

А.Г.Бонч-Осмоловский, С.Н.Доля, К.А.Решетникова

О МЕХАНИЗМЕ РЕЗОНАНСНОГО УСИЛЕНИЯ МЕДЛЕННОЙ ЛЕНГМЮРОВСКОЙ ВОЛНЫ В РЕЛЯТИВИСТСКОМ ЭЛЕКТРОННОМ ПУЧКЕ

Направлено в "Журнал, технической физики"

1982

1. В связи с интенсивным развитием физики и техники сильноточных релятивистских электронных пучков /РЭП/ особую актуальность приобрели идеи Я.Б.Файнберга ^{/1,2/} о возможности создания волн пространственного заряда большой амплитуды в плазме и электронных пучках и о дальнейшем их использовании для генерации волн СВЧ большой мощности и разработки вариантов коллективного ускорения тяжелых заряженных частиц. В последние годы появилось много интересных предложений, касающихся методов возбуждения медленных (v_ф <c) волн пространственного заряда в РЭП. Большинство этих предложений ^{/3-8/} связано с использованием неустойчивостей, возникающих при взаимодействии электронного пучка с собственными модами структур или другими частицами.

В данной работе рассматривается резонансный механизм возбуждения ленгмюровской медленной моды, существующей в РЭП на флюктуационном уровне, электромагнитной волной, созданной в какой-либо структуре внешним СВЧ генератором. При этом с самого начала системе пучок-структура "навязывается" одна определенная мода взаимодействия, начальный уровень амплитуды которой достаточно высок для того, чтобы "паразитные" моды не играли сколько-нибудь заметной роли в дальнейшем.

При этом необходимо, чтобы резонансный механизм взаимодействия обладал достаточно большим "инкрементом" роста амплитуды полезной моды во времени. Как было показано Я.Б.Файнбергом^{/9},такой подход к проблеме возбуждения волн важен с точки зрения регуляризации /сужения/ спектра волн в системе пучокструктура /плазма/.

Почему возбуждение одиночной волны определенного типа представляется важным и интересным с точки зрения идеологии коллективного ускорения ионов?

Во-первых, бегущая волна пространственного электронного заряда достаточно большой амплитуды обеспечивает высокий темп ускорения частиц с любым отношением заряда к массе и в больших количествах, т.е. в принципе может быть решена главная задача любого метода ускорения: обеспечить большой темп ускорения и большой средний ток ионов.

Во-вторых, коллективные методы ускорения связаны с созданием достаточно глубокой потенциальной ямы /или последовательности ям/ поля пространственного заряда электронов. В этом отношении характерным примером может служить, например,

1

работа^{/10/} двух из авторов настоящей статьи. При этом возникает проблема удержания /компенсации/ в течение всего времени ускорения значительного кулоновского поля сгущений электронного заряда. Эта проблема весьма трудна и в настоящее время практически еще не разрешена. Простой пример: в электронном пучке можно внешним генератором создать волну электрического поля, которая пространственно модулирует плотность электронов, и это может быть использовано для ускорения ионов. Однако нетрудно видеть, что напряженность создаваемой внешним генератором электромагнитной волны должна быть сравнимой с напряженностью поля, используемого для ускорения ионов /иначе модуляция плотности заряда электронов не удержится и "расползется"/. Но тогда теряет смысл сам принцип коллективного ускорения.

Такого рода трудность характерна для всех случаев, когда модуляция плотности /сгустки/ создается электронами, неподвижными в системе покоя сгустков. В терминологии бегущих волн это означает использование принципа черенковского взаимодействия, когда

 $\omega - k v_e = 0, \qquad /1/$

ω, к - частота и продольная составляющая волнового вектора электромагнитной волны.

Для обхода трудностей удержания пространственной модуляции заряда пучка неизменной во времени можно перейти к методу ее создания в пучке волной, фазовая скорость которой не равна скорости электронов /это означает, что сгусток создается не покоящимися электронами, а "проходящими", т.е. скорость которых относительно сгустка отлична от нуля/. При этом любой электрон находится в области сгущения заряда в течение времени порядка 10⁻¹⁰ с и не успевает испытать действие кулоновских сил сколько-нибудь существенно. Практически это значит, что необходимо возбудить в пучке медленную волну * пространственного заряда так, чтобы скорость электронов могла значительно превосходить фазовую скорость волны и обеспечить отсутствие захвата их полем волны. Впервые на такую возможность указали Сло-

