
OSbE.nHHEHHbiA HHCTHTYT SJ.nEPHbiX HCCJlE.UOBAHHill 
Bblt.{J.1CnJ.-1TEnbHbi C1 UEHTP 

R-II99 

' I 

REVISED REPORT 

ON' THE ALGORITHMIC LANGUAGE, 
.ALGOL 60 

.liy6Ha 1963 • 

I 



R E V I S E D R E P 0 R T 

0 N THE A L G 0 R I T H M I C L A N G U A G E 

ALGOL 6 0 

Dedicated to the memory of William Turaneki 

by 

J.W.Backus, F.L.Bauer, J.Green, C.Katz, J.McCarthy. 

P.Naur, A.J.Perlis, H.Rutiehauser, K.Samelson, B.Vauquois, 

J.H.Wegstein, A.van Vlijngaarden, M.Woodger 

Edited by 

P e t e r N a u r 

INTERNATIOUAL FEDERATION FOR niFOm.I.ATION PROCESSIJIG 
1962 

f)f· ,. lH'~ HH I•fil HHCHi'J 



3 

SUMMARY. 

The report gives a complete defining description of the international 
algorithmic language ALGOL 60 . This is a language suitable for expressing 
a large class of numerica l processes in a form sufficiently concise for 
direct automatic translation into the language of programmed automatic 
computers. 

The introduction contains an account of the preparatory work leading 
up to the final conference , where the l anguage was defined. In addition 
the notions reference language , publication language, and hardware repre­
sentations, are explained. 

In the first chapter a survey of the basic constituents and features 
of the language is given, and t he formal notation, by which the syntactic 
structure is defined, is explained. 

The second chapter lists all the basic symbols, and the syntactic 
units known as identifiers, numbers, and strings, are defined . Further 
sane important notions such as quant ity and value are defined. 

The third chapter explains the rules for forming expressions and the 
meaning of these expressions. Three different t ypes of expressions exist: 
arithmetic, Boolean (logical), and designational. 

The fourth chapter describes the operational units of the l anguage, 
known as statements. The basic statements are: ass i~unent statements 
(evaluation of a formula), go to statement s (explic i t break of these­
quence of execution of statements), dummy statements , and procedure state­
ments (call for execution of a closed process, defined by a procedure 
declaration). The formation of more complex structures , having statemant 
character, is explained. These include: conditional statements, f or state­
ments, compound statements, and blocks. 

In the fifth chapter t he units known as declarations , servi ng for 
defining permanent properties of the units entering into a process descri­
bed in the language, are defined. 

The report ends with two detailed examples of the use of t he l anguage 
and an alphabetic index of definitions. 
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IN'l'RO:WCTION 

IN'l'RO:WC'l'ION 

Bac1tground 

1 2 After the publication ' of a preliminary report on the algorithmic 
language .ALGOL, as prepared at a conference .in Zurich in 1958, much interest 
in the ALGOL language developed . 

As a reeul t of an informal meeting held at Mainz in r:ovember 1958, 
about forty interested persons fro~ several European r.ountries hold an 
ALGOL implementation conference in Copenhagen in February 19$9. A "hard-
ware group" was fonned fo r working cooperatively right down to the level of 
the paper tape code. This conference also led to the publication by Regne­
centralen, Copenhagen, of an ALGOL Bulletin, edited by Peter No.ur, which 
served as a forum for further discussion. During the June 1959 ICIP Confe­
rence in Paris several meetings, both fonnal Rnd informal ones, were held. 
These meetings revealed some misunderstandings as to the intent of 
the group which was primarily res}'"Jonsiblo for the formulation of the 
language-, but at the same time mrtcle it clear thnt there exists a wide 
appreciation of the effort involved. As a result of the discussions it was 
decided to bold an international meeting in J anuary 1960 for improving 
the ALGOL language and preparing a fin~l report. At a European ALGOL 
Conference in Paris in November 1959 which was attended by about fifty peopl e, 
seven European representatives were sel ected to attend the January 1960 
Conference, and they represent the foll owing organisations: Association 
Fran9aiae de Calcul, British Computer ~ociety, Gesellschaft fiir Angewandte 
Uatbemo.tik und Meohanik, and Nederlands Rekenmachine Genootschap. The 
seven repre•entatives held a final preparatbry meet inr: a t !.!ainz in 
December 1959. 

1. Preliminary report- International Algebraic Language , Comm. Assoc. 
Comp. Uach. 1, No. : 2 (1958), 8. 

2. Report on the Algorithmic Language ALGOL by the AmJ Commi ttee on 
Programming Languages and th"' OAJ.m Committee on Programming, edited by 
A. J. Perlis and JC. Samelson , J:umerische r.rathematik Bd. 1, S. 41 - 60 
(195~). 

/ 



IU'l'ROllJCTIOll 

Meanwhile, in the United States, anyone who wished to suggest changes 
or corrections to ALGOL was requested to send his comments to the ACM 
Communications where they were published. These comments then became the 
basis of consideration for changes in the ALGOL language. Both the SHARE 
and US~ organisations established ALGOL working groups and both organi­
sations were represented on the Am!: Committee on Programming Languages. 
The ACU Committee met in Washington in November 1959 and considered all 
oommenta on ALGOL that had been sent to the AcK Communications. Also, seven 
representatives were selected to attend the January 1960 international 
conference. These seven representatives held a final preparatory meeting 
in Boston in December 1959. 

January 1960 Conference 

1 The thirteen representatives , from Denmark, England, France, Germany, 
Eolland, Switzerland, and the United States, conferred in Paris from 
January 11 to 16, 1960. 

Prior to this meeting a completely new draft report was worked out 
fro~ the preliminary report nnd the recommendations of the preparatory 
meetingll by Peter }faur and the conference adopted this new form as the 
basis for its report. The Conference then prooeded to work for agreement 
on each item of the report. Tho present report represento the union of the 
Committee's conoepts and tLe intersection of its agreements. 

April 1962 Conference. Edited by M. Woodger. 

A meeting of some of the authors of ALGOL 60 was held on 2nd - 3rd 
April 1962 in Rome, Italy, through the facilities and courtesy of the 
International Computation Centre. The following were present: 

Authors 

F.L.Bauer 
J .Oreen 
C.Katz 
R.KofOn (representing 

J.\7.!1aokua) 
P.Naur 
K.Samelaon 
J.H.Wegstein 
A.van Vijngaarden 
J:.Woodger 

Advisers 

t!.Paul 
R.Franciotti 
P.Z.Ingel'r.lan 

G.Seegmiiller 
R.E;utman 

P.Landin 

Observer 

W.L.van dar Peel 
(Chairman, IFIP TC 2. 1 
WOrking Group ALGOL) 

The purpoae of the meeting was to correct known errors in, attempt to 
eli~inate apparent ambiguities in, and otherwise clarify the ALGOL 60 
Report. Extenaions to the language were not considered at the meeting. 
Various proposals for correction and clarification that were submitted 
'by interested parties in response to the Questionaire in ALGOL Bulletin 
No. 14 were used as a guide. 

This report constitutes a supplement to the ALGOL 60 Report which 
should reso-lve a number of dif'ficul ties therein. llot all c-f' the questions 
raised concerning the original report could be resolved. Bather than 
risk hastily drawn conclusions on a number of subtle points, which might 
create new ambiguities, the committee decided to report only those pointe 
which they unanimously felt could be eta ted in clear and unambiguous 
faahion. 
- - - - - - - - - - - - - - - - - - - -
1. ~illiam Turaneki of the American group was killed by an automobile j ust 
prior to the January 1960 Conference. 
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INTROWCTION 8 

Questions concerned with the following areas are le f t for fur ther con­
sideration by Working Group 2.1 of IFIP, in the expectation that current 
work on advanced programming languages will lead to better resolutions 

1. Side effeota of functions. 
2. The oall by name concept. 
). Own: statio or dynamic. 
4. Fbr statement: static or dynamic. 
5· Conflict betv1een specification and declaration. 

The authors of the ALGOL 60 Report present at the Rome Conference, 
being aware of the formation of a \".'orking Group on ALGOL by IFI P, accepted 
that any oolleotive responsibility which they mig~t have with respect to 
the development, speoifioation and refinement of the ALGOL language will 
from now on be transferred to that body. · 

This report has been reviewed by IFIP TC 2 on Programming Languages 
in August 1962 and has been approved by the Council of the International 
Federation for Information Processing. 

As~wi th the preliminary ALGOL report, three diffrJrent levels of 
languag·e are recognized, namely a 'Reference LanguaGe, a Publication 
Language and several Hardware Representations. 

Refe r ence Language. 

1. It is the vrorking l a.nguage of the cornmi ttee. 
~. It is the definiug l nnf\UA.ge. 
3. The characters are determined by ease of mutual understanding and not 

by any computer limitations, ooders notation, or pure mathematical 
notation. 

4. I t is the basic reference and guide for compiler builders. 
5. It is the guide for all hardware representations. 
6. It is the guide for transliterating from publication language to any 

locally a-poropriate hardware representRtions. 
7. The main publications of the ALGOL language i tself will use the 

reference representation. 

Publica t ion Language. 

1. The publication language admit s vari ations of t he reference language 
according to usage of printing and handwriting ( e.g . ,' subscripts , 
s paces, exponents, Greek letters). · 

2. It is used for stating and communicating processes. 
). The characters to be used may be different in different countries, but 

univocal correspondence with reference representation must be secured. 

Hardware Representatior,s. 

1 . Each one of th9se is a condensat ion of the reference lanL~age enforced 
by t he limited number of character s on standard input equipment. 

2. Each one of these uses the character set of a particula:r; computer and 
i s the language ·accepted by a translator for that computer. 

}. Each one of these must be accompanied by a special se t of rules ,for 
transliterating from Publication or Reference language. 

' . 



INTRO:WCTION 9 

For transliteration between the reference language and a language 
auitable for publications, among others, the following rules are recom-

mended. 

Reference language 

Subscript bracket ( l 

Bxponentation 1' 

Parentheses ( ) 

Bn.sis of ten 10 

Publication language 

Lowering of the line between the 
brackets and removal of the brackets. 

Raising of the ey.ponent. 

Any form of parentheses, brackets, 
braces. 

Raising of the ten and of the fol­
lowir~ integral number, inserting 
of the intended multiplication sign. 

, 



1 • STRUCTURE OP' TUE LANGUAGE. 

DESCRIPI'ION OP' THE REFERENCE LANGUAGE. 

Was sich uberhaupt Sagen lasst, lasst 
sich klar sagenJ und wovon man nioht 
redan kann, darUber muss man schweigen. 

Ludwig Wittgenstein. 

