ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

СОКРАЩЕННЫЙ ТЕКСТ ТЕОРЕТНЧЕСКОЙ ДИСКУССИИ
7 НЮЛЯ 1962 ГОДА
НА МЕЖДУНАРОДНОЙ' КОНФЕРЕНЦИН ПО ФИЗИКЕ ВЫСОКИХ ЭНЕРГИЙ

СОКРАШЕННЫЙ ТЕКСТ ТЕОРЕТИЧЕСКОЙ ДИСКУССИИ 7 ИЮЛЯ 1962 ГОДА НА МЕЖДУНАРОДНОЙ КОНФЕРЕНЦИИ ПО ФИЗИКЕ ВЫСОКИХ ЭНЕРГИЙ

Дубна 1963.

```
To : Prolessor D. Blokhintsev
        Professor M.N. Bogoliubov
        Prolessor G. Breit
        Professor G.F. Chew
        Frofessor M. Gell-Menn
        Professor W. Heisenberg
        Professor R. Jost
        Dr. C. Lovelace
        Professor S. Mandelstam
        Professor J.R. Oppenheimer
        Professor V.F. We1sskopf
        Professor C.N. Yang
Trome: L. Tan Hove
```

This is a slightly abbreviated version of the theoretioal
discussion held on Saturday 7 July during the 1962 International
Conferenoe on High Energy Physics at CBRN. We feel its oontents is interesting enough to be mimeographed and sent to the partioipants of the Conferenoe.

If jou wish to correot the remarks jou mede during this discussion would jou kindly send your oorreotions by return mail.

We thought it might be useful to organize this
informal session on theoretioal aspeots of elementary partiole physics beoause of two reasons: first it might give us the opportunity to have a look at the theoretioal developments in a broader perspeotive, going perhaps a little further back in time; and seoondly, it should allow us to have longer disoussions than is possible in the regular sessions of the oonference. The intention, namely, is that a few people will speak, more raising questions than presenting results or developing theories, and that there will be a lot of interruptions.

If jou allow me I start by listing a few points whioh bave struck a number of us, certainly me, as very interesting developments in the theory of elementery particles and high energy phenomena, and probably many of our disoussions will ooncern them in some way. It would also be extremely nioe if additional points would be brought in by you later on. My list is the following.

I. Regge poles. I would like to distinguish four points:

-- Regge poles in potential theory.

- Their signifioance for the asympotic properties of soattering amplitudes, also the relatiVistio amplitudes with their supposed orossing relations and analyticity properties. This raises in addition the more comprebensive question of a complete set of boundary conditions for the soattering amplitude when its two variables tend to infinity.
- Their relation to the mass spectrum of partioles and resonances.
- Do Regge poles occur in field theory?
II. The dynamioal theories of elomentary particles. Here we distinguish:
- The nom-linear spinor theory, as developed by Heisenberg and collaborators and as studied also by Namby and Jona-Lasinio.
- The so-called "bootstrap mechanism" proposed and studied by Chew and his group.
- The idea of degeneracy of the vacuum which Nambu and Heisenberg have introduced for the first time in the theory of elementary particles. If this idea, closely conneoted with the problem of broken symmetries, would turn out to be part of a future theory of elementary particles, this would be of absolutely fundamental significance not only in theoretioal physios but also from the standpoint of philosophy of scienoe.

III. Reoent progress in quantum eleatrodynamios.

- The most remarkable development here is the work by Yang and Lee on the electromagnetic properties of vector bosons, especially the result that the first radiative correotion to the quadrupole moment of a veotor boson is in a $10 g$ a , where a is the fine strueture constant. For the first time, a finite result has been obtained in eleotrodynamios oontaining an essential singularity in a This, I think, if it is there to stay, is of very great signifioance.

I will now ask Professor Helsenberg to open the disoussion by presenting a number of oonsiderations and questions.

I would like to make a few remarks about the relation between Chew's assumptions in field theory and our own assumptions. But, to start, may I perhaps say that we all, when quantum field theory was started, have neglected one fact which really turned out to be extremely important. This is that Einstein, when he introduoed the theory of special relativity, ohenged from forces at long distance to looal forces. And we had not realized that this was such a tremendous ohange. Quantum mechanios, of course, was like the old Newtonian theory with forces at a distanoe, and when we had to go over to quantum field theory we had to introduce local interaotions, and this apparentIf has made all the trouble.

One could perhaps classify the different attempts at an axiomatiaation of a theory of fields or elementary partioles in the following way.

1. The minimum which we require to describe experiments is an S matrix with oertain properties. So our first axioms are existence of the S matrix, and this S matrix must be unitary and it must have so much analyticity that it represents what is observed as oausality. Also this S matrix, of course, must have invariance for the Jorente group, the isospin group and so on.
2. While this is, I think, definitely the minimum which we have to take in order to desoribe the experimental situation, one can be more optimistio and add other axioms, requiring the existence of a local field operator, oall it $x(x)$, commuting or anticomuting at spaolike distances, and the existence of a corresponding Hilbert spage. So far, we have not stated anything yet about the metric in Hilbert space. Causality will be represented by some kind of differential equation in $x(x)$.
3. Pinally one can still be more optimistio and add the postulates that the metrio in Hilbert spaoe shall be positive, and that the asymptotio operators shall be suffiolent to construct the complete Hilbert spooe.

Using this rather rough classifioation, I would say that Chew apparently tries to start'with the kind of axiom system mentioned under 1., and he opits 2. and 3.. Then, of course, in order to get definite results, one must stress more the properties under l., requiring as much analytioity as possible and, for instance, an assumption concerning Regge poles is an assumption in that direction. Postulates 1. and 2. aotually correspond to what we assume in our non-linear spinor theory, we do assume that there is a local field but we do not assume that there must be a positive metric, we leave it to the mathematics to decide, and aotualis it comes out that the metrio is indefinite.

OPPENHE IMER

This order of axioms seems to me to describe the relation of your theory to others, but is it not also possible to include in 1. some elements of 3 . on the existence of the asymptotic statas and their completeness in Hilbert space, and from this to deduce the existence of field with some
elements of locality, without insisting on total locality. Perhaps the field ooncept introduced by jou may do this if you go to arioms 3. or some modified form in whioh an indefinite negative metric is allowed, but is curbed, is made innocent, and then the question of how looal fields are may still be an open one. It does not seem to me that looality, as we formulate it, has to be a logiosi preoondition for axioms 3..

HR ISE MBER G

You would aotualy say that if we have 1 . and 3. we have in some wsy already a kind of field operator from the asymptotic states.

OPPE NHE IMER

R1ght, from the interpolation between the asymptotic states.

VAN HOVS

I would like at this point to ask a question conoerning weakened forms of looailty. I assume that what Profeasor Oppenheimer refers to is the fact that if the S matrix is Lorentz and TCP invariant, one oan then, for every interpolating gield between the inooming and the outgoing fields, Write down a relation of weak locality or weak comatatirity. What is unolear to me is how muoh this has to do with any locglity at all. We oould ask Jost to comment on this question.

