СООБЩЕНИЯ Объединенного института ядерных исследований дубна

P9-91-226

Л.М.Онищенко, Н.Г.Шакун, А.Л.Шишкин, П.Т.Шишлянников

ОПРЕДЕЛЕНИЕ РАВНОВЕСНОЙ ФАЗЫ В ФАЗОТРОНЕ

Онищенко Л.М. и др.

P9-91-226

Определение равновесной фазы в фазотроне

В работе описаны два новых способа определения равновесной фазы в фазотроне и результаты по ее измерению на фазотроне ОИЯИ с применением этих способов.

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1991

Перевод авторов

Onischenko L.M. et al. Detection of the Synchronous Phase in a Phasotron

P9-91-226

Two new methods of the synchronous phase detection in a phasotron are described. The results of measuring the synchronous phase in the JINR phasotron are presented.

The investigation has been performed at the Laboratory of Nuclear Problems, JINR.

Communication of the Joint Institute for Nuclear Research, Dubna 1991

Величина равновесной фазы в автофазирующих ускорителях (в фазотроне в том числе) полностью определяет динамику фазового движения. Ею определяются частота фазовых колебаний (и, значит, продольная устойчивость), площадь сепаратрисы (и, значит, максимально возможная интенсивность ускорителя). Характер изменения равновесной фазы в процессе ускорения определяет наличие или отсутствие потерь в процессе ускорения, влияет на условия вывода пучка и т.п. Поэтому желательно для понимания динамических процессов в автофазирующем ускорителе уметь не только вычислять величину равновесной фазы, но и определять ее экспериментально.

Значение равновесной фазы в фазотроне определяется выражением 11

$$\Delta W = 2eU g \cos \varphi_{\rm s} = \frac{1}{f(t)} \frac{dW(r)}{dt} , \qquad (1)$$

где φ_S – равновесная фаза, ΔW – набор энергии за оборот; г и W(r) – радиус и энергия равновесной частицы на этом радиусе f(t) и U(t) – частота и амплитуда ускоряющего напряжения (t-время).

g≤ 1 - геометрический и пролетный фактор, определяющий максимально возможный набор энергии за оборот.

Из измерений обычно с хорошей точностью известна зависимость средней величины магнитного поля $\overline{B}(r)$ от радиуса, а, значит, и зависимость от радиуса полной энергии частиц

 $E^{2}(r) = E_{0}^{2} + (eCBR)^{2}$, (2)

где E_0 – энергия покоя, с – скорость света. Поэтому для определения равновесной фазы нужно знать f(t), U(t) и $\frac{dW}{dt} = \frac{dE}{dt}$ в тот момент времени, когда пучок достигает радиуса R.

Сделать это можно следующим образом²²⁷. Перемещаемый по радиусу пробник с установленной на нем мишенью устанавливается на радиусе R. При взаимодействии ускоренного пучка с мишенью

Obeczesemilin micrupy наченых інсоледования **GHEIHOTEHA**

который нейтронного гамма-излучений, возникает импульс И летектора. регистрируется С помощью сцинтилляционного расположеного вне камеры ускорителя. Импульс со сцинтилляционного детектора подается, во-первых, на вход двухлучевого осциллографа, на второй вход которого подан сигнал от датчика амплитуды ускоряющего напряжения, а во-вторых, этот импульс используется частотомера /3/. измеряющего частоту для запуска импульсного ускоряющего напряжения.

Таким образом, частотомером измеряется частота ускоряющего напряжения в момент прихода пучка на радиус R, а с помощью осциллографа определяются момент времени t прихода пучка на радиус R и амплитуда ускоряющего напряжения в этот момент времени. При этом для синхронизации осциллографа используется тот же стартовый сигнал, что и для включения ускоряющего напряжения; этот синхроимпульс вырабатывается магнитным датчиком, связанным с вариатором частоты. Перемещая пробник вдоль радиуса, получим одновременно зависимость частоты f и амплитуды U ускоряющего напряжения и времени ускорения пучка t от радиуса. На этот же график можно нанести зависимость энергии пучка E от радиуса, расчитанную по измеренной величине магнитного поля с помощью (2).

