СООБЩЕНИЯ ОБЪЕДИНЕННОГО Института ядерных Исследований

Дубна

P9-97-148

Г.Г.Гульбекян, И.А.Иваненко

РАСЧЕТ ДИНАМИКИ УСКОРЕНИЯ ИОНОВ 48Ca+6 В ЦЕНТРАЛЬНОЙ ОБЛАСТИ ЦИКЛОТРОНА У-400 С ВНУТРЕННИМ ИСТОЧНИКОМ ТИПА PIG

Введение

Известно, что центральная область циклотрона является определяющим фактором качества ускорения ионных пучков, так как именно в центре циклотрона ионы приобретают радиальные и вертикальные колебания. Данная работа была проведена с целью оценки возможностей ускорения ионов 48Са⁶⁺ в центральной области циклотрона У-400 с использованием ионного источника типа PIG.

Расчет движения ионов в центре циклотрона проведен при помощи программы CENTR на основе численного интегрирования уравнений движения ионов в переменном электрическом и магнитном полях методом Рунге - Кутта 4 порядка [1]. В программе использовалась карта магнитного поля, полученная методом линейной интерполяции из измерений, проведенных в июле - августе 1978 года [2].

Электрическое поле получено на основании аналитического приближения с использованием формул [3]:

1. для ускоряющей системы источник-пуллер

$$E_{y} = \frac{V_{D}}{2\sqrt{0.5\pi}} \frac{1}{\Delta y} \exp\left[-0.5\left(\frac{y}{\Delta y}\right)^{2}\right] \cos\left[n\omega(t-t_{0})\right],$$

где $\Delta y = 0.2H + 0.8W;$

2. для ускоряющей системы дуант-антидуант

$$E_{y} = \frac{V_{D}}{\sqrt{0.5\pi}} \frac{1}{\Delta y} \exp\left[-0.5\left(\frac{y}{\Delta y}\right)^{2}\right] \cos[n\omega(t-t_{0})],$$

где ∆у = 0.2H + 0.4W,

Н - апертура дуантов, W - ширина ускоряющего промежутка.

Исходные данные и расчет коэффициентов захвата в ускорение

Ниже приведены исходные данные, использованные при расчетах:

Изохронное поле в центре циклотрона:	B ₀ = 2.095 T
Ускоряющее напряжение:	VD = 85 kB
Номер гармоники:	N = 2
Ускоряемая частица:	A/Z = 8
Напряжение инжекции:	Vинж = 1 kB
Ширина щели пуллера:	HD = 10 мм
Расстояние источник-пуллер:	GD = 6 мм
Апертура дуантов:	HDD = 24 мм
Ускоряющие промежутки:	GDD = 25 MM
Угол раствора дуантов на 1 обороте:	60°
Угол раствора дуантов для остальных оборотов:	54°

Obschliefunden mitteryt BREPHUX III. SEADDAUU **SHEIMOTEKA**

Расчеты проводились для двух положений системы источник-пуллер.

В 1 варианте радиус положения центра источника 50мм при угле 71° от оси дуантов. Радиус положения центра пуллера так же 50мм.

Во 2 варианте радиус положения центра источника 50мм при угле 60° от оси дуантов. Радиус положения центра пуллера 51мм.

При расчете установлены следующие ограничения: а) количество считаемых оборотов 5;

б)
$$\frac{\Delta E}{E} = 15\%$$
 к концу 5 оборота;

в) вертикальное движение ускоряемых частиц рассматривается в пределах апертуры дуантов. Начальные условия вертикального движения при расчете радиальных аксептансов ускорителя

 $Z_0 = 2MM \mu Z^0 = 3^\circ;$

г) радиальный и вертикальный эмиттансы пучка при выходе из источника

Ar =
$$(0.5 * 360) \pi$$
 мм*мрад

 $Az = (5 * 360) \pi$ мм*мрад;

д) разброс центров орбит на 5 обороте от центра циклотрона не более 20мм.

Ниже приведены результаты расчетов динамики ускорения ионов 48Ca⁶⁺ для первого положения системы источник-пуллер.

Рис. 1. Аксептансы ускорителя при соответствующих начальных фазах в сравнении с эмиттансом пучка при выходе из источника. $\Delta\Gamma$ - угол направления вектора скорости частицы при вылете из источника от перпендикуляра к радиусу-вектору источника. 1, 2, 3, 4 - точки, принятые для представления горизонтального движения (рис. 5)

Рис. 2. Вертикальные аксептансы для диапазона начальных фаз от -50° до 0° при радиусе положения источника 50мм и $\Delta\Gamma_0 = 0^\circ$.

