

СООБЩЕНИЯ Объединенного института ядерных исследований

Дубна

95-260

P9-95-260

А.М.Балдин, Н.Н.Агапов, С.А.Аверичев, Н.Г.Анищенко, В.Д.Бартенев, Н.А.Блинов, В.Я.Волков, И.Н.Гончаров, В.И.Дацков, А.М.Донягин, Е.И.Дьячков, И.Б.Иссинский, А.Д.Коваленко, Ю.В.Куликов, В.Н.Кузичев, Л.Г.Макаров, В.А.Михайлов, Д.Рихтер, А.А.Смирнов, А.Ю.Стариков, Г.Г.Ходжибагиян, Ю.А.Шишов

СВЕРХПРОВОДЯЩИЕ МУЛЬТИПОЛЬНЫЕ КОРРЕКТОРНЫЕ МАГНИТЫ ДЛЯ НУКЛОТРОНА



#### Введение

В кольце нуклотрона размещено 28 мультипольных корректоров (МПК) с 3 и 4-мя типами обмоток в каждом [1]. В МПК входят дипольные (Д – прямые и косые), квадрупольные (К – прямые и косые), секступольные (С – прямые) и октупольные (О – прямые) обмотки в различных сочетаниях. Каждая обмотка МПК имеет индивидуальное электропитание. МПК механически соединен с основной сильноточной квадрупольной линзой и имеет с ней общие каналы для прокачки гелия.

#### 1 Конструкция мультипольных корректоров

Основные параметры МПК представлены в таблицах 1 и 2 и на рис. 1. Все обмотки навиты в один слой многожильным проводом диаметром 0,5 мм, кроме секступольной, имеющей два слоя. Для обмоток МПК нуклотрона аналогично с обмотками [2] применено косвенное криостатирование. Однако удельная (на единицу теплопередающей поверхности) мощность динамических тепловыделений в МПК нуклотрона для планируемого цикла ускорения 1 Гц существенно выше. Обмотки 3 (см. рис.2) пропитаны эпоксидным компаундом и приклеены к трубчатому теплообменнику 2, по которому циркулирует двухфазный гелий. Мельхиоровая трубка 2 диаметром 5×0.5 мм навита на обечайку 1, изготовленную из стали марки 1Х18Н10Т, и прикреплена к ней прерывистой пайкой. Обечайка для уменьшения джоулевых потерь снабжена продольными вырезами. Поверхность змеевика выровнена на токарном станке с помощью ролика, затем покрыта стеклотканью с эпоксидным компаундом. После полимеризации полученная поверхность проточена до диаметра 147 мм, причем минимальная толщина электроизолирующего слоя равна 0,3 мм.

Обмотки окружены шихтованным магнитопроводом 4 из стали марки Э-310, толщина листов железа равна 0,5 мм. Листы скреплены между собой с помощью приваренных к ним стальных накладок. Криостатирование магнитопровода осуществляется посредством медных трубок 5, припаянных к железу и имеющих канал диаметром 4 мм для прокачки кипящего гелия.

#### 2 Токовводы и система охлаждения

Особенность токовводов МПК состоит в том, что они не охлаждаются газообразным гелием. Это позволило исключить сложную систему сбора гелия и регулирования его потоков и таким образом упростить эксплуатацию МПК. Токовводы имеют тепловые "якори" на уровнях температуры 80 и 4,5 К. Параметры токовводов даны в таблице 3, конструкция показана на рис. 2. Тепловой "якорь" представляет собой пакет спаянных между собой прямоугольных

OBCREATER MARTERYT RACESCENCE ALLERANCE **SHEAHOTEKA** 

#### Таблица 1: Параметры магнитов

| Параме  | <b>TP</b>         | Знач.                                               |
|---------|-------------------|-----------------------------------------------------|
| Внутр.  | диам. каркаса, мм | 132                                                 |
| Внутр.  | диам. обмотки, мм | +147 . The set of $2$ , the set of $-1$             |
| Длина   | обмотки, мм       | <b>310</b> Australia (1997) 1996 (1997) 1997 (1997) |
| Макс. р | абочий ток, А     | 100                                                 |
| Обмотк  | and that have be  | <b>Д/С/О:</b>                                       |
| Макс. г | юле на полюсе, Тл | 0,15 / 0,4 / 0,1                                    |
| Число   | ампер-витков, кА  | 9/ 8,2 / 1,5                                        |

## Таблица 2: Параметры проводника

| Параметр                 | Зпач.         |
|--------------------------|---------------|
| Диам. без изоляции,      | мм 0,5        |
| Диам. в изоляции,        | мм, 0,53+0,05 |
| Отношение Cu/NbTi        | 1,38          |
| Число NbTi жил           | 1045          |
| Крит. ток (4,5 К; 1 Тл), | A . 350       |

пластин 1-4, в том числе из фольгированного медью с двух сторон стеклотекстолита. Пластины 4 припаяны к азотному (80 K) экрану нуклотрона или гелиевому змеевику 5 (4,5 K). Дополнительный слой медной фольги 1 обеснечивает необходимую токонесущую способность "якоря".

