СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

P9 - 822

А.В.Демьянов, В.П.Джелепов, Б.И.Замолодчиков, А.А.Кропин, В.С.Роганов

.......

19.2/2-74

C 3453

......

СИСТЕМА ПРОЕКТИРУЕМЫХ КАНАЛОВ ПУЧКОВ ФАЗОТРОНА С ВАРИАЦИЕЙ МАГНИТНОГО ПОЛЯ

ЛАБОРАТОРИЯ ЯДЕРНЫХ ПРОБЛЕМ

P9 - 8222

А.В.Демьянов, В.П.Джелепов, Б.И.Замолодчиков, А.А.Кропин, В.С.Роганов

СИСТЕМА ПРОЕКТИРУЕМЫХ КАНАЛОВ ПУЧКОВ ФАЗОТРОНА С ВАРИАЦИЕЙ МАГНИТНОГО ПОЛЯ

Демьянов А.В., Джелепов В.П., Замолодчиков Б.И., **Р9** - 8222 Кропин А.А., Роганов В.С.

Система проектируемых каналов пучков фазотрона с вариацией магнитного поля

В работе содержится описание каналов пучков мезонов и нуклонов сильноточного фазотрона (установки "Ф"). Приводятся данные о параметрах ионной оптики, внутренних и внешних мишенях, проектируемых для пучков фазотрона с вариацией магнитного поля. Даются сведения о характеристиках проектируемых пучков частиц.

Сообщение Объединенного института ядерных исследований Дубна, 1974

P9 - 8222

ţ

Demianov A.V., Dzhelepov V.P., Zamolodchikov B.I., Kropin A.A., Roganov V.S.

A System of Projected Channels for Beams of a Phasotron with the Magnetic Field Variation

Channels for meson and nucleon beams of a high-current phasotron (equipment " Φ ") are described. The data are presented on the ion optics parameters, on the internal and external targets projected for beams of a phasotron with the magnetic field variation. The data on characteristics of the projected particle beams are given.

Communications of the Joint Institute for Nuclear Research. Dubna, 1974

1. Введение

Фазотрон с варнацией магнитного поля /установка "Ф"/, создаваемый в Лабораторин ядерных проблем ОИЯИ, является многоцелевым ускорителем для проведения широкого класса фундаментальных исследований в области ядерной физики, физики элементарных частиц, ядерной спектроскопии, а также для прикладных исследований в целом ряде отраслей науки и техники.

Эта многоплановость в значительной мере обусловлена тем обстоятельством, что установка "Ф" в определенный отрезок времени будет самым сильноточным ускорителем социалистических стран. В соответствии с этим на фазотроне предусматривается система каналов пучков различных частиц, которая предоставит широкие возможности для проведения новых исследований. Основные направления этих исследований обсуждались ранее /1/. Последующие годы подтвердили перспективность предложенных направлений исследований и необходимость скорейшего осуществления реконструкции синхроциклотрона ОИЯИ в сильноточный фазотрон.

В настоящей работе содержится описание принципов, послуживших основой при выборе схемы трактов пучков, параметров элементов ионной оптики, внутренних и внешних мишеней, даются сведения о характеристиках проектируемых пучков частиц.

2. Основные параметры фазотрона с вариацией магнитного поля

В табл. 1 приведены основные параметры фазотрона.