1. STRUCTURE OF THE LANGUAGE. 

10 

As stated in the introduction, the algorithmic language has three 
different kinds of representations - reference, hardware, and publication 
- and the development described in the sequel is in terms of the reference 
representation. This means that all objects defined within the language 
are represented by a given set of symbols - and it is only in the choice 
of symbols that the other two representations may differ. Structure ru1d 
content must be the same for all representations. 

The purpose of the algorithmic language is to describe computational 
prooesaes. The basic conoept used for the description of calculating rules 
is the well known arithmetic expression containing as constituents numbers, 
variables, and functions. Fron such expressions are compounded, by applying 
rules of arithmetic composition, self-contained units of the language 
- explicit formulae - called assignment statements. 

To show the flow of qomputational processes, qertain non-arithmetic 
statements and statement clauses are added which may describe e.g., 
alternatives, or iterative repetitions of computing statements. Since 
it is necessary for the fUnction of these statements that one statement 
refers to another, statements may be provided with labels. A sequence of 
statements may be enclose~ between the statement brackets begin and ~ 
to form a compound statement. 

Statements are supported by declarations which are not themselves 
computing instructions, but inform the translator of the existence and 
certain properties of objects appearing in statements, auoh as the class 
of numbers taken on as values by a variable, the dimension of an array of 
numbers or even the set of rules defining a fUnction. A sequence of decla­
rations followed by a sequence of statements and enclosed between begih 
and end oonstitutes a block. Every declaration appears in a block in t is 
way and is valid only for that block. 

A program is a block or compound statement which is not contained 
within another statement and which makes no use of other statements not 
oontain~d within it. 1 

In the sequel the syntax and semantics•of the language will be given. 

1. Whenever the precision of arithmetic is stated as being in general not 
specified, or the outcome of a certain process is left undefined or 
said to be undefined, this is to be interpreted in the sense that a pro­
gram only tully defines a com~tational process if the accompanying infor­
mation specifies the precision assumed, the kind of arithmetic assumed, 
and the course of action to be taken in all such oases as may occur during 
the execution of the computation. 



1.1. FORMALISM FOR SYNTACTIC DESCRIPI'ION. 11 

1 .1 • FORMALISM FOR SYNTACTIC DESCRIPI'ION. i 
The syntax will be described with the aid of metalinguistic formulae • 

Their interpretation is best explained by an example: 

<ab) ::• ( I [ I (ab>( I <ab)(d) 

Sequences of characters enclosed in the bracket < >. represent metalinguistic 
variables whose values are sequences of symbols. The marks ::• and I (the 
latter with the meaning of Qt) are metalinguistic connectives. Any mark in a 
formula, which is not a variable or a connective, denotes itself (or the 
class of marks which' are similar to it). Juxtaposition of marks andjor 
variables in a formula signifies juxtaposition of the sequences denoted. 
Thus the formula above gives a recursive rule for the formation of values 
of the variable <ab). It indicates that (ab) may have the value ( or 
[ or that given some legitimate value of <ab>, another may be formed by 
following it with the character ( or by following it with some value of 
the variable (d). If the values of (d) are the decimal digits, some values 
of (ab) are: 

f(((1(37( 
12345( 

((( 
[86 

In order to facilitate the study the symbols used for distinguishing the 
metalinguistic variables (i.e. the sequences of characters appearing within 
the brackets < > as ab in the above example) have been chosen to be words 
describing approximately the nature of the corresponding variable. Where 
words which have appeared in this manner are used elsewhere in the text 
they will refer to the corresponding syntactic definition • . In addition 
some formulae have been given in more than one place. 

Definition: 
(empty) ::• 
(i.e. the null string of symbols). 

--------------------
1. Cf • J .w .BaCkUS I The Syntax and SemantiCS Of the propOSed international 
algebraic language of the Zurich ACM-GAMM conference. ICIP Paris, June 1959. 

' l 
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2. BASIC SYMBOLS, etc. 12 

2. BASIC SYMBOLS I IDENTIFIERS I NUMBERS I AND STRINGS. 
BASIC CONCEPI'S. 

The reference language is built up from the following basic symbols: 
<basic symbol> ::• <letter>J<digit>l<logical value>l<delimiter) 

2.1. LE'l'l'ERS. 
<letter> ::• albJcjdlelrJgjhJiljJklllmlnlolpjqlrlsltlulvlwlxlylzl 

AIBiciDIEIFIGIHIIIJIKILIMINIOIPIQIRisiTiul~lwlxiYiz 

This alphabet may arbitrarily be restricted, or extended with any other 
distinctive character (i.e. character not coinciding with any digit, 
logical value or delimiter). 

Letters do not havi individual meaning. They are used for forming 
identifiers and strings (cf. sections 2.4. IDENTIFIERS, 2.6. STRINGS). 

2.2 .1. DIGITS. 
<digit> ::= ol1l2l3l4l5l617l8l9 

Digits are used for forming numbers, identifiers, and strings. 

2.2 .2. LOGICAL VALUES. 
<logical value) ::=~!false 

The logical values have a fixed obvious meaning. 

2 • 3 • DELIMITERS. 
(delimiter> ::• <operator>l<separator>l<bracket>l<declarator>l<specificator) 
(operator) ::=(arithmetic operator>l<relational operator>! 

(logical operator>l<sequential RPerator) 
<arithmetic operator) : :a+ I - I K I / I + I -1 . 
<relational operator) : :a < J ! I • I 2 I > I + 
(logical operator> : :• !! I :::> I v //\ I .., 2 
<sequential operator) ::• ~~.ll. ~~~~fori~ 
<separator> : :• I I 0 I 1Q , I_:. J I : ~ I ... .nm I .YD.lli I E1l& I cawnent 
<bracket) : :• ( I ) I [ I ] I 1 I ' I ~ I ~ 
<declarator> ::· ~ I ~ I ~ 1 ~ 1 ~ I switch I prosedure 
<specificator> ::• string I ~pe~ I ~lye 

Delimiters have a fixed meaning which for the most part is obvious, or 
else will be given at the appropriate place in the sequel. 

Typographical features such as blank space or change to a new line have 
.no significance in the reference language . They may, however , be used freely 
~or facilitating reading. 

1. It should be particularly noted that throughout the r eference language 
underlining is used for defining independent basic symbols (see sections 
2 .2 .2 and 2.3). These are understood to have no relation to t he indivi dual 
letters of which t hey are composed. Within the present r eport underlining 
will be used for no other purpose. 

2. gg is used in for statements. It has no relation whatsoever t o the £2 of 
the preliminary report, which i s not included in ALGOL 60. 



2. 3. DELD.UTERS. 

For the purpose of including text among the symbols of a program 
the following "comment" conventions hold: 

The sequence of basic symbols: 

1 comment <any sequence not containing 1>1 
begin comment <any aequence not containing I>J 
~ <any sequence not containing ~ or 1 or ~ 

is equivalent with 

' begin 
end 

13 

By equivalence is here meant that.any of the three structures shown in the 
left hand column may, in any occurrence outside of strings, be replaced by 
the symbol shown on the same line in the right hand column without any 
effect on the action of the program. It is further understood that the 
comment structure encountered first in the text when reading from left to 
right has precedence in being replaced over later structures contained in 
the sequence. 

2.4. IDENTIFIERS. 
2.4.1. Syntax. 
<identifier> 1 a- <letter> I <identifier> <let ter> I <identifier> <digit> 
2.4.2. Examples. q 

2.4.3. Semantics. 

Soup 
V17a 
a34kT?...'Na 
MARILYN 

Identifiers have no inherent meaning, but serve· for the ident ification 
of simple variables, arrays, labels, switches, and procedures. They may be 
chosen freely (of. however section 3.2.4. STANDARD FUNCTIONS). 

The same identifier cannot be used to denote two different quantities 
except when these quantities have disjoint scopes as defined by the decla­
rations of the program {of. section 2.7. QUANTITIES, KINDS AND SCOPES and 
section 5• DECLARATIONS). 

2. 5· NUMBERS. 
2.5.1. Syntax. 
~psigned integer> a • • <digit> I <unsigned integer> <digit> 
<integel"> a •· ~nsigned integel"> !+<unsigned integer> 1-<.unsigned integer> 
<decimal fraction> a •• • <unsigned integer> 
<exponent part> 1 1 • 10 <integer> 
<decimal numbel"> a •·· <tmsigned integer> I <decimal fraction> I 

~signed integer> <decimal fraction> 
<unsigned numbel"> a a- <decimal numbel"> I <exponent part> I 

<decimal numbel"> <exponent part> 
<number'> 1 a • ~signed numbel"> I +<unsigned numbel"> I -<Unsigned numbel"> 

2.5.2. Examples. 

2.5.3. Semantics. 

0 
177 

·5384 
+0.7300 

-200.084 
+07 .43108 

9· 3410+1 0 
2,0-4 

-.083/0-02 
-/07 

to-4 
+10+5 

Decimal numbers have their conventional meanirtg. The exponent part 
is a scale factor expressed as an integral power of 10. 



2. 5. !:UMBERS 

2.5.4. Types. 
Integers are of type integer. All other numbers are of type real 

(of. section 5.1. TYPE DECLARATIONS). 

14 

2.6. STRmas. 
2.6.1. Syntax. 
<proper string> 1 1. <any sequence of basic symbols ( ' not containing or > 1 

<empty-> , 
<open string> 1 •· <proper strin~ '1 1 <open string> 
<string> II• r <open string>\ 
2.6.2. Examples. 

2.6.3. Semantics • 

r5k, ,- 'uc'A.,/:' Tt" 
'·. This is n 'string'' ............ 

I <open string> <open string> 

.[n order to enable the language to handle arbitrary sequences of basio 
symbols the string quotes 1 and ' are introduced. The symbol ... denotes 
a spaoe. It has no significance outside strings. 

Strings are used as actual pnr~metera of procetlures ( cf. sections 
3. 2 • FUNCTION DESIGNATORS and 4. 7. PROCEDUR:S STATEtf~ns). 

2.7. QUANTITIES, KWDS AND SCOPE3. 
The following kinds of quantities nre distinp;uished: simple variables, 

arrays, labels, switches, rtnd procedures. 
The scope of a quantity is the set of statements and expressions 

in which the declaration of tho identifier associated with that quantity 
is valid. For labels see nection 4.1.3. 

2.8. VALUES A..~D TYPES. 
A value is a11 ordered set of numbers ( speci11.l case 1 a single number), 

an ordered set of l ogical values (special case1 n single logical value), 
or a label. 

Certain of the synt actic uni t s are said to possess values. Thes·e values 
will in general change during the execution of the program. The values of 
expressions and their constituent s are defined in section 3. The value 
of an array identifier is the order.ad set of values of the corresponding 
array ~f subscripted variables (cf. section 3.1.4.1). 

