

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

22/0-82

P9-81-743

Л.А.Меркулов

РАСЧЕТ УСКОРЕНИЯ И ТРАНСПОРТИРОВКИ СИЛЬНОТОЧНОГО ЛАМИНАРНОГО ЭЛЕКТРОННОГО ПУЧКА В НЕЛИНЕЙНЫХ АКСИАЛЬНО-СИММЕТРИЧНЫХ ЭЛЕКТРИЧЕСКИХ И МАГНИТНЫХ ПОЛЯХ

введение

В конструкции любой современной электрофизической установки /в частности, в линейном индукционном ускорителе/ можно найти большое разнообразие нелинейных оптических элементов /ускоряющий индуктор, фокусирующий соленоид, электростатические линзы, магнитный корректор и т.д./, при прохождении которых вполне вероятно возникновение резкого изменения распределения плотности объемного заряда р по сечению пучка.

С аналогичным физическим явлением приходится сталкиваться и в электронике интенсивных электронных потоков, используемых в современных приборах СВЧ О-типа /клистроны, лампы с бегущей волной, лампы с обратной волной и т.п./.

Фокусирующая сила в таких оптических элементах значительно, причем нелинейно, изменяется в поперечном сечении пучка, так что пучок, предполагаемый ламинарным на входе, превращается в неламинарный при дальнейшем прохождении системы /1/.

Как известно, ламинарный пучок с однородным распределением плотности заряда по сечению имеет нулевой фазовый объем и на фазовой плоскости в координатах (г,г') представлен прямой, проходящей через начало координат. Нелинейные поля оптических элементов преобразуют прямолинейный отрезок на фазовой плоскости в кривую, сохраняя нулевой фазовый объем^{/2/} Многократное прохождение пучка через такие элементы ускоряет процесс искривления, приводя к неламинарности.

Известно^{/8/}, что только траектории ламинарного параксиального пучка поперечно-подобны относительно оси пучка, а плотность заряда постоянна в любом нормальном сечении. При этом рассматривается движение электронов, находящихся настолько близко к оси пучка, что можно предположить, что составляющие скорости электронов, направленные по нормали к оси пучка, малы по сравнению с составляющими, направленными параллельно оси пучка. Так как расстояния по нормали к оси пучка предполагаются малыми, то ограничиваются только членами первого порядка малости.

В общем же случае, что и будет рассмотрено в работе, параметры пучка соизмеримы с размерами фокусирующей системы, что неизбежно приведет к нелинейному характеру взаимодействия всех сил в области пучка.

Как уже отмечалось^{/4/}, нелинейные эффекты, связанные с неоднородным распределением пространственного заряда в интенсивных пучках, играют доминирующую роль.

В работе^{/5/} приведен пример, где линейная аппроксимация всех действующих сил предсказывает максимальный диаметр пучка, который содержит только 39% общего заряда того случая расчета, когда учтены все нелинейные эффекты, а сам предсказываемый максимальный диаметр составляет только 70% диаметра, получаемого при использовании нелинейной методики расчета.

Необходимо заметить, что и в случае транспортировки электронного пучка с большим зарядом при расстоянии дрейфа в несколько десятков метров уже ощущается расплывание даже электронного пучка высокой энергии /2/.

Поэтому широкое развитие и применение устройств, имеющих в наличии электронные пучки с большим зарядом, требуют и более совершенных и точных методов расчета, которые бы учитывали как нелинейный характер внешних электрических и магнитных полей, так и неоднородную структуру пучка по сечению.

