

Объединенный институт ядерных исследований

дубна

3/41-81 P9-81-531

С.Т.Иванов, К.А.Решетникова

НЕЛИНЕЙНОЕ РАВНОВЕСНОЕ СОСТОЯНИЕ РЕЛЯТИВИСТСКОГО ЭЛЕКТРОННОГО ПУЧКА И ЭЛЕКТРОМАГНИТНОЙ ВОЛНЫ БОЛЬШОЙ АМПЛИТУДЫ В ПЛАЗМЕ

Направлено в "Plasma Physics"

1. ВВЕДЕНИЕ

Быстрое развитие техники получения сильноточных электронных пучков и широкие перспективы, связанные с усилением и генерацией мощных с.в.ч. волн и развитием новых методов ускорения, стимулируют исследование различных аспектов взаимодействия пучков заряженных частиц с электромагнитными волнами в электродинамических, в том числе и плазменных, структурах^{/1-3/}

Известно, что при движении электронного пучка через плазму в системе при определенных условиях может развиться довольно сильная пучковая неустойчивость, в результате которой возникает электромагнитная волна, а пучок теряет энергию. Вопрос об эффективности трансформации энергии пучка в энергию электромагнитного поля является важнейшим как с точки зрения усиления и генерации электромагнитных волн, так и для ускорения больших токов. Однако нелинейный характер процесса взаимодействия весьма затрудняет не только построение теории, но даже нахождение надежных аналитических оценок /см., напр., ^{/4/}/. Многие вопросы нелинейного взаимодействия частиц с генерируемой волной нуждаются еще в детальном анализе.

Для оценки эффективности генерации и усиления волны, возбуждаемой электронным пучком в плазме, в настоящее время используют два метода: численный и аналитический. В первом рассматривается последовательная трансформация фазовых траекторий частиц пучка в процессе их взаимодействия с электромагнитным полем ^{/5-7/} Реализация этого метода связана со значительными затратами времени на ЭВМ. Другой подход использует непосредственный анализ конечного стационарного состояния волна-пучок, когда волна и пучок синхронизуются, а обмен энергией между полем и частицами прекращается. Известно, что для однородных систем выход на нелинейный уровень насыщения сопровождается осцилляциями амплитуды поля ^{/8/}. Тем не менее, аналитические оценки, полученные на основании анализа стационарного состояния на стадии насыщения, даже при приближенном подходе ^{/9/} являются весьма полезными.

Как в том, так и в другом методе, нелинейный характер теории связан с воздействием волны лишь на движение электронов пучка. Движение электронов плазмы предполагалось линейным. Это накладывало определенные ограничения на амплитуду волны. Поэтому в ⁷⁹⁷ и в последующих работах предполагалось, что $e\Phi_0 << m_0 c^2 n_b \gamma_b$,

где Φ_0 – амплитуда потенциала волны, \overline{n}_b – плотность электронов пучка, \overline{y}_b – релятивистский фактор электронов пучка.

/1/

При такой амплитуде поля движение частицы в системе координат, движущейся с фазовой скоростью волны, является нерелятивистским. Имеется небольшое число работ, например, $^{7,12/}$, где анализ проводился численно, и $^{10,11/}$, где находились аналитические оценки равновесного состояния пучка и волны, в которых движение захваченных волной частиц пучка предполагалось релятивистским, т.е. ограничение /1/ было снято.

Однако движение электронов плазмы и в этих работах по-прежнему считалось линейным. Как показал наш анализ, для релятивистских пучков и больших амплитуд поля, когда происходит захват электронов пучка волной и электроны при движении в яме набирают энергию, сравнимую с энергией покоя, движение электронов плазмы является существенно нелинейным. Это приводит к тому, что часть энергии, отданной пучком системе, отбирается плазмой. Причем сначала, с ростом амплитуды, энергия, отбираемая плазмой, растет монотонно. Это приводит к тому, что в области параметров, где применимы приближения работы 71%, учет нелинейного характера движения плазмы приводит к понижению к.п.д. трансформации энергии пучка в энергию электромагнитного поля. Затем, с ростом релятивистского фактора пучка, при постоянной его плотности, затраты энергии на плазму по отношению к начальной энергии пучка $(\eta_{ extsf{D}})$ проходят через максимум и далее медленно уменьшаются. Если растет ток пучка при постоянстве релятивистского фактора, то зависимость величины $\eta_{
m D}$ от концентрации электронов пучка носит колебательный характер. В связи с этим, с целью увеличения к.п.д. системы, необходим поиск оптимальных величин начальной энергии и тока пучка.