1, 2, 3 - точки, принятые для представления вертикального движения

Рис. 3. Коэффициенты захвата в ускорение Кг и Кz для горизонтального и вертикального движений в диапазоне начальных фаз от -50° до 0°. Вычисляются как отношение площади пересечения аксептанса ускорителя и исходного эмиттанса пучка к площади эмиттанса пучка

3

Таблица 1 Коэффициенты захвата в ускорение Кr и Кz и их произведение для диапазона начальных фаз от -50° до 0°

фаза фо	Kr	Kz	Kr*Kz
- 50°	0.35	0.09	0.03
- 40°	1.0	0.34	0.34
- 30°	1.0	0.54	0.54
- 20°	1.0	0.59	0.59
- 10°	1.0	0.58	0.58
0°	0.7	0.55	0.38

Коэффициент захвата в ускорение тока из источника находится как

$$K = \frac{\int K_R * K_Z * \delta \varphi}{\Delta \varphi}$$

Расчеты показали, что для полного диапазона начальных фаз $\Delta \phi_0 = 360^{\circ}$ коэффициент K = 0.06. Для сравнения при рассматриваемом диапазоне $\Delta \phi_0 = 50^{\circ}$ коэффициент K = 0.47.

Для представления динамики фаз произведен расчет распределения фаз после 5 оборота для радиусов положения источника 49.5мм, 50мм, 50.5мм и $\Delta\Gamma_0$ = -20°, 0°, 20°.

Рис. 5. Траектории движения ионов с начальными фазами -40°, -20°, 0° в точках 1, 2, 3, 4 (рис.1)

Рис. 6. Вертикальное движение ионов в точках 1, 2, 3 (рис.2)

Рис. 7. Динамика центров орбит при радиусе источника 50мм и $\Delta\Gamma_0 = 0^\circ$ для диапазона начальных фаз от -50° до 0°. Цифрами обозначены номера соответствующих оборотов

Для 2 положения системы источник-пуллер радиус положения центра источника 50мм при угле 60° от оси дуантов и радиус положения центра пуллера 51мм.

Рис. 8. Коэффициенты захвата в ускорение Kr и Kz для горизонтального и вертикального движений в диапазоне начальных фаз от -50° до 10°

Таблица 2. Коэффициенты захвата в ускорение Kr и Kz и их произведение для диапазона начальных фаз от -50° до 10°

фаза 🗛 🐧	Kr	Kz	Kr * Kz
- 50°	0.12	0 .	0
- 40°	1.0	0.28	0.28
- 30°	1.0	0.46	0.46
- 20°	1.0	0.51	0.51
- 10°	1.0	0.58	0.58
0°	1.0	0.69	0.69
10°	0.37	0.84	0.31

Расчеты показали, что при диапазоне начальных фаз $\Delta \phi_0 = 360^\circ$ коэффицент К = 0.074. Для сравнения при рассматриваемом диапазоне $\Delta \phi_0 = 60^{\circ}$ коэффициент К = 0.44.

6

Рис. 9. Динамика центров орбит при радиусе источника 50мм, угле 60° от оси дуантов и $\Delta\Gamma_0$ = -5° для диапазона начальных фаз от -50° до 10°. Цифрами обозначены номера соответствующих оборотов

Заключение

Таким образом, при ускорении ионов 48Са6+ в центральной области циклотрона У-400 существующее положение системы источник-пуллер дает коэффициент захвата в ускорение 47% при диапазоне начальных фаз от -50° до 0°. Попытка изменения положения системы источникпуллер в сторону уменьшения угла между центром источника и осью дуантов дала коэффициент захвата в ускорение 44%, что существенно не отличается от предыдущего результата, но показала качественное улучшение динамики центров орбит.

Групповое положение центров орбит после 5 оборота для существующего положения системы источник-пуллер дает основание к необходимости использования гармонических катушек с целью смещения этой группы к центру циклотрона.

Литература

1. Гульбекян Г.Г., Мордуев А.М. ОИЯИ, Р9-80-549, Дубна, 1980. 2. Иваненко И. А. ОИЯИ, Р9-96-409, Дубна, 1996. 3. Hazewindus N. et al. Nucl.Instr.Meth., 1974,118, p.125.

> Рукопись поступила в издательский отдел 24 апреля 1997 года. 7

Гульбекян Г.Г., Иваненко И.А.

P9-97-148

Расчет динамики ускорения ионов 48Са + 6 в центральной области циклотрона У-400 с внутренним источником типа PIG

Представлены результаты расчетов динамики ускорения ионов 48Са + 6 в центральной области циклотрона У-400 с внутренним источником PIG. Определены коэффициенты захвата в ускорение для двух положений системы источник — пуллер.

Работа выполнена в Лаборатории ядерных реакций им.Г.Н.Флерова ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна, 1997

Перевод авторов

Gulbekian G.G., Ivanenko I.A. The Calculation of the Dynamics of 48Ca + 6 Ion Beam Acceleration in the Central Region of the U-400 Cyclotron with an Inner PIG Type Ion Source

The results of the calculation of the dynamics of 48Ca + 6 ion beam acceleration in the central region of the U-400 cyclotron with an inner PIG type ion source are presented. The acceleration coefficients for two different positions of the ion source — puller system are calculated.

The investigation has been performed at the Flerov Laboratory of Nuclear Reactions, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna, 1997