

K143

P9-87-647

Н.Ю.Казаринов, А.Ю.Молодоженцев, Э.А.Перельштейн

АНАЛИЗ ПРОДОЛЬНОГО ДВИЖЕНИЯ ЧАСТИЦ В РАЗРЕЗНОМ МИКРОТРОНЕ НА ЭНЕРГИЮ 160 МэВ

В отделе новых методов ускорения ОИЯИ по инициативе Академии наук ЧССР проведен расчет разрезного микротрона с параметрами: энергия ускоренных электронов 160 МэВ, ток в импульсе $30 \div 50$ мА, длительность импульса ~ 2 мкс, эмиттанс ~ $0,1\pi$ мм мрад., энергетический разброс ~ 0,1%.

Такой микротрон может быть использован в качестве инжектора синхротрона для последующего ускорения и накопления частиц.

Разрезной микротрон (РМ) схематически изображен на рис. 1. Цифрами отмечены его основные элементы: 1 — инжектор; 2 — инжекционные дипольные магниты; 3 — линейный ускоритель электронов (ЛУЭ); 4 — поворотные 180-градусные магниты; 5 — выводной магнит.

Работа РМ осуществляется следующим образом ^{/1,7/}. Пучок электронов с энергией 10 МэВ вводится на ось линейного ускорителя (ЛУЭ), обеспечивающего набор энергии 10 МэВ на длине 1 м. С помощью двух заворачивающих 180градусных магнитов реализуется 15 прохождений ЛУЭ, после чего пучок выводится из ускорителя.

В данной работе рассматриваются проблемы, связанные с продольным движением пучка, проводится оценка допусков на основные параметры РМ.

Puc. 1.

1. При анализе продольного движения в микротроне динамика электронов в ЛУЭ рассматривалась как ускорение в поле эквивалентной бегущей волны с фазовой скоростью β_Φ=1.

$$E = E_0 \cos\left(\frac{2\pi}{\lambda}(ct-s)\right) = E_0 \cos\phi, \qquad (1)$$

где Е₀, λ — амплитуда и длина волны ускоряющего поля в ЛУЭ соответственно, с — скорость света.

Основные параметры РМ — набор энергии на обороте $\Delta \epsilon_0$ и величина индукции магнитного поля в поворотных магнитах B_p , связаны между собой резонансным условием $\frac{12}{2}$:

$$\frac{2 \pi \Delta \epsilon_0}{e B_p} = \nu \lambda,$$
(2)
где ν — кратность прирацияния периодадобращиения частицы.
БИТ ЛИСОТЕНА И 1

Учитывая отличие скорости частицы от фазовой скорости ускоряющей волны $^{/8/}$ и наличие дополнительного набега фазы в краевом поле магнита, изменение фазы в начале ЛУЭ на k-ом обороте ϕ_k можно описать разностным уравнением второго порядка:

$$\Delta^{2} \phi_{\mathbf{k}} \equiv \phi_{\mathbf{k}+2} - 2\phi_{\mathbf{k}+1} + \phi_{\mathbf{k}} =$$

$$= \delta \phi_{\mathbf{k}+1}^{\mathbf{n}} - \delta \phi_{\mathbf{k}}^{\mathbf{n}} + \delta \phi_{\mathbf{k}+1}^{\mathbf{M}} - \delta \phi_{\mathbf{k}}^{\mathbf{M}} + \frac{2\pi\nu}{\Delta\gamma_{0}} \Delta\gamma_{\mathbf{k}} +$$

$$+ \frac{2\pi}{\lambda} \left(2\mathbf{L} - \mathbf{L}_{\mathbf{n}\gamma_{9}} \right) \left(\frac{1}{\beta_{\mathbf{k}+1}} - \frac{1}{\beta_{\mathbf{k}}} \right) - 2\pi\nu, \qquad (3)$$

где $\Delta \gamma_k = \frac{\Delta \gamma_0}{\cos \phi_0} \cos \phi_{k+1}$ увеличение релятивистского фактора элект-

