} P^{n}}=\sum_{I S} a_{T S} D_{I} \times g_{S}
$$

In onse. $a_{2 s}>1$ we have to introduoe a new runaing index α; this gives us finally a achem for the wave functions of the entire shell

$$
\begin{equation*}
\psi\left(\ell^{n} \sum \alpha=\text { s } M_{T} x_{s} \beta \gamma L H_{L}\right) \tag{143}
\end{equation*}
$$

Eroopt for the preesno of the running indices $\alpha \beta \gamma$, wo have found a couplete sot of quentum numbers, and we have achieved the first of the three purposes set forth in 81.
84. The Factorisation of the Coofliolents of Fractional Farentage.

The wave functions on the right of (130) transform according to $\mathcal{R}_{n-1} \times \mathcal{R}_{1}$, that on the left transforms wocording to \mathcal{R}_{n}, Thua it is evident that the o.f.p. are arectanfular part of the matrices which perform the deocmposition

$$
\begin{equation*}
\mathcal{A}_{n-1} \times \mathcal{R}_{1}=\mathcal{R}_{n}+\cdots \ldots \tag{144}
\end{equation*}
$$

The calculation of these matrioes is amplified by the followiag con-- iderations

We heve soen that if a group g has a subgroup h, an irreducible reprem sentation $J_{A}(s)$ of g will in general be reducible in the aubgroup h, conaiating of elements t. Let us assume that the matrices $U_{A}(t)$ have been reduoeds

$$
\begin{equation*}
\left(\beta \mathrm{Bb} / \nabla_{A}(t) \mid \beta^{\prime} B^{\prime} b^{\prime}\right)=\left(b\left|\nabla_{B}(t)\right| b^{\prime}\right) \delta_{B B^{\prime}} \delta_{\beta \beta^{\prime}} . \tag{146}
\end{equation*}
$$

where B specifies the different representations of h. b denotes their rows and columns, and β is a running index distinguisiing equivalent irreducible representations. The K roneaker product $U_{A_{1}} \times J_{A_{2}}$ of two irreducible reprem sentationa A_{1} and A_{2} of B can be completely reduced:

$$
\begin{equation*}
J_{A_{1}} \times U_{A_{2}}=\sum_{A} c_{A} U_{A} \tag{146}
\end{equation*}
$$

by a similarity transformation with a matrix

$$
\begin{equation*}
\left(A_{1} \beta_{1} B_{1}{ }_{1}{ }_{1} A_{2} \beta_{2} B_{2} b_{2} \mid A_{1} A_{2} \propto A \beta B b\right) \tag{147}
\end{equation*}
$$

where the paraneter α is a running index which enumerate the $A^{\prime} s$ whenever a c_{A} ia greater than 1 in (146). We shall now atate without proof a corollary to Schur's lemma which will enable us to express this matrix in a simpler way. The matrix elements of the transformation (147) are the products of the matrix elements of the transformation which reduces the Kronecker product $U_{B_{1}}(t) \times U_{B_{2}}(t)$ in h and coefficients which are independent of the $b^{\prime} s_{t}$

$$
\begin{align*}
& \left(A_{1} \beta_{1} B_{1} b_{1} ; A_{2} \beta_{2} B_{2} b_{2} / A_{1} A_{2} \alpha A_{\beta} \beta B b\right) \\
= & \left(B_{1} b_{1} B_{2} b_{2} / B_{2} B_{2} B b\right)\left(A_{1} \beta_{1} B_{1} ; A_{2} \beta{ }_{2} B_{2} \mid A_{1} A_{2} \alpha A / \beta B\right) \tag{148}
\end{align*}
$$

If we take the representation of \mathcal{A}_{n} in the scheme (143) and apply this lemma to each subgroup of the chain which was constructed in the preceding section, We can bring the matrix which reduces the direot product (144) into the forin

[^5]
$=\left(\left.T_{1} M_{T_{1}} \frac{\frac{3}{2}}{m_{\tau}} \right\rvert\, T_{1} \frac{1}{b} T M_{T}\right) \cdot\left(\left.S_{1} M_{S_{1}} \frac{1}{2} m_{B} \right\rvert\, S_{1} \frac{1}{2} S M_{S}\right) \cdot\left(\sum_{1}^{*} \alpha_{1} T_{1} S_{1} ; \left.[1] \frac{1}{2} \frac{1}{2} \right\rvert\, \sum \alpha T S\right) \cdot$
$$
\cdot\left(L_{1} M_{L_{1}} \ell_{m_{m}} \mid L_{1} \ell L_{L}\right) \cdot\left(W_{1} \gamma I_{1} ;(1) \ell \mid W_{\gamma} L\right)
$$
\[

$$
\begin{equation*}
\cdot\left(\sum_{1} \beta_{1} W_{1} ;1 \mid \Sigma \beta W\right) \cdot\left(\ell^{n-1} \Sigma_{1} ; \ell[1] \mid \ell^{n} \Sigma\right) \tag{149}
\end{equation*}
$$

\]

where the aymol (1) means $W=(10 \ldots 0)$ and $[1]$ means $\sum=[10 \ldots 0]$. This expression as it stands is not exactily the cof.po, since the wave functions on the right hand side of (130) contain already the M-dependent factora of (149): hence we have

Thus the problea of calculating the cof.p. is reduced to the aeparate calculation of the different faotors which appear in this equationg but before we solve this last problem we have to develop a new mathematical tool.

$$
\begin{align*}
& \left.\left(\ell^{n-1}\left(\sum_{1} \alpha_{1} T_{1} S_{1} \beta_{1} W_{1} \gamma_{1} L_{1}\right) \ell, T S L \mid\right\} \ell^{n} \sum \alpha T S \beta W \gamma_{1}\right)= \\
& =\left(\sum_{1}^{*} \alpha_{1} T_{1} S_{1}: \left.[1] \frac{1}{2} \frac{1}{2} \right\rvert\, \Sigma^{*} \alpha_{I} S\right)\left(W_{1} \gamma_{1} L_{1} ;(1) \ell!W \gamma L\right) \text {. } \\
& \cdot\left(\sum_{1} \beta_{1} W_{1} ;1 \mid \sum_{\beta} W\right)\left(e^{n-1} \sum_{1}: \ell[1] \mid \ell^{n} \Sigma\right) . \tag{150}
\end{align*}
$$

§5. The Alcebra of Tensor Operators.

Tre algebra of vectcr operators and of their representation by ratraces was developed by Gulttinger and pauli* and is presented in standard form in Chapter III of Condon and Shortiey (reference 15). The possibility of extending it to terisces was indicated by Eckart and Wigner ${ }^{* *}$. We shail outline it here foilcwing raference 2l, $\oint 3$, where the rrohlem is treated by the stardard methods of Condon and Shortiey.
"'e define an irreducible tensor ${\underset{m}{n}}^{(k)}$ of degree k to be a set of $k k+1$ quantities $F_{q}^{(k)},-k \leq q \leq k$, which unter rotations in threedimentional suace tramerm like the $2 k+1$ spherical harmonies of derree k. If the a, eraters J_{x}, J_{y}, J_{z} preate on these quantities, we have

$$
\begin{align*}
& J_{2} T_{q}^{i k}=T_{q}^{(k)}\left(k-1 / J_{z} \mid k q\right)=q T\left({ }_{q}^{(k)}\right. \tag{157a}
\end{align*}
$$

If the $\mathrm{T}_{\mathrm{q}}^{(\mathrm{k})}$ are themselves onerators, the left side of (151) must be rerlaced by comutators