JOST

I agree, I think, with the statement which Van Hove implied. It is a result of a paper which I wrote that the weak locality 18 completely equivalent to the existence of an anti-unitary involution which leaves the S matrix invariant, that is, to TCP invariance. Now, the work weak looality" is I think from Dyson, and it is really a very, very weak locality, it has not the essential elements of looslity in so far as it does not lead to analyticity properties of the S matrix. It may be a somewhat unhappy work, but certainly strong locality implies weak looality and in this sease, I think, the work is not too bad.

HE ISE HBERO

If you assume analytioity for the S matrix, so that jou aotually do reyresent causality, would jou still feel that the field could possibly be non-100sl?

JOST

That is a matter of definition. It is olear that if jou define oausality just as the restriotion which you get frow locality for the matrix elements of the S matrix, there is nothing to be disoussed. It is then just a tautology.

MA NDSISTAM

I have fust a small point but it may clarify things a bit. I wonder if the causality postulate should not be included in the second group of axioms rather than in the first group, because I think that people who do not want to use flelds have to take analyticity as a postulate not corm nected with causality, because one cannot use simple Kramers-Kroning-liko arguments to get analytiojts of the S matrix.

HE ISE NESRG

Is it not so that you can grove at least some kind of analyticity property from eaposcopic causality, like Aage Bohr ana Wanders have tried to do ?

MA NDEISTAM

I am not familiar with Wanders' work, but I do not agree that Aage Bohr's assumption is maroscopic oausality, I think he is really assuming muoh more, in fact, he is assuming so much that he can conclude dispersion relations which are contradicted in perturbation theory.

WEISSKOPF

I do not know what Aage Bohr has proved, but it seems to me clear that a thoory based on axioms 1. must have some kind of oausality in it, because even in such a theory the signal cannot oome out before the incoming wave came in.

MA NDELSTAM

I think that a theory based on 1. does not really include the time as one of its concepts, does it?

WEISSKOPF

Yes, it does. You can construot incoming wave packets.

HE ISE NBERG

I also feel that this is a strong argument. You can make wave packets come in, and we want them not to come out before thes have come in. This requirement should have come kind of representation.

MA NDEISTAM

Yes, I agree it should have some kind of representation, but I do not think that one could prove dispersion relations from it, and Professor Bogoliubov has made the same remark.

BOGOLIUBOV

It seams very difficult to obtain dispersion relations from macrosoopic causality only. The difficulty is: how can one teohnically define what macroscopic causality is ? There are very many ways to define microsoopic causality, mostly equivalent, but I do not see any technioal definition of what macroscopic causality is.

GBLL-MANN

The question is, given an S matrix theory with all the necessary analytic properties, can jou embed it in a theory whioh has all the Fourier components, including the ones off the mass shell, in such a way that they correspond to a field theory, the field being looal. It seems to me that on both sides we have some ignorance. If we want to deal exclusively with the S matrix on the mass sholl and try to guess, or abstract from the Feynman diagrams, suitable analytioity properties and use them for calculation, we do not know whether such a theory can be properly embedded in a looal theory by forming analytic extensions of some kind off the mass shell. But it is not necessary that it be so embedded, and this, is the answer to the people who would attack that kind of procedure. For the people who try to defend that kind of procedure as the only one to be used, I would say they do not know that it cannot be embedded in a field theory of the local type. I do not see that we have enough knowledge to engage in any arguments on this subject.

VAN HOVE

Could we use this point to let Professor Heisenberg continue ?

HEISENBERG

I have not much to say, I just wanted to raise questions and I am vers happy if the questions actually find answers, but that seems - as one sees - pretty difficult. I would like to make two more remarks, and Just turn them into questions.

One is: how do theories with a Lagrangian formalism, like quantum eleotrodynamics, stand when one renormalizes these theories ? In the case of the lee model we know that an infinite renormalization reduces the delta functions on the light cone to zero, and therefore by the process of infinite renormalization we apparently get from 3. to 2., and the question is that generally true, also for instanoe in quantum electrodynamios?

The second one is a question to chew: if one makes the assumption that all poles are of the Negge type, or more generally that there are no really alementary particles, or that no partioles have a bare core in the middle, then I would feel that one can hope to find a formalism in l., or 1. and 2., but one probably oannot find a formalism in 3., because with 3. we always get the delta functions on the light cone. I would like to ask chew what he thinks about this consequence of the Regge poles, I would like him to say at least his feeling about it.

I feel very apprehensive about this question. I have been accused, I think quite justly, of injecting an lement of religion into the whole subjeot, but Heisenberg has been kind enough to permit a somewhat religious answer, so magbe that is all right. I think that I would refer to the remark of Gell-Mann that maybe the S matrix postulates, including the postulate that all poles are Regge poles, will oorrespond to a situation which does not allow itself to be embedded in a field theory with axioms 2. or 3., and I agree completely that no one knows the answer at the present time, certalnly not me. Hoiseaberg asked me for my opinion and before I give it, let me say the following. For years I did strong interaction ealculations believing that I was doing field theory, this is wht I had been taught and all the people I worked with used fields. But at a certain point I realized that absolutely no use was being made of the field concept in anything that I was doing. And not only that, but I did not really understand what a field was. I worked for jears with scattering amplitudes, analyticity properties, unitarity, and saw that these things worked. of course unitarity we expect to work, but the analyticity properties of the S metrix are quite remarkable, and it is extremely significant that so many of them have by now been experimentally verified. This is something which i do not think people feel, who have not been deeply embedded in the problem of girong interaotions. The faot that these analytioity properties where they have been tested - aotually work, is most impressive. I would say that the most impressive examples are the forward dispersion relations, which Goldberger proposed and which have stood up including the poles. Since that time there has been the detailed verification of the high angular momentum parts of the nuoleon-nucleon scattering. Another point which is less preoise but which was terribly impressive - to me at least -was the fact that, when these arguments were applied to the nucleon electromagnetic structure, one really came to belleve that there must be meson resonances present, otherwise one just could not understand the electromegnetic structure, and they eventually developed.

HEISENBERG

May I protest against this statement ? I think that from the form factors in the nucleon-electron soattering you only can conclude that there must be a continuous spectrum with the symmetry properties which you are looking for, but I think there is absolutely no reason from the measurements to say that within this continuous spectrum there must also be a resonance state. This conolusion in favour of the resonance states, I think, was only derived because it was much more convenient for the theoreticians to calculate with one line, instead of taking the continuum. Now, I agree that when jou go 1nto details of the caloulation, zou may perhaps from Hofstadter's experiments find some indication that you have not only a continuous spectrum, but also some resonance state in it. But I think that the role of these resonances has been widely over-emphasized.

