

Объединенный институт ядерных исследований дубна

P9-88-641

С.Л.Богомолов, Ю.Б.Виноградов, Б.Н.Гикал, Г.Г.Гульбекян, А.А.Ефремов, Д.И.Калчев, В.Б.Кутнер, И.В.Колесов, Р.Ц.Оганесян

ИССЛЕДОВАНИЕ СИСТЕМЫ АКСИАЛЬНОЙ ИНЖЕКЦИИ ИОНОВ В ШИКЛОТРОН У 200

Направлено в Орткомитет XI Всесоюзного совещания по ускорителим заряженных частиц, Дубна, октябрь 1988 года.

введение

Широкое распространение получили системы внешней инжекции в циклотроны^{/1.7/}, которые дали новые качественные возможности многим ускорителям. Это - единственный путь получения в циклотронах ускоренных пучков поляризованных ионов; практически полностью решаются вакуумные проблемы при ускорении отрицательных ионов H⁻, Д⁻. Ряд преимуществ система внешней инжекции пучков имеет перед внутренним источником для циклотронов тяжелых ионов:

1. Может быть использован ионный источник любого типа /PIG, ECR, EBIS, дуоплазматроя/. Более того, на одном ускорителе могут применяться несколько типов источников, которые в сумме дают возможность получить широкий диапазон ионов, недостижимый на каком-либо одном.

2. Вакуум в камере циклотрона в рабочем режиме может быть улучшен в несколько раз, тем самым уменьшены потери пучка изза перезарядки на остаточном газе.

 Вреднарительная сепарация пучка в занале внешней инжекции приводит к сняжению нагрузки на ВЧ систему, сняжению вероятности пробоя с дуантов.

4. Сформировалный вле циклотрола пучок обеспечивает высокое качество ускоренного пучка, эффективный вывод и трассировку по кананам.

5. За счет банчировки в высокоэффективнов системы аксиаль пов пожекции есть возможность увеличить коэффициент использова ния пучков,геперируемых иоппым источником,особенно высокодаряд ных понов, которые, как правило, имеют визкую интенсивность.

6. Сняжение общих потерь пучка в процессе ускорения педет в сняжению активации узвов циялотрова.

7. Несрапленно менаже срабатываются детано в центре циюло трола, т в отсутствует бомбардировка мощным пучком попутны» нонов

۱

Канал внешней инжекции пучка рассчитан на трассировку ионов с $A/Z_{=}2,8\div 5$, имеет аксептанс около 1000 мм.м рад с таким расчетом, чтобы была возможность использовать источник ионов любого типа.

В рабочем состоянии магнит циклотрона У-200 находится в насыщенном состоянии, что приводит к довольно сильному рассеянному полю в аксиальном отверстии магнита. Измерения и расчеты показали, что это поле может быть использовано для фокусировки инжектируемого пучка ^{/8,9/}.

В качестве регулируемых фокусирующих элементов выбраны линзы /MЛ/ и соленоиды /ФС/ с продольным магнитным полем. Поворот пучка из аксиального канала в медианную плоскость циклотрона с последующим выводом на первую орбиту ускорения осуществляется электростатическим зеркалом - инфлектором, который отличается от других типов инфлекторов /спирального и гиперболического/ простотой конструкции и большим аксептансом.Проведенные расчеты с учетом конкретных условий позволили выбрать геометрию инфлектора^{/8/}, который показал эффективную работу^{/10/}.

Для сохранения траектории движения через инфлектор ионов с разным отношением массы к заряду требуется, чтобы ларморовский радиус ρ в поле **B**₀ не изменялся

$$\rho = \frac{P_0}{ZeB_0} = \sqrt{\frac{2U_{HHW} \cdot A/Z}{e/m_0}} \cdot \frac{1}{B_0},$$

где B_o — магнитное поле в центре циклотрона, P_o — импульс иона, Ze и Am_o — заряд и масса иона, $U_{\rm MHW}$ — напряжение инжекции.

Обычно максимальное напряжение выбирается равным 0,2 $0,3 U_{\rm A}$ / $U_{\rm A}$ - амплитуда напряжения на дуантах/, что обусловлено усло вием центровки орбит на первых радиусах ускорения и типом ист пользуемого инфлектора - зеркала. Принимая / $U_{\rm ИНЖ}/_{\rm MBKC}$ 20 кВ, получаем следующие параметры для всего диапазона ускорлемых ионов:

 $\begin{array}{l} A/Z = 2,8 = 5, \\ B_0 \approx -19,4 \approx -19,8 \text{ klc}, \\ \rho = -1,74 \text{ cm} \approx -\text{const}, \\ U_{\text{MHW}} \approx -19,6 - 11,5 \text{ cB}, \\ B_0 \rho = -33,8 - 34,5 \text{ clc} \text{ cm}, \\ P_0/Z \approx -10,13 + 10,34 \text{ MaB/c}. \end{array}$

— "Схема системы аксиальной инжекции пучка в циклотрой У 200показава на рис. 1.

