СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

P9 - 9215

9/1-76

В.С.Александров, Ю.И.Алексахин, Н.Ю.Казаринов, В.Г.Новиков, Э.А.Перельштейн, Б.Г.Щинов

РАСЧЕТ МАГНИТНОЙ СИСТЕМЫ АДГЕЗАТОРА С ТОНКОСТЕННОЙ МЕТАЛЛИЧЕСКОЙ КАМЕРОЙ

Часть II

A-465

439/2-76

P9 - 9215

В.С.Александров, Ю.И.Алексахин, Н.Ю.Казаринов, В.Г.Новиков, Э.А.Перельштейн, Б.Г.Щинов

РАСЧЕТ МАГНИТНОЙ СИСТЕМЫ АДГЕЗАТОРА С ТОНКОСТЕНЧОЙ МЕТАЛЛИЧЕСКОЙ КАМЕРОЙ Часть II При формировании интенсивных электронных колец /N_c ≥10¹³/ в узкой металлической камере собственные и отраженные камерой электрические и магнитные поля кольца существенно влияют на динамику сжатия.

В этой части рассматриваются эффекты пространственного заряда пучка: изменение магнитного поля и его показателя спада, влияние на пучок токов в стенках камеры, возникающих при инжекции, экранирование электрического поля кольца.

С учетом этих и обсуждаемых в^{/1/} эффектов дается алгоритм выбора магнитной системы адгезатора УТИ.

Обозначения части II соответствуют введенным в /1/.

§1. Вычисление собственных полей электронного кольца

Влияние пространственного заряда пучка сводится, в основном, к двум эффектам - расталкиванию по большому радиусу кольца, для компенсации которого необходимо увеличение напряженности внешнего магнитного поля, и сдвигу частот бетатронных колебаний.

Выраження для полей пучка эллиптического сечення в свободном пространстве даны в работе /2/ подстановка их в уравнения /1,9/ ^{/1}/ дает

$$B_{z}^{e} = -\frac{mc^{2}}{e} \cdot \frac{\beta\gamma}{r_{0}} (1+\xi),$$

$$r_{0}[\beta\gamma(1+\frac{\nu}{\gamma}(2L_{0}-3)) + \frac{e}{mc^{2}}A_{\theta}^{e}] = \frac{M_{\theta}}{mc}, /1/$$

$$\nu_{z}^{2} = n(1+\xi) - \frac{4\nu}{\beta^{2}\gamma^{3}} \cdot \frac{r_{0}^{2}}{a_{z}(a_{z}+a_{r})} - \frac{\nu}{\gamma}(L_{z}-1),$$

3

$$\nu_{r}^{2} = (1 - n)(1 + \xi) - \frac{4\nu}{\beta^{2}\gamma^{3}} \cdot \frac{r_{0}^{2}}{a_{r}(a_{r} + a_{z})} - \frac{\nu}{\gamma}L_{0},$$

Γде $L_0 = ln \frac{16r_0}{a_r + a_z}$, $\xi = \frac{\nu}{\gamma} \cdot \frac{1+\beta^2}{2} (L_0 - \frac{1}{2})$.

Присутствие экранов заметно искажает поля кольца, и, в особенности, их градненты. Для пучка, покоящегося между двумя проводящими плоскостями /расстояние между которыми $d \ll \pi r_0$ /, сдвиг бетатронных частот за счет экранировки электрического поля равен /3/ $\Delta v_{\pi}^2 \approx$

 $\approx -\Delta \nu_{\rm r}^2 \approx -\frac{\nu}{3\gamma} (\frac{\pi r_0}{\rm d})^2$ и для реальных параметров дости-

гает величнны порядка единицы. Дефокусирующее влияние стенок камеры уменьшается за счет магнитного поля токов, наведенных при инжекции, и вихревых токов в стенках, возникающих при сжатии кольца.

Градиенты поля этих токов в случае конечной прово-

димости стенок в $p = \frac{\kappa^2}{1+\kappa^2} (\kappa = \frac{2\pi\sigma h}{c} \beta_r)$ раз мень-

ше, чем для вдеально проводящих экранов $^{/3/*}$, в при $\kappa >> 1$ отраженные поля можно не учитывать. Последнее требование, однако, противоречит условию прозрачности камеры для внешних полей /17//1/.