BOGOLIUBOV

This 1s not a question but a statement. You say, Professor Chew, that you do not utilize field conoepts, but jou for instance work with ordinary dispersion relations and with the Mandelatam representation. Dispersion relations could be proved, either from general principles or by the diagram technique of ordinary perturbation theory. Mandelstam representation, at least, can be proved for simple
diagrams. But you do not work with Nambu representations, which were in contradiction with the ordinary diagram teohnique. So in your mind you have criteria of diagram technique, you use only those analytical principles which at least oannot be disproved easily by the diagram technique.

VAN HOVE

To continue one \quad inute on this point, I think it is indeed important to realize how complioated the logical injections are, that are made in the practical applications of dispersion relations. Another point is that one has to maks this sharp distinction between what one might call the rough qualitative sucoesses of dispersion relations and the very definite quantitative success which is obtained for form ward pion-nucleon scattering. As far as I know, this particular example stands alone on a quantitative scale of accuraoy. Now, one can raise the questiont if you believe only that and leave aside all the other cases, how much can we conclude as to the validity of analyticity properties? Forgetting about field theory, can one from this single instance conclude thet our assumption of analyticity is on the right track?

CHEW

I certainly do not think one could, in any completely logical way. As I say, the element of religion here is very strong. I find the principle of TOP symmetry or of crossing so very compelling that once I have seen the demonstration of analyticity properties in the energy variable it is to me almost obvious that there will be analyticity properties in momentum transfer as well. And the Mandelstam representation then, in my mind, is based on the fact that it is the only consistent realiation of the combination of unitaxity and orosaing which has yet been written down. Professor Bogoliubov mentioned that it is motivated by diagrams in ileld theory, and this is oompletely true, but I think that these diagrams oimply represent the realization of the combination of unitarity and analyticity. Polkinghorne and Stapp, and others, have made it very plausible that this topological structure is really nothing wore than a combination of these two principles.

Abstract

FUBINI

I heve a few points to make. First, the forward dispersion relations which work so well, have also been proven rigorousis from the principles of field theory, so they can be taken both as a proof of the good philosophy of fust ansiyticity and of the good philosophy of field theory. In the case of the nucleon form faotor I would like to correct a little the statement made by Professor Helsenberg. I remember that in 1957 the Berkeley group did actually compute the contribution of the two pion continuum. It was computed on the assumption that no pion-pion resonance existed, and this computation was aotually a very good one. Now I remind you that in Drell's talk at the I958 Rochester conference it was shown that these computations oould not in any way agree with experiment, so that actually the theoretiolans have been forced to assume a pion-pion resonance, just because a very reasonable calculation without it did not egree with experiment.

I would also like to make a third point. There is a practioal question which has not been emphasiqed so much in this discussion, and it is the following: you can start from various sets of axioms, but there is a common thing in all situations, it is very hard practically to use these sets of axioms. If jou start from the field theoretical axioms, you are only able to prove a few dispersion relations. The causality condition has only been used in a very small region of validity, and much of the information is not used. A similar situation is met when you start either from perturbation graphs or from general analyticity arguments.

Thus it is very hard, for the moment, to apply any of our reasonings in a region which is beyond the case of two-body problems. We know that field theory is a complicated theory because there is produotion. Now we are almost completely helpless in dealing with production.

In th1s reapect, I would like to say a word of caution in the use of potential soattering. Potential soattering has been extremely helpful, first in giving a rigorous derivation of the Mandelstam representation, and secondiy, in giving Regge poles. But we must rewember that potential soattering contains a very small fraction of the information contained in field theory. So I would say that I am a little hesitant in adopting the religion that properties which are proved in potential soattering hold exaotly, without any change, in field theory. It is very reasonable to assume that properties in potential scattering can be in some way transferred to ileld theory, but with the caution that something else may happen.

CHEW

I agree completely, but I would say that any complications in field theory which are not present in potential theory, and there certainly are going to be many, I believe will arise entirely from the combination of unitarity and analiticity. I do not think there will be any other source of complication.

MA NDELSTAM

I would like to make two remarks. One is in connection with the remark last made by Gell-Mann: if you look at the equations you get from the so-0alled axiomatic field theory, by that 1 mean axioms 2 . and 3., you will find a set of horribly non-1inear, integral equations which of course involve the whole Green functions on and off the mass shell. Now one cen isolate the non-linearity into those parts of the Green functions that are on the mass shell, namely the scattering matrix, and therefore solve the soattering matrix equations without mentioning the other parts of the Green functions at all, and that is essertially what we do in S matrix theory. Having done that, we have a much simpler set of equations to solve, a linear set, to get the rest of the Green funotions. Whereas it may be possible that we can solve the complioated equations to get the S matrix and for some reason or other oannot go further and solve the remaining very simple set of equations to get the Green functions, I myself would think this to be an unlikely possibbility.

My second remark refers to Helsenberg's question. I would say that the assumption that all poles are Regge poles does not make it any less likely that you are going to be able to fit it with a derinite metrio. We know that we can get operators corresponding to non-elementary partioles within the spaoe with a definite metric, and of course the propagators associated with such partioles will have singularities on the light cone, and therefore you would expect the propagators associated with all particles to have singularities on the light cons. The reason why this is not serious is that one just does not use the propagators for non-elementary particles, but I do not think that we bave to bring in an indefinite metric to round off these singularities.

HRISENBERG

I would like to ask one question in this connection: I had always the impression that if you use a definite metric you will at least have some particles which are so to say bare particles with a cloud arcund them, and what you would have to do is always to eliminate the bare particles in the middle of the real particle by an infinite renormalization factor. But if that is true, then of oourse you would have come to an indefinite metric. I do not see how you could not have an infintte renormalization factor and still avoid completely this part of the bare particle being present. But I may be wrong, I certainly cannot prove what I say now.

J0ST

I want to point out that it is of course terribly difficult to answer the question of Professor Heisenberg. Namely, with axiom involving 3., more exaotly with the wightman axioms; we have the very difficult problem of compatibility of the axioms with an S matrix which is different from one. I think that if you make in any way preoise the axioms whioh are under I., and I think here of such things like saturation of unitarity, which I do not understand, and maximal analyticity, if you formalize these axioms in any rigid way, then you might easily get into the same problems of compatibility. If you ask the S matrix to be very analytio and simultaneousis to have singularities whioh I guess would be implied by the statement that you have saturated unitarity, I do not at all see that you can avoid the danger that the S matrix then finally becomes completely analytioal, for instance - I. So I would say that the problem of compatibility is certainly in a very well defined way present in the axioms 3., but somehow it is also in the background in the rather vague set of assumptions, which 1 hate to call axioms, under 1. But maybe professor Heisenberg oan be convinced a little by the folllowing argument: if you take non-local theory, you oan satisiy of course all the axioms l., 2. and 3. except locality, and under this condition the propagator will have a delta function singularity on the light cone and the soattering matrix will be arbitrary. You can take any soattering matrix and interpolate it with a ISZ prooedure.