*Теоретически возможен и случай, когда электроны имеют скорость, ме́ньшую фазовой скорости электромагнитной волны /такие быстрые пучковые моды существуют/,однако реализация этой возможности затруднена, так как в основе соответствующего элементарного механизма взаимодействия лежит нормальный эффект Доплера, требующий приготовления электронного пучка в виде совокупности движущихся осцилляторов. ан и Драммонд в известной работе ^{/3/}, обратив внимание на то, что в пучке, находящемся в продольном магнитном поле, существует медленная циклотронная мода, для которой

$$\omega - kv_e = -\omega_H$$
, $\omega_H = \frac{eH}{mcy}$. /2/

В основе взаимодействия вида /2/ лежит аномальный эффект Доплера, когда

$$v_e > v_{\pm} = \frac{\omega}{k} = v_e \frac{\omega}{\omega + \omega_H}$$
 (3/

В работе ^{/3/} было отмечено еще два важных обстоятельства, связанных с взаимодействием /2/: фазовая скорость волны может регулироваться величиной продольного магнитного поля Н по длине системы, а возбуждаться волна может в процессе захвата и ускорения ионов, поскольку дисперсионные свойства пучка для нее таковы, что электромагнитная энергия, заключенная в ней, отрицательна, т.е. $\omega \frac{\partial \epsilon}{\partial \omega} = \frac{E^2}{8\pi} < 0^*. Это значит, что, отдавая энергию на ускорение ионов, волна растет по амплитуде.$

В методе, предложенном в ^{/3/}, есть два слабых пункта: большой диапазон необходимого изменения величины магнитного поля в процессе ускорения при достаточно высокой средней напряженности Н /можно показать, что при этом и энергия электронов должна быть достаточно большой: ~10 МэВ/ и малый уровень начального ускоряющего поля, когда паразитные процессы, в том числе неустойчивости пучка, могут сильно ухудшить параметры начальной стадии ускорения.

В дальнейшем циклотронная мода была возбуждена экспериментально с помощью структуры с внешним генератором ^{/11,12/}, причем в работе ^{/12/} – при большом токе пучка /свыше 1 кА/ и с большой амплитудой электрического поля /до 100 кВ/см/.

Как уже упоминалось, в данной работе изучается взаимодействие электронного пучка с внешней заранее заданной замедленной волной. Принципиальным моментом при этом является то, что обмен энергией между пучком и волной происходит не в результате развития неустойчивости /когда волна растет, начиная с флюктуационного уровня/, а путем обычного резонанса между двумя медленными волнами, по крайней мере одна из которых имеет конечную начальную амплитуду, начиная с которой и нарастает суммарное поле в системе пучок-структура.

* ϵ - "диэлектрическая проницаемость" электронного пучка, можно показать, что $\frac{\partial \epsilon}{\partial \alpha} < 0$ в случае /2/.

2. Вначале в целях полноты и ясности изложения мы простым методом покажем существование в пучке ленгмюровских мод *, одна из которых имеет фазовую скорость, меньшую скорости электронов.

Движение электронов для простоты полагаем одномерным /пучок замагничен: $\gamma^2 \omega_{\rm H}^2 >> 2 \omega_{\rm B}^2$, $\omega_{\rm B}$ – ленгмюровская частота в пуч-ке, при этом все электроны пучка /радиуса а / имеют одну и ту же скорость вдоль оси системы: $v_e = v_z \equiv v_0 / .$ Поле в системе с пучком ($E \equiv E_z$) удовлетворяет волновому

уравнению вида

$$\hat{L}E = -4\pi \left(\frac{\partial \rho}{\partial z} + \frac{1}{c^2} \frac{\partial j}{\partial t}\right), \qquad (4/4)$$

где

$$\hat{\mathbf{L}} = -\frac{1}{\mathbf{c}^2} \frac{\partial^2}{\partial \mathbf{t}^2} + \frac{\partial^2}{\partial \mathbf{z}^2} + \Delta_{\mathbf{r}} ,$$

$$\Delta_{\mathbf{r}} = \frac{1}{\mathbf{r}} \frac{\partial}{\partial \mathbf{r}} (\mathbf{r} \frac{\partial}{\partial \mathbf{r}}), \quad \mathbf{j} \equiv \mathbf{j}_{\mathbf{z}} = \rho \mathbf{v}_0 , \quad \rho = \mathrm{en} .$$

 п - плотность электронов в пучке в лабораторной системе. В принятых предположениях уравнение движения электронов имеет вид

$$m\gamma^{3}\left(\frac{\partial v}{\partial t} + v\frac{\partial v}{\partial z}\right) = -eE, \quad \gamma = \left(1 - \frac{v^{2}}{c^{2}}\right)^{-\frac{1}{2}}$$
 /5/

