

СООБЩЕНИЯ Объединенного института ядерных исследований

Дубна

99-164

P9-99-164

О.Н.Борисов, Г.Г.Гульбекян

ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ВЫВОДА ПУЧКА ИЗ ЦИКЛОТРОНА U-400M МЕТОДОМ ПЕРЕЗАРЯДКИ

1. Введение

Изохронный циклотрон U-400M позволяет ускорять ионы с отношением заряда Z_{AC} к массе A в диапазоне $Z_{AC} / A = 0.1 \div 0.5$ до максимальной энергии, соответственно, $W \approx 6 \div 100$ МэВ/нукл [1,2]. Вывод пучка из циклотрона осуществляется методом перезарядки на тонкой графитовой фольге [3,4], установленной в области конечных радиусов. Ускоряемый ион после прохождения фольги изменяет заряд с Z_{AC} на Z_{EX} за счет потери части электронов, что приводит к измененню радиуса кривизны траектории и позволяет, при определенных условиях, выводить пучок из камеры циклотрона. Величина коэффициента перезарядки Z_{EX} / Z_{AC} определяется в основном типом и энергией выводимых ионов.

Данный метод вывода позволяет легко перестраивать выводную систему под различные типы ионов за счет азимутального и радиального перемещения перезарядной фольги. Для легких ионов обеспечивается практически 100% эффективность вывода. Для тяжелых ионов после перезарядной фольги образуются ионы со спектром зарядов. В обычном режиме для вывода используется только один заряд, что ограничивает эффективность вывода величиной ≈20÷30%.

2. Направление вывода пучка

На первом этапе расчетов исследовались возможности вывода ионов с разными Z_{AC} / A и Z_{EX} / Z_{AC} в общую точку, согласованную с началом линии транспортировки. Заряд иона после перезарядной фольги Z_{EX} определяется в основном энергией выводимого иона W [6]. Для ионов, ускоряемых в U-400M до максимальной энергии, величина коэффициента перезарядки лежит в диапазоне $Z_{EX} / Z_{AC} = 1.2 \div 2.0$.

При моделировании динамики пучка использовалась карта магнитного поля, полученная из измерений на циклотроне U-400M. Численные расчеты выводных траекторий были проведены для трех уровней магнитного поля, соответствующих $Z_{AC} / A = 0.15, 0.3$ и 0.5, при разных положениях перезарядной фольги. Анализ полученных результатов показал, что уровень магнитного поля не оказывает существенного влияния на поведение выводных траекторий при одинаковом коэффициенте перезарядки, а существующие различия компенсируются небольшим изменением радиального и азимутального положения перезарядной фольги. В связи с этим дальнейшие расчеты проводились для магнитного поля, соответствующего $Z_{AC} / A = 0.3$. Исходя из результатов расчетов и конструкции циклотрона U-400M, была выбрана точка пересечения выводных траекторий с координатами R=2.85 м и $\Theta=105^{\circ}$. Определяющим фактором при этом является обеспечение возможности для вывода ионов с минимальным коэффициентом перезарядки, а также оптимизация диапазона перемещения перезарядной фольги.

На Рис.1 показаны выводные траектории ионов для разных Z_{EY} / Z_{AC} . Корректировка направления вывода осуществляется радиальным перемещением перезарядной фольги при фиксированном азимутальном положении (Θ foil=57°). Существует возможность варьирования энергии выведенных ионов (≈5%) за счет совместного азимутального перемещения фольги.

Рис.1 Расчетные выводные траектории ионов после перезарядной фольги для разных $Z_{\rm sy}$ / $Z_{\rm sc}$

Численные расчеты показали невозможность вывода ионов с Z_{EX} / Z_{AC} < 1.35 в заданную точку (R=2.85 м, $\Theta=105^{\circ}$) без применения дополнительных отклоняющих элементов. Для вывода ионов с Z_{EX} / Z_{AC} < 1.35 возможно использование двухоборотного вывода. На Рис.2 показаны соответствующие выводные траектории при двухоборотном выводе для Z_{EX} / Z_{AC} = 1.25 и 1.5.

Двухоборотный вывод можно использовать и для вывода ионов с большими коэффициентами перезарядки, что позволяет значительно ($\approx 20\%$) изменять энергию выводимого пучка. Так, например, для $Z_{EX} / Z_{AC} = 1.5$ энергия выведенного пучка составляет $W_{EX} \approx 45.2 \text{ МоВ/нукл}$ при однооборотном выводе и $W_{EX} \approx 36.8 \text{ МэВ/нукл}$ при двухоборотном.

