-36

Объединенный институт ядерных исследований дубна

5953

P9-89-36

1989

Ю.А.Быковский^{*}, В.П.Гусев^{*}, Ю.П.Козырев^{*}, И.В.Колесов, В.Б.Кутиер, А.С.Пасюк, В.Д.Пекленков^{*}

ДРЕЙФ ЛАЗЕРНОЙ ПЛАЗМЫ В ПОПЕРЕЧНОМ МАГНИТНОМ ПОЛЕ

Направлено в ЖЭТФ

*Московский инженерно-физический институт

Работа ^{/1/}, выполненная Бостиком, положила начало экспериментальным исследованиям взаимодействия плазменных сгустков с поперечными магнитными полями. В настоящее время такие исследования представляют интерес при решении проблемы термоядерного синтеза, при использовании плазмы для заполнения магнитных ловушек и создания источников ионов ^{/2-4/}.

В течение некоторого интервала времени после образования плазмы в магнитном поле она разлетается так же свободно, как и в его отсутствие, до тех пор, пока газокинетическое давление плазмы P_{лл} больше магнитного давления P_в со стороны внешнего магнитного поля /отношение $\beta = P_{nn} / P_B >> 1/. Величина$ В при разлете плазмы уменьшается из-за быстрого уменьшения плотности и температуры плазмы при адиабатическом расширении. При eta – 1 плазменная граница останавливается, если разлетающаяся плазма имеет сферически-симметричную форму ^{/2,5,6/}. Если же плазма разлетается преимущественно в одном направлении и обладает достаточной кинетической энергией, то она может проходить в область с β << 1 в результате поляризации поперечным магнитным полем /7/ . Дрейф плазмы происходит в скрещенных внешнем поперечном магнитном поле В и самосогласованном электрическом поляризационном поле E со скоростью V пр = $\dot{E} \times \dot{B} / B^{2} / 1.8.9$. Для плазмы, образованной излучением лазера, падающим на плоскую толстую мишень, размер которой превосходит размер пятна сфокусированного на мишени лазерного излучения, характерна именно такая пространственная анизотропия разлета /10 - 12/

Для лазерной плазмы характерны процессы термализации, протекающие непосредственно после образования плазмы и приводящие к тому, что большая часть ее энергии сосредоточена в кинетической энергии ионов. Поэтому $\beta = (n_i m_i < V_i >^2)/(B^2/2\mu_o)$, где n_i – плотность ионов в плазме, m_i – масса ионов, $< V_i > -$ средняя скорость ионов в плазме, μ_o – магнитная проницаемость. Характеристики лазерной плазмы, испытывающей дрейф в поперечном магнитном поле в области с $\beta <<1$, существенно отличаются от результатов, полученных при разлете без магнитного поля. Плазма разлетается в виде сгустка, скорость которого меньше, чем в отсутствие магнитного поля $^{/4,13/}$. В работах $^{/14-16/}$ получено, что в поперечном магнитном поле разлета-ющаяся лазерная плазма тормозится, причем наибольшее замедле-

ние по сравнению со свободным ее разлетом наблюдается для высокоэнергетичной части плазмы, содержащей многозарядные ионы.

Лазерная плазма при движении поперек магнитного поля проходит области с различными значениями параметра β , для которых характер ее взаимодействия с магнитным полем различен. По этой причине для выявления влияния магнитного поля на основные характеристики плазмы /пространственные и энергетические распределения, зарядовый спектр/ необходимо исследовать разлет лазерной плазмы в трех вышеуказанных характерных областях с соответствующими значениями параметра β . Имеющиеся же в литературе сведения в основном дают возможность лишь сравнить характеристики лазерной плазмы в поперечном магнитном поле в области с $\beta <<1$, с характеристиками плазмы, полученными при свободном разлете.