ТЕОРИЯ И МЕТОДИКА РАСЧЕТА

Точное уравнение траектории электрона в аксиально-симметричном ламинарном потоке релятивистских электронов в осесимметричных стационарных электрических и магнитных полях, как известно^{/6,7/}, записывается в виде /гауссова система единиц/:

$$\frac{\mathrm{d}^{2}\mathbf{r}}{\mathrm{d}\mathbf{z}^{2}} = \frac{\sigma}{\gamma\beta_{z}^{2}} [\mathbf{r}'\mathbf{E}_{z} - \mathbf{E}_{r} - \frac{\sigma}{\gamma}(\mathbf{A}_{\phi} - \frac{a}{r})(\frac{\partial \mathbf{A}_{\phi}}{\partial \mathbf{r}} + \frac{a}{r^{2}} - \frac{\partial \mathbf{A}_{\phi}}{\partial z}) - \frac{2\beta_{z}\mathbf{I}(\mathbf{r})}{cr}(\mathbf{1} + \mathbf{r}'^{2})], \qquad (1/2)$$

где

$$\mathbf{E}_{\mathbf{r}} = \mathbf{E}_{\mathbf{r}\mathbf{\Pi}} + \mathbf{E}_{\mathbf{r}\mathbf{B}} = -\frac{\partial \mathbf{V}}{\partial \mathbf{r}}; \qquad \mathbf{E}_{\mathbf{z}} = \mathbf{E}_{\mathbf{z}\mathbf{\Pi}} + \mathbf{E}_{\mathbf{z}\mathbf{B}}; \quad \alpha = \mathbf{r}_{\mathbf{0}} \mathbf{A}_{\mathbf{0}}$$

и предполагается определенной на некоторой поверхности катода, являющейся источником происхождения исследуемого пучка; $\mathbf{r}' = \frac{d\mathbf{r}}{d\mathbf{z}}; \ \sigma = \frac{\mathbf{e}}{\mathbf{E}_0}; \ \mathbf{e} > 0; \mathbf{e} \ \mathbf{H} \ \mathbf{E}_0$ - заряд и энергия покоя электрона; $\beta = \frac{\mathbf{v}}{\mathbf{c}}; \ \gamma = (1 - \beta^2)^{-1/2}; \ \mathbf{v} \ \mathbf{u} \ \mathbf{e} - \mathbf{c}$ корость электрона и скорость света; $\beta_z = \frac{1}{\gamma} \sqrt{\frac{\gamma^2 - 1 - \sigma^2 (\mathbf{A}\phi - \alpha/r)^2}{1 + \mathbf{r}'^2}};$

I(r) - ток пучка произвольной внутренней траектории в аксиальносимметричном ламинарном потоке, заключенный внутри окружности радиуса r; E_{rII}, E_{zII} - радиальная и продольная составляющие электрического поля, вызванные объемным зарядом пучка; Е_{тв} суммарная радиальная составляющая внешних электрических полей; Е_{zB} - суммарная продольная составляющая внешних электрических полей; А_ф - суммарная азимутальная составляющая векторного потенциала внешних фокусирующих полей.

Фокусировка осуществляется расположенными последовательно вдоль исследуемого участка неэкранированными соленоидами с прямоугольным сечением катушек, так что суммарная азимутальная составляющая векторного потенциала от M катушек определяется выражением

$$A_{\phi}(\mathbf{r}, \mathbf{z}) = \sum_{i=1}^{M} \left[\frac{\mathbf{r}}{2} H_{i}(0, \mathbf{z}) - \frac{\mathbf{r}^{3}}{16} \frac{\partial^{2} H_{i}(0, \mathbf{z})}{\partial z^{2}} + \dots \right], \qquad /2/$$

$$rge = \frac{2\pi J_{1}}{c} [(z_{2i} - z) \ln \frac{r_{2i} + \sqrt{r_{2i}^{2} + (z_{2i} - z)^{2}}}{r_{1i} + \sqrt{r_{1i}^{2} + (z_{2i} - z)^{2}}} (z_{1i} - z) \ln \frac{r_{2i} + \sqrt{r_{2i}^{2} + (z_{1i} - z)^{2}}}{r_{1i} + \sqrt{r_{1i}^{2} + (z_{1i} - z)^{2}}}]$$

J_i - плотность тока питания і -той фокусирующей катушки; г_{1i}, ^г2i, ^г1i, г_{2i} - координаты узлов сечения і-той катушки в меридианной плоскости.

