

- 329

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

P9-94-329

А.М.Донягин, А.Д.Коваленко, О.С.Козлов, В.А.Михайлов, А.А.Смирнов

АНАЛИЗ РЕЗУЛЬТАТОВ МАГНИТНЫХ ИЗМЕРЕНИЙ ДИПОЛЬНЫХ И КВАДРУПОЛЬНЫХ МАГНИТОВ НУКЛОТРОНА

Введение

Нуклотрон /1/ - сверхпроводящий синхротрон ЛВЭ ОИЯИ предназначен для ускорения протонов от 20 МэВ до 12.8 ГэВ, а также тяжёлых ионов и ядер от 5 МэВ/нуклон до максимальной энергии 6 ГэВ/нуклон. Магнитная структура нуклотрона /2/ включает 8 суперпериодов, каждый из которых состоит из трех регулярных периодов FODO и периода FODO, не содержащего дипольных магнитов (рис. 1). Регулярный период включает Ф- и Д-квадрупольные и четыре дипольных магнита. Все кольцо окружностью 251.52 м содержит 96 дипольных и 64 квадрупольных сверхпроводящих магнита.

Требования, предъявляемые к параметрам ускоренного пучка, налагают жёсткие ограничения на допустимые величины пространственных и временных неоднородностей магнитного поля структурных сверхпроводящих элементов. Подробный анализ этих неоднородностей представляет из себя довольно сложную и многоплановую задачу.

В работе приведены результаты математической обработки данных магнитных измерений ^{/3/} структурных элементов нуклотрона и даны предварительные оценки влияния погрешностей поля на параметры циркулирующего пучка.

1. ПРЕДСТАВЛЕНИЕ МАГНИТНОГО ПОЛЯ

В прямоугольной системе координат, связанной с геометрическим центром магнитного элемента, поперечные составляющие вектора магнитной индукции можно представить в виде разложения в ряд Тейлора в комплексной форме:

$$(B_{z}+iB_{x})(x,z,s) = \sum_{n=0}^{\infty} \left(\frac{\partial^{n}(B_{z}+iB_{x})}{\partial x^{n}} \right) (0,0,s) \frac{(x+iz)^{n}}{n!} .$$
(1)

Здесь (x,z) – поперечные горизонтальные и вертикальные координаты, s – продольная координата; R_z – нормальная, R_x – косая компоненты магнитного поля.

Используя выражение (1), магнитное поле диполя можно записать в виде:

$$B_{z}+iB_{x} = (B_{z,0}+i\Delta B_{x,0})(s) + \sum_{n=1}^{\omega} (\Delta B_{z,n}+i\Delta B_{x,n})(s) \left(\frac{x+iy}{r}\right)^{n}, \quad (2)$$

 $\Gamma_{AB} \Delta B_{\mathbf{X},\mathbf{Z},\mathbf{n}}(\mathbf{s}) = (\partial^{n} B_{\mathbf{X},\mathbf{Z}}/\partial \mathbf{x}^{n})(0,0,\mathbf{s}) \times (r^{n}/n!) ,$

 $B_{z,0}(s)$ – основная нормальная компонента, $\Delta B_{x,z,n}(s)$ – добавки к основному полю, вносимые неоднородностью n-й степени на окружности радиуса r с центром на оси магнита, продольная координата s отсчитывается от центра магнита, r=4 см – радиус нормировки, принятый для нуклотрона. Так как длина диполя значительно меньше длины регулярного периода ускорителя, то устойчивость бетатронного движения пучка определяется интегральными по длине диполя величинами $B_{z,0}(s)$ и $\Delta B_{x,n}(s)$, $\Delta B_{z,n}(s)$.