Рис. 1. Схема системы аксианыной инжекции пучка в цикнотроя У 200. МП матнитные лигны, ФС фокусирующие соненопды, КМ корректирующие магниты, ВД ~ блоки диагностики.

ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

На этапе запуска системы аксиальной инжекции пучка в циклотрон У-200 использовался высокочастотный источник ионов /11/ как наиболее простой по конструкции, из которого был получен пучок ⁴ He¹⁺ с интенсивностью до 100 мкА и эмиттансом 130 мм мрад. С его помощью произведена наладка системы, получены необходимые стабильности источников питания фокусирующих элементов анализирующего магнита, инфлектора, энергии инжекции. Рабочие режимы элементов транспортировки приведены в табл. 1/10/.

Заметим, что допустимые стабильности получены для системы в отсутствие банчировки.

Вакуумная система аксиальной инжекции позволяет получать давление в канале $7-9\cdot10^{-6}$ Тор, при котором теряется не более 10% пучка 4 Не ${}^{1+}$ /рис. 2/. Потери более тяжелых ионов не пре-высят 20% /12/.

Экспериментально измеренная траектория движения пучка через инфлектор хорошо совпала с расчетами /рис. 3/. Хорошо

сформированный пучок в центре циклотрона имел небольшие потери /~16%/ при ускорении внутри циклотрона.

После оптимизации режимов работы всех элементов транспортировки пучка получена максимальная эффективность трансмиссии

Рис. 2. Зависимость интенсивно сти пучка понов ⁴ Пе¹⁴ на входе в инфисктор от давления в канале нижекции. О_{мим} ~ 15 кВ.

•											1
	21	t	ì.	H	11	۱	1	1	2	Ł	Ŀ
		•					ч.	L	•		•

Рабочий режим	U _{NHM}	U _{инф}	1 _{MR1}	1 _{мл2}	l _{mpo1}	l _{deo⊉}	I am-40
Абсонисное эвляение	15,0-кВ	12,7 кВ	170-А 4 вГс	130 A 1,7 kľc	390-А 1,1-КГс	450 А 1,28 кПс	6,94 А 0,68 вГс
Намерениан вестябильность	4-10-4	4°10 ^{- 4}	4-10 ⁸	5×10 ⁻⁸	2°10 ⁰)•1() ⁸	5-10-4
Донустимая нестабривность	1 10 8	1-10 °	1-10-#	4×10-¥	1 - 1 D - R	1 · 10 · 8	1.10 0

Dyahm

Рис. 3. Траектория движения пучка в центральной области циклотрона. В точках 1-7 даны измеренные профили пучка в плоскости, перпендикулярной его движению.

Рис. 4. Зависимость интенсирности ускоренного пучка в циклотроне от фала ВЧ наприже ния на башчере при оптимальной алиянтуде.

пучка от сепарирующего магнита до конечного радиуса ускорения 8-10%.

В циклотроне У-200 диапазон ускоряемых фаз составляет около 30-40°/13′. Для увеличения коэффициента захвата был использован двухзазорный банчер на первой гармонике ВЧ напряжения, расположенный на расстоянии 3,8 м от инфлектора. В нашем случае получено увеличение интенсивности ускоряемого пучка в два раза /рис. 4/. Эффект банчировки в системе аксиальной инжекции на У-200 требует более детального изучения, в частности, в связи с влиянием пространственного заряда в продольном направлении, который с увеличением тока пучка приводит к уменьшению эффективности банчировки ^{/3/}.

ВЛИЯНИЕ ПРОСТРАНСТВЕННОГО ЗАРЯДА

Для получения интенсивных пучков в системе аксиальной инжекции использован дуоплазматрон, из которого был получен и исследован пучок ⁴He¹⁺ с интенсивностью до 1 мА. Характерной особенностью при транспортировке интенсивных пучков явилось изменение режимов фокусирующих элементов в зависимости от тока пучка, что, по-видимому, связано с влиянием пространственного заряда. Существующими элементами транспортировки удалось трассировать пучок с интенсивностью до 500 мкА без изменения эффективности; при дальнейшем повышении тока инжектируемого пучка падения коэффициента транспортировки избежать не удалось, так как два из четырех фокусирующих элементов достигли предельного режима /рис. 5/.