В уравнении /1/ используются потенциал V, а также величины E_r и E_z , получаемые при решении уравнения Пуассона

$$\frac{1}{r} \frac{\partial}{\partial r} \left[r \frac{\partial V(r,z)}{\partial r} \right] + \frac{\partial^2 V(r,z)}{\partial z^2} = 4\pi \rho [r(z)]. \qquad (3/2)$$

Уравнения /1/ и /3/ должны быть самосогласованными. Так как $E_z = E_{z\pi} + E_{zB}$, то, решая /3/, получим в каждой точке сечения пучка

$$E_{r}(r,z) = -\frac{4\pi}{r} \int_{0}^{r} \rho_{0}[r(z)] r dr, \qquad (4/)$$

где

$$\rho_0[\mathbf{r}(\mathbf{z})] = \rho[\mathbf{r}(\mathbf{z})] + \frac{1}{4\pi} \frac{\partial \mathbf{E}_z}{\partial z}.$$

Хочется отметить, что в общем виде значение потенциала V(r,z) в сечении пучка легко можно определить из /4/:

$$V(r,z) = V(R_{a},z) - 4\pi \left[\ln R_{a} \cdot \int_{0}^{R} \rho_{0} r dr - \ln r \cdot \int_{0}^{r} \rho_{0} r dr - \int_{r}^{R} \int_{0}^{R} r dr \right].$$
 (5/

Соответственно

$$E_{z}(\mathbf{r},z) = \Phi(\mathbf{R}_{a},z) + 4\pi \{\ln \mathbf{R}_{a}, \int_{0}^{\mathbf{R}} \mathbf{r}'(\rho_{0} + \frac{\partial \rho_{0}}{\partial \mathbf{r}}) d\mathbf{r} + \frac{\mathbf{R}_{a}'}{\mathbf{R}_{a}} \int_{0}^{\mathbf{R}} \rho_{0} \mathbf{r} d\mathbf{r} - \frac{\mathbf{r}'}{\mathbf{r}} \int_{0}^{\mathbf{r}} \rho_{0} \mathbf{r} d\mathbf{r} - \ln \mathbf{r} \cdot \int_{0}^{\mathbf{r}} \mathbf{r}'(\rho_{0} + \frac{\partial \rho_{0}}{\partial \mathbf{r}}\mathbf{r}) d\mathbf{r} - \frac{f'}{\mathbf{r}} \int_{0}^{\mathbf{r}} \rho_{0} \mathbf{r} d\mathbf{r} - \ln \mathbf{r} \cdot \int_{0}^{\mathbf{r}} \mathbf{r}'(\rho_{0} + \frac{\partial \rho_{0}}{\partial \mathbf{r}}\mathbf{r}) d\mathbf{r} - \frac{f'}{\mathbf{r}} \int_{0}^{\mathbf{r}} \rho_{0} \mathbf{r} d\mathbf{r} - \ln \mathbf{r} \cdot \int_{0}^{\mathbf{r}} \mathbf{r}'(\rho_{0} + \frac{\partial \rho_{0}}{\partial \mathbf{r}}\mathbf{r}) d\mathbf{r} - \frac{f'}{\mathbf{r}} \int_{0}^{\mathbf{r}} \rho_{0} \mathbf{r} d\mathbf{r} - \ln \mathbf{r} \cdot \int_{0}^{\mathbf{r}} \mathbf{r}'(\rho_{0} + \frac{\partial \rho_{0}}{\partial \mathbf{r}}\mathbf{r}) d\mathbf{r} - \frac{f'}{\mathbf{r}} \int_{0}^{\mathbf{r}} \rho_{0} \mathbf{r} d\mathbf{r} - \ln \mathbf{r} \cdot \int_{0}^{\mathbf{r}} \mathbf{r}'(\rho_{0} + \frac{\partial \rho_{0}}{\partial \mathbf{r}}\mathbf{r}) d\mathbf{r} - \frac{f'}{\mathbf{r}} \int_{0}^{\mathbf{r}} \rho_{0} \mathbf{r} d\mathbf{r} + \frac{f$$

$$-\int_{\mathbf{r}}^{\mathbf{R}}\mathbf{r}\left(\rho_{0}+\ln\mathbf{r}\cdot(\rho_{0}+\frac{\partial\rho_{0}}{\partial\mathbf{r}}\mathbf{r})\right)\,\mathrm{d}\mathbf{r}\right).$$

