

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

2444/2-81

18/5-81

P9-81-63

3.В:Борисовская, С.Б.Ворожцов, Т.Н.Дударева, И.А.Шелаев, И.П.Юдин

ТРЕХМЕРНОЕ РАСПРЕДЕЛЕНИЕ ПОЛЯ В СВЕРХПРОВОДЯЩЕМ ДИПОЛЕ

1. Двумерное распределение магнитного поля в сверхпроводящем диполе типа "оконной рамы" исследовалось в работах ^{1,2}. Там было показано, что амплитуды секступольной и декапольной гармоник могут быть с точностью 1.10⁻⁴ обращены в нуль.

Однако в реальном магните с конечной длиной интегральная величина высших гармоник может иметь существенно большее значение из-за нелинейностей поля на торцах магнита. В данной работе приведены результаты численного анализа этих нелинейностей. Для нахождения трехмерного распределения магнитного поля использовалась вычислительная программа GFUN3D 3

В основу программы положен метод интегральных уравнений, широко используемый при расчете магнитных полей. Детальное описание метода, его преимущества и недостатки обсуждаются в работах ⁴⁻⁷. При адаптации программы GFUN3D на 3BM CDC-6500 ее возможности были расширены благодаря введению обмотки новой конфигурации /см. рис.1/.

Железное ярмо рассматриваемых магнитов изготовлено из трансформаторной стали, имеющей в своем составе 3,25% кремния. При расчетах табличные значения магнитной проницаемости $\mu(\mu \mid \mu(B))$ для этого материала брались из работы ⁸.

2. Для рабочего варианта диполя /высота обмотки B - 2,70 см, толщина корпусной изоляции $\delta = 0,05$ см – см. рис. 1/ было получено распределение поля вдоль оси Z при X Y 0. Расчетное значение поля, представленное на рис. 2 в виде сплошной кривой, при малых значениях индукции (B 0.6 T) с достаточной точностью совпадает с измеренным.

Неоднородности в апертуре диполя определялись в данной работе по величинам амплитуд высших пространственных гармоник магнитного поля, отнесенных к дипольной. Для вычисления последних поле для данного значения Z программным образом разлагалось в ряд:

$$B_{(l)}(R, \theta, Z) = \sum_{N=1}^{N} \left(\frac{R}{RN}\right)^{N-1} \left[A(N) \cos N\theta + D(N) \cdot \sin N\theta\right].$$
 (1/

Очевидно, что из условия симметрии все $D(N)\,$ равны нулю, как и все $A(N)\,$ с четным номером.

Ниже, если не оговорено специально, разложение в ряд /1/ проводилось на радиусе RN = 1,75 см, а затем относительные

Рис.1. Конфигурация обмотки СЛ диполя: а/ в проекции на плоскости ХҮ, ҮZ и ХZ /пунктиром обозначено железное ярмо/; б/ общий вид СЛ обмотки и 1/8 ярма /фотография с дисплея/.

амплитуды высших гармоник по формуле

$$C_{N} = \left(\frac{R}{RN}\right)^{N-1} \cdot \frac{A(N)}{A(1)}$$
 /2/

пересчитывались на радиус R = 2,5 см, составляющий 91% размеров апертуры диполя по обмотке.

2

Рис.2. Распределение поля вдоль оси Z /ось магнита/ в сравнении с измерениями.

Рис. 3. Распределение амплитуд относительных гармоник вдоль оси Z: a/I – кривые С_N для СКДУ-1 при B=0,6T; II – кривые С_N для СКДУ-2 при B=0,6T ; 6/I – соответствует току в витке I = 564 A (B=0,6T); II – соответствует току в витке I = 2,61 кА (B=2,45T).

На <u>рис.3а</u> представлены расчетные значения относительных амплитуд третьей, пятой и седьмой гармоник поля в зависимости от координаты Z для двух диполей с индукцией в центре 0,6 Т. Кривые с индексом 1 относятся к диполю СКДУ-1 с $\delta = 0,05$ см, а с индексом II - к диполю СКДУ-2 с $\delta = 0,01$ см. Как и ожидалось ^{/1/}, чем меньше величина корпусной изоляции δ , тем лучше однородность поля внутри магнита. Однако существенного влияния на величины амплитуд гармоник на торцах магнита параметр δ не оказывает.