На рис.1 и в табл.1 представлены результаты этих измерений. Дифференцируя теперь зависимость E(r) и t(r) по радиусу найдем зависимость

 $\frac{dE}{dt} = \frac{dE}{dr} \frac{dt}{dr} .$ (3)

Учитывая, что в этом же измерении были определены f и U в момент времени t (т.е. для данного значения r=R), находим теперь из (1) величину соsø, (рис.1 и табл.1).

При этом величина g (r) для r> 40 см может с высокой степенью точности считаться равной 1. Действительно, угол пролета Q ускоряемых частиц в ускоряющем поле фазотрона для r>40 см не sin Q/2

превышает 30⁰; при этом $g = \frac{\sin Q/2}{Q/2} = 0.99$.

Основная погрешность в определении равновесной фазы описанным способом связана с точностью определения величины ускоряющего напряжения (~5%) и времени t. Это последнее может быть измерено (с помощью блока калиброванной задержки⁴⁴) с точностью не хуже 2 мксек; поэтому относительная погрешность измерения времени не превышает 6% на радиусе 40 см и уменьшается до долей процента на Таблица 1

Ra	t+t	F	U,	W,	R,	Δt	f	ΔW	cos φ _s	
СМ	мкс	кгц	ĸВ	кэВ	СМ	мкс	кгц	кэВ		
37	999	18217	35.3	9416				5000		
37 ·	1010	201	35 2	15244	42	20	18209	5828	0,22	
4/ 57	1043	140	30.8	22572	52	24	170,5	7328	0,25	
57	1045	002	20 7	31456	62	28	116	8884	0,28	
57 · 77	1106	030	31 7	41913	72	35	061	10457	0,25	
// 07	1152	17046	32 7	54038	82	46	17988	12125	0,22	
07	1202	1/940	22 6	67085	92	51	899,5	13947	0,23	
97	1203	853	33,0	07905	102	51	805,5	15840	0,25	
.07	1254	/58	34,0	101722	112	58	703,5	7897	0,25	
.17	1312	649	34,5	101722	122	53	599	20036	0,31	
.27	1365	549	34,4	121758	132	62	492	22413	0,30	
.37	1427	435	33,3	144171	142	57	383	25226	0,38	
.47	1484	331	33,2	169397	152	63	273,5	28261	0,39	
57	1547	216	33,1	197658	162	80	145,5	31326	0,34	
67	1627	075	33,0	228984	172	100	16986,5	34442	0,30	
77	1727	16898	32,9	263426	182	132	7,85,5	37325	0,26	
87	1859	673	31,8	300751	192	152	548	40556	0,20	
.97	2011	423	29,6	341307	199,5	80	358,5	21434	0,28	
02	2091	294	28,6	362741	204,5	74	236,5	22125	0,3	
.07	2165	179	28,5	384866	209.5	80	117,5	22748	0,3	
12	2245	056	27,5	407614	214.5	84	15991	23261	0,3	
17	2329	15926	26,4	430875	219.5	80	868.5	23592	0,3	
22	2409	811	26,9	454467	224.5	83	750.5	23749	0,3	
27 .	2492	690	26,3	478216	229.5	81	633	23861	0,3	
.32	2573	576	25,8	502077	234.5	100	506.5	23839	0.2	
237	2673	437	26,3	525916	239.5	101	369.5	23736	0.2	
242	2774	302	25,2	549652	244 5	106	233	23587	0.2	
247	2880	164	24,7	573239	244,5	116	90.5	23284	0.2	
252	2996	017	2561	596523	249,5	116	14944 5	22849	0.2	
257	3112	14872	25,1	619372	254,5	132	795	22481	0.2	
262	3245	718	24,1	641853	239,5	150	615	22550	0.2	
267	3395	572	24,0	664412	204,5	100	010	22333	0,2	
268	3395	572	24.0							