Рис.2 Расчетные выводные траектории ионов после перезарядной фольги при двухоборотном выводе для Z_{EX} / Z_{AC} = 1.25 и 1.5

В представленной работе рассматривается только однооборотный вывод. Предварительные расчеты показали, что при двухоборотном выводе вертикальный размер выведенного пучка увеличивается в несколько раз по сравнению с однооборотным выводом. Для оценки возможности реализации такого вывода необходимо проведение дополнительных численных расчетов. На данном этапе приведены только результаты расчетов для центральной траектории, позволяющие оценить энергию ионов при двухоборотном выводе и требования к положению перезарядной фолыти.

Параметры выводимых ионов и расчетные положения перезарядной фольги как в полярных, так и в декартовых координатах приведены в Таблице 1.

3

Z_{EX} / Z_{AC}	Wext [МэВ/н]	Nturn	θfoil ["]	Rfoil [m]	Xfoil [m]	Yfoil [m]
1.25	48.30	2	59	1.823	0.939	-1.563
1.3	47.00	2	57	1.797	0.978	-1.507
1.35	48.30	1	57	1.829	0.996	-1.534
	44.50	2	57	1.748	0.952	-1.466
1.4	47.30	1	57	1.804	0.982	-1.513
	40.90	2	57	1.678	0.913	-1.407
1.5	45.20	1	57	1.762	0.959	-1.478
	36.80	2	57	1.587	0.864	-1.331
1.6	43.21	1	57	1.724	0.939	-1.446
	33.72	2	57	1.516	0.826	-1.272
1.7	41.31	1	57	1.687	0.918	-1.414
	31.52	2	57	1.465	0.798	-1.229
1.8	40.00	1	57	1.659	0.903	-1.391
	30.31	2	57	1.436	0.782	-1.204
1.9	38.88	1	57	1.634	0.890	-1.371
	29.97	2	57	1.428	0.777	-1.198
2.0	37.60	1	57	1.606	0.875	-1.347
	30.67	2	57	1.445	0.787	-1.212

Таблица 1 Параметры выводимых ионов и положение перезарядной фольги

Рис. 3 Геометрия центральной области циклотрона и выводные траектории при коэффициентах перезарядки 1.9 и 2.0

При численном моделировании было обнаружено, что практически невозможно вывести ионы при $Z_{EX} / Z_{AC} = 2.0$, т. к. в этом случае выводная траектория проходит близко к центру циклотрона (*Rmin* < 6 см) и попадает на элементы центральной области, которые перекрывают медианную плоскость. На Рис.3 показаны элементы центральной области циклотрона U-400M и выводные траектории. Можно отметить, что выводная траектория при $Z_{EX} / Z_{AC} = 1.9$ имеет минимальный радиус *Rmin* \approx 15 см и огибает элементы центральной оптики циклотрона без потерь.

3. Огибающие выведенного пучка

Для исследования динамики выведенного пучка необходимо оценить радиальный \mathcal{E}_r и аксиальный \mathcal{E}_z эмиттансы пучка после прохождения перезарядной фольги, а также энергетический разброс δW .

Аксиальный размер пучка ΔZ практически не изменяется после прохождения перезарядной фольги. а радиальный размер ΔR определяется максимальным забросом пучка на фольгу [5]

$$\Delta Z = 2A_{\nu}.$$

$$\Delta R = \Delta R_{\mu} + \Delta R_{P}$$

где $\Delta R_n \approx \frac{R_{EX} \Delta W}{2W_{EX}}$ - радиальный шаг орбиты за счет набора энергии, $\Delta R_p \approx 2\pi A_R (Q_R - 1)$ - радиальный шаг орбиты за счет прецессии, R_{EX} – радиус вывода, W_{EY} – энергия нона, ΔW – набор энергии за оборот, A_{RZ} - амплитуды радиальных и аксиальных колебаний, Q_{RZ} - частоты колебаний.

Величина разброса радиальных и аксиальных импульсов после перезарядной фольги практически не отличается от разброса импульсов в пучке перед фольгой

$$\Delta P_{R,z} = \frac{A_{R,Z}Q_{R,Z}}{R} \quad .$$

При выводе перезарядкой энергетический разброс в пучке после фольги *бW* определяется в основном тем, что заброс на перезарядную фольгу происходит в течение нескольких оборотов и, соответственно, с разной энергией. Величину *бW* можно оценить как

$$\delta W \approx N \frac{\Delta W}{W_{\rm EV}} = \frac{2A_{\rm R}}{\Delta R} \frac{\Delta W}{W_{\rm EV}} \ . \label{eq:deltaW}$$

Дополнительный энергетический разброс возникает из-за взаимодействия ионов с материалом перезарядной фольги при прохождении пучка через нее. Эта всличина при толщинах фольги 200÷400 мкг/см² не превышает 0.1 % [6], что заметно меныпе разброса энергии из-за многооборотного заброса пучка на фольгу.