Для нахождения экранированных магнитных полей кольца использовался тот же метод, что и в задаче о проникновении внешних магнитных полей в камеру. Коэффициенты а^с_i на каждом шаге по времени эпределяются как

 $a_{i}(t_{n}) = e^{-\frac{\Delta t_{n}}{\tau_{i}}} \left[a_{i}(t_{n-1}) + \frac{1}{\tau_{i}} \int_{t_{n-1}}^{t_{n}} e^{-\frac{t'-t_{n-1}}{\tau_{i}}} a_{i}^{0}(r_{0}(t')) dt' \right],$ /2/

n - номер шага, $\Delta t_n = t_n - t_{n-1}$. При вычислении ин-

*Для кольца, движущегося с переменной скоростью β_r , будет такое же уменьшение градиентов, если β_r меняется мало за время $\frac{d}{c \beta_r}$.

теграла в /2/ используется параболическая интерполя ция $a_i^0(r_0(t'))$ по значениям $a_j^0(r_0(t_{n-1}))$, $\frac{da_j^0}{dt}$ | $r_0 = r_0(t_{n-1})$

 $a_i^0(r_0(t_n))$. Значение $a_i^0(t_{in}) = 0$, т.к. время инжекции кольца ≈ 10 ис и поля, возникающие при инжекции, не успевают проникать через камеру, т.е. $A_{\theta}^C |_{t=t_{in}} = 0$.

Электрические отраженные поля и их производные в медианной плоскости выражаются через плотность наведенных на стенках зарядов $\rho(\ell)$:

$$\mathbf{F}^{\text{ind}}(\mathbf{r}) = 2 \int_{\mathbf{L}} \mathbf{G}_{\mathbf{F}}(\mathbf{r}, \ell) \rho(\ell) d\ell , \qquad /3/$$

где

$$G_{E_{r}}(r, z, r', z') = \frac{k}{r} \sqrt{\frac{r'}{r}} \left[K - \frac{1 - \frac{k'}{2} (1 + \frac{r}{r'})}{1 - k^{2}} E \right],$$

$$G_{\frac{\partial \mathbf{F}_{z}}{\partial z}} = \frac{k^{3}}{2r\sqrt{rr'(1-k^{2})}} \{E + \frac{k^{2}(z-z')^{2}}{4rr'} \{K-4\frac{1-\frac{k^{2}}{2}}{1-k^{2}}E\}\},\$$

$$\frac{G_{\partial \mathbf{E}_{\mathbf{r}}}}{\partial \mathbf{r}} \approx -\left(G_{\partial \mathbf{E}_{\mathbf{z}}} + \frac{1}{\mathbf{r}}G_{\mathbf{E}_{\mathbf{r}}}\right) \,.$$

Плотность наведенных зарядов определяется из уравнения

$$\phi_0(\ell) = -\int_{\mathbf{L}} G_{\phi}^+(\ell,\ell') \rho(\ell') d\ell', \qquad /4/$$

где

$$G_{\phi}^{i}(\ell,\ell') = G_{\phi}(\mathbf{r},\mathbf{z},\mathbf{r}',\mathbf{z}') + G_{\phi}(\mathbf{r},\mathbf{z},\mathbf{r}',-\mathbf{z}')$$
TOYKH r. z; r', z' HAXOGATCA HA L , $G_{\phi} = 2k\sqrt{\frac{\mathbf{r}'}{\mathbf{r}}} K(k)$

$$\phi_{0}^{i}(\mathbf{r},\mathbf{z}) = \frac{mc^{2}}{e}\nu G_{\phi}(\mathbf{r},\mathbf{z},\mathbf{r}_{0},\mathbf{0}).$$
Pemehhe ypabhehua

Рис. 1. График функции $\Phi(r_0)$.

/4/ можно найти, используя собственные функции ядра G_{ϕ}^{*} , или прямо, численно решая систему линейных уравнений, являющихся дискретным аналогом /4/.