Интеграл основной компоненты $B_{z,0}(s)$ определяется через измеряемую эффективную длину и значение основной компоненты в центре магнита $B_{z,0}(s)$:

$$F_{M} = \int_{-\infty}^{\infty} B_{Z,0}(s) ds = I_{M} B_{Z,0} = I_{M} \lambda_{M} I , \qquad (3)$$

где I – ток питания, $\lambda_{M} = R_{Z,0}/I$ – передаточная функция диполя. Положение медианной плоскости диполя, которое характеризует

Положение медианной плоскости диполя, которое характеризует точность изготовления магнита, определяется отношением интегральных величин $\Delta R_{x,0}(s)$ и $R_{z,0}(s)$:

$$\theta = \frac{1}{F_{M}} \int_{-\infty}^{\infty} \Delta R_{x,0}(s) ds = \frac{\Delta R_{x,0}}{R_{z,0}}.$$
 (4)

Неоднородность магнитного поля диполя характеризуется относительными нормальными С_п и косыми S_n интегральными добавками:

$$C_{n} = \frac{\Delta B_{z,n}}{B_{z,0}} = \frac{1}{F_{M}} \int_{-\infty}^{\infty} \Delta B_{z,n}(s) ds , \qquad (5)$$

$$S_{n} = \frac{\Delta B_{x,n}}{B_{z,0}} = \frac{1}{F_{M}} \int_{-\infty}^{\infty} \Delta B_{x,n}(s) ds .$$

Для квадрупольных линз основной составляющей поля является градиент, поэтому разложение поля записывается в виде:

$$B_{z}+iB_{x} = (B_{z,1}+i\Delta B_{x,1})(s) + \sum_{n=2}^{\omega} (\Delta B_{z,n}+i\Delta B_{x,n})(s) \left(\frac{x+iy}{r}\right)^{n}.$$
 (6)

~

Неоднородности магнитного поля линзы определяются аналогично (5), где добавки к градиенту нормируются на поле в диполях при том же токе. Передаточная функция квадрупольной линзы $\lambda_{J} = G_{J} / I = F_{J} / (L_{J}I)$ определяется через градиент в центре линзы при данном токе, где

$$F_{JI} = \left(\int_{-\infty}^{\infty} (\partial B_{Z,0}(s) / \partial x) ds \right) = L_{JI} G_{JI} = L_{JI} \lambda_{JI}$$
(7)

2. РЕЗУЛЬТАТЫ МАГНИТНЫХ ИЗМЕРЕНИЙ ДИПОЛЬНЫХ МАГНИТОВ И КВАДРУПОЛЬНЫХ ЛИНЗ

Магнитные измерения эффективных длин и интегральных нелинейностей дипольных магнитов и квадрупольных линз, основные характеристики которых приведены в таблице 1 приложения, проводились с помощью трех протяжённых вращающихся гармонических катушек ^{/3/}, измеряющих центральные и краевые поля.

В табл. 2 приложения даны зависимости полей и эффективных длин диполей и линз от тока питания и кинетической энергии пучка.

На рис.2 и 3 даны зависимости эффективной длины $L_{M} = (F_{M}/B)$ и передаточной функции λ_{M} диполей от тока питания в диагазоне 640 ÷ 6400 А и энергии пучка (табл.2 прил.). Спад кривых на высоких индукциях обусловлен эффектом насыцения железных полюсов дипольных магнитов.

Среднеквадратический разброс эффективных длин диполей <L_>

превышает систематическое значение \overline{L}_{M} не более чем на 2.6 мм, а $<\lambda_{M}>: 8\times10^{-3}$ в рабочем диапазоне токов.Это говорит о достаточно хорошей точности изготовления диполей в продольном и поперечных измерениях.

Оценка положения медианной плоскости с помощью выражения (4) показывает, что угол её отклонения от геометрической плоскости в не превышает 3.7×10⁻⁴ рад.

<u>На</u> рис.4 и 5 приведены зависимости эффективной длины $L_{\pi}=(F_{\pi}/G)$ и передаточной функции $\lambda_{\pi}=G/I$ квадруполей от тока питания в диапазоне 640 ÷ 6400 А и энергии пучка (табл.3 прил.) ($\langle L_{\pi} \rangle \langle 1.1 \text{ мм}, \langle \lambda_{\pi} \rangle \langle 1 \times 10^{-3} \rangle$.

В табл. З и 4 (прил.) представлены статистические значения интегральных нелинейностей магнитного поля диполей: C_n, S_n – систематические; <C_n>, <S_n> – среднеквадратические величины. Основными для диполей являются систематические нелинейности с n=2,4,6... Относительно большая величина квадратичной нелинейности (рис.6) объясняется незатухающими токами в обмотках диполей.