Таблица 1 Параметры фазотрона

1. Энергия ускоренных протонов 700 МэЕ 2. Ток внутреннего пучка 50 мкА 3. Ток выведенного пучка 25 мкА 4. Радиус конечной орбиты 270 см 5. Напряженность магнитного поля 11900 Э 6. Среднее значение напряженности магнитного поля на конечном радиусе 16276 Э 7. Диаметр полюсного наконечника 600 см 8. Зазор между спиралями 30 см 9. Частота свободных колебаний (на оборот) 1+1,2 а) радиальных 1+1,2 6) вертикальных 0,1+0,2 10. Диапазон частоты ускоряющего поля 18,2+14,4 11. Амплитуда ускоряющего напряжения 40 + 50 р 12. Апертура дуанта 10 см 13. Частота модуляции 500+600 Г 14. Мощность питания электромагнита 1100 кВт 15. Мощность в/ч генератора 200 кВт	_		
2. Ток внутреннего пучка 50 мкА 3. Ток выведенного пучка 25 мкА 4. Радиус конечной орбиты 270 см 5. Напряженность магнитного поля 11900 Э 6. Среднее значение напряженности магнитного поля на конечном радиусе 16276 Э 7. Диаметр полюсного наконечника 600 см 8. Зазор между спиралями 30 см 9. Частота свободных колебаний (на оборот) 1+1,2 а) радиальных 1-41,2 б) вертикальных 0,1+0,2 10. Диапазон частоты ускоряющего поля 18,2+14,4 11. Амплитуда ускоряющего напряжения 40 + 50 п 12. Апертура дуанта 10 см 13. Частота модуляции 500+600 Г 14. Мощность питания электромагнита 1100 кВт 15. Мощность в/ч генератора 200 кВт	1.	Энергия ускоренных протонов	700 МэВ
3. Ток выведенного пучка 25 мкА 4. Радиус конечной орбиты 270 см 5. Напряженность магнитного поля 11900 Э 6. Среднее значение напряженности магнитного поля на конечном радиусе 16276 Э 7. Диаметр полюсного наконечника 600 см 8. Зазор между спиралями 30 см 9. Частота свободных колебаний (на оборот) 1+1,2 а) радиальных 1-41,2 б) вертикальных 0,1+0,2 10. Диапазон частоты ускоряющего поля 18,2+14,4 11. Амплитуда ускоряющего напряжения 40 + 50 п 12. Апертура дуанта 10 см 13. Частота модуляции 500+600 Г 14. Мощность питания электромагнита 1100 кВт 15. Мощность в/ч генератора 200 кВт	5 2.	Ток внутреннего пучка	50 мкА
4. Радиус конечной орбиты 270 см 5. Напряженность магнитного поля 11900 Э 6. Среднее значение напряженности 11900 Э 6. Среднее значение напряженности магнитного поля магнитного поля на конечном 16276 Э 7. Диаметр полюсного наконечника 600 см 8. Зазор между спиралями 30 см 9. Частота свободных колебаний 1+1,2 (на оборот) 1) радиальных 1+1,2 а) радиальных 1,41,2 0. Диапазон частоты ускоряющего 0,1+0,2 10. Диапазон частоты ускоряющего 18,2+14,4 11. Амплитуда ускоряющего напряжения 40 + 50 п 12. Апертура дуанта 10 см 13. Частота модуляции 500+600 Г 14. Мощность питания электромагнита 1100 кВт 15. Мощность В/ч генератора 200 кВт	[3.	Ток выведенного пучка	25 мкА
 5. Напряженность магнитного поля 11900 Э 6. Среднее значение напряженности магнитного поля на конечном радиусе 16276 Э 7. Диаметр полюсного наконечника 600 см 8. Зазор между спиралями 30 см 9. Частота свободных колебаний (на оборот) а) радиальных 1-41,2 0,1-40,2 10. Диапазон частоты ускоряющего поля 18,2-414,4 11. Амплитуда ускоряющего напряжения 10 см 12. Апертура дуанта 10 см 13. Частота модуляции 500-600 Г 14. Мощность питания электромагнита 200 кВт 	- 4.	Радиус конечной орбиты	270 см
 6. Среднее значение напряженности магнитного поля на конечном радиусе 7. Диаметр полюсного наконечника 8. Зазор между спиралями 9. Частота свободных колебаний (на оборот) а) радиальных б) вертикальных 141,2 б) вертикальных 141,2 о,1+0,2 10. Диапазон частоты ускоряющего напряжения 10 см 18,2+14,4 11. Амплитуда ускоряющего напряжения 10 см 10 см 10 см 10 см 10 см 13. Частота модуляции 14. Мощность питания электромагнита 100 кВт 15. Мощность в/ч генератора 	5.	Напряженность магнитного поля	11900 Э
магнитного поля на конечном радиусе 16276 Э 7. Диаметр полюсного наконечника 600 см 8. Зазор между спиралями 30 см 9. Частота свободных колебаний (на оборот) а) радиальных 1-1,2 б) вертикальных 1-1,2 б) вертикальных 0,1-40,2 10. Диапазон частоты ускоряющего поля 18,2-414,4 11. Амплитуда ускоряющего напряжения 40 + 50 п 12. Апертура дуанта 10 см 13. Частота модуляции 500-600 Г 14. Мощность питания электромагнита 1100 кВт 15. Мощность в/ч генератора 200 кВт	6.	Среднее значение напряженности	
радиусе 16276 Э 7. Диаметр полюсного наконечника 600 см 8. Зазор между спиралями 30 см 9. Частота свободных колебаний (на оборот) а) радиальных 1-41,2 б) вертикальных 1-41,2 б) вертикальных 0,1-40,2 10. Диапазон частоты ускоряющего поля 18,2-414,4 11. Амплитуда ускоряющего напряжения 40 + 50 п 12. Апертура дуанта 10 см 13. Частота модуляции 500-4600 Г 14. Мощность питания электромагнита 1100 кВт 15. Мощность в/ч генератора 200 кВт		магнитного поля на конечном	
7. Диаметр полюсного наконечника 600 см 8. Зазор между спиралями 30 см 9. Частота свободных колебаний 30 см (на оборот) а) радиальных 1+1,2 а) радиальных 0,1+0,2 10. Диапазон частоты ускоряющего 18,2+14,4 11. Амплитуда ускоряющего напряжения 40 + 50 п 12. Апертура дуанта 10 см 13. Частота модуляции 500+600 Г 14. Мощность питания электромагнита 1100 кВт 15. Мощность В/ч генератора 200 кВт		радиусе	16276 Э
8. Зазор между спиралями 30 см 9. Частота свободных колебаний 30 см 9. Частота свободных колебаний (на оборот) а) радиальных 1+1,2 б) вертикальных 0,1+0,2 10. Диапазон частоты ускоряющего 18,2+14,4 11. Амплитуда ускоряющего напряжения 40 + 50 п 12. Апертура дуанта 10 см 13. Частота модуляции 500+600 Г 14. Мощность питания электромагнита 1100 кВт 15. Мощность в/ч генератора 200 кВт	7.	Диаметр полюсного наконечника	600 cM
 9. Частота свободных колебаний (на оборот) а) радиальных б) вертикальных 141,2 0,140,2 10. Диапазон частоты ускоряющего поля 11. Амплитуда ускоряющего напряжения 12. Апертура дуанта 13. Частота модуляции 14. Мощность питания электромагнита 15. Мощность в/ч генератора 	8.	Зазор между спиралями	30 cm
 (на оборот) а) радиальных b вертикальных c) вертикальных c) вертикальных c) диапазон частоты ускоряющего поля c) диапазон частоты ускоряющего напряжения d) см <lid) li="" см<=""> <lid) li="" см<=""> d) см<td>9.</td><td>Частота свободных колебаний</td><td></td></lid)></lid)>	9.	Частота свободных колебаний	
 а) радиальных b вертикальных c) вертикальных d) диапазон частоты ускоряющего поля l8,2+14,4 c) анартура ускоряющего напряжения c) см d) см <lid) li="" см<=""> d) см d) см <lid) td="" см<=""><td></td><td>(на оборот)</td><td></td></lid)></lid)>		(на оборот)	
б) вертикальных 0,1+0,2 10. Диапазон частоты ускоряющего поля 18,2+14,4 11. Амплитуда ускоряющего напряжения 40 + 50 п 12. Апертура дуанта 10 см 13. Частота модуляции 500+600 Г 14. Мощность питания электромагнита 1100 кВт 15. Мощность в/ч генератора 200 кВт		а) радиальных	11.9
10. Диапазон частоты ускоряющего поля 18,2+14,4 11. Амплитуда ускоряющего напряжения 40 + 50 п 12. Апертура дуанта 10 см 13. Частота модуляции 500+600 Г 14. Мощность питания электромагнита 1100 кВт 15. Мощность в/ч генератора 200 кВт		б) вертикальных	1 + 1, 2
поля18,2+14,411. Амплитуда ускоряющего напряжения40 + 50 п12. Апертура дуанта10 см13. Частота модуляции500+600 Г14. Мощность питания электромагнита1100 кВт15. Мощность в/ч генератора200 кВт	10.	Диапазон частоты ускоряющего	0,140,2
11. Амплитуда ускоряющего напряжения 40 + 50 п 12. Апертура дуанта 10 см 13. Частота модуляции 500+600 Г 14. Мощность питания электромагнита 1100 кВт 15. Мощность в/ч генератора 200 кВт		поля	19.2.14.4 М.
12. Апертура дуанта 10 см 13. Частота модуляции 500+600 Г 14. Мощность питания электромагнита 1100 кВт 15. Мощность в/ч генератора 200 кВт	11.	Амплитуда ускоряющего напряжения	10,2+14,4M11
13. Частота модуляции 10 см 14. Мощность питания электромагнита 500+600 Г 15. Мощность в/ч генератора 200 кВт	12.	Апертура дуанта	40 + 50 KB
14. Мощность питания электромагнита 5004600 Г 15. Мощность в/ч генератора 200 кВт	13.	Частота молуляции	IU CM
15. Мощность в/ч генератора 200 кВт	14.	MOUTHOCTE DATENNA OTOK TO AND	500 4 600 Гц
200 kBr	15.	Мошность в/и понорожера	1100 KBT
		. тенератора	200 KBr

