

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

P9-88-637 @

В.В.Кольга, Ле Киен Тхань, Л.М.Онищенко

ТЕОРЕТИЧЕСКОЕ РАССМОТРЕНИЕ ВОЗМОЖНОСТИ УСКОРЕНИЯ И ВЫВОДА Н<sup>-</sup>-ИОНОВ НА ФАЗОТРОНЕ ОИЯИ

1988

Фазотрон Объединенного института ядерных исследований (установка "Ф") ускоряет протоны до энергии 680 МэВ при токе внутреннего пучка  $5 \div 10 \text{ мкA}^{/1/}$ . Основной особенностью этого ускорителя является пространственная вариация магнитного поля, обеспечивающая аксиальную устойчивость ускоряемых частиц в растущем по радиусу магнитном поле. Это позволяет существенно уменьшить диапазон изменения частоты ускоряющего электрического поля и соответственно увеличить частоту циклов (до 500 Гц), а также увеличить ускоряющее напряжение (до  $40 \div 50 \text{ кB}$ ).

Фазотрон ОИЯИ является дорогостоящей в эксплуатации установкой, и поэтому различные возможности увеличения эффективности использования этого ускорителя заслуживают детального исследования.

В настоящей работе проведено теоретическое рассмотрение возможности ускорения и вывода пучка Н<sup>-</sup>ионов в установке "Ф". Показана также принципиальная возможность одновременно с пучком протонов, ускоряемых до максимальной энергии, ускорять также пучок Н<sup>-</sup>ионов до энергии ~150 МэВ и с помощью перезарядки выводить образовавшиеся протоны в направлении трактов транспортировки выведенных пучков.

## 1. ПОТЕРИ Н<sup>-</sup>-ИОНОВ В ПРОЦЕССЕ УСКОРЕНИЯ ИЗ-ЗА ЭЛЕКТРИЧЕСКОЙ ДИССОЦИАЦИИ

При движении Н<sup>-</sup>-иона в магнитном поле (В) сила Лоренца в системе координат, связанной с ионом, вызовет соответствующее электрическое поле

$$\mathcal{E}\left(\frac{\mathsf{MB}}{\mathsf{CM}}\right) = 3 \cdot \beta \cdot \gamma \cdot \mathsf{B}(\mathsf{Tn}), \qquad (1)$$

где  $\gamma$  — релятивистский фактор,  $\beta$  — относительная скорость иона. При определенной величине этого поля внешний электрон Н<sup>-</sup>-иона, как наименее связанный (энергия связи 0,755 эВ), будет потерян — произойдет электрическая диссоциация иона. Образовавшийся нейтральный атом выйдет из процесса ускорения. Среднее время жизни Н<sup>-</sup>-иона в магнитном поле определяется вероятностью проникновения электрона через потенциальный барьер.

0

1

На основе анализа различных аналитических выражений и сопоставления с данными известных экспериментов было выбрано следующее выражение для среднего времени жизни (*r*)

$$r(\mathcal{L}) = \frac{A}{\xi} \exp(\frac{\mathcal{L}}{\xi}), \qquad (2)$$

где А и  $\mathfrak{L}$  — постоянные параметры, определяемые из условия наилучшего приближения к данным эксперимента,  $\mathfrak{E}$  в MB/см. После трех итераций значения этих параметров в наиболее интересном диапазоне величин (1,8 <  $\mathfrak{E}$  < 2,6) составляют A = 7,96 · 10 · 11/4 (в MB/см),  $\mathfrak{L}$  = 42,56 (MB/см)/2/.

На рис.1 показана зависимость r от  $\mathscr{E}$ . Видно, что в диапазоне 1,8 <  $\mathscr{E}$  < 2,45 MB/см время жизни иона 1000> r > 1 мкс. Расчет потерь Н<sup>-</sup>-ионов из-за электрической диссоциации проводится по формуле

$$I(t) = I_0 \exp\left[-\int_0^{t} \frac{dt}{r(t)}\right].$$
(3)

С учетом (2) получим

$$I(t) = I_{c} \exp\left\{-\frac{10^{14}}{7,96} \int_{0}^{t_{k}} \mathcal{E}(t) \exp\left[-\frac{42,56}{\mathcal{E}(t)}\right] dt\right\}.$$
(4)