рона, $\Delta \gamma_0 = \frac{\Delta \epsilon_0}{m c 2}$ (m— масса электрона), ϕ_0 — фаза синхронной частицы, L— расстояние между поворотными магнитами, L_{ny9} — длина линейного ускорителя, $\delta \phi_k^n$ — дополнительный набег фазы при ускорении в ЛУЭ, $\delta \phi_k^M$ — набег фазы в краевом поле магнита. В пределе $\beta \rightarrow 1$ и в случае однородного поля поворотных магнитов дополнительные набеги фаз стремятся к нулю и уравнение (3) сводится к фазовому уравнению для традиционного микротрона:

$$\Delta^{2} \phi_{k} = 2\pi\nu \frac{\cos \phi_{k+1}}{\cos \phi_{0}} - 2\pi\nu.$$
 (4)

Фаза синхронной частицы $\phi_0 = 8^\circ$ была выбрана так, что для заданной величины $\nu = 2$ набег фазы продольных колебаний $\mu_s^{-3/2}$

 $\cos\mu_{s} = 1 - \pi\nu \operatorname{tg} \phi_{0}, \qquad (5)$

равен $\pi/2$.

Основные параметры РМ, используемые при анализе продольного движения пучка, сведены в табл. 1.

На рис. 2 показаны набеги фаз $\Delta \phi_k^n$ в линейном ускорителе на различных оборотах для РМ с заданными параметрами и изменение дополнительного набега фаз в краевом магнитном поле магнита $\Delta \phi_k^{M} = \delta \phi_{k+1}^M - \delta \phi_k^M$ для типичного распределения индукции магнитного поля в РМ по длине магнита, изображенного на рис. 3. Зависимость изменения дополнительного набега фазы в краевом магнитном поле от номера оборота построена для резонансного набора энергии в ЛУЭ. Как следует из графиков, $\Delta \phi_k^{n,M}$ достаточно быстро стремится к нулю с увеличением энергии частицы.

Таблица 1

Основные параметры разрезного микротрона на 160 МэВ

энергия выведенного пучка, МэВ	160
прирост энергии на оборот, МэВ	10
число оборотов	15
индукция в заворачивающих магнитах, Т	0,6981
кратность первого оборота	48
расстояние между магнитами, м	3
кратность приращения	2
длина ЛУЭ, м	1
длина волны ускоряющего поля, м	0,15
синхронная фаза, град	8
амплитуда ускоряющего поля, МВ/м	10
диаметр первой орбиты, м	0,18
диаметр последней орбиты, м	1,6
расстояние между соседними орбитами, м	0,1
импульсный ток ускоренных электронов, ^m A	30÷50
длительность импульса, мкс	2

Это дает возможность найти условия инжекции центра масс пучка, фиксируя выходную энергию и считая изменение фазы на последнем обороте равным нулю при $\phi_N = \phi_0$, где N — число оборотов в PM. Энергия ϵ_{inj} и фаза ϕ_{inj} инжекции находятся с использованием рекуррентного соотношения (3) в обратном направлении. Зависимости ϕ_{inj} и ϵ_{inj} от синхронной фазы ϕ_0 показаны на рис. 4. Энергия инжекции при заданных значениях параметров PM в диапазоне возможных для данной кратности синхронных фаз практически постоянна и равна ϵ_{ini} =

Puc. 3.

Puc. 5.

= 9,85 МэВ. Такой характер зависимости $\epsilon_{inj}(\phi_0)$ позволяет инжектировать пучок с достаточно большой фазовой протяженностью.

Фазовый портрет пучка на выходе из микротрона изображен на рис. 5. При инжекции электроны равномерно заполняли эллипс с полуосями $\Delta \phi = 5^{\circ}$ и $(\Delta \epsilon / \epsilon)_{inj} = 1\%$ (пунктир на рис. 5). Гистограмма распределения ускоренных электронов по энергии приведена на рис. 6. Средняя выходная энергия электронов равна 160 МэВ, с относительным разбросом ~ 10^{-3} и со среднеквадратичным отклонением $\sigma_{\epsilon} \approx$ ≈ 0.066 МэВ. Таким образом, для достижения требуемых параметров на выходе микротрона, необходимо инжектировать пучок электронов с энергией $\epsilon_{inj} = 9,85$ МэВ и энергетическим разбросом $(\Delta \epsilon / \epsilon)_{inj} =$ = ± 1% в окрестности фазы ϕ_{inj} 3.