Таким образом, в результате реконструкции синхроциклотрона в сильноточный фазотрон достигнуты следующие характеристики ускоренного пучка протонов: а/ ток внутреннего пучка увеличен с 2,3 до 50 мкА; б/ эффективность вывода увеличена с 10 до 50% или несколько выше - средний ток выведенного протонного пучка составит 25 мкА; в/ сохраняется коэффициент заполнения во временной структуре пучков частиц: по макроимпульсу коэффициент заполнения будет около 0,8, а по микроимпульсу - 0,2 при использовании С-электрода и 1,0 в случае магнитной растяжки импульсов частиц.

3. Исходные условия для построения каналов пучков на фазотроне

Эффективность использования фазотрона будет определяться не только существенным увеличением интенсивности потоков всех частиц, но и обеспечением оптимальных условий для постановки и проведения экспериментов на них. Здесь в первую очередь следует отметить гибкость системы образования пучков частиц, улучшение радиационной защиты и расширение экспериментальных площадей. Однако то обстоятельство, что установка "Ф" создается на базе существующего синхроциклотрона, накладывает на возможность осуществления поставленной цели определенные ограничения. Принятая схема пучков установки "Ф" наиболее полно учитывает возможности использования существующего оборудования и экспериментальных помещений в рамках осуществляемого проекта реконструкции синхроциклотрона в целом.

Основные положения этого проекта, связанные с вопросами получения и использования пучков частиц, заключаются в следующем:

1. Вторичные пучки частиц можно получать как на внутрением, так и на выведенном пучках протонов. Предусматривается возможность получения вторичных пучков также при ускорении протонов на обратном направлении магнитного поля.

2. Вывод всех пучков осуществляется в одну сторону через амбразуру защитной стены в экспериментальные помещения 4, 9 и 11 / рис. 1/.

3. В зал экспериментальных установок 4 должны выводиться коллимированные пучки с потоком частиц не более 10^{11} cek $^{-1}$. Это ограничение позволяет снизить требования к раднационной защите ускорителя. При проведении экспериментов потоки нуклонов можно увеличить в несколько раз, если суммарная длительность использования этих пучков будет существенно меньше времени работы ускорителя.