2. ПОСТАНОВКА ЗАДАЧИ, ИСХОДНЫЕ УРАВНЕНИЯ

В работе используется традиционная постановка задачи. Рассматривается неограниченный поток плазмы с концентрацией $\bar{\mathbf{n}}_{\mathrm{p}}$, в которой распространяется гармоническая волна

$$\mathbf{E} = \mathbf{E}_0 \sin(\omega t - \mathbf{k}z) \, . \tag{2}$$

Здесь $\frac{\omega}{k} = v = \beta c$ - фазовая скорость волны.

В направлении оси z движется электронный пучок со скоростью $v_b = \beta_b c$ и концентрацией n_b . Пучок замагничен и его движение является одномерным.

2

Рассматривается стационарное, самосогласованное состояние пучка, плазмы и волны. Предполагается, что это состояние является конечным итогом развития пучковой неустойчивости и поэтому все электроны пучка можно считать захваченными волной.

В невозмущенном начальном состоянии пучок и плазма имели соответственно скорости $\overline{v}_b = \overline{\beta}_b c$, $\overline{v}_p = \overline{\beta}_p c = 0$ и концентрации \overline{n}_b , \overline{n}_p .

Учитывается нелинейность движения как электронов пучка, так и плазмы, т.е. снимается ограничение /1/. Это позволяет рассматривать пучки произвольной концентрации и энергии. Напомним, что начальное состояние пучка в таких задачах характеризуется параметром $S = \left(\frac{\nu}{2}\right)^{1/3} \overline{\beta}_b^2 \overline{\gamma}_b$, где $\nu = \frac{n_b}{\overline{n}_p}$, $\overline{\gamma}_b = \left(1 - \overline{\beta}_b^2\right)^{-1/2}$. В случае линейной плазмы и при условии /1/ величина $S << 1^{/9/}$. В нашей работе параметр S может быть любым.

Исходная система уравнений состоит из уравнений Максвелла, уравнений движения, уравнений для изменения энергии и уравнения непрерывности.

$$\frac{\partial \vec{E}}{\partial t} = -4\pi \vec{j}, \qquad /3a/$$

$$\frac{\partial \mathbf{E}}{\partial z} = 4\pi\rho, \qquad (36)$$

$$\frac{\partial \beta_{i} \gamma_{i}}{\partial t} + v_{i} \frac{\partial \beta_{i} \gamma_{i}}{\partial z} = \frac{eE}{m_{0} c}, \qquad (3B)$$

$$\frac{\partial \gamma_i}{\partial t} + \mathbf{v}_i \frac{\partial \gamma_i}{\partial z} = \frac{\mathbf{e} \mathbf{E} \mathbf{v}_i}{\mathbf{m}_0 \, \mathbf{c}^2} , \qquad /3r/$$

$$\frac{\partial \rho_{i}}{\partial t} + \frac{\partial J_{i}}{\partial z} = 0.$$
 /3 α /

Здесь индексы i = b, p относятся, соответственно, к электронам пучка и плазмы, $\vec{j} = e(n_b \vec{v}_b + n_p \vec{v}_p)$, $\rho = e(n_b + n_p)$, $\beta_b = \frac{v_b}{c}$, $\beta_p = \frac{v_p}{c}$, v_b , v_p - скорости пучка и плазмы.

Подчеркнем еще раз, что мы рассматриваем конечное состояние развития пучковой неустойчивости, когда скорость пучка стала равной фазовой скорости волны и установившаяся гармоническая волна захватила пучковые электроны. Исходя из системы уравнений /3/, предположений о гармоничности волны /2/ и условия захвата электронов, получим замкнутую систему уравнений для определения неизвестных: амплитуды волны, частоты, фазовой скорости, а также постоянных в интегралах движения, определяемых через скорости пучка и плазмы в точках минимума потенциала. Из системы /3/ нетрудно получить уравнения баланса энергии и импульса рассматриваемой системы: волна-плазма-пучок. Действительно, умножая первые два уравнения на Е,а затем интегрируя по всему объему, найдем:

$$<\frac{E^{2}}{8\pi m_{0}c^{2}} > + < n_{b}\gamma_{b} > + < n_{p}\gamma_{p} > = \bar{n}_{b}\bar{\gamma}_{b} + \bar{n}_{p}, \qquad /4a/$$