Как видно из (1), значения & зависят от энергии иона и текущего магнитного поля на орбите иона. Следовательно, для корректного определения потерь Нионов в процессе ускорения необходимо численное интегрирование по траектории ускоряемого иона с учетом магнитного поля на этой траектории. Для удобства численных расчетов в случае циклического ускорителя в качестве переменной интегрирования выберем число оборотов ( $\nu$ ). При этом dt = d $\nu/t$ , где f — орбитальная частота иона (МГц), которая в установке "Ф" изменяется. Тогда (4) можно записать в виде

$$I(\nu) = I_0 \exp\{-\frac{10^{14}}{7,96} \int_0^{\nu_k} \frac{1}{f} \mathcal{E}(\nu) \exp[-\frac{42,56}{\mathcal{E}(\nu)}] d\nu\},$$
(5)

где  $\mathcal{E}(\nu) = 3\beta(\nu) \cdot \gamma(\nu) \cdot B(\nu)$ ,  $B = B(r) + B_4(r) \cos(\frac{r}{\lambda} - 8\pi\nu) \lambda = 15$  см,  $f = f_0 \cdot \frac{B}{\gamma B_0}$ ;  $f_0$ ,  $B_0$  — значения этих параметров при r = 0. Аналитическое выражение, определяющее среднее поле B(r), и график амплитуды гармоники  $B_4(r)$  взяты из работы<sup>/3/</sup>, таблица  $B_4(r)$  аппроксимируется эмпирической формулой. Зависимость среднего радиуса от оборотов определяется в процессе расчета формулой

$$\bar{r} = 3,131 \frac{\beta \cdot \gamma}{\bar{B}} (M) , \qquad (6)$$

где  $\gamma(\nu) = 1 + (W_H + e \overline{V} \cdot \nu) / 939,3; W_H - начальная кинетическая_ энергия иона; e V_ - средний набор энергии ионом за оборот (МэВ), В - в Тл, f - в Гц.$ 

### 2. ПОТЕРИ Н<sup>-</sup>-ИОНОВ ИЗ-ЗА ПЕРЕЗАРЯДКИ НА МОЛЕКУЛАХ ОСТАТОЧНОГО ГАЗА

Уменьшение интенсивности пучка из-за взаимодействия с остаточным газом в камере ускорителя определяется выражением<sup>4/</sup>

$$I(t) = I_{o} \exp\left[-10^{27} \cdot p \cdot \int_{o}^{t_{\kappa}} \sigma(\beta) \cdot \beta \cdot dt\right].$$
(7)

где р — давление остаточного газа (Topp),  $\sigma$  — сечение взаимодействия иона с молекулой остаточного газа (см<sup>2</sup>), t<sub>к</sub> — время ускорения иона (с). В работе<sup>/5/</sup> на основании (7) найдены аналитические выражения, более удобные для расчета потерь в циклотроне и фазотроне. При этом в качестве переменной интегрирования выбрана кинетическая энергия (W) ускоряемого иона. Полагая dt =  $\frac{dt}{d\nu} \cdot \frac{d\nu}{dW} \cdot dW$  и учитывая, что  $\beta$  = =  $\left[\frac{W}{469,65} + \left(\frac{W}{(939,3)}\right)^2\right]^{\frac{1}{2}}$ , для I(W) получим для H<sup>-</sup>ионов выражение

$$I(W) = I_{o} \exp\left[-\frac{4.6 \cdot 10^{25} \cdot p}{e \,\overline{V}} \int_{W_{H}}^{W_{K}} \frac{1}{f} \cdot \sigma(W) \cdot \sqrt{W + \left(\frac{W}{(43,34)}\right)^{2}} \, dW\right],$$
(8)

3

где  $W_{\rm H}$ ,  $W_{\rm K}$  — начальная и конечная энергии иона (МэВ). При расчете потерь Н-ионов из-за перезарядки на остаточном газе определяющее значение имеет сечение перехода отрицательного иона в нейтральный (H<sup>-</sup> → H<sup>°</sup>), которое обозначим  $\sigma_{-1,0}$ . Сечение прямого процесса H<sup>-</sup> → H<sup>+</sup> составляет при этих энергиях менее 4% от  $\sigma_{-1,0}$ , и им можно пренебречь.