4. Поглощение выведенного протонного пучка производится специальными гасителями в помещениях 7 или 9. В этих помещениях на траекториях протонного пучка размещаются мишени для генерации вторичных частиц и раднохимических облучений.

5. Непосредственно вокруг ускорителя сооружаются дополнительные защитные стены, а толщина существующей 4-метровой стены увеличивается до 6 метров.

6. Все коллимационные отверстия каналов пучков, не используемых в эксперименте, закрываются путем применения специальной системы защит.

7. Во всех экспериментальных помещениях уровень фона не превышает существующий в настоящее время на синхроциклотроне.

8. В помещении 7, вблизи ускорителя, установка мишеней из жидкого водорода не предусматривается. Использование таких мишеней возможно в помещении 4.

9. Поворот пучков в помещении 7 возможен только в горизонтальной плоскости. Размер амбразуры по вертикали в защитной стене не может быть изменен и остается прежним /60 см/.

10. Площадь экспериментальных залов увеличивается примерно в три раза за счет создания специальных залов для масс-спектрометрических /12/, медико-биологических /9/ работ и зала /11/ с пониженным фоном для проведения тонких экспериментов на мюонных пучках. Площадь под регистрирующую аппаратуру будет увеличена примерно в три раза. Планируется также размещение ЭВМ средней мощности для использования в экспериментах на пучках.

4. Основные принципы построения системы каналов пучков фазотрона

Перечисленные выше технические возможности установки "Ф" и требования к пучкам частиц, обоснованные ранее в работах /1/, определили выбор схемы образования и использования частиц высоких энергий на фазотроне. В основе ее заложены следующие положения: а/ использование как внутреннего, так и выведенного пучков протонов; б/ вывод в экспериментальные помещения большого числа пучков всех частиц, которые могут образовываться протонами с энергией 700 *МэВ*, во всем возможном диапазоне импульсов; в/ возможность одновременного проведения работ на нескольких каналах пучков как во время экспериментов, так и при их подготовке; г/ применение систем транспортировки физических установок на пучках частиц^{/2/}.

Возможность использования как внутреннего, так и выведенного пучков протонов на установке "Ф" является весьма важным условием эффективного использования ускорителя. Это отчетливо видно из ряда следующих соображений.

Эффективный выход вторичных частиц, образованных на внутренней мишени ускорителя, увеличивается в несколько раз^{/3,4/} за счет многократного прохождения протонного пучка через тонкую мишень. При этом размеры пучка на внутренней мишени обеспечивают возможность образования интенсивных мезонных пучков с хорошим энергетическим разрешением /0,1 - 0,5 - канал II /. Такое качество невозможно получить на выведенном пучке протонов из-за относительно большого его эмиттанса. С другой стороны, интенсивные пучки положительных мезонов с энергией более 100 МэВ и пучки мезонов с энергией менее 60 МэВ можно получить только на внешней мишени /канал III /. Однако интенсивность этих пучков будет определяться мишенью, толщина которой ограничивается экономическими возможностями создания раднационной защиты ускорителя. Кроме того, при выводе пучков всех частиц в одну сторону от ускорителя практически невозможна транспортировка пучков всех частиц в экспериментальные павильоны при использовании только внутренней или только внешней мишеней.

5. Возможности проведения физических экспериментов на пучках фазотрона

На рис. 1 изображена схема каналов пучков частиц с экспериментальными и измерительными павильонами ускорителя. Основное назначение каждого из каналов приведено в *табл. 2*.

Схемой пучков предусмотрена возможность одновременного проведения параллельных работ на нескольких каналах пучков. В *табл. 3* приведены различные возможные варианты работ. Они предусматривают эксперименты с пучками нормальной /н/ или сниженной /с/ интенсивности пучков в различных каналах. Как видно из таблицы, возможна одновременная работа от двух до шести различных каналов пучков. Многие работы, связанные с подготовкой установок к эксперименту, могут проводиться непосредственно на канале без пучка или с пучком частиц, независимо от других экспериментов. Такая гибкость в использовании пучков существенно увеличивает эффективность работы ускорителя.

В табл. 4 даны ожидаемые параметры пучков фазотрона.

6. Расположение мишеней на пучках фазотрона

На рис. 1 показано расположение как внутренних /M₁, M₂ /, так и внешних мишеней фазотрона /M₃, M₄, M₅, M₆, MXИ, M_{π}, Д₂ /. Мишень M₁ /M₂ /, размещаемая внутри ускорительной камеры на циркулирующем или выводимом пучке протонов, предназначена для образования пучков мезонов и нейтронов.

Мишени M_3 и M_4 размещаются на внешнем протонном пучке / канал VII / и служат для получения пучков мезонов и нейтронов / каналы III, IV, V и VI /. На пучке канала VII используются также и мишени M_5 , M_6 , MУ, облучаемые для последующих раднохимических и спектрометрических исследований. Мишени МХИ служат источником ионов для масс-сепаратора /5/ канала VIII или VIII¹.

Широкоугольный пучок мезонов для медико-биологических и физических исследований формируется от ми-

Табянца З. Варнанти одновременной работи каналов пучков.

Таблица 2. Каналы пучков фазотрона.