2. Оценим необходимую степень стабилизации основных параметров разрезного микротрона: уровня плато магнитного поля, амплитуды ускоряющего электрического поля, длины волны задающего СВЧ-генератора.

Изменение этих параметров от цикла к циклу приводит к возбуждению продольных когерентных колебаний и увеличению эффективного энергетического разброса пучка, который оценивается как:

Puc. 6.

$$\left(\frac{\delta\gamma}{\gamma}\right)_{\varphi\varphi\varphi}^{2} = \left(\frac{\delta\gamma}{\gamma}\right)_{\varphi}^{2} + \left(\frac{\delta\gamma}{\gamma}\right)_{\kappa\sigma}^{2}, \qquad (7)$$

где $(\delta_{\gamma'\gamma'})_0$ — энергетический разброс частиц в отсутствие возмущений, $(\delta_{\gamma'\gamma'})_{\kappa or}$ — амплитуда когерентных колебаний энергии, обусловленных возмущениями.

Уход величин индукции магнитного поля и длины волны от резонансных значений не должен превышать значений ^{77/}

$$\frac{\Delta B}{B_{p}} = \left(\frac{\delta \gamma}{\gamma}\right)_{\text{don}}, \qquad \frac{\Delta \lambda}{\lambda} = \left(\frac{\delta \gamma}{\gamma}\right)_{\text{don}}, \tag{8}$$

где $(\delta_{\gamma/\gamma})_{pon}$ — допустимое изменение конечного энергетического разброса.

Допустимая величина ошибки в амплитуде электрического поля равна:

$$\frac{\Delta E}{E_{o}} = (N+1) \left(\frac{\delta \gamma}{\gamma}\right)_{\text{gon}} |\sin \mu_{s}|, \qquad (9)$$

где N — число орбит разрезного микротрона.

4

Задаваясь изменением энергетического разброса $(\delta_{\gamma/\gamma})_{\text{доп}} \approx 5 \cdot 10^{-4}$, определим допуски на временную стабильность параметров ускорителя для $\mu_s = \pi/2$:

$$\frac{\Delta B}{B_{p}} = 5 \cdot 10^{-4} , \quad \frac{\Lambda \lambda}{\lambda} = 5 \cdot 10^{-4} , \quad \frac{\Lambda E}{E_{0}} = 8 \cdot 10^{-3}.$$
(10)

Эти оценки совпадают с результатами численного моделирования продольного движения в РМ. Допуск на случайную ошибку в амплитуде электрического поля, т.е. на временную стабильность в цикле ускорения, оказывается более жестким, чем (9), поскольку флуктуации амплитуды электрического поля не могут быть скомпенсированы изменением синхронной фазы, как в случае постоянного отклонения амплитуды от резонансного значения:

$$\sqrt{\langle \left(\frac{\delta E}{E_{0}}\right)^{2}} = \frac{\sqrt{N} + \frac{1}{\sqrt{N}}}{\sqrt{1 + \cos \mu_{s}}} \left(\frac{\delta \gamma}{\gamma}\right)_{\text{gon}}.$$
 (11)

Согласно (11), среднеквадратичная амплитуда флуктуаций электрического поля для указанного допустимого изменения энергетического разброса не должна превышать величины.

$$\sqrt{\langle \left(\frac{\delta E}{\bullet E_{0}}\right)^{2}\rangle} = 2 \cdot 10^{-3}.$$
(12)