$$\langle \mathbf{n}_{\mathbf{b}}\beta_{\mathbf{b}}\gamma_{\mathbf{b}}\rangle + \langle \mathbf{n}_{\mathbf{p}}\beta_{\mathbf{p}}\gamma_{\mathbf{p}}\rangle = \overline{\mathbf{n}}_{\mathbf{b}}\overline{\beta}_{\mathbf{b}}\overline{\gamma}_{\mathbf{b}} \cdot$$

$$/46/$$

Здесь скобки означают усреднение по длине волны. Из первых двух уравнений исходной системы /3/ получим известное уравнение для поля

$$\frac{1}{c^2} \frac{\partial^2 E}{\partial t^2} + \frac{\partial^2 E}{\partial z^2} = -4\pi \left(\frac{1}{c^2} \frac{\partial j}{\partial t} - \frac{\partial \rho}{\partial z}\right). \qquad (5/$$

Учитывая /2/, перейдем к новой переменной $\xi = t - \frac{z}{v} \left(\frac{\partial}{\partial t} = \frac{\partial}{\partial \xi} \right)$, $\frac{\partial}{\partial z} = \frac{1}{v} \frac{\partial}{\partial \xi}$)и введем обобщенный потенциал Ф так, что $E = \frac{1}{vy^2} \frac{\partial \Phi}{\partial \xi} = -\frac{k}{y^2} \Phi_0 \sin \psi$. /6/

Здесь $\Phi = \Phi_0 \cos \psi$, $\psi = \omega \xi$, $\gamma = (1 - \beta^2)^{-\frac{1}{2}}$. Введем обозначение:

$$\phi = \frac{c_*}{m_0 c^2} \cdot \frac{77}{77}$$

Тогда уравнение /5/ будет:

$$\frac{d^{2}\phi}{d\psi^{2}} = \beta^{2}\gamma^{2} (\nu_{b} - \bar{\nu}_{b} + \nu_{p} - \bar{\nu}_{p}), \qquad /8/$$

где

$$\nu_{\rm b} = \frac{4\pi e^2 n_{\rm b}}{m_0 \omega^2}, \qquad \overline{\nu}_{\rm b} = \frac{4\pi e^2 \overline{n}_{\rm b}}{m_0 \omega^2}, \\ \nu_{\rm p} = \frac{4\pi e^2 n_{\rm p}}{m_0 \omega^2}, \qquad \overline{\nu}_{\rm p} = \frac{4\pi e^2 \overline{n}_{\rm p}}{m_0 \omega^2}.$$

Используем интеграл уравнения непрерывности в виде:

$$\nu_{b} = \frac{\bar{\nu}_{b}}{I_{b}(\beta_{b} - \beta)}, \quad \nu_{p} = \frac{\bar{\nu}_{p}}{I_{p}(\beta_{p} - \beta)}, \quad /9/$$

где

$$I_{b} = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{d\psi}{(\beta_{b} - \beta)}, \quad I_{p} = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{d\psi}{(\beta_{p} - \beta)}$$

Заметим, что при усреднении мы считали $\langle n_b \rangle = \bar{n}_b$, $\langle n_p \rangle = \bar{n}_p$. Тогда уравнения баланса /4/ и уравнение поля /8/, после усреднения, можно записать в виде:

$$\phi_0 = 2\beta^2 \gamma^2 (\bar{\nu}_b b_1 + \bar{\nu}_p p_1), \qquad (10a)$$

$$\frac{\overline{\nu}_{b} (\overline{\beta}_{b} \overline{\gamma}_{b} - b_{2})}{\frac{\phi_{0}^{2}}{4\beta^{2} \gamma^{4}}} = \overline{\nu}_{b} (\overline{\gamma}_{b} - b_{3}) + \overline{\nu}_{p} (1 - p_{3}) , \qquad /106/$$

где

$$\mathbf{b}_{1} = \frac{1}{2\pi \mathbf{I}_{b}} \int_{0}^{2\pi} \frac{\cos\psi \,\mathrm{d}\psi}{\beta_{b} - \beta}; \quad \mathbf{b}_{2} = \frac{1}{2\pi \mathbf{I}_{b}} \int_{0}^{2\pi} \frac{\beta_{b} \gamma_{b} \,\mathrm{d}\psi}{\beta_{b} - \beta}; \quad \mathbf{b}_{3} = \frac{1}{2\pi \mathbf{I}_{b}} \int_{0}^{2\pi} \frac{\gamma_{b} \,\mathrm{d}\psi}{\beta_{b} - \beta};$$