٠

	Пучок	<u>Мижени</u>	Энергия (Мэв)	Особенности канала
I	14+ 151+ 151+	м _I (м ₂)	30-310 30-100 80-350 80-110	Сепарированные мооны варьируе- мой энергии и поляризации Пионы варьируемой энергии
п	57 + 57 +	[™] 1	80=350 80=110	Пучки варьируемой энергии с дисперсионными свойствами и хорошим разрешением.
	∏ ±	H ₃ , H ₄	0-350	Универсальный канал пионов
IÀ	Р Р R	д ₂	680 <u>+</u> 2 640 <u>+</u> 8 676 <u>+</u> 4	Неполяризованные протоны Продольно или поперечно поляри- зованные протоны Пучки неполяризованных нейтро- нов с хороным разрешением
У	п п Р Р	м ^I	600±50 600±50 680±2 640±8	Неполяризованные нейтроны Продольно и поперечно поляризо- ванные нейтроны Неполяризованные протоны Поперечно поляризованные протоны
уі	Р Р Л	A ²	80200 680+2 100680	Ахроматический пучок протонов Неполяризованные протоны Пучки нейтронов варьируемой энергии с хорожим разрешением
УЦ	P	₩ ₂ •₩ ₆	680 <u>+</u> 2	Пучок выведенных протонов
УШ	Ионы МХИ			Пучок для масс-сепаратора
IX '	P		680 <u>+</u> 2	Транспортировка протонов по мищени ИХИ I
IX	Р 77 ±		680 <u>+</u> 2 50 <u>+</u> 7	Транспортировка протонов до мащени И _{ST} Широкоугодьный пучок пионов
x	4 + 1 + 1 + 1 +	м¹(м⁵)	30-250 30-100 80-350 90-110	Транспортировка мезонов от ка- нала I в низкофоновую лабора- торию

BADRANT		i KARAJ	18. H. H	HTC HCH	вность			Н-н С-с	Ормаль нахени	HAA AA
	I	П		IX	У	Л	УП	УШ	IX	I
I	E	H					Г . –			
2		H			1	1	1			н
3	c	I			(H
4	c	c	C	c	{		H) н		
5	c	c	} :	H			н	H		
6	C	c			H					
-7			н	5	Ħ	R	1			
8		{	н	c	H	}		}	H	
9	c	c	c	l	1	π				
10	c	c		ſ			1		H	
II	c	c	c				{		H	
I2		1	I		E		1	H		

Таблица 4. Интенсивность пучков фазотрона.

Интенсивность пучков протонов

Kanas]	[Y	3	r	7	n	УП	IX, LX'
E (Max)	680±2	640+8	680 <u>+</u> 2	640+8	680±2	200±11	680±2	680 <u>+</u> 2
N•10 ^{•10}	10	2,0	10	I,7	10	10	1,5.104	6•10 ³
HOASPE-	0	P_, =0,4	0	P_0,4	0	0	0	0
$S(cx^2)$	4	10	4	10	10	10	8	10

Интенсивность пучков нейтронов

KARAA	IY		У		IK					
B(HeB)	676 <u>+</u> 4	600 <u>±</u> 50	600 <u>+</u> 50	600 ±5 0	676 <u>+</u> 4	580 <u>+</u> 6	200 <u>+</u> 13			
№10 -6	0,3	70	30	30	8,0	6,0	0,1			
HOLSPE-	0	0	R =0,25	Pu =0, 25	0	0	0			
$S(cm^2)$	100	20	20	20	100	100	100			

Р. ним Р. - попоречная или продольная поляризация пучка.

Интенсивность N_{μ} и плотность остановок n_{μ} на I г/см² в сек отрицательных млонов из ванала I ($S = 80 \text{ cm}^2$)

Е " (Мав)	30	35	50	80	I6 5	105	130	I8 5	310			
N 10-6	0,8	I,7	5,0	10,0	10,7	19	136	45	34			
n 1000	0,7	I,0	1, 7	I,8	0,9	2,6	4,0	3,5	I , 7			
$\frac{\Delta P}{P} = \pm 5\%$		Ny /NA	<0,01				V=/N=	= 0,55				
Потоки "4"-мезнов Е. 30, 35 и 105 Изв в 3 раза меньше												
TOTOKE MOO	Потоки моонов из канала X в 2 раза меньше.											

Интенсивность пнонов из каналов I и П

HOTOKE I	Потоки пнонов из канала I в 3 раза меньне, чем из канала I.										
AP/3 =	±5%	/	5-/N Ju =	1,8		AP/p :	= <u>+</u> 26				
√.•10 ^{•6} 1.•10 ^{•6}	33 . 4,6	44 5,3	55 4,5	66 3,5	16	17	18	19			
	90	105	165	290	105	165	240	290			
E (Mar)	Ka	HALL A	5 = 80 c	¥ ²	Rahan II $S = 5 \text{ cm}^2$						

Интенсивность пнонов из канала и

Е _л (Мэв)	23	50	80	110	135	190	240	290	340		
N/ ₃₇ .•10 ^{−6} R ₃₇ .•10 ^{−6}	5,0 I,9	13 2,1	27 2,8	40 3,2	49 3,3	74	114	109	86		
N/5+• 10 ⁻⁶ N/5+• 10 ⁻⁶	13 4,8	42 6•7	92 9,7	165 13,3	218 14,6	396	680	830	760		
$\Delta F_{\beta} = \pm 7\% \qquad S = 10 \text{ cm}^2$											

Интенсивность пучка сильносходящихся пнонов от минени на канале IX: $N_{\mu} = 5 \cdot 10^8$ в сек, $N_{\mu} = 2 \cdot 10^8$ в сек на I г/см² ($N_{\mu} = 2 \cdot 10^9$; $N_{\mu} = 8 \cdot 10^8$) для энергин $E_{\mu} = 50 \pm 7$ Мэг. шени \mathbf{M}_{π} , размещенной на протонном пучке канала IX.

