СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ



<u>сзуза</u> Ш-339

P9 - 8478

26/4-75

ΔУБНА

А.Б.Швачка, Э.И.Уразаков

193222-75 численное исследование рассеяния электромагнитных волн на продольно-неоднородном кольцевом заряженном сгустке в круглом волноводе





А.Б.Швачка, Э.И.Уразаков\*

ЧИСЛЕННОЕ ИССЛЕДОВАНИЕ

В КРУГЛОМ ВОЛНОВОДЕ

НА ПРОДОЛЬНО-НЕОДНОРОДНОМ КОЛЬЦЕВОМ ЗАРЯЖЕННОМ СГУСТКЕ

РАССЕЯНИЯ ЭЛЕКТРОМАГНИТНЫХ ВОЛН

\* ниияф мгу.



# I. <u>Введение</u>

Настоящее сообщение является продолжением цикла работ по численному исследованию рассеяния электромагнитных волн на кольцевых изотропных сгустках в цилиндрическом волноводе /I-6/.

В работе /1/ решена в общем виде задача о рассеянии волноводных волн на кольцевом плазменном сгустке. Как показано в /2/, стационарный процесс рассеяния электромагнитных волн на ограниченном сгустке описывается системой линейных дифференциальных уравнений для амплитуд полей волн. Расчет коэффициентов рассеяния электромагнитных волн на кольцевом сгустке частиц и их анализ в зависимости от параметров волны и слустка приведен в /3/. В работах /5,6/ описано математическое обеспечение для численного исследования взаимодействия электромагнитных волн с заряженными сгустками в цилиндрическом волноводе. Задача о рассеянии электро.4агнитных волн на кольцевом продольно-однородном заряженном сгустке решена в /4/. Настоящая работа посвящена численному исследованию рассеяния электромагнитных волн на неоднородном по оси Z циркулярном сгустке, помещенном в круглый волновод: выполнен расчет коэффициентов рассеяния /3/ и проанализированы результаты численного интегрирования системы уравнений для амплитуд рассеянных волн.

### 2. Постановка задачи

Задача о рассеянии электромагнитных волн на неоднородном по оси Z заряженном сгустке ставится и решается аналогично задаче о рассеянии волн на однородном по Z сгустке /4/. Отличие состоит лишь в том, что коэффициенты системы уравнений для эмплитуд в слу-

чае неоднородного по Z сгустка содержат дополнительные слагаемые, которые обращаются в нуль для однородного сгустка.

Электромагнитное поле круглого волновода, представленное в виде ТЕ – или ТМ-волн, набегает из вакуума на кольцевой сгусток зарядов с заданными характеристиками  $\mathcal{E}(r, \mathbb{Z})$ ,  $\mathcal{G}(r, \mathbb{Z})$ ,  $\mathcal{M}(r, \mathbb{Z})$ (обозначения те же, что и в  $^{/4/}$ ). Сгусток имеет конечные размеры по r и  $\mathbb{Z}$  и расположен симметрично относительно оси волновода. Требуется найти распределение поля в волноводе при наличии в нем азимутально-симметричного, но неоднородного по  $\mathbb{Z}$  сгустка зарядов.

Система уравнений для амплитуд волн, рассеиваемых на сгустке, имеет вид

$$\frac{df_{j}}{dz} = -\frac{1}{2w_{j}} \left[ \sum_{n=1}^{9} \left( A_{jn}^{ss} f_{n} - A_{jn}^{ss} \frac{df_{n}}{dz} \right) + i \sum_{n=1}^{9} \left( A_{jn}^{sm} g_{n} - A_{jn}^{sm} \frac{dg_{n}}{dz} \right) \right],$$
(I)  
$$\frac{dg_{j}}{dz} = -\frac{1}{2w_{j}} \left[ \sum_{n=1}^{9} \left( A_{jn}^{mm} g_{n} - A_{jn}^{mm} \frac{dg_{n}}{dz} \right) - i \sum_{n=1}^{9} \left( A_{jn}^{ms} f_{n} - A_{jn}^{ms} \frac{df_{n}}{dz} \right) \right].$$
  
Выражения для козффициентов системы (I) в общем случае приведены  
в /I/

### 3. Расчет коэффициентов рассеяния

Коэффициенты системы уравнений для амплитуд являются функциями электромагнитных свойств сгустка, а также волновых векторов падающих и рассеянных волн.