Лазерная плазма, используемая как источник ионов для циклотрона $^{/4,\,17/}$, разлетается до эмиссионной щели источника во всех вышеуказанных областях β . Разлет в области с $\beta >> 1$, переход через область с $\beta \sim 1$ и формирование дрейфового движения при этом существенно обусловливают характеристики плазмы, утилизируемой в источнике.

Целью настоящей работы является исследование условий формирования пространственной структуры ионного компонента плазмы, энергетических и зарядовых распределений ионов лазерной плазмы при переходе от свободного разлета к дрейфовому движению.

1. ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА

В эксперименте для образования плазмы использовался CO_2 лазер с поперечным разрядом. Излучение лазера с энергией в импульсе 6 Дж, имевшее двухпиковую форму с длительностями пиков ~ 60 нс и ~ 500 нс /см. рис.1/, фокусировалось плоско-

выпуклой линзой из хлористого натрия с фокусным расстоянием 5,6 см на плоскую толстую мишень. В качестве материала мишени использовались углерод, кремний, тантал и висмут. Угол между лазерным лучом и нормалью к мишени составлял ~ 40°. Пятно сфокуси-

Рис.1. Осциплограмма импульса излучения СО₂-лазера.

Рис.2. Принципиальная схема экспериментальной установки. 1 – линза, 2 – входное окно, 3 – зеркало, 4 – электрод, 5 – коллектор, 6 – коллектор, 7 – мишень, 8 – корпус, 9 – блок запуска, 10 – блок задержки и синхронизации.

рованного лазерного излучения на мишени имело площадь ~ 10^{~3} см² . На первый пик в лазерном импульсе приходилась

примерно половина его энергии. Создаваемая пиком на поверхности мишени плотность потока Φ , с учетом потерь в системе транспортировки и фокусировки излучения, составляла ~ $3\cdot 10^{10}$ Вт/см². В ходе эксперимента плотность потока лазерного излучения изменялась калиброванными фильтрами.

Эксперимент выполнялся на стенде ионных источников Лаборатории ядерных реакций ОИЯИ $^{/18/}$ в однородном поперечном магнитном поле В \leq 0,5 Тл. Вакуум в камере стенда поддерживался на уровне 2.10⁻⁶ мм.рт.ст.

Схема экспериментальной установки изображена на рис.2. Излучение CO₂ -лазера через входное окно 2 в вакуумной камере стенда фокусировалось линзой 1 на мишень 7. Мишень ориентирована так, что нормаль к ней перпендикулярна магнитным силовым линиям поля.

Извлечение ионов при масс-спектрометрическом исследовании ионного компонента плазмы проводилось с ее границы, движущейся мимо эмиссионной шели размером 4x20 мм², при подаче на электрод 4 импульса отрицательной полярности прямоугольной формы длительностью ~ 100 нс и амплитудой ≤ 16 кВ, формируемого генератором с ферритовыми линиями (ФЛ I) и (ФЛ II)/19/ Граница плазмы на эмиссионной щели фиксирована металлической сеткой с ячейкой 150х150 мкм². Расстояние между эмиссионной щелью и мишенью в эксперименте менялось от 5 до 6,5 см. На пути разлета плазмы непосредственно за эмиссионной щелью установлен коллектор 5, на который подавалось напряжение U 🗧 -200 В. Высоковольтный электрод 4, изготовленный из нержавеющей стали, представлял собой полое тело, ограниченное двумя параллельными поверхностями. Форма и размер этих поверхностей определялись траекториями движения ионов, извлеченных из плазмы, и временем пролета их внутри электрода, которое должно быть больше длительности высоковольтного импульса. Для того, чтобы электрическое поле не провисало внутрь электрода, на входе и выходе его установлены металлические сетки. Извлеченные из плазмы ионы в однородном поперечном магнитном поле совершали оборот по круговой траектории и попадали на экранированный коллектор 6.