Зависимость сечения перезарядки  $\sigma_{-1,0}$  от энергии иона (W) рассматривалась в нескольких работах. Наиболее полно сравнение расчетных и экспериментальных значений проведено в работах<sup>6,7/</sup>. На основании этих работ возьмем для  $\sigma_{-1,0}$  следующую зависимость:

$$\sigma_{-1,0} = \frac{K_{\rm M} \cdot 10^{-16}}{w^{0,77}} (\rm cm^2).$$
(9)

Для определения К<sub>м</sub> воспользуемся экспериментальными данными<sup>77</sup>. Для энергии Н<sup>-</sup>-иона, равной 10 МэВ, для случая перезарядки на молекулах азота  $\sigma_{-1,0} = 6 \cdot 10^{-17} \text{ см}^2$ , а на молекулах водорода —  $\sigma_{-1,0} = 7 \cdot 10^{-18} \text{ см}^2$ . Отношение сечений  $\sigma_{-1,0}(N_2)/\sigma_{-1,0}(H_2) = 8,6$ , т.е. существенно отличается от отношения молекулярных весов этих газов. Таким образом, сечение перезарядки Н<sup>-</sup>-иона  $\sigma_{-1,0}$  для азота и водорода можно записать в виде

$$\sigma_{-1,0} \mid_{N_2} = \frac{3.533 \cdot 10^{-16}}{W^{0.77}} (cm^2),$$

$$0.412 \cdot 10^{-16}$$
(10)

$$\sigma_{-1,0} \mid_{H_2} = \frac{0.412 \cdot 10^{-10}}{W^{0,77}} \quad (cm^2).$$

Подставляя эти выражения для сечений перезарядки в (8), получим

$$I(W) = I_{0} \exp\left[-\frac{C_{M} \cdot 10^{10} \cdot p}{e \,\overline{V}} \int_{W_{H}}^{W_{K}} \frac{W^{-0,77}}{f} \sqrt{W} + \left(\frac{W}{(43,34)}\right)^{2} dW\right], \qquad (11)$$

где С<sub>м</sub>= 1,625 для N<sub>2</sub> и С<sub>м</sub>= 0,189 для H<sub>2</sub>.

### 3. ПРОГРАММА HMIDF И РЕЗУЛЬТАТЫ РАСЧЕТА ПОТЕРЬ Н<sup>-</sup>-ИОНОВ

Для проведения численных расчетов на основе выражений (5), (6), (11) создана программа HMIDF для ЭВМ ЕС-1010. Эта программа является модификацией программы HMID<sup>/8/</sup>, разработанной для нахождения потерь отрицательных ионов в изохронных циклотронах. Интегралы вычисляются по формуле Симпсона. На каждом обороте 30 точек интег-



рирования, что для N = 4 обеспечивает необходимую точность вычисления интегралов.

На рис.2 приведены результаты расчетов потерь Н<sup>-</sup>-ионов из-за электрической диссоциации. Сплошная кривая 1 соответствует режиму ускорения протонов до максимальной энергии ( $B_o = 1,1902$  Тл), среднее напряжение на дуанте ( $\bar{V}_{g} = V_{g} \cdot \cos \phi_{g}$ ) равно 20 кВ. Видно, что пучок начинает теряться примерно с энергии 85 МэВ, и потери резко увеличиваются при энергии больше 130 МэВ, при которой интенсивность составляет 23% от величины I<sub>o</sub>. Возможно достичь W = 153 МэВ, при этом I = 0,7 · 10<sup>-3</sup> · I<sub>o</sub>. В области энергии частота ускоряющего напряжения уменьшается примерно на 5%.

Пунктирная линия <u>1</u> (рис.2) показывает изменение интенсивности для того же режима при  $V_n = 15 \text{ kB}$ .

Можно несколько увеличить конечную энергию ускоряемых  $H^-$ ионов путем уменьшения магнитного поля в центре ( $B_0$ ). Предполагается, что относительное изменение среднего магнитного поля вдоль радиуса при этом сохраняется.

Кривая 2 (рис.2) соответствует уменьшению  $B_0$  на 0,0852 Тл, кривая 3 — на 0,2 Тл, при этом частота ускоряющего напряжения остается еще в диапазоне частот вариатора установки "Ф" ( $f_{\kappa} = 14,4 \text{ M}\Gamma_{U}$ ). По кривой 3 видно, что пучок начинает теряться с энергии W = 109 MэВ,



потери резко увеличиваются при энергии 109 МэВ, и при W = 161 МэВ интенсивность составляет 8% от величины I<sub>0</sub>.

На рис.3 сплошные линии показывают изменение интенсивности пучка из-за перезарядки на молекулах остаточного газа при различных величинах давления в камере для воздуха (1 - p =  $2 \cdot 10^{-6}$  Topp,  $\bar{V}_{A} = 20$  кB; 2 - p =  $10^{-6}$  Topp,  $\bar{V}_{A} = 15$  кB; 3 - p =  $10^{-6}$  Topp,  $\bar{V}_{A} = 20$  кB; 4 - p =  $=10^{-6}$  Topp,  $\bar{V}_{A} = 20$  кB).