The various types (integer , real, Boolenn) basically denote proper­
ties of values. The types associa ted with syntac tic units refer to the 
values of these units. 
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3. EXPRESSIONS. 

In the language the primary constituents of the programs describing 
algorithmic processes are a r ithmet ic, Boolean, and designational, expres-
sions. Constituents ot these expressions, except for certain delimiters, are 
logical values, numbers, variables, function designators, and elementary 
arithmetic, relational, logical, and sequential, operators. Since the syntac­
tic definition of both variables and function designators contains expressions, 
the definition of expressions , and thei r constituents, is necessarily recursive . 

<expression) : :a <arithmetic expression>I<Boolean expression>! 
(designational expression> 

3 .1. VARIABLES. 
3 .1.1. Syntax. 
<variable identifier> : :=(identi f i er> 
(simple variable> : :=(variable identifier> 
<subscript expression> ::=<arithmetic expression> 
<subscript list> ::a <subscript expression>! 

<subscript list>,<subscript expression> 
(array identifier> ::a (ident ifier> 
<subscripted variable> ::= <array identifier>[<subscr ipt list>] 
(variable> ::=(simple variabl e> l<subscr ipted variable> 

3.1.2 . Exampl es. 

3 . 1.3. Semantf cs. 

epsilon 
detA 
a17 
Q[7 , 2] 
x[sin(nxpi /2), Q[3 , n , 4 J] 

A variable is a designation given t o a s ingle value. Thi s value may be 
used i n expressions for formi ng other values and may be changed at will by 
means of assignment statements (section 4 .2 ) . The type of the value of a 
particular variable is defined in the declaration for t he variable itself 
(cf. section 5.1. TYPE DECLARATIONS) or for t he corresponding array ident i ­
fier (cf . section 5.2. ARRAY DECLARATIONS) . 

3.1.4. Subscripts. 
3.1.4.1 . Subscripted variables designate values which are components of 
multidimensional arrays (cf. section 5.2. ARRAY DECLARATIONS). Each arithme­
tic expression of the subscript list occupies one subscript position of the 
subscripted variable, . and is called a subscript. The complete l i st of sub­
scripts is enclosed i n the subscript brackets [ ]. The array component re­
ferred to by a subscripted variable is specified by the actual numerical 
value of its subscr ipts .(cf. section 3.3 . ARITHMETI C EXPRESSIONS). 
3.1.4.2 . Each subscript position acts l ike a variable of type integer and 
t he evaluation of t he subscript is understood to be equivalent to an assign­
ment to this fictitious variabl e (cf . section 4.2.4). The value of the sub­
scripted variabl e is defined only i f the value of the subscri pt express i on 
is within the subscript bounds of t he a r ray (cf. section 5.2. ARRAY DECLA­
RATIONS). 



3.2. FUNCTION DESIGNATORS. 

3 .2. FUNCTION DESIGNATORS. 
3.2.1. Syntax. 
(procedure identifier> ::• (identifier> 
(actual parameter> ::• <string>l<expression>l<array identifier>! 

(switch identifier> (procedure identifier> 
<letter string> ::• <letter> (letter string><letter> 
(parameter delimiter> ::= , )<letter string) :( 
(actual parameter list> ::• <actual parameter>! 

(actual parameter list><parameter delimiter)(actual parameter> 
(actual parameter part) ::a (empty>j(<actual parameter list>) 
(function designator) ::• (procedure 1dent1fier><actual parameter part) 

3.2.2. Examples. 
sin (a - b) 
J(v + s, n) 
R 
S(s - 5)Temperature:(T)Pressure:(P) 
Compile(' :• ')Stack:(Q} 

;.2.3. Semantics. 

16 

Function designators define single numerical or logical values, which 
result through the application of given sets of rules defined by a procedure 
declaration ( cf. section 5.4. PROCEDURE DECLARATIONS) to fixed sets of 
actual parameters. The rules governing specification of actual parameters 
are given in section 4. 7. PROCEJ>URE srATEMENTS. Not every procedure 
declaration defines the value of a function designator. 

3.2.4. Standard functions. 
Certain identifiers should be reserved for the standard fUnctions of 

analysis, which will be expressed as procedures. It is recommended that 
this reserved list should contain: 

abs(E) for the modulus (absolute value) of the value of the ex­
pression E 

sign(E) for the sign of the value of E (+1 for E>O, 0 for E-0 
-1 for ~E<O) ' 

sqrt(E) for the square root of the value of E 
sin(E) for the sine of the value of E 
cos(E) for the cosine of the value of E 
arctan(E) for the principal value of the arctangent of the value of E 
ln(E) for the natural logarithm of the value of E E 
exp(E) for the exponential function of the value of E ( e ) • 

These functions are all understood to operate indifferently on arguments 
both of type n:M and integer. They will all yield values of type .I:.W, 
except for sign(E) which will have values of type integer. In a particular 
representation these functions may be available without explicit decla­
rations (cf. section 5. DECLARATIONS). 

3.2.5. Transfer functions. 
It is understood that transfer functions between any pair of quantities 

and expressions may be defined. Among the standard functions it is recc:m­
mended that there be one, namely 

entier(E), 
which "transfers" an expression of real type to one of integer type, and 
assigns to it the value which is the largest integer not greater than the 
value of E. 
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3.3. ARITHMETIC EXPRESSIONS .• 
3-3.1. Syntax. 
<adding operator> 1 a- + I -
qnultiplying operator> II• x I / I + 
<primary> : I• <Unsigned number> I <variable> I <function designator> I 

(<arithmetic expression>) 
<factor> 1 1 .. <p:rimary> I <factor> t<primary> 
<term> I I• <factor> I <term> <multiplying operator> <facto:x> 
<simple arithmetic expression> 1 a- <term> I <adding operator> <term> 1 

<simple ari thmetio expression> <adding operator> <term> 
<if clause> 1 a. if <;Boolean expression> then 
<arithmetic expression> 1 ,,. <simple ari t'iiiil"etic expression> I 
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<if clause> <simple arithmetic expression> else <arithmetic expression> 

3.3.2. Examples. 
Primaries& 

7. 394,0-8 
sum 
w(i+2,8) 
cos(y+zx3) 
(a-3/y+vut8) 

Factors: 
omega 
sumtcos(y+zx 3) 
7. 394 -8tw (i+2, 8] t( a-3/y+vu1'8) 

10 

Termss 
u 
omegaxsum+cos(y+zx))/7.394 -8tw(i+2,8)t(n-3/y+vut8) 

10 

Simple arithmetic expressions 
U-Yu+omegaxsumtcos(y+zx3)/7. 394

10
-81'w[i+2, 8l'N a-3/y+vut8) 

Arithmetic expressions: 
wxu - Q(S+Cu)'t2 
i! q>O then S+3X Q/A else 2xS+3><q 
if a<O then U+V else-rr-axb>17 then U/V else i f k!y then V/U else 0 aX sin(omega X~- -- --- -- --
0.571012 K a(N x (N- 1)/2, 0] 
(Ax arotan{y) + Z)~( 7 + Q) 
if q then n-1 else n 
if a<O then A/B else if b-0 ~ B/A else z 

3.3.3. Semantics. 
An arithmetic expression is a rule for computing a numerical value·. 

In oase of simple arithmetic expressions this value is obtained by executing 
the indicated arithmetic operations on the actual numerical values of the 
primaries of the expression, as explained in detail in section 3.3.4 below. 
The actual numerical value of a primary is obvious in the case of numbere. 
For variables it is the current value (assigned last in the dynamic sense), 
and for function designators it is the value arising from the computing 
rules defining the procedure (cf. section 5.4.4. VALUES OF FUNCTION 
DESIGNATORS) when applied to the current values of the procedure parameters 
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given in the expression. Finally, for arithmetic expressions enclos ed in 
parentheses the value must through a recursive analysis be expressed in 
terms of the values of primaries of the other three kinds. 

In the more general arithmetic expressions, which include if clauses, 
one out of several simple arithmetic expresatons is selected on the basis 
of the actual values of the Boolean expressions (of. ~action 3.4. BOOLEAN 
EXPRESSIONS). This selection is made as followsa The Boolean expressions 
of the if clauses are evaluated one by one in sequence from left to right 
until one having th.e value true is found. The value of the arithmetic 
expression is then the value-of the first arithmetic expression following 
this Boolean (the largest arithmetic expression found in this position 
is understood). The oonstructiona 

else <simple arithmetic expression> 
is equivalent to the construction: 

.!!.!!, .!.! ~ then <simple arithmetic expression> 

3.3.4. Operators and types. 
Apart from the Boolean expressions of if clauses, the constituents of 

simple arithmetic expressions must be of types~ or integer (cf. section 
5.1. TYPE DECLARATIONS). The meaning of the basic operators and the types 
of the expressions to which they lead are given by the following rul eaa 

3.3.4.1. The operators + , - , and x have the conventional meaning (addition, 
subtraction, and multi pl i ca tion). The type o f the expression will be 
integer if both of the operands are of integer tyne, otherwise real. 

3.3.4.2. The operations <term>/<factor> and <term>-i-<factor> both denote 
division, to be understood as a multiplication of the term by the reci­
procal of the factor with due regard to the rules of precedence (of. sec­
tion 3.3.5). Thus for example 

a/b X 7/( p - q) x v/s . 
means _1 _1 -1 

((((ax (b )) X 7) X ((p- q) )) >< v) X (a ) 
The operator / is defined for all four combinations of types real and 
integer and will yield results of~ type in any case. The operator+ 
is defined only for two operands both of type integer and will yield a 
result of type inte,er, mathematically defined as followsa 

a i b • sign( a b) x entier(abs(a/b)) ' 
(of. sections 3.2.4 and 3.2.5). 

3.3.4.3. The operation <factor>t<primary> denotes exponentiation, where 
the factor is the base and the primary is the exponent. Thus for example 

2 tnt k 
while 

2't(n 't m) 

means 

means 

( 2n)k 

2(nm) 

Writing i for a number of integer type, r for a number of~ type, and 
a for a number of either integer or~ type , the result is given by the 
following rulesa 

a~i If 1>0, 
If i•O, 

If i<O, 

aJ! ax. • 
if a~O, 
if a.o, 
if a~O, 

if a.o, 

.xa (i times), of the same type as a. 
1, of the same type as a. 
undefined. 
1/(a~a• ••• xa) (the denominator has 
-i factors), of type real. 
undefined. ----
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atr If a>O, exp(r ·x ln{a)), of type real. 
If a.o, if r> o, 0. 0, of type rear-:--; 

if r<O, undefined. 
If a<O, always undefined. 