Период вращения T_i ионов с зарядом z и массой m_i в поперечном магнитном поле В пропорционален отношению m₁/z , т.е. $T_1 = 2\pi m_1/zeB_1$ Особенности работы масс-спектрометра, использующего тот же принцип анализа, нами описаны в работе/17/ Разрешение масс-спектрометра в магнитном поле В зависит как от длительности сформированного пакета ионов $\Delta \tau$ /в данном случае Δr ~ 100 нс/, так и от времени пролета ионов t, до попадания на коллектор, т.е. от конструктивных особенностей устройства. Отношение времени движения ионов t, после их извлечения из плазмы до попадания на коллектор 6 к периоду вращения Т, в поперечном магнитном поле в условиях эксперимента составляло t₁/T₁ ≈ 0,9 для ионов с отношением A/z = 2. где А – атомный вес ионов. Различие между t, и T, уменьшается для ионов с большими значениями отношения А/г Для уменьшения фона на коллектор 6 область образования и разлета плазмы была заключена в корпусе 8, причем крышка и основание корпуса изготовлены из диэлектрика, чтобы устранить влияние металлических поверхностей на электрические заряженные области в плазме /8,9,20/ . Для исследования ионного состава плазмы под различными углами ϕ от нормали к мишени узел, состоящий из эмиссионной щели, электрода 4 и коллектора 6, перемещался по дуге, центр которой находился в точке фокусировки лазерного излучения, в плоскости, перпендикулярной магнитным силовым линиям. Блок временной задержки и синхронизации 10 запускал генератор высоковольтных импульсов в определенные моменты времепосле лазерного импульса, и синхронизировал работу рени ta гистрирующей аппаратуры.

Для исследования ионного компонента в плазме под различными углами ϕ от нормали к мишени устанавливались коллекторы, которые размещались на расстоянии 5 или 6,5 см от мишени. Пространственное разрешение составляло ~ 1°.

2. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

2.1. Пространственное распределение

На рис.3 представлены результаты измерения ионного тока на коллекторы в различные моменты времени после образования плазмы в области с низким $\beta \lesssim 0,1$, а на рис.4 - зависимость вели-

Рис.3. Ионный ток на коллекторы в различные моменты времени после гигантского импульса лазерного излучения. Мишень – углерод, $\mathbf{B} = 0.2$ Тл, $\mathbf{L} =$ = 5 см, $\Phi \sim 6\cdot 10^9$ BT/см².

чины ионного тока по различным направлениям в момент времени $t_3 \approx 0,2$ мкс после гигантского импульса лазерного излучения /соответствующее

значение $\beta \approx 0,6/.$ При $t_3 > 0,2$ мкс ионный ток на коллекторы подобен зависимости, приведенной на рис.4. Положительный отсчет угла от нормали совпадает с направлением поворота ионов в поперечном магнитном поле. В качестве ошибки для экспериментальных данных использовалась среднеквадратичная погрешность. Величина β вычислена для максимума ионного тока насыщения на коллектор. Плотность ионов для определения β найдена из выражения для плотности ионного тока j_i на коллектор $j_i = n_i e V_i$.

Ионный ток на коллекторы в области с $\beta <<1$ /рис.3/ изменяется во времени и в пространстве. Плазма занимает область

-10° $\leq \phi \leq$ +10° . Отчетливо видны разделенные в пространстве области, особенно в головной и задней частях сгустка, с повышенной плотностью ионов. Плазменное образование состоит из двух сгустков. В средней части плазма более однородна либо из-за уширения сгустков или их сближения, либо потому, что пространственное разрешение при измерении недостаточно.

Рис.4. Ионный коллекторный ток, создаваемый передним фронтом плазмы, в области с $\beta \sim 1$. Мишень – углерод, B = 0,2 Тл, $\Phi \sim 3 \cdot 10^{10}$ BT/см², L = 5 см.

Рис.5. Ионный ток на коллекторы в различные моменты времени после образования плазмы. Мишень - углерод, B = 0.5 Тл, L = 6.5 см, $\Phi \sim 4.10^9$ ST/см².