При рассеяния волн на кольцевом азимутально-симметричном неоднородном по Z сгустке коэффициенты системы уравнений (I) имеют

$$\begin{split} & \overset{\text{BVIII:}}{\bigwedge_{jn}^{3=}} = \left\{ V_{j}^{3} \stackrel{\text{W}}{=} W_{n}^{3} W_{n}^{3} \right) I_{\text{Grid}}^{3=} - \frac{d}{d^{2}} (W_{n}^{3} I_{\text{Erijn}}^{3=3} + W_{j}^{3} I_{\text{Grid}}^{3=3} + W_{j}^{3} \frac{d}{d^{2}} I_{\text{Jrid}}^{3=3} + \\ & + i \left[ (V_{j}^{3} \stackrel{\text{W}}{=} W_{j}^{3} W_{n}^{3}) (I_{\text{Erijn}}^{3=3} - I_{\text{Jrid}}^{3=3}) + (W_{n}^{3} \stackrel{\text{W}}{=} + W_{j}^{3} W_{n}^{3}) I_{\text{Erijn}}^{3=3} - (V_{j}^{3} \stackrel{\text{W}}{=} + W_{j}^{3} W_{n}^{3}) I_{\text{Jrid}}^{3=3} - \left[ V_{j}^{3=2} + W_{j}^{3} W_{n}^{3} \right] I_{\text{Jrid}}^{3=3} + V_{n}^{3} I_{n}^{3} I_{n}^{3=3} + V_{n}^{3} I_{n}^{3} I_{n}^{3=3} + V_{n}^{3} I_{n}^{3} I_{n}^{3=3} + V_{n}^{3} I_{n}^{3} I_{n}^{3} I_{n}^{3=3} + V_{n}^{3} I_{n}^{3} I_{n}$$

Используем безразмерные переменные  $Z' = Z \cdot \ell^{-1}$ ,  $\vee' = \vee \alpha$ , при этом безразмерный продольный волновой вектор вычисляется по формулем

$$W_{j}^{3'} = \sqrt{\frac{\omega^{2}a^{2}}{c^{2}}} \varepsilon_{\mu} - (V_{j}^{3})^{2}, \qquad (3)$$
$$W_{j}^{m'} = \sqrt{\frac{\omega^{2}a^{2}}{c^{2}}} \varepsilon_{\mu} - (V_{j}^{m'})^{2}.$$

Зависимость параметров сгустка  $\mathcal{E}(r, \mathbb{Z})^{///}$  и  $\mu(r, \mathbb{Z})$  от переменной  $\mathbb{Z}$  зададим в виде

$$\mathcal{E}(n, z) = |\mathcal{E}| (1.01 + \sin(\mathcal{Z}' z')),$$
  

$$\mu(r, z) = |\mu| (1.01 + \sin(\mathcal{Z}' z')).$$
(4)

При диференцировании интегралов рассеяния <sup>/3/</sup> по переменной Z следует учесть, что от Z зависят лишь безразмерные комбинации  $1-\varepsilon$ ,  $1-\frac{4}{\mu}$ ,  $\frac{4\pi}{\kappa c}$ , входящие в интегралы рассеяния. Расчет интегралов рассеяния произведен с помощью программы MAIN<sup>/6/</sup> на ЭВМ СДС-I604A.

Для численного интегрирования системы уравнений (I) необходимо на каждом шаге по переменной Z вычислять коэффициенты рассеяния (2).

#### Численное интегрирование системы уравнений для амплитуд и обсуждение результатов

Численное интегрирование системы уравнений для амплитуд осуществлялось с помощью программы PARAMP/6/ на ЭВМ СДС-1604А.

Для выяснения характера взаимодействия электромагнитных волн с заряженным продольно-неоднородным сгустком в круглом волноводе ( *Q* = 5 см) система (I) решалась при различных значениях параметров сгустка и падающих волн.

При расчетах рассматривались кольцевые сгустки со следующими параметрами:  $\mathcal{W} = 10^{13}$  cm<sup>-3</sup>,  $\omega_o^2 = 3 \cdot 10^{22}$  cek<sup>-1</sup>,  $\ell \bar{a}^1 = 10^{-2} \cdot 10^{-1}$ ,  $|\mathcal{E}| = 0.6$ ,  $|\mu| = 1.1$ ,  $|\overline{c}| = 6 \cdot 10^{-1} \cdot 6 \cdot 10^3$  ( $\frac{4\pi}{\kappa c} = \frac{|\overline{c}|}{(1.01 + 5in(\pi' Z'))}$ ). Параметры падающих волн:  $p = 1 \cdot 5$ ,  $i = 1 \cdot 3$ ,  $\omega^2 = 8 \cdot 10^{22}$  cek<sup>-1</sup>.

Как и в /4/, в качестве кольцевого сгустка последовательно выбиралось тонкое кольцо вблизи оси и вблизи стенок волновода.