GBLL=MANN

Let me say first that I agree entirely with Mandelstan's remark on the embedding of an S matrix With the right analytioity properties into a local field theory, by solvigg the linear equations; this seems to be very likely. Seoondly, I agree with him that the answer to Helsenberg's oft repeated question about indefinite metrio seems to be that, when you reggeize all the particles, you no longer have any need for the propagators of any of them, they do not enter into the S matrix. I would like to make a couple of other remarks. Fractically speaking, we have at the moment three ways of getting analyticity properties. One of them $1 s$ to start with the complete set of postulates of a local field theory. The second is to abstract the properties from the Feynman diagrams, which are a kind of laboratory of theoretical physics, but a more sophistioated laboratory than the sohroedinger equation, both of them being still very valuable laboratordes. The third way is to fiddle around until we get analytio properties that seem to work, and we oan then postulate that they are the I1ght ones. Baoh of these ways has advantages, I think. It is not olear so far that there 1 s any difference whatsoever among them.

It is only that the methods are quite different, the people using them are different people with different psyohologies, and the rates of progress are of course very different. If you start from the axioms and you require mathematically valid proofs, the rate of progress is very, very blow, but I have not seen anything to indicate that it will be partioularly hard to prove in that way any of the relations which seem to come out of the Feynman diagrams. It just will take a long, long'time and a lot of effort on the part of the mathematically sophisticated people. Then, comparing the diagrams with the analytioity properties of the S matrix postulated under l., there really is not any difference so far, because all those properties have been really abstracted from the diagrams. However, we might ask whether this situation will continue, whether it will continue to be true that all of the properties will be the same. As far as boundary oonditions at infinity are ooncerned, there might be some differenoes, that is, the axioms of field theory might oonoeivably admit several boundary conditions, or none. Feyman diagrams seem to give fairly definite ones, at least in eaok order, but of course nobody can tell what happens when jou sum them. The Regge poles, used together with axioms i., seem to give at infinity quite different results from the Feyman diagrams in eaoh order. So, as far as boundary conditions are conoerned, there are some differenoes. But how about the unitarity and dispersion relations themselves, that is dispersion relations and unitarity relations extended out of the physical region? So far, no differences have appeared among the three points of view. The only danger that there night be some differenoes seems to arise from the aituation that on the physioal sheet, in formulating the analytioity properties from the diagrame, we deal with the stable particles and we try to work out the consequenoes of applying the analytioity condition and the unitarity oondition over and over again to the stable partioles. We get in that way poles on the physical sheet oorresponding to stable partioles, and all sorts of outs. But we never get in that way, by prooeeding in each order of perturhation theory, the unstable partioles which are treated there as resonances. Of oourse, they come in on the seoond sheet, and the big question seems to be whether that will ever come back in the sum of the whole series to make some differenoe on the first sheet. And there some differences might arise between the analytioity properties abstracted from the diagrams and the analyticity properties that one wll be foroed to assume under 1. Chew, I belleve, is working very strenuously on this question. But so far, I do not think there is really any ground for querelling, except different psyohologies of different people.

HEISENBERG

I want to make a remark in connection with what Gell-Mann just said. Of oourse, it is quite possible that actually the traditional axioms of a looal fisld theory with positive metric have solutions, but I am not convinoed. I personally rather feel that there is no non-trivial solution. But let us leave that uncertain for the moment. If we, for a moment, just make the assumption that these axioms have no non-trivial solution, what do we do then? I understood Gell-Mann thought that then we have not muoh advantage from using axioms 2. instead of just using 1., beoause if we oanoel the delta funotions on the light oone we actually come baok to something which is more or less an S matrix theory. Now I cannot quite agree to this point beoause even if we have to omit 3. and just stick to 1. and 2., we have very muoh use from a local field operator. By means of a looal field operator we can actually, in a simple way, construct laws which have to do with all elementary partioles. We can say something about the field operator and can say how it interaots at small dis-
tances. If, however, we only apeak about the S matrix, and this is now a question to Chew, I always feel the following diffloulty whioh actually for mrself was the reason to go away from the pure S matrix theory. If we study the S matrix, we must use to a large extent arguments of analytioity. Now that means, as Chem has pointed out one of the last days, that we cannot use approximations in any simple manner beoause, if two funotions are approximately equal on the real axis; they may be entirely different at some other place in the complex plane. This would mean that in order to derive laws on the elementary particles, we would need the theory of functions of enormously many variables, say of 200 variables if we have 200 elementary partioles. That is of course a hopeless task. So I just felt it is extremely difiloult to work only with the S matrix, beoause I do not know how one can use the conoept of analytioity in the more general problems like multiple production, eto. And therefore I think it would certainly be of great practical use to have a looal field operator, even with an indefinite wetric.

JOST

I would like to add something to the remark which I made before on the connection between elementary particles and fields. Ruelle in Zurioh has recently completed a paper which proves that under extremely natural conditions the Fightman field theory, which does not start at all with the particle notion, allows the introduction of particles. However, there is no indication at all in Ruelle's work that there is a very intimate oonneotion between the fields in the theory and the particles whioh come out. For example, you oan easily conceive a Heisenberg-like theory which starts With a spinor field and which has no stable spinor particles, but it may have particles of other spin which are stable.

Then I think I have to answer briefly Gell-Mana's comment on the slow rate of progress in axiomatio field theory. I agree completely with him, and I would not dare to say that the axiomatic field theory was in any way successful. However, I feel that maybe one can speak about progress. For instance Ruelle's paper strikes me as progreas. But of course it is a matter of taste how fast one wants to go.

I have one final oomment. The conclusions frow the Wightman axiows have been, until now, to a large extent trivial. Every physicist would say that what one has proved is completely trivial. In my opinion this speaks very muoh for the lightman axioms, beoause of the following consideration. As far as we know, the wightman axioms form a vers natural frame, they start with highly abstraot mathewatical notions and what you can oonstruct from them are just the things jou expect, and therefore I think it speaks for the Wightman axiows that things like partioles come out. of course, every physioist knows that particles exist, why does one have to prove it ? I would like to introduce here a religious remark of myself, and I do this with verj great hesitation beoause I think science should not be religious. The following might be true: it might be true that aotually the fundamental structure of a complete or semi-oomplete theory is extremely involved, so invoived that you cannot oaloulate ayything, that you cannot even decide a compatibility problem, but that you belleve the theory simply on the strength of its internal struoture. We have suoh theories, for instance general relativity. Nobody knows whether general relativity taken seriously as non-linear theory aotually desoribes things oorrectly.