Как видно из <u>рис.3а</u>, на краю магнита амплитуды высших гармоник имеют большие значения: $C_{3 \text{ Makc}} = 8,8\%, C_{5 \text{ Makc}} = 5,1\%, C_{7 \text{ Makc}} = = 1,7\%$.

Зависимость амплитуд высших гармоник от уровня индукции иллюстрируется <u>рис.36</u>, где показано распределение амплитуд третьей и пятой гармоник вдоль оси магнита СКДУ-1 при индукции в центре 0,6 Т /кривые с индексом I/ и 2,5Т/кривые с индексом II /. Существенное увеличение амплитуд высших гармоник по всей длине магнита связано, очевидно, с насыщением ярма. Однако на торце магнита амплитуды увеличиваются приблизительно на одну и ту же величину как при малых, так и при больших значениях индукции в центре диполя.

Полученные в центре магнита значения амплитуд высших гармоник интересно сравнить со значениями, найденными из расчетов по двумерной программе POISSON ⁽¹⁰⁾. Для магнита СКДУ-1 при индукции 2,5 Т эта программа дает следующие значения: $C_8 = 3,85\%, C_5 = 0,75\%, C_7 = -0,15\%$.

3. В <u>табл.1</u> приведены значения относительных амплитуд высших гармоник поля в центре диполей СКДУ-1 и 2, полученные тремя различными способами: путем расчета по программе GFUN3D, путем расчета по двумерной программе MIC2^{/1/}, использующей метод отраженных токов, и измерением с помощью короткой индукционной катушки^{/11/}. Короткая катушка /КК/ имела длину всего 18,16 см. и размещалась в экспериментах в центре магнита,т.е. в той области, где амплитуды высших гармоник постоянны /см. <u>рис.3</u>/, поэтому выполненные с ее помощью измерения дают значения амплитуд в центре диполя.

Как видно из <u>табл.1</u>, можно говорить о хорошем общем совпадении результатов. Действительно, значения амплитуд, полученных различными методами,отличаются на 0,3%/для третьей и пятой гармоник/или 0,5%/для седьмой/.Однако легко заметить и отличия в поведении амплитуд высших гармоник. Так, при переходе от диполя СКДУ-1 к диполю СКДУ-2, отличающихся, как уже говорилось, толщиной корпусной изоляции, амплитуды высших гармоник при расчете по программе MIC2 уменьшаются все примерно в 5 раз, как уменьшается и параметр δ . По-иному ведут себя ампли-

Таблица l

	Цен:	Центральное поле			$N = I \sim IO0 \%$		
номер гарло- никт	CKUV-I ($\delta = 0.5$ MM)			CKUV-2 (δ = 0, I MM)			
	измерения кк	GFUN3D	2Д(MIC2)	измерения кв	GFUN3D	2Д(MIC2)	
Э	1,041	I,070	0,720	0 , 33 6	0,520	0,140	
5	0,486	0,130	0,330	0,105	-0,030	0,066	
7	-0,044	-0,290	-0,045	-0,059	0,520	-0,009	

Значения величин С_N /%/ на радиусе R - 2,5 см для центрального поля магнита (В- 0.6 Т)

туды тех же гармоник, вычисленные по программе GFUN3D: амплитуда третьей гармоники уменьшается в 2 раза, пятой - примерно в 4 /с одновременным изменением фазы на л/, а седьмой - увеличивается в 2 раза.

Измерения же показывают, что амплитуда третьей гармоники уменьшается в диполе СКДУ-2 в три раза, а пятой - в 4,6, т.е. измеренные значения амплитуд оказывются ближе к тому, что следует из расчетов по программе MIC2, чем по программе GFUN3D. Наблюдаемое отличие экспериментальных значений амплитуд от предсказываемых по программе MIC2 вызвано, по-видимому, нелинейностью укладки витков по высоте обмотки.

На <u>рис.4а</u> показано распределение поля в центре диполя СКДУ-1 в зависимости от координаты X при Y =0 /см. <u>рис.1</u>/. Здесь кривая I построена на основе расчетов по программе GFUN3D, II - измеренная, а III - рассчитана по программе MIC2.

4. В <u>табл.2</u> приведены интегральные величины амплитуд высших гармоник, полученных при измерении длинными индукционными катушками /ДК/ и в расчетах по программе GFUN3D. Длина индукционной катушки в этих экспериментэх равна 59,5 см, что значительно больше длины магнита по полю: 42,8 см, поэтому измерения с такой катушкой дают значения интегральных амплитуд высших гармоник с учетом торцов магнита.