и уравнение непрерывности -

$$\frac{\partial j}{\partial z} + \frac{\partial \rho}{\partial t} = 0.$$
 (6/

Ограничиваясь пока линейным приближением, положим, что переменные отклонения плотности и скорости электронов под возмущающим действием электромагнитной волны малы:

$$\rho = \rho_0 + \vec{\rho} , \quad \mathbf{v} = \mathbf{v}_0 + \vec{\mathbf{v}} , \quad \vec{\rho} \ll \rho_0 , \quad \vec{\mathbf{v}} \ll \mathbf{v}_0 , \qquad /7/$$

 ρ_0 , v_0 - средние значения плотности заряда и скорости частиц пучка. Требуется, чтобы $2\gamma_0^2 \frac{v}{c} << 1$. Введем оператор

$$\hat{\ell} = \frac{\partial}{\partial t} + v_0 \frac{\partial}{\partial z}.$$
 (8/

Тогда из /5/ и /6/, используя /7/, можно получить, что:

$$\vec{v} = -\frac{e}{m\gamma_0^3} \hat{\ell}^{-1} E, \quad \vec{\rho} = -\rho_0 \hat{\ell}^{-1} \frac{\partial \vec{v}}{\partial z}.$$
(9)

*Резонансный механизм должен "работать",по-видимому,и для циклотронной моды.

Подставим /9/ в правую часть уравнения /4/, тогда получим следующее операторное уравнение для Е:

$$(\hat{L} + \hat{\Lambda}) E = 0$$
. ./10/

Оператор $\hat{\Lambda}$ определен согласно

$$\hat{\Lambda} = \frac{\omega_{\rm B}^2}{\gamma_0^2} \left[-\hat{\ell}^{-2} \frac{\partial^2}{\partial z^2} + \frac{1}{c^2} \hat{\ell}^{-1} \frac{\partial}{\partial t} - \frac{v_0}{c^2} \hat{\ell}^{-2} \frac{\partial^2}{\partial t \partial z} \right]. \qquad /11/$$

Обратный оператор $\hat{\ell}^{-1}$ удовлетворяет, как обычно, соотношению $\hat{\ell}\hat{\ell}^{-1} = 1$.

Ленгмюровская частота $\omega_{\rm B}$ определяется, как обычно, равенством

$$\omega_{\rm B}^2 = \frac{4\pi \,{\rm e}^2 \,{\rm n}_0}{{\rm m} \,\gamma_0}.$$
 /12/

Будем искать решение /10/ в виде плоской волны, распространяющейся вдоль пучка:

$$E = E_0 e^{-i(\omega t - kz)}$$
. /13/

Элементарные вычисления приводят к следующему дисперсионному уравнению, связывающему ω и k плоских волн:

$$\frac{\omega_{\rm B}^2}{\gamma_0^2 (\omega - kv_0)^2} = 1.$$
 /14/

Следовательно, существуют две волны, быстрая и медленная:

$$\omega = kv_0 + \omega_B / \gamma_0 , \qquad (15')$$

$$\omega = k v_0 - \omega_B / \gamma_0 . \qquad (15'')$$

Фазовая скорость медленной волны /15"/ равна:

$$\mathbf{v}_{\rm p} = \frac{\omega}{k} = \mathbf{v}_0 \quad \frac{\omega}{\omega + \omega_{\rm B} / \gamma_0} < \mathbf{v}_0 \quad . \tag{16}$$

3. В соответствии со сказанным выше далее рассмотрим вопрос, как реагирует пучок, в котором потенциально существует мода /15"/, на внешнюю азимутально-симметричную волну с конечной начальной амплитудой и произвольными пока параметрами ω_{0} , k_{0} , $k_{\perp 0}$:

$$E_{BH} = E_{OBH} e^{-i(\omega_0 t - k_0 z)} I_0(k_{\perp 0} r),$$
 (17/

I₀ - модифицированная функция Бесселя. Е - волна вида /17/, очевидно, может быть создана в специальных волноводных структурах, этот вопрос будет обсужден позже. Пока достаточно предположить, что может быть выполнено условие

$$v_{\rm ch} = \frac{\omega_0}{k_0} < v_0$$
 . (18/

Так как /17/ удовлетворяет однородному волновому уравнению $\hat{L}E = 0$. то

$$v_{\phi} = c \sqrt{1 - k_{\perp 0}^2 / k_0^2}$$
. /18'/

Каков "отклик" пучка на эту волну? Для анализа этого вопроса далее мы разовьем два метода, взаимно дополняющих друг друга в выявлении разных и интересных сторон взаимодействия электронного пучка с электромагнитными волнами. Начнем с операторного метода, обобщающего подход, только что изложенный при получении /14/.

Полное электрическое поле в системе с пучком, удовлетворяющее /4/, запишем в виде

$$\mathbf{E} = \mathbf{E}_{\mathrm{BH}} + \mathbf{E}_{\mathrm{m}} \,. \tag{19}$$

Зде́сь $E_{\rm II}$ – поле, созданное флюктуациями плотности заряда в пучке, вызванными в нем полем внешней волны. Подставим /19/ в уравнение /4/, правую часть которого преобразуем аналогично /10/.