St1ll, we believe that this is in fact a very beautiful theory full of physical content. Now, if this should be the case, one would always have to make very daring approximations in order to get results. To take another example, consider the properties of copper, of a copper orystal. We believe that we have the fundamental equations for such a system, but nobody in his right mind would ever dare to make a rigorous caloulation of any property of a copper crystal. We have auxiliary notions Whioh are very good, like the band model, and with this hand model, despite the faot that we do not quite know why it is so good, we can explain a lot of things, It could be, if you philosophige in this direotion, that the hypothesis of Regge poles, for instance, is something which jou never can quite grasp and justify, but that it could play a similar role as the band model in solid state physics. This would of course mean that both the people who go slow and the people who go fast have a very good fustification for their respective speeds.

BREIT

Regarding the form factors of nucleons, the general ploture which they suggest ins in with reasonable simple notions in whioh you could have any kind of emission of a particle produoe the general features of what $1 s$ observed at present. It seams to me that the way in which the subjeot developed is somewhat irrelevant to the conclusions. It is true that at one time a resonance was useful, but at a later time three resonanoes or so had to be used. If you use three resonanoes, you might as well go over to a simpler ploture unless you know that the resonances have to be brought in. I think also that for fundamental purposes a resonanoe is really not a valid thing to be brought Into the situation because a resonance is really part of a oontinum, in which the wave function ohsiges in a oertain way. This relstes to fundamental problems whioh belong in an entirely different oategory of thought. On the other side of exparimental indications, high angular momentum states in nucleon-nucleon soattering have been mentioned. It seems to me that this evidence is very tenuous at present. You cannot olaim any accuracy for the agreement. Putting results in terms of an equivalent one-pion exchange potential, jou oannot claim that its form has been obtained with any acouracy, now that the coupling constants of charged pions and neutral pions are really known to be aocurately the same. From a phenomenologioal point of view we are pretty much in the dark and, employing oaloulations of cupta's, one can explain the results about as well by theoretical means other than the dispersion theoretioal calculations reported in a paper by Amati, Leader and Vitale at this oonference. One might ask, to what extent do the different approaohes differ? For the sake of ooncreteness suppose you take the two-nucleon problem. If you deal with elastio colisions below the pion produotion threshold, all that you need is the S matrix; that 1s, these days, a trivia11ty. Suppose you consider the photo-disintegration of the deuteron you now have two nucleons plus another particle. Consider the relationship of the two problems to each other. It is obvious that if you oan deal with a wave function, the first problem is of definite use for the seoond, because then 1t has sense to speak of a wave function for the deuteron and to calculate results in the usual manner. At this point, the S matrix approaoh has a bit of diffioulty because it has to bring in another rule for forming the S watrix when jou extend the problem by bringing in another particie. The question arises: will the pure S matrix approach be able to do this process of extension, of adding more and more particles to each other, which amounts to exploring the wave function in the usual appraach? W111 it be possible to produoe a set of rules which will not be just a purely arbitra-

Iy one ? Certainly, from a field-theoretical approach, if jou believe in Faynman diagram calculations, it is simple enough. But then jou also have to know that the usual field theory makes sense, and you have Professor Heisenberg's old objection that the usual formulations of field theory have the artificiality of the great many coupling constants. It is at this point, it seems to me, that one will have to make a decision, not so much on the particular techniques involved, but on what one oonsiders to be a struoture of nature, a method of thought about nature which is aoceptable to us.

wILSOM

I perfeotly agree with Chew's remarks that the analytio properties of the elastic soattering amplitude are very impressive. But I think that we are somewhat misled becauss we have oonosntrated our attention in the last few years almost exolusively on elastic soattering, to the exclusion of multiple production for example. It seems to me that it is precisely in a problem of multiple prom duotion where field theory can come into its own, because we are originally introduoed to the field in classical physios, in maxwell equations where jou are describing a process involving very many photons, all coherent. It may well be that in a process of multiple production at high energies we again have a situation where there is coherent production of many pions, and in this oase the pion field can have a classical value and be of real importance in describing the process.

OPPENHBIMRR

I have two brief oomments. I think the first is rooted in what Jost, Gell-Mann and Mandelstam have said, but it is a formal answer to Heisenberg's question. We do not know whether the axiomatio equations either on the mass shell or taken as a whole have apy solutions. It does seem they are not going to be found very easily. We do not know what the unwritten equations under axioms l. really portand and whether they have solutions or how we would find them. But granted that either of these have content, then it seems to me not at all assured that the extension off the mass shell of the axiomatic equetions, or of the equations of l., would have the causal properties which cause the trouble in the field theories with which we have started. This, I believe, is also what follows from Huelle's work. The seoond point is very minor. When Feyman first explained his diagrass, it was very disturbing to Bohr, because Bohr kept thinking of fluctuating quantiged eleotrio and magnetic fields, these little things on paper were just a method of oalculation and he said that this is not physics Well, we have learnt that it is very, very much physios and a very good way to think. It seems to me that one works with the S matrix, one becomes as fond of it as of the Feynman diagrams. But there is one aspect of physios whioh so far has not been proved wrong, and that is the notion of how things are in space and time. I believe that when we think of the struoture of nucleone it is a useful notion, and Breit refarred to it, whioh is permitted only to those who believe that the S matrix oan be extended off the mass shell.

BLOKHI NISEV

As far as I understood, Chew hopes to proceed without field theory. The S matrix theory of today is rather of a kinewatical nature than of a dynamieal one. Therefore we need to have a dynamical principle to find the S matrix elements. If not a field, then what ?

CHET

There have been so many questions that I do not quite know where to begin, but I think I will concentrate on the remark of Oppenheimer made a moment ago, the remark of Blokhintsev just now, and a remark of Jost a little while ago. Let me first say that one of the striking features of the development of quantum mechanics, of course, was to try to throw away concepts which had no possible experimental verifioation or experimental content. It may be that this is a point which we should oonsider here, namely that a continuum in the momentum variables seems to be something with experimental signifiaance. We do not know of any ultimate limit on our ability to resolve momenta. But it has been understood for a long tame, ever since quantum mechanics was united with relativity, that there is no experimental way of checking up on the space-time continum. The latter, as frofessor Oppenheimer says, is a very nioe concept, but we really do not have any way of checking up on it, and that of oourse is just another way of saying that it is possible in faot to answer all conoeivable experimental questions by staying on the S matrix level. You never have to oome down to axioms 2°. or 3. answer any questions which the experiments may raise.

The second point then is that of Professor Blokhintsev. Is it possible to have a oomplete dynamical theory without orossing the line from 1 . to 2. and 3.? I am sure that many of jou understand that it is possible, but it is also - I think - quite probable that many of you do not, beoause it seems very surprising that suoh general notions as unitarity and analyticity could have dynamical oontent. The faot is that they do. As Gell-Mann said earlier, within the old-fashioned framowork in Which we allowed certain particles to be elementary (there were partioles whioh had spin less than, or equal, to one), from the corresponding poles of the S matrix the combination of unitarity and analytioity would allow you to generate exaotly the same dynamioal equations as you get from oonventional field theory. Now, this point is no longer physically of great interest beoause we do not believe that these low spin particles are any different from their higher spin cousins. But it illu strates the fact, in a very ooncrete way, that there is dynamical content in the principles of unitarity and analyticity. The answer whioh I would give to Professor Blokhintsev is that there has never been a oaloulation whioh one could think of doing within the field theoretio framework whioh one could not also do purely within the S matrix framework. You oould ask oertain guestions whioh perhaps you oould not answer in the S matrix framework, but they also would not be questions that had any experimental oontont.