Расчетные значения интегральных амплитуд получены численным интегрированием кривых рис.3.

Из табл.2 видно, что если для амплитуд пятой и седьмой гармоник наблюдаемое различие между расчетом и экспериментом не превышает 0,3%, то амплитуды третьей гармоники отличаются уже на 1,3-1,5%. Более того, из сравнения табл.1 и 2 видно, что согласно измерениям интегральная амплитуда третьей гармоники в каждом магните меньше дифференциальной на 0,23-0,24%, как

Рис.4. Радиальное распределение нелинейностей поля а/ для центральной плоскости; б/ усредненное по длине магнита; I – расчеты по программе GFUN3D; II – измерения индукционными катушками; III – двумерные расчеты по методу отраженных токов.

Таблица 2

Интеграл	поля	N = I ~ I00 %		
Holiep rapmo- CKEV-I ($\delta = 0.5$ km.)		CKHy-2 (δ = 0, I MM)		
измерения ДК	GFUN3D	измерения ДК	CFUN3D	
0,798	2,170	0,206	1,720	
0,6 91	0,600	0,423	0 ,44 0	
-0,113	-0,210	-0,141	-0,470	
	Интеграл СКДУ-I измерения ДК 0,798 0,691 -0,113	Интеграл поля СКДУ-I ($\delta = 0.5$ мл) измерения GFUN3D 0,798 2,170 0,691 0,600 -0,113 -0,210	Интеграл поля N = I СКДУ-I (\$ = 0,5 клл) СКДУ-2 измерения ДК СГОНЗО измерения ДК 0,798 2,170 0,206 0,691 0,600 0,423 -0,113 -0,210 -0,141	

Интегральные значения величин С_N/%/ на радиусе R=2,5 см для индукций внутри магнита В 0,6 Т

если бы третья гармоника на торце изменила фазу на π . Напротив, согласно расчетам ее фаза остается неизменной /см. <u>puc.3</u>/, а интегральная величина возрастает на 1,1-1,2%. Вследствие этого расчетное распределение интегрального поля в апертуре магнита /кривая 1 на <u>puc.46</u>/ существенно отличается от измеренного /кривая II на <u>puc.46</u>/.

Ниже анализируются возможные причины столь большого расхождения расчетов с экспериментом.

5. В предыдущих расчетах величина зазора между ярмом магнита и обмоткой на торцах принималась равной $\Lambda = 0,8$ см /см. <u>рис.1</u>/. При этом величина Λ всегда равна радиусу поворота обмотки R1. Представляет интерес исследовать влияние толщины этой изоляционной прокладки на нелинейности поля.

С этой целью при индукции 0,6 Т в центре магнита СКДУ-1были получены графики $C_N(Z)$, аналогичные приведенным на <u>рис.3</u>,для различных значений Δ . По этим графикам определялись максимальные значения С N зависимость которых от R1 показана на <u>рис.5</u> для 3-ей,5-ой и 7-ой гармоник. Хотя толщина торцовой изоляционной прокладки существенно влияет на нелинейность поля, однако, если учесть, что для исследуемых магнитов эта прокладка имеет толщину в 0,60±0,05 см, то этим влиянием нельзя объяснить наблюдаемое расхождение между расчетом и экспериментом.

6. Поле от железного ярма \vec{H}_m рассчитывается в программе в предположении постоянства намагниченности \vec{M} в каждом из элементарных объемов, на которые разбивается ярмо магнита. Так как намагниченность меняется от одного элементарного объема к другому, то наилучшим приближением к большей точности вычислений является максимальное число разбиений по железу ⁸.

В данной работе применялся код разбиений ярма магнита на треугольные призмы.

На <u>рис.6</u> представлено разбиение ярма магнита /его 1/4 части на 1/2 длины/ на 36 призм. Рисунки <u>6а и 66</u> показывают разбиение в плоскостях XY и YZ, использованное при основном счете. На <u>рис.6в</u> представлено некорректное деление ярма магнита вдоль оси Z. В плоскости XY это деление было таким же, как на рис.6а,

Для этих вариантов были получены численные результаты зависимости амплитуд высших гармоник C_N и B_1 от радиуса R /см. формулу /1// при Z= 20,0 см. Результаты основного счета собраны в <u>табл.3</u>. Точность вычисления дипольной составляющей поля B_1 на торце магнита составляет 2,7%, для C_3 она равна

Рис.5. Максимальные величины амплитуд $C_N/R = 2,5$ см/ на торце СП диполя в зависимости от величин $R1 \sim \Lambda$.