Для проверки правильности оценочной формулы (12) было организовано 300 розыгрышей наборов случайных, не скоррелированных друг с другом ошибок в амплитуде электрического поля для каждого оборота с нулевой средней величиной и заданным среднеквадратичным отклонением $\sigma_{\rm E} = 2 \cdot 10^{-3} {\rm E}_{\rm o}$. Рассматривалось продольное движение центра масс, которое имеет на выходе РМ в невозмущенном случае заданную энергию и находится в синхронной фазе ϕ_0 . На рис. 7 приведена гистограмма отклонений энергии опорной частицы от с вых - 160 МэВ при наличии случайных ошибок в амплитуде ускоряющего поля. Среднеквадратичное отклонение энергии составляет 4,5 $\cdot 10^{-4} \epsilon_{\text{вых}}^{\circ}$. На рис. 8 показан фазовый портрет пучка на выходе РМ для одного из розыгрышей случайных ошибок в ускоряющем поле со среднеквадратичной величиной амплитуды $\sigma_{\rm E} = 2 \cdot 10^{-3} \, {\rm E}_{\rm o}$. При инжекции частицы заполняли эллипс, показанный на рис. 5 пунктирной линией. Соответствующая гистограмма распределения ускоренных электронов по энергии приведена на рис. 9. Средняя энергия электронов на выходе РМ равна

160 МэВ, относительный разброс ~ 10^{-3} , среднеквадратичное отклонение энергии $\sigma_{\epsilon} \approx 0,0695$ МэВ. Таким образом, наличие случайной ошибки в амплитуде ускоряющего поля $\sigma_E \approx 2 \cdot 10^{-3} E_0$ не приводит к значительному ухудшению качества пучка ускоренных частиц на выходе РМ.

Оценим далее допуск на стабильность частоты задающего СВЧ-генератора. Нестабильность частоты генератора $\Delta \omega$ приводит к флуктуациям фазовой скорости ускоряющей волны $\Delta \beta_{\Phi}$, причем '4' :

$$\frac{\Delta\omega}{\omega} = \frac{\Delta\beta_{\Phi}}{\beta_{\Phi}} \left(1 - \frac{\beta_{\Phi}}{\beta_{\Gamma D}}\right)^{-1} ,$$

01

где $\beta_{\rm гр}$ — групповая скорость волны.

Изменение фазовой скорости волны эквивалентно уходу амплитуды напряженности электрического поля от номинального значения Е на величину δЕ:

(13)

$$\frac{\delta E}{E_{o}} \simeq \frac{\pi L_{nyy}}{\lambda} \Delta \beta_{\Phi} tg \phi_{o}. \qquad (14)$$

Для рассматриваемых параметров РМ допустимая величина ошибки в фазовой скорости волны, согласно (11, 13), равна $\Delta\beta_{\Phi} \approx 10^{-3}$. Поэтому стабильность частоты задающего генератора должна быть выдержана на уровне $10^{-5} \div 10^{-4}$, что определяется величиной $\beta_{\Gamma P}$ для конкретной ускоряющей структуры.

3. Следует избегать гармонических составляющих в распределении магнитного поля по длине магнита у, которые могут привести к резонансной раскачке фазовых колебаний. Найдем наиболее опасную длину волны модуляции магнитного поля $\lambda_{\rm B}$.

Представим распределение индукций магнитного поля $B_{\rm g}({\rm y})$ в виде:

$$B_{z}(y) = B_{p} \left(1 + \Delta_{B} \cos k_{B} y\right), \qquad (15)$$

где Δ_B — относительная глубина модуляции, $k_B = 2\pi/\lambda_B$. Тогда период обращения частицы на k-том обороте T_k запишется как:

$$\mathbf{T}_{\mathbf{k}} = \mathbf{T}_{\mathbf{k}\mathbf{0}} \cdot \mathbf{I}_{\mathbf{k}} \left(\Delta_{\mathbf{B}} \right). \tag{16}$$

Здесь T_{ko} — период обращения в невозмущенном поле (Δ_B . 0), и величина I $_k$ (Δ_B) определена следующим образом:

$$\mathbf{I}_{\mathbf{k}}(\Delta_{\mathbf{B}}) = \mathbf{1} - \Delta_{\mathbf{B}}\mathbf{J}_{\mathbf{o}}(\mathbf{k}_{\mathbf{B}}\mathbf{x}_{\mathbf{k}}), \qquad (17)$$