Пунктирные линии показывают соответствующие изменения интенсивности при перезарядке на молекулах водорода (5 - р =  $10^{-5}$  Topp,  $\bar{V}_{\rm A}$  = 20 кВ; 6 - р =  $5 \cdot 10^{-6}$  Topp,  $\bar{V}_{\rm A}$  = 20 кВ). Заштрихованная линия на рис.3 показывает граничные радиусы, за которыми пучок Н<sup>-</sup>ионов полностью теряется из-за электрической диссоциации.

Полные потери Н<sup>-</sup>-ионов при ускорении на установке "Ф" легко находятся из рис.2, рис.3. Так, при ускорении до энергии W = 130 МэВ для воздуха ( $p = 10^{-6}$  Topp) интенсивность пучка Н<sup>-</sup>-ионов составит ~ 3% от величины I<sub>o</sub>. При том же режиме ускорения, но для водорода ( $p = 5 \cdot 10^{-6}$  Topp), интенсивность равна 11% от значения I<sub>o</sub>.

#### 4. ПЕРЕЗАРЯДНАЯ МИШЕНЬ

Для вывода пучка ускоренных Н<sup>-</sup>ионов обычно используется перезарядная мишень, которая представляет собой вертикальную полоску из углеродной фольги микронной толщины и шириной вдоль радиуса несколько мм. Перезарядная мишень устанавливается на специальном устройстве внутри камеры ускорителя, и положение ее управляется дистанционно. Толщина мишени выбирается такой, чтобы после ее прохождения практически 100% Н<sup>-</sup>ионов теряли оба электрона, и пучок протонов выходил на фланец стенки камеры фазотрона.

С достаточной для данных расчетов точностью можно считать, что переход Н<sup>-</sup> в H<sup>+</sup> происходит двухступенчато с сечениями  $\sigma_{-1,0}$  и  $\sigma_{0,1}$ . Как и ранее, сечением прямого процесса  $\alpha_{-1,1}$  пренебрегаем.

При энергиях Н<sup>-</sup>-ионов в диапазоне 130÷150 МэВ соответствующие сечения перезарядки равны  $\sigma_{-1,0} = 2,8 \cdot 10^{-18} \text{ см}^2$  и  $\sigma_{0,1} = 10^{-18} \text{ см}^2$  на атом для углерода <sup>/7/</sup>. Совместное решение уравнений кинетики для Н<sup>-</sup> и Н<sup>°</sup> приводит к следующим зависимостям доли нейтралов и Н<sup>-</sup>ионов после прохождения перезарядной мишени.

$$D_{H^{-}} = \exp(-\sigma_{-1,0} \cdot N \cdot d/A),$$
(12)  
$$D_{H^{0}} = \frac{\sigma_{-1,0}}{\sigma_{-1,0} - \sigma_{0,1}} [\exp(-\sigma_{0,1} \cdot N_{a} \cdot d/A) - \exp(-\sigma_{-1,0} \cdot N_{a} \cdot d/A)],$$
(12)

где N<sub>а</sub> — число Авогадро, А — атомный вес материала мишени, d — толщина мишени в г/см<sup>2</sup>.

Для мишени толщиной d = 100 мкг/см<sup>2</sup> (~ 0,5 мкм) и указанных выше значений сечений из соотношений (12) найдем  $D_{H^{-}} = 7,7 \cdot 10^{-7}$ ,  $D_{H^{\circ}} = 1,02 \cdot 10^{-2}$ . Таким образом, в данном диапазоне энергий пучок H<sup>-</sup>-ионов за одно прохождение практически полностью перезаряжается в пучок протонов при минимальной толщине углеродной мишени 100 мкг/см<sup>2</sup>.

Для того чтобы все частицы пучка Н<sup>-</sup>ионов пересекли перезарядную мишень, ее ширина вдоль радиуса должна несколько превышать радиальное расстояние между соседними траекториями частиц пучка. "Энергетический" шаг по радиусу при W = 130 МэВ,  $\bar{r} = 132$  см,  $Q_r = 1,1$ ,  $\Delta W_{max} = 80$  кэВ составляет  $\Delta r_{3} = 0,35$  мм. При периоде процессии орбит; равной 10 оборотам, достаточная радиальная ширина мишени — 3,5 мм. С некоторым запасом примем ширину мишени равной 5 мм. Найдем ионизационную потерю энергии пучком Н<sup>-</sup>ионов при пересечении такой мишени. Средняя потеря энергии однозарядным ионом на единице длины тормозящей среды определяется формулой Блоха<sup>/9/</sup>