В области же с $\beta \sim 1$ пространственное распределение плазмы однородно /рис.4/, плазма разлетается свободно. В работе^{/5/}, например, плазменная граница фиксировалась в поперечном манитном поле при β = = 0,15.

На рис.5 представлены результаты измерения ионного тока на коллекторы при еще более

низком $\beta \leq 0,003$. Время прихода передней границы плазмы на коллектор - ≈ 1 мкс после образования плазмы. Структура из двух сгустков сохранилась, но они разделены в пространстве не только в поперечном направлении, но и в продольном. Размер области /при $\beta \ll 1/$, занимаемой плазмой в поперечном направлении, не превышал 1,5 см в магнитном поле 0,2 Тл, а размер каждого из сгустков примерно вдвое меньше. В магнитном поле 0,5 Тл после продольного разделения сгустков ширина каждого из них не превышает 5÷6 мм. Точный поперечный размер сгустков установить трудно из-за небольшого "блуждания" направления разлета каждого сгустка в пределах 2÷3 градусов для разных импульсов лазера. Существование пространственной неоднородности в виде двух сгустков при $\beta \ll 1$ было подтверждено также масс-спектрометрическими исследованиями.

2.2. Зарядовые распределения ионов

На рис.ба представлены масс-спектрометрические измерения ионного компонента плазмы в области с $\beta = 2 \div 0,5$. Неопределенность параметра β связана с погрешностью точного определения временных интервалов между лазерным импульсом и приходом плазмы к эмиссионной щели. На рис.ба изображен также интегральный ионный ток i(t), полученный путем суммирования парциальных токов ионов с различными кратностями ионизации $i_z(t)$.

На рис.7 представлена осциллограмма ионного тока на коллектор, установленный в области с $\beta \leq 0,01$. Измерения на

6

â

сумма парциальных токов $i_z(\bar{t})$ при тех же экспериментальных условиях; б/ B = 0, $\Phi \sim 2 \cdot 10^{10}$ BT/см², $\phi = 0^{\circ}$.

Рис. 7. Осциллограмма ионного тока на коллектор. В = 0,2 Тл. $L_2 = 6.5 \text{ cm}, \Phi \sim 3 \cdot 10^{10} \text{ BT/cm}^2, \phi = -3^\circ.$

обоих рисунках сделаны для одного и того же направления разлета. Средняя скорость быстрого максимума ионного тока на пути длиной $L_1 = 5$ см составляет /1+ 2,5/·10⁵ м/с. При прохождении расстояния $L_3 = L_2 - L_1$ между точками, находящимися на расстоянии L_2 и L_1 от мишени, средняя скорость того же максимума равна /3 ÷ 5/·10⁴ м/с. Средняя скорость ионов на

участке L_8 уменьшилась по сравнению со средней скоростью ионов на участке L_1 в /3 ÷ 5/ раз. Таким образом, обнаружено резкое торможение плазмы при "вытекании" за область с $\beta ~ 1$. Тормозится не только средняя часть плазмы, но также передняя и задняя части плазменного сгустка.

Кинетическая энергия W_{CB} свободно разлетающейся плазмы массой M /область с $\beta > 1$ / при переходе через область $\beta \sim 1$ перераспределяется между энергией W_E плазменного "конденсатора" объемом Ω , кинетической энергией разлета поляризованного плазменного сгустка W_{Π} и приращением внутренней энергии сгустка ΔW , т.е. $W_{CB} = W_E + W_{\Pi} + \Delta W$. Для условий эксперимента, соответствующих рис.ба, энергия $W_{CB} \approx M < V_1 >^2/2 \sim 0.8 \div 0.9 \ Дж$, $W_E \approx \epsilon \epsilon_0 \ E^2 \Omega/2 \sim 0.6 \div 0.7 \ Дж$, где $M \sim 10^{-10} \ {\rm kr}$, $<V_1 > \approx 1.3 \cdot 10^5 \ {\rm m/c}$, $\Omega \approx 2 \cdot 10^{-4} \ {\rm m}^3$, $\epsilon \approx 7.5 \cdot 10^6$, E определялась по скорости дрейфа в поперечном магнитном поле $E = V \cdot B$. Отсюда $W_{\Pi} + \Delta W \sim 0.2 \ Дж$, т.е. при переходе через область равенства давлений существенно изменяются энергетические /временные/ характеристики плазменного сгустка.