Let me now oome to the remark of Jost that the situation might be so complicated as to never permit a systematio approach. I am not sure that this is the case, but I am willing to contemplate with some reluotance that it might be. And certainly the way we look at things now, it is not improbable. The essential point about the S matrix theory, at least with regard to strong interactions, is that there is no central point in the S matrix at whioh you oan begin. It is all or nothing. This is the distinotive feature, from the physioal point of view, between this and heisenberg's approach. Helsenberg also treats all the particles on an equivalent basis, but he does have one oentral field at whioh he can start his thinking. There is nothing like that in the S matrix approach. All regions are of equal importance. There is, of course, the question about which eigenvaiues lie lowest, these are the most stable partioles, and then as you go up you oome to the resonances, eto., so that from a praotioal standpoint there is a hierarchy of simplicity which will emerge, but it is no more than the usual distinction in any eigenvalue problew between the low states and the higher
states. In such a situation how can any progress be made? In just the way that it has been made and is being made. The point is that you can start anywhere in this very oomplicated S matrix With some experimental information. The crucial distinotion between the S matrix and the field theory, from the practical standpoint, is that the basio quantities with whioh you deal in the first case are in oortain regions experimentally measurable. The experimenter gives you some numbers and you know that these are the values of S matrix elements in a particular region. You cannot do that with fleld theories where no one can ever pin down any point in the whole structure.

So you begin with some expertmental knowledge of a swall region and then you apply the prinoiples of analytio continuation and unitarity to try to make a prediction about what will happen in some nearby - but still distinct - experimental region, and then you see whether you have succeded, because again a measurement can be made at this point. There have, so far, as has been brought up in the disoussion, been relatively few situations where olean predictions of this kind could be made. The most outstanding, as has been said, is the pion-nucleon forward dispersion relation where for example you can measure the total cross-sections and then you can predict what the forward soattering amplitude should be. But now we have hopefully oome upon a seoond, where we find the olose adjaoency between the low energy region and the high energy region. They are very olose together in the sense of analytio oontinuation; and we have some very exciting possibilities for experimental checks, which are of course receiving intense discussion at this oonferenoe. If these are borne out sucoessfully, as I am confident they will be, the S matrix approach will of course get a very strong push. Now, your ability to calculate only allows you to go a small distance at a given time, because you always have to neglect lots of singularities that are very complioated. But jou have working in your favour two principles, I suppose these could be expressed mathmatically, but I would not know how. I would rather put it this way: first the cauohy relations have the general form of a Coulomb law, the contribution of a given singularity to a partioular region goes inversely with the distance of the singularity. Second, jou have the unitarity condition which puts an absolute bound on the streagth of any of the singularities. This is a feature which is lacking in the usual analysis of field theory, jou do not have any bound on how large things can get. But the analytically continued S matrix will everywhere have these restrictions, so that you have generally working in jour favour the fact that these local continuations can be made with some degree of certainty if you really can assess the nearby singularities. You know that the ones that are very far away cannot hurt you too much. This is so far the only principle which is available for making calculations in the S matrix framework. It is the idea that only the nearby singularities naed to be taken into account in each small excursion. Suppose now you want to go further, jou want to make a big excursion. You will go stepwise, and after eaoh small step you can start again putting in the experimental values; this is truth, this is nature after all, and the experimenters tell you what these values are. And then you oan go on and see whether things continue to work. By this sort of crab-wise approach where fou make little steps constantly cheoking up with the experiments, one can explore a substantial portion of the S matrix. With enough success of this type it is conceivable that one might become convinced of the general principles involved, even though it would be far too complicated to ever make a complate oalculation, starting from any one point.

TAN hovs

We shall now have a few remarks by Professor Weisskopf and Professor Bogoliubov, after whioh the discussion will continue.

wEISSKOPF

My remarks are really very short and I would like to emphasize that I am speaking as an outsider in this field. I am looking at it from the distanoe. I would like to take up one point which Jost has made, namely his oomparison with the situation in the theory of metals. That seems to me a very luoky example, and in this sense I would like to speak somewhat against what Chew has said. I get the impression that the new conoepts that have arisen from looking at the experiments and at the theory, suoh as Regge poles and S matrix oontinuations, have definitely the oharacter of some simplification whioh seems to offer itself for a good disoussion not only of the experimental material, but also of the theoretical situation. There seems to be there an element of simplioity, we do not know why this element of simplioity is there, but it seems to be there and it provides a useful language to talk about what we have before us. If this $1 s$ so, and I think it is oertainly that, although it might be more, then of course one must say: more power to those who are busy with these thitgs, because it is useful and it is stimulating, just as the theory of metallic bands opened up a oompletely new field of physios and technology. We are not yet that far, but I would like to say that there is one question which one must raise from this point of view. It is this: if it is a "band theory" kind of thing, there must be a conneotion with the fundamentals, because after all we know why bands exist and there is a simple explanation which we find in all books. This explanation is certainly not very good. Still, as an outsider and as an amateur who likes simple although not very good explanations, I am very pleased with it and I must say I hava not yet found agything similar for Regge poles. I think it would be very good if one would see a little more of a bridge, and I think that the attitude whioh has been expressed in the last ten minutes by Chew is aotually against this, because he says there should be no connection and this is a theory that stands on itself. Maybe it does, but before one says this, one must first really go very deeply into the other attitude and show whether it does not really follow frow he field theoretical conoepts, although I am of course very well aware that the field theoretioal conoepts are much less olear than the Schroedinger equation is, on whioh the band theory is built up. We all feel sort of disgusted by field theory. It is too oomplicated, that is the reason why I am disgusted, but others are disgusted beoause there are infinities and contradictions in it. Still it is a basis on which we have lived for a long time and which has a deep value in itself, in fact it is quantum mechanios after all, it came from quantum meohanics.

Now I must asy, there is of course a possibility that Chew is right and that this simple oonoept which one vaguely sees in its contours if one looks at the experiments is really the nucleus of something new. Probably people before 1924 had sometimes feelings like this when they saw quantum orbits emerge, and it might be that there is really a new theory behind this. But, to my mind, one must be extremely oareful before one jumps into it, beoause a new theory is a very great thing, and, although we hope we will get it sometimes, I still would think that one has first to investigate the concepts very thoroughly and see how they connect with conoepts which we had before.