р₁, р₂, р₃ соответствуют b₁, b₂, b₃ с заменой под знаком интеграла индекса b на р.К системе уравнений /10/ добавим интегралы уравнений движения /3в/:

$$\gamma'_{b} + \phi' = \gamma'_{0}$$
, /11a/
 $\gamma'_{p} + \phi' = \gamma'_{p0}$, /116/

где

$$\begin{split} \gamma_{\mathbf{b}}' &= \gamma \gamma_{\mathbf{b}} (1-\beta\beta_{\mathbf{b}}), \quad \phi' = \frac{\phi}{\gamma}, \quad \gamma_{\mathbf{0}}' = \gamma \gamma_{\mathbf{0}} (1-\beta\beta_{\mathbf{0}}), \\ \gamma_{\mathbf{p}}' &= \gamma \gamma_{\mathbf{p}} (1-\beta\beta_{\mathbf{p}}), \quad \gamma_{\mathbf{p0}}' = \gamma \gamma_{\mathbf{p0}} (1-\beta\beta_{\mathbf{p0}}), \end{split}$$

 β_0 , β_{p0} - скорости электронов пучка и плазмы при $\phi=0$. Из уравнения /11а/ при $\beta_b=\beta$ определим ϕ_0 :

$$\phi_0 = \gamma (\gamma_0' - 1) . \qquad (12/$$

Это и есть условие захвата с учетом релятивистского характера движения пучковых электронов.

Получим еще одно соотношение, необходимое для полноты системы уравнений. Умножим /11а/ на ν_b , /11б/ на ν_p , сложим и усредним с учетом соотношений /4/ и /8/. В результате получим:

$$\frac{\phi_0^2}{4\beta^2 v^3} = \bar{\nu}_b (\gamma_0' - \bar{\gamma}') + \bar{\nu}_p (\gamma_{p0} - \gamma) .$$
 /13/

В итоге для определения пяти неизвестных величин: амплитуды волны, частоты, фазовой скорости и постоянных интегрирования имеем пять уравнений /10а, 10б, 10в, 12,13/.

Нетрудно показать, что при условии /12/ $b_1 = 1$, $b_2 = \beta \gamma$, $b_3 = \gamma$. Тогда перечисленные выше уравнения можно записать в виде:

$$\gamma'_0 = 1 + 2\gamma [\nu (\overline{\gamma} - \gamma) - (p_3 - 1)],$$

$$\gamma_{p0} = 1 + \nu \left(\overline{\gamma} - \gamma_{0} \right) + \frac{(\nu + p_{1})}{\gamma} \left[(\overline{\gamma} - \gamma) \nu - (p_{3} - 1) \right],$$

$$\overline{\nu}_{p} = \frac{(\overline{\gamma} - \gamma) \nu - (p_{3} - 1)}{\beta^{2} (\nu + p_{1})}, \qquad /14/$$

$$\beta \gamma = \overline{\beta \gamma} - \mathbf{p}_2 / \nu \, .$$

Здесь $\nu = \overline{n_b} / \overline{n_p}$, $\overline{\beta} = \overline{\beta}_b$, $\overline{\gamma} = \overline{\gamma}_b$, $\overline{\gamma}' = \overline{\gamma}_b'$. Система уравнений /14/ решалась методом Ньютона. При этом задавались ν , $\overline{\beta}$, определялись: $\overline{\nu_p}$, γ'_0 , γ'_{p0} , β . Определив из /14/ указанные величины, легко найти к.п.д. системы, т.е. коэффициент трансформации начальной энергии пучка в энергию электромагнитного поля:

$$\eta = \frac{E_0^2}{16\pi m_0 c^2 \bar{n}_b \bar{\gamma}_b} = \frac{\phi_0^2}{4\nu \nu_b \beta^2 \gamma^4 \bar{\gamma}} .$$
 (15/

С учетом /10б/ соотношение /15/ можно записать в следующей форме:

$$\eta = 1 - \frac{\gamma}{\gamma} - \frac{(p_3 - 1)}{\nu \overline{\gamma}}$$
 /16/