45

$$dW/dx = -0.307 \cdot \rho \cdot \frac{z}{A} \left[ \frac{1}{\beta^2} \ln \left( \frac{1.02 \cdot 10^6 \cdot \beta^2 \cdot \gamma^2}{I} \right) - 1 \right] \left( \frac{M_{BB}}{c_{M}} \right), \quad (13)$$

где z,  $\rho$ , I — заряд, плотность в г/см<sup>3</sup> и средний потенциал ионизации в эВ тормозящей среды. Для мишени из углерода (z/A = 0,5,  $\rho$  = 2,25 г/см<sup>3</sup>, I = 78 эВ) средние потери для Н<sup>-</sup>иона с энергией 130 МэВ будут составлять dW/dx = -12,15 МэВ/см. При толщине перезарядной мишени 1 мкм потери энергии протоном или Н -ионом за одно прохождение равны  $\Delta W = 1,2$  кэВ. Если интенсивность пучка составляет, например, 10 мкА, то в перезарядной мишени выделяется мощность 0,012 Вт, что является по условиям охлаждения вполне допустимой величиной.

При пересечении перезарядной мишени, в основном, из-за упругого рассеяния Н<sup>-</sup>ионов в мишени эмиттансы выведенного пучка протонов несколько увеличиваются. Проведем оценку влияния многократного рассеяния пучка в мишени.

В общем случае средний квадрат угла многократного рассеяния при прохождении слоя вещества толщиной d (г/см<sup>2</sup>) дается выражением<sup>/10/</sup>

$$\langle \theta^2 \rangle = \theta_1^2 \cdot \ln \Omega, \qquad (14)$$

где  $\theta_1^2 = 4\pi N_a \cdot r_p^2 \cdot \frac{z^2}{A} \cdot \frac{d}{\beta^4 \gamma^2}$   $r_p = 1,536 \cdot 10^{-16}$  см — классический радиус протона,  $\Omega$  — среднее число столкновений при прохождении слоя вещества.

Как правило, перезарядные мишени относительно тонкие и обычно  $\Omega < 20.$  С другой стороны, для энергий Н<sup>-</sup>-иона (W), больших 100 МэВ, параметр  $a = \frac{z}{137 \cdot \beta} \ll 1.$  В этом случае задачу о рассеянии в слабоэкранированном кулоновском поле ядра можно решать в первом борновском приближении /11/. Тогда с учетом поправок из работы /12/ среднее число актов рассеяния определяется выражением (10),

$$\Omega = \frac{6.68 \cdot 10^3 \cdot (z+1) \cdot z^{1/3}}{A(1+3.35 a^2)} \cdot \frac{d}{\beta^2}.$$
(15)

Средний квадрат угла рассеяния в этом случае определяется формулой

$$\langle \theta^2 \rangle = \theta_1^2 \cdot \mathbf{B},$$
 (16)

где В – ln B = ln Ω – 0,115. Для Н<sup>-</sup>-иона с энергией 130 МэВ и мишени из углерода толщиной 1 мкм (d = 0,225 мг/см<sup>2</sup>) получим a = 0,092, Ω = 6,78, В =2,85 и средний квадрат проекции угла рассеяния  $\sigma_z^2 = (1/2) \mathcal{A} > 2,55 \cdot 10^{-9}$ или  $\sigma_z = 0,05$  мрад. Увеличение среднеквадратичной амплитуды из-за рассеяния в мишени можно оценить по формуле / 13/

$$<\mathbf{a}_{z}> = [\mathbf{a}_{z_{0}}^{2} + \frac{2\overline{r}^{2}}{Q_{z}^{2}} \cdot \sigma_{z}^{2} \cdot \nu_{M}]^{\frac{1}{2}},$$
 (17)

где  $\nu_{\rm M}$  — число прохождений через мишень,  $a_{z_0}$  — начальная амплитуда. Из этого выражения следует, что при однократном пересечении перезарядной мишени толщиной около 1 мкм при энергии Н<sup>-</sup>-ионов 130 МэВ искажение вертикального и горизонтального эмиттансов пренебрежимо мало.

#### 5. ВЫВОД ПУЧКА ПРОТОНОВ

После прохождения Н<sup>-</sup>-ионами перезарядной мишени образовавшийся пучок протонов, отклоняясь в магнитном поле фазотрона, пересекает "спирали". Поэтому для определения выходных характеристик выведенного протонного пучка необходимо численное моделирование движения частиц в магнитном поле со знакопеременными градиентами. Следует отметить также, что при использовании цилиндрической системы координат с началом в центре магнитного поля фазотрона в некоторой точке траектории вывода протона dr/d  $\phi \rightarrow \phi$ , и дальнейший счет невозможен.