3.3.5. Precedence of operators. 
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The sequence of operations within one expression is generally from left 
to right, with the following additional rules: 
3.3.5.1. According to the syntax given in section 3.3.1 the fo~lowing rules 
of precedence hold: 

first: 1' 
second: x / -!-
third: + -

3.3.5.2. The expression between a left parenthesis and the matching right 
parenthesis is evaluated by itself and this value is used in subsequent 
calculations. Consequently the desired order of execution of operations 
within an expression can always be arranged by appropriate positioning of 
parentheses. 

).).6; Arithmetics of real quantities. 
Numbers and variables of type reR.l must be interpreted in the sense 

of numerical analysis, i.e. as entitiei defined inher~ntly with only a 
finite accuracy. Similarly, the pos~ibility of the occurrence of a finite 
deviHtion from the mathematically defined result in any arithmetic expression 
is explicitly understood. No exact arithmetic will be specified, however, 
nnd it is indeed understood that differ8nt hardware representations may 
evaluate aritlllnetic expressions differently. The control of the possible 
consequences of such differennes must be carried out by the methods of 
numerical analysis. This control must be considered a part of the process 
to be described, and vrill therefore be expressed in terms of the language 
itself. 

3.4. BOOLEAN EXPRESSIONS. 
).4.1. Syntax. 
<relational operator> II• < I < I .. I > I > I ! 
<relation> II• 

<simple arithmetic expression> <relational operator> <simple ari thmetio 
expression> 

<Boolean primary> r: .. <logical value> I <variable> I <function designator> I 
<relation> I {<Boolean expression>) 

<Boolean secondary> 1 1- <Boolean primary> I .., <Boolean primary> 
<Boolean faotor> II• <Boolean secondary> I ~olean factor> A <Bool ean secondary> 
<'Boolean term> 1 I• <Boolean factor> I <Boolean term> V<Boolean faotor> 
<implication> 1 a- <Boolean term> I <implication>::><:Soolean term> 
<simple Boolean> 1 I• <implication> I <simple Boolean> 5 <implication> 
<Boolean expression> 1 1 .. <simple Boolean> I 

<it clause> <simple Boolean> else <Boolean expression> 

3.4.2. Examples. X .. -2 
Y>V'I/z<q 
a+b > -5 1\ z-d > qt2 
pAq v x.ly 
g :.: -.BJ\bA-cvdve ::::> -1! 
if k<1 then fJ>W else h<c 
if if if a then b"else-c then d else f then g .!!!!.! h<k 



3.4. BOOLEAN EXPRESSIONS. 

3.4.3. Semantics. 
A Boolean expression is a rule for ccmputing a logical value. The 

principles of evaluation are entirely analogous to those given for 
arithmetic expressions in section 3.3.3. 

3.4.4. Types. 
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Variables and fUnction designators entered as Boolean primaries must 
be declared llo~lean (cf. ~ection 5.1. TYPE DECLARATIONS and section 5.4.4. 
VALUES OF FUNCTION DESIGNATORS). 

3.4.5. The operators. 
Relations take on the value ~ whenever the corresponding relation 

is satisfied for the expressions involved, otherwise ~. 
The meaning of the logical operators-, (not}. A (and}. v (or}. 

~ (implies). and~ (equivalent}. is given by the following function 
table. 

b1 ~ ~ true true 
b2 !.§J.G ~ ~ ~ 

---------------------
-,b1 ~ ~ false false 
b1 A b2 ~ .fiY.g ~ ~ 
b1 v b2 .fiJ.tt ~ ~ ~ 
b1 ::> b2 ~ ~ false ~ 
b1 !! b2 ~ ~ ~ .u:w:. 
3.4.6. Precedence of operators. 

The sequence of operations within one expression is generally from 
left to right. with the following additional rules: 
3.4.6.1. According to the syntax given in section 3.4.1 the following rules 
of precedence hold: 

first: arithmetic expressions according to section 3.3.5. 
second: < ~ • ~ > + 
third: -, 
fourth: A 
fi~: v 
sixth: ::> 

seventh: ~ 
3.4.6.2. The use of parentheses will be interpreted in the sense given 
in section 3.3.5.2. 
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3. 5. DESIGNATIUNAL EXPRESSIONS. 
3.5.1. Syntax. 
<label> ::• (identifier>l<Wlsigned integer> 
(switch identifier) ::a (identifier) 
(switch designator) ::• (switch identifier>[<subscript expression>] 
<simple desianational expression> ::= <label>l<switch designator>! 

(<aeaignational expression>) 
(designational expression) ::=<simple d~signational expression>! 

<if clause)(simple designational eXpression> 
~ (designational expression) 

3.5.2. Examplea. 17 
P9 
Choose[n - 1] 
Town[JJ: y<O :tJ:um N ~ N+1] 
11: Ab<c ~ 17 ~ ql.U: w$._0 ~ 2 ~ n] 

3.5.3. Semantics. 
A designational expression is a rule for obtaining a label of a 

statement (cf. section~" STATEMENTS). Again the.principle of the 
evaluation is entirely analogous to that of arithmetic expressions 
(section 3.3.3). In the general case the Boolean expressions of the 
if clauses will select a simple designational expression. If this is 

2l. 

a label the desired result is already foWld. A switch designator refers 
to the corresponding switch declaration (cf. section 5.3. SWITCH 
DECLARATIONS) and by the actual numerical value of its subscript 
expression selects one of the designational expressions listed in the 
switch declaration by counting these from left to right. Since the 
designatianal expression thus selected may again be a switch designator 
this evaluation is obviously a recursive process. 

3.5.4. The subscript expression . 
The evaluation of the subscript expression i s analogous to that of 

subscripted variables (cf. section 3.1.4.2) . The value of a switch 
desi'gnator is defined only if the subscript expression assumes one of 
the positive values 1, 2, 3, • •• , n, where n is the number of entries 
in the switch list. 

3.5.5. Unsigned integers as labels. 
Unsigned integers used as labels have the property that leading 

zeroes do not affect their meaning, e.g. 00217 denotes the aame label 
as 217. 
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4. STATEMEl1TS. 

The units of operation within the language are cal led statements. They 
will normally be executed consecutively as written. However, this sequence 
of operations may be broken by go to s t atements, which define their suooes­
sor explicitly, and shortened by conditional statements, whi ch may oause 
certBin statements to be skipped. 

In order to make it possible to define a specific dynamic succession, 
stat ements may be provided with labels. 

Since sequences of stntements may be grouped together ~nto compound 
statements and blocks the definition of statement must necessarily be re­
cursive. Also since declarat i ons, described in section 5, enter fundamen­
tally into the syntactic structure , the syntaotic definition of statements 
must suppose declarations to be already defined. 

4.1. COMPOUND STATEMENT3 AN D BLOCKS. 

4.1.1. Syntax. 
qJ,nlabelled basic statement> t r .,. <A.ssignment statement> I <go to statement> I 

<dummy statement> I <proolidure statement> 
<basic statement> t '" qJ,nlabelled basic statemen~ I 

<label> t <basic s t a t ement> 
qJ,ncondi tiona! statement> 1 :.~ <basic statement> I <compound statement> I <block> 
·<statement> r r .. <uncondi tional s tatement> I <oondi tional statement> I 

<!or stat emen t> 
<compound t a il> : '"' <statement> end I <statement> ; <compound tail> 
<block head> r t• begin <declaration> I <block head> 1 <declaration> 
<unlabelled compound> 1 1"' begin <compound tail > 
<unlabelled block> t:. <block head> ; <compound tail> 
<com pound l!tatement> a:- ~nl~belled compound> I <label> 1 <compound statement> 
<block:> a a .. <unlabelled block> I <label> 1 <bl ock> 
<prograw t I• <block> I <compound statement> 

This syntax may be il rustratet as f ol lowsa Denoting arbitrary statements, 
declarati ons, and label s , ey l et ter s s, D, and L, respectivel y, the 
basic syntactic units t ake t he forms : 
Compound statement• 

L t La • • begin S ; S ; • • • S S end 
Block a 

L: Lt • • • begin D 1 D ; • • D 1 S ; S f • • • S 1 S end 
It shoul d be kept i n mind that each of the sta tements S may-aiain be a 
complete oompound sta tement or block. 

4.1.2. Examples . 
Basio stat ements & 

a I• P + q 
~Naples 
START: CONTINUEr W I• 7. 993 

Compound statement • 
begin x a .. o 1 for y:..1 step 1 ~ n ~ X I• x + A[y) 1 

!!. vq ~~STOP!.!.!!.! if :x>w-2 then~ S 1 
Aw : St a W : . x + bob end 

Block: 
Q.r begin integer i ,k 1 ~ w ; 

for i '"' 1 step 1 until m ~ 
!2:£. k •• 1+1 s t ep 1 until m do 
begin w , .. A[i,k) ; A(i,kJ :~ A(k,i] ; A(k, i l I• w 
end for i and k 
6i1d block Q 
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4 . 1.3. Semantics. 
Every block automatically introduces a new level of nomenclature. 

This is realized as follower Any identifier occurring within the block 
may through a suitable declaration (of. section 5· DECLARATIONS) be 
specified to be local to the block 1n question. This means (a) that the 
entity represented by this identifier inside the block has no existence 
outside it and (b) that any entity represented by this identifier outside 
the block is completely inacoessible inside the block. 

Identifiers (except those representing labels) occurring within a 
block and not being declared to this block will be non-local to it, i.e. 
will represent the same entity inside the block and in the level immedia­
tely outside it. A label separated by a colon from a statement, i.e. 
labelling that statement, behaves as though declared in the head of the 
Qmallest embracin~ block, i.e. the smallest block whose brackets begin 
and ~ enclose that statement. In this context a procedure body must be 
considered as if it were enclosed by begin and end and treated as a block. 

Since a statement of a block may again itself be a block the concepts 
local and non-local to a block must be understood recursively. Thus an 
identifier, which is non-local to a block A, may or may not be non-local 
to the block 3 in which A is one statement. 

4. 2. ASSIGNMENT STATEMENTS. 

4.2.1. Syntax. 
<left part> t: .. <variable> t% I <procedure id~ntifier> :"' 
<left part list> t r .. <left part> I <left part list> <left part> 
<assignment statement> t:.. <left part list> <arithmetic expression> I 

<left part list> <;Boolean expression> 

4.2.<:?. Examples. 
s ,_, p(O] lm n I• n + 1 + S 

n I= n + 1 
A I• E/C - v - q X S 

zeta) S(v, k+2] a.. 3 - arotan( s x 
Vr..Q.>YAZ 

4.~.3. Semantics. 
Assignment statements serve for assigning the value of an expression 

to one or several variables or procedure identifiers. Assignment to a 
procedure identifier may only occur within the body of a procedure defining 
the value of a function designator (of. section 5.4 . 4.). The process will 
in the general oaae be understood to take place in three steps as followsa 
4.2.3.1. Any subscript expressions occurring in the left ~art variabl~s are 
evaluated in sequence from left to rieht. 
4.2.).2. The expression of the statement is evaluated. 
4.2.3.3. The value of the expression is assigned to all the left part 
variables, with any subscript expressions having values as evaluated in 
step 4.2.).1. 