Токоведущая часть токоввода (кроме "якорей") состоит из гибкого жгута медных проводов. Соотношение длины 1 и площади поперечного сечения S жгута выбрано оптимальным для обеспечения минимальных теплопритоков q при 80 и 4,5 К. Согласно данным работы [5] в диапазоне температур 290–77 К для медных токовводов:

 $\frac{l}{S} \times l \simeq 3, 4 \times 10^6, \mathrm{e} \, \mathrm{A} \times \mathrm{m}^{-1}; \text{ and } q \simeq 0, 04, \mathrm{e} \, \mathrm{Br} \times \mathrm{A}^{-1}, \mathrm{e}^{-1} \, \mathrm{$ 

где І-максимальный рабочий ток (здесь принято I=100 A).

Для диапазона температур 77-4,5 K:

n a ng Marka ta persedal situ

د اردگی ۱۹۹۸ میک کار دورگ ماهی می

perio antipo de 1999 Objetion tra voga posto concorre d

 $\frac{l}{S} \times I = 10^7, \ A \times m^{-1}; \qquad q = 0,0085, \ BT \times A^{-1}.$ 

selfe and statements a selfer frequencies and the second second second second second second second second second

Для предотвращения электрического пробоя по краям "якоря" фольга вытравлена с токовой стороны по контуру пластины на ширине 4 мм. Этот промежуток выдерживает в вакууме 10<sup>-5</sup> мм рт. ст. напряжение >500 В.

#### Таблица 3: Параметры токовводов

| Параметр           | Значение |         |         |
|--------------------|----------|---------|---------|
|                    |          | 300-80K | 80–4,5K |
| Длина шины,        | MM       | 600     | 550     |
| Площ. попер. сеч., | $MM^2$   | 15      | 5       |
| Тепловой "якорь":  |          |         |         |
| Длипа,             | MM       | 130     | 148     |
| Ширина,            | MM       | 94      | 104     |
| Площ. попер. сеч.  |          |         |         |
| проводника,        | $MM^2$   | 14      | 16      |
| Толщ. изолятора,   | MM       | 0,4     |         |
| Толщ. фольги,      | MKM      | 50      |         |
| Теплоприток (расч. | 11       |         |         |
| на 1 токоввод):    |          |         |         |
| при 100 А,         | Вт       | 4       | 0,85    |
| без тока.          | Вт       | 2,1     | 0,25    |





Рис. 1. Мультипольный корректорный магнит: 1-опорная обсчайка; 2трубчатый теплообменник с двухфазным гелием; 3-сверхпроводящие обмотки; 4-магнитопровод; 5-теплообменник на магнитопроводе; 6-фланец для крепления контактных соединений сверхпроводника; 7-электрическая изоляция

3



Рис. 2. Тепловые "якоря" токовводов: 1-дополнительная медная фольга; 2фольги диэлектрика; 3-диэлектрик; 4-теплопроводная пластина (медь); 5трубчатый теплообменник (медь)



Рис. 3. Схема криостатирования квадрупольной линзы и МПК: 1-прямой и обратный гелиевые коллекторы; 2-сильноточная квадрунольная линза; 3блок МПК; 4-магнитопровод; 5-трубчатый теплообменник; 6-токоведущие пластины тепловых "якорей"; 7,8-токоведущие провода; 9-вакуумный сосуд Измерена поперечная теплопроводность  $\lambda$  образцов фольгированных изоляторов в исходном состоянии и после нагрева, соответствующего температуре пайки. Для марки СФТ-2-0,5 при 5 К  $\lambda \simeq 0,04$  Вт×м<sup>-1</sup>×K<sup>-1</sup>, для марки СВЧ (Al<sub>2</sub>O<sub>3</sub>, толщина 1,2 мм, толщина фольги 33 мкм)  $\lambda \simeq 0,03$  Вт×м<sup>-1</sup>×K<sup>-1</sup>. С ростом температуры теплопроводность значительно возрастает. Для фольгированного стеклотекстолита с толщиной изолятора 170 мкм величина  $\lambda$  изменяется от 0,04 Вт×м<sup>-1</sup>×K<sup>-1</sup> при 5 К до 0,2 Вт×м<sup>-1</sup>×K<sup>-1</sup> при 30 К. Попутно измерена теплопроводность стали марки Э-310 при температуре 6 К, которая составила 0,68 Вт×м<sup>-1</sup>×K<sup>-1</sup>.