где $x_k = |\beta_k \epsilon_k / eB_p|$ — радиус поворота частицы на k-том обороте в однородном магнитном поле B_p ; $J_0(x)$ — функция Бесселя нулевого порядка. Для номеров оборота $k \ge 2$ можно воспользоваться асимптотическим представлением функции Бесселя для больших значений аргумента и записать (17) в виде:

$$I_{k}(\Delta_{B}) \simeq 1 - \frac{\Delta_{B}}{\pi} \sqrt{\frac{\lambda_{B}}{x_{k}}} \cos\left(k\frac{\nu\lambda}{\lambda_{B}} + 2\pi \frac{\epsilon_{inj}}{eB_{p}\lambda_{B}} - \frac{\pi}{4}\right).$$
(18)

Как видно из (18), период является осциллирующей функцией номера оборота k. Следовательно, возможна резонансная раскачка продольных колебаний, когда набег фазы продольных колебаний μ_s кратен величине $\nu \lambda / \lambda_B$. Наиболее опасный пространственный период возмущения (целый резонанс) определяется соотношением:

 $\lambda_{\rm B} = -\nu \lambda / \mu_{\rm s} , \qquad (19)$

что для рассмотренных параметров РМ и $\mu_{\rm s} \approx \pi/2$ составляет $\lambda_{\rm B} \approx 20$ см.

На рис. 10 представлена зависимость допустимой относительной глубины модуляции магнитного поля $\Delta_{\rm B}$ от длины $\lambda_{\rm B}$, для которой отклонение энергии центра масс на выходе РМ от невозмущенного значения не превышает величины $10^{-3}\epsilon_0$. Для пространственного периода модуляции $\lambda_{\rm B} \approx 20$ см допустимая амплитуда гармоники магнитного поля равња $\Delta {\rm B}/{\rm B_p} \approx 2\cdot 10^{-4}$.

Допуски на основные параметры РМ, обеспечивающие на выходе пучок электронов требуемого качества, сведены в табл. 2.

Таблица 2
Допуски на основные параметры разрезного
микротрона на 160 МэВ

допустимый энергетический разброс пучка на выходе РМ	10 ⁻³
стабильность плато магнитного поля от цикла к циклу	$5\cdot 10^{-4}$
стабильность частоты СВЧ-генератора от цикла к циклу	$5\cdot 10^{-4}$
стабильность частоты СВЧ-генератора в цикле	$10^{-4} \div 10^{-5}$
стабильность амплитуды ускоряющего поля от цикла к циклу	$8 \cdot 10^{-3}$
стабильность амплитуды ускоряющего поля в цикле	$2 \cdot 10^{-3}$

ЛИТЕРАТУРА

1. Rand R.E. Recirculating electron accelerators (Accelerators and storage rings, ISSN 0272-5088; v.3), London, 1984.

2. Капица С.П., Мелехин В.Н. Микротрон. М.: Наука, 1967.

- 3. Коломенский А.А. ЖТФ, т.ХХХ, в.11, 1960, с.1347.
- 4. Лебедев А.Н., Шальнов А.В. Основы физики и техники ускорителей. М.: Энергоатомиздат, 1983.
- 5. Buras B., Materlik G. NIM, A246, 1986, p.21.
- 6. Rosander S., Sedlacek M., Wernhdin O., Babic H. NIM., 204, 1982, p.1.
- 7. Горбатов Ю.И. и др. Разрезной микротрон непрерывного действия НИИЯФ МГУ. (физическое обоснование). М.: изд-во МГУ, 1984, с.83.
- 8. Wiik B.H., Wilson P.B. NIM, 56, 1967, p.197.

ТЕМАТИЧЕСКИЕ КАТЕГОРИИ ПУБЛИКАЦИЙ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ

ИССЛЕДОВАНИЙ

Индекс	Тематика
1.	Экспериментальная физика высоких энергий
2.	Теоретическая физика высоких энергий
3.	Экспериментальная нейтронная физика
4.	Теоретическая физика низких энергий
5.	Математика
6.	Ядерная спектроскопия и радиохимия
7.	Физика тяжелых ионов
8.	Криогеника
9.	Ускорители
10.	Автоматизация обработки экспериментальных данных
11.	Вычислительная математика и техника
12.	Химия
13.	Техника физического эксперимента
14.	Исследования твердых тел и жидкостей ядерными методами
15.	Экспериментальная физика ядерных реакций при низких энергиях
16.	Дозиметрия и физика защиты
17.	Теория конденсированного состояния
18.	Использование результатов и методов фундаментальных физических исследований в смежных областях науки и техники
19.	Биофизика

Рукопись поступила в издательский отдел 18 августа 1987 года.