Так как в дальнейшем условие сохранения ламинарности предполагается рассмотреть на примерах, в которых отсутствуют внешние силы ускорения, то в уравнении /1/ выражение ($r^{i'}E_z - E_r$) будет тождественно соотношению $-E_{r\Pi} (1 - \frac{r'E_{z\Pi}}{E_{r\Pi}})$. Учитывая сложность вычисления $E_{z\Pi}$ по /6/, оценим на простых характерных распределениях плотности заряда величину поправки $k = \frac{r'E_{z\Pi}}{E_{r\Pi}} c$ целью определения возможности пренебречь этой величиной по сравнению с $E_{r\Pi}$ для сокращения времени счета без ущерба для конечных результатов.

При рассмотрении произвольных распределений плотности заряда вида $\rho = \rho_1 e^{ar}$ и $\rho = \rho_1 e^{-ar^2}$, $r \leq R(z)$, где значения $b = \rho/\rho_1$, R и R' варьировались в широком диапазоне /0,1 $\leq b \leq 10$; 0,012 м $\leq R \leq 0,024$ м; 0 $< R' \leq 0,2/$, с помощью /6/ была оценена величина поправки k для тока в 250 A, которая для тех хароктерных параметров пучка в наших примерах /средний радиус $R \sim 0,02$ м, слабо развитое радиальное движение с максимальным $R' \sim 0,1$ и на большей части пучка 1 $\leq b \leq 2,5/$ составляет не больше 1%. Это дает полное право в дальнейших наших численных расчетах пренебречь величиной $E_{z\Pi}$ при рассмотрении конкретных примеров.

Заметим, что в процессе ускорения /особенно когда напряженность ускоряющего поля незначительна/ пренебрегать $\rm E_{zII}$ нельзя, так как по абсолютной величине $\rm E_{zII}$ и $\rm E_{zB}$ практически могут быть одного порядка. Энергия электрона в произвольной точке сечения определяется значением потенциала V(r,z) в этой же точке, так что из уравнения /4/ с учетом неравномерного распределения потенциала внутри пучка можно получить выражение

$$\gamma(\mathbf{r}, \mathbf{z}) = \gamma(\mathbf{R}, \mathbf{z}) + \sigma \int_{\mathbf{r}}^{\mathbf{r}(\mathbf{z})} \mathbf{E}_{\mathbf{r}}(\mathbf{r}, \mathbf{z}) d\mathbf{z}, \qquad (77)$$

где γ (R,z) - величина энергии крайнего электрона, движущегося по огибающей пучка. Уравнение /7/ также позволяет оценить разброс электронов по энергии в любом сечении потока.

Распределение потенциала в пространстве между границей пучка и металлической стенкой вакуумной камеры радиуса R_a ,согласно^{/8/},также определяется из выражения /4/, так что на границе пучка имеем

$$V(R,z) = V(R_a, z) + E_r(R,z) \cdot R \cdot \ln \frac{R_a}{R}$$
. (8/

V(R_a,z) – значение напряжения на стенке вакуумной камеры, эквивалентное величине приобретенной энергии электрона в данном сечении пучка и, соответственно, определяемое как

$$V(R_{a},z) = V(R_{a},z_{H}) - \int_{z_{H}}^{z} \Phi(R_{a},z) dz,$$
 /9/

где

$$\Phi(R_{a},z) = E_{zB} (R_{a},z) + R'_{a}(z) \cdot E_{rB}(R_{a},z),$$

Найденное значение $V(\mathbf{R},z)$ из /8/ служит основой для определения $\gamma(\mathbf{R},z)$ из выражения

$$y(\mathbf{R}, z) = 1 + \sigma V(\mathbf{R}, z),$$
 (10)

Расчет уравнения /1/ для каждой траектории производится методом Рунге-Кутта четвертого порядка с переменным шагом и с заданной абсолютной точностью.