Помимо коэффициента η большой интерес для анализа распределения энергии между различными частями системы представляют следующие коэффициенты. Коэффициент η_b , характеризующий отношение энергии, отданной пучком в систему, к начальной энергии пучка

$$\eta_{\mathbf{b}} = \frac{m_0 c^2 (\overline{y} - \gamma) \overline{n}_{\mathbf{b}}}{m_0 c^2 \overline{n}_{\mathbf{b}} \overline{y}} = \frac{(y - \gamma)}{\overline{y}} = 1 - \frac{\gamma}{\overline{y}} .$$
 /17/

Коэффициент η_p , равный отношению энергии, затрачиваемой на движение электронов плазмы, к начальной энергии пучка

$$\eta_{\rm p} = \frac{m_{\rm 0} c^2 \bar{n}_{\rm p} (p_{\rm 3} - 1)}{m_{\rm 0} c^2 \bar{n}_{\rm b} \bar{\gamma}} = \frac{p_{\rm 3} - 1}{\nu \bar{\gamma}} .$$
 /18/

При этом, как следует из /16/,

$$\eta_{\rm p} + \eta = \eta_{\rm b} \,. \tag{19}$$

Представляют также интерес коэффициенты $\eta' \mapsto \eta'_p$. Первый определяет, какая доля энергии, отданной пучком в систему, трансформировалась в энергию электромагнитного поля, второй характеризует потери энергии на плазму по отношению к той же величине. При этом

$$\eta' + \eta'_{\rm p} = 1$$
, /20/

где

$$\eta' = \frac{\mathbf{E}_0^2}{\mathbf{16}\pi \,\mathrm{m}_0 \mathrm{c}^2 \,\mathbf{\tilde{n}}_{\mathbf{b}} \left(\overline{\gamma} - \gamma\right)} \,.$$

3. ОБСУЖДЕНИЕ ЧИСЛЕННЫХ РЕЗУЛЬТАТОВ

Прежде чем перейти к анализу численных результатов, обсудим некоторые вопросы, относящиеся к линейной плазме. Если плазма линейна, то $\frac{\beta_{\rm p}}{\beta} << 1$, т.е. $\frac{\phi_0}{\beta^{2\gamma}} << 1$. С учетом /19/ это приводит к условию:

$$\frac{\gamma_0'-1}{\beta^2\gamma} \ll 1.$$

С другой стороны, предположение о нерелятивистском характере движения в системе покоя волны приводит к условию:

$$(y'_0 - 1) << 1$$
. /22/

Сравнивая /21/ и /22/, видим, что для малых значений фазовой скорости (β^{2} <1, $\gamma \approx 1$) предположение о линейности плазмы приводит к условию нерелятивистского движения электронов пучка в движущейся со скоростью v системе координат /условие /21/более жесткое, чем /22//. В случае же $\beta \approx 1$, $\gamma >>1$ предположение о нерелятивистском характере движения в системе покоя волны означает, что плазма линейна /в этом случае условие /22/более жесткое, чем /21/.

Имея в виду пучки с релятивистскими скоростями (β =1) и предполагая, что условие /22/ выполняется, получим из уравнений /14/ линейную зависимость к.п.д. системы от параметра S:

$$\eta = 0.5 \mathrm{S}$$
.

Такой же результат получен в^{/7/}. В работе^{/9/} получена та же линейная зависимость, но с другим коэффициентом $\eta = 0.4$ S. Заметим, что в работе^{/10/} получено тоже $\eta = 0.4$ S. Это объясняется тем, что с учетом условия /20/ там использовалось из системы уравнений /10,11,12/ только одно уравнение /10а/. Несколько меньшие значения для η получены в работе^{/8/}– $\eta = 0.23$ S. При том же условии /20/ при $\nu << 1$ из уравнения /10а/ получаем линейное дисперсионное уравнение для системы плазма-пучок.

Следуя /14/, мы построили характеристики стационарного состояния плазмо-пучковой системы в зависимости от S. Поскольку при рассмотренных нами конечных S эти характеристики являются независимыми функциями начальной энергии пучка и его концентрации, то графики строились как для $S(\tilde{y})$, так и для $S(\nu)$. Результаты численного счета представлены на рис.1+6.

7

/23/

<u>Рис.2.</u>Зависимость коэффициентов η , $\eta_{\rm b}$, $\eta_{\rm p}$, $\eta_{\rm s}$ от параметра S = S(y) при $\nu = 0.2$.