В табл. 5 и 6 (прил.) представлены статистические значения интегральных нелинейностей магнитного поля квадруполей: C_n,S_n - систематические; <C_n>, <S_n> - среднеквадратические величины.

Для 16 из 64 квадрупольных линз полные магнитные измерения проведены при температуре жидкого гелия. Остальные измерялись при комнатной температуре и при небольших токах питания. Для них было допущено, что ошибки поля распределены по тому же закону, как и у 16 линз, измеренных при температуре жидкого гелия, поэтому систематические величины для всех линз приняты такими же, а среднеквадратические уменышены в два раза.

Основными для квадруполей являются систематические нелинейности с n=5,9,13... На протяжении всего цикла ускорения нелинейности линз практически постоянны и не превышают 1.5×10⁻⁴, что показано на рис.6

З.Токовые зависимости структурных элементов нуклотрона

Для обеспечения постоянства бетатронных частот в ускорителе в процессе ускорения систематические величины градиента линз и поля диполей должны иметь одно и то же отношение в течение всего периода ускорения:

$$n = \frac{G}{-} = \frac{F_{JL}}{-}, \qquad (8)$$

$$B_{0} = F_{M}L_{J}$$

$$\Gamma_{A} = G = \frac{1}{L_{J}} \left(\int_{-\infty}^{\infty} (\partial B_{Z,0}(s) / \partial x) ds \right) = \frac{F_{J}}{L_{J}},$$

$$B_{0} = \frac{1}{L_{M}} \left(\int_{\infty}^{\infty} B_{Z,0}(s) ds \right) = \frac{F_{M}}{L_{M}}.$$
(9)

Номинальные значения n для нуклотрона при выбранной рабочей точке $Q_{\chi}=6.8$, $Q_{Z}=6.85$ равны $n_{Op}=16.889 \text{ м}^{-1}$, $n_{Op}=16.744 \text{ м}^{-1}$ соответственно для Φ - и Д-линз. Отклонение n от номинального значения $\Delta n=n-n_0$ приводит к когерентному сдвигу бетатронных частот:

$$\Delta Q_{x,z} = -\xi_{x,z}^{0} \frac{n - n_{0}}{n_{0}} , \qquad (10)$$

0 0 где $\xi_{\rm X}$ =-7.68, $\xi_{\rm Z}$ =-7.86 - естественная хроматичность ускорителя. Величина $\Delta Q_{{\rm X},{\rm Z}}$ компенсируется коорекцией тока квадру-Польных линз так, чтобы соотношение (8) оставалось постоянным на протяжении всего цикла ускорения. На рис.7 показаны зависимости коэффициентов коррекции тока Ф- и Д-линз к_{ф.л}=I_{ф.л}/I_м от тока диполей и кинетической энергии иона. Некоторое отклонение зависимости от постоянной (до токов насышения) объясняется только погрешностями магнитных измерений. а спал обусловлен более быстрым насышением полюсов у магнитов. Ланные коэффициенты получены следующим образом: проволился расчет структуры нуклотрона для данных энергий пучка И значений бетатронных частот. Полученные значения $\mathbf{B}_{\mathbf{M}}\mathbf{L}_{\mathbf{M}}$ и $\mathbf{G}_{\mathbf{J}}\mathbf{L}_{\mathbf{J}}$ интерполировались с помощью экспериментальных зависимостей R_ML_M=R_ML_M(I), G_nL_n=G_nL_n(I), откуда и получались значения токов. Аналогичным образом рассчитаны зависимости токов питания квадрупольных линз при медленном выводе от бетатронной частоты при движении рабочей точки к полосе резонанса 3Q_x=20 по трем направлениям: 1 - (6.8,6.85) -> (6.66,6.92); 2 - (6.8,6.85) -> (6.66,6.85); 3 - (6.8,6.85) -> (6.66,6.8). На рис. 8а,6 приведены зависимости $k_{\tilde{D}}$ и k_{II} (начальные и конечные значения) от тока в обмотках диполей Ім.