7

Рис.6. Использованные способы разбиения ярма магнита на треугольные призмы.

0,75%. Было замечено, что численные значения амплитуд высших гармоник C_N и B_1 на торцах магнита слабо зависят от способа разбиения ярма магнита на призмы. Более существенной является зависимость от радиуса, на котором проводится гармонический анализ /см. табл.3/.

В данной работе определялась также эффективная длина СП диполей. Вычисленная по программе GFUN3D для СП диполя СКДУ-1 эффективная длина для 0,6 Т составляет 43,2 см, для 1,6 Т -42,99 см и для 2,6 Т - 41,91 см.

Таким образом, в настоящей работе исследовано трехмерное распределение магнитного поля СП диполя и получены распределения нелинейностей поля вдоль оси Z /ось магнита/, а также зависимость их от индукции.

Таблица З

Зависимость величин $C_N/Z/$ и $B_J/\Gamma c/$ [R = 2,5 см; Z = 20,00 см] от нормализованного радиуса RN. C_N приведены в процентах к величине индукции внутри магнита $B \approx 0,6$ T /СП диполь СКДУ-1/

N	R = I,0 cm	R = 1,5 cm	R = 2,0 cm	∆ B _N (%)	_
I	4746,84	4808,09	4910,32	2,7 %	
3-	5,20	5,45	5,95	0,75 %	
5	6,20	6,27	6 ,8I	0,6I %	
7	I,00	I,I8	1,32	0,32 %	
9	0,24	0,21	0,20	0,04 %	

Исследовано влияние изоляционной прокладки /между ярмом магнита и обмоткой на торцах/ на величины нелинейностей поля по всей длине магнита.

С точностью 2.10 $^{-3}$ подтверждены результаты, полученные в двумерных расчетах / POISSON и MIC2 /метод отраженных токов// и в измерениях индукционными катушками '11'.

Проведены оценки интегральных величин гармоник.

Суммарная нелинейность поля, полученная в расчетах по программе GFUN3D, отличается от измеренной. Отличие возникает из-за больших значений величин амплитуд третьей гармоники на торцах. Исследование возможных причин такого отличия указало на значительную зависимость результатов расчетов от количества элементов разбиения ярма магнита на призмы^{/3/}. Поэтому представляется необходимым проведение дальнейших расчетов с улучшением точности.

ЛИТЕРАТУРА

- 1. Шелзев И.А., Юдин И.П. ОИЯИ, Р9-80-333, Дубна, 1980.
- 2. Жидков Е.П., Полякова Р.В., Шелаев И.А. ОйЯИ, Р11-12324, Дубна, 1979.
- 3. Armstrong A.G. et al. GFUN3D User Guide. RL-76-029/A.
- Armstrong A.G.,CGAM et al. Solution of 3D Magnetostatic Problems Using Scalar Potentials. In: Proc. Compumag Conf., 1978, Grenoble, Sect.12.
- Hannala A.Y., Simkin I., Trowbridge C.W. Integral and Differential Methods for the Numerical Solution of 2-D Field Problem in High Energy Physics Magnets and Electrical Mashines, RL-79-077.
- Collie C.I. et al. Progress in the Development of an Interacting Computer Program for Magnetic Field Design and Analysis in Two and Three Dimensions. RL-73-077 (RL 1973).
- Тозони О.В., Маергойз И.Д. Расчет трехмерных электромагнитных полей. "Техника", Киез, 1974.
 Armstrong A.G., AGAM et al. New Developments in the
- Armstrong A.G., AGAM et al. New Developments in the Magnet Design Computer Program GFUN. RL-75-066.
- 9. McInturff A., Clauss I. Proc. of 3rd Int.Conf. Magnet Technol., Hamburg, 1970, p.45.
- 10. POISSON Group Programs. User's Guide. CERN, 1975.
- Алфеев В.С. и др. В сб.: Седьмое Всесоюзное совещание по ускорителям заряженных частиц. Дубна, 14-16 октября 1980 года. Аннотации докладов, Д9-80-637, Дубна, 1980, с.47. Рукопись поступила в издательский отдел 28 января 1981 года.