Для поля E_п получаем неоднородное уравнение вида

$$(\hat{\mathbf{L}} + \hat{\boldsymbol{\Lambda}}) \mathbf{E}_{\Pi} = -\hat{\boldsymbol{\Lambda}} \mathbf{E}_{BH} = -\omega_{B}^{2} \mathbf{E}_{OBH} \mathbf{e}^{-i(\omega_{0}t - k_{0}z) \cdot \omega_{0}^{2}/c^{2} - k_{0}^{2}} \frac{1}{\gamma_{0}^{2}(\omega_{0} - k_{0}v_{0})^{2}} \mathbf{I}_{0} (\mathbf{k}_{\perp 0}r) \cdot /20 / (\mathbf{k}_{\perp 0}r) \cdot$$

Здесь операторы \hat{L} и $\hat{\Lambda}$ определены в /4/ и /11/.

Решение /20/ будем искать методом преобразования Фурье. $E_{\Pi_{\chi}}$ записываем в виде интеграла Фурье по бегущим гармоникам:

$$E_{\Pi} = \frac{1}{(2\pi)^2} \int f_{k\omega} (r) e^{-i(\omega t - kz)} dk d\omega . \qquad (21/)$$

Для функции $f_{k\omega}(\mathbf{r})$ получаем после подстановки /21/ в /20/ и применения обратного преобразования Фурье:

$$\Delta \mathbf{f}_{k\omega} - \mathbf{k}_{\perp}^{2} \mathbf{f}_{k\omega} = -(2\pi)^{2} \mathbf{p}_{0} \omega_{B}^{2} \mathbf{E}_{OBH} \mathbf{I}_{0} (\mathbf{k}_{\perp 0} \mathbf{r}) \delta(\omega - \omega_{0}) \delta(\mathbf{k} - \mathbf{k}_{0}), \qquad /22/$$

где

$$k_{\perp}^{2} = k^{2} - \frac{\omega^{2}}{c^{2}} + p\omega^{2} , p = \frac{\omega^{2}/c^{2} - k_{\perp}^{2}}{\gamma_{0}^{2}(\omega - kv_{0})^{2}}, p_{0} = \frac{\omega_{0}^{2}/c^{2} - k_{0}^{2}}{\gamma_{0}^{2}(\omega_{0} - k_{0}v_{0})^{2}}$$

δ - дельта-функция Дирака. Теперь введем'длинноволновое приближение:

$$k_{\perp} r$$
, $k_{\perp 0} r \ll 1$, /23/
 $\lambda \gg a$.

Предположение /23/ выполняется в практически интересных случаях и является естественным при анализе процессов, связанных с продольной модуляцией пучков /см., например, ^{/13/}/. Теперь для f_{1/2} (г) получим:

$$f_{k\omega}(\mathbf{r}) = \frac{(2\pi)^2 p_0 \omega_B^2 E_{0BH} \delta(\omega - \omega_0) \delta(\mathbf{k} - \mathbf{k}_0)}{\mathbf{k}_{\perp}^2} + A_{k\omega} I_0 (\mathbf{k}_{\perp} \mathbf{r}) \cdot /24/$$

Здесь $A_{k\omega}$ - произвольные постоянные. Следовательно, поле "отклика" пучка можно записать в виде

$$E_{\Pi} = \frac{\omega_{B}^{2} E_{0BH} e^{-i(\omega_{0} t - k_{0} z)}}{\omega_{B}^{2} - \gamma_{0}^{2}(\omega_{0} - k_{0} v_{0})^{2}} + \frac{1}{(2\pi)^{2}} \int A_{k\omega} I(k_{\perp} r) e^{-i(\omega t - kz)} dkd\omega . /25/$$

Итак, получаем результат: электрическое поле "отклика" пучка на внешнюю электромагнитную волну содержит гармонику, имеющую те же параметры ω_0 , k_0 , что и внешняя волна, амплитуда которой может значительно превосходить начальное значение, если параметры ω_0 , k_0 удовлетворяют резонансному условию

$$\epsilon(\omega, \mathbf{k}) = 1 - \frac{\omega_{\rm B}^2}{\gamma_0^2(\omega_0 - \mathbf{k}_0 \mathbf{v}_0)^2} = 0.$$
 (26)