Теоретически оценки влияния пространственного заряда проводились по уравнениям Капчинского-Владимирского ^{713,147}

$$\mathbf{X}^{\prime\prime\prime} + \mathbf{K}_{\mathbf{x}} \mathbf{X}^{\prime\prime} - \frac{2\mathbf{Q}}{\mathbf{X}^{\prime\prime} + \mathbf{Y}^{\prime\prime}} - \frac{\frac{2^{\prime}}{\mathbf{x}^{\prime}}}{\mathbf{X}^{3}} = 0,$$

$$(*)$$

$$\mathbf{Y}^{\prime\prime\prime} + \mathbf{K}_{\mathbf{y}} \mathbf{Y}^{\prime} - \frac{2\mathbf{Q}}{\mathbf{X}^{\prime} + \mathbf{Y}^{\prime}} - \frac{\frac{2^{\prime}}{\mathbf{y}^{\prime}}}{\mathbf{Y}^{3}} = 0.$$

Длишые ураннения описывают движение огибающей пучка, не обладающего акспальной симметрией. Здесь К_{т,у} учитывают внеш ние фокусирующие поля, С учитывает собственные поля, С т,у представляет собон эмиттанс конечной величины. С периеанс перелятивистского заряженного нучка:

Рис. 5. Зависимость тока ускоренного пучка от тока инжектируемого пучка при оптимальных условиях транспортировки.

$$\omega = \frac{I}{U^{3/2}} \cdot \frac{(Am_o)^{1/2}}{4\sqrt{2\pi\epsilon_o}(Ze)^{1/2}} ,$$

где I — ток лучка, U - потенциал инжекции.

В программу расчетов вводились коэффициенты К_{ж,у} для дрейфа, поворотного магнита и сопеноида /см. габл.2/, гакже учитывались краевые поля магнита. Решение системы дифференциальных уравнений (*) проводилось методом Рунге-Кутта 4-го порядка.

На рис. 6 представлены огибающие пучков ⁴Не¹¹ с интенсивностями $I_L = 165$ мкА, $I_P = 235$ мкА, $I_3 = 600$ мкА, $I_4 = 770$ мкА, при этом магнитные поля влещных фокусирующих элементов приведе ны в табл. 3.

Представленные на рис. 7 результаты показывают удовлетво рительное согласне теоретических и эксперлментальных данлых по влядник пространственного заряда на коэффициенты гранс

Таблица З

		Таблица 2
	К _ж	К _у
дрейф	0	0
поворотный магнит	$1/\rho^2$	0
соленоид	(aB/2P) ²	(qB/2P) ²

миссии инжектируемого пучка. Уравнения КВ в присутствии продольного магнитного поля справедливы для аксиально-симметричных пучков, что в данном случае практически обеспечивает краевая фокусировка сепарирующего магнита.

Рис. 6. Осибающие пучка при различных интенсииностих.

І _{инж.} /мкА/	MЛ-1 /кГс/	МЛ-2 /кГс/	ФС-1 /кГс/	ФС-2 /кГс/
165	3,8	2,5	1,2	1,15
235	3,5	2,7	1,15	1,3
600	-3,7	-3,1	0,8	-1,4
770	-3,7	-2,7	1,1	-1,4

тис. 7. записимость козфрициента трансмиссии иучь, от его интенсириости.

ЗАКЛЮЧЕНИЕ

Созданная система аксиальной илжекции открывает повые воз можности для циклотронов ЛЯР. Ге бизланшее развитие на циклотроне У 200 с использованием вместо дуоплазма трона источника типа РТС позволит получить эксперимен

Рис. 8. Возможности источников ЕСК и РІС по интенсивностям пучков для разных Z/A.

тальную информацию об эффективности транспортировки пучков тяжелых ионов при интенсивности из источника свыше 10¹⁵ с⁻¹. Эти результаты позволяют ответить на вопрос о том, насколько целесообразно создание системы аксиальной инжекции с источником типа PIG на циклотроне У-400. Оценки показывают, что если при интенсивности инжектиру-

емого пучка $5 \cdot 10^{15}$ с⁻¹ суммарная эффективность составит даже 1-3%, то ее создание на У-400 оправдано, так как использование внешнего источника позволит за счет улучшения вакуума с $1\cdot 10^{-6}$ Тор до $3\cdot 10^{-7}$ Тор снизить потери пучка из-за перезарядки с 30-70% до $10\%^{\prime16\prime}$, а также улучшить эксплуатационные характеристики циклотрона.