Так как в уравнения /2,9/^{/1/} входят значения поля и его граднента только на равновесных радиусах г₀, эти функции могут быть затабулированы и использоваться в расчетах произвольного варианта сжатия. На *рис.* 1 приведены графики для величины $\Phi(r_0) = r_0^2 \frac{e}{mc^2 \nu} \cdot \frac{\partial E_z^{inu}}{\partial z}$,

полученные для реальной камеры численно и /пунктиром/ по приближенной формуле:

$$\Phi(\mathbf{r}_0) = \frac{1}{3} \left(\frac{\pi \mathbf{r}_0}{\mathbf{d}} \cdot \frac{2}{a} \cdot \mathbf{tg} \frac{a}{2} \right)^2 \cdot \left[1 - \frac{5}{2} \left(\frac{a}{\pi} \right)^2 \right]. \qquad /5/$$

Здесь d - апертура камеры н *a* - угол между касательными к стенкам камеры плоскостями на раднусе г_о. Поправка к частоте акснальных бетатронных колебаний

6

Рис. 2. Поправка к квадрату частоты v_z^2 , связанная с экранировкой полей кольца / N $_{\rm e}$ = 3.1013, $\gamma_{\rm in}$ = 5/.

$$(\Delta \nu_z^2)$$
 ind $= -\frac{e}{m\gamma\omega_0^2}(\frac{\partial E_z^{ind}}{\partial z} - \beta \frac{\partial B_r^{ind}}{\partial z}),$

для реальной траекторин сжатия при значениях параметров $N_e = 3.10^{13}$, $\gamma_{in} = 5$, представлена на *рис. 2*.

§2. Выбор магнияной системы

Мы исходили из требования $0,07 < \nu_z(t) < 0,5$ для всех допустимых наборов параметров кольца. Эти условия будут выполнены, если при факсированном γ in и варвации числа частиц в кольце величина показателя спада n (r₀) лежит в коридоре n_{min} (r₀) < n < n_{max}(r₀).

Нижняя граница $n_{\min}(r_0)$ определяется из равенства $\nu_z = 7.10^{-2}$ для пучка с нанбольшим числом частиц, а верхняя $n_{\max}(r_0)$ соответствует $\nu_z = \frac{1}{2}$ для пучка

Puc. 3. Графики $r_{g}(t)$, $\gamma(t)$, $B_{z}(t)$. $a/\gamma_{in} = 5$, $N_{e} = 2.1013$, $6/\gamma_{in} = 7$, $N_{e} = 3.1013$.

с наименьшим числом частиц. В зависимости от энергии кнжектируемых электронов рассматривались следующие диапазоны параметров:

$$\begin{array}{ll} \gamma_{\rm in} &= 7\,, & {\rm N_e} = 3 \div 5 \cdot 10^{13} \\ \gamma_{\rm in} &= 5,6, \, {\rm N_e} = (2 \div 3) \cdot 10^{13} \\ \gamma_{\rm in} &= 4\,, \, {\rm N_e} = (1 \div 2) \cdot 10^{13} \end{array} \right\} \quad \begin{array}{l} \Delta \gamma \\ \gamma &= 3 \div 5 \,\% \\ {\rm I}_{\tau} = 7 \cdot 10^{-2} \,. \end{array}$$

Первоначальный выбор геометрии ступеней сжатия производился по упрощенной схеме без учета искажения ведущего магнитного поля камерой и индуктивной связи между катушками. Сдвиг бетатронных частот вводился согласно приближенной формуле

$$(\Delta \nu_z^2)^{\text{ind}} \stackrel{\simeq}{=} - (\Delta \nu_r^2)^{\text{ind}} = -\frac{\nu}{\gamma} \Phi(\mathbf{r_0}) (\mathbf{1} - \beta^2 \mathbf{p})$$

Поскольку ступены сжатыя включаются последовательно, удобно выбирать параметры последующей ступены при фиксированных предыдущих так, чтобы n(r₀) попадали в коридор в максимально широком интервале раднусов.

Считая величину тока в і -ой ступени заданной и меняя R_i и Z_i , находим вариант, при котором $n(r_i)$ лежит в коридоре до наименьшего значения - радиуса перехвата /i + 1/- ой ступени. Область изменения R_i и Z_i выбирается с учетом дополнительного условия равенства фаз поля и его производной в металлической камере вблизи раднусов перехвата, что гарантирует малость отличия показателя спада n (r_0) от показателя спада в свободном пространстве $n^{CB}(r_0)$.

Поскольку при выбранной нами рабочей частоте магнитное поле кольца экранируется слабо (р << 1), выбранная таким образом система будет пригодна и для керамической камеры с тонким металлическим покрытием, практически не искажающей внешние и собственные магнитные поля, но экранирующей электрические.