Но это есть не что иное, как дисперсионное соотношение медленной ленгмюровской моды /14/. Иными словами, если параметры внешней волны удовлетворяют /14/, происходит ее резонансное усиление; можно сформулировать и так: резонанс происходит,если частота внешней волны, смещенная за счет аномального эффекта Доплера $\omega' = \gamma_0 (\omega_0 - k_0 v_0)$,совпадает с характерной частотой собственных колебаний электронов в пучке, в данном случае $\omega' = -\omega_{\rm B}$. Суммарное поле в системе теперь можно записать в виде

$$\mathbf{E} = \eta \mathbf{E}_{0BH} \mathbf{e}^{-\mathbf{i}(\omega_0 \mathbf{t} - \mathbf{k}_0 \mathbf{z})} + \frac{1}{(2\pi)^2} \int \mathbf{A}_{k\omega} \mathbf{e}^{-\mathbf{i}(\omega \mathbf{t} - \mathbf{k}z)} d\omega dk , \qquad /27/$$

где коэффициент усиления *η* равен

sk.

$$\eta = 1 + \frac{\omega_{\rm B}^2}{\gamma_0^2 (\omega_0 - k_0 v_0)^2 - \omega_{\rm B}^2}.$$
 /28/

В рамках линейной теории ограничение роста амплитуды волны наступает при учете конечного затухания в системе пучок-структура;однако анализ показывает,что значительно раньше насыщение происходит вследствие нелинейных эффектов, в частности захвата электронов волной. 4. Перейдем к построению второго метода анализа, который естественным образом выведет и к нелинейной теории резонансного взаимодействия.

Введем для удобства потенциальную функцию ϕ , которая связана с продольным электрическим полем равенством

$$E = \kappa \frac{\partial \phi}{\partial \psi}$$
, $\psi = \omega t - kz$. /29/

к - размерный коэффициент, выберем его несколько позже.

Подставим /29/ в волновое уравнение /4/; используя уравнение непрерывности и переходя к новой переменной ψ , для ϕ получаем уравнение

$$\frac{\partial^2 \phi}{\partial \psi^2} + \frac{1}{k_{\perp 0}^2} \frac{1}{r} \frac{\partial}{\partial r} (r \frac{\partial \phi}{\partial r}) = -\beta_{\oplus}^2 \gamma_{\oplus} \gamma_{\oplus} (\nu - \nu_0).$$
 (30/

Здесь $\beta_{\Phi} = \frac{v_{\Phi}}{c}$, $v_{\Phi} = \frac{\omega}{k}$, $\gamma_{\Phi} = (1 - v_{\Phi}^2/c^2)^{-\frac{1}{2}}$, безразмерная плотность $\nu = \omega_{\rm B}^2/\omega^2$, ν_0 - ее значение при $\phi = 0$.

Из уравнений движения /5/ и непрерывности /6/ можно получить интегралы движения. Из уравнения /6/ после перехода от t, $z \ \kappa \psi$ получаем сразу

$$\rho(v - v_{\phi}) = \text{const} = \rho_0(v_0 - v_{\phi}).$$
 (31/

Уравнение /5/ дает

$$\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}\psi} = -\frac{\mathrm{eE}}{\mathrm{m}v^3 \frac{\omega}{\mathrm{ev}}(\mathrm{v}-\mathrm{v}_{\mathrm{th}})}; \qquad (32)$$

учитывая /29/, записываем

$$\gamma^{3}(\beta - \beta_{\pm}) \frac{\partial \beta}{\partial \psi} = -\frac{e_{\kappa}}{mkc^{2}} \frac{\partial \phi}{\partial \psi}, \quad k = \frac{\omega}{v_{\pm}}.$$
 (33)

Теперь рассмотрим энергию электрона в системе покоя волны, т.е. в системе, движущейся относительно лабораторной системы со скоростью вдоль оси z: $v_{\rm d} = \beta_{\rm d} c$; из лоренцевых преобразований для энергии-импульса получаем, обозначив энергию в движущейся системе mc²(\overline{y} -1),

$$\overline{\gamma} = \gamma \cdot \gamma_{\phi} (1 - \beta \beta_{\phi}); \quad \frac{d\overline{\gamma}}{d\psi} = \gamma^{3} \gamma_{\phi} (\beta - \beta_{\phi}) \frac{d\beta}{d\psi}. \qquad (34)$$

Сравнивая /34/ с /33/, убеждаемся, что можно написать

$$\frac{\mathrm{d}}{\mathrm{d}\psi}\left(\overline{y} + \frac{\mathrm{e}\,\kappa y_{\oplus}}{\mathrm{mc}^{2}\,\mathrm{k}}\phi\right) = 0.$$
 (35/

Теперь выберем размерный коэффициент κ так, чтобы в соотношении /35/ перед ϕ получить единицу, т.е.

$$= -\frac{\mathrm{mc}^2 \omega}{\mathrm{ev}_{\mathrm{d}} \gamma_{\mathrm{d}}} \,. \tag{36}$$

Теперь проясняется физический смысл ϕ : при $\phi = |\phi| e^{i\psi}$, $E = |E| e^{i\psi}$. имеем

$$|\phi| = \frac{e|E| v_{\phi} y_{\phi}}{mc^2 \omega}, \qquad (37)$$

т.е. ϕ определяет работу поля волны над электроном на длине волны $\lambda = \frac{2\pi v_{\oplus}}{\omega}$, отнесенную к энергии покоя mc².