Приемлемое значение разброса бетатронных частот (AQy)=0.01 Позволяет определить необходимое значение интегрального градиента:

$$\overline{G} = n_0 \left[1 \pm \frac{|\Delta Q_y|}{\max \underline{\xi}_y} \right] \overline{B}_0 , \qquad (11)$$

откуда допуск на разброс коэффициентов коррекции токов линз $\Delta k_{\Phi, A} = \pm n_0 (|\Delta Q_y|/max\xi_y) \simeq \pm 0.02.$

4. Влияние неоднородностей магнитного поля структурных элементов на устойчивость бетатронного движения пучка в нуклотроне

Наличие сагитты замкнутой орбиты &(s) в дипольных магнитах нуклотрона и относительно большая величина квадратичной нелинейности вносят добавку в нормальный градиент:

$$\Delta \overline{C}_{1} \simeq \frac{2}{F_{M}} \int_{-\infty}^{+\infty} \Delta \overline{B}_{z,2}(s) \frac{\mathfrak{R}(s)}{r} ds , \qquad (12)$$

где ж(s)= $(I_M^2/8-s^2)/2p$, p=22 м – радиус кривизны орбиты в диноле. Систематический эффективный градиент $C_{1,ef}=C_1+\Delta C_1$ приводит к когерентному сдвигу бетатронных частот: $|\Delta Q_{x,z}| \simeq 10^3 |C_{1,ef}|$. Как следует из оценок по формуле (12) и табл. 3, в рабочем диагазоне токов питания $|C_{1,ef}| < 2.0 \times 10$ и $|\Delta Q_{x,z}| \simeq 0.02$. Система коррекции бетатронных частот легко компенсирует такой сдвиг.

Нормальные систематические нелинейности с п22 вызывают разброс бетатронных частот

$$\Delta Q_{X,Z}^{n} = f_{n} |\overline{C}_{n}| , \qquad (13)$$

где коэффициенты f_n зависят от импульсного разброса и эмиттанса пучка. Наибольшее значение разбросы имеют при инжекции и адиабатически уменьшаются с ростом энергии. Относительно большая величина квадратичной нелинейности, обусловленная конструкцией магнита, а также незатухающими вихревыми токами в обмотках диполей, вносит вклад в хроматичность ускорителя и вызывает разброс бетатронных частот $\Delta Q_{\chi} = 0.01$, $\Delta Q_{Z} = 0.01$. Система коррекции хроматичность позволяет скомпенсировать этот разброс. При полностью скомпенсированной хроматичности данная нелинейность во втором порядке метода усреднения вызывает зависимость бетатроных частот от амплитуды бетатронных колебаний:

$$\Delta Q_{\rm X} = \alpha_{\rm XX} I_{\rm X} + \alpha_{\rm XZ} I_{\rm Z} , \qquad (14)$$
$$\Delta Q_{\rm Z} = \alpha_{\rm ZX} I_{\rm X} + \alpha_{\rm ZZ} I_{\rm Z} ,$$

где $I_{X,Z} = \varepsilon_{X,Z}/2\pi$, коэффициенты $\alpha(cm)$ зависят от величины нормальной квалратичной нелинейности :

$$\alpha_{xx}^{2} = -0.046 \times (\tilde{C}_{2} \times 10^{3})^{2}, \quad \alpha_{xx}^{2} = -0.048 \times (\tilde{C}_{2} \times 10^{3})^{2}, \quad (15)$$

$$\alpha_{xz}^{2} = \alpha_{zx}^{2} = +0.021 \times (\tilde{C}_{2} \times 10^{3})^{2}.$$

При энергии инжекции (ε_х~40л мм×мрад, ε_z~45л мм×мрад) добавка в разброс частот ≈0.001, что ниже предельно допустимого разброса 0.01.