На мишенях Д₂ - из жидкого дейтерия - при взаимодействии с протонами на каналах IV и VI образуются пучки монохроматических нейтронов.

На протонном пучке канала VI используется водяной поглотитель /элемент 4/ переменной толщины для изменения энергии протонов в пучке при медико-биологических исследованиях на протонных пучках с энергиями от 80 до 200 *МэВ*.

Установка мишеней на выведенный протонный пучок увеличивает его эмиттанс и изменяет другие параметры пучка. В настоящей работе рассматривается воздействие пучков на мишени с целью определения требований к ним.

7. Мишени внутри фазотрона

Динамика движения частиц в фазотроне определяет возможность многократного прохождения циркулирующего пучка протонов через внутреннюю мишень. Среднее число прохождений, без учета выбывания протонов из-за ядерных взаимодействий, можно оценить из выражения N = 1 +

+ 1,38 $\frac{v_{max}^2}{\langle v^2 \rangle}$, получаемого из результатов работы/3/ Здесь $\langle v^2 \rangle = (\frac{15}{P\beta})^2 \frac{x}{x_0}$ - среднеквадратичный угол мно-

гократного рассеяния; х/х₀ - толщина мишени в радна-

ционных единицах; Р / МэВ/с/ - импульс протонов; v _____

 $= (\frac{D}{2} - Z) \cdot \frac{Q_Z}{R_K}$ - угол отклонения частиц, ограничивае-

мый апертурой дуанта D; Z₀ и Q_Z- средняя амплитуда и частота вертикальных колебаний на конечном радиусе ускорения R_K.

Для фазотрона ОИЯИ кратность прохождения протонов с энергией 7ОО *МэВ* при средней амплитуде вертикальных колебаний 1,5 *см* находится из выражения: $(N-1) x/x_0 = = 0,113$.

Например, через мишени из бериллия и меди одинаковой протяженности /1 см/ число прохождений будет составлять примерно 4,9 и 1,2, а для 5 см - 1,8 и 1, соответственно. Из этих данных и данных рис. 2 следует, что выход вторичных частиц из легких веществ за счет кратности прохождения растет быстрее, чем снижается сечение их образования с уменьшением атомного номера мишени.

Рис. 2. Относительный выход $\left(\frac{d^2\sigma}{dE \ d \ \Omega} + \rho/A\right)\pi^{\pm}$ - мезонов

с энергией 30, 105 и 305 МэВ, образованных протонами с энергией 730 МэВ^{/4/} из бериллия, меди и свинца одинаковых размеров в зависимости от угла вылета мезонов.

Кратность прохождения внутреннего пучка через мишень определяет и тепловой режим ее работы. В легких веществах ионизационные потери, идущие в основном на нагрев мишени, составляют для протонов с энергией 700 МэВ около 2 МэВ/г. сек.². Пучок фазотрона с интенсивностью 50 мкА выделит в мишени толщиной 1 см около 290 кал/сек. С учетом неупругих взаимодействий эта величина возрастет примерно на 20% и плотность теплового потока составит 50 кал/сек. см². В конструкции мишени предусматривается увеличение теплопередающей площади мишени так, чтобы плотность теплового потока не превышала **ЗО** кал/сек см², отвод которого охлаждающей водой оказывается возможным.

Для обеспечения надежной работы мишени в условиях повышенной радиации механизм ее перемещения вынесен за пределы вакуумной камеры. Установка мишени производится посредством перемещения несущего штока параллельно дуанту на расстояние 290 см от центра камеры. На конце штока имеется подвижная часть, угол наклона которой с осью штока изменяется, и мишень размещается в заданном положении как на циркулирующем, так и на выводимом пучке протонов $/M_1$ и M_2 /. При этом сохранение взаимной геометрии пучка и мишени достигается за счет цилиндрической формы мишени. Для обеспечения эффективного охлаждения мишень выполняется в внде полого цилиндра из бериллия, плотно надетого на водоохлаждаемый медный стакан с развитой поверхностью.

Кроме мишени М₁, внутри камеры предусматриваются еще два пробника с мишенями для наладочных работ. Один из них будет использован и для облучения образцов.