Второй интеграл движения /интеграл энергии/ можно теперь записать в виде /из /35//

$$\overline{\gamma} + \phi = \text{const} = \overline{\gamma}_0$$
; /38/

при записи /38/ положено, что начальное значение $\phi = \phi_{BH} << \tilde{y_0}$.

Возвратимся к волновому уравнению для ϕ /30/ и выразим, пользуясь /31/ и /38/, его правую часть через ϕ . Окончательно получаем уравнение

$$\frac{\partial^2 \phi}{\partial \psi^2} + \frac{1}{k_{\perp 0}^2} \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \phi}{\partial r} \right) = q - q \overline{\beta}_0 \frac{\gamma_0 - \phi}{\sqrt{(\overline{\gamma}_0 - \phi)^2 - 1}};$$
 /39/

 $\vec{\beta}_0 = \frac{\beta_0 - \beta_{\Phi}}{1 - \beta_0 \beta_{\Phi}}$ скорость электронов в системе покоя волны при $\phi = 0$, $q = \nu_0 \beta_{\Phi}^2 \gamma_{\Phi}^2 \vec{\gamma}_0$. Если выполнено условие $2\phi << \vec{\beta}_0^2 \vec{\gamma}_0$, /40/

то разложение корня в правой части уравнения /39/ приводит к линейной теории, изложенной выше. Действительно, представим поле снова в виде суперпозиции внешней волны и поля пучка:

$$\phi = \phi_{\Pi} + \phi_{BH} , \qquad (41)$$

причем в длинноволновом приближении /23/

$$\phi_{\rm BH} = \phi_{\rm OBH} e^{-i(\omega t - kz)} . \qquad (42)$$

Тогда, пользуясь /40/ и упрощая правую часть /39/, приходим к уравнению для ϕ :

$$\frac{d^{2}\phi_{\Pi}}{d\psi^{2}} + q \frac{\phi_{\Pi}}{\bar{\beta}_{0}^{2}\bar{\gamma}_{0}^{3}} = -\frac{q}{\bar{\beta}_{0}^{2}\bar{\gamma}_{0}^{3}} \phi_{OBH} e^{-i\psi} .$$
 (43/

Окончательно получаем, учитывая выражения для q, β_0 и ν_0 :

$$\frac{d^{2}\phi_{\Pi}}{d\psi^{2}} + \frac{\omega_{B}^{2}}{\gamma_{0}^{2}(\omega - kv_{0})^{2}}\phi_{\Pi} = -\frac{\omega_{B}^{2}\phi_{OBH}}{\gamma_{0}^{2}(\omega - kv_{0})^{2}}e^{-i\psi} .$$
 (44/

8

Это уравнение гармонических колебаний под действием вынуждающей силы. При условии

$$\Omega^{2} = \frac{\omega_{\rm B}^{2}}{\gamma_{0}^{2}(\omega - kv_{0})^{2}} = 1$$
 (45/

имеет место резонанс и амплитуда колебаний /волны ϕ_{Π} / растет до бесконечности. Таким образом, повторен результат /25/-/26/. Теперь можно пойти несколько дальше и ответить на вопрос, как происходит во времени /или в пространстве/ нарастание амплитуды волны в линейном приближении.

Как известно, решение уравнения /44/ при условии /45/ имеет вид

$$\lim_{\Omega \to 1} \frac{\phi_{\Pi} \gamma_0^2 (\omega_{-} k v_0)^2}{\omega_B^2 \phi_{OBH}} = \frac{1}{2} (\psi \cos \psi - \sin \psi), \qquad (46)$$

то есть амплитуда поля волны в резонансе растет линейно во времени /линейно с расстоянием z / с коэффициентом усиления /"инкрементом"/, равным

$$\Gamma_{\rm L} = \frac{1}{v_{\rm p}} \frac{1}{E_{\rm OBH}} \frac{d|E_{\rm I}|}{dt} = \frac{1}{E_{\rm OBH}} \cdot \frac{d|E_{\rm I}|}{dz} = \frac{\omega_{\rm B}^2 v_{\rm p}}{2\omega \gamma_0^2 (v_0 - v_{\rm p})^2} / 47$$

Выразим резонансное условие /45/ через более удобные величины - ток, размер пучка.