На рис.66 приведены измерения зарядового спектра ионов углерода в отсутствие магнитного поля, выполненные с использованием времяпролетной масс-спектрометрии ^{/21/}. Как видно из сравнения рис.6а и б, время прихода максимума ионов одно и то же, что свидетельствует о слабом влиянии поперечного магнит-

ного поля на среднюю часть плазмы при ее разлете до области равенства давлений, определяемой нами именно для средней части плазменного сгустка. При этом на электроны и ионы в переднем и заднем фронтах плазмы поперечное магнитное поле воздействует на всем пути разлета. Это проявляется в уширении распределения ионов, в смещении высокозарядных ионов углерода с z ≥ 5 из голов-

Рис.8. Время разлета от мишени до области анализа максимумов ионного тока разных зарядностей. $\mathbf{B} = 0.2 \text{ Tл}, \mathbf{L} = 5 \text{ см}, \phi = -3^{\circ}, \Delta - \Phi \sim 3 \cdot 10^{10} \text{ BT/cm}^2, \Phi = -4 \text{ Cm}^2, \Phi = -4 \text{ Cm}^2$ ной в среднюю часть плазмы. Появление "хвоста" низкоскоростных ионов может быть обусловлено воздействием поперечного магнитного поля на заднюю часть плазмы, вовлечением в движение поперек магнитного поля низкоэнергетических ионов, разлетающихся под большими углами от нормали к мишени при разлете в отсутствие магнитного поля. Часть ионов может также двигаться по круговой орбите, не вовлекаясь в движение поперек магнитного поля. Низкоскоростной "хвост" наблюдается вплоть до t₃ ~ 10 мкс, он состоит из ионов с z = 1 и 2.

На рис.8. представлены зависимости времени разлета до области анализа максимумов токов ионов с различными значениями заряда z при изменении плотности потока лазерного излучения от $\Phi \sim 3\cdot 10^{10}$ Вт/см² /соответствующее $\beta \sim 1/$ до $\Phi \sim 10^9$ Вт/см² /соответствующее $\beta \leq 0,005/$. Можно отметить следующие особенности изменения тыско

1. Монотонное уменьшение времени разлета ионов при увеличении z до z \leq 4, а затем его увеличение для ионов высших зарядностей с z \geq 5;

2. Время разлета ионов с одним и тем же z для плотности потока лазерного излучения от ~ 10^9 Вт/см² до ~ $6\cdot 10^9$ Вт/см² примерно одно и то же, если параметр β << 1;

3. Для всех зарядностей резкое уменьшение $\tau_{\rm MAKC}$, если β ~ 1.

Влияние поперечного магнитного поля на высшую зарядность $z_{\text{макс}} = 4$ при $\Phi - /1 \div 2/\cdot 10^9$ Вт/см² видно из рис.9. Это влияние проявляется в уширении распределения ионов по сравнению с экспериментами без магнитного поля^{/22/} и появлении в зависимости $i_z(t)$ максимумов, которые вследствие низкой плотности потока лазерного излучения не могут быть объяснены рекомбинационными процессами, протекающими в плазме. Для сравнения на рис.9 для L = 5 см при $\Phi - 2\cdot 10^9$ Вт/см² по данным

работы $^{/22/}$ приведена зависимость тока i(t)ионов с зарядом z = 4в отсутствие магнитного поля /на рисунке эта

Рис.9. Зарядовый спектр ионов углерода $i_z(t)$. B = 0,2 Тл, L = 5 см, $\Phi - 10^9$ BT/см², $\phi =$ = +3°, амплитуда высоковольтного импульса -3,9 кВ.