Использование аксиальной инжекции с источником типа ЕСР на циклотроне У-400М при работе его в автономном режиме позволит в определенном диапазоне получать пучки ионов, которые предполагается получать в циклотронном комплексе У-400 + У-400М. При существующем уровне развития источников ЕСВ возможно получение на У-400М в автономном режиме пучков ионов от 1608 до 132 Хе^{РВ+} (A/Z 2 5) с энергиями 120-20 МэВ/нуклов и интенсивностями 3-10¹⁰ - 10⁹ с⁻¹ /рис. 8/ ^{/17,18/}.

ΠΝΤΕΡΑΤΥΡΑ

- P.J.Clark, C.M.Lyneis In: Proc. 11th Intern. Conf. on Cycl. and their Appl. Tokyo, October 13-17, 1986, p.499.
- Bol J.L. et al. IEEE frans. on Nucl. Sci., 1985, NS-32, No. 5, p.1817.
- 3. Baron E., Bex E., Bourgaret M.P. GANTE A86 03, Gaen, 1986.
- 4. Albrand S. et al. In: Proc. 11th Intern. Conf. on Cycl. and their Appl., Tokyo, October 13-17, 1986, p.191.

- Bechtold, L.Friedrich, F.Schulz. In: Proc. 10th Intern. Conf. on Cycl. and their Appl. Michigan April 30 - May 3, 1984, p.118.
- Bräntigam W. et al. In: Proc. 10th Intern. Conf. on Cycl. and their Appl. Michigan, April 30 - May 5, 1984, p.122.
- 7. van Asselt W.K. et al. In: Proc. 10th Intern. Conf. on Cycl. and their Appl. Michigan, April 30 - May 5, 1984, p.177.
- 8. Виноградов Ю.Б. и др. ОИЯИ, Р9-87-869, Дубна, 1987.
- 9. Бехтерев В.В. и др. ОИЯИ, 9-87-379, Дубна, 1987.
- 10. Виноградов Ю.Б. и др. ОИЯИ, Р9-88-20, Дубна, 1988.
- 11. Романов В.А., Сербилов А.Н. ПТЭ, 1963, №1, с.27.
- 12. Lieuvin M., Balmont J.L., Bajard M. In: Proc. 7th Inzrtn. Conf.on Cycl.and their Appl.Birkhäuser, Basel, 1975, p. 614.
- 13. Гикал Б.Н. и др. ОИЯИ, 9-83-311, Дубна, 1983.
- 14. Капчинский И.М. Движение частиц в линейных резонансных ускорителях. М.: Атомиздат, 1966.
- 15. Лоусон Д. Физика пучков заряженных частиц. М.: Мир, 1980.
- 16. Гульбекян Г.Г., Иваненко А.И., Гикал Б.Н. ОИЯИ, Р9-83-451, Дубна, 1983.
- 17. Geller R. Grenoble, Eleventh Int. Conf. on Cyclotrons and their Applications, 1986, Tokyo, Japan.
- Богомолов С.Л. и др. В кн.: Труды VIII Всесоюзного совещания по ускорителям заряженных частиц, Дубна, 1983, т.1, с.112.

- Рукопись поступила в вздательскою отдел 25 ангуста 1988 года.

ТЕМАТИЧЕСКИЕ КАТЕГОРИИ ПУБЛИКАЦИЙ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Индекс	Тематика
1.	Экспериментальная физика высоких энергий
2.	Теоретическая физика высоких энергий
3.	Экспериментальная нейтронная физика
4.	Теоретическая физика низких энергий
5.	Математика
6.	Ядерная спектроскопия и радиохимия
7.	Физика тяжелых ионов
8.	Криогеника
9.	Ускорители
10.	Автоматизация обработки экспериментальных данных
11.	Вычислительная математика и техника
12.	Химия
13.	Техника физического эксперимента
14.	Исследования твердых тел и жидкостей ядерными методами
15.	Экспериментальная физика ядерных реакций при низких энергиях
16.	Дозиметрия и физика защиты
17.	Теория конденсированного состояния
18.	Использование результатов и методов фундаментальных физических исследований в смежных областях науки и техники
19.	Биофизика

Богомолов С.Л. и др. P9-88-641 Исследование системы аксиальной инжекции ионов в циклотрон У-200

Приведены результаты запуска системы аксиальной инжекции ионов в циклотрон У-200. Эффективность транспортировки пучка от сепарирующего магнита до конечного радиуса ускорения составила 8-10% без банчировки пучка. Использование в системе банчера позволило увеличить интенсивность ускоренного пучка в два раза. Рассмотрено влияние пространственного заряда в канале внешней инжекции при транспортировке пучка с интенсивностью до 1 мА /для A/Z = 4/.