Легко проверить, что квадрат ленгмюровской частоты следующим образом выражается через ток пучка J:

$$\omega^{2} = \frac{4c^{2}}{\gamma_{0}\beta_{0}a^{2}} \cdot \frac{J}{J_{A}}, \quad J_{A} = \frac{mc^{3}}{e} \simeq 17 \text{ kA}.$$
 (48)

Окончательно /45/ записываем в виде ($v_{\dot{\omega}} << v_0$)

$$J = J_A \left(\frac{\pi a}{\lambda}\right)^2 \left(\gamma_0^2 - 1\right)^{3/2} .$$
 (49/

T.e. резонанс наступает при токе пучка, равном /49/, и длине волны $\lambda = \frac{2\pi v_{\oplus}}{\omega}$.

С учетом резонансного условия /45/ "инкремент" равен просто:

$$\Gamma_{\rm L} = \frac{\omega}{2v_{\rm p}} = \frac{\pi}{\lambda} .$$
 /50/

5. Для иллюстрации потенциальных возможностей резонансного механизма возбуждения волны приведем численный пример. Пусть электронный пучок радиуса a = 1 см и начальной энергии 500 кэВ ($\gamma_0=2$) распространяется в магнитном поле H > 3 кЭ. При токе пучка J = 2,18 кА наступает резонанс с внешней волной $\omega = 4,5\cdot10^{-8}$ с⁻¹, $\beta_{\rm dp}=0,05$, $\lambda = 20$ см. Амплитуда внешней волны

⁷ произвольна, она может быть определена из условия достаточного превышения над начальными шумами и быстрого выхода на уровень, необходимый для эффективного ускорения. Из условия отсутствия захвата этот уровень может быть оценен сверху из формул /38/ и /37/:

$$e |E_{Makc}| \lambda \leq \frac{2\pi mc^2}{\gamma \phi} (\overline{\gamma}_0 - 1) .$$
 (51/

Возъмем E_{OBH} ≃10 кВ/см. Тогда поле в системе растет линейно во времени и по z /от точки начала взаимодействия пучка с волной/ до величины $|E| < |E_{Makd}|$ ≈160 кВ/см с "инкрементом" Γ_L ≈0,16 см⁻¹, т.е. выходит на этот уровень на длине 100 см.

Вопросы нелинейной теории, взаимодействия пучка с конкретной замедляющей структурой и некоторые другие будут предметом следующих публикаций.

Авторы признательны за полезные обсуждения и многочисленные ценные замечания А.М.Балдину, Ю.Д.Безногих, В.С.Воронину, А.Н.Лебедеву, М.И.Подгорецкому.

ЛИТЕРАТУРА

ž

÷1,

4

- 1. Файнберг Я.Б. АЭ, 1959, т.6, с.431.
- 2. Файнберг Я.Б., Хижняк Н.А. УФН, 1979, т.127, с.331.
- 3. Sloan M., Drummond W. Phys.Rev.Lett., 1973, vol.31, p.1234.
- 4. Manheimer W., Ott E. Phys. Fluids, 1974, vol.17, p.463.
- 5. Providakes G., Nation J. J.Appl.Phys., 1979, vol.50, p.3026.
- 6. Sprangle P. et al. Phys.Rev.Lett., 1976, vol.36, p.1180.
- 7. Беликов В.В. и др. Письма в ЖТФ, 1975, т.1, в.13.
- Лебедев А.Н., Пазин К.Н. В кн.: Труды II Симпозиума по коллективным методам ускорения, Дубна, 1976. ОИЯИ, Д9-10500, Дубна, 1977.
- 9. Файнберг Я.Б. В кн.: Труды VII Международной конференции по ускорителям, Ереван, 1969. Изд-во АрмССР, Ереван, 1970, с.465.
- 10. Бонч-Осмоловский А.Г., Доля С.Н. В кн.: Труды II Симпозиума по коллективным методам ускорения, Дубна, 1976. ОИЯИ, Д9-10500, Дубна, 1977, с.871; АЭ, 1978, т.45, с.354.
- 11. Иванов Б.И. и др. Препринт ХФТИ, 80-8, Харьков, 1980.
- 12. Cornet E. et al. Phys.Rev.Lett., 1981, vol.46, p.181.
- 13. Бонч-Осмоловский А.Г., Цытович В.Н. Труды ФИАН, 1973, т.66,с.144.

Рукопись поступила в издательский отдел 12 февраля 1982 года.

n

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы можете получить по почте перечисленные, ниже книги,

если они не были заказаны ранее.