9

зависимость изображена пунктирной линией/. Расчет проводился по формуле $i(t) = (\Delta N / \Delta E) (8E^8)^{1/2} ze/m_1^{1/2} L$, т.к. в оригинале приведена зависимость $\Delta N / \Delta E(E)$.

Смещение ионов с z_{MAKC} из головной части плазменного сгустка в магнитном поле для тяжелых ионов тантала и висмута в пределах экспериментальной ошибки не наблюдалось, возможно, из-за более широкого энергетического распределения этих ионов по сравнению с углеродом $^{/23/}$. Ионы кремния и ниобия с максимальной зарядностью, так же как и ионы углерода, смещаются из головной части сгустка в центральную область.

3. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Проведенные исследования при максимально возможных в данном эксперименте плотностях потока лазерного излучения показали, что как пространственное распределение различных зарядностей в плазменном сгустке, так и энергетический спектр ионов претерпевают существенное изменение при наложении поперечного магнитного поля. Так, ионы высших зарядностей углерода / z = 5,6/, имеющие максимальные скорости разлета и находящиеся в отсутствие поля на передней границе плазмы, при наложении магнитного поля за время разлета до области баланса давлений $oldsymbol{eta}$ ~ 1, смещаются в центральную часть плазменного сгустка вследствие сдвига энергетического спектра этих ионов в сторону меньших энергий. Поскольку ионы с z = 1÷4 при этих же условиях практически не испытывают заметного влияния магнитного поля, следует сделать вывод о селективном характере воздействия магнитного поля на ионы в зависимости от z при разлете до области со значением $\beta \sim 1$.

Для объяснения наблюдаемого эффекта целесообразно разбить пространство, проходимое плазмой, на две области: $\beta >> 1$ и $\beta - 1$. В области, где выполняется условие $\beta >> 1$ /ранняя стадия разлета плазмы/, влиянием магнитного поля на характеристики плазмы можно пренебречь, вследствие чего в этой области должно происходить обычное "эшелонирование" ионов в лазерной плазме в зависимости от z, при котором ионы с максимальным z концентрируются в головной части плазменного сгустка $^{24-28/}$. При разлете плазмы до $\beta - 1$ наблюдается эффективное вытеснение магнитного поля из внутреннего объема плазмы за счет индукционных токов, протекающих на границе плазмы с магнитным полем $^{27,28/}$. При этом наблюдается торможение передней границы плазмы, скорость которой определяется скоростью ионов с максимальными z. Механизм торможения ионов, находящихся на передней границе плазмы, достаточно подробно изложен в рабо-

те /6/ Ионы и электроны, находящиеся на передней и задней границах плазмы, замагничены. Вследствие большого ларморовского радиуса ионы вырываются вперед из плазменного сгустка. возникает электрическое поле, их тормозящее. Поскольку лидирующая группа ионов в лазерной плазме на начальных стадиях разлёта должна состоять прежде всего из ионов с максимальными зарядностями, то ионы с максимальной кратностью ионизации испытывают наиболее сильное торможение и оказываются выведенными из головной части плазмы при разлете в поперечном магнитном поле. Если в плазме z_{мако} \leq 4 для углерода, то вследствие более широкого энергетического распределения этих ионов наблюдается изменение скоростных характеристик ионов при наложении магнитного поля, что проявляется прежде всего в возникновении низкоскоростных "хвостов" в распределении ионов. Механизм появления таких низкоскоростных ионов, по-видимому, аналогичен описанному выше.