<u>Рис.3</u>. Зависимость коэффициентов η , η_b , η_p от параметра $S=S(\nu)$ при $\overline{\gamma}=2,5$.

<u>Рис.1.</u> Зависимость энергии $W_b = \overline{\nu}_b (\overline{\gamma} - \gamma)$, отдаваемой пучком системе, энергии волны $W_E = \frac{\phi_b^2}{4\beta^2\gamma^4}$ и энергии, идущей в плазму, от параметра $S = S(\nu)$ при $\overline{\gamma} = 2.5$.

Рис.4. Зависимость коэффициента η от параметра $S = S(\nu)$ для разных $\overline{\gamma}$ ($\overline{\gamma} = 2; 2,5; 3$).

Рис.5. Зависимость коэффициентов η' и η'_{p} от параметра S=S($\overline{\gamma}$) при ν = 0,2.

ł

На <u>puc.1</u> показан для $\overline{y} = 2,5$ и $S = S(\nu)$ ход кривых W_b , W_E и W,,характеризующих, соответственно, энергию, отданную пучком системе, волновую и энергию, идущую в плазму. Видно, что с ростом концентрации электронов пучка, т.е. $S(\nu)$ все части растут. Также увеличиваются W_b , W_E , W_p с ростом S(y), при постоянном и Однако их отношение к начальной энергии пучка меняется более сложным образом. Это видно из рис.2 и 3, где показаны коэффициенты $\eta_{\rm b}$, η , $\eta_{\rm p}$ как функции $\overline{S(\tilde{\gamma})}$ и S(v), соответственно. На рис.2 представлен ход коэффициента η в функции S. При этом $\overline{\nu} = 0, 2, \ \overline{\nu}_{p} = 0, 4, \ 1,015 \le \overline{\gamma} \le 5,18$ и $1,01 \le \gamma \le 4,56$. Видно, что с ростом энергии пучка к.п.д. системы (η) сначала растет, достигает максимума /в данном случае при $\overline{y} = 2,35$ и $\gamma=$ 1,98/ затем начинает уменьшаться. Уменьшение η связано с тем, что отношение энергии, отданной пучком системе, к начальной энергии пучка также уменьшается с ростом S /кривая $\eta_{\rm b}$ /. Это обстоятельство связано с тем, что начальная энергия пучка растет быстрее, чем доля энергии, которую пучок отдает системе, т.к. при релятивистских скоростях электроны из-за своей увеличивающейся массы находятся в ускоряющей фазе поля значительно больше времени, чем в замедляющей /7,12/. Аналогичный ход имеет кривая η_{n} , характеризующая отношение потерь энергии на плазму к начальной энергии пучка. На этом же рисунке пунктиром нанесен ход коэффициента η_{s} , который вычислен по качественной формуле $\eta_s = \frac{0.58}{(1+8)^{5/2}}$, приведенной в работе^{/14/}, где плазма считалась линейной. Видно, что учет потерь энергии на плазму в области $\mathrm{S} < 0.7$ уменьшает коэффициент трансформации энергии пучка в энергию электромагнитного поля. При S>0.7 вряд ли можно считать плазму линейной.

В случае, когда $S=S(\nu)$, зависимость $\eta(S)$ качественно остается такой же, как при $S=S(\overline{\gamma})$ /<u>рис.3,4</u>/. Как следует из <u>рис.3</u>, максимум к.п.д. растет с ростом $\overline{\gamma}$ и сдвигается в сторону больших S. При $\overline{\gamma}=2$ ($\gamma=1,726$, $\overline{\nu}_p=0,4$) максимум η приходится на значение S=0,6 / $\nu=0,11$ /, при $\overline{\gamma}=2,5$ ($\gamma=2$, $\overline{\nu}_p=0,45$) $\eta_{\rm max}$ соответствует S=1,05 ($\nu=0,23$), при $\overline{\gamma}=3$ ($\gamma=2$, $\overline{\nu}_p=0,51$) $\eta_{\rm max}$ будет при S=1,27 ($\nu=0,214$). Уменьшение η с ростом S вызвано тем же самым релятивистским эффектом увеличения массы электрона.