В связи с этим была создана новая программа DRUNH на языке ASS-2 для ЭВМ EC-1010. В этой программе начало координат задается на произвольных расстоянии и азимуте относительно центра фазотрона. Таблица характеристик магнитного поля специальной подпрограммой преобразуются к новой системе координат, в которой определяется поле на траектории частицы с заданными начальными условиями и энергией. Шаг интегрирования 0,625° в новой системе координат. В начале с помощью программ DRUNGE находятся точки начального радиального эмиттанса при заданной энергии и выбранной амплитуде радиальных колебаний. Затем на заданном азимуте изменяется заряд всех частиц на противоположный, вводится программа DRUNH со смещенной системой координат, и с этого азимута эмиттанс пучка протонов переносится через холмы и долины поля фазотрона в область вне магнитного поля на заданный конечный азимут в смещенной системе координат. Результаты рас-

чета на ЕС-1010 выводятся на графопостроитель и печать.

На рис.4 изображен начальный эмиттанс пучка протонов непосредственно после перезарядки из Н<sup>-</sup>ионов с энергией 130 МэВ. Амплитуда радиальных колебаний **a**<sub>0</sub> = 1 см.

На рис.5 приведены траектории протонов, соответствующих центру начального эмиттанса. Траектория протона с энергией 130 МэВ отвечает штатному уровню магнитного поля ( $B_{2} = 1,1902$  Тл), траектория





с W = 161 МэВ — уровню, сниженному на 0,2 Тл. Перезарядная мишень установлена на азимуте  $108^{\circ}$  от поперечной оси камеры (точка М). Центр новой системы координат находится на расстоянии 260 см от центра фазотрона. Изменяя азимут перезарядной мишени, можно в широких пределах регулировать направление выведенного пучка. На рис.5 показана также траектория вывода протонов, ускоренных до максимальной энергии. Кроме центральной траектории еще 6 точек начального эмиттанса (рис.4) были проведены до азимута  $\phi_{1k} = 168,75^{\circ}$  (270 шагов) в смещенной системе координат (точка "К").

На рис.6 изображены траектории этих частиц (точки) и центральная траектория (сплошная линия) в координатах новой (смещенной) системы отсчета. Видно, что знакопеременные градиенты магнитного поля вызывают некоторую фокусировку отклоненного пучка протонов.



На рис.7 приведен радиальэмиттанс выведенного ный пучка (6 точек) на азимуте  $\phi_{1}$ = 168,75° (2,945 рад`, соответствующий точке К (рис.5). Этот эмиттанс соответствует плоскости  $\phi = \text{const.} и$  для получения поперечного к траектории вывода эмиттанса следует найти проекцию на плоскость, перпендикулярную к центральной траектории в точке "К". При этом радиальный размер выходного эмиттанса (рис.7) уменьшится примерно вдвое.



## 6. ОДНОВРЕМЕННОЕ УСКОРЕНИЕ ДВУХ ПУЧКОВ

**Puc**. 7

В работе<sup>/14/</sup> впервые рассмотрена принципиальная возможность одновременного ускорения противоположно заряженных ионов одного и того же элемента в изохронном циклотроне. В работе<sup>/15/</sup>описан экспе-

римент по одновременному ускорению протонов и Н<sup>-</sup>ионов в изохронном циклотроне У-120М.

По такой же схеме возможно одновременное ускорение двух пучков (протонов и Н<sup>-</sup>ионов) в фазотроне. Так как в фазотроне продольные колебания частиц сгустка устойчивы, то разница в массах протонов и Н<sup>-</sup>ионов не оказывает (в отличие от изохронного циклотрона) практически никакого влияния на процесс ускорения обоих ионов.

Относительно ионного источника отметим лишь, что в работе<sup>/15/</sup> описан комбинированный источник с двумя разрядными камерами, разработанный для инжекции протонов и Н<sup>-</sup>ионов в У-120М. В установке "Ф" уровень магнитного поля в центре значительно ниже, чем в циклотроне У-120М, при примерно одинаковом напряжении на дуанте. Поэтому вопросы создания ионного источника и соответствующей центральной оптики, по-видимому, разрешимы.