BOGOLIUBOV

I shall make a few remarks. First, oonoerning axioms l. of Professor Heisenberg, it seems to me that it would be better to put oausality first, and analytioitj second. For instance, when jou consider the problem of anslytioity for vertex parts with many ends, for multiple production, analytioal properties have not jet even been postulated. You may say also that causality oonditions are formulated only out of the mas shell, they really need some space-time relations. I may draw your attention to the fact that maybe there is some deep physioal reason for this beause for instance you formulate the oausality condition mathematioaliy by introduoing olassioal fields. Physioally the same situation will arise when you have weak interactions. Suppose jou have a physicist establishing the theory of strong interactions only on the mass shell and ask him: caloulate a prooess where weak interaotions are involved. He immediately draws the vertex part taken from strong interaotions, only this vertex part will have a virtual end where the weak interaction is attached. So he needs virtual vertex parts with virtual ends in order to answer the physioal question of how the strongly interaoting partioles will behave under reak interactions. It will be possible to construot a theory linited to the mass shell only when you have a unified theory containing strong, eleotromagnetio and weak interactions, but I think that nowadays suoh a theory is nur in Gedanken

Now I ask a rethorioal question: whioh approaoh to the problem has been suocessful? I may say that the greatest suooess in field theory has been booked by ordinary perturbation theory with Fegnan diagram techniques, but by means of the right summations, that is really by means of the right way of extracting information out of perturbation theory 1 by the right way, I mean of course the way whioh is orowned by suooess lll For instance, in ordinary dispersion relations, a very vast region was established by this perturbetion treatment. The Mandelstam relations are just established by oonsidering some very important olass of graphs. But you may say that Regge poles oannot jet be inserted in this scheme. Still I shall briefly mention the work of Logunov, Tavkhelidse and oollaborators in Dubna, who study the asymptotics of the four partiole vertex part on the mass shell for large s by applying the renormalization group to the t variable. Considering some model examples with swall interaotion, they obtained a Regge formula with exponents whioh exhibit the right analytical struoture. This work is in progress. It seems to we that even in the theory of Regge poles, It is very interesting to go to the oalculational procedures and ask the theory of perturbetion or diagram teohnique - how it must be modified, how it must be summed in order to obtain the Regge pole struature. In addition, it will have some practioal applications, e.g., for aleotrodynamios. I personally like more the axiomatio approach, but to be objeotive I must say that most of the results have oome out of the diagram technique, inoluding the modern approach leading to a synthesis of Regge poles with field theory.

HEISENBERG

I want to ask whether Professor Bogoliubor could not say something on the question of the degeneragy of the racuum because he has himself worked so muoh about it.

BOGOLIUBOV

The conoept of racuum degeneraoy is a very baautiful conoept. But how to materialige it teohnically? There resides the dificioulty. One can oonstruot man models where the divergenoes are not so strong. For instance, Dr. Tavkhelidee has considered with success such models, and then you can see with your eyes the existence of the degeneracy of the vacuum. But for the general situation in field theory, in order to disouss the properties of the vaoum, you must introduoe a cut off, as Nambu did, in order to get rid of the divergences.

HEISENBERG

May I Just say one word. I do not see that one should conneot this problem with the problea of the divergences. The problem of the divergenoes has to do with those very fundamental problems whioh we have disoussed all this morning, but I think that the problem of degeneraoy of the vaouum is entirely separate. If one wants fo work on the degeneracy of the vaouum one should of oourse either take some indefinite metrio to avoid the divergenoes, bs we do, or take some classioal example like ferromagnetism or superconduotivity, whioh also is without divergenoes But I think that one should really try not to mix two problems which have nothing whataover to do with each other.

BOGOLIUBOV

I agree that these problems are quite different. But when you wish to materialiee the idea of degeneraoy, you oonsider for example a fleld theory with Pauli-Villars regulators or with relativistic cut off, and you introduce in such a way an indefinite metrio. Suppose now you have a situation in maorosoopical physios, like the theory of superoonduotivity. You have a normal state and jou obtain a superconductive state whioh is lower, has a lower energy, and this is good. But when you have an indefinite metric mixed in and jou obtain an energy less than normal, is it good or is it bad 3 You do not know beoause this indefinite metrio may be so manipulated that jou get the energy to - . . I completely agree with you that this is quite another problem, but all the difficulty is how to oonsider this problem. Maybe one must consider it non-relatiristioaliy, to take a non-relativistio approach and have a regularization whioh is not Lorentz invariant. 1 nonLorentz invariant regulatization is subject to the indefinite metric oritioism and when you obtain there some results, jou have a better realization of the idea. It is true that these two problems are entirely different, but the divergences in the existing theory make it very difficult to develop it mathematically.

LOVBLACE

This is a comment on Chew's remarks. We left out one of the best prediotions when he made his list. That is, the Regge pole theory predicts that the diffraotion peak should get sharper at high energies. This is suoh an extraordinary prediction that, at first, some people used it as an argument against Regge poles. Nevertheless, we had a lot of new experimental data at this conference, and the experimentalists themselves have authorized me to say that this prediction has now been quite oonclusively oonfirmed.

Mand LSTAM

I wonder if I oould ask Professor Bogoliubov to amplify his remarks on Logunov's work about getting the Regge poles from renormalization groups. Have they aotually got some rigorous consequenoss of field theory, or do they just say it is oonsistent ?

BOGOLIUBOV

They are not rigorous, beoause the renormalication group is only a means of summing diagrams. If you do not like renormalization groups, you may obtain the same resulte by suming a class of diagrams. But this seems to me to be the beginning of a very important trand to oaloulate the Regge polea, maybe by entirely inezact methods, but leading to some intuitive understanding, beoause their results exhibit in their approximation all the properties of Regge poles, analytiolty, eto.

At this stage, OPPBNHRINER and FUBINI drew attention to the fieldtheoretioal investigations of Regge poles by B. Lee and Sawyer in Princeton and by Amati, Fubini, and Stanghellini at CRRN. Also OBLI-MANR raised questions on Regge poles in eleotrodynamies.

PJBIMI

Sinoe the disoussion has come onoe wore to Regge poles, I want to oall attention to a point made by Goldberger, Blankenbeoler and Cook whioh shows some of the paradoxical aspeots of the new theory. If, for example, one uses for the vaonum trajeotory the one determined at CERN from proton-proton soattering, then one obtains a very striking result. If the photon is otill the old-fashioned partiole to whioh we are aocustomed, then in elastio soattering at infinite energy the eleotromagnetio -ffeot will dominate on the strong interaotion effeot everywhere, with the exception of the forward direction. So, if you construot let say a million Gov machine, then you might just learn that
$.^{2}=1 / 137$, that 1 s all. Now this is very paradoxical and there are many ways out. The first way out is that the Regge trajeotory behariour is just the ilrst approximation to something more complicated. A second possibility is that eleotrodynamios has also to be reggeized, but then it has to be very strongly reggeized, because it must have a slope of a (t) steeper than the one determined at CBRY, and this $1 s$ very uapleasant because electromagnetism is a theory which works pretty well and it is very unpleasant to ohange it. So at least I think this new behaviour of Regge poles is really bringing our theories to a stress.

