40-153

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

A 62

P9-90-153

И.В.Амирханов, Е.П.Жидков, А.Н.Ильина*, В.Д.Ильин*

ЧИСЛЕННОЕ ИССЛЕДОВАНИЕ ТРАЕКТОРИЙ РЕЛЯТИВИСТСКИХ ЭЛЕКТРОНОВ В МАГНИТНОМ ПОЛЕ СВЕРХПРОВОДЯЩЕГО СОЛЕНОИДА

^{*}Научно-исследовательский институт ядерной физики МГУ, Москва

Задача численного исследования траекторий релятивистских электронов в магнитном поле возникает в связи с возможностью использования сверхпроводящего соленоида в качестве спектрометра, разделяющего частицы по их энергиям, в экспериментах с искусственной магнитосферой 11. Использование сверхпроводников значительно усиливает магнитные свойства соленоида и тем самым повышает его спектрометрические возможности. В частности, оказывается возможным измерение энергетического спектра релятивистских электронов с $E_{\rm max}$ ~ 10 МэВ. Получение поля с помощью системы токов удобно в смысле регулирования величины и формы распределения магнитного поля. Выбор конфигурации тока связан с общей оптимизацией задачи, в которую входят волросы конструирования и вычислений жесткостей обрезания /минимальных энергий частиц, при которых они могут достигнуть ловерхности магнита/ $^{'2'}$. С точки зрения удобств определения жесткостей обрезания наиболее подходящей является катушка /соленоид/ сферической формы. При этом ток /число ампервитков/ в такой катушке должен быть неоднороден и подчиняться закону $I\sim \cos \theta$, где θ - полярное расстояние, начало координат находится в центре катушки, ось Z перпендикулярна плоскостям витков. В этом случае магнитное поле вне сферы всюду будет дипольным и, следовательно, вычисление жесткостей обрезания можно проводить обшеизвестным аналитическим способом '2'. В нашем случае источником поля является осесимметричная кольцевая катушка /сверхпроводящий соленоид/ с дискретным распределением витков по Z. Размеры витков и их расположение в катушке показаны на рис.1.

Задача состоит в том, чтобы вычислить распределение поля и затем с помощью численного интегрирования уравнений движения найти жесткости обрезания.

Рис.1. Петочник магнитного поля — сверхироводник /сечением 4х4 см/, свернутый в спираль /соленона/. Соленонд представлен в ниде отдельных витков, образующих цилиндр, у которого высота равна дваметру.

Рис.2. Переход от цилиндрической формы источника магнитного поля /рис.1/ к сферической.

Для сравнения будет показано поле сферической катушки, которая получается из исходной цилиндрической путем соответствующего уменьшения диаметра витков /см. рис.2/. Ток в витках в этом случае предполагается пропорциональным Сов θ .

ПОЛЕ ЦИЛИНДРИЧЕСКОЙ КАТУШКИ С ДИСКРЕТНЫМ РАСПРЕДЕЛЕНИЕМ ТОКА

Распределение магнитного поля катушки, показанной на рис.1, может быть найдено из соответствующих выражений для тонкого кольцевого витка с помощью интегрирования по г и Z. Методы расчета магнитного поля, создаваемого токами, описаны во многих работах /см., например, /3,4//. Для кругового тока магнитное поле использовалось в виде

$$H_{z} = \frac{0.21}{\sqrt{(r + R_{0})^{2} + Z^{2}}} \left[K(k_{0}) + \frac{R_{0}^{2} - r^{2} - Z^{2}}{(R_{0} - r)^{2} + Z^{2}} E(k_{0})\right].$$
 /1/

$$H_{r} = \frac{0.2 \text{ IZ}}{r \sqrt{(r + R_{0})^{2} + Z^{2}}} \left[-K(k_{0}) + \frac{R_{0}^{2} + r^{2} + Z^{2}}{(R_{0} - r)^{2} + Z^{2}} E(k_{0}) \right], \quad /2/2$$