Пучок Н<sup>-</sup>ионов в этом режиме ускоряется до энергии 130<sup>+</sup>150 МэВ и выводится перезарядной мишенью (г<sub>м</sub>≈132<sup>+</sup>140 см). Пучок протонов в процессе ускорения пересекает перезарядную мишень и выводится существующей системой вывода. Из рис.5 видно, что можно направить оба выведенных пучка протонов с энергиями 130 МэВ и 670 МэВ в существующие каналы пучков. Так как импульсы этих пучков отличаются в 2,56 раза, то можно осуществлять коррекцию углов их траекторий общей магнитной системой. Изменяя радиус перезарядной мишени, можно уменьшать в некоторых пределах энергию пучка Н<sup>-</sup>ионов. Возрастание эмиттансов протонного пучка при многократном пересечении перезарядной мишени находится из выражений (16), (17) при заданных параметрах мишени.

#### ЗАКЛЮЧЕНИЕ

Проведенные аналитические и численные расчеты показывают, что при ускорении Н<sup>-</sup>-ионов в установке "Ф" энергия частиц ограничена потерями пучка из-за электрической диссоциации в магнитном поле и составляет 130÷150 МэВ. Приведены выражения для расчета потерь энергии и кулоновского рассеяния в перезарядной мишени. Создана программа и выполнен расчет траекторий и радиального эмиттанса выведенного после перезарядки пучка протонов. Рассмотрена принципиальная возможность одновременного ускорения и вывода в фазотроне ОИЯИ двух пучков — протонов и Н<sup>-</sup>ионов.

В заключение авторы выражают благодарность В.П.Дмитриевскому за поддержку данной работы.

#### ЛИТЕРАТУРА

- 1. Василенко А.Т. и др. В сб.: Труды Х Всесоюзного совещания по ускорителям заряженных частиц. Д9-87-105. т.П. Дубна: ОИЯИ, 1987, с. 228.
- 2. Stinsen G.M. et al. Nucl. Instr. and Meth., 1969, v. 74, p. 333.
- З. Аленицкий Ю.Г. и др. ОИЯИ, Р9-81-664, Дубна, 1981.
- 4. White M.J. et al. In: Proc. 8-th Conf. High Eenergy Accelerators, Geneva, CERN, 1971, p.568.
- 5. Тучек Й. и др. ОИЯИ, Р9-83-285, Дубна, 1983.
- 6. Haddock R.P. et al. In: Proc. Intern. Conf. on Sector-Focused Cyclotron. CERN, Geneva, 1963, p.340.
- 7. Berkner K.H. et al. Phys. Rev., 1964, 134, 6A, p. 1461.
- 8. Дмитриевский В.П. и др. Международное совещание по циклотронам и их применению. Р9-85-707, Дубна: ОИЯИ, 1985, с. 251.
- 9. Росси Б. Частицы больших энергий (перевод с англ.). М.: ГИТТЛ, 1955.
- 10. Стародубцев С.В., Романов А.М. Прохождение заряженных частиц через вещество. Ташкент: Изд-во АН УзССР, 1962.
- 11. Moliere G. Zs. Naturforsch, 1948, 3A, p. 78.
- 12. Bethe H.A. Phys. Rev., 1953, 89, p.1256.
- 13. Коломенский А.А., Лебедев А.Н. Теория циклических ускорителей. М.: Физматгиз, 1962.
- 14. Дмитриевский В.П. и др. ОИЯИ, Р9-87-703, Дубна, 1987.
- 15. Бейшовец В. и др. ОИЯИ, Р9-88-249, Дубна, 1988.

Рукопись поступила в издательский отдел 23 августа 1988 года.