Подготовка к расчету начинается с задания исследуемого участка тракта /координаты $z_{\rm H}$ и $z_{\rm k}$ / с соответствующими фокусирующими и ускоряющими элементами, начального радиуса пучка R_0 и заключенного внутри него тока I_0 , величины начального замагничивания α_0 для огибающей пучка и начальной производной огибающей пучка R_0^* .

Предполагается, что к началу рассмотрения заданный пучок был получен с помощью какого-то ускоряющего устройства и энергия его на входе участка однозначно определяется заданием величины напряжения $V(R_a, z_B)$.

В качестве начального условия на входе исследуемого участка предпочтительнее рассматривать пучок с постоянной плотностью объемного заряда по сечению, что, в принципе, вполне достижимо^{/6}/ так как именно в этом случае наиболее точно можно определить распределения как потенциала, так и величины тока в зависимости от радиуса внутри пучка.

Условия ламинарности потока и постоянства плотности объемного заряда по сечению /только на входе/ позволяют однозначно определить в качестве начального условия как величину тока, заключенного в произвольной окружности радиуса г, так и величину начальной энергии электрона в этой точке:

$$I(r)|_{z_{H}} = \frac{c}{\sigma} (A_{1} - A_{2} + \operatorname{arctg} A_{2} - \operatorname{arctg} A_{1}), /11/$$

Figure (A₁=
$$\sqrt{\gamma^2(\mathbf{r}, \mathbf{z}_{\mathrm{H}})-1}$$
, (A₂= $\sqrt{\gamma^2(\mathbf{0}, \mathbf{z}_{\mathrm{H}})-1}$,
 $\gamma(\mathbf{r}, \mathbf{z}_{\mathrm{H}}) = \gamma(\mathbf{R}_{\mathrm{a}}, \mathbf{z}_{\mathrm{H}}) - \sigma \pi \rho \mathbf{R}_0^2 (1 - \frac{\mathbf{r}^2}{\mathbf{R}_0^2} + 2\ln \frac{\mathbf{R}_{\mathrm{a}}}{\mathbf{R}_0})$.

Величина р очень легко определяется из условия

 $I(R_0)|_{z_H} = I_0$.

Решение самосогласованной стационарной задачи проводится путем последовательных приближений по объемному заряду при совместном решении уравнения движения /1/ и вытекающих из уравнения Пуассона /3/ уравнений /4/÷/9/. Распределение плотности объемного заряда по сечению пучка в любой точке вдоль рассматриваемого участка можно определить, если известен набор траекторий внутри пучка, берущих свое начало на различных радиусах переднего фронта пучка в точке z_нДля этого на входе участка начальный радиус огибающей пучка ${f R}_0$ разбивается на N равных отрезков. Точки разбиения являются одновременно начальными координатами /радиусов и производных/ набора из N траекторий электронов с соответствующими значениями потенциалов и с соответствующими значениями токов в каждой элементарной трубке тока, определяемых с помощью /11/.Каждая рассчитанная траектория из этого набора содержит информацию, включающую в себя последовательность значений $\{z_i\}, \{r_i\}, \{r_i'\}$ И (у.).

Наличие этих сведений, а также основополагающее условие ламинарности позволяют определить с достаточно хорошей точностью в окрестности точки пересечения каждой траектории с рассматриваемым сечением пучка соответствующие величины плотности тока

$$j_{n} = \frac{1}{4\pi r_{n}} \left[\frac{I(r_{n+1}) - I(r_{n})}{r_{n+1} - r_{n}} + \frac{I(r_{n}) - I(r_{n-1})}{r_{n} - r_{n-1}} \right], n = 1, \dots, N-1, /12/$$

откуда уже с помощью квадратичной интерполяции можно затем получить и непрерывную зависимость $\rho = \rho(r,z)$.