Используя данные выражения для оценки параметров пучка циклотрона U-400M (и предполагая $A_{R,Z} \leq 5 \text{ мм}$), получили следующие величины: $\Delta R \approx 3 \div 4 \text{ мм}, \Delta Z \approx 10 \text{ мм}, \mathcal{E}_{r} \approx 10 \text{ мм} \text{ мм} \text{ мл}, \mathcal{E}_{z} \approx 5 \pi \text{ мм} \text{ ммаd}, \delta W \approx 1\%.$

Численное моделирование динамики выводимого пучка с такими параметрами показало необходимость применения фокусирующих элементов из-за сильного расхождения пучка в радиальном направлении, вызываемого градиентом краевого магнитного поля на границе сектора. На Рис.4 показаны радиальная и аксиальная огибающие пучка после перезарядной фольги для $Z_{EV} / Z_{AC} = 1.5$. После прохождения перезарядной фольги для $Z_{EV} / Z_{AC} = 1.5$. После прохождения перезарядной фольги для $Z_{EV} / Z_{AC} = 1.5$. После прохождения перезарядной фольги для $Z_{EV} / Z_{AC} = 1.5$. После прохождения перезарядной фольги для $Z_{EV} / Z_{AC} = 1.5$. После прохождения перезарядной фольги пучок начинает увеличиваться в радиальном направлении, что объясняется заметным увеличением разброса энергии δW в пучке после фольги. В дальнейшем движение пучка достаточно устойчивое. Значительное изменение размеров пучка наблюдается только при его прохождении через область спадающего краевого магнитного поля при R > 1.8 м, где и необходима фокусировка пучка в радиальном направлении. Аналогичные зависимости огибающих пучка получены и для остальных Z_{EV} / Z_{AC} .

Рис.4 Радиальная и аксиальная огибающие выводимого пучка после перезарядной фольги для $Z_{\rm EX}$ / $Z_{\rm AC}$ =1.5

6

Рис. 5 Последние ускоряемые орбиты перед перезарядной фольгой и выводные траектории после фольги для разных Z_{FV} / Z_{AC}.

Фокусирующий магнитный канал желательно расположить, начиная с азимута $\Theta = 20^{\circ} \div 30^{\circ}$, когда пучок еще не успел сильно увеличить свой размер. Но расположение фокусирующего канала на данном азимуте невозможно из-за малого (≈ 5 см) отклонения выведенного пучка от внутренних ускоренных орбит. На Рис.5 показаны выводные траектории и последние ускоренные орбиты ионов для разных Z_{EX} / Z_{AC} . В связи с этим азимут начала фокусирующего канала был выбран равным $\Theta = 35^{\circ}$.

Пучок на входе в канал имеет горизонтальный размер $\approx l \div 3 c_M$ при значительной угловой расходимости. Для фокусировки пучка был разработан пассивный магнитный фокусирующий канал (FCl), состоящий из трех железных брусков, с рабочей апертурой 6 см и максимальным градиентом магнитного поля $G=15 T_{n}/M$ [1]. Он состоит из двух частей ($\Delta \Theta \approx 5^{\circ}$ и 7.5°), что вызвано конструктивной необходимостью расположения между ними пробника пучка. Для согласования положения канала с выводной траекторией предусмотрена возможность его радиального . перемещения в диапазоне $\pm 6 c_M$. Канал располагается в неоднородном внешнем магнитном поле ($B=2.0 \div 0.7 T_n$) (Рис.6), что приводит к изменению величины фокусирующего градиента магнитного поля внутри канала в диапазоне $1.5 \div 1.2 T_n/M$.

7

Рис.6 Внешнее магнитное поле вдоль выводной траектории пучка в области магнитного канала (FC1) для разных $Z_{EX} \mid Z_{M}$.

На Рис.7 показаны огибающие пучка при использовании данного фокусирующего канала. Из анализа огибающих пучка видно, что в области расположения фокусирующего канала пучок имеет сильное расхождение в радиальном направлении и перефокусировку в аксиальном. Фокусирующий канал позволяет уменьшить расхождение пучка в радиальном направлении. В аксиальном направлении канал вызывает увеличение расходимости пучка для больших коэффициентов перезарядки (Z_{EX} / Z_{AC} =1.7÷1.9), т.к. в этом случае пучок имеет перефокусировку до входа в канал. С этой точки зрения более оптимальным является начало фокусирующего канала (*FC1*) с азимута Θ =30°, но, как уже отмечалось ранее, это невозможно из-за малого расстояния (≈ 5 см) между выведенной траекторией и последней ускоренной орбитой (Рис.5).