Разброс эффективных длин диполей вызывает дополнительное искажение замкнутой орбиты. Это искажение можно уменьшить путём оптимальной расстановки магнитов. Так как диполи в каждом периоде FODO расположены на небольшом расстоянии, то простейший алгоритм расстановки заключается в разбиении всех диполей структуры кольца на пары. При этом магниты каждой пары должны удовлетворять условию:

$$(\delta B_0 / B_0)_1 \simeq -(\delta B_0 / B_0)_2$$
, (16)

где ($\delta B_0 / B_0$)_i=($(B_{z,0} L_M)_i - (B_{z,0} L_M)) / (B_{z,0} L_M)$, i – номер диполя в паре. Для максимального отклонения орбиты, вызванного возмущениями пар диполей, можно записать:

$$\langle X_{max} \rangle = \frac{\pi}{|\sin \pi Q_x|} \sqrt{\frac{R \beta_{xmax}}{M Q_x}} \langle \Delta B_0 / B_0 \rangle$$
, (17)

где M=48 - количество пар, R=40 м, β_{хтах}=12.48м,<ΔB₀/B₀>=1×10⁻³. Тогда <X_{max}>=2.2 мм. Данный разброс легко компенсируется системой коррекции замкнутой орбиты.

Наибольшее влияние на устойчивость бетатронного движения пучка в нуклотроне оказывают параметрические резонансы $2Q_{X,Z}=13$ (полосы которых пересекаются из-за кулоновского некогерентного разброса частот и при инжекции) и $2Q_{X,Z}=14$, возникающие, главным образом, на случайном разбросе интегрального градиента линз «АС/С» (рис.9). Ширича данных резонансов определяется выражением:

$$P = \left(\sum_{i=1}^{64} (\beta_{x,z} K)_{i} L_{1}^{2}\right)^{1/2} \langle \Delta G/G \rangle , \qquad (18)$$

где K=rv/р, р=22 м - радиус кривизны орбиты в диполе.

На рис.9 показано изменение ширин полос параметрических резонансов в процессе ускорения. Система коррекции резонансов позволяет уменьшить их совместное влияние на огибающую пучка/4/.

5. Заключение

Проведённый анализ магнитного поля структурных дипольных и квадрупольных магнитов нуклютрона показал, что качество магнитного поля данных элементов соответствует требованиям устойчивости бетатронного движения. Влияние остаточных магнитных полей (1-3 Гс) и секступольной нелинейности пренебрежимо мало и находится в пределах допуска.

К моменту публикации данной статьи проведено пять сеансов работы нуклотрона. Получен ускоренный до импульса 3.5 ГэВ/с на нуклон пучок дейтронов с интенсивностью 2х10⁹ частиц в импульсе, и проведены первые физические эксперименты с использованием внутренней мишени. Устойчивая циркуляция инжектируемого пучка

и его ускорение говорят о хорошей достоверности полученных в данной работе результатов.

Авторы выражают благодарность И.А.Елисеевой, А.А.Кукушкилу за проведенные магнитные измерения и В.А.Шепунову за полезные обсуждения.

Приложения

t

Таблица 1. Характеристики дипольного магнита и квадрупольной линзы нуклотрона

	Диполь	Линза
Длина ярма (м)	1.44	0.4275
Количество ампер-витков	16	5
Зазор, радиус (м)	0.056	0.04
Критический ток (А)	6600	6600
Поле в диполях (Тл), градиент в линзах ФиД (Тл/м): при инжекции максимальный	0.0294 20.800	0.496 -0.492 35.132 -34.829

I(A)	W(MЭВ/н)	В _м (Тл)	L _M (M)	G _Л (Тл∕м)	L _л (м)
640	261.8	0.2267	1.4193	3.8832	0.4419
1280	829.1	0.4538	1.4200	7.7523	0.4413
1920	1499.9	0.6818	1.4198	11.6078	0.4412
2560	2207.5	0.9097	1.4191	15.4599	0.4411
3200	2930.9	1.1373	1.4175	19.2827	0.4407
3840	3660.5	1.3641	1.4145	23.0486	0.4402
4480	4378.9	1.5858	1.4094	26.6726	0.4381
5120	5056.7	1.7942	1.4036	30,1355	0.4378
5760	5665.3	1.9806	1.3972	33.1397	0.4352
6400	6102.6	2.1145	1.3954	35.1752	0.4333

Таблица 2. Токовые зависимости структурных элементов

Таблица 3. Нормальные интегральные нелинейности диполей. Верхнее значение C_n , нижнее $<\!C_n\!>$ (обозначены,как δ_n), п=0,1...6