4.<:?.4. Types. 
The type associated with all variables and procedure identifiers of 

a left part list .must be the s~me. If this type is Boolean, the expression 
must likewise be Boolean. If the type is real or integer, the expression 
must -be arithmetic. If the type of the arithmetic expression differs from 
that associated with the variables and procedure identifiers, appropriate 
transfer functions are understood to be automatically invoked. For transfer 
from real to integer type the transfer function is understood to yield a 
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reeuU equiTalent to 
entier(E + o. 5) 

where E is the value of the expression. The type associated with a proce­
dure identifier is giTen by the declarator which appears as the first 
symbol of the corresponding procedure declaration (of. section 5.4.4). 

4.). GO TO STA~EMENTS. 

4. ).1. Syntax. 
<go to statement> t ae ~ <designational expression> 

4.3.2 . Examples. 
~8 
~ exit(n + 1] 
~ Town (if y<O then N else ll+1l 
~ if Ab<O' then1T"else q[if w<O ~ 2 else nl 

4.3.3. Semantics. 
A go to statement interrupts the normal sequence of operations, defined 

by the write-up of statements, by defining its successor explicitly by the 
value of a designational expression. Thus the next statement to be executed 
will be the one having this value aa its label. 

4 . 3.4. Restriction. 
Since labels are inherently local, no go to statement can lead from 

outside into a block. A go to statement mny, however, lead from outside 
into a compound statement. 

4.3.5. Go to an undefined switch designator. 
A go to statement is equival ent to a dummy statement if the designa­

tional expression is a switch designator whose value is undefined. 

4.4. DUMMY STATEMENTS. 

4. 4.1. Syntax. 
<dummy statement> t a- <empty> 

4.4.2. Examples. 
Lt 
begin •• • • 1 John• end 

4.4.3. Semantics. 
A dummy sta tement executes no operation. It may serve to place a 

label. 
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4.5. CONDITIONAL STAT~T3. 

4.5.1. Syntax. 
<if olause> 1 1 • if <Boolean expression> then 
<Unoondi tional statement> 1 =-• <basic stateiiie'nt> I <compound statement> I <block> 
<if statement> 1 I• <if clause> <Unoondi tional statement> 
<conditional statement> t t• <if statement> I <if statement> else <statement> I 

<if clause> <for statement> I <label> t <conditional statement> 

4.5.2. Examples. 
if' X> 0 then n a. n+1 
IT v>u t'ii"e'n Va q t• n+m else ~ R 
if s<OvP~ then AAa begin if q<v ~ aa=v/s ~ yt-2xa end 

..!.!.!! if v> s then aa-v-q ~ if v> s-1 ~ ~ S 

4·5·3· Semantics. 
Conditional statements cause certain statements to be executed or 

skipped depending on the running values of specified Boolean expressions. 

4.5.3.1. If statement. 
The unconditional statement of an if statement will be executed if the 
Boolean expression of the if clause is true. Otherwise it will be skipped 
and the operation will be continued with the next statement. 

4.5.3.2. Conditional statement. 
According to the syntax two different forms of conditional statements are 
possible. These may be illustrated as followsa 

if B1 ~!!!.. S1 else !f. B2 then 32 else 33 1 S4 
and 

if 31 then S1 else if B2 then S2 else if B3 then 33 1 34 
Here BT to B3 are Boolean expressions, whileS1 to S3 are unconditional 
statements. S4 is the statement following the complete conditional state­
ment. 

The execution of a. conditional statement may be described as follower 
The Boolean expression of the if clauses are evaluated one after the other 
in sequence from left to right until one yielding the value true is found. 
Then the unconditional statement following this Boolean is exeouted. 
Unless this statement defines its successor explicitly the next statement 
to be executed will be S4, the statement following the complete conditional 
statement. Thus the effect of the delimiter else may be described by saying 
that it defines the successor of the stateme~t follows to be the state­
ment following the complete conditional statement. 

The construction 
else <unconditional statement> 

is equivaleii"t""to 
else if true then <unconditional statement> 

If none-ar-rha-BOolean expressions of the if olauses is true, the 
effect of the whole oonditional statement will be equivalent to that of 
a dummy statement. 

For further explanation the following picture may be useful: 
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+ _________ + ____ + 
if B1 then 51 ~ .U B2 ~ 52 ~ 33 s4 .., _______ ,.._ +-----"--+ 

B1 false B2 false 

4.5.4. Go to into a conditional statement. 
The effect of a go to statement leading into a conditional state­

ment follows uirectly from the abeve explanation of the effect of ~. 

4.6. FOR STATEMENTS. 

4 .6 .1. Syntax. 
<for list element) ::=<arithmetic expression>! 

<arithmetic expression~ atcp <arithmetic expression> until 
<arithmetic expressi on>! 

<arithmetic expression) ~hile <Boolean expression) 
<for list> ::= <for list element>j<for list> , <for list element) 
(for clause) ::~ for <variable) :a (for list) do 
<for statement> :~<for clause><statement>l --

<label) : <for statement> 

4.n.2 • . Examples. 
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for q :• 1 step s until n do A[q] := B[q] 
f.9L k := 1, V1 x 2 ~hile V1 < N do 

for j :'"' I + G, L, 1 ~ 1 until N, C + D ~ A[k,J] := B[k,J] 

4.~.3. Semantics. 
A for clause causes the statement 3 ~hich it precedes to be repeatedly 

executed zero or more times. In addit ion it performs a sequence of assign­
ments to its controlled variable. The process may be visualized by means 
of the following picture: 

-v- - -, . - - - - - - - + 
Initialize ; test ; statement S ; advance ; successor 

L---------------~ for list exhausted 

In this picture the ~ord initialize means: perform the first assignment 
cf the ~or clause. Advance means: perform the next assignment of the for 
clause. Test determines if the last assignment has been done. If so 
the execution continues with the successor of the for statement. If not 
the statement fclloving the for clause is exe~uted. 

4 .6 .4. The for list elements. 
The for list gives a rule for obtaining the values vhicn are con­

secutively assigned to the controlled variable. This sequence of values 
is obtained from t he for list elements by taking these one by one in the 
order in ~hich they are written. The sequence of values generated by each 
of the three species of for list elements and the corresponding execution 
of th~ statement S are given by the following rules: 
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4.6 . 4.1 . Arithmetic expression. This element gives rise to one value, 
namely the value of the given arithmetic expression as calculated imme­
diately before the corresponding execution of the statement s. 
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4.6.4.2 . Step-until-element. An element for the form A~ B YD11l C, 
where A, B, and C, are arithme~ic expressions, gives rise to an execution 
which may be described most c0ncisely in terms of additional ALGOL state­
ments as follows: 

V:=A; 
Ll:if (V - C)x sign(B) > 0 ~ go to Element exhausted; 

Statement S; ' 
V:= V + B; 
gg_1Q L1; 

where V is the controlled variable of the for clause and Element exhausted 
points to the evaluation according to the next element in the for list, 
or if the step-until-element is the last of the list, to the next statement 
in the program. 

4.6.4.~. While-element . The execution governed by a for list element of 
the form E while F, where E is an arithmetic and F a Boolean expression, 
is most concisely described in terms of additional ALGOL statements as 
follows: 

L3:V:=E; 
if -, F th~n gc t c Element exhausted; 
Statement S; 
BQ..j& L3; 

where the notation 1: the same as in 4.6.4.2 above. 

4.L5. The value of the ccntrclled variable upon exit. 
Upcn exit cut of the statement 3 {supposed to be compound) through 

a go to statement the value of the controlled variable will be the same 
as it was immediately preceding the execution uf the go to statement. 

If the exit is due to exhaustion cf the fer list, on the other hand , 
the value of the controlled variable is undefined after the exit. 

4.6.6. Gc t o leading into a for statement. 
The effect of a go to statement, outside a for statement, which re­

fe-rs to a label within the for statement, is undefined. 
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4.7.1. Syn~ax. 
<actual paramete~ t t • <string.> I <expression> I <array 1dent1fie~ I 

<awi toh ident1f1e~ I <procedure identifier> 
<letter string» t •• <lette~ l <letter string> <letter> 
<parameter del1mi tar> • t. , I) <letter string> t ( · 
<actual parameter list> • t. <actual parameter> I 

<actual parameter .list> <parameter delimi tar> <actual parameter> , 
<actual parameter part> 1 1.. <empty> I (<actual parameter list>) . 
<procedure statement> t •· <procedure identifier> <actual · parameter part> 

4.7.2. Examples. 
· , Spur(A)Ordert(7)Result toa(V) 
. 1Tanepoae(W,v+1) 

Abema.x(A, N, K, Ty, I, K) 
Innerproduct(A[t,P,u], B(P), 10, P, Y) 

These examples correspond to examples given in section 5.4.2. 

4 . 7.3. Semantics. 
A procedure statement serves t o invoke (oall for) the execution of 

a. procedure bod7 (of. section 5.4. PROCEDURE DECLARATIONS). Where the 
procedure body is a statement written in ALGOL the effect of this 
exeoution will be equivalent to the effect of performing the following 
operations on the program at the time of execution of the procedure 
statement a 
4.7.].1. Value assignment {call by value). 

All formal parameters quoted in the value part of the procedure 
declaration heading are assigned the values (of. section 2.8. VALUES 
AND TYPES) of the corresponding actual parameters, these assignments 
being considered as being performed explicitly before entering the 
procedure body. The effect is as though an additional blook embraci ng t he 
procedure body were created in which these assignments were made to 
variables looal ' to this fictitious block with types as given in the 
corresponding specifications (cf. sect i on 5· 4•5•)• As a consequence, 
variables called by value are to be consider ed as non-local to the bod1 
of the procedure, but loc~l to the fictitious bl ook (ct. section 5. 4.3). 
4.7.3.2. Name replacement (oall by name). 

Any fonnal parameter not quoted in the value list is replaced, 
throughout the procedure body, by the corresponding actual parameter, 
after enclosing this latter in p~rentheses wherever syntactically 
possible. Possible oonfliots between identifiers inserted through 
this process and other identifiers al ready present within the procedure 
body will be avoided by suitable sys tematic changes of the formal or 
l ooal identif i ers i nvolved. 
4.7.3.3. Body r eplacement and execution. 