2

Таблица 2

R,CM	Вгс	B ₄ ,rc	β,рад	ρ,см	ΦΟ	∆R,CM	∂∆R/∂R ⁷ .	$\cos \varphi_{s}^{*}$
40	11984	2422	.4258	.50	-96.4	-0,06	4,0	0,217
50	12037	2519	.5915	.65	-58.4	0,34	4.0	0.245
60	12112	2549	.7547	.79	-21.0	0,74	1.3	0,285
70	12197	2528	.9163	.91	16.0	0,87	-2.7	0,264
80	12289	2489	1.0801	1.01	53.5	0.60	-6.6	0,241
90	12399	2479	3188	1.12	-267.0	-0,06	-7,4	0,247
100	12518	2516	1578	1.25	-230.0	-0,80	-5.7	0,271
110	12658	2587	.0074	1.40	-192,3	-1,37	-0.4	0,253
120	12816	2675	.1723	1.56	-154,5	-1,41	6,9	0,290
130	12990	2755	.3377	1.72	-114,6	-0,72	11	0,271
140	13184	2831	.5046	1.88	-78,3	0,38	11.7	0,338
150	13409	2910	.6721	2.03	-40,0	1,55	6,4	0,367
160	13659	2993	.8388	2.19	-1,8	2,19	-3,0	0,356
170	13930	3068	1.0050	2.34	36,3	1,89	-11,9	0,345
180	14198	3130	1.1677	2,48	73,6	0,70	-15,6	0,301
190	14484	3161	2468	2,59	-250,6	-0,86	-13,3	0,297
200	14785	3130	0890	2,65	-214,4	-2,19	- 7,0	0,304
205	14936	3088	0113	2,65	-196,6	-2,54	- 1.8	0,328
210	15086	3022	.0659	2,63	-178,9	-2,63	3,8	0,302
215	15236	2929	.1439	2,58	-161,0	-2,44	8,2	0,295
220	15375	2815	.2194	2,52	-143,7	-2,03	12,0	0,307
225	15507	2680	. 2967	2,43	-126,0	-1,43	14,2	0,293
230	15628	2534	.3745	2,33	-108,0	-0,72	14,4	0,310
235	15739	2382	.4536	2,22	- 90,0	0	13,2	0,256
240	15840	2228	.5336	2,11	- 71,7	0,66	10,8	0,259
245	15930	2080	.6152	2,00	- 53,0	1,20	7,4	0,270
250	16007	1947	.6959	1,90	- 34,5	1,57	3,4	0,258
255	16073	1828	.7766	1,81	- 16,0	1,74	-0,2	0,264
260	16126	1721	.8547	1,73	1,9	1,73	-3,6	0,240
265	16172	1602	.9309	1,64	19,3	1,55	-4,6	0,224
270	16217	1460	1.0101	1,52	32,5	1,28	3	

Рис. 1. Зависимости от радиуса R:

частоты f и амплитуды u ускоряющего напряжения; времени ускорения t; энергии W и равновесной фазы Cos φ_{g} .

конечных радиусах. Строго говоря, нужно также учесть отличие орбиты от круговой, вызванное вариацией магнитного поля. Неучет этого факта приводит к ошибке в определении шага по радиусу, возрастающей с увеличением амплитуды вариации, т.е. с радиусом до 15% (см. приложение).

Таким образом, описанная процедура позволяет с точностью не хуже 15% измерить соs φ_s для радиусов, больших 40 см.

Что касается области захвата пучка в ускорение (0<R<40 см), здесь может быть применен другой способ^{/5/}определения равновесной фазы. Суть его состоит в следующем.

Область фазовой устойчивости в фазотроне ограничена сепаратрисой, уравнение которой имеет вид 1/

$$\left[\frac{2\pi K}{\text{geU } E_{s}}\right]^{1/2} \Delta E = \mp 2 \left[\sin\varphi_{s}^{-\varphi}\cos\varphi_{s}^{+}\sin\varphi^{-\varphi}\cos_{s}\right]^{1/2}, \quad (4)$$

где Е_Б – полная энергия равновесной частицы, ΔЕ – отклонение энергии частицы от равновесного значения,

5

Es df

K= fs dE – фактор автофазировки, характеризующий зависимость частоты обращения частицы от ее энергии,

φ – фаза ускоряющего напряжения в момент пролета частицей ускоряющего зазора. График, описываемый уравнением [4], показан на рис.2 в координатах ΔΕ и φ. Внутренняя область сепаратрисы является областью устойчивых фазовых колебаний.