Выяспилось, что длительный нагрев до температуры ~ $200^{\circ}$  С, соответствующей пайке припоем ПОС-50, приводит к вспучиванию фольги и резкому уменьшению теплопроводности. Вместе с тем пайка более легкоплавкими припоями была бы менее надежна и долговечна, равно как и клеевые соединения деталей "якоря". Выход был найден в кратковременном нагреве (несколько секунд) до  $200^{\circ}$  С. Косвепно о допустимости кратковременного нагрева свидетельствует то, что прочность на отслаивание фольги стеклотекстолита марки СФ-2-50 не изменяется после воздействия теплового удара в течение 10 с при  $260^{\circ}$  С [6].

Расчетная средняя разность температур между токоведущей частью теплового "якоря" и поверхностью теплообменника при 4,5 К равна ~ 1 К.

Питание гелием МПК, магнитопровода и теплового "якоря" идет последовательно с квадрупольной линзой, навитой трубчатым сверхпроводником [1] (см. рис. 3). Гидравлическое сопротивление этого тракта подобрано таким образом, чтобы обеспечнть поток гелия, необходимый для спятия статических и динамических тепловыделений из линзы и блока МПК с токовводами. Линза с блоком МПК подключена параллельно с другими линзами и диполями пуклотрона [1] к питающему и отводящему гелиевым коллекторам. Массовое паросодержание в потоке двухфазного гелия на выходе из дипольных и квадрупольных магнитов нуклотрона составляет примерно 0,9.

# 3 Результаты испытаний

Для проверки работоспособности МПК, надежности и долговечности приклейки были изготовлены и испытаны полномасштабная модель [3],[4] и опытный МПК. Вся серия из 28 шт. МПК успешно прошла стендовые рабочие испытания. Опытный образец и серийные МПК работали устойчиво вплоть до тока 150 А. Измерена радиальная теплопроводность обмотки, которая при температуре 8 К составляет 0,05  $BT \times M^{-1} \times K^{-1}$ . Динамические тепловыделения в четырех обмотках МПК при "треугольном" цикле с временами подъема и спада тока по 1 с и максимальным током 100 А составляют 2,6 Вт. Теплоприток к гелиевому "якорю" при I=100 A-const. равен 1,1 Вт на 1 ввод, из пих 0,7 Вт на 1 ввод — статический теплоприток по токовводу.

1

5

## 4 Выводы

Создан комплекс Мультипольных магнитов для нуклотрона. Впервые принцип косвенного криостатирования применен для магнитов и токовводов одновременно и в болвших масштабах, что позволило отказаться от сложной системы сбора гелия из многочисленных токовводов и упростить эксплуатацию МПК. Разработаны оригинальные технология изготовления и конструкции МПК и тепловых "якорей" токовводов.

#### Список литературы

- A.M.Baldin, N.N.Agapov, V.A.Belushkin et al., Cryogenic System of the Nuclotron — a New Superconducting Synchrotron. Advances in Cryogenic Engineering. Vol. 39A, Plenum press. New York and London, 1994, pp. 501-508
- [2] D. Ciasynski, P. Mantsch, IEEE, Vol.NS-28, N3, 1981, p.3275
- [3] Н.Г.Анищенко, В.Д.Бартенев, Н.А.Блинов и др., Депонированная публикация ОИЯИ, Б2-9-88-611, Дубна, 1988.
- [4] Н.Г.Анищенко, В.Д.Бартенев, Н.А.Блинов и др., Модель сверхпроводящего мультипольного корректора пуклотрона. Труды XI Всесоюзного совещания по ускорителям заряженных частиц. т.П, с.221-223. N Д9-89-52, издат. ОИЯИ, Дубна, 1989.
- [5] И.А.Глебов, В.Н.Шахтарин, Ю.Ф.Антонов, Проблема ввода тока в сверхпроводниковые устройства. Л.: Наука (Ленинградское отделение), 1985, табл. 2.3, с.49.
- [6] В.Б.Березин и др., Электротехнические материалы. Справочник. М.: Энергоатомиздат, 1983, с. 151.

Рукопись поступила в издательский отдел 16 июня 1995 года.