[^6]As in vector algebra, it is possible to define many kinds of tensorial products. Guided by the example of the vector addition law in quentum meclanics we shall define the tensor product of order K by the equation

$$
\begin{equation*}
x_{Q}^{(K)}=q_{1}{ }^{\Sigma}{ }_{q_{2}} T_{q_{1}}^{\left(k_{1}\right)} \underset{V}{\left(k_{2}\right)}\left(k_{1} q_{1} k_{2} q_{2} k_{1} k_{2} K Q\right), \tag{153}
\end{equation*}
$$

and it is easy to verify that this satisfies (152). The unitarity of the Clebsch-Gordan coefficients permits us to solve this equation

$$
\begin{equation*}
\mathrm{T}_{\mathrm{q}_{1}}^{\left(k_{1}\right)} \underset{\mathrm{Q}_{2}}{\left(k_{2}\right)}={ }_{K_{Q}^{\Sigma}} X_{Q}^{(K)}\left(k_{1} k_{2} K d k_{1} q_{1} k_{2} q_{2}\right) . \tag{154}
\end{equation*}
$$

According to the definition (153) it would be logical to define a scalar product as $X_{0}^{(0)}$. However, it is traditional to define as scalar product the quantity

$$
\begin{equation*}
\left(T^{(k)}, U^{(k)}\right)=\sum_{q}(-)^{q} T_{q}^{(k)} \underset{-q}{U_{q}^{(k)}}=(-)^{k} \sqrt{2 k+1} \times(0) \tag{155}
\end{equation*}
$$

An example of this formula is the addition theorem for spherical harmonics

$$
\begin{equation*}
P_{k}\left(\cos \omega_{12}\right)=\frac{4 \pi}{2 k+1} \sum_{q}(-)^{q} Y_{k q}\left(\theta_{1} \varphi_{1}\right) Y_{k-q}\left(e_{2} \mathcal{Y}_{2}\right) \tag{156}
\end{equation*}
$$

where

$$
\cos \theta_{12}=\cos \theta_{1} \cos \theta_{2}+\sin \theta_{1} \sin \theta_{2} \cos \left(\varphi_{1}-\varphi_{2}\right)
$$

If we represent the components of a tensor $T_{q}^{(k)}$ in the scheme $\alpha f m$ and write down (152) in the form of relations between matrices, (152a) tells us that the non-vanishing elements of ($\left.\left.\alpha j m\right|_{T}(k) \mid k^{\prime} j^{\prime} m^{\prime}\right)$
satisfy the selection rule $m-m^{\prime}=q$ and (152b) reduces to (124) if we replace ($\alpha_{j m}\left|T_{q}^{(k)}\right| \alpha_{j}^{\prime} m^{\prime}$) by ($j^{\prime} m^{\prime} k q \mid j j^{\prime} k j m$). Since (124) was sufficient to determine ($j^{\prime} \mathrm{m}$ ' $\mathrm{kq}{ }^{\prime} \mathrm{j}^{\prime} \mathrm{kjm}$) apart from a normalization factor, we obtain

$$
\begin{equation*}
\left(i \hbar j m|m \underset{q}{(k)}| \alpha j^{\prime} m^{\prime}\right)=A\left(j^{\prime} m^{\prime}!q l_{j}^{\prime} \mathrm{kjm}\right), \tag{157}
\end{equation*}
$$

with 1 indenendent of m and q.

In rider to bring out the symetries of the slebsch-mordan cefficiunte, it, will be convenient to introduce the notation

$$
\begin{equation*}
\left(j_{1} m_{2} j_{2} m_{2} j_{1} j_{2} j m_{3}\right)=(-)^{j+m} \sqrt{2 j+1} \quad v\left(j_{1} j_{2} j ; \quad m_{2} m_{2}-m\right) \tag{158}
\end{equation*}
$$

where

$$
v(a b c: \alpha, \beta y)=\delta_{\alpha}+\beta+y(\alpha a b c)
$$

- $\sum_{z}(-)^{c}-\gamma^{\prime}+2 \frac{[(a+\alpha) b(a-\alpha) b(b+\beta) b(b-R) b(c+x) b(c-\gamma) b]^{\frac{1}{2}}}{2 b(a+b-c-z) b(a-x-z) b(b+\beta-2) b(c-b+\alpha+z)!}$.
- $(c-a-\beta+2) b$,
and

$$
\Delta(a b c)=\left[\frac{(a+b-c) b(a+c-b):(b+c-a) b}{(a+b+c+1)!}\right]^{\frac{1}{2}}
$$

The $V(a b s ; c \times 3 X$; thus defired have the sym:etries

$$
\begin{align*}
& V(a b c ; \alpha \beta)=(-)^{a+b-c} V(b a c ; / 3 \alpha \gamma)=(-)^{a+b+c} V(a c b ; \alpha \beta)= \\
& =(-)^{a-b+c} V(c b a ; \gamma / \beta a)=(-)^{2 b} V(c a b ; \gamma / \alpha, s)=(-)^{2 c} V\left(b c a ; \beta \dot{\beta}^{\prime} \alpha\right) \tag{16la}
\end{align*}
$$

and

$$
\begin{equation*}
V\left(a b c ; \alpha / \beta x^{\prime}\right)=(-)^{a+b+c} v\left(a b c ;-\alpha-\beta-\gamma^{\prime}\right), \tag{161b}
\end{equation*}
$$

and they vanish is a, b, c do not satisfy the triangle inequality, or

If one of the numbers $a-|x|, b-|\beta|, c-|y|$ is negative. Further, they satisfy the orthogonality relations

$$
\begin{align*}
& \underset{\alpha, 3}{\Sigma} V(a b c ; \alpha / \beta \gamma) V\left(a b c^{\prime} ; \alpha \beta y^{\prime}\right)=\frac{1}{2 c+1} \delta_{c a^{\prime}} \delta_{X y^{\prime}} \text { or } 0 \text {, } \tag{162}\\
& \sum_{c} y(2 c+2) V(a b c \neq \beta \gamma) V\left(a b c ; \alpha^{\prime} \beta^{\prime} X^{\prime}\right)=\delta_{\alpha \alpha^{\prime}} \delta_{\beta^{\prime} \beta}^{\prime} \text { or } 0 \text {, } \tag{163}
\end{align*}
$$

the zeros occuring if any of the above conditions are violated by the parameters on which there is 10 sumnation.

In terms of the V's thus defined, we write (157) as

$$
\begin{equation*}
\left(\left.\left.\alpha j m\right|_{T}(k)\right|_{q} \alpha^{\prime} j^{\prime} m^{\prime}\right)=(-)^{j+m}\left(\alpha j \mid\left\|_{T}(k)\right\|_{\left.\alpha^{\prime} j^{\prime}\right) V\left(j j j^{\prime} k ;-m m^{\prime} q\right)}\right. \tag{164}
\end{equation*}
$$

This equation divides the physical proyerties of the tensor, which a re described by ($\alpha j\left\|_{T}(k)\right\|_{\alpha} \prime^{\prime}$) from its geometrical properties as described by the V's.

As an example of the utility of this separation we calculate the matrices of the scalar product (155) and find out by (I62) that

$$
\begin{align*}
& \left(\alpha j m\left|\underset{\sim m}{(k)} \cdot v_{i n}^{(k)}\right| \alpha j^{\prime} m^{\prime}\right)= \tag{165}
\end{align*}
$$

which is, as recuired for a scalar, diatonal in j and m and independent of m.