где H - поле в эрстедах, I - ток в амперах, R_0 - радиус витка в см, $K(k_0)$, $E(k_0)$ - полные эллиптические интегралы первого и второго рода с модулем k_0 ,

$$k_{0}^{} = 4rR_{0}^{} / [r + R_{0}^{})^{2} + Z^{2}],$$

значения $K(\mathbf{k}_0)$ и $E(\mathbf{k}_0)$ вычислялись по достаточно точным формулам /5/:

Рис. 3. Зависимость напряженности H магнитного поля соленонда /рис. I/ от z и r: I - r == 21 см; 2 - r = 22 см; 3 - r == 24 см; 4 - r = 26 см; 5 - r == 28 см; 6 - r = 30 см.

 $K(k_0) = 1,3863 + 0,112 \xi + 0,0725 \xi^2 - (0,5 + 0,1213 \xi + 0,0289 \xi^2) \ln \xi;$

E(k_0) = 1.0 + 0.463 ξ + 0.1078 ξ^2 - (0.2453 ξ + 0.0412 ξ^2) ln ξ ; rge ξ = 1 - k_0^2 .

Поле реального витка с то-ком находилось путем простого алгебраического суммирования полей отдельных "элементарных витков" /тонких кольцевых витков/ для различных значений R_0 . При этом предполагалось, что

плотность тока в реальном витке однородна. Расчеты показывают, что уже при числе "элементарных витков", равном 10х10 /10 витков по горизонтали и 10 - по вертикали/, результаты оказываются практически предельными.

Расчетные распределения $\rm H_z$ и $\rm H_t$ для всей катушки представлены на рис.3. Все вычисления проводились на 3BM CDC-6500. Значения функции $\rm H(r,z)$ вычислены для катушки с током, имеющей магнитный момент $\rm M=10^5~A\cdot M^2=10^8~3\cdot cm^3$. Если учесть, что эффективный радиус витка $\rm R_0=18~cm$ / см. рис.1/, то это дает ток в катушке ~1,23·10 5 A. Как видно из рис.3, поле катушки существенно отличается от поля диполя на расстояниях $\leq 60~cm$. В медианной /экваториальной/ плоскости это различие можно определить из формулы

$$H_k / H_g = 1 - 1,985 \exp(-1,13\xi)$$
, $\xi = r/20$, $r > 20$ cm,

/3/

где H_k - поле катушки, H_g - поле эквивалентного диполя. Погрешность формулы /3/ не превышает 1,5%. При $r \sim 3R_0$ поле H_k становится практически дипольным. Силовые линии и направление поля в некоторых точках показаны на рис.4 и 5.

Рис.4. Силовые линии соленоида /сплошные кривые/ и экнивалентного липоля /пунктирные кривые/.

Рис. 5. Направление поля в области предполагаемого местонакождения детектора.

РАСЧЕТ ЖЕСТКОСТЕЙ ОБРЕЗАНИЯ ЭЛЕКТРОНОВ В ПОЛЕ КАТУШКИ

В сущности, речь идет об определении наименьшей энергии электрона ${\bf E}_{\min}$, при которой он мог бы достичь заданной точки. Наибольший интерес, естественно, представляет область вблизи катушки, где поле максимально и сильно отличается от дипольного. Решение такой задачи возможно только с помощью численного интегрирования уравнений движения частицы.

Движение частицы в магнитном поле описывалось системой урав-

$$\ddot{x} = a \left[v_y H_z - v_z H_y \right],$$
 $\ddot{y} = a \left[v_z H_x - v_x H_z \right],$
 $\ddot{z} = a \left[v_x H_y - v_y H_x \right],$
с начальными условиями

$$\begin{pmatrix} x(t) \\ y(t) \\ z(t) \\ \dot{x}(t) \\ \dot{y}(t) \\ \dot{z}(t) \end{pmatrix} = \begin{pmatrix} x_0 \\ 0 \\ z_0 \\ v_{0x}(\alpha, \phi) \\ v_{0y}(\alpha, \phi) \\ v_{0y}(\alpha, \phi) \\ v_{0z}(\alpha, \phi) \end{pmatrix} , \qquad /5/$$