Finally 'the procedure body, modified as above, is inserted in place 
of the procedure statement and executed. If the procedure is cal l ed from 
a place out side the scope of any non-local quantity of the procedure body 
the c~nfliots between the identifiers inserted through this pr ocess of 
body replacement .and the identifiers whose declarations are val id at the 
plaoe ot the procedure statement or fUnction designator will be avoided 
through suitable systematic changes of the latter identifiers . 

4.7.4. Actual-formal correspondence. 
The correspondence between the aotuRl parameters of the procedure 

statement and the formal parameters of the procedure headi ng is 
established as follows: The actual parameter list of the procedure 
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statement must have the same number of entries as the formal parameter 
list of the procedure declaration heading. The correspondence is ob­
tained by taking the entries of these two lists in the same order. 

4•7•5• Restrictions. 
For a procedure statement to be defined it is evidently necessary 

that the operations on the procedure body defined in sections 
4.7.3.1 and 4.7.3.2 lead to a correct ALGOL statement. 

This poses the restriction on any procedure statement that the kind 
and type of each actual parameter be compatible with the kind and type 
of the corresponding formal parameter. Some important particular oases 
of this general rule are the followings 
4.7.5.1. If a string is supplied as an actual parameter in a procedure 
statement or fUnction designator, whose defining procedure body is an 
ALGOL 60 statement (as opposed to non-ALGOL code, af. section 4.7.8), 
then this string can only be used within the procedure body as an actual 
parameter in further procedure calls. Ultimately it can only be used by a 
procedure body expressed in non-ALGOL code. 
4.7.5.2. A formal parameter which occurs as a left part variable in an 
assignment statement within the procedure body and which is not called 
by value can only correspond t o an ac tual parameter which is a variable 
(special case of expression) . 
4.7.5.3. A formal paramet er which is used within the procedure body as an 
array identifier can only correspond to an actual parameter which ia an 
array identifier of an array of the same dimensions. In addition if the 
formal parameter is called by value the local array created during the call 
will have the same subscript bounds as the actual array. 
4.7.5.4. A formal parameter which is called by v~lue cannot in general 
correspond to a switch identifier or a procedure identifier or a string, 
because these latter do not possess values (the exception is the proce-
dure identifier of n procedure declaration whioh has an empty formal 
parameter part (of. section 5.4.1) and which defines the value of a function 
designator(cf. section 5.4.4). This procedure identifier is in itself a 
complete expression). 
4.7.5·5· Any formal parameter may have restrictions on the type of the 
corresponding actual parameter associated with it (these restrictions may, 
o~ may not, be given through specifications in the procedure heading}. 
In the pr ocedure statement such restrictions must evidently be observed. 

4.7.6. Deleted. 

4•7•7• Parameter delimiters. 
All parameter delimiters are understood to be equivalent. No 

correapondenoe between the parameter delimiters used in a procedure 
statement and those used in the procedure heading is expected beyond 
their number being the same. Thus the information conveyed by using 
the elaborate ones is entirely optional. 

4.7.8. Procedure body expressed in code . 
The restrictions imposed on a procedure s t atement calling a 

procedure having its body expressed in non-ALGOL code evidently can 
only be derived from the characteristics of the code used and the 
intent of the user and thus f all outs ide the scope of the reference 
language. 
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5· DECLARATIONS. 

Declarations serve to define certain properties of the quantities 
used in the program, and to associate them with identifiers. A declaration 
of an identifier is valid for one block. Outside this block the particular 
identifier may be used for other purposes (of. section 4.1.3) . 

D,ynamically this implies the followings at the time of an entry 
into a block (through the begin, since the labels inside are local 
and therefore inaccessible from outside) all identifiers declared for 
the block assume the significance implied by the nature of the declarations 
given. If these identifiers had already been defined by other declarations 
outside they are for the.time being given a new significance. Identifiers 
which are not declared for the.block, on the other hand, retain their old 
meaning. 

At the time of an exit from a blook (through end, or by a go to state­
ment) all identifiers which are declared for the blOCk lose their local 
significance. 

A declaration may be marked v1i th the additional declarator own. This 
has the following effectt upon a reentry into the block, the values 
of own quanti ties will be unchR.nged from their values at the .last exit, 
while the values of declared variables which are not marked as own are 
undefined. Apart from labol n nnd formal parameters of Tlrocedure declara­
tions and with the possible exception of thoee for standard functions 
(cf. sections 3.~.4 and ).c.)) nll identifiers of a program must be 
declared. No identifier ma:1 be declared more than once in any one block 
head. 

Syntax. 
<declarRtion> a a- <type declaration> I <array declRration> I 

<switch declaration> !<procedure declaration> 

5.1. TYPE DECLARATIONS. 

5.1.1. Syntax. 
<type list> a a. <simple variable> I <simple variable>, <type list> 
<type> a a- · real I integer I Boolean 
<locEtl or own type> a 1. <type> I own <type> 
<type declaration> a a- <local or ""OWn type> <type list> 

5.1.2. Examples. 
integer p, q, s 
~ Boolean Acryl, n 

5.1.3. Semantics. 
Type declarations serve to declare certain identifiers to represent 

simple variables of a given type. Real declared variables may only as­
sume positive or negative values including zero. Integer declared varia­
bles may only assume positive and negative integral values including zero. 
Boolean declared variables may only assume the values true and false. 

In arithmetic expressions any position which can ~ocupied by 
a real declared variab l e may be occupied by an integer declared variable. 

For the semantics of ~' see the fourth paragraph of section 5 
above. 
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5 .2. ARRAY DECLARATIONS. 

5.2.1. Syntax. 
<laver bound) ::• <arithmetic expression> 
(upper bound) ::• (arithmetic expression) 
<bound pair) : :• <lower bound) : <upp~r bound) 
(bound pair list) ::= <bound pair)j<bound pair list) , <bound pair) 
<array segment> ::• <array identifier>[<bound pair list>] I 

<array identifier> , <array segment) 
<array list) ::• <array segment>l<array list> , <array ~egment> 
<array declaration> ::• array <array list>l 

<local or own type> ~ <array list> 

5.2.2. Examples. 
~a, b, c[7:n,2:m], s [-2:10] 
£Mn integer ~ A[if c<O ~ 2 ~ 1 : 20] 
.DtU Anl!..Y ql-7 : -1] 

5.2.3. Semantics. 
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An array declaration declares one or several identifiers to represent 
multidimensional arrays of subscripted variables and gives the dimensions 
of the arrays, the bounds of the subscripts and the types of the variables. 

5.2.3.1. Subscript bounds. 
The subscript bounds for any array are given in the first subscript 

bracket following the identifier of this array in the form of a bound pair 
list. Each item of this list gives the lower and upper bound of a subscript 
in the form of two arithmetic expressions separated by the delimiter : 
The bound pair list gives the bounds of all subscripts taken in order tram 
lett to right • 

5.2.3.2. Dimensions. 
The dimensions are given as the number of entries in the bound pair 

lists. 

5.2.3.3. Types. 
All arrays declared in one declaration are of the same quoted type. 

If no type declarator is given the type l:UJ. is understood. 

5.2.4. Lower upper bound expressions. 
5.2.4.1. The express~oris will be evaluated in the same vay as subscript 
expressions (cf. section 3.1.4.2). 
5.2 .4 .2. The expressions can only depend on variables and procedures which 
are non-local to the b1ock for which the array declaration is valid. aonse­
quently in the outermost block of a program only array declarations with 
constant bounds may be declared. 
5.2.4.3. An array is defined only when the values of all upper subscript 
bounds are net smaller than those of the corresponding lower bounds. 
5.2.4.4. The expressions will be evaluated once at each entrance into the 
block. 
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5.2.5. The identity of subscripted variables. 
The identity of a subscripted variable is not related to the sub­

script bounds given in the array declaration. However, even if an array 
is declared ~ the values of the corresponding subsoript~d variables 
will, at any time, be defined only for those of these variables which 
have subscripts within the most recently calculated subscript bounds. 

5.3. SWITCH DECLARATIONS. 

5· 3.1. Syntax. 
<switch list> r r .. <designatiowtl expression> I 

<switch liat>,<designational expression> 
<switch declaration> a r. switch <switch identifier> a- <awi tch list> 

5.3.2. Examples. 
switch S t• 31, 32, Q(mJ, !!, ~-5 then S) ~ S4 
switch Q •· p1, w 

5.3.3. Semantics. 
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A switch declaration defines the set of values of the corresponding 
switch designators. These v~lues are given one by one as the values of the 
designational expressions entered in the s~itch list. With each of 
these designational expressions there is associated a positive integer, 
1, 2, ••• , obtained by counting the items in the list from left to 
right. The value of the switch designator corresponding to a given 
value of the subscript expression (of. section 3.5. DESIGNATIONAL EX­
rRESSIONS) is the value of the designational expression in the switch 
list having this given value as its associated integer. 

5.3.4. Evaluation of expressions in the switch list. 
An expression in the switch list will be evaluated every t i me 

the item of the list in which the expression occurs is referred to, 
using the current values of all variables involved. 

5·3·5· Influence of scopes. 
If a switch designator occurs outside the scope of a quantity entering 

into a designational expression in the switch list , and an evaluation of 
this switch designator selects this designational expression, then the 
conflicts between the identifiers fBr the quantities in this expression 
and the identifiers whose declarations are valid at the place of the 
switch designator will be avoided through suitable systematic changes of 
the latter identifiers. 
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5 • 4. PROCEDURE DECLARATIONS. 

5.4 . 1 . S'yntax. 
<formal parameter> ::= (identifier> 
<formal parameter list> ::= (formal paramet er>! 