Кроме того, возможно влияние поперечного магнитного поля на зарядовые спектры ионов лазерной плазмы на ранней стадии формирования скоростных распределений ионов в факеле плазмы. Применяемая в данной работе масс-спектрометрическая методика не позволяет определить, на какой стадии разлета в области с $\beta \gg 1$ многозарядные ионы смещаются в среднюю часть плазменного сгустка.

По достижении границей плазмы области баланса давлений, вследствие возникновения МГД-неустойчивости на ее границе, происходит быстрая диффузия магнитного поля во внутренний слой плазмы ^{/27/}. Плазма поляризуется, и ее дальнейшее движение поперек магнитного поля представляет собой дрейф в скрещенных электрическом поляризационном и магнитном полях ^{/13/}.

При этом кинетическая энергия плазменного сгустка /не только головной части, но и внутренних ее слоев/ уменьшается вследствие энергетических затрат на образование поляризационных слоев /13/

Пространственная структура плазмы из двух сгустков может быть обусловлена формой импульса лазерного излучения. При воздействии на мишень лазерного излучения, имеющего двухпиковую структуру, в плазме существуют две группы ионов, отличающихся своими энергетическими /11,29/, пространственными /10,11/ характеристиками. В данной работе исследование влияния формы лазерного излучения на разлет плазмы в поперечном магнитном поле не производилось.

Кроме того, пространственная структура плазмы может зависеть от энергетических характеристик ионов. При прохождении плазменным сгустком области с β -1 потенциальная энергия ионов в заряженном слое не может превышать начальной кинетической энергии, т.е. ${
m QEd}$ < ${
m m_i}\,{
m V_o^2/2}$, где q - заряд иона, d - ширина сгустка, V₀ - начальная скорость сгустка. Это условие приводит ^{/30,31/} к ограничению ширины сгустка d < $r_1/2$, где г, - ларморовский радиус ионов. Для плазмы с большей шириной это может приводить /31/ к разбиению на сгустки меньшей ширины, каждый не более d' < $r_i/2$. В этом случае каждый сгусток дрейфует затем самостоятельно через магнитное поле. Для ионов углерода в условиях эксперимента, согласно /32/ и нашим экспериментальным результатам, средняя кратность ионизации $\overline{z} \approx 3$, $V_{o} \sim 10^{5}$ м/с. Тогда можно оценить d < 0,8 см в магнитном полё В = 0,2 Тл. Действительно, в данных экспериментальных условиях наблюдалось образование двух плазменных сгустков, распространяющихся под разными углами в поперечном магнитном поле, причем размер каждого из них не превышал 0,8 см.

При увеличении массы ионов ларморовский радиус ионов $r_i \sim m_i V_i \sim (E_1 A)^{1/2} \sim A^{2/3}$, поскольку $E_i \sim A^{1/3}$ /24. По этой причине, по-видимому, в условиях эксперимента уже для мишеней из кремния одновременное формирование двух сгустков, как для углерода, не наблюдается. Сгусток, состоящий из ионов кремния, пространственно неоднороден, что выражается в изменении формы, длительности и амплитуды ионного тока, регистрируемого коллекторами, от импульса к импульсу лазера. Однако время прихода переднего фронта плазмы на коллекторы, расположенные под разными углами ϕ , одно и то же для коллекторов, находящихся на одном и том же расстоянии от мишени.

Для тяжелых ионов ниобия, тантала и висмута ларморовские радиусы ионов в магнитных полях, при которых выполнялся эксперимент, значительно больше, чем для углерода и кремния. Для плазмы этих элементов зафиксировано образование только одного плазменного сгустка, проходящего поперек магнитного поля за область баланса давлений.

В заключение авторы считают своим приятным долгом выразить благодарность академику Г.Н.Флерову за предоставление возможности заниматься данной задачей, Ю.Ц.Оганесяну - за постоянное внимание к работе, С.Б.Богомолову, А.А.Еропкину - за активное содействие при проведении эксперимента.