Зависимость $\eta_b(S)$ и $\eta_p(S)$ при $\overline{\gamma} = const$ имеет совершенно другой вид, чем при $\nu = const$. При постоянной разности начальной и конечной энергий пучка доля энергии, отданная пучком системе, начиная с некоторого значения концентрации пучка, остается неизменной /<u>рис.3</u>/. Однако только часть этой энергии идет на возбуждение электромагнитной волны, остальная тратится на колебания электронов плазмы. Как видно из <u>рис.3</u>, потери на плазму имеют колебательный характер: сначала растут, затем падают,

9

<u>Рис.6</u>. Зависимость коэффициентов $\frac{\eta'}{\gamma'}$ и η'_p от параметра $S=S(\nu)$ при y = 2.5.

потом опять растут. Этот весьма неожиданный результат нельзя объяснить в рамках гидродинамического приближения нашей модели. Требуется кинетическое рассмотрение самосогласованного стационарного состояния системы волна-пучок-плазма. Такой метод в случае нерелятивистского движения частиц пучка в системе по-

коя волны развит в $^{/15'}$. Мы надеемся, что его расширение на случай релятивистского движения даст возможность объяснить колебательный характер $\eta_{\rm p}={\rm f}(\nu)$. Здесь отметим, что для небольших $\nu~(\nu\approx10\,\%)$ влияние концентрации пучка рассмотрено в $^{/16'}$. Ход кривой $\eta_{\rm b}(\nu)$, построенный по результатам таблицы 3 этой работы, близок к начальному участку зависимости $\eta_{\rm b}$ от S(ν) на рис. 3.

На рис.5 представлены кривые η' и η'_{p} , характеризующие соответственно отношения плотности энергии электромагнитного поля и потерь в плазме к энергии, отданной пучком системе. Видно, что при S<<1 энергия, отданная системе, почти равна С ростом S растет амплитуда поля и увелиэнергии поля. чиваются потери энергии на плазму. В результате η' уменьшается, а $\eta'_{
m p}$, начиная с некоторой энергии, практически ocтается постоянной величиной. Это означает, что при данном токе пучка существует некоторое оптимальное значение энергии инжекции пучка в систему, при котором для выбранной частоты волны пучок отдает наибольшее количество своей энергии, что приводит к максимальному к.п.д. С точки зрения эффективности генерации нужно выбирать системы с небольшим S.

На <u>рис.6</u> представлены кривые η' и η'_p для $\bar{\gamma}=2.5$ и S = S(ν). Отношение энергии волны к энергии, отданной пучком системе, составляет в максимуме к.п.д. $\approx 70\%$, остальные 30% идут на потери в плазме. Здесь зависимость коэффициента η'_p от ν , а вместе с ним η' , так же как и зависимость η_p на <u>рис.3</u>, носит колебательный характер. Ход кривых при малых S(ν) качественно не отличается от их хода при малых S(γ).

В заключение авторы выражают благодарность А.А.Рухадзе и В.К.Гришину за полезные обсуждения.

ЛИТЕРАТУРА

- 1. Богданкевич Л.С. и др. Препринт ФИАН СССР, №95, М., 1979.
- 2. Богданкевич Л.С. и др. Изв. вузов, Физика, 1979, 10, с.47.
- 3. Сб. Нелинейные волны. "Радиофизика", 1976, 5, с.6.
- Физика сильноточных релятивистских электронных пучков /под ред. А.А.Рухадзе/. "Атомиздат", М., 1980.
- 5. Онищенко И.Н. и др. Письма в ЖЭТФ, 1970, 12, с.407; 1970, 12, с.281.
- 6. O'Neil T.M. et al. Phys. of Fluids, 1971, 14, p.120.
- 7. Thode L.E., Sudan R.N. Phys. of Fluids, 1975, 18, p.1552.
- 8. Matsiborko N.G. et al. Plasma Phys., 1972, 14, p.591.
- 9. Ковтун Р.М., Рухадзе А.А. ЖЭТФ, 1970, 58, с.1790.
- 10. Иванов С.Т. и др. ЖТФ, 1978, 48, с.1346.
- 11. Иванов С.Т. и др. ОИЯИ, 9-11370, Дубна, 1978.
- 12. Lampe M., Sprangle P. Phys. of Fluids, 1975, 18, p.475.
- 13. Иванов С.Т. ЖТФ, 1976, 46, с.1408.
- 14. Thode L.E., Sudan R.N. Phys.Rev.Lett., 1973, 30, p.732.
- 15. Гришин В.К. и др. Болг.физ.журн., 1980, 7, с.315.
- 16. Астрелин В.Т., Бучельникова И.С. ЖТФ, 1976, 46, с.1645.