In the practical amplic tions, the most important scalar products are those in wich the two tensors operate on different narts of a system.
(rxamples are ${\underset{m}{1}}^{L_{1}} \cdot \mathrm{~L}_{2}$, describing a counling of the orbital angular momentum of two particles, $P_{k}\left(\cos \omega_{12}\right)$ expressed by (156), or L.S, in which space and spin functions belonging to the same system are coupled). If $\mathrm{T}^{(\mathrm{k})}$ operates on part 1 of the system and ${\underset{\sim}{u}}^{(k)}$ operates on part 2, tren expressed in the scheme $\alpha_{1} x_{2} j_{1} j_{2} j m$, such a product is

$$
\begin{aligned}
& \left(\alpha_{1} \alpha_{2} i_{1} j_{2} j^{m}\left|\left(T_{m}^{(k)} \cdot \underset{\sim}{i n}(k)\right)\right| \alpha_{1}^{\prime} \alpha_{2}^{\prime} j_{1}^{\prime} j_{2} j^{\prime} m^{\prime}\right)=
\end{aligned}
$$

$$
\begin{align*}
& \text { - (} \left.\alpha_{2^{\prime}}^{j_{2} m_{2}}\left|U_{-q}^{(k)}\right| \alpha_{2}^{\prime} j_{2}^{\prime} m_{2}^{\prime}\right)\left(j_{1}^{\prime} m_{1}^{\prime} j_{2}^{\prime} m_{2}^{\prime} \mid j_{1}^{\prime} j_{2}^{\prime} j^{\prime} m\right) . \tag{166}
\end{align*}
$$

تith (153) and (164), this involves surs over the products of four V's; it is found in genral that
 $=\frac{(-)^{e+\cdots+f+t-b}}{2^{e}+1}$ W(abcd; ef) $\delta_{e g} \delta_{E \eta}$,
where

$$
W(\text { Ibcd; ef })=\Delta(a b c) \Delta(c d e) \Delta(a c f) \Delta(b d f)
$$

$n \sum_{z}(-)^{z} \frac{(a+b+c+d+1-z)!}{(a+b-e-z)!(c+d-e-z)!(a+c-f-z)!(b+d-1-z)!}$

- $2 b(e+f-a-d+2) b(e+f-b-c+z) b$

Using (167) wo obtain for (160) the expression

74-

$$
\begin{align*}
& =(-)^{j_{1}}+j_{2}{ }^{\prime}-j\left(\alpha_{1} j_{1}\left\|_{T}(k)\right\|_{\alpha_{1}} j_{1}^{\prime}\right)\left(\alpha_{2} j_{2}\left\|U^{(k)}\right\| \alpha_{2} j_{2}\right) \text { 。 } \\
& \text { - W }\left(j_{1} j_{2} j_{1}^{\prime} j_{2}^{\prime} ; j k\right) \delta_{j j^{\prime}} \delta_{m m^{\prime}} \text {. } \tag{169}
\end{align*}
$$

The geometrical interpentation of this formula is the following. If $\mathrm{T}_{\mathrm{m}}^{(\mathrm{k})}$ is a 2^{k}-fole moment whose average (expectation value) in the Nirection oi j_{1} is $\left(\alpha_{1} j_{1}\left\|T^{(k)}\right\| \alpha_{1} j_{1}\right) / \sqrt{2 j_{1}+I}$ and similarly for $w^{(!s)}$ with j_{2}, then the diagonal elements of their scalar product are riven in the limit of large j_{1} and j_{2} and small k by the roduct of these 2verage values with $P_{k}\left(\hat{j_{1} \hat{j}_{2}}\right)$ where $\widehat{j_{1} j_{2}}$ is the angle between j_{1} and j_{2}; indeed, the asymptotic value of $(-)^{j_{1}}+j_{2}-j W\left(f_{1} j_{2} j_{1} f_{2} ; j k\right)$ in ($\mathbf{3} 69$) is just equal to $P_{k}\left(\hat{j}_{1} j_{2}\right) / \sqrt{\left(2 j_{1}+1\right)\left(2 j_{2}+1\right)}$.

Also, the '7's have many symmetries,

$$
\begin{aligned}
W(a b c d ; e f) & =W(b a d c ; e f)=W(c d a b ; e f)=V_{i}(a c b d ; f e) \\
& =(-)^{e}+f-a-d{ }_{V}(e b c f ; a d)=(-)^{e}+f-b-c_{Y!}(a e f d ; b c) .
\end{aligned}
$$

The "yls are useful also for expressing in the scheme $\alpha j_{1} j_{2}{ }^{j m}$ tha components of a tensor which operates on part 1 or part 2. The matrix elements of $T{ }_{q}^{(k)}$ are

$$
\begin{aligned}
& \left(\alpha j_{1} j_{2} j m\left|T_{q}^{(k)}\right| \alpha^{\prime} j_{1}^{\prime} j_{2}^{\prime} j^{\prime} m_{1}^{\prime}\right)={\underset{m}{1} m_{1}^{\prime} m_{2}}\left(f_{1} j_{2} j m \mid j_{1} j_{2} m_{1} m_{2}\right) \cdot \\
& \cdot\left(\alpha j_{1} m_{1}\left|T_{q}^{(k)}\right| \alpha^{\prime} j_{1}^{\prime} m_{1}^{\prime}\right)\left(j_{1}^{\prime} j_{2}^{\prime} m_{1}^{\prime} m_{2} \mid j_{1}^{\prime} j_{2} j^{\prime} m^{\prime}\right) ;
\end{aligned}
$$

using (164), (167) and the orthogonality relations of the V's, we get

$$
\begin{gather*}
\left(\alpha j_{1} j_{2} j\left\|_{T}(k)\right\|_{\alpha}{ }_{\left.j_{1} j_{2} j^{\prime}\right)=}^{(-)^{\prime}+k-j_{1}^{\prime}-j \sqrt{(2 j+1)\left(2 j^{\prime}+1\right)}}\left(\alpha j_{1}\left\|T{ }_{T}(k)\right\| \alpha_{j_{1}}^{\prime}\right) W\left(j_{1} j j_{1}^{\prime} j_{j}^{\prime} j_{2} k\right)\right.
\end{gather*}
$$

Analogously for $\mathrm{U}^{(k)}$

$$
\begin{gather*}
\left(\alpha j_{1} j_{2}\left\|u^{(k)}\right\| \alpha^{\prime} j_{1} j_{2}^{\prime} j^{\prime}\right)= \\
=(-)^{j_{1}+k-j_{2}-j} \sqrt{(2 j+1)\left(2 j^{\prime}+\overline{1}\right)}\left(\alpha j_{2}\left\|_{u^{(k)}}\right\| \alpha^{\prime} j_{2}^{\prime}\right) w\left(j_{2} j j_{2}^{\prime} j^{\prime} \quad j_{1} k\right) \tag{172}
\end{gather*}
$$

The geometrical interpretation of (171) and (172) is the same as that of (169).

A further use of the W 's is to express the transformation connecting different schemes of parentage: ${ }^{*}$

$$
\begin{align*}
& \left(j_{1} j_{2}\left(j_{12}\right) j_{3}, J \mid j_{1}, j_{2} j_{3}\left(j_{23}\right) J\right)= \\
= & \sqrt{\left(2 j_{12}-\bar{l}\right)\left(2 j_{23}+1\right) W\left(j_{1} j_{2} J j_{3} ; j_{12} j_{23}\right) .} \tag{173}
\end{align*}
$$

In general, every quantity which is invariant under rotations in three dimensions and therefore does not depend on the choice of axes or on m can be expressed in terma of the double-barred matrices and the wis.

S6. Tensor Operators and Lie Groups.
In lecture 4 we were not able to construct the matrices which decompose the k ronecker product of two representations because we did

[^7]not even possess a complete scheme, except, of course, in the case of the group O_{3}. Now that we have a nearly canplete scheme, the way is open to a further attempt. But the scheme we have achieved is not that of the weights, in which the H_{i} are diagonal, but it is a new scheme characterizing the physical problem, and one in which T S I $M_{T} M_{S} M_{L}$ are diagonal. Together with the diagonality of the H_{i} we have also lost the selection rules for the operators E_{α}; it is, therefore, convenient also to change to a basis of the infinitesimal operators of the croup which fits the new scheme better. We shall see that such a basis can be given in terms of an appropriate set of tensor operators.