где a=ec/E , e - заряд электрона, E - его полная энергия, c - скорость света, $H_x=H_r\,x\,/r'$, $H_y=yH_r\,/r'$, $r'=\sqrt{x^2+y^2+z^2}$, v_0 - модуль вектора скорости, α - питч-угол - угол между векторами \vec{v} и \vec{H} , ϕ - фаза частицы - угол между меридиональной плоскостью, в которой находится частица, и v_\perp /перпендикулярной компонентой вектора скорости к полю H/, отсчитываемый по ларморовскому вращению электрона. В системе координат, связанной с частицей и имеющей орты

$$\vec{e_1} = \frac{\vec{r} \cdot \vec{H}}{\vec{r} \cdot \vec{H}}$$
, $\vec{e_2} = \vec{e_3} \vec{e_1}$, $\vec{e_3} = \frac{\vec{H}}{\vec{H}}$,

вектор скорости имеет вид

$$\vec{\mathbf{v}} = \mathbf{v}_{\parallel} \vec{\mathbf{e}}_3 + \mathbf{v}_{\perp} (\vec{\mathbf{e}}_1 \sin \phi + \vec{\mathbf{e}}_2 \cos \phi)$$
,

$$v_{\parallel} = (\vec{v} \vec{e}_3) = v_0 \text{ Ccs } \alpha, v_{\perp} = v_0 \text{ Sin } \alpha.$$

Численные расчеты задачи Коши /4/ и /5/ проводились методом Рунге - Кутта 4-го порядка. Жесткости образования находились путем "обратного" интегрирования системы /4/ от точек, соответствующих предполагаемым расположениям детекторов. В качестве таковых брались точки с координатами $x_0 \geq 21$ см; $0 \leq z_0 \leq 30$ см. В силу аксиальной симметрии задачи координата y_0 полагалась равной нулю. Критерием того, что частица, двигаясь из "бесконечности", способна достичь заданной точки вблизи катушки, являлся уход частицы при "обратном" интегрировании на расстояние г > 10^3 см.

Для обеспечения наименьших затрат машинного времени полезен следующий алгоритм использования компонент поля H в уравнениях /4/. На основе итогов расчета поля по формулам /1/ и /2/ составляется таблица значений $\mathbf{H}(\mathbf{r},\mathbf{z})$ с некоторым шагом /например, в 1 см/ до $\mathbf{r}=60$ см. Промежуточные значения $\mathbf{H}(\mathbf{r},\mathbf{z})$ находятся с помощью линейного интерполирования. При $\mathbf{r}\geq 60$ см поле $\mathbf{H}(\mathbf{r},\mathbf{z})$ описывается простыми общеизвестными формулами для поля магнитного диполя.

Некоторые значения функции \mathbf{E}_{\min} (\mathbf{x}_0 , \mathbf{z}_0 , a, ϕ) , найденные с помощью численного интегрирования системы дифференциальных уравнений /4/, представлены в таблице. Для сравнения в таблице приведены данные для поля диполя с тем же магнитным моментом М. Для диполя аналитическое выражение для жесткости образования можно, исходя из $^{/2/}$, представить в виде

 $x_0 = 21$ cm

z , cм	φ°	α°	E _{min} ,MoB	
	0	80	~10-11	/16/
		60	~10-11	/16/
		80	~ 27-28	/48/
2	90	60	~ 24 - 25	/34,2/
	270	80	~ 5-10	/11/
		60	~ 5-10	/11,4/
6	0	80	~10	/12,9/
		60	~10	/12,9/
	90	80	~25	/28,9/
	90	60	~25	/24/
18	0	80	~ 4	/2,8/
24	0	80	<3	/0,97/
		60	<3	/0,97/
		80	<3	/1,19/
	90	60	<3	/1,16/
			$x_0 = 24 \text{ cm}$	
2	0	 	~5-10	/12,3/
	90	80	~ 20-25	/37,5/
	270		~ 5	/8,3/