Первая стадия расчета / i =1/ начинается с вычисления всех N траекторий на заданном участке тракта. При этом предполагается, что плотность тока по сечению пучка постоянна, а полученные при этом траектории являются базовыми для второй стадии расчета. Нелинейный характер электрического и магнитного полей проявится в нелинейной зависимости координат r_{k.i} (n) всех траекторий / n =1,...,N / на выходе участка в точке zk. Полученные базовые траектории являются основой для определения распределения потенциала и действующих электрических сил при вычислении N внутренних траекторий во второй стадии расчета. После сравнения значений координат г_{k.i+1} (n) всех траекторий второй стадии на выходе участка с соответствующими базовыми выходными параметрами r_{k.i} (n) траекторий первой стадии и в случае их несовпадения, что является вначале обычным, переходим к третьей стадии расчета, для которой все траектории второй стадии становятся базовыми. Самосогласованный расчет пучка на заданном участке тракта заканчивается, когда рассчитанный веер

траекторий на некоторой стадии расчета совпадает с заданной точностью δ с базовым ходом веера траекторий предыдущей стадии, т.е. когда

$$\left|\frac{r_{k,i+1}(n) - r_{k,i}(n)}{r_{k,i}(n)}\right| \le \delta, \quad n = 1, \dots, N.$$
 /13/

Вычислительная программа предусматривает определение всех параметров самосогласованного ускоряемого ламинарного пучка в электроноводе с заданной геометрией, причем с момента задания начальных условий и до конца счета исключена необходимость каких-либо предположений.

К определяемым параметрам в любой точке рассматриваемого участка относятся радиус произвольной внутренней траектории и величина ее производной, распределение плотности тока /объемного заряда/ по сечению и энергия электронов с соответствую~ щим разбросом в данном сечении пучка.

Программа работоспособна и с хорошей точностью отражает характер происходящих процессов до момента возникновения неламинарности. Возникшая неламинарность в точке z_0 в промежутке рассматриваемого участка автоматически ограничивает длину этого участка до координаты z_0 . Дальнейший счет прекращается.

РЕЗУЛЬТАТЫ ЧИСЛЕННОГО РАСЧЕТА

В качестве проверки вывода о неизбежном возникновении неламинарности, вызванной нелинейными силами электрического и магнитного характера, рассмотрим два примера, связанных с прохождением электронного пучка с начальным радиусом $R_0=0,014$ м и током $I_0=250$ A через различные фокусирующие системы. В обоих случаях полагаем, что $R_a=0,04$ м, $V(R_a,z_H)=300$ кВ и $a_0==95\cdot10^{-8}$ м²T.

1/ Случай однородного магнитного поля

Распределение практически однородного магнитного поля, создаваемого пятью последовательно вплотную расположенными неэкранированными соленоидами с размерами $r_{1i} = 0,051$ м, $r_{2i} = 0,081$ м, $z_{2i} - z_{1i} = 0,36$ м / $i = 1, \ldots, 5$ / и зазором между всеми соленоидами 0,02 м, изображено пунктиром на <u>рис.1</u>, при этом каждая катушка в отдельности создает в центре себя на оси магнитное поле $B_i = 0,04$ T.

Предполагаем, что в некоторой начальной плоскости z_H находящийся внутри этой фокусирующей системы электронный пучок с вышеуказанными параметрами имеет начальную производную R₀ = =0,02 и однородное распределение плотности объемного заряда

<u>Puc.l.</u> Схема электронно-оптического тракта для случая практически однородного магнитного поля.

Рис.2. Относительное распределение плотности заряда в отдельных сечениях.

1. $z_{S_1} = 0, 1 M,$ 2. $z_{S_2} = 0, 2 M,$ 3. $z_{S_3} = 0, 25 M,$ 4. $z_{S_4} = 0, 3 M,$ 5. $z_{S_5} = 0, 35 M,$ 6. $z_{S_6} = 0, 38 M,$ 7. $z_{S_7} = 0, 388 M.$

по сечению. Поведение всех внутренних траекторий пучка изображено на <u>рис.1</u> /сплошные кривые/, а относительное распределение плотности объемного заряда в пучке в отдельных сечениях $S_1 \div S_7$, т.е. там, где пучок пока еще ламинарный, изображено на <u>рис.2.</u>

Видно, что даже в фокусирующих магнитных полях с незначительной нелинейностью можно ожидать возникновения неламинарности в сильноточном электронном пучке.