Рис. 2. Область устойчивости в фазотроне в координатах ΔЕ и φ .

Видно, что максимального отклонения от равновесной энергии достигает частица, движущаяся по границе области фазовой устойчивости и проходящая через точку $\varphi=\varphi_{s}$. Это отклонение равно

$$\Delta E_{c} = 2 \left[\frac{g \ eU}{2} \quad \frac{E_{s} \ (\sin\varphi_{s} - \varphi_{s} \cos\varphi_{s})}{2} \right]^{1/2}.$$
(5)

Для той же частицы, но в точке $\varphi=0$ отклонение, как нетрудно видеть, составляет

$$\Delta E_0 = \frac{\Delta E_C}{\sqrt{2}}$$
 (6)

Отклонение энергии частицы от равновесного значения связано с отклонением частоты ее обращения от частоты ускоряющего напряжения соотношением

 $\delta f = -K \frac{f_s}{E_a} \delta E$ (7)

Особенность захвата частиц в фазотроне состоит в том , что захват

частиц с отрицательными начальными фазами ограничен вертикальным движением (отсутствием вертикальной фокусировки в центре для отрицательных фаз), а с положительными – набором энергии, недостаточным для огибания ионного источника и пулера на первом обороте. Таким образом, в ускорение захватываются фазы в узком фазовом интервале, лежащем вблизи 0⁰. Например, из численных расчетов найдено^{/6/},что для модернизированного синхроциклотрона ЦЕРНа область начальных фаз лежит в диапазоне (-14⁰,10⁰). Как было указано выше, максимальные отклонения энергии этих частиц и, соответственно, частоты обращения от равновесных значений в $\sqrt{2}$ раз меньше, чем в максимуме сепаратрисы и равны, соответственно, ΔE_0 и $\frac{1}{2}$ Δf (где Δf - полная полоса частот захвата).

С другой стороны, величина ΔE_0 может быть определена через время захвата Δt . Действительно, в течение времени захвата сепаратриса сдвигается по энергии в области фаз вблизи $\varphi=0^0$ на величину $2\Delta E_0$, которую можно выразить через число оборотов N и набор энергии как

$$2\Delta E_0 = N 2 geU Cos \varphi_s$$

Величина N равна времени захвата ∆t, деленному на перид обращения T=1/f, т.е. N=∆t.f. Таким образом,

$$\Delta E_{a} = \Delta t \cdot f \cdot g e U \cos \varphi_{a}$$
 (8)

Сравнивая (5)-(8), получим (с учетом того, что Δf соответствует $2\Delta E_{o}$)

$$tg\varphi_{s} - \varphi_{s} = \frac{1}{4} \Delta t \cdot \Delta f .$$
 (9)

Выражение (9) позволяет определить соsφ_s на захвате, пользуясь только измеренными величинами времени Δt и полосы Δf захвата.

Обе эти величины легко определяются при импульсной работе источника ионов. Сдвигая во времени импульс поджига ионного источника относительно частотной программы ускоряющего напряжения и измеряя при этом интенсивность пучка и частоту ускоряющего напряжения с помощью импульсного частотомера, определим как интервал времени, так и полосу частот захвата. На рис.3 показаны результаты таких измерений для двух режимов работы фазотрона при двух значениях магнитного поля в центре ускорителя.

Изменение магнитного поля в центре осуществляется включением

7

Рис. 3. Зависимость частоты на захвате f от времени и тока выведенного пучка i от временного положения импульса поджига ионного источника для двух режимов фазотрона при двух значениях магнитного поля в центре. 3-х концентрических корректирующих обмоток, суммарное магнитное поле которых составляет около 50 Гс и направлено против основного поля.

Точность измерения в этом случае определяется, в основном, точностью определения моментов начала и конца захвата, что, в свою очередь, определяется точностью измерения интенсивности пучка.

На рис.3 видно, что если определить начало захвата как момент времени, когда интенсивность уже превышает 3% от максимальной, а конец – когда интенсивность составляет 97% от максимальной, то точность определения величины $tg\varphi_{s}-\varphi_{s}$ (см. рис.4) будет не хуже 10%; при этом ошибка в определении $\cos\varphi_{s}$, как видно из того же рисунка не превысит 2-3%.