Let us consider the unit tensor onerators defined by

$$
\begin{equation*}
\left(n \ell\left\|_{u}(k)\right\|_{n}{ }^{\prime} l^{\prime}\right)=\delta_{n r^{\prime}} \delta \ell\left(\ell^{\prime}\right. \tag{174}
\end{equation*}
$$

which connect only states within the same shell. The matrices of these operators are, by (164)

$$
\begin{equation*}
\left(\ell_{\mathrm{m}}\left|{ }_{\mathrm{u}}^{(\mathrm{k})}\right| \ell_{\mathrm{q}}{ }_{\mathrm{m}}{ }^{\prime}\right)=(-)^{\ell+m} \mathrm{v}\left(\ell_{\mathrm{k}} ;-\pi \ell^{\prime} \mathrm{q}\right) ; \tag{175}
\end{equation*}
$$

for every value of k there are $2 k+1$ matrices of this kind with $2 \ell+1$ rows and columns; since V vanishes for $k>2 \ell$, this gives a total of $(2 l+1)^{2}$ matrices for each ℓ.

It is easy to verify that the tensor product of two u's, as defined by (153), 13 Eiven by a tensor X which satisfies

$$
\left(\ell\left\|x^{(K)}\right\| \ell^{\prime}\right)=(-)^{k_{1}+k_{2}-K} \sqrt{2 K+1} \text { w }\left(k_{1} \ell_{k_{2}} \ell ; \ell_{K}\right)
$$

and hence

$$
\begin{equation*}
X_{Q}^{(K)}=(-)^{k_{1}+k_{2}-K} \sqrt{2 K+1} \quad W\left(k_{1} l_{k_{2}} l_{;} \ell_{K}\right) u_{Q}^{(K)}, \tag{1.76}
\end{equation*}
$$

while the commatator of two $\mathrm{u}^{\prime} \mathrm{s}$ is given by
where the prime on the summation indicates that, owing to the symmetries of the Clebsch-Gordan coefficients, the sum is to be taken only over values of K for which $k_{1}+k_{2}-K$ is odd. (277) is of the form (14) and hence defines the structure of a Lie group.

In virtue of the orthogonality relations (162), the $(2 l+1)^{2}$ matrices (175) are linearly independent. Since they are of degree $2 l+1$, they form a linearly complete set of matrices of this degree; it follows that the structure defined by (177) is that of the full linear group in $2 l+1$ dimensions and of its unitary subgroup $v_{2} l+1^{\circ}$

For a system of n particles we can define a set of $u^{(k)}$ ($i=1,2 \ldots n$), each operating on one particle, and we can construct the symmetrical tensors

$$
\begin{equation*}
{\underset{m}{U}}_{(k)}^{(k)} \sum_{i=1}^{n}{\underset{m i}{u}}_{(k)}^{(k)} \tag{178}
\end{equation*}
$$

operating on the whole system. It is evident that the ${\underset{m}{\mathrm{~m}}}_{\mathrm{q}}^{(\mathrm{k})}$ also satisfy the commutation relations (177). The natrices of the $\underset{\sim}{U}(k)$ in the scheme (143) will therefore be the representations $f l_{\Sigma}$ of the infinitesimal operators of $U_{2} \ell+1$ -

From (177) it is also seen that commutators of tensors of odd degree are linear combinations of arain only such tensors; hence, the tensors $\mathrm{U}^{(\mathrm{K})}$ of odd degree are the infinitesimal operators of a suogroup
of the group $U_{2} \ell+1$. It is easy to see that this subgroup is the orthogonal subgroup $R_{2} \ell+1$ which leaves invariant the bilinear form (137), the eigenfunction of the s-state of ℓ^{2}; indeed the matrix elements ($\left.\left.\ell^{2}{ }_{L M}\right|_{U} ^{(k)} \underset{q}{(k)} \mid \ell^{2} S 0\right)$ vanish according to the triangular condition unless $k=L$, and vanish for odd L because the two states have different parity. The matrices $U(\underset{q}{(k)}$ with odd k in the scheme (143) will therefore be the representations $\$ W_{W}$ of the infinitesimal operators of $R_{2} \ell+1$.

According to (164) the problem of the construction of the representations of $R_{2} \ell+1$ and $U_{2} \ell+1$ is reduced to the construction of the double-barred matrices of the $\mathrm{U}^{(k)}$, and the problem of constructing the factors ($W_{1} X_{1} L_{1} ;(1) \ell \mid w(L)$ and $\left(\Sigma_{1} B_{1} W_{1} ;1 \mid \Sigma / S W\right)$ of (150) is reduced to the construction of the similarity transformation whic? decomposes these matrices for odd and even k respectively. §7. Calculation of the Coefficients of Fractional Parentage.
 to construct for every odd $k<2 \ell$ the matrices

$$
\begin{equation*}
\left(w_{1} X_{1}^{\prime} L_{1} \ell_{L}\left\|_{U}^{(k)}\right\|_{T_{1}} X_{1}^{\prime} L_{1}^{\prime} \ell_{L^{\prime}}^{\prime}\right) \tag{179}
\end{equation*}
$$

where $U_{W}^{(k)}=U_{m i}^{(k)}+{\underset{u m}{u}}_{(k)}^{(k)}$. This can be done by using equations (171) and (172) if we already know ($W_{1} X_{1} I_{1}\left\|U_{1}^{(k)}\right\| W_{1} \|_{1}^{\prime \prime} L_{1}^{\prime}$)。 The transformation matrix which decomposes (179) is $\left(W_{1} \int_{I} L_{I} ;(I) L \mid w\right)(L)$.

If we are not interested in the matrices of $\mathrm{Um}^{(k)}$ per se but only in these transformation coefficients, it is sufficient to choose
one particular add value of $k>1$, e.g., $k=3 . k=1$ does not serve our purpose because $\mathrm{U}^{(1)}$ is proportional to L and is therefore already diagonal in our scheme.

As an examie we shall calculate the coefficients

$$
\begin{equation*}
\left((20) \mathrm{L}_{1} ;(1) \mathrm{d} \mid \mathrm{rL}\right) \tag{1.80}
\end{equation*}
$$

for the erfiruration d^{n}. Fe first construct

$$
\begin{equation*}
\left(d^{2}!\left\|u^{(3)}+u_{2}^{(3)}\right\| d^{2} L^{1}\right) \tag{181}
\end{equation*}
$$

inr whin, usine (174), (171), (172) and Table I, we obtain the matrix

where the idmatication of the values of 16 to which these constituents
belong has been made by the use of the branching laws as explained in detail in reference 26.