Системя (I) решалась при различных краевых условиях, что позволило моделировать случай слабого и сильного затухания воли в сгустке.

В основном рассматривались кольцевые сгустки с малой длиной ( $\ell a^{-1} = 10^{-2}$ ), что соответствует экспериментально выбранной конфигурации электронных колец в ускорителе Векслера-Саранцева /8,9/.

Полученные данные о характеристиках полей воли указывают на следующее:

а) Обнаружено явление пространственной фокусировки волноводных полей за счет рассеяния электромагнитных волн на сгустках, помещенных в резонансную систему (круглый волновод). Эта фокусировка объясняется следующим: сначала, за счет возникновения резонанса<sup>/4/</sup>, наблюдается накачка электромагнитной энергии в область, занятую сгустком. Далее, за счет продольной неоднородности среды (в направлении оси  $\geq$ ) происходит дополнительная диссипация энергии электромагнитного поля, что и приводит к локализации объема с большим значением напряженности электромагнитного поля (поле концентрируется в некоторой области внутри сгустка, см.рис.1).



Рис. 1. Зависимость амплитуды волны  $E_{II}$  от продольной координаты ( $\ell/\ell$ ) сгустка.

Этот эффект подобен явлению самофокусировки полей волн в нелинейных средах, хотя природа их различна. Как известно, самофокусировка полей в нелинейных средах вызывается взаимодействием нескольких гармоник, возникших за счэт нелинейности среды, в то время как пространственная локализация энергии электромагнитного поля в ли-

нейных неоднородных средах вызывается возникновением резонанса.

б) Наряду с этим обнаружены неустойчивости (колебательные и апериодические) амплитуды рассеянного поля (см. Приложение, рис.2), сопровождающие резонансную накачку энергии электромагнитного поля в сгусток. Это явление характеризуется небольшим немонотонным изменением фазы волны, в отличие от резонанса, когда фаза претерпевает скачок порядка П/2.

Типичная картина колебательных неустойчивостей при рассеянии TE – TM-волн показана на рис.2, где приведена зависимость от  $\mathbb{Z}^{1}$ амплитуды рассеянной TE-волны ( p = I, j = I) на сгустке с параметрами  $X_{u} = 0,85$ ;  $d = 0,I\alpha$ ;  $|\varepsilon| = 0,6$ ;  $|\mu| = I,I$ ;  $|\overline{\sigma}| = 6 \cdot 10^{3}$ ;  $\mathscr{R}^{1} = 0,6$ ;  $|\alpha^{-1} = 10^{-2}$ .

С ростом проводимости сгустка затухание волн в сгустке усиливается. При дальнейшем увеличении проводимости сгустка наблюдаются резонансы, сопровождаемые колебательными явлениями (неустойчивости). Особенно ярко неустойчивости выражены при  $|\vec{\mathbf{5}}| = 6 \cdot 10^3$ (сгусток с очень большим током проводимости). Минимальная величина проводимости, при которой возникают неустойчивости волн в сгустке, составляет для упомянутого выше сгустка 9 ·  $10^2$ .

Как видно из рис. 2, вначале развивается колебательная неустойчивость, переходящая затем в апериодическую неустойчивость. Это явление наблюдается для всех волн и для всех рассматриваемых сгустков при  $|\overline{G}| > \overline{G}_{\kappa p}$ . При значениях  $|\overline{G}|$ , близких к  $\overline{G}_{\kappa p}(|\overline{G}| \le \overline{G}_{\kappa p},$  $\mathrm{Im} \int_{J} \ll \operatorname{Ref}_{J})$ , мнимая часть амплитуды рассеяния меняет знак внутри сгустка и затем растет, иногда достигая на конце сгустка величины  $|\operatorname{Ref}_{J}|$ . в) Кольцевой продольно-неоднородный сгусток, находящийся вблизи оси волновода, имеет сильно выраженные резонансные свойства /4/ и является менее устойчивым, чем кольцевой сгусток, находящийся у стенок волновода (при этом параметры сгустков  $|\mathcal{E}|, |\mu|, |\tilde{\mathbf{S}}|$ и падающие волны одни и те же). Так, при падении на циркулярный сгусток с  $X_{\mathcal{F}} = 0.85$ ; d = 0.1 a;  $la^{-1} = 0.01$ ;  $\mathcal{Z}' = 0.6$  и параметрами  $|\mathcal{E}| = 0.6$ ;  $/\mu| = 1.1$ ;  $/\tilde{\mathbf{S}}| = 0.6$  волноводных волн (ТЕ – или ТМ-типа) с  $\mu = 1$ , j = 1.3 резонансные и колебательные явления не наблюдаются. В то же время такой же кольцевой продольно-неоднородный сгусток у оси волновода (  $X_4 = 0.15$ ; d = 0.1a) при рассеянии указанных волн испытывает резонансную накачку энергии электромагнитного поля (резонансный рост амплитуды при  $\mathbf{Z}' = 0.59$ , где  $\mathbf{Z}'$ продольная координата сгустка.  $O \leq \mathbf{Z}' \leq 1$ ).