Д1,2-9224	IV Международный семинар по проблемам физики высоких энергий. Дубна, 1975.	3	р.	60	к.
Д-9920	Труды Международной конференции по избранным вопросам структуры ядра. Дубна, 1976.	3	p.	50	к.
Д9-10500	Труды II Симпозиума по коллективным методам ускорения. Дубна, 1976.	2	ρ.	50	к.
Д2-10533	Труды X Международной школы молодых ученых по физике высоких энергий. Баку, 1976.	3	р.	50	к.
Д13-11182	Труды IX Международного симпозиума по ядерной элект- ронике. Варна, 1977.	5	₽.	00	к.
Д17-11490	Труды Международного симпозиума по избранным пробле- мам статистической механики. Дубна, 1977.	6	p.	00	к.
д6-11574	Сборник аннотаций XV совещания по ядерной спектроско- пии и теории ядра. Дубна, 1978.	2	p.	50	к.
ДЗ-11787	Труды III Международной школы по нейтронной физике. Алушта, 1978.	3	р.	00	к.
Д13-11807	Труды III Международного совещания по пропорциональ- ным и дрейфовым камерам. Дубна, 1978.	6	p.	00	к.
	Труды VI Всесоюзного совещания по ускорителям заря- женных частиц. Дубна, 1978 /2 тома/	7	p.	40	к.
Д1,2-12036	Труды V Международного семинара по проблемам физики высоких энергий. Дубна, 1978	5	р.	00	к.
Д1,2-12450	Труды XII Международной школы молодых ученых по физике высоких энергий. Приморско, НРБ, 1978.	3	p.	00	к.
	Труды VII Всесоюзного совещания по ускорителям заря- женных частиц, Дубна, 1980 /2 тома/	8	р.	00	к.
Д11-80-13	Труды рабочего совещания по системам и методам аналитических вычислений на ЭВМ и их применению в теодетической физике, Дубна, 1979	3	p.	50	к.
Д4-80-271	Труды Международной конференции по проблемам нескольких тел в ядерной физике. Дубна, 1979.	3	р.	00	к.
д4-80-385	Труды Международной школы по структуре ядра. Алушта, 1980.	5	p.	00	к.
Д2-81-543	Труды VI Международного совещания по проблемам кван- товой теории поля. Алушта, 1981	2	р.	50	к.
д10,11-81-622	Труды Международного совещания по проблемам математи- ческого моделирования в ядерно-физических исследова- ниях. Дубна, 1980	2	р.	50	к.

Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79 Издательский отдел Объединенного института ядерных исследований Бонч-Осмоловский А.Г., Доля С.Н., Решетникова К.А. Р9-82-113 О механизме резонансного усиления медленной ленгмюровской волны в релятивистском электронном пучке

4.1

4

ŧ.

h

3

Рассмотрено взаимодействие релятивистского электронного пучка /РЭП/ с возбужденной внешним источником в замедляющей структуре волной, начальная амплитуда которой отлична от нуля. При резонансных условиях, когда параметры внешней волны удовлетворяют дисперсионному соотношению для медленной ленгмюровской моды, происходит эффективное усиление ленгмюровской моды: амплитуда продольного электрического поля волны в системе пучок-структура растет по линейному закону во времени и по оси системы с коэффициентом, например, пространственного усиления $\Gamma_L = \pi/\lambda$, здесь λ – резонансная длина волны. В работе развиты два метода описания резонансного взаимодействия, в том числе и с учетом нелинейного режима. Проведены оценки параметров этого механизма. Эти оценки показывают, что резонансное взаимодействие является весьма эффективным механизмом создания большой пространственной модуляции плотности РЭП и электромагнитной волны с амплитудой выше 100 кВ/см и малой фазовой скоростью.

Работа выполнена в Лаборатории высоких энергий ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1982

Bonch-Osmolovsky A.G., Dolya S.N., Reshetnikova K.A. P9-82-113 On a Mechanism of Resonance Amplification of Slow Langmuir Wave in a Relativistic Electron Beam

The interaction of relativistic electron beam (REB) with an electromagnetic wave of finite initial amplitude excited with external source in a slowing-down structure is considered. Under resonance conditions when external wave parameters satisfy dispersion relation for a slow Langmuir mode, effective amplification of Langmuir mode occurs: amplitude of wave longitudinal electrical field in the beam-structure system increases by a linear relation with increment, for example, of space amplification $\Gamma_L = \pi/\lambda$. Two methods of description of resonance interaction including that making allowance for nonlinear regime are developed. Parameters of this mechanism are evaluated. These estimates indicate that the resonance interaction is a rather effective mechanism for creating a large space modulation of REB density and an electromagnetic wave with amplitude higher than 100 kV/cm and a small phase velocity.

The investigation has been performed at the Laboratory of High Energies, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1982

Перевод О.С.Виноградовой.