Now it is possible to obtain by the same method

$$
\begin{equation*}
\left((20) L_{I} d L\left\|U^{(3)}+u^{(3)}\right\|(20) L_{1}^{\prime} d L^{\prime}\right) \tag{184}
\end{equation*}
$$

but we shall see that in order to calculate (180) it is sufficient to know the last row of (184) which is

$$
\begin{equation*}
\left((20) \operatorname{GdI}\left\|U^{(3)}+u^{(3)}\right\|(20) L_{l}^{j} d L^{\prime}\right) . \tag{185}
\end{equation*}
$$

By the use of (183) and Table II we obtain (185) as the sum of

$$
A=\left((20) \operatorname{GdI}\left\|_{U_{1}}^{(3)}\right\|(20) L_{1}^{\prime}{ }^{\prime} L^{\prime}\right)
$$

and

$$
B=\left((20) \operatorname{CdI}\left\|_{u^{(}}{ }^{(3)}\right\|(20) \mathrm{G} d L^{\prime}\right):
$$

It is possible to deduce from the branching laws that
 these three representations belong the states $D, P D F G H$, and $S F G I$ rospectively. Hence, the transformation matrix which decomposes (184)
by bringing it into the form

$$
\begin{equation*}
\left(W_{L}\left\|U^{(3)}\right\| \cdots T^{\prime}\right) \tag{186}
\end{equation*}
$$

will have the structure
(30)

where the stars denote the non-vanishing matrix elements which have to be calculated. It follows from the form of (187) that the row (30)I of (136) is obtained simply by multiplying the row (185), which has the elements (1851), with the columns of the transpose of (187). The selection rule which follows from the requirement that (186) is to be deconposed, in conjunction with all the available orthogonality and reciprocity relations, permits us to deternine, apart from arbitrary phases, all elements of the matrix (187). They are contained in Table III.

$$
\begin{align*}
& \text { By reciprocity we mean the relation } \\
& \left(\text { w } X_{L} w_{1} \gamma_{1}^{\prime} L_{1} ;-\ell\right) \sqrt{\frac{2 L_{1}+1}{2 L+1}} \frac{g_{N}}{S W_{1}}(-)^{L}-L_{1}+x\left(w_{1} \chi_{1} L_{1} \mid w \gamma_{L} ; l\right) \tag{188}
\end{align*}
$$

where $g_{T T}$ and $g_{n T I}$ are the degrces of the representations and x is a phase which may be chosen arbitrarily for cuery pair $T_{1} W_{1}$ but which is independent of the L's. This relatinn is proved in reference 23 ,
equation (46); since its proof is based on the fact that the identity representation appears in the decomposition of $\mathbb{W}_{\mathrm{W}} \times \mathrm{S}_{\mathrm{W}}$, such a relation does not hold for the unitary group.

The calculation of

$$
\begin{equation*}
\left(\Sigma \beta W \Sigma_{1} / \beta_{1} W_{1} ; \quad1\right) \tag{189}
\end{equation*}
$$

can be carried out in an analogous fashion, using $\bigcup^{(2)}$ rather than $\mathrm{U}^{(3)}$. The result for the conficuration d^{3} is given in Table IV. For the coefficients of the spin functions, corresponding to the passage from R_{6} to $R_{3} \times R_{3}$, the infinitesimal operators of the two groups R_{3} are $\left.T_{g}, T_{\eta}, T\right\}$ and $\sigma_{x}, \sigma_{y}, \sigma_{z}$; the infinitesimal operators of R_{6} are, in addition to these, $x_{\text {or }}=T_{g} \sigma_{r}$, which form a tensor, or better a double vector with one foot in the isotopicspin space and one in the spin space. The construction of the matrices

$$
\begin{equation*}
\left(\Sigma^{*} \alpha \quad T S\|X\| \Sigma^{*} \alpha_{1} T_{1} S_{1}\right) \tag{190}
\end{equation*}
$$

and the decomposition of the corresponding Kronecker products can be done in the same way as before. (For $n=3$, see Table V).

For the construction of the coefficients

$$
\begin{equation*}
\left(\ln \Sigma \mid \ell n-\Sigma_{1} ; \ell_{[1])}\right. \tag{191}
\end{equation*}
$$

the calculation is based not on the properties of Lie eroups, but rether on those of the permutation groups, π_{n}. The result, which We give here without proofs is very simple:

$$
\begin{equation*}
\left(\ln _{\Sigma} \mid \ell^{n-1} \varepsilon_{1} ; f[1]\right)= \pm \sqrt{\frac{\varepsilon_{\Sigma_{1}}}{g_{\Sigma}}} \tag{192}
\end{equation*}
$$

where $G_{\mathcal{L}}$ is the degree of tha representation of π_{n} which is charactirized by the partition Σ. The sign depends on the choice of sign made for the other coefficients. For $n=3$ they are given in Table VI.

	S	P	table	W(2L2L F	23).
S	0	0	0.	$\frac{1}{\sqrt{35}}$	0
P	0	0	$\frac{\sqrt{2}}{5 \sqrt{7}}$	$\frac{1}{\sqrt{70}}$	$\frac{-1}{\sqrt{210}}$
D	0	$\frac{\sqrt{2}}{5 \sqrt{7}}$	$\frac{4}{35}$	$\frac{\sqrt{3}}{35 \sqrt{2}}$	$\frac{-1}{7 \sqrt{2}}$
F	$\frac{1}{\sqrt{35}}$	$\frac{1}{\sqrt{70}}$	$\frac{\sqrt{3}}{35 \sqrt{2}}$	$\frac{-\sqrt{3}}{24 \sqrt{5}}$	$\frac{-\sqrt{11}}{14 \sqrt{5}}$
G	0	$\frac{-1}{\sqrt{210}}$	$\frac{-1}{7 \sqrt{2}}$	$\frac{-\sqrt{11}}{14 \sqrt{5}}$	$\frac{-\sqrt{17}}{42}$

TABLE II.

-85-

TABLS IIT. (WL $\left.\mid W_{1} L_{1} ;(1) d\right)$.

TABLE IV. $\left(E W \mid \Sigma_{1} I_{1} ;1\right)$ for a^{3}.

TMBLEV. ($\left.\Sigma^{*} T S \backslash \Sigma_{1}^{*} T_{1} S_{1} ;[1]^{\frac{1}{2}} \frac{1}{2}\right)$ for $n=3$.

TMDLi VI. $\left(X^{3} \Sigma \mid X^{2} \Sigma_{1} ;([1])\right.$.

Σ_{1}	$[11]$	$[20]$
$[121]$	1	0
$[210]$	$\frac{-1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$
$[300]$	0	1

$$
-88
$$

Bibliography.

15) E.U. Condon and G.II. Shortley, The Theory of Atomic Spectra, Cambridge, 1935.
16) H. Weyl, Grungentheorie und Quantenmechanik, second edition, Teipzig, 1931.
17) C. Tekart, Rev. IIod. Phys., 2, 305, (1930).
18) E.P. Pigner, Gruppentheorie und ihre Anwendung auf die Quantenmechanth der Atomspektren, Braunschweig, 1931.
19) B.L. van der Wrerdea, Die Grupjentheoretische Methode in der Quantemernanik, Perlin 1932.
20) G. Racah, Phys. Pova, 61, 186 (1942).
21) G. Racah, Thys. Rev. 52,438 (1942).
22) G. Racah, Phys. Rcv., $\mathbf{3} 3,367$ (1943).
23) G. Racah, Phys. Rev. 76, 1352 (1249)
24) E.P. Wigner and \because Feenberg, Peports on Progress in Physics, VIII, 274 (1941). This review article contains reerences to all earlier therretical payers on nuclear spectroscopy.
25) G. Racah, Rev. sod. Fhys., 21, 494 (1949).
26) H.A. Jahn, Proc. Toy. Joc., 1201, 516 (1950).
where the coefficients F^{k} arn given by

$$
\begin{equation*}
F^{k}=/ \int J_{k}\left(r_{1}, r_{2}\right) R_{1_{1}}^{2} l_{1}\left(r_{1}\right) R_{n_{2}}^{2} l_{2}\left(r_{2}\right) d r_{1} d r_{2}, \tag{197}
\end{equation*}
$$

which is called the seneralized Slater integral.