В начале резонанся (на 2-3 шагах интегрирования) наблюдается медленный рост амплитуды, затем наступает насыщение (резонанс). То же самое относится и к фазе рассеянной волны.

г) Сгусток, расположенный у оси волновода, при рассеянии высших несимметричных волн ТЕ- и ТМ-типов более устойчив, чем при рассоянии волн с p = 0 и p = I. Так, сгусток с электрической проводимостью  $/\overline{\sigma}$  в пределах от  $6 \cdot 10^{-I}$  до  $6 \cdot 10^2$  устойчив при рассеянии волн с p = 5, в то время как при рассеянии волны с p = I на этом же сгустке наблюдается резонанс и возникают колебательные и апериодические неустойчивости.

Для воли с p > I резонанс амплитуды выражен слабо, в то время как фаза испытывает резонансный скачок, причем  $|\overline{6}| \le 8$  для воли с p = 5 при 22' = 0,6 (сгусток расположен у стенок волновода).

д) При рассеянии волн на кольцевом сгустке, расположенном у

8

оси волновода, локализация резонанса и неустойчивостей зависит от продольной (по оси  $\mathbb{Z}$ ) неоднородности сгустка: чем больше модуляция сгустка по  $\mathbb{Z}$ , тем раньше наступают указанные явления. Так, при  $\mathscr{Z}'=3,14$  резонанс возник при  $\mathbb{Z}'=0,12$ ; при  $\mathscr{Z}'=1,57$   $\mathbb{Z}'=0,24$ ; при  $\mathscr{Z}'=0,79$   $\mathbb{Z}'=0,45$ ; при  $\mathscr{Z}'=0,6$   $\mathbb{Z}'=0,6$ .

На рис. 3 (см.Приложение) показано поведение амплитуды ТЕ-волны по длине сгустка в зависимости от его модуляции. Видно, что при  $\mathscr{Z}' > I$  наряду с резонансами возникают неустойчивости. Чем больше  $\mathscr{Z}'$ , тем раньше (при меньших значениях  $\mathscr{Z}'$ ) возникают резонансы и неустойчивости.

е) "Резонансная длина" (координата  $\mathbb{Z}'_{\rho \in \mathfrak{f}}$ , при которой наблюдается резонанс) для сгустка у оси с параметрами  $|\overline{\mathfrak{G}}| = 0, 6; |\mathcal{E}| = 0, 6; |\overline{\mu}| = 1, 1; \quad \mathfrak{D}' = 0, 6; \quad \ell a^{-1} = 0, 01$  при падении на него волноводных ТЕ- и ТМ-волн с p = I, j = I+3 с увеличением входного (при  $\mathbb{Z}' = 0$ ) отношения мнимой части к реальной части амплитуды  $\mathbb{T}m f_{\mathfrak{f}}$  растет, что видно из таблицы I. Ref;

| <u>Ta</u> | олица 1 |  |
|-----------|---------|--|
|           |         |  |

| Im fj | <u>1.00</u> | 0.866 | 0.707 | 0.5   | <u>0 01</u> |
|-------|-------------|-------|-------|-------|-------------|
| Re ti | 0.0I        | 0.5   | 0.707 | 0.866 | 1 00        |
| Zpez  | 0,60        | 0,45  | 0,41  | 0,37  | -           |

Резонансные свойства максимально выражены для воли с  $Im f_j \ge Ref_j$ . При этом, если  $Im f_j >> Ref_j$ , то резонансы сопровождаются колебательными явлениями, что соответствует физической интерпретации явления. Волны, входящие в сгусток, для которогс выполняется условие  $Im f_j >> Re f_j$ , распространяются в нем под углом к оси  $\ge$ , близким к  $\frac{\pi}{2}$ , поэтому именно такие волны инициируют возникновение резонансов. Резонансу амплитуды предлествует резкий рост (выброс) как реальной, так и мнимой частей амплитуды рассеянной волны.