8. Мишени на выведенном пучке протонов

Как отмечалось выше, толщина мишеней на выведенном пучке протонов ограничивается как раднационной защитой ускорителя, так и условиями дальнейшей транспортировки пучка до ловушки-гасителя. Поперечные размеры мишени определяют, исходя из размеров протонного пучка в местах установки мишеней, а также на основании требований получения вторичных пучков с необходимым эмиттансом. Диаметр пучка протонов в местах установки мишеней М 3,, М 4, , М 5 не превышает 4 см/6/Что касается материала мишеней, то, как видно из данных по относительному выходу / рис. 2/ мезонов с энергиями 30, 105 и 305 МэВ/7/ из бериллиевой, медной и свинцовой мишеней одной и той же протяженности, их интенсивность меняется довольно слабо. Угол многократного рассеяния для больших Z возрастает в сотни раз. Поэтому выгоднее использовать мишени из более легких материалов, таких как бериллий, вода, графит, толщиной, соответственно, не более 8,2; 8,7; 5 см^{/6/}.

Мишени М₃ и М₄, предназначенные для генерации интенсивных пучков мезонов и нейтронов, предполагается выполнить из бериллия, охлаждаемого водой. Тепловая мощность, выделяемая пучком протонов в такой мишени, составит около 200 кал/сек, и отвод такого количества тепла не представляет технических трудностей.

Для установки мишеней M₃, M₄, M₅ и M₆ будут использоваться соответствующие пробники, обслуживаемые с помощью манипулятора или других дистанционноуправляемых устройств. Мишень МУ, предназначенная для длительных облучений больших количеств материала, устанавливается непосредственно на ловушке протонного пучка с помощью специального пробника.

Водяной поглотитель переменной толщины на протонном пучке канала VI обеспечивает дискретное изменение энергии протонов в пучке с 680 до 80 МэВ для медикобиологических и физических работ. Поглотитель состоит из набора 13 труб переменной длины, располагаемых по окружности и заполняемых водой. На пучок устанавливается поглотитель заданной толщины путем поворота. Циркуляция воды обеспечивает необходимый отвод тепла, выделяемого протонным пучком.

9. Элементы ионной оптики

Помещение 7 установки "Ф" оборудовано специальной кабиной с манипуляторами, позволяющими проводить ремонтные работы и текущее обслуживание. В конструкциях элементов ионной оптики и другом оборудовании зала 7 заложены возможности обслуживания их спомощью манипуляторов в условиях высокой наведенной активности. Для повышения долговечности и надежности работы ионооптических систем в конструкции обмоток элементов трактов пучков предусматривается использование изолирующих материалов повышенной радиационной стойкости.

Перечисленным выше условиям работы оборудования

установки "Ф" отвечают квадрупольные линзы 20К25Б-1000, 15К50-1300, шестипольный магнит 20Ш30-200 и магниты: СП-024, СП-025, СП-027, СП-09, СП-034. С радиационно-стойкой изоляцией будут изготовлены и катушки широкоугольной мезонной линзы - ШМЛ/8/. Элементы ионной оптики трактов пучков установки "Ф" спроектированы в НИИЭФА.

Используемые в настоящее время на синхроциклотроне ОИЯИ квадрупольные линзы: МЛ-29, МЛ-30, МЛ-31, МЛПК, магниты: СП-37М, СП-57А, СП-56 и магнитысоленоиды МС-8, МС-9 - будут установлены на каналах фазотрона в помещениях 4, 9 и 11 со значительно меньшими уровнями раднационноактивных излучений.

Основные параметры элементов каналов фазотрона приведены в табл. 5 и 6. В табл. 7 даны типы и параметры источников, которые будут использованы для питания отдельных элементов и блоков из этих элементов на каналах пучков фазотрона.

10. Заключение

После завершения реконструкции синхроциклотрона ОИЯИ в фазотрон с вариацией магнитного поля планируется возрастание интенсивности пучков от внутренней мишени ускорителя примерно в 25 раз, а от мишеней на выведенном пучке протонов ожидается увеличение интенсивности в 100-200 раз по сравнению с пучками синхроциклотрона ОИЯИ.

В проекте предусматриваются пучки поляризованных нуклонов, сепарированные мюонные пучки разных импульсов с варьируемой величиной поляризации, интенсивные пучки медленных мюонов и пионов для остановки их в веществе. Будут сформированы пучки с новыми качествами, которых не было на существующем синхроциклотроне: продольно поляризованные нуклонные пучки, пучки нейтронов и пионов с хорошим энергетическим разрешением. Больше возможностей появится у экспериментаторов для использования в исследованиях ЭВМ и анализаторов.

	(a	- Fri-	,			Tener		PACTOR	NCTOUBLE					
	H	38300	Pass	еры г	IOADCA.		Габари	тный ра	змер	Bec	3H8AA6	HNA	BOAH	Intahua
Tan Marhata	(тесла)	(см)	ï	<u>(</u>	L (DDAT)	R (cu)	(/ (см)	h (см)	€ (см)	(1)	(a)	(B)	Х/МИН	
			(CM)	(CM)	(1 раде/	(01.)	766	136	122	9.4	380	200	35	∏ - 102
СП-024	I,4	15	30	60			100	170	190	19.8	1000	170	60	ГП-59/16-6
CTI-025	I,7	20	32	I44	50	126	215	TRT	265	38	920	180	60	пгн-500
CII-026	1,8	10	52	200			230	101	297	55	1000	195	60	rn-59/16-6
CII-027	I , 8	15	40	268	54	250	105	100	75	3	5000	70	120	Выпрямитель
CII-034	I,4	17	30	40			105	117	202	27	1150	170	120	FII-59/16-6
CII-09	1,7	20	36	122	28	250	200		210	66	250	215	21	I-10I
C∏-37¥	1,7	10	THUR	100	2		364	252	1 156	2.	315	220	41	I-I0I
C∏-56I [₩]	1,0	15	•	60			236	200	155	24,		150	34	п-111
01-574	1,4	12	•	90	1		296	208	180	143,		1120	210	пгн-500
	1.0	70/45		375	1		THUR .	180	37	2	900	1 200	122	TTH-500
	0.6	50/55		544	}		52	49	57	0 8,2	950	300	122	лгн 500 лгн-500
ы с- 8		50/55		620	5)	52	49	63	6 9,9	960	347	120	111 1-200
MC-9	10,0	20		50			124	156	8	2 6,0	650	145	37	111-300
MI-31	1,05			_ <u></u>								< =00	10	