В скобках приведены значения E_{\min} для эквивалентного диполя, вычисленные по формуле /6/.

$$R_{mc} = \frac{pc}{e} = \frac{3 \cdot 10^{-4} \,\text{M}}{r^{2}} \frac{\cos^{4} \lambda}{(1 + \sqrt{1 - \sin \alpha \, \sin \phi \, \cos^{3} \lambda})^{2}} \,\text{MB, /6/}$$

где рс измеряется в МэВ,М – Э \cdot см 3 , t' – см, λ – широта /tg λ = = z_0 / x_0). Отсюда следует, что в дипольном поле для электронов

$$E_{\min} = [-0.511 + \sqrt{0.261 + (R_{mc}e)^2}] MaB$$
.

где численное значение величины $R_{\rm mc}$ е совпадает с $R_{\rm mc}$, определяемым по формуле /6/ /1 МВ.е = 1 МэВ/. На экваторе для вертикально падающих электронов / λ = 0; α = π , 2; ϕ = 0/ величина $R_{\rm mc}$ = 7,5·10 3 r $^{-2}$ МВ.

ПОЛЕ СФЕРИЧЕСКОЙ КАТУШКИ

Переход от цилиндрической конфигурации системы токов к сферической показан на рис.1 и 2. Вычисления поля, аналогичные с цилиндрической катушкой, показывают, что простое изменение диаметров витков и тока в них (1 № Сов Я) формирует практически дипольное распределение поля при z 24 см. На расстоянии г ≈ 23 см отличие от дипольности составляет примерно 10√. При этом магнитный момент М /абсолютное значение поля/ сферической катушки естественно меньше цилиндрической из-за уменьшения суммарной площади витков и падения тока к полюсам. Величины М /рис.1 и 2/ отличаются приблизительно в 2 раза. Поднять величину М для сферической катушки можно за счет увеличения числа витков /ампер-витков/.

ВЫВОДЫ И ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Зависимость \mathbf{E}_{\min} от ϕ , a и λ при малых \mathfrak{r} / \mathfrak{r} \geq 21 см/ качественно описывается формулой /6/. Численное расхождение может быть в 1,5 раза. Поскольку поле Н вблизи соленоида сильно изрезано /см. рис.3, кривая 1/, то для большей предсказуемости предпочтительнее ставить детекторы на г > 22 см. При малых z величина \mathbf{E}_{\min} может изменяться в несколько раз в зависимости от угла падения частицы. Поэтому для измерения энергетического спектра частиц целесообразно использовать не только зависимость \mathbf{E}_{\min} от расстояния, но и от ориентации конуса приема релятивистских электронов. В общем случае величина \mathbf{E}_{\min} не является однозначной функцией от ϕ , α , \mathfrak{r}' . Например, электроны с энергиями 28, 27, 26, 25, 21 МэВ /инжектируемые с начальными данными: r = 21 см, z = 2 см, $\alpha = 40^{\circ}$ и $c = 90^{\circ}$ / "уходят на бесконечность", а с энергиями 29, 24, 23, 22, 20 МэВ попадают на тело соленоида. Это напоминает пенубру /конус полутени/ ^{/2}.

ЛИТЕРАТУРА

- 1. Физика космической и лабораторной плазмы. Сб. под ред.Пономаренко А.Г. Новосибирск: Наука, Сибирское отд. 1989, с.34, 65.
- 2. Дорман Л.И., Смирнов В.С., Тясто М.И. Космические лучи в магнитном поле Земли. М.: Наука, 1971, с.399.
- 3. Монтгомери Д.Б. Получение сильных магнитных полей с помощью соленоидов. М.: Мир. 1971, с.359.
- 4. Алиевский Б.Л., Орлов В.Л. Расчет параметров магнитных полей осесимметричных катушек. М.: Энергоатомиздат, 1983.
- 5. Справочник по специальным функциям. Под ред. Абрамовица М. и Стиган И. М.: Наука, 1979, с.404.