I(A)	δ ₀ *10 ³	δ ₁ *10 ⁵	δ ₂ *10 ⁴	δ ₃ *10 ⁵	δ ₄ *10 ⁴	δ ₅ *10 ⁴	δ ₆ *10 ⁴
640	0.00	0.38	-11.3	-1.20	0.61	-0.30	2.80
	4.25	6.65	1.66	7.80	1.13	1.26	1.82
1280	0.00	1.00	-12.5	-0.94	1.16	-0.27	2.28
	2.14	6.50	2.37	7.65	1.08	1.17	1.63
1920	0.00	1.05	-12.6	-0.49	1.56	-0.34	2.26
	1.70	6.09	2.78	7.97	1.09	1.15	1.58
2560	0.00	1.39	-12.5	-0.86	2.07	-0.31	2.15
	1.71	5.96	2.71	8.00	1.08	1.17	1.58
3200	0.00	1.08	-12.0	-0.73	2.75	-0.26	2.15
	1.69	5.73	0.83	7.84	1.10	1.21	1.64
3840	0.00	0.87	-9.37	-0.64	3.78	-0.25	2.32
	1.70	5.30	1.60	8.15	1.12	1.15	1.66
4480	0.00	0.92	-4.61	-0.58	5.75	-0.22	3.08
	1.60	5.10	1.94	8.71	1.13	1.13	1.62
5120	0.00	0.98	3.79	-0.24	9.13	-0.14	4.45
	1.63	5.93	1.23	9.95	1.12	0.97	1.72
5760	0.00	-0.55	22.6	0.68	13.6	-0.35	6.06
	2.24	10.60	2.50	11.7	1.24	1.17	1.75
6400	0.00 2.67	-2.17 27.20	69.9 3.97	1.07 17.5	22.8 1.84	0.47	7.68 1.91

Таблица 4. Косые_интегральные нелинейности диполей. Рерхнее значение ${\rm S}_n,$ нижнее $<{\rm S}_n>$ (обозначены,как $\delta_n), n=0,1\ldots 6$

I(A)	δ ₀ *10 ⁴	δ ₁ *10 ⁴	δ ₂ *10 ⁴	δ ₃ *10 ⁴	δ ₄ *10 ⁴	δ ₅ *10 ⁴	δ _E *10 ⁴
640	1.57	-0.06	-0.61	-0.01	0.07	0.06	0.37
	4.27	1.70	1.02	1.50	1.09	1.12	1.43
1280	-1.97	-0.09	-0.62	-0.05	0.08	0.00	0.31
	8.55	1.72	0.96	1.54	1.03	0.99	1.40
1920	-3.23	-0.07	-0.65	-0.04	0.12	0.04	0.34
	7.63	1.75	0.99	1.51	1.08	1.00	1.45
2560	-1.97	-1.00	-0.62	-0.04	0.18	0.01	0.30
	9.48	1.68	1.02	1.48	1.14	1.03	1.40
3200	-2.09	-0.10	-0.62	-0.05	0.23	0.07	0.17
	7.27	1.72	0.98	1.47	1.14	0.99	1.47
3840	0.60	-0.05	-0.58	0.00	0.30	0.10	0.28
	10.4	1.67	0.96	1.45	1.14	1.02	1.50
4480	0.34	-0.08	-0.42	0.02	0.46	0.10	0.43
	7.37	1.55	0.97	1.43	1.16	1.06	1.53
5120	1.78	-0.09	-0.16	0.15	0.68	0.20	0.65
	10.2	1.62	1.03	1.29	1.20	1.05	1.48
5760	1.55 7.01	0.15 3.42	0.37 1.36	0.36 1.46	1.02 1.24	0.33	0.95 1.57
6400	3.70 26.9	0.67 5.62	1.84 2.67	0.93 2.53	1.65 1.44	0.47	1.45 2.20

,

Таблица 5. Нормальные интегральные нелинейности квадруполей. Верхнее значение C_n , нижнее < C_n > (обозначены, как δ_n)