Для того чтобы в реальной системе п - траектория мало отличалась от приближенной, времена включения

ступеней берутся равными $t_i - t_{i0} - \frac{\phi_B}{\Omega_i}$, где t_{i0} - время, соответствующее раднусу перехвата і -ой ступенью в свободном пространстве, а ϕ_B - значение фазы поля і-ой ступени на раднусе перехвата.

9

При выбранных нами параметрах изменение амплитуды поля за счет экранирования составляет 1÷3% и на сжатие кольца не влияет.

При таком грубом выборе параметров п -траектория оказывается близкой к искомой, но часть ее может лежать вне коридора. Для коррекциг -траектории используются вариации токов в ступенях сжатия, Время их включения и перемещение катушек в z-направлении. При изменении величины тока в ступени меняется скорость сжатия кольца и, как следствие, значения n_{min} (r_0), $n_{max}(r_0)$ и сама п -траектория. Например, при увеличении тока в ступени, из-за увеличения скорости сжатия кулоновский сдвиг частоты уменьшается и граничные значения п опускаются. Изменение самой п-траектории зависит от соотношения фаз ϕ_B и ϕ_B .

Там, где $\phi_{B} > \phi_{B'}$ область перехвата/, увеличение скорости сжатия кольца приводит к подъему п - траектории, соответственно при $\phi_{B} < d_{B'}$, траектория опускается. Изменение п - траектории больше изменения коридорных значений п, т.к. в нашем случае параметр p<1.

Изменение времени включения ступени меняет скорость сжатия и относительный вклад в величину п от различных ступеней. Изменение коридора при зтом незначительно, тогда как п может сильно меняться в течении переходных процессов при включении ступени.

Перемещение катушек в z-напревлении меняет значения в свободном пространстве, как видно из *рис.* $3^{/1/}$. и таким же образом после прохождения переходных процессов /п стремится к n^{CB} / меняет n -траекторию. Небольшие передвижения катушек по z с другой стороны слабо меняют величину B_z и скорость сжатия кольца, т.е. почти не меняют коридора.

Параметры выбранной магнитной системы указаны в пабл. 1.

Поведение основных величин, характеризующих сжатие кольца: г₀ - раднуса кольца, γ - энергии электронов, ν_r , ν_z - частот бетатронных колебаний, a_r , a_z - малых размеров кольца, B_z - магнитного поля, n - показателя спада поля - видно из *рис. 3-6*.

	средниці ралидус средниці	расотояние от медианной плоскости (см)	кол-во Витков	Амплатт тока (k A) <i>J ia</i> = 5	уда = 7	L (mtre)	(₀ er ^{−I})	радиус перехвата (см)
медленное поле	64	32	6	2,75	4,19	0,23	200-300	36
I ступень	38	48	28	5	5	I,8	2,5·10 ³	36
П отупень	26	24 + 29	48	4,3	5	3,3	1,8·10 ³	27 + 29
Ш ступень	14,5	8 + IO	70	4	5	З	1,6·10 ³	10 + II

•

таблица жг

Puc. 4. Зависимости $\nu_{\rm t}$, $\nu_{\rm Z}$, $\nu_{\rm t} + \nu_{\rm Z}$ от времени. a/ $\gamma_{\rm in}$ =5, N_e = 2.10¹³, 6/ $\gamma_{\rm in}$ =7, N_e = 3.10¹³.

Puc. 5. $\Gamma pa \phi uxu a_r(t)$, $a_z(t)$. $a / \gamma_{in} = 5$, $N_e = 2.10^{13}$, $6 / \gamma_{in} = 7$, $N_e = 3.10^{13}$.

Puc. 6. Графики п- праекторий. плах соответствует $v_z = 0.5$, пmin $-v_z = 0.07$. a/ γ in = 5, N_e = 2.1013, 6/ $\gamma_{in} = 7$, N_e = 3.1013.

Литература

The second second

12016-1

- 1. В.С.Александров и др. ОИЯИ, Р9-9091, Дубна, 1975. 2. Э.А.Перельштейн, О.И.Ярковой. ОИЯИ, 2351, Дубна, 1965.
- 3. А.Г.Бонч-Осмоловский, Ю.И.Алексахин. ОИЯИ, Р9-6787, Дубна, 1962. ЖТФ, XLIII, 6, 1147, 1973.

Рукопи съ поступила в издательский отдел 7 октября 1975 года.