Работа выполнена в Лаборатории ядерных реакций ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1988

Перевод О.С.Виноградовой

Bogomolov S.L. et al. P9-88-641 Investigation of Ion Axial Injection System for the U-200 Cyclotron

The results of the startup of ion axial injection system for the U-200 cyclotron are presented. Efficiency of beam transmission from separating magnet to final accelerating radius is 8-10% without beam bunching. Utilization of bunching system permitted to increase the accelerated beam intensity by a factor of 2. The influence of space charge in the transport system with the beam intensity up to 1 mA (for A/Z = 4) is considered.

The investigation has been performed at the Laboratory of Nuclear Reaction, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1988

введение

Широкое распространение получили системы внешней инжекции в циклотроны^{/1-7/}, которые дали новые качественные возможности многим ускорителям. Это - единственный путь получения в циклотронах ускоренных пучков поляризованных ионов; практически полностью решаются вакуумные проблемы при ускорении отрицательных ионов H⁻, Д⁻. Ряд преимуществ система внешней инжекции пучков имеет перед внутренним источником для циклотронов тяжелых ионов:

1. Может быть использован ионный источник любого типа /PIG, ECR, EBIS, дуоплазматрон/. Более того, на одном ускорителе могут применяться несколько типов источников, которые в сумме дают возможность получить широкий диапазон ионов, недостижимый на каком-либо одном.

 Вакуум в камере циклотрона в рабочем режиме может быть улучшен в несколько раз, тем самым уменьшены потери пучка изза перезарядки на остаточном газе.

 Предварительная сепарация пучка в канале внешней инжекции приводит к снижению нагрузки на ВЧ систему, снижению вероятности пробоя с дуантов.

4. Сформированный вне циклотрона пучок обеспечивает высокое качество ускоренного пучка, эффективный вывод и трассировку по каналам.

5. За счет банчировки и высокоэффективной системы аксиальной инжекции есть возможность увеличить коэффициент использования пучков, генерируемых йонным источником, особенно высокозарядных ионов, которые, как правило, имеют низкую интенсивность.

6. Снижение общих потерь пучка в процессе ускорения ведет к снижению активации узлов циклотрона.

7. Несравненно меньше срабатываются детали в центре циклотрона, т.к. отсутствует бомбардировка мощным пучком попутных ионов.

истерный кастетут начения соловоесний БИБЛАЮТЕНА

ВЫБОР ЭЛЕМЕНТОВ ТРАНСПОРТИРОВКИ Системы аксиальной инжекции пучка в у-200

Канал внешней инжекции пучка рассчитан на трассировку ионов с $A/Z = 2,8 \div 5$, имеет аксептанс около 1000 мм.м рад с таким расчетом, чтобы была возможность использовать источник ионов любого типа.

В рабочем состоянии магнит циклотрона У-200 находится в насыщенном состоянии, что приводит к довольно сильному рассеянному полю в аксиальном отверстии магнита. Измерения и расчеты показали, что это поле может быть использовано для фокусировки инжектируемого пучка ^{/8,9/}.

В качестве регулируемых фокусирующих элементов выбраны линзы /МЛ/ и соленоиды /ФС/ с продольным магнитным полем. Поворот пучка из аксиального канала в медианную плоскость циклотрона с последующим выводом на первую орбиту ускорения осуществляется электростатическим зеркалом - инфлектором, который отличается от других типов инфлекторов /спирального и гиперболического/ простотой конструкции и большим аксептансом.Проведенные расчеты с учетом конкретных условий позволили выбрать геометрию инфлектора^{/8/}, который показал эффективную работу^{/10/}.

Для сохранения траектории движения через инфлектор ионов с разным отношением массы к заряду требуется, чтобы ларморовский радиус ρ в поле **B**₀ не изменялся

$$\rho = \frac{P_0}{ZeB_0} = \sqrt{\frac{2U_{HHW} \cdot A/Z}{e/m_0}} \cdot \frac{1}{B_0},$$

где B_o - магнитное поле в центре циклотрона, P_o - импульс иона, Z_e и Am_o - заряд и масса иона, $U_{\mu\mu\kappa}$ - напряжение инжекции.

Обычно максимальное напряжение выбирается равным $0,2\div 0,3 U_{\rm A}$ / $U_{\rm A}$ - амплитуда напряжения на дуантах/, что обусловлено условием центровки орбит на первых радиусах ускорения и типом используемого инфлектора - зеркала. Принимая / $U_{\rm HHM}/_{\rm Makc}$ = 20 кВ, получаем следующие параметры для всего диапазона ускоряемых ионов:

A/Z = 2,8 ÷ 5, B₀ = 19,4 ÷ 19,8 $\kappa\Gamma c$, ρ = 1,74 cm = const, U_{MHX} = 19,6 ÷ 11,5 κ B, B₀ ρ = 33,8 ÷ 34,5 $\kappa\Gamma c \cdot cm$, P₂/Z = 10,13 ÷ 10,34 M₃B/c.