It is internsting to note that the clascical Slater interrals, which were defined for $J\left(r_{12}\right)=\frac{e^{2}}{r_{12}}$ are decreasing functions of k. But, if instead of a Coulomb interaction we have a sort range interaction, F^{k} may no longer decrease with k. On the contrary, it is easy to see tiat for $J\left(r_{1}\right)=\delta\left(\overrightarrow{r_{1}}-\overrightarrow{r_{2}}\right)$ which is the limiting wase of short range interaction, one has

$$
\begin{equation*}
F^{k}=(2 k+1) F^{0} \tag{198}
\end{equation*}
$$

For the garticular case in which we are interested, of two particles in the same sheil, (196) reduces to

If, instead of a ifner interaction we have some :ind of exchange interaction, tire sign of this expression has to he chanfed for some values of 7,3 , and T .
§2. The Group-Theoretical Classification of the Interactions.
The ceneral formula for ealculating the energy matrix for a system of n equivalent particles was siven by (132), but since the α is stand for a set of many quantum numbers which may assume many
different values, the sumnation of (132) is very lons and has to be split up into a set of independent smaller sumations. This is made possible by the factorization of the c.f.p. and by a similar factorization of the energy matrix which we shall discuss now.

We have seen in $\oint 5$ of Lectures 5 and 6 that there is a relation between the Clebsch-Gordan coefficients and the matrix elements of the components of the irreducible tensor operators. But the relation (157), which is a property of the group R_{3}, may be generalized to any other group if we adopt the general standpoint of Eckart and Figner.

If G is a group whose irreducible representations X have rows and columns characterized by χ, and $T(\Omega \omega)$ is an operator which has the seme transformation properties with respect to the group as the element ω of the basis of the representation Ω of G, then, in analogy to (157), the matrix element $\left(X^{\prime} X^{\prime}|T(\Omega \omega)| x X\right.$) will be proportional to the matrix element ($x \Omega x^{1} X^{\prime}|x\rangle(\Omega(\omega)$ of the transformation which decomposes the Kronecker product $\mathrm{X} \times \Omega$. In the particular case that G is the group $\left.U_{L(2} \ell+1\right)$ and X is. A_{n} (cr. p. 62), we have

$$
\begin{equation*}
\left(\ell^{n} \Gamma_{1}|T(\Omega \omega)| \ln \Gamma\right)=c\left(A_{n} \Omega A_{n} \Gamma^{\prime} \mid A_{n} \Gamma \Omega \omega\right), \tag{200}
\end{equation*}
$$

and, if we assume for A_{n} and Ω the scheme (143), this matrix eleaent may be factorized according to (148).

Since a central and charge-independent interaction is a scalar
with respect to the three-dimensional rotations in coordinate space, spin space, and isotropic-spin space, it follows that the energy matrix is diagonal with respect to T S L and is independent of $M_{T} M_{L}$, as is well known.

Unfortinately, the interaction is not an irreducible tensor operator with respect to the group $\mathbb{J}_{4}(2 l+1)$ and to its subgroups which were used to classify the states of ℓ^{n}. Ve shall, therefore, as a first step decompose the interaction operator into a sum of interactions which are coxponents of irreducible tensor operators, and then calculate the energy matrices of these particular interactions, using (250) and the factorization which follows from (200) and (214) to simplify the surations (132).

In general, the interaction operator will be a tensor of some kind which is reducible with respect to $\left.\dot{U}_{4(2} \ell+1\right)$, and, if for the time being we linit ourselves to a spin-independent interaction (migner or Sajorana), it will be a scalar with respect to U_{4} and a tensor with respect to $\mathrm{U}_{2} \ell+1$.

In order to identify the irreducible parts of this tensor, we start by considering an operator which operates on the space coordinates of a single particle in a given shell. Since it has to be a linear transformation in the $2 \ell+1$-dimensional space, it will be a tensor of the second rank with one covariant and one contravariant indec. It was stated on p. 55 that the components of a (contravariant)
vector are the basis of the representation $H_{[10 ~ \ldots0 .0] ~}$ analogously, the components of a covariant vector are the basis of the representation $\ell_{[00 \ldots . . .0-1]^{;}}$hence the components of a mixed tensor of rank two are the basis of the reducible representation

$$
\begin{equation*}
\mathcal{H}_{[10 ~0]} \times H_{[00 . \ldots0-1]} \tag{201}
\end{equation*}
$$

which decomposes into $\mathscr{X}_{[0 \ldots . . .0]}+\mathcal{H}_{[10 \ldots . . .0-1]^{*}}$ (This decomposition corresponds to separating the trace from the traceless part of the mixed tensor).

The interaction between two particles is expressed according to (196) as a sum of products of operators operating on the two particles, and will, therefore, belong to the basis of the reducible representation

$$
\begin{equation*}
\left(H_{[0 \ldots 0]}+H_{[10 \ldots 0-1]}\right) \times\left(X_{[0 \ldots 0]}+\mathcal{L}_{[10 \ldots 0-1]}\right) \tag{202}
\end{equation*}
$$

of $U_{2} \ell+1$.

If we decompose the representation (202) into its irreuncible components and adopt a scheme in which 7 and L are diagonal, as we dide in $\oint 3$ of Lectures 5 and 6 for the classification of the atates, then, since the interaction is a scalar in the three-dimensional space, it will anpear as a linear combination of the different basis olenents which are classified as $\mathbf{3}$-states in this scheme.

Since $\mathcal{H}_{[10 \ldots 0]}$ and $\mathcal{H}_{[0 \ldots 0-1]}$ are in R_{3} the representation $D_{2 l} \ell,(201)$ is the representation $D \ell x D l$ which decomposes into $\sum_{i=0}^{2 l} D_{L}$, and it follows that in the basis of (202) there are $2 l+1$ independent invariants with respect to R_{3} which have various tonsorial characters in $U_{2} \ell+1$ and $\mathbb{R}_{2} \ell+1$. It may be shown by the branching laws that two of them are invariants, also, with respect to $U_{2} \ell+1$ and $R_{2} l+1$. One is still on invariant with respect to $R_{2} \ell+1$, but with respect to $U_{2} l+1$ it belongs to the representation with highest weight $[20 \ldots 0-2]$. The other scalars are, in the scheme (143), of the following kinds: [20 ... 0-2] (22) s , $[20 \ldots 0-2](40) s,[110 \ldots 0-1-1]$ (22) s, $[110 \ldots 0-1-1]$ (1111) S .

The decomposition of the interaction (196) into its irreducible
parts may be made in a general way based on the fractional parentages of the different representations, as was done for f^{n} in reference 23 , $\int 6,1$, but we shall consider here only the configurations d^{n} and follow a more empirical method.

Any kind of spin-independent interaction $\mathrm{E}^{(\lambda)}$ will be represented in the d^{2} configuration by a diagonal matrix

$$
\begin{equation*}
\left(\left.d^{2} L M\right|_{E}(\lambda) \mid d^{2} L M\right)=e^{(}(\lambda) \tag{203}
\end{equation*}
$$

and ::e have to calculate $f(\lambda)(L)$ for the different irreducible parts into which the interaction (199) decomposes. The result is tabulated here:

Interaction				States of d^{2}					
Name	Tensorial character		L	$\begin{aligned} & \sum: \\ & W: \\ & \text { L: } \end{aligned}$	$\begin{gathered} {[11]} \\ (11) \\ P \end{gathered}$	$\begin{gathered} {[21]} \\ (12) \\ F \end{gathered}$	$\begin{gathered} {[20]} \\ (00) \\ \mathrm{S} \\ \hline \end{gathered}$	$\begin{gathered} {[20} \\ (20) \\ D \end{gathered}$	$\begin{gathered} 20] \\ (20) \\ G \end{gathered}$
	Σ	W							
${ }_{2}(\alpha)$	[00000]		S		1	1	1	1	1
$E_{E}(\beta)$	[00000]	(00)	S		-1	-1	1	1	1
E (γ)	[2000-2]	(0)	S		0	0	-14	1	1
$E_{\text {(E) }}$	[2000-2]		5		0	0	0	-9	5
$E^{(f)}$	[110-1-1]	(22)	S		-7	3	0	0	0