Van hove

I would like to raise a final point for the 20 minutes that we have left, and this actually comes back in a way to a remark made by Wilson. When Professor Heisenberg wrote down his list of axioms, point l. was existence of the S matrix, point 2. was existence of a local fleld $x(x)$ commuting for spaoe-like distanoes. I then got the impression that he was writing a list which I could oompare with the following list of the ethical rules: rule 1: be good, rule 2: when you are in your car drive on the right-hand side of the road. What I mean by that is that 1. is extremely olosely and unavoldably conneoted with the very basio prinoiples of quantum and relativistio phys10s, whereas 2. 1s very teohnioal and very speolal, it looks even quite arbitrary taken on its
face value. Now the historical origin of this is of course quite clear and I think it is the point Which was mentioned by Wilson, namely that in the whole growth of physice the concept of field has played suoh an absolutely predominant role in electromagnetism, and then has kept that predominant role in the quantum version of eleotrodynamics. There we have a very speoific field theory using apeoific field operators, with their oommutation rules describing looal commatativity or local cansality. I think the reason why we still worry so muoh about the use or the rejection of this oonoept is the fact that eleotrodynamios has worked so well. If electrodynamics had turned out to be no good in oomparison with experiments on the sub-atomio soale, we would not be worride so much about the concept of 11eld and might have abandoned it quite a while ago.

JOST

I would like to point out a general property of all the field theoretical axioms. I take now the Wightian axioms which do not fit completely in what you are saying, but I think it is all right. Hemely, these axioms taken together form, that is our experisnce, an extremely rigid framewory. If you oress out any one of them, jou get a oompletely amorphous system whioh allows oertainly such too many possibilities. For instance, if you cross out looality, then the oonsequence is simply that every S matrix oan be interpolated with the LSZ prooedure. So I think that there is an additional reason to keep to axiom 2., namely that if you give it up oompletely rou just get nothing interesting. In other words, I have the very strong feeling that we have to face, maybe for some time to come, the possible oontradiction of the axioms with the S matrix being different from 1 , beoause in all of these axions there are certainly elements of truth. If jou reject one axiom, you are bound to lose everything one has understood until now. This is a very disagreable situation and I understand very well that many people th1nk one should change this situation by a vigorous

OPFE MHEIMER

I oould not agree more. Chew said this morning we should be prepared to give up apace and time, and this is very much what one must mean of course by giving up oausality. But think baok, nobody Wishes to give up determinism, no one wishes to give up a deterministio meohanics. We should not be too ready to give something up without knowing what it is. It is hard to make the prinoiple of oorrespondeno to go from an S matrix through quantum theory to the macroscopic world in whioh we live, beoause there is no way to formulate it till we know where there is something wrong. I do not think we are likely to find it out, except by keeping the elements that we have until we see where they go wrong.

VAY HOVE

In quantum eleotrodynamios, good as it 1s, there is the whole question of the necessity of renormaligation and we have now the new point that in a non-renormalizable theory, where divergenoes have been believed for a long time to be unavoidably present in observable quantities, Fang and Lee, by the use of a complicated limiting procedure, have found that the quadrupole moment of the veotor boson can be given a finite ralue non-analytic in alphe. I would like to ask Yang to comment one
moment on the signifioanoe of this result. Beoause of time limitation this will be the last oontribution to our disoussion.

IANG

Consistent with the tone of discussion of this morning, let me first make a philosophical remark. We have found that suoh works like religion and psyohology have orept into our disoussion, I think it is indioative of something that characterizes our present style and trend, an feel very strongly that this is a colleotive responsibility of all of us. Now as to our work, let me sęj that both Dr. Lee and mseelf admit freely to thinking mostly in terms of Feynman diagrams. It is upon suoh a way of thinking that we approached our problem and I will just desoribe to you what was the essential point. We know that a veotor meson cannot be renormalised in the usual sense beoause its propagator does not have the desired oharaoteristios at small distances or large momenta. So wo introduoed a soalar weson field in a way which I am sure has been done many times before, and whioh serves as a regulator, and then we asked whether suoh a formalism oould be renormalised in the usual sense. It still oould not. Then we found that if you introduo negative probabilities for the scalar mesons, the theory indeed beoomes renormalizable. How, the square of the mass of the soalar meson introduoed is m^{2} / ξ, being the mass of the vector meson and ξ a positive partrmeter. If the parameter goes to zero you push the soalar meson mass to infinity and, while the whole S matrix now is not unitary, that part of it whioh does not contain the soelar meson beoomes unitary in the region where G goes to gero. On the other hand, as long as ξ is finite, the theory is renormalisable. That means that you have a power series in a , eaoh ooeffioient of whioh for any process would be a funotion of ξ, but of oourse if you make ξ go to sero the theory goes baok to the original one and it diverges term by term, that divergeno being manifested by the faot that the series is a power series in a $/ \xi^{2}$. ξ ontering the theory in the oombination m^{2} / E this merely states the faot that the dirergenoe is a quartio one as you go to highor and higher orders of a . When one meets with a situation like this, with a power series of the type $\Sigma c_{n}\left(a\left(\xi^{2}\right)^{n} m\right.$, one asks whether this theory can make any sense at all. We have only tried to make the best of it by saying that if the theory does make sense, then perhaps, although term by term the series is divergent, the sum 18 oonvergent. This is a statement whioh is a little strange but we have seen previous cases in which it worked very well. In the many-body problem, if you take a large oolleotion of small hard spheres, a dilute gas of hard spheres of radius a, you can caloulate for example the ground state energy. You find a power series in a and the ooeffioients of all the terms are divergent. However, because in this oase all ooefficients are oomputable, you oan explioitly demonstrate that they add up to give a oonvergent result in $\sqrt{a^{1}}$, 1.e., a fraotional power of a. In the veotor meson case we speoulated that perhaps if one know how to caloulate the ooefficients one would ind a similar behariour. Fortunately, for praotioal results, one did not have to be able to do that. This arises beoause of the faot that in the vary low order terms there are logarithmio dependenoes on ξ ooming in, and, as you well know, when that happens it is often easy to extraot the logarithmioally divergent term without being able to oaloulate the series to infinity, although you still have to make the assumption that the sum oonverges to a finite number. If one carries out this idea, one in faot is able to obtain the oorreotions to various prooesses involving an intermediate veotor boson, in partioylar for example one gets the quadrupole moment of the vector boson, which oontains a a log a term. This has also been carried out for the radiative correotion to the muon decay, the intermediate boson deosy and the
deoay of a non-strongly coupled neutron. All this exists in the form of two preprints, so I do not thinic we need to go further into detaile.