[°] Схема системы аксиальной инжекции пучка в циклотрон У-200 показана на рис. 1.

Рис. 1. Схема системы аксиальной инжекции пучка в циклотрон У-200. МЛ - магнитные линзы, ФС - фокусирующие соленоиды, КМ - корректирующие магниты, БД - блоки диагностики.

ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

На этапе запуска системы аксиальной инжекции пучка в циклотрон У-200 использовался высокочастотный источник ионов /11/ как наиболее простой по конструкции, из которого был получен пучок ⁴ He¹⁺ с интенсивностью до 100 мкА и эмиттансом 130 мм·мрад. С его помощью произведена наладка системы, получены необходимые стабильности источников питания фокусирующих элементов анализирующего магнита, инфлектора, энергии инжекции. Рабочие режимы элементов транспортировки приведены в табл. 1^{/10/}.

Заметим, что допустимые стабильности получены для системы в отсутствие банчировки.

Вакуумная система аксиальной инжекции позволяет получать давление в канале $7-9\cdot10^{-6}$ Тор, при котором теряется не более 10% пучка 4 Не ${}^{1+}$ /рис. 2/. Потери более тяжелых ионов не превысят 20% ${}^{/12/}$.

Экспериментально измеренная траектория движения пучка через инфлектор хорошо совпала с расчетами /рис. 3/. Хорошо

сформированный пучок в центре циклотрона имел небольшие потери /~16%/ при ускорении внутри циклотрона.

После оптимизации режимов работы всех элементов транспортировки пучка получена максимальная эффективность трансмиссии

Рис. 2. Зависимость интенсивности пучка ионов ⁴ He¹⁺ на входе в инфлектор от давления в канале инжекции. $U_{\text{инж}} = 15 \text{ кB}.$

Та	бп	หก	а	1
	\sim			-

6.

Рабочий режим Абсолютное значение	U _{мнж} 15,0 кВ	U _{инф} 12,7 кВ	Ι _{μη1} 370 Α 4 κΓc	I _{мл2} 330 А 3,7 кГс	^I фс1 390 А 1,1 кГс	^I фс2 450 А 1,28 кГс	I _{ем-80} 6,94 А 0,68 кГс
Измеренная нестабильность	4·10 ⁻⁴	4-10-4	4·10 ⁻³	5·10-8	2·10-8	3•10 -8	5-10-4
Допустимая нестабильность	1·10-3	3·10-2	3·10-8	4•10 -2	2·10-2	1.10-2	1·10 -8

Dvahm.

Рис. 3. Траектория движения пучка в центральной области циклотрона. В точках 1-7 даны изме→ ренные профили пучка в плоскости, перпендикулярной его движению.

Рис. 4. Зависимость интенсивности ускоренного пучка в циклотроне от фазы ВЧ-напряжения на банчере при оптимальной амплитуде. пучка от сепарирующего магнита до конечного радиуса ускорения 8-10%.

В циклотроне У-200 диапазон ускоряемых фаз составляет около 30-40°/13/. Для увеличения коэффициента захвата был использован двухзазорный банчер на первой гармонике ВЧ напряжения, расположенный на расстоянии 3,8 м от инфлектора. В нашем случае получено увеличение интенсивности ускоряемого пучка в два раза /рис. 4/. Эффект банчировки в системе аксиальной инжекции на У-200 требует более детального изучения, в частности, в связи с влиянием пространственного заряда в продольном направлении, который с увеличением тока пучка приводит к уменьшению эффективности банчировки ^{/3/}.

ВЛИЯНИЕ ПРОСТРАНСТВЕННОГО ЗАРЯДА

Для получения интенсивных пучков в системе аксиальной инжекции использован дуоплазматрон, из которого был получен и исследован пучок ⁴He¹⁺ с интенсивностью до 1 мА. Характерной особенностью при транспортировке интенсивных пучков явилось изменение режимов фокусирующих элементов в зависимости от тока пучка, что, по-видимому, связано с влиянием пространственного заряда. Существующими элементами транспортировки удалось трассировать пучок с интенсивностью до 500 мкА без изменения эффективности; при дальнойшом повышении тока инжсктируемого пучка падения коэффициента транспортировки избежать не удалось, так как два из четырех фокусирующих элементов достигли предельного режима /рис. 5/.