This table was obtained as follows: according to Schur's leuna $f^{(\alpha)}$ and $f^{(}(\beta)$ have to be constant for states belonging to the same value of $\& ;$ any linear combination of them has this property and the choice is determined anly by cmsiderations of simplicity. $f(\gamma)$ mast be constant for states belonging to the same value of $\overline{\mathrm{W}}$; moreover, according to (200) and in virtue of the orthogonality of the transformation matrices, $f(y)$ has to be orthogonal to both $f^{(x)}$ and $f^{(} /(3)$ (if we consider every value of L with its $(2 \Sigma+1)$-fold degeneracy). $\quad(\mathcal{I})$ and $f(\zeta)$ must be orthogonal to $f^{(k)}, p^{(\beta)}$ and $f(X)$; and, in addition $f^{(\ell)}$ has to vanish for $\varepsilon=[11]$ since $\mathcal{H l}_{\text {[11] }}$ does not appear in the decomposition of the Kronecker product $\mathcal{H}_{[11]} \times \mathcal{X}_{[2000-2]}$ and $f(\eta)$ has to vanish for $\Sigma=[20]$ because $\mathcal{H E}_{[20]}$ does not appear in the decauposition of the Kronecker product $H_{[20]} \times$ 代 $_{[110-1-1]^{\circ}}$ (These selection rules are the analogs for $\mathrm{U}_{2} l+1$ of the trian oular conditions for R_{3}).

The perturbation energy $\mathbb{E}(L)$ of the configuration d^{2} for an ordinary (Migner) Interaction may be obtained from (199). In order to avoid the appearance of iractional coefficients we introduce the standard normalization*

$$
\begin{equation*}
F_{0}=F^{0}, F_{2}=F^{2} / 49, \quad F_{L}=F^{4} / 44, \tag{2014}
\end{equation*}
$$

and write for the energy**

$$
\begin{align*}
& E(S)=F_{0}+工 H_{2}+126 F_{4} \\
& E(P)=F_{0}+7 F_{2}-84 F_{4} \\
& E(D)=F_{0}-3 F_{2}+36 F_{4} \tag{205}\\
& E(D)=F_{0}-8 F_{2}-9 F_{4} \\
& E(G)=F_{0}+4 F_{2}+F_{4}
\end{align*}
$$

These results may be expressed in terms of the irreducible interactions by

$$
\begin{gather*}
F_{W}=E^{(\alpha)} F_{0}+\left(-\frac{7}{12} E^{(\alpha)}+\frac{35}{12} E^{(\beta)}-\frac{5}{6} \mathrm{E}^{(X)}\right)\left(F_{2}+9 F_{4}\right)+\frac{1}{2}\left(\mathrm{E}^{(\varepsilon)}-3 \mathrm{E}^{(\zeta)}\right) \\
\cdot\left(F_{2}-5 F_{4}\right) \tag{206}
\end{gather*}
$$

The corresponding expression for the Majorana interaction is obtained by interchanging $\mathrm{E}^{(X)}$ and $\mathrm{E}^{(\beta)}$ and changing the sign of $\mathrm{E}^{(\mathcal{Y}}$:

$$
V_{M}=E(\beta) F_{0}+\left(\frac{35}{12} E^{(\alpha)}-\frac{7}{12} E^{(\beta)}-\frac{5}{6} E(\gamma)\right)\left(F_{2}+9 F_{4}\right)+\frac{1}{2}\left(E^{(\varepsilon)}+3 E(\zeta)\right)
$$

$$
\begin{equation*}
\cdot\left(F_{2}-5 F_{4}\right) \tag{207}
\end{equation*}
$$

F Reference 15, p. 177.
Reforence 15, p. 202.

§ 3. The Calculation of the Energy Matrices.

When we go from d^{2} to d^{n}, the summation over the different pairs of particles can be carried out very simply for the interactions $E^{(\alpha)}$ and $E^{(\beta)}$:

$$
\begin{align*}
& \sum_{i<k}^{E} \sum_{i k}^{(\alpha)}=\frac{1}{2} n(n-1) \tag{208a}\\
& i<k E_{i k}^{(\alpha)}=u \tag{208b}
\end{align*}
$$

where \mathbb{E} is the eigenvalue in the unperturbed state of the Plajorana operator and can be expressed as a function of the partition $\Sigma^{*}=\left(\Lambda_{1}, \Lambda_{2}, \Lambda_{3}, \Lambda_{4}\right):^{*}$

$$
\begin{equation*}
\left.n=-\frac{1}{2} \Lambda_{1}\left(\Lambda_{1}-1\right)+\Lambda_{2}\left(\Lambda_{2}-3\right)+\Lambda_{3}\left(\Lambda_{3}-5\right)+\Lambda_{4}\left(\Lambda_{4}-7\right)\right\} \tag{209}
\end{equation*}
$$

We can also obtain $\sum_{1<k} \sum_{i k}^{(\gamma)}$ in closed form by using the Casimir operator for the group R_{5} : it follows from (106) that for R_{5} the eigenvalues of this operator are

$$
\begin{equation*}
g(w)=w_{1}\left(w_{1}+3\right)+w_{2}\left(w_{2}+1\right), \tag{210}
\end{equation*}
$$

so that in particular,

$$
\begin{equation*}
g(\infty)=0, \quad g(10)=4, \quad g(12)=6 ; \quad g(20)=10 \tag{210'}
\end{equation*}
$$

We can therefore write

$$
\begin{equation*}
E(\gamma)=\frac{3}{2}[E(\gamma)-2 g(10)]-\frac{5}{2} E(\beta)+\frac{1}{2} E_{E}(\alpha) \tag{213}
\end{equation*}
$$

[^8]and then find for d^{n} *
\[

$$
\begin{align*}
\sum_{i<k}^{\sum} E_{i k}^{(\gamma)}=\frac{3}{2}[g(\bar{n}) & -n g(10)]-\frac{5}{2} \sum_{i<k} E_{i k}^{(3)}+\sum_{i<k}^{\frac{1}{2}} E_{i k}^{(\alpha)} \\
& =\frac{3}{2} E(n)-\frac{5}{2} n+\frac{1}{4} n(n-25) . \tag{212}
\end{align*}
$$
\]

In a similar may it is easy to see that

$$
\begin{equation*}
E^{(E)}+E^{(\zeta)}=L(L+1)-\frac{3}{2} g(i), \tag{213}
\end{equation*}
$$

so that also for n d-particles,

$$
\begin{equation*}
\sum_{i<k}^{\Sigma}\left(\mathbb{E}_{i k}^{(\xi)}+\mathbb{E}_{1 k}^{(\zeta)}\right)=L(L+1)-\frac{3}{2} g(V) . \tag{214}
\end{equation*}
$$

The calculation of the energy matrices for the interactions $\mathbf{E}^{(\varepsilon)}$. and $\mathrm{E}^{(\zeta)}$ separately has to be made by the use of (232); actually, owing to (214) it is sufficient to calculate

$$
\begin{equation*}
x={\underset{i<k}{\frac{1}{2}} \sum_{i k}\left(E_{i k}^{(\varepsilon)}-E_{i k}^{(J)}\right), ~, ~}_{\text {in }} \tag{215}
\end{equation*}
$$

which will be of the form
 Although from (148) one might expect the factorization on the right hand side to be a complete one, this is not so because (4 l 8) did not represent the most general case. It contains the implicit assumption that in the decomposition of $U_{\mathcal{B}_{1}} \times U_{B_{2}}$ the representation U_{B} appears only once, and this was actually the case when $U_{B_{2}}$ was a representation which had as its basis the staties of one particle in a given sholl. However, now that $\mathrm{U}_{\mathrm{B}_{2}}$ is the representation to which the interaction operator belongs, viz. D(22), we need (148) in its most general form,**

[^9]and this still involves a sumption. The number of terms in this summation, r, equals the number of times that \mathbb{D}_{W} appears in the reduction of $B_{T:} \times \mathscr{S}_{(22)^{\prime}}$ and it follows from the branching laws that it can never exceed three.