I(A)	δ ₁ *10 ⁴	δ ₅ ∗10 ⁴	δ ₃ *10 ⁴	δ ₁₃ *10 ⁵	δ ₁₇ *10 ⁶
640	0.00	-0.11	1.31	4.11	1.97
	7.79	2.23	0.18	0.73	3.18
1280	0.00	-0.07	1.27	3.90	2.54
	7.02	2.24	0.17	0.72	2.58
1920	0.00	-0.04	1.24	3.83	2.00
	5.52	2.24	0.17	0.70	3.02
2560	0.00	0.12	1.22	3.72	2.28
	5.29	2.19	0.17	0.69	2.79
3:200	0.00	-0.02	1.34	3.86	2.14
	4.93	2.23	0.18	0.72	2.70
3840	0.00	-0.02	1.22	3.78	2.34
	5.03	2.23	0.17	0.69	2.65
4480	0.00	-0.07	1.24	3.77	1.77
	14.9	2.30	0.17	0.68	2.64
5120	0.00	-0.24	1.25	4.10	1.86
	6.36	2.64	0.18	0.71	2.71
5760	0.00	0.28	1.55	4.07	2.02
	9.75	3.42	0.19	0.70	2.61
6400	0.00	1.25	1.88	4.01	1.75
	14.0	3.81	0.22	0.69	2.32

Таблица 6. Косые интегральные нелинейности квадруполей. Верхнее значение S_n , нижнее $\langle S_n \rangle$ (обозначены, как $\delta_n)$

I(A)	δ ₁ *10 ⁵¹	δ ₅ *10 ⁵¹	δ ₉ *10 ⁵	δ ₁₃ *10 ⁶	δ ₁₇ *10 ⁶
640	-0.02	-4.50	-0.45	-1.67	-8.67
	5.08	1.72	1.04	5.13	6.62
1280	0.02	-4.59	-0.40	-0.38	-9.56
	4.14	1.72	1.00	4.71	5.61
1920	-0.65	-4.57	-0.43	-0.37	-10.1
	2.21	1.73	0.98	4.79	5.50
2560	-0.43	-4.48	-0.44	-1.39	-8.30
	2.70	1.72	0.98	4.50	5.97
3200	-0.21	-4.47	-0.51	-0.67	-8.75
	1.67	1.72	0.98	4.65	5.71
3840	-0.21	-4.42	-0.41	-0.61	-8.43
	1.22	1.73	0.99	4.66	5.66
4480	0.65	-4.37	-0.43	-0.46	-9.69
	1.35	1.73	1.00	4.64	5.28
5120	0.42	-4.41	-0.51	-0.52	-9.38
	1.11	1.84	1.00	4.82	4.99
5760	0.21	-4.56	-0.67	-0.41	-8.92
	1.51	2.08	1.11	4.86	5.09
6400	0.84	-4.67	-0.81	-0.03	-8.91
	1.64	2.20	1.25	4.65	4.53

Рис. 2. Зависимость средней эффективной длины диполей от тока и кинетической энергии иона

Рис. 6. Зависимость систематических величин неоднородностей поля диполей и квадруполей от тока и кинетической энергии

Рис. 7. Зависимость коэффициента коррекции тока линз k_{ф,д} от тока диполей и кинетической энергии иона

Рис.8.Зависимости токов питания квадрупольных линз при медленном выводе от тока в диполях при движении рабочей точки к полосе резонанса $3Q_x=20$ по трем линиям: 1-(6.8,6.85) -> (6.66,6.92); 2-(6.8,6.85) -> (6.66,6.85); 3-(6.8,6.85) -> (6.66,6.8): а) $k_{\bar{\Phi}}=k_{\bar{\Phi}}(I_M)$; б) $k_{\bar{A}}=k_{\bar{A}}(I_M)$

ЛИТЕРАТУРА

- 1). Baldin A.M. et al. IEEE Trans. Nucl. Sci., NS-30, 1983, p. 3247.
- 2). Василишин Б.В. и др.Препринт ОИЯИ 9-86-512, Дубна, 1986.
- 3). Борисовская З.В. и др. Препринт ОИЯИ 9-86-714, Дубна, 1986.
- 4). Михайлов В.А., Щепунов В.А.Препринт ОИЯИ 9-92-204, Дубна, 1992.

Рукопись поступила в издательский отдел 15 августа 1994 года.