Теоретически оценки влияния пространственного заряда проводились по уравнениям Капчинского-Владимирского /13,14/

$$X'' + K_{x}X - \frac{2Q}{X + Y} - \frac{e^{2}_{x}}{X^{3}} = 0,$$

$$Y'' + K_{y}Y - \frac{2Q}{X + Y} - \frac{e^{2}_{y}}{Y^{3}} = 0.$$
(*)

Данные уравнения описывают движение огибающей пучка, не обладающего аксиальной симметрией. Здесь $K_{x,y}$ учитывают внешние фокусирующие поля, Q учитывает собственные поля, $\in_{x,y}$ представляет собой эмиттанс конечной величины: Q - первеанс нерелятивистского заряженного пучка:

Рис. 5. Зависимость тока ускоренного пучка от тока инжектируемого пучка при оптимальных условиях транспортировки.

$$Q = \frac{I}{U^{3/2}} \cdot \frac{(Am_o)^{1/2}}{4\sqrt{2}\pi\epsilon_o (Ze)^{1/2}} ,$$

где I - ток пучка, U - потенциал инжекции.

В программу расчетов вводились коэффициенты $K_{x,y}$ для дрейфа, поворотного магнита и соленоида /см. табл.2/, также учитывались краевые поля магнита. Решение системы дифференциальных уравнений (*) проводилось методом Рунге-Кутта 4-го порядка.

На рис. 6 представлены огибающие пучков $^{4}\text{He}^{1+}$ с интенсивностями I_1 =165 мкА, I_2 =235 мкА, I_3 =600 мкА, I_4 =770 мкА, при этом магнитные поля внешних фокусирующих элементов приведены в табл. 3.

Представленные на рис. 7 результаты показывают удовлетворительное согласие теоретических и экспериментальных данных по влиянию пространственного заряда на коэффициенты транс-

Таблица 3

		Таблица	2
	К _ж		К _у
дрейф	0	······	0
поворотный магнит	1 / p ²		0
соленоид	(aB/2P) ²	(qB	/2P) ²

миссии инжектируемого пучка. Уравнения КВ в присутствии продольного магнитного поля справедливы для аксиально-симметричных пучков, что в данном случае практически обеспечивает краевая фокусировка сепарирующего магнита.

Рис. 6. Огибающие пучка при различных интенсивностях.

I _{инж} . /мкА/	МЛ-1 /кГс/	МЛ-2 /кГс/	ΦC-1 /κΓc/	ФС-2 /кГс/
165	3,8	2,5	1,2	1,15
235	3,5	2,7	1,15	1,3
600	-3,7	-3,1	0,8	-1,4
770	-3,7	-2,7	1,1	-1,4

ЗАКЛЮЧЕНИЕ

Созданная система аксиальной инжекции открывает новые возможности для циклотронов ЛЯР. Ее ближайшее развитие на циклотроне У-200 с использованием вместо дуоплазматрона источника типа PIG позволит получить эксперимен-

Рис. 8. Возможности источников ECR и PIG по интенсивностям пучков для разных Z/A.

тальную информацию об эффективности транспортировки пучков тяжелых ионов при интенсивности из источника свыше 10¹⁵ с⁻¹.

Эти результаты позволяют ответить на вопрос о том, насколько целесообразно создание системы аксиальной инжекции с источником типа PIG на циклотроне У-400. Оценки показывают, что если при интенсивности инжектиру-

емого пучка $5 \cdot 10^{15}$ с⁻¹ суммарная эффективность составит даже 1-3%, то ее создание на У-400 оправдано, так как использование внешнего источника позволит за счет улучшения вакуума с 1 · 10-6 Тор до $3 \cdot 10^{-7}$ Тор снизить потери пучка из-за перезарядки с 30-70% до 10% ⁽¹⁰⁾, а также улучшить эксплуатационные характеристики циклотрона.

Использование аксиальной инжекции с источником типа ЕСР на циклотроне У-400М при работе его в автономном режиме позволит в определенном диапазоне получать пучки ионов, которые предполагается получать в циклотронном комплексе У-400 + У-400М. При существующем уровне развития источников ЕСR возможно получение на У-400М в автономном режиме пучков ионов от $^{18}0^{8+}$ до 132 Xe $^{26+}$ (A/Z = 2÷5) с энергиями 120-20 МэВ/нуклон и интенсивностями 3·10¹⁰ - 10⁹ c^{-1} /рис. 8/ $^{17,18/}$.