Воздействие краевого магнитного поля после канала фокусирует пучок в аксиальном направлении, но дефокусирует в радиальном. На входе в систему транспортировки $\Theta = 105^{\circ}$ получаем расходящийся в горизонтальном направлении пучок с размером $\approx 8 \div 12 \, см$. На Рис.8 показаны горизонтальный и вертикальный фазовые портреты пучка на входе в систему транспортировки для $Z_{tx} / Z_{4c} = 1.5$.

Для улучшения радиального качества пучка рассматривалась возможность применения второго фокусирующего канала (FC3). Исходя из конструкции циклотрона используется пассивный магнитный канал, состоящий из трех железных брусков, с $\Delta \Theta \approx 7.5^{\circ}$ и горизонтальной рабочей апертурой 9 см. Он расположен внутри дуанта и имеет максимальный фокусирующий градиент $G=2.7 T_{a}/M$

0

-

Рис. 7 Радиальные и аксиальные огибающие выведенного пучка для разных Z_{EX} / Z_{AC} при использовании одного фокусирующего магнитного канала

Рис.8 Горизонтальный и вертикальный фазовые портреты тучка на входе в систему транспортировки (Ø=105°, R=2.85 м) при использовании одного фокусирующего канала для варианта с Z_{EV} / Z_{4C}=1.5

9

На Рис.9 показаны огибающие пучка при использовании двух фокусирующих каналов, а на Рис.10 соответствующие фазовые портреты пучка для $Z_{EY} / Z_{AV} = 1.5$. Применение второго канала уменьшает как размер, так и расходимость пучка в горизонтальном направлении, но приводит к дефокусировке пучка в аксиальном направлении, особенно для больших коэффициентов перезарядки ($Z_{EV} / Z_{AV} = 1.7 \pm 1.9$).

Таким образом, использование второго фокусирующего канала целесообразно только для малых коэффициентов перезарядки (Z_{ev} / Z_{ev} ≤ 1.7).

4. Эксперименты по выводу пучка

На циклотроне U-400M проводились эксперименты с легкими ионами, выводимыми мстодом перезарядки на фольге:

$${}_{11}B^{3*} \to B^{5*} (Z_{EX} / Z_{AC} = 1.67),$$

$${}_{12}C^{4*} \to C^{6*} (Z_{FY} / Z_{AC} = 1.5),$$

$${}_{44}N^{5*} \to N^{7*} (Z_{FY} / Z_{AC} = 1.4),$$

$${}_{18}O^{5*} \to O^{8*} (Z_{FY} / Z_{AC} = 1.6).$$

Размер пучка на фольге составляет $\approx 3 \div 4$ ми, а на азимуте $\theta = 41.5^{\circ}$ (в канале FC1) $\Delta R \approx 3.0 \div 3.5$ см, что хорошо согласуется с расчетными величинами. Интенсивность пучка измерялась в трех точках: на конечном раднусе ускорения, после магнитного канала FC1 и в тракте транспортировке после прохождения дублета квадрупольных линз. Результаты измерений показали, что при оптимальной настройке системы вывода эффективность вывода составляет $\approx 100\%$ после канала FC1 и $\approx 80 \pm 90\%$ в системе транспортировки.

5. Литература

....

[1] G. Gulbekian and al., "New development at the JINR heavy ion cyclotron facility". Proc. of the 13th International Conference on Cyclotrons and Their Applications, Vancouver, 1992, p.11.

[2] G. Gulbekian and CYCLOTRONS Croup, "Status of the Flerov Laboratory of Nuclear Reactions, JINR, heavy ion cyclotrons", Proc. of the 14th International Conference on Cyclotrons and Their Applications, Cape Town, 1995, p.95.

[3] И.А. Шелаев и др., "Вывод пучка методом перезарядки из двухметрового изохронного циклотрона тяжелых ионов ОИЯИ", ПТЭ, 1970, №3, с.53.

[4] О.Н. Борисов, Г.Г. Гульбекян, "Вывод пучка ионов из У-400М методом перезарядки", Труды XIII Всесоюзного совещания по ускорителям заряженных частин. ОИЯИ, Д9-92-455, Дубна, 1992, т.1, с.116.

[5] W. Joho, "Extraction from medium and high energy cyclotron", Proc. of the 5th International Conference on Cyclotrons and Their Applications, Oxford, 1969, p.159.

[6] E. Baron and Ch. Ricaud, "Beam foil interaction studies for the future stripper of GANiL", EPAC-88, Rome, 1983, v.2, p.839.

Рукопись поступила в издательский отдел 4 июня 1999 года.