2/ Случай нелинейного магнитного поля

В данном примере мы обойдемся только фокусирующей системой, состоящей из двух одинаковых неэкранированных соленоидов и отстоящих друг от друга на расстоянии 0,29 м. Прямоугольное сечение этих катушек имеет размеры $r_{1i} = 0,051$ м, $r_{2i} = 0,081$ м /i =1,2/, $z_{2i} - z_{1i} = 0,05$ м и создаваемое ими поле на оси в центре каждой катушки равно $B_i = 0,051$ T.

Предположим, что первая фокусирующая катушка отстоит от начальной плоскости $z_{\rm H}$ на расстояние 0,16 м, а начальная производная электронного пучка с теми же вышеуказанными параметрами имеет величину ${
m R}_0'=-0,03$.

На <u>рис.3а</u> изображены кривые набора внутренних траекторий пучка до момента возникновения неламинарности, в то время как на <u>рис.3б</u> можно видеть как распределение фокусирующего магнитного поля /пунктир/, так и кривые относительных значений $\eta(z) = \frac{r(z)}{R(z)}$ всего набора траекторий. Трансформация распределения плотности объемного заряда по радиусу в относительных единицах от начальной плоскости $z_{\rm H}$, где оно однородно, до момента возникновения неламинарности прослеживается на <u>рис.4</u>, где кривые принадлежат отдельным сечениям S₁ ÷ S₇.

Можно заметить, что в обоих примерах конечный эффект неламинарности достигается один и тот же, что лишний раз подчеркивает важность учета этого явления при конкретных расчетах реальных сложных каналов.

Результат проверочного счета, в основу которого был положен конечно-разностный метод, показывает удовлетворительное качественное совпадение кривых распределения пространственного заряда по сечению с аналогичными кривыми, полученными способом, описанным в данной работе.

В заключение автор считает своим приятным долгом поблагодарить А.Г.Бонч-Осмоловского и Э.А.Перельштейна за ряд полезных замечаний.

Рис.3. Схема электронно-оптического тракта для случая нелинейного магнитного поля.

Рис.4. Относительное распределение плотности заряда в отдельных сечениях.

1. $z_{S_1} = 0, 1 \text{ M},$ 2. $z_{S_2} = 0, 15 \text{ M},$ 3. $z_{S_3} = 0, 2 \text{ M},$ 4. $z_{S_4} = 0, 25 \text{ M},$ 5. $z_{S_5} = 0, 3 \text{ M},$ 6. $z_{S_6} = 0, 35 \text{ M},$ 7. $z_{S_7} = 0, 38 \text{ M}.$

ЛИТЕРАТУРА

- 1. Коцержинский Б.А. Изв. вузов, Радиоэлектроника, 1969, 12, с. 1057.
- Капчинский И.М. Динамика частиц в линейных резонансных ускорителях. "Атомиздат", М., 1966.
- Кирштейн П.Т., Кайно Г.С., Уотерс У.Е. Формирование электронных пучков. "Мир", М., 1970.
- 4. Kuznetsov V.S. Part.Accel., 1971, 2, p.261.
- Taylor C.S. et al. CERN, LIN 69-15, Geneva, 1969;
 В кн.: Труды VII Международной конференции по ускорителям заряженных частиц высоких энергий. т.1, Изд-во АН АрмССР, Ереван, 1970, с. 213.
- Матора И.М., Меркулов Л.А. ОИЯИ, Р9-9476, Дубна, 1976;
 РЭ, 1977, 22, с. 1246.
- 7. Матора И.М. ОИЯИ, Р9-11407, Дубна, 1978.
- 8. Алямовский И.В. Электронные пучки и электронные пушки. "Советское радио", М., 1966.

Рукопись поступила в издательский отдел 25 ноября 1981 года.