Introducing (216) and (150) in (132), we obtain

$$
\left(d^{n} \Sigma \beta W \gamma^{L}|x| d^{n} \Sigma \beta^{W} W^{I} \gamma(L)=\right.
$$

$$
\begin{align*}
& -\Sigma_{1} \beta_{1} \beta_{1}^{\prime} w_{1} W_{1}^{\prime} \gamma_{1} \gamma_{1}^{\prime} L_{1}^{\prime} \rho_{1} \\
& \therefore\left(\left.\varepsilon_{1} \beta_{1}{ }_{1}\right|_{1}{ }_{A_{1}} \mid \Sigma_{1} \beta_{1}^{\prime} w_{1}^{\prime}\right)\left(w_{1}\left|\Psi_{f}\left(\gamma_{1} \gamma_{1}^{\prime} \Sigma_{1}\right)\right| w_{1}^{\prime}\right) \tag{217}
\end{align*}
$$

- ($\left.H_{1}^{\prime} \gamma_{1}^{\prime} I_{1} ;(1) d W^{\prime} \gamma^{\prime} L\right)\left(\Sigma_{1} \beta_{1}^{\prime} 1_{1}^{\prime} ;1 \mid \Sigma \beta r^{1}\right)\left(d^{n-1} \Sigma_{1} ; d[1] \mid d^{n} \Sigma\right)$.

We perform at first the sumption

which, owing to the tenscrial properties of the Ψ_{ρ} will be a linear
 independent of $j \gamma^{1}$ and $\mathrm{L}:$

$$
=\Sigma_{\rho}\left(\pi\left|x_{\rho}\left(W_{1} w_{1}^{1} \rho_{1}\right)\right| \nabla_{1}\right)\left(w \mid \Psi_{\rho}\left(\left.\gamma \gamma^{(L)}\right|_{V 1}\right) .\right.
$$

When the $\left(W\left|\Psi_{f}\left(j \gamma^{\prime L}\right)\right|\right.$ wi are known, in order to obtain the coefficients of the linear combination, it suffices, to perform the summation (218) for only a few values of γ / γ : and L

Then we calculate

$$
\begin{equation*}
\text { - } \left.\left(\Sigma_{1} \beta_{1} W_{1}\left|A_{\rho I}\right| \Sigma_{1} \beta_{1}^{\prime} W_{1}^{\prime}\right)\left(w\left|x_{j}\left(W_{1} W_{1}^{\prime} \rho_{1}\right)\right| w i\right)\left(\Sigma_{1} \beta_{1}^{\prime} W_{1}^{\prime}\right\}1 \mid \Sigma \beta w\right) \tag{219}
\end{equation*}
$$

and obtain finally

In the particular case of a δ-interaction, which is the limit of forces with very short range: it follows from (198) and (204) that $F_{2}-5 \mathbf{F}_{4}$ vanishes and, therefore, the energies of the Wigner interaction may in this particular case be expressed in closed form:

$$
\begin{equation*}
V=\frac{5}{14} F_{0}[n(n+3)+L u-E(N)] \tag{221}
\end{equation*}
$$

by introducing (208a), (208b) and (212) into (206). Further, Wigner and Majorana interactions beconc equal for a δ-interaction.

Sven if the interaction is not a δ-function, but is still of short range (compared with $t: e$ dimensions of the nuclei), as is the case for nuclear interactions, the most important contributions to the energy come from $E^{(\alpha)}, 5^{(\beta)}$ and $E^{(\gamma)}$, and the lowest levels are those with the smallest values of $G(W)$. These levels belong to $W=(00)$ for even nuclei and to $w=(10)$ for odd nuclei. since $B_{(\infty)} x_{(22)}=\mathscr{W}_{(22)}$ and
 or $W=W_{i}=(10), r$ vanishes in (216), i.e., for the levels belonging to these values of W the diagonal element of X vanishes. It must be
remembered here that the Π are not good quantum numbers; however, they are fairly good quantum numbers for short range forces, so that it is possible to calculate the lowest level of a configuration d^{n} without calculating the matrix of X. §4. Spin-Dependent Interactions.

As in our previous discussion, we shall limit ourselves to the d^{n} shell in discussing spin-dependent interactions of the Bartlett and Heisenberg types, although the method is applicable to any nuclear shell. In addition to the five spin-independent irreducible interactions tabulated on page 95, we have now five which depend on the spin and which may be obtained in the same manner:

In this table Σ^{\prime} characterizes the representation $\xi_{\Sigma, 1}$ of U_{4} and Σ characterizes the representation \mathcal{f}_{2} of U_{5} to which the interactions belong.

The Bartlett and Heisenb 3 rg interactions must now be expressed in terms of these interactions, and it is easy to see that

$$
\begin{align*}
& \nabla_{B}+\nabla_{H}=2 E(\eta)\left[F_{0}+\frac{7}{3}\left(F_{2}+9 F_{4}\right)\right]-\frac{5}{3} E^{(j i)}\left(F_{2}+9 F_{4}\right)+E^{\left(\varepsilon^{\prime}\right)}\left(F_{2}-5 F_{4}\right) \tag{222}\\
& v_{B}-\nabla_{H}=\frac{2}{5}\left(E^{(0)}+2 E^{(x)}-2 \Psi^{(\beta)}\right)\left[F_{0}-\frac{7}{2}\left(F_{2}+9 F_{L}\right)\right]-\frac{3}{5}\left(\Gamma^{\left(Y^{\prime}\right)}+4 E^{(\zeta)}\right) . \\
& \text { - }\left(F_{2}-5 F_{4}\right) \text {. } \tag{223}
\end{align*}
$$

It is also easy to show that

$$
\begin{equation*}
2 \Sigma{ }_{1<k} \mathbb{E}_{i k}^{(V)}=S(S+1)-T(T+1) \tag{224}
\end{equation*}
$$

and
$\frac{2}{5} \sum_{1<k}\left(E_{i k}^{(0)}+2 E_{i k}^{(\alpha)}-2 E_{i k}^{(\beta)}\right)=S(S+1)+T(T+1)+\frac{1}{2} n(n-4)$.
The calculation of the enercy matrices for the interactions $\mathrm{E}^{(}\left(\gamma^{\prime}\right), \mathrm{E}^{\left(\varepsilon^{1}\right)}$, and $I\left(Y^{1}\right)$ has to be made by the methods used in the proceeding section for the interaction X.

Bibliography.

27) G. Tacah, Helv. Phys, Acta, 23, 229, (1950).

[^0]: - Chevalley, Compt. Rond. 227, 1136 (1948) has given a proof. of the whole theorem which does not make use of the particular structure of the different groups.

[^1]: * Hereafter, to avoid confusion, we shall use J_{x}, J_{y}, J_{z} instead of I_{1}, I_{2}, I_{3}
 (see p.20).

[^2]: * Reforence (6) s p.389

[^3]: * Refernnce (13). p.229.

[^4]: * See reference 23 , section 4, subsection 3 .

[^5]: * For the proof see reference 23 , section 3.

[^6]: \#eits. fur Physik, 67, 743, (1931). *- jee references 17 and 18 .

[^7]: Ref. 2?, डqu. (4)

[^8]: *. Rosenfeld, Nuclear Forces, Amsterdam, 1948, p. 211, Eq. (14).

[^9]: The proof is the same as that of the well known formula
 $1 \Sigma_{x}\left(\ell_{i} \ell_{k}\right)=\frac{1}{2}\left[L(L+1)-{ }_{n} \ell(\ell+1)\right]$.

 * Reference 23, $\{3$.