ЛИТЕРАТУРА

- 1. P.J.Clark, C.M.Lyneis In: Proc. 11th Intern. Conf. on Cycl. and their Appl. Tokyo, October 13-17, 1986, p.499.
- 2. Bol J.L. et. al. IEEE Trans. on Nucl. Sci., 1985, NS-32, No. 5, p.1817.
- 3. Baron E., Bex L., Bourgarel M.P. GANIL A86-03, Gaen, 1986.
- 4. Albrand S. et al. In: Proc. 11th Intern. Conf. on Cycl. and their Appl., Tokyo, October 13-17, 1986, p.191.

- Bechtold, L.Friedrich, F.Schulz. In: Proc. 10th Intern. Conf. on Cycl. and their Appl. Michigan April 30 - May 3, 1984, p.118.
- 6. Bräntigam W. et al. In: Proc. 10th Intern. Conf. on Cycl. and their Appl. Michigan, April 30 - May 5, 1984, p.122.
- 7. van Asselt W.K. et al. In: Proc. 10th Intern. Conf. on Cycl. and their Appl. Michigan, April 30 - May 5, 1984, p.177.
- 8. Виноградов Ю.Б. и др. ОИЯИ, Р9-87-869, Дубна, 1987.
- 9. Бехтерев В.В. и др. ОИЯИ, 9-87-379, Дубна, 1987.
- 10. Виноградов Ю.Б. и др. ОИЯИ, Р9-88-20, Дубна, 1988.
- 11. Романов В.А., Сербилов А.Н. ПТЭ, 1963, №1, с.27.
- Lieuvin M., Balmont J.L., Bajard M. In: Proc. 7th Inzrtn. Conf.on Cycl.and their Appl.Birkhäuser, Basel, 1975, p. 614.
- 13. Гикал Б.Н. и др. ОИЯИ, 9-83-311, Дубна, 1983.
- 14. Капчинский И.М. Движение частиц в линейных резонансных ускорителях. М.: Атомиздат, 1966.
- 15. Лоусон Д. Физика пучков заряженных частиц. М.: Мир, 1980.
- 16. Гульбекян Г.Г., Иваненко А.И., Гикал Б.Н. ОИЯИ, Р9-83-451, Дубна, 1983.
- 17. Geller R. Grenoble, Eleventh Int. Conf. on Cyclotrons and their Applications, 1986, Tokyo, Japan.
- Богомолов С.Л. и др. В кн.: Труды VIII Всесоюзного совещания по ускорителям заряженных частиц, Дубна, 1983, т.1, с.112.

Рукопись поступила в издательский отдел 25 августа 1988 года.

ТЕМАТИЧЕСКИЕ КАТЕГОРИИ ПУБЛИКАЦИЙ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Индекс	Тематика
1	. Экспериментальная физика вы соких энергий
2	. Теоретическая физика высоких энергий
3	. Экспериментальная нейтронная физика
4	. Теоретическая физика низких энергий
5	. Математика
6	. Ядерная спектроскопия и радиохимия
7	. Физика тяжелых ионов
8	. Криогеника
9	Ускорители
.10	. <u>Автонатизация обработки экспериментальных</u> данных
11	. Вычислительная математика и техника
12	. Химия
13	. Техника физического эксперимента
14	. Исследования твердых тел и жидкостей ядерными методами
15	. Экспериментальная физика ядерных реакций при низких энергиях
16	. Дозиметрия и физика защиты
17	. Теория конденсированного состояния
18	 Использование результатов и методов фундаментальных физических исследований в смежных областях науки и техники
19	. Биофизика

Богомолов С.Л. и др. P9-88-641 Исследование системы аксиальной инжекции ионов в циклотрон У-200

Приведены результаты запуска системы аксиальной инжекции ионов в циклотрон У-200. Эффективность транспортировки пучка от сепарирующего магнита до конечного радиуса ускорения составила 8-10% без банчировки пучка. Использование в системе банчера позволило увеличить интенсивность ускоренного пучка в два раза. Рассмотрено влияние пространственного заряда в канале внешней инжекции при транспортировке пучка с интенсивностью до 1 мА /для A/Z = 4/.

Работа выполнена в Лаборатории ядерных реакций ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1988

Перевод О.С.Виноградовой

Bogomolov S.L. et al. P9-88-641 Investigation of Ion Axial Injection System for the U-200 Cyclotron

The results of the startup of ion axial injection system for the U-200 cyclotron are presented. Efficiency of beam transmission from separating magnet to final accelerating radius is 8-10% without beam bunching. Utilization of bunching system permitted to increase the accelerated beam intensity by a factor of 2. The influence of space charge in the transport system with the beam intensity up to 1 mA (for A/Z = 4) is considered.

The investigation has been performed at the Laboratory of Nuclear Reaction, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1988