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ? Вы можете получить по почте перечисленные ниже книги, если они не были заказаны ранее. 4 р. 50 к. Труды XI Международного симпозиума по ядерной Д13-84-63 электронике. Братислава, Чехословакия, 1983. Труды 7 Международного совещания по проблемам 4 р. 30 к. Д2-84-366 квантовой теории поля. Алушта, 1984. Труды VII Международного семннара по проблемам 5 р. 50 к. Д1.2-84-599 физики высоких энергий. Дубна, 1984. Труды Ш Международного симпозиума по избранным 7 р. 75 к. Д17-84-850 проблемам статистической механики. Дубна, 1984. (2 тома) 4 р. 00 к. Труды Международного совещания по аналитическим Д11-85-791 вычислениям иа ЭВМ и их применению в теоретической физике. Дубна, 1985. Труды XII Международного симпозиума по ядерной 4 р. 80 к. Д13-85-793 электронике. Дубна, 1985. 3 р. 75 к. Труды Международной школы по структуре ядра. Д4-85-851 Алушта, 1985. Труды V Международной школы по нейтронной физике 4 р. 50 к. Д3.4.17-86-747 Алушта, 1986. Труды IX Всесоюзного совещения по ускорителям 13 n. 50 к эаряженных частиц. Дубна, 1984. (2 тома) Труды VIII Международного семинара по проблемам 7 р. 35 к. Д1,2-86-668 физики высоких зиергий. Дубна, 1986. (2 тома) 13 р. 45 к. Труды Х Всесоюзного совещания по ускорителям Д9-87-105 заряженных частиц. Дубна, 1986. (2 тома) Труды Международной школы-семинара по физике 7 р. 10 к. Д7-87-68 тяжелых ионов. Дубна, 1986. Труды Совещания "Ренормгруппа - 86". Дубна, 1986. 4 р. 45 к. Д2-87-123 4 р. 30 к. Труды Международного совещания по теории Д4-87-692 малочастичных и кварк-адронных систем. Дубна, 1987. Труды VIII Международного совещания по проблемам 3р. 55 к. **Д2-87-79**8 квантовой теории поля. Алушта, 1987. Труды II Международного симпозиума по проблемам 4 р. 20 к. **Д14-87-799** взаимодействия мюонов и пионов с веществом. Дубна, 1987 Труды IV Международного симпозиума по избранным 5 p. 20 ĸ. Д17-88-95 проблемам статистической механики. Дубна, 1987.

Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79. Издательский отдел Объединенного института ядерных исследований.

# ТЕМАТИЧЕСКИЕ КАТЕГОРИИ ПУБЛИКАЦИЙ

## ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ

## ИССЛЕДОВАНИЙ

| Индекс     | Тематика                                                                                                             |
|------------|----------------------------------------------------------------------------------------------------------------------|
|            |                                                                                                                      |
| 1.         | Экспериментальная физика высоких энергии                                                                             |
| 2.         | Теоретическая физика высоких энергий                                                                                 |
| 3.         | Экспериментальная нейтронная физика                                                                                  |
| 4.         | Теоретическая физика низких энергий                                                                                  |
| 5.         | Математика                                                                                                           |
| 6.         | Ядерная спектроскопия и радиохимия                                                                                   |
| 7.         | Физика тяжелых ионов                                                                                                 |
| 8.         | Криогеника '                                                                                                         |
| 9.         | Ускорители                                                                                                           |
| 10.        | Автоматизация обработки экспериментальных<br>данных                                                                  |
| 11.        | Вычислительная математика и техника                                                                                  |
| 12.        | Химия                                                                                                                |
| 13.        | Техника физического эксперимента                                                                                     |
| 14.        | Исследования твердых тел и жидкостей<br>ядерными методами                                                            |
| 15.        | Экспериментальная физика ядерных реакций<br>при низких энергиях                                                      |
| 16.        | Дозиметрия и физика защиты                                                                                           |
| <b>17.</b> | Теория конденсированного состояния                                                                                   |
| 18.        | Использование результатов и методов<br>фундаментальных физических исследований<br>в смежных областях науки и техники |
| 19.        | Биофизика                                                                                                            |

Кольга В.В., Ле Киен Тхань, Онищенко Л.М. Теоретическое рассмотрение возможности ускорения и вывода Н<sup>-</sup>ионов на фазотроне ОИЯИ

Проведены аналитические и численные расчеты потерь Нионов при ускорении на фазотроне ОИЯИ. Энергия Н<sup>-</sup>-ионов ограничена потерями пучка из-за электрической диссоциации в магнитном поле и составляет 130÷150 МэВ. Рассмотрена возможность одновременного ускорения и вывода в фазотроне ОИЯИ двух пучков — протонов и Н<sup>-</sup>-ионов.

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

P9-88-637

P9-88-637

de

Сообщение Объединенного института ядерных исследований. Дубиа 1988

## Перевод авторов

Kol'ga V.V., Le Kien Thanh, Onischenko L.M. Theoretical Consideration of a Possibility of Accelerating and Extracting H<sup>-</sup>-Ions in the JINR Phasotron

Analytical and numerical calculations have been carried out to find losses of H<sup>-</sup>-ions at their acceleration in the JINR phasotron. The energy of H<sup>-</sup>-ions is limited by beam losses due to electric dissociation in the magnetic field and is  $130\div150$  MeV. A basic possibility of simultaneous acceleration and extraction of two beams (protons and H<sup>-</sup>ions) in the JINR phasotron is considered.

The investigation has been performed at the Laboratory of Nuclear Problems, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1988