Рис. 4. Зависимость φ_s и tg φ_s – φ_s от Соз φ_s .

Заключение

Описанная процедура позволяет с достаточной точностью производить измерение равновесной фазы в фазотроне. При этом для определения равновесной фазы используются легко и с хорошей точностью измеряемые величины и исключаются такие величины, как g и K.

8

9.

приложение

В зависимости Соsφ_S от радиуса (рис.1) просматривается модуляция с периодом по радиусу около 85 см, что близко к шагу спирали, составляющему 2πλ= 94,25 см.

На рис. 5 показана зависимость отклонения ΔR(R) орбиты пучка от круговой, вызванного вариацией магнитного поля. График построен

Рис. 5. Зависимость от радиуса отклонения ∆R орбиты от круговой и отклонения ∆f измеренной частоты обращения от расчетной.

по данным таблицы 2. В этой таблице приведены данные измерений (от 21.12.84г.) магнитного поля фазотрона: среднее значение магнитного поля \overline{B} , амплитуда B_4 и фаза β_4 четвертой гармоники поля. При этом фаза определена на азимуте, отстоящем от азимута 3-го пробника на 138,5⁰ против движения пучка (почти на продольной оси дуанта).

По этим данным определена амплитуда вынужденных колебаний

ρ(R) как

$$\rho \simeq \frac{B_4 \cdot R}{B \cdot N^2}$$

и отклонение орбиты от круговой на азимуте 3-го пробника как ΔR= ρ Cosφ , φ=4β₄- 4 · 138,5⁰.

На том же рисунке нанесена зависимость $\delta f(R) = f_{H3M.} f_{pacy.}$ Явно просматривается корреляция между поведением $\Delta R(R)$, $\delta f(R)$ и $\cos\varphi_{s}(R)$, хотя и смазанная для $\delta f(R)$ в области малых радиусов.

Связь между этими зависимостями объясняется следующим образом.

При определении $\cos\varphi_{\rm S}$ мы вычисляем набор энергии по разности расчетных значений энергии для двух последовательных значений радиуса пробника, молчаливо предполагая при этом, что радиус пробника равен энергетическому радиусу орбиты. Для круговой орбиты это так и есть. Для орбиты же, отличающейся от круговой, между этими величинами возникает различие, тем большее, чем быстрее изменяется $\Delta R(R)$. Из рис. 5 видно, что скорость изменения $\Delta R(R)$ достигает максимального значения на радиусах 95,140,185 и 235 см, составляющего соответственно $\delta(\Delta R)$

Систематическая ошибка в определении энергетического набора из-за неучета этого факта составляет

$$\frac{\delta(\Delta E)}{\Delta E} = \frac{\partial(\Delta R)}{\partial R} \left[1 + \frac{x}{R} (\bar{n} + \frac{1+n}{r^2}) + \frac{\partial n}{\partial R} \frac{x}{1+n} \right] *$$

х – шаг по радиусу при измерениях, n-показатель роста магнитного поля.

Основной вклад в ошибку, как следует из (*), дает первый член; сумма второго и третьего членов не превышает 0,2 даже при шаге в 10 см.

Если учесть эту ошибку, то получим исправленную кривую Сов φ_{S} (см. рис. 6).

Исключение систематической ошибки возможно также по расхождению между измеренными и расчетными значениями частоты.

Рис. 6. Зависимость от радиуса Соз φ_{s} .

10

Литература

 А.А.Коломенский, А.Н.Лебедев. Теория циклических ускорителей, стр. 147. Физматгиз, Москва, 1962.
Л.М.Онищенко а.с. 1480745 (от 15.01.89г.) ОИ, 1990, № 42, с. 262.
Л.В.Васильев и др. Публ. ОИЯИ Р9-80-295, Дубна 1980.
Л.В.Васильев и др. Публ. ОИЯИ 9-80-785, Дубна 1980.
Л.М.Онищенко. а.с. 1537116 (от 15.09.89). ОИ, 1990, № 42, с. 262.
S.Kullander NIM 62 [1968], р.169.

Рукопись поступила в издательский отдел 23 мая 1991 года.