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛНОТЕКЕ?

Вы можете получить по почте перечисленные ниже книги, если они не были заказаны ранее.			
Д7-83-644	Труды Мехдународной школы-семинара по физике тяжелых ионов. Алушта, 1983.	6 р.55 к.	
Д2,13-83-689	Труды рабочего совещания по проблемам излучения и детектирования гравитационных волн. Дубна, 1983.	2 р.00 к.	
Д13-84-63	Труды XI Международного симпознума по ядерной электронике. Братислава, Чехословакия, 1983.	4 р.50 к.	
Д2-84-366	Труды 7 Международного совешания по проблемам квантовой теория поля. Алушта, 1984.	4 р.30 к.	
Д1,2-84-599	Труды VII Международного семинара по проб- лемам физики высоких энергий. Дубна, 1984.	- 5 р.50 к.	
Д10,11-84-818	Труды V Международного совещания по проб- лемам математического моделирования, про- граммированию и математическим методам решения физических задач. Дубна, 1983.	3 р.50 к.	
Д17-84-850	Труды III Международного симпозиума по избранным проблемам статистической механнки. Дубна,1984./2 тома/	7 р.75 к.	
Д11-85-791 _.	Труды Международного совещания по аналитн- ческим вычислениям на ЭВМ и их применению в теоретической физике. Лубна. 1985.	4 п.00 к.	
Д13-85-793	Труды XII Международного симпознума по ядерной электронике. Дубна, 1985.	4 р.80 к.	
Д4-85-851	Труды Международной школы по структуре ядра. Алушта, 1985.	3 р.75 к.	
13,4,17-86-747	Труды V Международной школы по нейтронной физике. Алушта, 1986.	4 р.50 к.	
	Труды IX Всесоюзного совещания по ускори- телям заряженных частиц. Дубна, 1984. /2 тома/	13 р.50 к.	
Д1,2-86-668	Труды VIII Международного семинара по проблемам физики высоких энергий. Дубна,1986. /2 тома/	7 р.35 к.	
Д9-87-105	Труды X Всесоюзного совещания по ускори- телям заряженных частиц. Дубна, 1986. /2 тома/	13 р.45 к.	
Д7-87-68	Труды Международной школы-семинара по фнзике тяжелых ионов.Дубна, 1986	7 р.10 к.	
Д2-87-123	Труды Совещания "Реиормгруппа-86". Дубна, 1986	4 р.45 к.	

Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79. Издательский отдел Объединенного института ядерных исследований. Казаринов Н.Ю., Молодоженцев А.Ю., Перельштейн Э.А. Анализ продольного движения частиц в разрезном микротроне на энергию 160 МэВ

Рассмотрена динамика продольного движения электронов в разрезном микротроне (РМ) на 160 МэВ. Определены основные параметры РМ и условия инжекции электронов в нем для получения на выходе ускорителя пучка требуемого качества. Определены допуски на основные параметры проектируемого РМ. Аналитические оценки подтверждены численным моделированием динамики продольного движения в РМ.

Работа выполнена в Отделе новых методов ускорения ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1987

Перевод авторов

Kazarinov N.Yu., Molodoshencev A.Yu.,	P9-87-647
Perelstein A.A.	
Investigation of a Longitudinal Motion of Electrons	
in a 160 MeV Vace-Track Microtron	

The dynamics of electron longitudinal motion in a 160 MeV race-track microtron (RTM) is considered. Basic parameters of the RTM and injection coditions of electrons for the production of an output beam of required quality are determined. Tolerances on the basic parameters of the RTM are found. Analytical estimations are supported by a numerical simulation of the dynamics of longitudinal motion in the RTM.

The investigation has been performed at the Department of New Acceleration Methods, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1987