<fo~l parameter· list><parameter delimiter><fon~l parameter> 
(formal parameter part) ::m <empty>l(<formal parameter list>) 
(identifier list) ::= <identifier>l<i~entifier list> , (identifier> 
<value part> ::=value <identifier list) J !<empty> 
<specifier> ::= ~l<type>l~l<type> ~ I ~ I switch I 

procedure I <type> ·ro~ ur 
<specification part) ::=(empty> 

<specifier><identifier list> J ~ 
<specification part)(specifier><identifier list> 1 

(procedure heading) ::=(procedure identifi er)(formal parameter part>t 
<value part><specificaticn ~art> 

<procedure body) ::= <statement>l<c c:de) 
<procedure declaration) ::= 

12rocedure <procedure heading) (prc.cedure body) I 
<type) procedure (procedure heading><procedure body> 

5.4.2. Examples (see also the examples at the end of the report) . 
procedure Spur(a)Order:(n)Result:(s) ; value n 
array a ; integer n ; real s ; 
begin integer k ; 
s ::or 0 ' 
for k := 1 ~ 1 YD11l n do s := s + a[k,k] 
end 

procedure Transpose(a)Order:(n) 
array a ; integer n J 
~real w ; integer i, k ; 
for i : = 1 .§.!&12 1 until n s!Q 

LQ!: k := 1+i ~ 1 until 
~ w := a[i,kj ; 

a[i,k] := a[k,i] J 
a[k,i] :=w 

~ 
~Transpose 

value r. 

n do 

integer procedure Step(u) ; real u ; 
step := if O~UI\u~1 then 1 else 0 

procedure Absmax(a)size :(n, m)Result:(y}Subscripts:(i,k) ; 
comment The absolute greatest element of the matr ix a, cf size n by m 
is transferred toY, and the subscript s of this element t o i and k ; 
array a ; integer n, m, i, k ; real y; 
begin integer P, q ; 
y := 0 ; 
for p := 1 step 1 until n do for q : = 1 step 1 until m de; 
if abs(a[p,q]} ) y then begin y:=abs(a[p,q]}; i:=p; k:=q end end Absmax 
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procedure Innerproduot{a,b)Order:{k,p)Resulta{y) f ~ k J 
integer k,p 1 !!!l y,a,b 1 
begin !.!.!! a 1 a 1 • 0 1 
ill_ p :. 1 step 1 2!!.! k do a •• a + a >' b 1 

y ·- • 
~ Innerproduot 

5.4.3. Semantics. 
A procedure declaration serves to define the procedure aesooiated 

with a procedure identifier. The principal constituent of a procedure 
declaration is a statement or a piece of code, the procedUre body, which 
through the use of procedure statements and/or function designators may 
be activated from other parts of the block in the head of which the pro­
cedure declaration appears. Assoeiated with the bo~y is a heading, which 
specifies certain identifier• occurring within the body to represent for­
mal parameters. Formal parameters in the procedure body will, whenever 
the procedure is activated (of. section 3.2. FUNCTION DESIGNATORS and 
section 4. 7. PROCEDURE STATEr.ffiliTS) be assigned the vnlues of or replaced 
by actual parameters. Identifiers in the procedure body which are not 
formal will be either local or non-local to the body depending on 
whether they are declared within the body or not. Those of them which 
nre non-local to tbe body may well be loonl to the block in the head ot 
which the procedure declarntion appears. The procedure body always acts 
like a block, .whether it has the from of one or not. Consequently the 
scope of any label labelling a statement within the body or the body itself 
can never extend beyond the procedure body. In addition, if the identifier 
of a formal parameter is declared anew within the procedure body (including 
the case of its use as a label as in section 4.1.3), it is thereby given 
a local significance and actual parameters which correspond to it are 
inaccessible throughout the scope of this inner local quantity. 

5.4.4. Values of function designators. 
For a procedure declaration to define the v~lue of a function desig­

nator there must, within the procedure body, occur one or more explicit 
assignment statements with the procedure identifier in a left part1_ at 
least one of these must be executed, and the type associated with the 
procedure identifier must be declared through the appearance of a type 
deoalrator as the very first symbol of the procedure declaration. The last 
value so assigned is used to continue the evaluation of the expression 
in which the function designator oocurs. Any ocourrenoe of the procedure 
ident~fier within the body of the procedure other than in a left part in 
an assignment statement denotes activation of the procedure. 

5.4.5. Specifications. 
In the heading a speoification part, giving information about the 

kinds and types of the formal par~eters by means of an obvious notation, 
may be included. In this part no formal parameter may occur more than once. 
Specifications of formal parameters called by value (of. section 4.7.3.1) 
must be supplied and specifications of formal paramters called by name 
{of. section 4.7.3.2) may be omitted. 

5.4.6. Code as procedure body. 
It is understood that the procedure body may be expressed in non­

ALGOL langUage. Since it is intended that the use of this feature should 
be entirely a question of hardware representation, no further rules concer­
ning this code language can be given within the reference language. 
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Example 1. 

procedure euler (fct, sum, epa, tim) ; ~ eps, tim ; integer tim 
~ proced,ure fct J l:W sum, eps ; 
comment euler computes the sum of fct(i) for i from zero up to infinity 
by means of a suit~bly refined euler transformation. The summation is 
stopped as soon as tim times in succession the absolute value of the 
terms of the transformed series are found to be less than eps. Hence, 
one should provide a function fct with one integer argumertt, an upper 
bound eps, and an integer tim. The output is the sum sum. euler is 
particularly efficient in the case of a slowly convergent or divergent 
alternating series ; 
~ integer i, k, nj t J gm m[0:15] J r,l mn, mp, ds ' 
i :c n :• t :c OJ m[o :2 fct(o) ; sum :u m o /2 ; 
nextterm: i :• i+1 ; mn :• fct(i) ; 

~euler · 

1 Example 2 

.f.m: k :• 0 §.l&R 1 ~ n Q.Q 
~ mp := (mn+m k])/2 ; m[k] := mn ; nm :• mp .md means 

if (abs(mn) < abs(m[n ) )/\(n<15) ~ 
~ ds :a mn/2 ; n := n+1 ; m[n] : .. mn ~ accept 

else ds· :• mn J 
sum := sum + ds ; 
if abs(ds) < eps then t:=t+1 ~ t := 0 ; 
if t(tim ~ go to nextterm 

procedure RK(x,y ,n,FKT,eps,eta,xE,yE,fi) ; value x,y ; integer n ; 
Boolean fi J real x, eps, eta, xE ; ~ y, yE ; procedure FKT ; 
cqmment: RK integrates the system yk .. fk(x,y1 ,y2 , ••• ,yn) (k•1,2, •• n) 

of differential equations with the method of Runge~Kutta with automatic 
search for appropriate len~h of integration step. Parameters are: 
The initial values x and y[k] for x and the unknown functions yk(x). 
The order~ of the system. The procedure FKT(x,y,n,z) which represents 
the -system to be integrated, i.e. the set of functions fk. The tole­
ran~e values eps and eta which govern the accuracy of the numerical 
integration. Th~ end or the integration ,interval xE. The output para­
meter yE which represe.r~s the solution at x=zxE. The Boolean variable 

~5 

fi, which must always be given the value ~ for an isolated or first 
entry into RK. If however the functions y must be available at several 
meshpoints x0 , x1 , ••• , xn, then the procedure must be called repeatedly 

(with xa~, xE = ~+l' for k .. o, 1, ••• , n-1) and then the later calls 

1. This RK-program contains sane new ideas which are related to ideas of 
s. Gill, A process for the step by step integration of differential 
equations in an autanatic computing machine. Proc. qamb. Phil. Soc. 
Vol. 47 (1951) p. 96, and E. Frooerg, On the solution of ordinary dif­
ferential equationa with digital computing machines, Fysiograf. Sallsk. 
Lund, Forhdl. 20 Nr. 11 (1950) p. 1·36-152. It must be clear howf·Ver 
that with respect to computing time and round-off errors it may not 
be optimal, nor has it actually been tested on a computer. 
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may occur. with fi • !IJ.u which saves canputing time. The input para­
meters of FKT must be x,y,n, the out~ut parameter z represents the set 
of derivatives z[k] • fk(x,y[1], y[2J, ••• , y[n]) for x and the actual 
y • s. A procedure caup eHters as a non-local identifier J 
W1n -
~ z,y1,y2,y3[1:n] J real x1,x2,x3,H J Boolean out ; 
integer k,j J £Mn ~ s,Hs J 
procedure RK1ST(x,y,h,xe,ye) J DaJ. x,h,xe J ~ y,ye ; 

comment : RK1ST inte~rates one single RUNGE-KUTTA step with 
initial values x,y[kj which yields the output parameters 
xe a x+h and ye[k], the latter being the solution at xe. 
IMPORTANT: the parameters n, FKT, z enter RK1ST as non-local 
entities J 
l2.W.n 
~ w[1:n], a[1:5] J integer k,J J 
al1J :• a[2] :• a[5] : 2 h/2 J a[3J :• a[4] :• h J 
xe :• x J 
!gt k:•1 ~ 1 ~ n ~ ye[k] :• w[k] :• y[k] J 
ill j :•1 ~ 1 .Yn!JJ. 4 9& 
~ ' 

FKT{xe,w,n,z) ; 

end j 

xe := x + a[j] J 
for k := 1 ~ 1 ~ n Q.Q 
begin 

w[k] :2 y[k] + a(j] ~ z[k] l 
ye[k] :• ye[k] + a[j+1] ~ zlk]/3 

end k 

~ RK1ST J 
BEGIN OF PROGRAM: 

.U fi ~ ~ H:axE-x s :• 0 ~ ~ H := Hs 
out :• ~ J 

AA: .U: {x+2 .o1~H-xE)O) : (H>O) ~ 
~ Hs :• H J out :a~ J H :• (xE-x)/2 ~ if 
RK1ST(x,y,2~H,x1,y1) ; 

BB: RK1ST(x,y,H,x2,y2) J RK1ST(x2,y2,H, x3,y3) J 
for k := 1 ~ 1 .J.miU n 9& 
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.U: canp{y1[k] ,Y3lkJ.eta) > epa ~ .sQ..j'& CC J 
cgmment : comp(a,b,c) is a function designator, the value of which 
is the absolute value of the difference of the mantissae of a and b, 
after the exponents of these quantities have been made equal to the 
largest of the exponents of the originally given parameters a,b,c J 
x :• x3 J .1!. out ~ &Q..j& DD J 
!Q1: k :• 1 §kQ. 1 YniU n Q..Q y[k] :• y3[k] 
JJ: s•5 1J:u:n ~ s :•0 J H :• 2~H ~ if J 
s :• s + 1 J .sQ..jj& AA J 

CC: H :• 0.5~H J out :a ~ J x1 :• x2 J 
m k :• 1 .1!&1! 1 Yalllll n d2 y1 [k] :• y2(k] 
B.Q..j£Q BB J 

DD: for k :• 1 .nm 1 YntJJ. n .Q.Q. yE[k] :• y3[k] 
.m1 RK 
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ALPHABETIC INDEX OF DEFINITIONS OF CONCEPTS AND SYNTACTIC UlfiTS. 

All references are given through section numbers. The references 
are given in three groups: 
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def Following the abbreviation def .reference to the syntactic definition 
(if any) is given. 

synt Following the abbreviation synt references to the occurrences in 
metalinguistic formulae are given. References already quoted in 
the def-group are not repeated. 

text Following the word text the references to definitions given in 
the text are given. 

The basic symbols represented by signs other than underlined words 
have been collected at the beginning. The examples have been ignored in 
compiling the index. 