ЛИТЕРАТУРА

- 1. Bostick W.H. Phys.Rev., 1956, v.104, n.2, p.292.
- Kogoshi S., Sato K.N., Sekiguchi T. J.Phys. D: Appl. Phys., 1978, 11, p.1057.

3.	. Лазеры и термоядерная проблема Сб. переводных статей
	под ред. академика Б.Б.Кадомцева. М., Атомиздат, 1973.
4.	Ананьин О.Б. и др ОИЯИ, Р9-80-832, Дубна, 1980.
5.	Sudo S., Sato K.N., Sekuguchi T J.Phys. D: Appl.Phys.
	1978, 11, p.389.
6.	Райзер Ю.П ПМТФ, 1963, №6, с.19.
7.	Синельников К.Д., Руткевич Б.Н ЖТФ, 1967, т.37, в.1.
	c.56.
8.	Baker D.A., Hammel J.E Phys.Fl., 1965, v.8, N4, p.713.
9.	Parsons C.R., Jellison G J.Appl. Phys., 1983, v.54, n.3
	p.1631.
10.	Гапонов С.В., Стриковский М.Д ЖТФ, 1982, т.52, в.9.
	c.1838.
11.	Гапонов С.В., Лучин В.И., Стриковский М.Д Письма в ЖТФ
	1980, т.6, в.23, с.1409.
12.	Рэди Дж. Действие мощного лазерного излучения М. Мир
	1974, c.468.
13.	Matoba T., Ariga S J.Phys.Soc.Jap., 1971. v.30, n.5.
	p.1477.
14.	Гикал Б.Н. и др. Труды VIII Всесоюзного совещания по уско-
	рителям заряженных частиц Протвино, 19-21 окт. 1982;
	т.1 Дубна, 1983, с.116.
15.	Быковский Ю.А., Сильнов С.М., Шерозия Г.А Физика плаз-
	мы, 1986, т.12, в.2, с.237.
16.	Ананьин О.Б. и др ОИЯИ, Р7-7368, Дубна, 1973.
17.	Ананьин 0.Б. и др ЖТФ, 1983, т.53, в.1, с.94.
18.	Пасюк А.С., Го Ци Цень, Третьяков Ю.П ОИЯИ, 1523, Дуб-
	на, 1964.
19.	Месяц Г.А. Генерирование мощных наносекундных импульсов
	М., Советское радио, 1974, с.256.
20.	Демиденко И.И. и др ЖТФ, 1965, т,35, в.5, с.823.
21.	Быковский Ю.А. и др ЖТФ, 1968, т.38, №7, с.1194.
22.	Сильнов С.М., Суслов А.И. Изучение возможности создания
	источника многозарядных ионов на базе импульсного СО2-ла-
	зера. – Физика. Деп. в ВИНИТИ, №2010-78, М., 1978. –
23.	Tonon G.F IEEE Transactions on Nuclear Science, 1972,
	v.NS-19, n.2, p.172.
24.	Быковский Ю.А. и др ЖЭТФ, 1971, т.60, в.4, с.1306.
25.	Demtroder W., Jantz W Plasma Phys., 1970, v.12, p.691.
26.	Березовский В.В. и др Письма в ЖТФ, 1977, т.3, в.7,
	c.310.
27.	Koopman D.W Phys.Fl., 1976, v.19, n.5, p.670.
28.	Горбачев Л.П магнитная гидродинамика, 1984, №4, с.81.
29.	Dyer P.E. et al J.Phys. D: Appl.Phys., 1976, v.9, n.3,
	p. 373.

Peter W., Rostoker N. - Phys.Fl., 1982, v.25, n.4, p.730.
 Peter W., Ron A. - Phys.Fl., 1983, v.26, n.8, p.2276.
 Apostol I. et al. Rev.Roum.Phys., 1976, v.21, n.10, p.1009.

Рукопись поступила в издательский отдел 20 января 1989 года.

.