Таблица 5. Параметры электромагнитов на каналах пучков установки "Ф" (α - иприна, ℓ - длина, h - высота, α - угод поворота, R - раднус кривизны)

х) Зазор может быть уменьшен до IO см с увеличением индукции до I,6 тесла

<u>Таблица 6.</u> Параметры линз на каналах пучков установки "ф" (*а* - диаметр эпертуры, *а* - ширина, *l* - длина, *h* - высота)

Тип	Граджент	$\left \begin{array}{c} \alpha \\ \alpha \end{array} \right $	Длина Полоса	Габария	ный раз	мер (см)	Bec	Номина	альные Стине	Расход воды	Источнык Пытания
лянз	(J/CM/		(см)	ά	h	l		(a)	(a) (b)		
15850-1300	1300	15	50	48	110	74	1,61	1100	63	40	FII-59/16-6
20K255-1000-1	1000	20	25	I28	58	56	1,35	950	70	38	FII-59/16-6
20K25 E-1000-11	1000	20	25	92	132	50	1,51	950	70	38	ГП-59/16-6
20130-200	200	20	30	9 2	112	60	1,30	950	100	40	ГП-59/16-6
МЛ-29	1100	20	20	65	58	49	0,68	1000	I04	38	FII-59/16-6
МЛ-ЗОА	950	20	20	96	96	48	I,4	1000	60	- 30	ГП-59/16-6
мл-пк	1000	12	20	29	2 9]	400	120		П-102

Таблица 7. Типы источников питания элементов каналов установки "Ф"

₩¥ nn	Тип источника	а значения п		Ж пп	Тип источника	Номинальные значения		
		(a)	(в)			(a)	(в)	
Ι.	Выпрямитель	5000	90	5.	ГП-3000-1000	667	230	
2.	НГН-500	1000	500	6.	П-102	610	115	
3.	ГП-59/16-6	1085	115	7.	II-IOI	39I	230	
4.	N-102	695	230	8.	ПН-5000	383	230	
				9.	n-III	653	230	

8

В заключение авторы считают своим приятным долгом поблагодарить многих сотрудников лаборатории за помощь в работе, особенно В.П.Дмитриевского Ю.Н.Денисова, Н.Л.Заплатина, В.Г.Зинова, Ю.М.Казаринова, М.М.Комочкова, Л.И.Лапидуса, А.И.Мухина, В.И.Сатарова, О.В.Савченко, Е.И.Розанова, С.И.Чеснову.

Литература

- 1. А.А. Глазов, Ю.Н. Денисов, В.П. Джелепов, В.П. Дмитриевский, Б.И. Замолодчиков, Н.Л. Заплатин, В.В.Кольга, М.М.Комочков, А.А.Кропин, Л.И. Лапидус, А.И. Мухин, В.С. Роганов. ОИЯИ, 9-3211, Дубна, 1967; ОИЯИ, 9-3951, Дубна, 1968.
- 2. В.С.Роганов. ОИЯИ, Б1-9-4707, Дубна, 1969.
- 3. J.M.Cassels, J.M.Dickson, J.Howlett. Proc. Phys. Soc., 64B, 590 (1951).
- 4. P.Skarek. CERN MSC-69-4 (1964).
- 5. Р.Арлыт, Г.Байер, В.С.Бутцев, К.Я.Громов, Б.И.Замолодчиков, Н.Г.Зайцева, В.Г.Калинников, В.В.Кузнецов, А.Потемпа, В.И.Райко, В.С.Роганов, А.Н.Синаев, Х.Тыррофф, М.Фингер, В.А.Халкин, В.М.Цупко-Ситников, В.Г.Чумин. ОИЯИ, БЗ-6-7256, Дубна, 1973.
- 6. В.П.Дмитриевский, Н.Л.Заплатин, А.А.Кропин, В.С.Роганов, С.И.Чеснова. ОИЯИ, 9-7505, Дубна, 1973.
- D.R.F.Cohram, P.N.Dean, P.A.M.Gram, E.A.Knapp, E.R.Martin, D.E.Nahle, R.B.Perkins, W.J.Shlaer, H.A.Thiessen, S.D.Therict. Phys. Rev., D6, 3085 (1972).
- 8. В.М.Абазов, В.П.Джелепов, Е.С.Кузьмин, А.Т.Молоканов, О.В.Савченко, Г.П. Решетников, Е.П.Череватенко. ОИЯИ, Р13-8079, Дубна, 1974.

Рукопись поступила в издательский отдел 23 августа 1974 года.