+, see: plus 
see: minus 

x see: multiply 
1 .. ' +, see: divide 'r see: exponentiation 
<, ~. •, L, >, +. see: <relational operator> 
~. ::::> , v, ''. ., , see: (logical operator> 
, , see: canma 
., see: decimal point 
10 , see: ten 
:, see: colqn 
,, see: semicolon 
:•, see: colon equ:al 

f
' see: space 
~. see: parentheses 
~· see: subscript bracket 

, see: string quote 
<actual parameter>, def 3.2.1, 4.7.1 
<actual parameter list>, def 3.2.1, 4.7.1 
<actual parameter part), def 3.2.1, 4.7.1 
<adding operator>, def 3.3.1 
alphabet, text 2.1 
arithmetic, text 3.3.6 

(arithmetic expression>, def 3.3.1 synt 3, 3.1.1, 3.3.1, 3.4.1, 4.2.1, 
4.6.1, 5.2.1 text 3.3.3 

(arithmetic operator>, def 2.3 text 3.3.4 
~. synt 2.3, 5.2.1, 5.4.1 
array, text 3.1.4.1 

<array declaration>, def 5.2.1 synt 5 text 5.2.3 
<array identifier>, def 3.1.1 synt 3.2.1, 4.7.1, 5.2.1 text 2.8 
<array list), def 5.2.1 
<array segment), def 5.2.1 
<assignment statement), def 4.2.1 synt 4.1.1 text 1, 4.2.3 
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(basic statement>, def 4.1.1 synt 4.5.1 
<basic symbol >, def 2 
begin, synt 2.3, 4.1.1 

(block>, def 4.1.1 synt 4.5.1 text 1, 4.1.3, 5 
<block head>, def 4.1.1 
Boolean, synt 2.3, 5.1.1 text 5.1.3 
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(Boolean expression), def 3.4.1 synt 3, 3.3.1, 4.2.1, 4.5.1, 4.6.1 text 3.4.3 
<Boolean factor), def 3.4.1 
<Boolean primary>, def 3.4.1 
<Boolean secondary), def 3.4.1 
<Boolean term>, def 3.4.1 
(bound pair), def 5.2.1 
<b ound pair list>, def 5.2.1 
<bracket '>, def 2.3 
<code), synt 5.4.1 text 4.7.8, 5.4.6 
colon : , synt 2.3, 3.2.1, 4.1.1, 4.5.1, 4.6.1, 4.7.1, 5.2.1 
colon equal :~ , synt 2.3, 4.2.1, 4.6.1, 5.3.1 
comma, , synt 2.3, 3.1.1, 3.2.1, 4.6.1, 4.7.1, 5.1.1, 5.2.1, 5.3.1, ·5.4 .1 
comment, synt 2.3 
comment convention, text 2.3 

<compound statement) , def 4 . 1.1 synt 4.5.1 text 1 
(compound tail), def 4.1.1 
(conditional statement>, def 4.5.1 synt 4.1.1 text 4.5.3 
(decimal fraction>, def 2.5.1 
(decimal number>, def 2.5.1 text 2.5.3 
decimal point • , synt 2.3, 2.5.1 

<declaration>, def 5 synt 4.1.1 text 1, 5 (complete section) 
(declarator>, def 2.3 
(delimiter>, def 2.3 synt 2 
(designational expressicn>, def 3.5.1 synt 3, 4.3.1, 5.3.1 text 3.5.3 
(digit) , def 2.2.1 synt 2, 2.4.1, 2.5.1 
dimension, text 5.2.3.2 
divide/+, synt 2.3, 3.3.1 text 3.3.4.2 
do, synt 2.3, 4.6.1 

(dummy statement>, def 4.4.1 synt 4.1.1 text 4~4.3 
~. synt 2.3, 3.3.1, 3.4.1, 3.5.1, 4.5.1 text 4.5 . 3.2 

(empty>, def 1.1 s~~t 2.6.1, 3.2.1, 4.4.1, 4.7.1, 5.4.1 
end, synt 2.3, 4.1.1 
entier, text 3.~.5 
exponentiation 'I', synt 2.3, 3.3.1 text 3.3.4.3 

(exponent part), def 2.5.1 text 2.5.3 
<expression), def 3 synt 3.2.1, 4.7.1 text .3 {complete section) 
(factor>, def 3.3.1 
false synt 2.2.2 
for, synt 2.3, 4.6.1 

(for clause>, def 4.6.1 text 4.6.3 
(for list), def 4.6.1 text 4.6.4 
(for list element), def 4.6.1 text 4.6 . 4 . 1, 4.6.4.2, 4.6.4.3 
(formal parameter), def 5.4.1 text 5.4.3 
(formal parameter list), def 5.4.1 
(formal parameter part), def 5.4.1 
<for statement) def 4.6.1 synt 4.1.1, 4.5.1 text 4.6 (complete section) 
<function desi~ator), def 3.2.1 synt 3 . 3.1, 3.4.1 text 3.2.3, 5.4.4 
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~. synt 2.3, 4.3.1 
<go to statement), def 4.3.1 synt 4.1.1 text 4.3., 
(identifier>, def 2.4.1 synt 3.1.1, 3.2.1, 3.5.1, 5.4.1 text 2.4.3 
(identifier list>, def 5.4.1 
1(, synt 2.3, 3.3.1, 4.5.1 

<if clause>, def 3.3.1, 4.5.1 synt 3.4.1, 3.5.1 text 3.3.3 , 4.5 .3.2 
<if statement>, def 4.5.1 text 4.5.3.1 
<implication>, def 3.4.1 
integer, synt 2.3, 5.1.1 text 5·1•3 

<integer>, de! 2.5.1 text 2.5.4 
~. synt 2.3, 5.4.1 

<label), def 3.5.1 synt 4.1.1, 4.5.1, 4.6.1 text 1, 4.1.3 
<lett part>, def 4.2.1 
<left part list>, def 4.2.1 
<letter), def 2.1 synt 2, 2.4.1, 3.2.1, 4.7.1 
<letter string>, def 3.2.1, 4.7.1 
local, text 4.1.3 

<local or own type>, def 5.1.1 synt 5.2.1 
<logical operator>, def 2.3 synt 3.4.1 text 3.4.5 
(logical value>, def 2.2.2 synt 2, 3.4.1 
<lower bound), def 5.2.1 text 5.2.4 
non-local, text 4.1.3 
minus - , synt 2.3, 2.5.1, 3.3.1 text 3.3.4.1 
multiply • , synt 2.3, 3.3.1 text 3.3.4.1 

<multiplying operator), de! 3.3.1 
<number>, def 2.5.1 text 2.5.3, 2.5.4 
(open string>, def 2.6.1 
<operator>, de! 2.3 
£Mn, synt 2.3, 5.1.1 text 5, 5.2.5 . 

<parameter delimiter>, def 3.2.1, 4.7.1 synt 5.4.1 text 4~7.7 
parentheses ( ), synt 2.3, 3.2.1, 3.3.1, 3.4.1, 3.5.1, 4.7.1, 5 .~.1 

text 3.3.5.2 
plus + , synt 2.3, 2.5~1, 3.3.1 text 3.3.4.1 

<primary), def 3.3.1 
prccc4ure, synt 2.3, 5.4.1 

<procedure body>, def 5.4.1 
<procedure declaration>, de! 5.4.1 synt 5 text 5.4 ,3 
<procedure heading), def 5.4.1 text 5.4.3 , 
<procedure identifier> def 3.2.1 synt 3.2.1, 4.7.1, 5.4.1 text 4.7o5 .4 
<procedure statement>, de! 4.7.1 synt 4.1.1 text 4.7.3 
program, text 1 

<proper string), def 2.6.1 
quantity, text 2.7 
~. synt 2.3, 5.1.1 text 5.1.3 

<relation>, def 3.4.1 text 3.4.5 
<relational operator>, def 2.3, 3.4.1 
scope, text 2.7 
semicolon J, synt 2.3, 4.1.1, 5.4.1 

<separator>, def 2.3 
<sequential operator>, def 2.3 
(simple arithmetic expression), def 3.3.1 text 3.3.3 
<simple Boolean>, def 3.4.1 
<simple designational expression>, def 3.5.1 
<simple variable), def 3.1.1 synt 5.1.1 text 2.4.3 
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I 

space • , synt 2.3 text 2.3, 2.6.3 
<specification part), def 5.4.1 text 5.4.5 
<specificator), def 2.3 
<specifier~. def 5.4.1 

~"' J 

.. 
I 

40 

( 

standard function, text 3.2.4, 3.2.5 
<statement>, def 4.1.1, synt 4.5.1, 4.6.1, 5.4.1 text 4 (complete section) 
statement bracket, see: ~ ~ 
~. synt 2.3, 4.6.1 text 4.6.4.2 
string, synt 2.3, 5.4.1 

<string), def . 2.6.1 synt 3.2.1, 4.7.1 text 2.6.3 
string quotes r ', synt 2.3, 2.6.1, text 2.6.3 
subscript, text 3.1.4.1 
subscript bound, text 5.2.3.1 
subscript bracket [ ], synt 2.3, 

<subscripted variable), def 3.1.1 
<subscript expression>, def 3.1.1 
<subscript list), def 3.1.1 
successor, text 4 
swi tch, synt 2.3, 5.3.1, 5.4.1 

3.1.1, 3.5.1, 5.2.1 
text 3.1.4.1 
synt 3.5.1 

<switch declaration) , def 5.3.1 synt 5 text 5.3.3 
(swi tch des i gnator), def 3.5.1 text 3.5.3 
<switch identifier>, def 3. 5.1 synt 3.2.1, 4.7.1, 5.3.1 
(svitch list>, def 5.3.1 
<term>, def 3.3.1 
ten 10 , synt 2.3, 2.5.1 
~. synt 2.3, 3.3.1, 4.5.1 
transfer function, text 3.2.5 
Y:ill:,, synt 2 .2 .2 

<type) , def ,5.1.1 synt 5.4.1 text 2.8 
<type declaration>, def 5.1.1 synt 5 text 5.1.3 
<type list), def 5.1.1 . 
<unconditional statement>, def 4.1.1, 4.5.1 
(unlabelled basic statement>, def 4.1.1 
<unlabelled block>, def 4.1.1 
<unlabelled compound), def 4.1.1 
<unsigned integer>, def 2.5.1, 3.5.1 
<unsigned number>, def 2.5.1 synt 3.3.1 
Yn11l, synt 2.3, 4.6.1 text 4.6.4.2 

<upper bound), def 5.2.1 text 5.2.4 
value, synt 2.3, 5.4.1 
value, text 2.8, 3.3.3 

, 

,f 

,...· 

<value part), def 5.4.1 text 4.7.3.1 
<variable), def 3.1.1 synt 3.3.1, 3.4.1, 4.2.1, 4.6.1 text 3.1.3 
(variable identifier>, def 3.1.1 
~. synt 2.3, 4.6.1 text 4.6.4.3 