х) В сгустках с малой длиной ("короткие" сгустки) резонансные явления и неустойчивости при рассеянии ТЕ- и ТМ-волн, как правило, не развиваются. Расчет показывает, что при рассеянии любых волноводных волн с p = 0.5 сгустки с  $la^{-1} < 10^{-2}$  устойчивы и резонансы не наблюдаются.

Необходимо отметить, что при рассеянии ТЕ- и ТМ-воли с совпадающими радиальными индексами модули и фазы их изменяются по длине сгустка противоположным образом. При заданном наборе параметров волны и сгустка с увеличением модуля и фазы ТЕ-волны наблюдается уменьшение модуля и фазы ТМ-волны вдоль сгустка и наоборот.

# 5. Заключение

В результате проведенных численных исследований рассеяния волноводных волн на неоднородном по Z кольцевом сгустке, помещенном в круглый волновод, обнаружено явление пространственной фокусировки электромагнитного поля; наряду с резонансом наблюдаются неустойчивости (колебательные и апериодические) амплитуды рассеянного поля.

Проанализировано рассеяние волн (ТЕ- и ТМ-типов) на кольцевых сгустках с продольной неоднородностью для различных параметров волны и сгустка (при расчетах варьировались параметры:  $la^{-1}$ ,  $\mathscr{Z}'$ ,  $l\overline{\sigma}l$ ,  $X_{u}$ , d, p, j,  $\kappa$ ,  $Tm f_{j}$ ,  $Re f_{j}$ ).

Выяснена область изменения параметров, в которой сгусток устойчив, что важно знать при радиационном ускорении сгустков с токами и зарядами. Полученные результаты могут быть приложены к радиальной фокусировке пучков в поле волны  $H_{OI}/II/$ . Как указано в работе /IO/, для фокусировки заряженных частиц в пучке ( $\beta \chi$  = 5) требуется, чтобы

$$E_o > \frac{16\pi m_o c G}{5e}$$

где Е<sub>0</sub> - минимальное значение поля, которое необходимо для фокусировки. Это условие выполняется для рассматриваемых величин *IGI* при значениях Е<sub>0</sub>, соответствующих резонансу.

За счет резонанса поля и его пространственной локализации может быть осуществлено пространственное разделение кольцевого сгустка на сгустки с малыми продольными размерами.

В заключение авторы выражают благодарность участникам семинара ОНМУ ОИЯИ за полезные обсуждения.



Приложение

Рис. 2. Зависимость амплитуды волны  $E_{II}$  от продольной координаты ( $\Xi'$ ) сгустка. Параметры сгустка:  $X_{\mu} = 0.85$ ; d = 0.1a;  $|\overline{\sigma}| = 6 \cdot 10^3$ ;  $|\epsilon| = 0.6$ ;  $|\mu| = 1.1$ ;  $lai = 10^{-2}$ ; z' = 0.6.



 $10^{-2}$ .  $I - 2e^{2} = 0, I; 2 - 2e^{2} = 0, 6; 3 - 2e^{2} = 0, 78;$  $4 - 3e^{2} = 1, 57; 5 - 2e^{2} = 3, 14.$ 

#### Литература

- І. А.Ш.Иркегулов, Э.И.Уразаков, А.Б.Швачка, О.А.Швачка. ОИЯИ, 9-7903, Дубна, 1974.
- А.Ш.Иркегулов, Э.И.Уразаков, А.Б.Швачка.
   Совещание по программированию и математическим методам решения физических задач, ОИЯМ, 10-7707, Дубна, 1973.
- А.Ш.Иркогулов, Э.И.Уразаков, А.Б.Швачка, О.А.Швачка. ОИАИ, Р9-7951, Дубна, 1974.
- 4. А.Б.Швачка, Э.И.Уразаков. ОИЯИ, Р9-8477, Дубна, 1975.
- 5. Е.П. Жидков, А.Б.Швачка. ОИЯИ, PII-8306, Дубна, 1974.
- 6. Е.П.Жидков, А.Б.Швачка. ОИЯИ, PII-8307, Дубна, 1974.
- В.Л.Гинзбург. Распространение электромагнитных волн в плезме. "Наука", М., 1967.
- 8. В.И.Векслер, В.П.Саранцев и др. ОИЯИ, Р9-3440-2, Дубна, 1968.
- М.С.Рабинович, В.Н.Цытович. Коллективные ускорения частиц в плазме. Труды ФИАН, т.66."Наука". 1973.
- IO. К.А. Решетникова. ОНАИ, 9-8120, Дубна, 1974.
- II. К.Ф.Сергейчев, И.Р.Геккер. Труды ФИАН, т.73. "Наука", 1974.

Рукопись поступила в издательский отдел 16 января 1975 г.